

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
C-WING	CJ14	MONO TRUSS	2	1	Job Reference (optional)
Universal Forest Products	1	ID·la	n8x7aCWbBn	7 w.IAxwHk	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:08:49 2016 Page 2 604HviDe3-04ObzZI i7KI2EC5De5grlGehGuA?seOuxmMYggzpDLS
		10.14		W0/1/W111	
LOAD CASE(S) Standard					
14) 1st Moving Load: Lumber	Increase=1.25, Plate Increase=	1.25			
Concentrated Loads (lb) Vert: 7=-300					
Trapezoidal Loads (plf)					
Vert: 2=-0(F=10, B	=10)-to-5=-42(F=-11, B=-11), 1	=-138-to-2=-105, 2=-17(F=44, B=44)-to-4=-119	F=-53, B=-53)		
15) 2nd Moving Load: Lumber	Increase=1.25, Plate Increase=	=1.25			
Concentrated Loads (lb)					
Vert: 8=-300					
Vort: 2-0(E-10 B	-10)-to-542(E11 B11) 1	-138-to-2-105 2-17/E-44 B-44)-to-4-119	E-53 B-53		
16) 3rd Moving Load: Lumber	Increase-1 25 Plate Increase-	1 25	(I =-33, D=-33)		
Concentrated Loads (lb)		1.20			
Vert: 4=-300					
Trapezoidal Loads (plf)					
Vert: 2=-0(F=10, B	=10)-to-5=-42(F=-11, B=-11), 1	=-138-to-2=-105, 2=-17(F=44, B=44)-to-4=-119	F=-53, B=-53)		
17) 4th Moving Load: Lumber	Increase=1.25, Plate Increase=	1.25			
Concentrated Loads (lb)					
Vert: 2=-300					
Vert: 2-0(E-10 B	-10)-to-542(E11 B11) 1	138-to-2105 217/E-44 B-44)-to-4119	F53 B53		
18) 5th Moving Load: Lumber	Increase=1 25 Plate Increase=	1 25	(I = 30, D= 30)		
Concentrated Loads (lb)					
Vert: 3=-300					
Trapezoidal Loads (plf)					
Vert: 2=-0(F=10, B	=10)-to-5=-42(F=-11, B=-11), 1	=-138-to-2=-105, 2=-17(F=44, B=44)-to-4=-119	F=-53, B=-53)		
1					

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence		
C-WING	G1AA	MONO TRUSS	1	2	lob Reference (optional)		
Universal Forest Products	1	1			7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:08:50 2016 Page 2		
ID:_JpYqBxrPMKYViMgyg_vxAyjDdw-sGyzAvMLudQvrMgPCoB4qTBusIMcbyE1AQ55MDznDLR 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 976 lb down and 571 lb up at 8-5-14, 976 lb down and 571 lb up at 8-5-14, 902 lb down and 572 lb up at 11-3-12, 902 lb down and 528 lb up at 11-3-12, 902 lb down and 528 lb up at 11-3-12, 902 lb down and 528 lb up at 11-3-12, 819 lb down and 479 lb up at 14-1-2, 819 lb down and 479 lb up at 14-1-2, 739 lb down and 432 lb up at 16-10-10, 739 lb down and 432 lb up at 16-10-10, 661 lb down and 387 lb up at 19-9-10, 661 lb down and 387 lb up at 19-9-10, 661 lb down and 387 lb up at 19-9-10, 457 lb down and 267 lb up at 22-7-8, 457 lb down and 267 lb up at 22-7-8, 577 lb down and 338 lb up at 25-5-8, 577 lb down and 338 lb up at 25-5-8, and 794 lb down and 465 lb up at 28-3-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.							
LOAD CASE(S) Standard 1) Dead + Snow (balanced): L Uniform Loads (plf) Vert: 11-18=-20 Concentrated Loads (lb) Vert: 16=-1952(F=- 30=-1588(F=-794, [Trapezoidal Loads (plf) Vert: 1=-173-to-2=-	umber Increase=1.15, Plate Incr 976, B=-976) 15=-1638(F=-819, 3=-794) 166, 2=-166-to-10=-95	ease=1.15 B=-819) 13=-1322(F=-661, B=-661) 12=-1154(F=	577, B=-57	7) 27=-180	4(F=-902, B=-902) 28=-1478(F=-739, B=-739) 29=-914(F=-457, B=-457)		
2) Dead + Snow (Unbal. Left): Uniform Loads (plf) Vert: 11-18=-20 Concentrated Loads (lb) Vert: 16=-1952(F=- 30=-1588(F=-794, F Trapezoidal Loads (plf) Vert: 1=-173-to-2=-	Lumber Increase=1.15, Plate In 976, B=-976) 15=-1638(F=-819, 3=-794) 166, 2=-166-to-24=-122, 24=-17	crease=1.15 B=-819) 13=-1322(F=-661, B=-661) 12=-1154(F= 6-to-10=-150	577, B=-57	7) 27=-180	4(F=-902, B=-902) 28=-1478(F=-739, B=-739) 29=-914(F=-457, B=-457)		
3) Dead + Snow (Unbal. Right Uniform Loads (plf) Vert: 11-18=-20 Concentrated Loads (lb) Vert: 16=-993(F=-4 30=-808(F=-404, B: Trapezoidal Loads (plf) Vert: 1=-117-to-2=-): Lumber Increase=1.15, Plate 97, B=-497) 15=-833(F=-417, B= 404) 110, 2=-110-to-10=-39	417) 13=-673(F=-336, B=-336) 12=-587(F=-294	, B=-294) 27	-918(F=-4	59, B=-459) 28=-752(F=-376, B=-376) 29=-465(F=-233, B=-233)		
13) Dead + Snow on Overhan Uniform Loads (plf) Vert: 11-18=-20 Concentrated Loads (lb) Vert: 16=-582(F=- 30=-474(F=-237, f Trapezoidal Loads (plf) Vert: 1=-253-to-2=	gs: Lumber Increase=1.15, Plate 291, B=-291) 15=-489(F=-244, B 3=-237) -246, 2=-86-to-10=-15	∋ Increase=1.15 3=-244) 13=-394(F=-197, B=-197) 12=-344(F=-17	2, B=-172) 2	7=-538(F=-	269, B=-269) 28=-441(F=-220, B=-220) 29=-273(F=-136, B=-136)		

