

	4-6-15	7-7-12
	4-6-15	3-0-13
Plate Offsets (X,Y) [2:0-5-1,0-0-1]		

	7			
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.78 BC 0.31 WB 0.33	DEFL. in (loc) l/defl L/d Vert(LL) -0.03 6 >999 360 Vert(TL) -0.04 2-6 >999 240 Horz(TL) 0.01 5 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2009/TPI2007	(Matrix)		Weight: 38 lb FT = 4%

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=899/0-5-8, 5=827/Mechanical

Max Horz 2=111(LC 8) Max Uplift2=-322(LC 9), 5=-150(LC 9)

Max Grav 2=975(LC 13), 5=906(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-1202/65, 7-8=-1184/66, 3-8=-1124/70, 4-5=-406/127 BOT CHORD 2-6=-85/1088, 5-6=-85/1088

2x4 SPF No.3

WEBS 3-5=-1165/111

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x6 SPF No.2

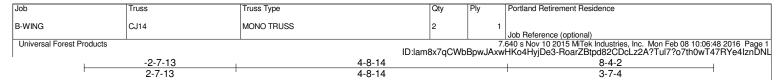
JOINT STRESS INDEX

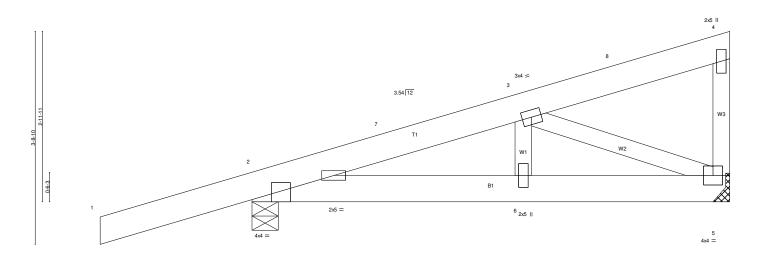
2 = 0.85, 2 = 0.00, 3 = 0.46, 4 = 0.23, 5 = 0.50 and 6 = 0.11

LUMBER-

WEBS

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=322, 5=150.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.


 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Trapezoidal Loads (plf)
 Vert: 2=-0(F=10, B=10)-to-5=-39(F=-9, B=-9), 1=-94-to-2=-129, 2=-41(F=44, B=44)-to-4=-307(F=-44, B=-44)
- 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

 - Trapezoidal Loads (plf)
 Vert: 2=-0(F=10, B=10)-to-5=-39(F=-9, B=-9), 1=-94-to-2=-129, 2=-41(F=44, B=44)-to-7=-83(F=30, B=30), 7=-106(F=30, B=30)-to-4=-329(F=-44, B=-44)
- 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Trapezoidal Loads (plf)
 - - Vert: 2=-0(F=10, B=10)-to-5=-39(F=-9, B=-9), 1=-38-to-2=-73, 2=15(F=44, B=44)-to-4=-251(F=-44, B=-44)
- 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15
- Trapezoidal Loads (plf)

Vert: 2=-0(F=10, B=10)-to-5=-39(F=-9, B=-9), 1=-174-to-2=-209, 2=-36(F=7, B=7)-to-4=-151(F=-7, B=-7)

4-8-14	8-4-2
4-8-14	3-7-4

Tiale Offsets (A, T)== [2.0-4-1,Luge]			
	2-0-0 CSI. 1.15 TC 0.65 1.15 BC 0.21 NO WB 0.28 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 6 >999 360 Vert(TL) -0.03 6 >999 240 Horz(TL) 0.01 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 43 lb FT = 4%

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SPF 2100F 1.8E BOT CHORD 2x6 SPF No.2 **WEBS** 2x4 SPF No.3

Dieta Officato (V.V.) [0:0.4.1 Edga]

REACTIONS. (lb/size) 2=1266/0-5-8, 5=663/Mechanical Max Horz 2=153(LC 6) Max Uplift2=-327(LC 9), 5=-201(LC 9)

Max Grav 2=1321(LC 2), 5=760(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-960/90, 3-7=-885/98, 4-5=-495/157 2-6=-121/779, 5-6=-121/779

WEBS 3-5=-845/173

JOINT STRESS INDEX

2 = 0.85, 2 = 0.00, 3 = 0.34, 4 = 0.28, 5 = 0.39 and 6 = 0.12

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=327, 5=201.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Load case(s) 1, 2, 3, 13, 14, 15, 16, 17, 18 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Trapezoidal Loads (plf)