Job	Truss	Truss Type		tv.	Ply	Portland Retirement Residence
C-WING	G3B	MONO TRUSS	1		2	Job Reference (optional)
Universal Forest Products		-	ID:whwJ	Fty5wza	aGI?W33	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:08:52 2016 Page 2 51N1byjDdu-of4jbbNbQFgc5gqoJDEYwuGB163V3rlKdkaCQ6znDLP
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lu Uniform Loads (plf) Vert: 8-13=-483(F=- Trapezoidal Loads (plf) Vert: 1=-173-to-6=- 2) Dead + Snow (Unbal. Left): Uniform Loads (plf) Vert: 8-13=-483(F=- Trapezoidal Loads (plf) Vert: 1=-117-to-6=-4 13) Dead + Snow (Overhang Uniform Loads (plf) Vert: 8-13=-158(F=- Trapezoidal Loads (plf) Vert: 8-13=-158(F=- Trapezoidal Loads (plf) Vert: 8-13=-158(F=- Trapezoidal Loads (plf) Vert: 8-13=-158(F=- Trapezoidal Loads (plf) Vert: 1=-93-to-6=-4	umber Increase=1.15, Plate Incr 463) 102, 6=-102-to-7=-94 Lumber Increase=1.15, Plate In 463) 120, 5=-177-to-6=-159, 6=-159- 1: Lumber Increase=1.15, Plate 463) 46, 6=-46-to-7=-38 js: Lumber Increase=1.15, Plate 138) 22, 6=-182-to-7=-174	ease=1.15 crease=1.15 o-7=-151 Increase=1.15				

lob	Trues	Truss Type		Otv	Plv	Portland Betirement Besidence
000	11055	11033 1306		Giy	· 'y	
C-WING	G21	ROOF TRUSS		1	1	
						Job Reference (optional)
Universal Forest Products					7.	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:08:55 2016 Page 2
			ID:iEPKw	c362Rb7	iE7bXmA	FLHyjDdm-DElsDdPUiA2By7YN?LnFXXuisJCzGO0mKips1RznDLM
LOAD CASE(S) Standard						
Concentrated Loads (Ib)						
Vert: /=-513(F)						
Vort: 1 218 to 10	170 10 190 to 4 150 4 99	(E 47) to 5 0(E 47)				
2) Dood - Spow (Upbal Pight	-172, 10=-102-10-4=-152, 4=-50	$(\Gamma=47) - (0 - 3 = 3(\Gamma=47))$				
Juliform Loads (plf)	. Lumber mcrease=1.15, Flate	Increase=1.15				
Vort: 2-720 6-7	38/F18)					
Concentrated Loads (lb)	30(1 =-10)					
Vert: 7513(F)						
Trapezoidal Loads (plf)						
Vert: 1=-162-to-4=-8	35. 4=-111(F=47)-to-5=-64(F=47	7)				
13) Dead + Snow on Overhand	s: Lumber Increase=1.15, Plate	Increase=1.15				
Uniform Loads (plf)						
Vert: 2-7=-20, 6-7=	18(F=1)					
Concentrated Loads (lb)						
Vert: 7=-153(F)						
Trapezoidal Loads (plf)						
Vert: 1=-298-to-2=	-278, 2=-118-to-4=-61, 4=-54(F=	=7)-to-5=-7(F=7)				
14) 3rd Unbal.Dead + Snow (b	alanced) + Parallel: Lumber Inci	rease=1.15, Plate Increase=1.15				
Uniform Loads (plf)						
Vert: 2-7=-20, 6-7=	-38(F=-18)					
Concentrated Loads (Ib)						
Vert: /=-513(F)						
Vort: 1 162 to 4	95 4 150/E 47) to 5 102/E	47)				
15) 4th Upbal Doad - Spow (b	-85, 4=-150(F=47)-10-5=-103(F=	-47) roaso_1 15 Plate Increase_1 15				
Liniform Loads (nlf)	alariced) + r araller. Euriber frici	ease=1.15, 1 late increase=1.15				
Vert: 2-7=-20 6-7=	38(F=-18)					
Concentrated Loads (lb)	00(1 = 10)					
Vert: 7=-513(F)						
Trapezoidal Loads (plf)						
Vert: 1=-274-to-4=	-197, 4=-38(F=47)-to-5=9(F=47))				

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence	
C-WING	GE35	GABLE	1	1		
					Job Reference (optional)	
Universal Forest Products				7	.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:05 2016 Page 2	
		ID:3q	Glw5ZuYzi0	SMz80os	be0yiUPw-w9MeJ1XIMEJm9gJIaSzbxeJO4LW7ckFFdFEOOsznDLC	
LOAD CASE(S) Standard						
Trapezoidal Loads (plf)						
Vert: 1=-218-to-23=-138, 23=-182-to-4=-138						
3) Dead + Snow (Unbal. Right	t): Lumber Increase=1.15, Plate	Increase=1.15				
Uniform Loads (plf)						

Vert: 1-5=-20 Trapezoidal Loads (plf) Vert: 1=-162-to-4=-38

BCLL 0.0 BCDL 10.0	Rep Stress Incr NO Code IBC2009/TPI2007	WB 0.00 (Matrix)	Horz(TL) -0.0	00 3 n/a	n/a
LUMBER- TOP CHORD 2x6 SPF No.:	2		BRACING- TOP CHORD	Structural wood	d sheath

ing directly applied or 3-10-15 oc purlins. applied or 10-0-0 oc bracing. ling directly

Weight: 16 lb

FT = 4%

REACTIONS. (lb/size) 3=261/Mechanical, 2=1023/0-5-8, 4=36/0-1-8 (ID)IG() 3=2-117(LC 9) Max Horz 2=117(LC 9) Max Uplift3=-56(LC 9), 2=-295(LC 9), 4=-35(LC 5) Max Grav3=317(LC 16), 2=1095(LC 13), 4=72(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

JOINT STRESS INDEX

2 = 0.85

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live

loads.

5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the

- fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=295.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-218, 2-4=-20

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-218, 3-5=-234, 2-4=-20 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-162. 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-298, 2-3=-138, 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20, 1-2=-298, 2-3=-138

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
C-WING	J14	MONO TRUSS	14	1	Job Reference (optional)
Universal Forest Products		ID:td6wp	BOgS169	7. 3YGzAeg	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:08 2016 Page 2 DUByjDdK-Kk2my3Zee9hL072tFaWIZGxwHZdvpIWhJDS2?BznDL9
LOAD CASE(S) Standard Trapezoidal Loads (plf) Vert: 1=-174-to-2=-208, 2=-48-to-3=-138					

[Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence	
	C-WING	J16	MONO TRUSS	5	1	Job Reference (optional)	
	Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:08 2016 Page 2 ID:Lpfl0XPJDLE0hhrAkMB21PyjDdJ-Kk2my3Zee9hL072tFaWIZGxubZcKpIWhJDS2?BznDL9						
	LOAD CASE(S) Standard 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15						

Uniform Loads (plf) Vert: 2-4=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=-199, 2=-39-to-3=-138

Vert: 2-4=-20, 1-2=-298, 2-3=-138

8) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=445, 8=590.
 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) This truss has been designed for a moving concentrated load of 200.0 b live and 100.0 b dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence	
C-WING	T1A	MONO PITCH	5	1	Job Reference (optional)	
Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:13 2016 Page 2 ID:aYihvcWy56NkG41umIrAulyjDdA-hhrf?ndmThKe6uwq276TGKeqdaH7UM2QTVApgOznDL4						
LOAD CASE(S) Standard 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (olf)						

Vert: 7-12=-20 Trapezoidal Loads (plf) Vert: 1=-253-to-2=-246, 2=-86-to-6=-14

Ind I	ob	Truss	Truss Type	Qtv	Ply	Portland Retirement Residence
Inter Marcine Control Control <thcontro< th=""> <thcontro< th=""> <thcontr< th=""><th>WINC</th><th>T1 A A</th><th></th><th></th><th>Í</th><th></th></thcontr<></thcontro<></thcontro<>	WINC	T1 A A			Í	
<pre>weed Proces</pre>	WING			8		Job Reference (optional)
UD21Wr0VyDeXKU41um/AufuD2A-Sur22uer2-cs/V2V10dpAAmzadDp2ZH8MACp2 Vect 10-1178-2-111-05-38 Cod - Shoro (0) full regress 1.15. File increase - 1.15 UV1: 15-4-20 Typectad Local (1) full regress 1.15. File increase - 1.15 Vect 1: -2.53 to 2-2.47, 207 to 614	niversal Forest Product	s				7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:14 2016 Pa
Ab CAREGO Sanaha Went 194 - 30 Went 194 - 10 - 10 - 10 - 11 - 19 - 11 - 19 - 19				ID:aYihvcWy5	6NkG41u	umIrAulyjDdA-9uP2C6ePE?SVk2V1crdipXAtmzaoDpZZh9vMCqzni
Unit Difference of the second	AD CASE(S) Standa	rd				
<pre>wetsile=0 Transcale Lask (= -111.2 - 111 to 800) (bad + Sova of Oxertangs: Lander Tracease=1.15, Plue Ingresse=1.15</pre>	Uniform Loads (plf)					
Transmittanda (pr) Loga - Shrivor Overangs: Lundea.08 (undea Shrivor Overangs: Lundea (pr) Vert: 94: 79: 70: 70: 70: 70: 70: 70: 70: 70: 70: 70	Vert: 9-14-20	0				
<pre>Upart is for an Organ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</pre>	Trapezoidal Loads (pl	f)				
United Base Base Base Base Base Base Base Base	Vert: I=-II/-t	0-2=-111, 2=-111-10-8=-38 erhangs: Lumber Increase_1	15 Plate Increase-1 15			
r w r 1 - 20 T procedia Ludg (f) . Ver: 1 - 259 b 52 - 247, 2 - 87 b 58 - 14	Uniform Loads (plf)	ernange. Lamber merease=1.				
Irage: Ige 2 Si b b 2 - 27 7 2 - 87 10 8 - 11	Vert: 9-14=-2	20				
	Trapezoidal Loads (p	olt) to 2 247 2 97 to 9 14				
	vent. 1=-200	-10-2=-247, 2=-07-10-0=-14				

ob	Truss	Truss Type		Qty	Ply	Portland Retirement Residence
-WING	T1AALTBR	MONO PITCH		0	1	
Iniversal Forest Broducts					7	Job Reference (optional)
Universal Forest Products			ID:aYil	nvcWy56ľ	vkG41uml	rAulyjDdA-9uP2C6ePE?SVk2V1crdipXAu1zXmDrBZh9vMCqznDl
OAD CASE(S) Standard Uniform Loads (plf) Vert: 7-12=-20 Trapezoidal Loads (plf) Vert: 1=-117-to- 3) Dead + Snow on Over Uniform Loads (plf) Vert: 7-12=-20 Trapezoidal Loads (plf Vert: 1=-253-to	t -2=-110, 2=-110-to-6=-38 hangs: Lumber Increase=1)) p-2=-246, 2=-86-to-6=-14	.15, Plate Increase=1.15				