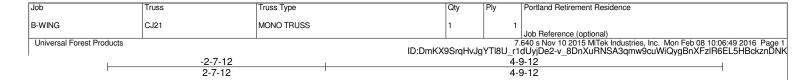
Vert: 2=-0(F=10, B=10)-to-5=-42(F=-11, B=-11), 1=-218-to-2=-185, 2=-97(F=44, B=44)-to-4=-199(F=-53, B=-53)

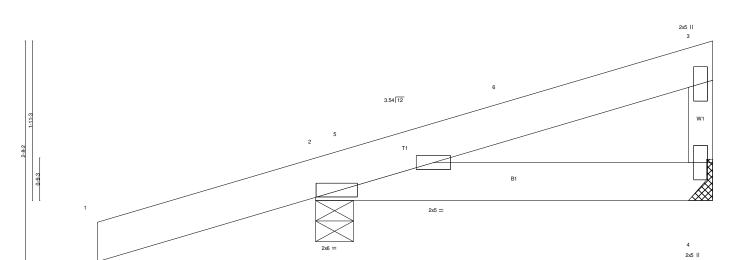
2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Trapezoidal Loads (plf)

Vert: 2=-0(F=10, B=10)-to-5=-42(F=-11, B=-11), 1=-218-to-2=-185, 2=-97(F=44, B=44)-to-7=-125(F=17, B=17), 7=-152(F=17, B=17)-to-4=-226(F=-53, B=-53)

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15


Trapezoidal Loads (plf)


Vert: 2=-0(F=10, B=10)-to-5=-42(F=-11, B=-11), 1=-162-to-2=-129, 2=-41(F=44, B=44)-to-4=-143(F=-53, B=-53) 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Trapezoidal Loads (plf)

Vert: 2=-0(F=10, B=10)-to-5=-42(F=-11, B=-11), 1=-298-to-2=-265, 2=-92(F=7, B=7)-to-4=-30(F=-8, B=-8)

Continued on page 2

Plate Offsets (X,Y) [2:0-	Plate Offsets (X,Y) [2:0-0-1,Edge]						
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.64 BC 0.08 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 2-4 >999 360 Vert(TL) -0.01 2-4 >999 240 Horz(TL) -0.00 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 24 lb FT = 4%			

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-9-12 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD 2x6 SPF 2100F 1.8E

BOT CHORD 2x6 SPF No.2

WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 2=965/0-5-8, 4=75/Mechanical

Max Horz 2=112(LC 8) Max Uplift2=-296(LC 9), 4=-146(LC 13)

Max Grav 2=1192(LC 13), 4=348(LC 15)

 $\textbf{FORCES.} \ \underline{\ } (\underline{\textbf{lb}}) \text{ - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.}$

TOP CHORD

JOINT STRESS INDEX

2 = 0.80, 2 = 0.00, 3 = 0.17 and 4 = 0.13

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=296, 4=146.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Trapezoidal Loads (plf)
 Vert: 2=-0(F=10, B=10)-to-4=-24(F=-2, B=-2), 1=-218-to-2=-169, 2=-81(F=44, B=44)-to-3=-113(F=-10, B=-10)
 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15
- Trapezoidal Loads (plf)
 - Vert: 2=-0(F=10, B=10)-to-4=-24(F=-2, B=-2), 1=-218-to-2=-169, 2=-81(F=44, B=44)-to-5=-83(F=41, B=41), 5=-102(F=41, B=41)-to-3=-132(F=-10, B=10)-to-4=-24(F=-2, B=-20)-to-4=-102(F=-10, B=10)-to-4=-24(F=-2, B=-20)-to-4=-102(F=-10, B=10)-to-4=-102(F=-10, B=10)-to-4=-102(F= B=-10)
- 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15
- Trapezoidal Loads (plf) Vert: 2=-0(F=10, B=10)-to-4=-24(F=-2, B=-2), 1=-162-to-2=-113, 2=-25(F=44, B=44)-to-3=-57(F=-10, B=-10) 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15
- - Trapezoidal Loads (plf)

Vert: 2=-0(F=10, B=10)-to-4=-24(F=-2, B=-2), 1=-298-to-2=-249, 2=-76(F=7, B=7)-to-3=-17(F=-1, B=-1)