C-WING Universal Forest Products	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
Universal Forest Products	TIACUD		1		
Universal Forest Products			•		Job Reference (optional)
			ID:2kG46yXasQ	VbuEb5J	7.640 s Nov 10 2015 Mi Tek Industries, Inc. Mon Feb 08 10:09:16 2016 Pag ISNPRWyjDd9-5GXodogfmciDzMfPjGfAuyGG5nJqhnXs9TOTHjznI
LOAD CASE(S) Standard Uniform Loads (pf) Vert: 8-1220 Trapezoidal Loads (pf) Vert: 8-1220 Horz: 2-7-192 Drag: 8-12280 Trapezoidal Loads (pf) Vert: 173-to-2 15) Dead + Snow (balanced) Uniform Loads (pf) Vert: 8-1220 Horz: 2-7-192 Drag: 8-1280 Trapezoidal Loads (pf) Vert: 8-1220 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 8-12-20 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 1-173-to-2 18) Dead + Snow (Unbal. Le Uniform Loads (pf) Vert: 8-12-20 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 1-173-to-2 19) Dead + Snow (Unbal. Rig Uniform Loads (pf) Vert: 8-1220 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 8-12-20 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 8-12-20 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 8-12-20 Horz: 2-7-192 Drag: 8-12-80 Trapezoidal Loads (pf) Vert: 1-117-to-2	Truss T1ASHR -166, 2=-166-to-15=-120, 15=- t): Lumber Increase=1.15, Plat -110, 2=-110-to-7=-38 ngs: Lumber Increase=1.15, Pli =-246, 2=-86-to-7=-14 + Drag LC#1 Left: Lumber Incr =-166, 2=-133-to-7=-61 + Drag LC#1 Right: Lumber In =-166, 2=-200-to-7=-127 t) + Drag LC#1 Right: Lumber In =-166, 2=-200-to-7=-127 t) + Drag LC#1 Right: Lumber In =-166, 2=-200-to-15=-153, 15= =-166, 2=-200-to-15=-153, 15= =-110, 2=-77-to-7=-5 pht) + Drag LC#1 Right: Lumber =-110, 2=-144-to-7=-71	MONO PITCH 176-to-7=-150 e Increase=1.15 ate Increase=1.15 ease=1.33, Plate Increase=1.33 crease=1.33, Plate Increase=1.33 crease=1.33, Plate Increase=1.33 143-to-7=-117 Increase=1.33, Plate Increase=1.33 -209-to-7=-184 Increase=1.33, Plate Increase=1.33 r Increase=1.33, Plate Increase=1.33	Cty 1 ID:2kG46yXasQ	Ply VbuEb5J	Portland Retirement Residence 1 Job Reference (optional) 7.640 s Nov 10 2015 MTek Industries, Inc. Mon Feb 08 10:09:16 2016 Pag (SNPRWyjDd9-5GXodogfmciDzMfP]GfAuyGG5nJqhnXs9TOTHjznt
14) Dead + Snow (balanced) Uniform Loads (plf) Vert: 8-12=-20 Horz: 2-7=192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 1=-173-to-2 15) Dead + Snow (balanced) Uniform Loads (plf) Vert: 8-12=-20 Horz: 2-7=-192 Drag: 8-12=80 Trapezoidal Loads (plf) Vert: 8-12=-20 Horz: 2-7=192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 8-12=-20 Horz: 2-7=192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 8-12=-20 Horz: 2-7=192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 8-12=-20 Horz: 2-7=-192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 1=-173-to-2 18) Dead + Snow (Unbal. Le Uniform Loads (plf) Vert: 8-12=-20 Horz: 2-7=192 Drag: 8-12=-80 Trapezoidal Loads (plf) Vert: 1=-117-to-2	+ Drag LC#1 Left: Lumber Incr =-166, 2=-133-to-7=-61 + Drag LC#1 Right: Lumber In =-166, 2=-200-to-7=-127 t) + Drag LC#1 Left: Lumber In =-166, 2=-133-to-15=-86, 15=- t) + Drag LC#1 Right: Lumber =-166, 2=-200-to-15=-153, 15= yht) + Drag LC#1 Left: Lumber =-110, 2=-77-to-7=-5 yht) + Drag LC#1 Right: Lumbe =-110, 2=-144-to-7=-71	ease=1.33, Plate Increase=1.33 crease=1.33, Plate Increase=1.33 rease=1.33, Plate Increase=1.33 143-to-7=-117 Increase=1.33, Plate Increase=1.33 -209-to-7=-184 Increase=1.33, Plate Increase=1.33 r Increase=1.33, Plate Increase=1.33			

	-				
Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
C-WING	T1CB	SPECIAL	1		1 Job Reference (optional)
Universal Forest Products				0.0672001.0	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:18 2016 Page 2
			ID:u_eue	9et/pSLa	HRIN3ZCUHyIOPq-IfeY2OnVIEywCipornneziNL26bul9eU9chtaLcznDL?
LOAD CASE(S) Standard Trapezoidal Loads (plf) Vert: 1=-117-to-5=-1 13) 3rd Unbal.Dead + Snow (b Uniform Loads (plf) Vert: 10-15=-20, 8 Trapezoidal Loads (plf) Vert: 1=-117-to-5= 14) 4th Unbal.Dead + Snow (b	61, 5=-153-to-7=-130 palanced) + Parallel: Lumber Inc -9=-20 -61, 5=-173-to-7=-150 palanced) + Parallel: Lumber Inc	rease=1.15, Plate Increase=1.15 rease=1.15, Plate Increase=1.15			
Uniform Loads (plf) Vert: 10-15=-20, 8 Trapezoidal Loads (plf) Vert: 1=-173-to-17	-9=-20 =-161, 17=-216-to-5=-173, 5=-6	1-to-7=-38			

Job	Truss	Truss Type	0	Ωty	Ply	Portland Retirement Residence		
C-WING	T1DB	SPECIAL	1		1	Job Reference (optional)		
Universal Forest Products	Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:19 2016 Page							
			ID:MBBPOVe	Hu7aCC	CR?UxmL	JRQUyiUPp-WrCxGqiX3X4nqpO_PODtWbun7_IVu5_JrRd7t2znDL_		
LOAD CASE(S) Standard 3) Dead + Snow (Unbal. Right) Uniform Loads (plf) Vert: 9-13=-20, 7-8= Trapezoidal Loads (plf) Vert: 1=-117-to-4=-7 13) 3rd Unbal.Dead + Snow (b Uniform Loads (plf) Vert: 9-13=-20, 7-8 Trapezoidal Loads (plf) Vert: 9-13=-20, 7-8 Trapezoidal Loads (plf) Vert: 9-13=-20, 7-8 Trapezoidal Loads (plf) Vert: 9-28-to-4= Vert: 1=-228-to-4=): Lumber Increase=1.15, Plate 20 70, 4=-157-to-19=-131, 19=-101 alanced) + Parallel: Lumber Inc 3=-20 -70, 4=-182-to-6=-150 alanced) + Parallel: Lumber Inc 3=-20 -182, 4=-70-to-6=-38	Increase=1.15 -to-6=-94 rease=1.15, Plate Increase=1.15 rease=1.15, Plate Increase=1.15						

Job	Truss	Truss Type	Qty	Ply Portland Retirem	ent Residence				
C-WING	T1EA	MONO PITCH	1	1					
Universal Forest Products				Job Reference (c 7 640 s Nov 10 201	ptional) 5 MiTek Industries, Inc. Mon Feb 08 10:09:20 2016, Page 1				
ID:tudLN?bLSGFkc93FgjTpgnyjDd32mJTAj9qrCeSzzAy5k620Qx60gJdVOS44MhPUznDKz									
	2-4-0	10-8-0		<u> </u>	4-0-8				
	2-4-0	0-4-0		0-4-0	+ -0-0				
					Scale = 1:52.5				
	I			5.00 12	6				
				/					
				14 13					
			5x6 🛩						
			2x5 5						
		13 12							
	4	4x4 =		W6					
	4 1 3	9 = 3		9/					
		2							
	2x5 12								
	S w1 w2	wa wa							
	8		\sim \parallel //						
		Ві		82					
	11 3x6 =	10 9 3x4	8		7 4x6 II				
		200	4x5 =						
	2-4-0	10-8-0		<u> </u>					
Plate Offsets (X,Y) [2:0-3	-2,0-1-8], [6:0-3-8,0-3-0], [8:0-1-12	.,0-1-12]		0-+-0					
LOADING (psf)	SPACING- 2-0-0	CSI	DEEL in	(loc) l/defl l/d	PLATES GRIP				
TCLL 40.0 (Boof Snow=40.0)	Plate Grip DOL 1.15	TC 0.87	Vert(LL) -0.08	8-10 >999 360	MT20 197/144				
TCDL 7.0	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.52 WB 0.90	Vert(TL) -0.22 Horz(TL) -0.02	8-10 >999 240 11 n/a n/a					
BCLL 0.0 BCDL 10.0	Code IBC2009/TPI2007	(Matrix)			Weight: 131 lb FT = 4%				
LUMBER-			BRACING-						
TOP CHORD 2x6 SPF No.	2 *Except*		TOP CHORD S	tructural wood sheathing dire	ectly applied or 5-7-12 oc purlins, except end verticals.				
BOT CHORD 2x4 SPF No.	2		WEBS 1	Row at midpt 6-7,	2-8, 4-8, 6-8				
WEBS 2x4 SPF No. W7 W1: 2x6	3 *Except* SPE No 2								
REACTIONS. (lb/size) 7= Max Horz 7=	1300/0-5-8, 11=1543/Mechanical								
Max Uplift7=	-515(LC 9), 11=-176(LC 9)								
Max Grav /=	1549(LC 2), 11=1598(LC 2)								
FORCES. (Ib) - Max. Comp	o./Max. Ten All forces 250 (lb) or	less except when shown.	1 1002/202 6 7 146	5/5/0 1 11 296/162					
BOT CHORD 10-11=-109	9/831, 9-10=-109/831, 8-9=-109/83	1, 7-8=-28/420	14=-1065/322, 0-7=-140	/549, 1-11=-200/105					
WEBS 2-11=-1898	8/258, 2-10=0/296, 4-8=-1263/502	6-8=-617/1649							
JOINT STRESS INDEX									
1 = 0.67, 2 = 0.94, 3 = 0	0.40, 4 = 0.46, 5 = 0.30, 6 = 0.96,	7 = 0.79, 8 = 0.92, 9 = 0.61, 10 = 0.31 a	and 11 = 0.95						
NOTES-			E B K I K 22						
DOL=1.60 plate grip DOL	on; TCDL=4.2pst; BCDL=5.0pst; n _=1.60	$=58\pi; B=44\pi; L=50\pi; eave=4\pi; Cat. II;$	Exp B; Kd 1.00; enclose	d; MWFRS (all heights); Lum	iber				
2) TCLL: ASCE 7-05; Pf=40	0.0 psf (flat roof snow); Category II	Exp B; Partially Exp.; Ct=1.1							
 4) As requested, plates have 	e not been designed to provide for	placement tolerances or rough handling	g and erection conditions	. It is the responsibility of the	e				
fabricator to increase plat	e sizes to account for these factor	S.							
6) Refer to girder(s) for trus	s to truss connections.		e loaus.						
 Provide mechanical conn This truss is designed in a 	ection (by others) of truss to bearing accordance with the 2009 Internation	ng plate capable of withstanding 515 lb onal Building Code section 2306 1 and	uplift at joint 7 and 176 ll referenced standard AN	o uplift at joint 11. SI/TPL1					
9) Load case(s) 1, 2, 3 has/	have been modified. Building desig	prer must review loads to verify that the	y are correct for the inte	nded use of this truss.					
10) This truss has been des	igned for a moving concentrated lo ith any other live loads	ad of 200.0lb live and 100.0lb dead loc	ated at all mid panels an	d at all panel points along the	е Тор				
LOAD CASE(S) Standard 1) Dead + Snow (balanced); Lumber Increase=1.15. Plate Increase=1.15									
Uniform Loads (plf)									
Trapezoidal Loads (plf)									
Vert: 1=-173-to-6=-94									
2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)									
Vert: 7-11=-20									
Vert: 1=-173-to-5	=-122, 5=-168-to-6=-139								
3) Dead + Snow (Unbal. Rig	ht): Lumber Increase=1.15, Plate	Increase=1.15							
Vert: 7-11=-20									
Trapezoidal Loads (plf)	=-38								

Job	Truss	Truss Type		Qty	Ply	Portland Retirement Residence			
C-WING	T1EB	SPECIAL		1	1				
						Job Reference (optional)			
Universal Forest Products					7.	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:21 2016 Page 2			
	ID:MBBPOVeHu/aCCH?UxmURQUyiUPp-SEKngwkoa9KV3/XNWpFLb0z4Eo0HMzUbik6ExwznDKy								
LOAD CASE(S) Standard 3) Dead + Snow (Unbal. Right) Uniform Loads (plf) Vert: 11-15=-20, 8-1 Trapezoidal Loads (plf) Vert: 1=-117-to-4=-6 13) 3rd Dead + Snow (Unbal. I Uniform Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf)	: Lumber Increase=1.15, Plate I 0=-20 57, 4=-170-to-6=-160, 6=-160-to .eft): Lumber Increase=1.15, Pla 10=-20 67, 4=-140-to-6=-131, 6=-57-to .eft): Lumber Increase=1.15, Pla 10=-20	ncrease=1.15 -20=-153, 20=-106-to-7=-94 te Increase=1.15 -7=-38 te Increase=1.15							
Vert: 1=-173-to-17 15) 5th Dead + Snow (Unbal. F Uniform Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf) Vert: 1=-117-to-4=-	135, 17=-168-to-4=-155, 4=-6 Right): Lumber Increase=1.15, P 10=-20 67, 4=-170-to-6=-160, 6=-57-to	7-to-6=-57, 6=-57-to-7=-38 late Increase=1.15 -7=-38							
16) 6th Dead + Snow (Unbal. F Uniform Loads (plf) Vert: 11-15=-20, 8- Trapezoidal Loads (plf) Vert: 1=-117-to-4=-	6) 6th Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 11-15=-20, 8-10=-20 Trapezoidal Loads (plf) Vert: 1a=117-to-4=-67, 4a=-67-to-6=-57, 6a=-154-to-7=-134								
 7) 7th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 11-15=-20, 8-10=-20 Trapezoidal Loads (plf) Vert: 11-117-to-4=-67, 4=-67-to-6=-57, 6=-179-to-7=-160 8) 8th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 11-15=-20 8.10-20 									
Trapezoidal Loads (plf) Vert: 1=-117-to-4=-		-7=-38							