Job Truss Truss Type Qty Portland Retirement Residence B-WING G1 MONO TRUSS Z Job Reference (optional)
7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:06:50 2016 Page 1
ID:W7FAdswDe2ChuYnUOyTgPzyjDdx-NBic_tv48mJwSwVLAb2xzADKowSRUfvNal118BznDNJ Universal Forest Products 31-9-13 -2-7-13 5-10-10 8-5-14 14-1-12 19-9-10 25-5-8 35-4-4 41-0-2 2-7-13 5-10-10 2-7-4 5-7-14 5-7-14 5-7-14 6-4-5 3-6-7 5-7-14 3.54 12 5x5 = 29 245 -18 19 5x5 = 8x8 = 5x6 II 5-10-10 8-5-14 14-1-12 19-9-10 25-5-8 31-9-13 35-4-4 5-10-10 2-7-4 5-7-14 5-7-14 5-7-14 6-4-5 3-6-7 Plate Offsets (X,Y)--[4:0-2-8,0-2-0], [8:0-2-15,0-2-12], [9:0-3-0,Edge], [10:0-2-8,0-0-8], [11:0-2-8,0-3-0], [14:0-2-4,0-2-8], [16:0-3-0,0-4-4], [17:0-3-8,0-4-4], [19:0-3-8,0-4-12], [20:0-3-8,0-4-8], [21:0-4-0,0-4-12], [20:0-3-8,0-4-12], [20:0 [22:Edge,0-8-0] LOADING (psf) SPACING-DEFL **PLATES** 2-0-0 in (loc) I/defl L/d TCLL 40.0 TC BC >999 Plate Grip DOL 1.15 0.75 Vert(LL) 0.16 17-19 360 197/144 (Roof Snow=40.0) Vert(TL) Lumber DOL 1.15 0.64 -0.25 17-19 >999 240 WB Rep Stress Incr NO 0.99 0.05 n/a Horz(TL) 15 n/a **BCLL** 0.0 Code IBC2009/TPI2007 Weight: 553 lb FT = 4% **BCDL** 10.0 LUMBER-**BRACING-**TOP CHORD 2x6 SPF 2100F 1.8E *Except* TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD T3: 2x10 SPF No.2 BOT CHORD 2x6 SPF 2100F 1.8E *Except* Rigid ceiling directly applied or 4-0-15 oc bracing. Except: 1 Row at midpt 10-14 B3: 2x4 SPF No.2 WFRS 1 Row at midp 11-13, 4-21, 8-17, 8-14 **WEBS** 2x4 SPF No.3 *Except* W5: 2x4 SPF No.2

REACTIONS. (lb/size) 21=7449/0-9-0, 15=6283/0-6-0

Max Horz 21=793(LC 9) Max Uplift21=-4200(LC 9), 15=-3849(LC 9) Max Grav 21=7449(LC 1), 15=7195(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-23=-720/1436, 3-23=-708/1456, 3-24=-606/1438, 4-24=-603/1446, 4-25=-4216/2332, 5-25=-4141/2332, 5-6=-4115/2339, 6-26=-7223/3991, 7-26=-7148/3998, 7-27=-5776/3114, 8-27=-5701/3121, 8-9=-621/840, 9-28=-616/840, 10-28=-610/940, 10-29=-614/1060, 11-29=-607/1067, 11-12=-285/0

BOT CHORD 21-22=-647/318, 20-21=-2752/3973, 20-30=-4251/6858, 19-30=-4251/6858, 18-19=-3322/5476, 18-31=-3322/5476, 17-31=-3322/5476, 17-32=-1778/2990, 16-32=-1778/2990, 16-33=-162/266,

15-33=-162/266, 14-15=-6754/3568, 10-14=-332/709

WEBS 3-21=-652/356, 4-21=-8203/4552, 4-20=-2683/4831, 6-20=-3866/2009, 6-19=-601/1192, 7-19=-1443/2206,

 $7-17 = -1761/1108, \, 8-17 = -2760/4471, \, 8-16 = -665/1119, \, 14-16 = -1697/2862, \, 8-14 = -5135/3056, \, 14-16 = -1697/2862, \, 14-$ 11-14=-2181/953, 2-21=-755/506