Job	Truss	Truss Type	Qty	Ply	Portland Retirement	Residence		
C-WING	T1FA	MONO PITCH	1		1			
Universal Forest Products					Job Reference (optio 7.640 s Nov 10 2015 Mi	nal) iTek Industries, Inc. Mon Feb 08 10:09:21 2016 Page 1		
ID:ITJT?1eDkBeJTcnpLr1WIPyjDd0-SEKhgWkoa9KV37XNWpFLb0z4ro1rM1yblk6ExwznDKy								
	\vdash	<u> </u>			<u>17-0-0</u> 8-4-0	4-0-0		
		000			0.10			
					5	5x6 = Scale = 1:52.2		
					5.00 12			
						FF I		
	10 12 ///							
5x6 = //								
9 11								
⁴ ⁴ ⁷ ¹								
		\mathbf{z}	x	/	/			
			-wa					
	45 84 №1	W2		/				
			< //					
		B1		B2				
	8	7 3x4 =	6			5 4x6 II		
	4x12 MT20H	IS II	4x8 =					
	\vdash	8-8-0			17-0-0	———————————————————————————————————————		
Plate Offsets (X,Y) [1:Edg	ge,0-3-4], [4:0-3-4,0-3-4], [6:0-1-12	2,0-2-0]			8-4-0			
LOADING (psf)	SPACING. 2-0-0	CSI	DEEL		l/dofl L/d	PLATES GRIP		
TCLL 40.0 (Boof Snow-40.0)	Plate Grip DOL 1.15	TC 1.00	Vert(LL) -0.1) 6-8 :	>999 360	MT20 197/144		
TCDL 7.0	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.51 WB 0.63	Vert(TL) -0.2 Horz(TL) -0.0	6-8 :) 8	>833 240 n/a n/a	MT20HS 148/108		
BCLL 0.0 BCDL 10.0	Code IBC2009/TPI2007	(Matrix)	- ()			Weight: 114 lb FT = 4%		
LUMBER-			BRACING-					
TOP CHORD 2x8 SPF No.: T1: 2y6 SPF	2 *Except* No 2		TOP CHORD	Structura Bigid ceil	I wood sheathing directly	applied or 4-4-14 oc purlins, except end verticals.		
BOT CHORD 2x4 SPF No.	2		WEBS	1 Row at	midpt 4-5, 2-6	6, 4-6, 1-8		
WEBS 2x4 SPF No.: W5: 2x6 SPF	3 "Except" No.2, W1: 2x4 SPF No.2							
	116E/0 E 0 0 1202/Machanical							
Max Horz 5=	381(LC 9)							
Max Uplift5= Max Grav5=	-488(LC 9), 8=-131(LC 9) 1392(LC 2), 8=1440(LC 2)							
TOP CHORD 1-9=-1173/	o./Max. Ten All forces 250 (lb) or 55. 2-9=-906/70. 2-3=-1202/281. 3	less except when shown.	1305/520. 1-8=-1347/16	6				
BOT CHORD 5-6=-24/376	6	, , -						
WEBS 1-6=0/834,	2-6=-13/6/541, 4-6=-582/1419							
JOINT STRESS INDEX	EO 4 0.00 E 0.74 C 0.02 -	7 0.60 and 9 0.97						
1 = 0.97, 2 = 0.51, 3 = 0	1.50, 4 = 0.96, 5 = 0.74, 6 = 0.93, 100	r = 0.63 and 8 = 0.87						
NOTES-	h: TCDI _4 2nef: BCDI _5 Anef: h	-58ft: B-44ft: L-50ft: 00/0-4ft: Cot	II: Evo B: Kd 1 00: opck	cod: MME	RS (all boights): Lumbor			
DOL=1.60 plate grip DOL	=1.60	=3011, D=4411, L=3011, Cave=411, Oal.	II, EXP D, No 1.00, encid	560, 101001	no (an neights), Lumber			
2) TCLL: ASCE 7-05; Pf=40	.0 psf (flat roof snow); Category II;	Exp B; Partially Exp.; Ct=1.1						
 As requested, plates have 	e not been designed to provide for	placement tolerances or rough hand	lling and erection conditi	ons. It is th	ne responsibility of the			
fabricator to increase plate 5) All plates are MT20 plates	e sizes to account for these factors	5.						
6) This truss has been desig	ned for a 10.0 psf bottom chord liv	e load nonconcurrent with any other	live loads.					
 Refer to girder(s) for truss Provide mechanical connection 	s to truss connections. ection (by others) of truss to bearing	ng plate capable of withstanding 488	Ib uplift at joint 5 and 13	1 lb uplift a	t ioint 8			
 9) This truss is designed in a 	accordance with the 2009 Internati	onal Building Code section 2306.1 a	nd referenced standard	NSI/TPI 1				
10) Load case(s) 1, 2, 3 has 11) This truss has been desi	/have been modified. Building des igned for a moving concentrated lo	igner must review loads to verify that ad of 200.0lb live and 100.0lb dead	t they are correct for the located at all mid panels	ntended u and at all i	se of this truss. panel points along the To	ad		
Chord, nonconcurrent w	Chord, nonconcurrent with any other live loads.							
LOAD CASE(S) Standard								
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15								
Unitorm Loads (pit) Vert: 5-8=-20								
Trapezoidal Loads (plf)	Trapezoidal Loads (plf)							
2) Dead + Snow (Unbal. Lef	o+ t): Lumber Increase=1.15, Plate Ir	crease=1.15						
Uniform Loads (plf)								
Trapezoidal Loads (plf)								
Vert: 1=-173-to-3 3) Dead + Snow (Unbal Rig	=-126, 3=-168-to-4=-136	Increase=1 15						
Uniform Loads (plf)								
Vert: 5-8=-20								

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence			
C-WING	T1FA	MONO PITCH	1	1	Job Reference (optional)			
Universal Forest Products	Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:21 2016 Page 2							
		ID:ITJ	?1eDkBe	JI cnpLr1	WIPyjDd0-SEKhgWkoa9KV3/XNWpFLb0z4ro1rM1yblk6ExwznDKy			
LOAD CASE(S) Standard Trapezoidal Loads (plf) Vert: 1=-117-to-4=-3	38							