JOINT STRESS INDEX

2 = 0.00, 3 = 0.31, 4 = 0.92, 5 = 0.69, 6 = 0.69, 7 = 0.82, 8 = 0.76, 9 = 0.16, 10 = 0.33, 11 = 0.39, 13 = 0.32, 14 = 0.88, 15 = 0.98, 16 = 0.68, 17 = 0.54, 18 = 0.82, 19 = 0.28, 20 = 0.63, 21 = 0.78 and 22 = 0.00, 10 = 0.00

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-7-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 21-4 2x4 - 1 row at 0-7-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=5ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left

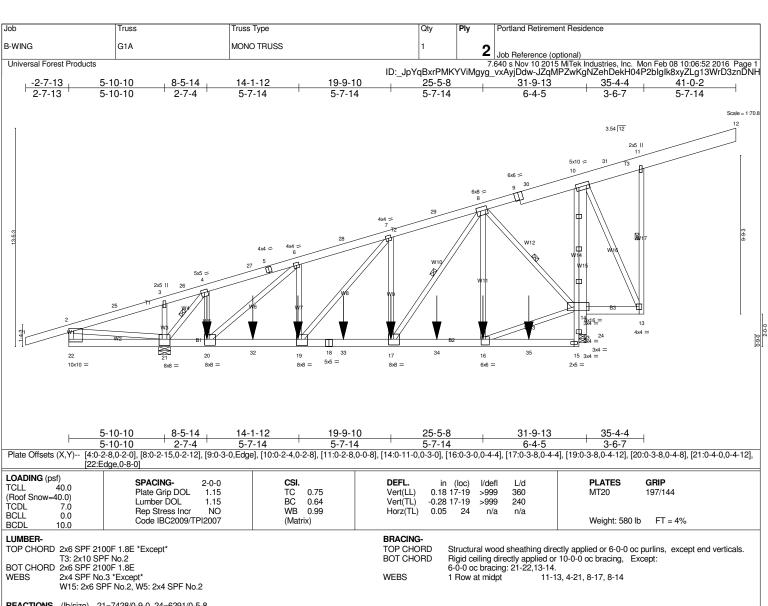
exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60

4) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads

7) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

8) This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads.


9) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 21=4200, 15=3849.

11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty F	Ply	Portland Retirement Residence
B-WING	G1	MONO TRUSS	1	2	
Universal Forest Products	<u> </u>			7.6	Job Reference (optional) 540 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:06:50 2016 Page 2 TgPzyjDdx-NBic_tv48mJwSwVLAb2xzADKowSRUfvNal1l8BznDNJ
NOTES-		ID:W7FA	AdswDe2Ch	ıuYnUOy	IgPzyjDdx-NBic_tv48mJwSwVLAb2xzADKowSRUfvNal1l8BznDNJ
13) Hanger(s) or other connect 11-3-12, 707 lb down and 515 lb down and 301 lb up	414 lb up at 11-3-12, 638 lb dov at 19-9-10, 515 lb down and 30	vn and 373 lb up at 14-1-2, 638 lb down and 373 lb u 01 lb up at 19-9-10, 348 lb down and 204 lb up at 22	ip at 14-1-2, 2-7-8, 348 lb	574 lb do down and	-14, 770 lb down and 450 lb up at 8-5-14, 707 lb down and 414 lb up at own and 336 lb up at 16-10-10, 574 lb down and 336 lb up at 16-10-10, 204 lb up at 22-7-8, 436 lb down and 255 lb up at 25-5-8, 436 lb down lesign/se
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Li Uniform Loads (plf) Vert: 1-2=-94, 2-11= Concentrated Loads (lb)	umber Increase=1.15, Plate Incr 94, 11-1294, 15-2220, 13- 770, B=-770) 19=-1276(F=-638,	14=-20	5, B=-436) 30)=-1414(F	=-707, B=-707) 31=-1148(F=-574, B=-574) 32=-696(F=-348, B=-348)
35 555(. = 1.0) 15-	-,				

REACTIONS. (lb/size) 21=7428/0-9-0, 24=6291/0-5-8

Max Horz 21=793(LC 9) Max Uplift21=-4187(LC 9), 24=-3854(LC 9)

Max Grav 21=7428(LC 1), 24=7207(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-25=-721/1436, 3-25=-709/1456, 3-26=-607/1438, 4-26=-604/1447, 4-27=-4200/2322, 5-27=-4125/2322,

5-6=-4099/2329, 6-28=-7187/3969, 7-28=-7112/3976, 7-29=-5739/3090, 8-29=-5663/3098, 8-9=-722/958, 9-30=-717/963, 10-30=-711/1094, 11-12=-285/0, 11-13=-1738/761