1-1-	T	T	01	DL	Paultand Dations at Pauldance				
dor	Truss	Iruss Type	Qty	Ply	Portiand Retirement Residence				
C-WING	TIFR	SPECIAL	1	1					
0-11110			1		Job Reference (optional)				
Universal Forest Products 7.640 s Nov 10 2015 MITek Industries, Inc. Mon Feb 08 10:09:22 2016 Page 2									
ID:MBBPOVeHu7aCCR?UxmURQUyiUPp-wQu3uskQLSSMhH6Z4Wma7DWIqCOU5R9IXOrnTNznDKx									
LOAD CASE(S) Standard									
Uniform Loads (pil)	10 00								
Trapozoidal Loads (plf)	10=-20								
Vert: 1-117-to-4	69 4169-to-6152 6109-to	-794							
13) 3rd Dead + Snow (Unbal	l eft): Lumber Increase 1 15 Pl	ate Increase-1 15							
Liniform Loads (nlf)	Left). Europer increase=1.13, 1 i								
Vert: 11-15=-20.8	-10=-20								
Trapezoidal Loads (plf)	10- 20								
Vert: 1=-117-to-4=	-69. 4=-125-to-19=-117. 19=-12	8-to-6=-120. 6=-53-to-7=-38							
14) 4th Dead + Snow (Unbal.	Left): Lumber Increase=1.15, Pla	ate Increase=1.15							
Uniform Loads (plf)	,								
Vert: 11-15=-20, 8	-10=-20								
Trapezoidal Loads (plf)									
Vert: 1=-173-to-3=	-139, 3=-171-to-4=-158, 4=-69-1	to-6=-53, 6=-53-to-7=-38							
15) 5th Dead + Snow (Unbal.	Right): Lumber Increase=1.15, F	Plate Increase=1.15							
Uniform Loads (plf)									
Vert: 11-15=-20, 8	-10=-20								
Trapezoidal Loads (plf)	00 4 400 10 0 450 0 50 10	7 00							
Vert: 1=-11/-t0-4=	-69, 4=-169-10-6=-152, 6=-53-10)-/=-38 Note Increase 1.15							
lipiform Loads (plf)	Right). Lumber increase=1.15, F	nale increase=1.15							
Vert: 11-1520.8	-1020								
Trapezoidal Loads (plf)	10= 20								
Vert: 1=-117-to-4=	-69, 4=-69-to-6=-53, 6=-149-to-	7=-134							
17) 7th Unbal.Dead + Snow (b	alanced) + Parallel: Lumber Inc	rease=1.15. Plate Increase=1.15							
Uniform Loads (plf)									
Vert: 11-15=-20, 8	-10=-20								
Trapezoidal Loads (plf)									
Vert: 1=-117-to-4=	-69, 4=-69-to-6=-53, 6=-175-to-	7=-160							
18) 8th Unbal.Dead + Snow (b	18) 8th Unbal.Dead + Snow (balanced) + Parallel: Lumber Increase=1.15, Plate Increase=1.15								
Uniform Loads (plf)									
Vert: 11-15=-20, 8	-10=-20								
Trapezoidal Loads (plf)	00 4 404 10 0 475 0 50 10	7 00							
vert: 1=-11/-to-4=	Vert: 1=-117-to-4=-69, 4=-191-to-6=-175, 6=-53-to-7=-38								

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qty	Ply	Portland Retirement Residence
C-WING	TIGB	SPECIAL		1	1	
C-WING	Пав	SPECIAL		l'	· ·	Job Reference (optional)
Universal Forest Products					7	.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:24 2016 Page 2
			II	D:qNIncrfv	fRi3pbahl	JU?gziyiUPo-sp0qJXmgt4i4waGyBxo2Debfv?3HZM12_iKuYFznDKv
LOAD CASE(S) Standard						
Irapezoidal Loads (pit)						
V0fT: 1=-11/-10-3=-7/2, 3=-108-10-19=-130, 19=-111-10-5=-103-00-5=-94						
13) 3rd Dead + Show (Unbai, Leiti): Lumber increase=1.15, Plate increase=1.15						
Ulinomi Loados (pii) Vicati 10 1 20 7 0 20						
11 aprozvival Loado (1/11) Vart 1117.th.272 3128.th.20106 20110.th.5107 547.th.638						
Veri i = 11710/0-77, 3-72010/20-100, 20-1010/0-101, 3-7700-00						
Hin from Loade (-) How						
Vert 10-13=-20 7-9=-20						
Ver: 1=-173:to-15=-142, 15=-175:to-3=-160, 3=-72:to-5=-47.5=-47.5=-47						
15) 5th Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15						
Uniform Loads (plf)						
Vert: 10-13=-20, 7-9=-20						
Trapezoidal Loads (plf)						
Vert: 1=-117-to-3=-72, 3=-168-to-19=-150, 19=-111-to-5=-103, 5=-47-to-6=-38						
16) 6th Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15						
Uniform Loads (plf)						
Vert: 10-13=-20, 7-9=-20						
Trapezoidal Loads (plf)						
Vert: 1=-117-to-3=	-72, 3=-72-to-5=-47, 5=-143-to-6	6=-134				
1/) /m Unbal.Lead + Show (balanced) + Parallei: Lumber Increase=1.15, Plate Increase=1.15						
Uniform Loads (pif)	000					
Nort 1 - 117 to 2 - 72 to 5 - 47 5 - 160 to 6 - 160						
vol. $1 = 117 = 102 = 72$, $0 = 72 = 102 = 47$, $3 = 100 = 100$						
Inform Lads (off)						
Vert: 10-13=-20.7-9=-20						
Trapezoidal Loads (olf)						
Vert: 1=-117-to-3=-	-72. 3=-194-to-5=-169. 5=-47-to-	-6=-38				
	, · · · · · · · · · · · · · · · · · · ·					

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence				
C-WING	T1LA	MONO TRUSS	1	1					
Universal Forest Products				7.	Job Reference (optional) 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:29 2016 Page 1				
ID:nltX1WhAB2yn3vk3cv1827yiUPm-DmpjMFqpicLM1M9v_UODwilVj0rmEdun8_2fDTznDKq									
		5-0-0	4-0-0						
					Scale - 1:61.9				
				0	ocaid = 1.01.9				
		245 II 8 245 II 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.00 112 12 MT20HS = 10 2 9 3x4 = 3x4 = 3x4 = 3x4 =		13-52				
		5 3x6 =	4 2x3						
Plate Offsets (X,Y) [2:0-5-	0.0-4-0]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (oc) l/de	fl L/d PLATES GRIP				
1CLL 40.0 (Roof Snow=40.0)	Plate Grip DOL 1.15	TC 0.75	Vert(LL) -0.02	4-5 >99	9 360 MT20 197/144 0 240 MT20HS 148/108				
TCDL 7.0 BCU 0.0	Rep Stress Incr YES	WB 0.76	Horz(TL) -0.12	4-5 >99: 5 n/a	a n/a				
BCDL 10.0	Code IBC2009/1PI2007	(Matrix)			Weight: 83 lb F1 = 4%				
LUMBER- TOP CHORD 2x6 SPF No.2 BRACING- TOP CHORD 2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SPF No.2 807 CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2, W2: 2x4 SPF No.3 BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x6 SPF No.2 2x6 SPF No.2 WEBS 1 Row at midpt 1-5, 2-5									
REACTIONS. (lb/size) 3=-0/Mechanical, 5=686/Mechanical, 7=216/0-5-8 Max Horz 3=-436(LC 18), 7=436(LC 18) Max Uplift5=-151(LC 9), 7=-448(LC 18) Max Grav 5=953(LC 18), 7=331(LC 16)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-9=-542/294, 9-10=-540/299, 3-10=-530/305, 1-5=-316/167 BOT CHORD 4-5=-174/358 WEBS 2-5=-1020/46									
JOINT STRESS INDEX									
 NOTES- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design. 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Refer to girder(s) for truss to truss connections. 8) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 5 and 448 lb uplift at joint 7. 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads. 									

10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

fabricator to increase plate sizes to account for these factors.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 357 lb uplift at joint 8 and 357 lb uplift at joint 6.
8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type		Qty	Ply	Portland Retirement Residence	
C-WING	Т5А	SPECIAL		2	1	Job Reference (optional)	
Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:46 2016 Page ID:qYHXMVqGz5f2O40uHCJGxnyjDcm-D2L8w31TiqUyZzyAUZCD6HVTWterjNuH27f3K_znD							
LOAD CASE(S) Standard 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 11-12=-20, 8-11=-20 Trapezoidal Loads (plf) Vert: 11-12=-20, 8-11=-20 Trapezoidal Loads (plf) Vert: 11-12=-20, 8-11=-20 Trapezoidal Loads (plf) Vert: 1=-14-to-6=-133, 6=-293-to-7=-298							

6) Refer to girder(s) for truss to truss connections.

 A provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=218, 4=218.
 B) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

 A provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=218, 4=218.
 B) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
C-WING	T21A	MONO HIP	1		1 Job Reference (optional)
Universal Forest Products			ID:pw6zydbH?m	w80DI	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:54 2016 Page 2 JnULpHyjDeMaq9co7UpIUpXCZjyEL5QzqkX5Lxb0YSuNbUcWznDKR
LOAD CASE(S) Standard Trapezoidal Loads (plf) Vert: 1=-38-to-4s-11 13) Dead + Snow on Overhang Uniform Loads (plf) Vert: 2-6s-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=- 14) 3rd Unbal.Dead + Snow (b Uniform Loads (plf) Vert: 2-6s-20 Trapezoidal Loads (plf) Vert: 1=-150-to-4s-10	e Increase=1.15 5=-138 rease=1.15, Plate Increase=1.15 rease=1.15, Plate Increase=1.15				

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
C-WING	T21B	MONO HIP	1	1	Job Reference (optional)
Universal Forest Products				7	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:54 2016 Page 2
			ID:pw6zydbH?m	oW8ODIJnL	JLpHyjDeMaq9co7UpIUpXCZjyEL5Qzql95Mpb09SuNbUcWznDKR
LOAD CASE(S) Standard 13) Dead + Snow on Overhang Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2= 14) 3rd Unbal.Dead + Snow (b Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf) Vert: 1=-150-to-4=	gs: Lumber Increase=1.15, Plate -188, 2=-28-to-4=-108, 4=-108- alanced) + Parallel: Lumber Inc 132, 4=-244-to-5=-274 alanced) + Parallel: Lumber Inc -244, 4=-132-to-5=-162	e Increase=1.15 to-5=-138 rease=1.15, Plate Increase=1.15 rease=1.15, Plate Increase=1.15			

Job	Truss	Truss Type	Qt	ty	Ply	Portland Retirement Residence	
C-WING	T21D	MONO TRUSS	1		1		
						Job Reference (optional)	
Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:56 2016 Par							
ID:H6gL9zcvl3wNmYoUsV?aLUyjDeL-wzxw1U9lLvkXmVj53fNZWOw7ov1f3sBlLh4bgPz							
LOAD CASE(S) Standard							
13) Dead + Snow on Overhangs: Lumber Increase=1.15. Plate Increase=1.15							
Uniform Loads (b)f)							

Viliorm Loads (pli) Vert: 2-7=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=-188, 2=-28-to-6=-138

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence		
C-WING	T21E	MONO TRUSS	1	1			
					Job Reference (optional)		
Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:09:56 2016 Page							
ID:H6gL9zcvl3wNmYoUsV?aLUyjDeL-wzxw1U9ILvkXmVj53fNZWOw7ov1f3sBILh4bgPznĎ							
			6				
LOAD CASE(S) Standard							
13) Daad + Sonw on Overhange: Lumber Increase-115 Plate Increase-115							
Liniform Loads (nlf)							

Unitorm Loads (plf) Vert: 2-7=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=-188, 2=-28-to-6=-138

5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=360, 6=360. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type		Qty	Ply	Portland Retirement Residence		
C-WING	T35	MONO TRUSS		3	1			
						Job Reference (optional)		
Universal Forest Produc	Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:10:01 2016 Page							
			ID:3qGiw	5ZUYZIUS	siviz80oso	eUyiUPw-Hwip4BDtARNqsGb3sDzkDRdxLwgUk4GUVzoMLcznDKK		
LOAD CASE(S) Stand	lard							
3) Dead + Snow (Unba	3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15							
Uniform Loads (plf)								
Vert: 2-6=-20								
Trapezoidal Loads (plf)								
Vert: 1=-38-	Vert: 1=-38-to-5=-162							
13) Dead + Snow on C	13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15							
Uniform Loads (plf)								
Vert: 2-6=-	20							
Trapezoidal Loads	(plf)							

Vert: 1=-174-to-2=-190, 2=-30-to-5=-138

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence		
C-WING	T36	MONO TRUSS	5	1	Job Reference (optional)		
Universal Forest Products 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:10:01 2016 Page ID:3qGIw5ZuYziCsMz80osoe0yiUPw-Hwlp4BDtARNqsGb3sDzkDRdy5wj7kGeUVzoMLcznDł							
LOAD CASE(S) Standard 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15							

Uniform Loads (plf) Vert: 2-4=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=-200, 2=-40-to-3=-138

10) This truss has been designed for a moving concentrated load of 200.0 b live and 100.0 b dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Chord, nonconcurrent with any other live loads.

Chord, nonconcurrent with any other live loads.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