21-22=-646/317, 20-21=-2743/3958, 20-32=-4231/6824, 19-32=-4231/6824, 18-19=-3296/5436, **BOT CHORD**

18-33=-3296/5436, 17-33=-3296/5436, 17-34=-1746/2939, 16-34=-1746/2939, 16-35=-173/296,

15-35=-173/296, 13-14=-904/380

WEBS 15-23=-244/388, 14-23=-233/370, 10-14=-2934/4900, 3-21=-651/355, 4-21=-8179/4537, 4-20=-2672/4814

 $6-20 = -3842/1994, \ 6-19 = -597/1187, \ 7-19 = -1450/2218, \ 7-17 = -1794/1124, \ 8-17 = -2771/4496, \ 8-16 = -724/1230, \ 9-10 = -1450/2218, \ 9-10 = -1$

14-16=-1650/2782, 8-14=-5201/3102, 10-13=-826/1967, 2-21=-756/507

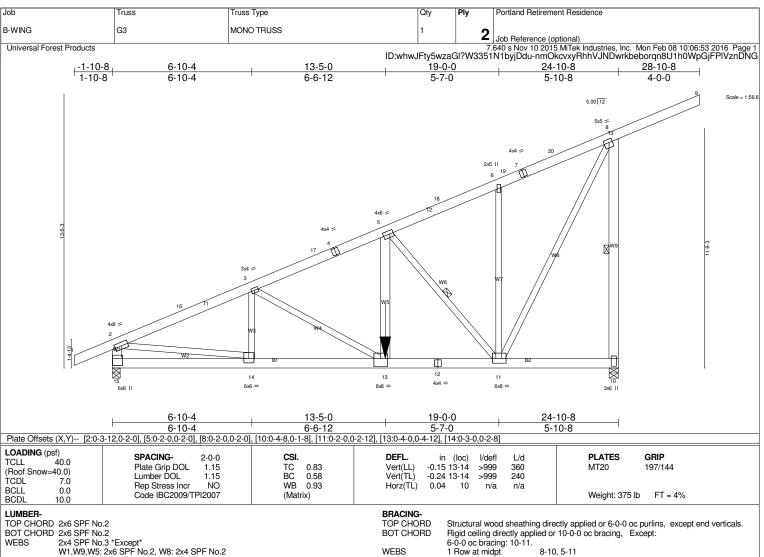
2 = 0.00, 3 = 0.31, 4 = 0.92, 5 = 0.70, 6 = 0.69, 7 = 0.82, 8 = 0.77, 9 = 0.14, 10 = 0.73, 11 = 0.90, 13 = 0.71, 14 = 0.64, 14 = 0.26, 14 = 0.26, 14 = 0.26, 15 = 0.31, 16 = 0.66, 17 = 0.54, 18 = 0.82, 19 = 0.28, 10 = 020 = 0.63, 21 = 0.78, 22 = 0.46, 23 = 0.00 and 23 = 0.26

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 21-4 2x4 - 1 row at 0-7-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been
- provided to distribute only loads noted as (F) or (B), unless otherwise indicated.


 3) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=5ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 5) Unbalanced snow loads have been considered for this design.
 6) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 7) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Bearing at joint(s) 24 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 21=4187, 24=3854.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	G1A	MONO TRUSS	1	2	
Universal Forest Products				7.0	Job Reference (optional) 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:06:52 2016 Page 2 vxAyjDdw-JZqMPZwKgNZehDekH04P2blglk8xyZLg13WrD3znDNH
NOTES-		ID:_JpY	qBxrPMKY	ViMgyg_	vxAyjDdw-JZqMPZwKgNZehDekH04P2blglk8xyZLg13WrD3znDNH
13) Hanger(s) or other connect 11-3-12, 707 lb down and 515 lb down and 301 lb up	414 lb up at 11-3-12, 638 lb dov at 19-9-10, 515 lb down and 30	vn and 373 lb up at 14-1-2, 638 lb down and 373 lb u 01 lb up at 19-9-10, 348 lb down and 204 lb up at 22	ip at 14-1-2, 2-7-8, 348 lb	, 574 lb do down and	-14, 770 lb down and 450 lb up at 8-5-14, 707 lb down and 414 lb up at own and 336 lb up at 16-10-10, 574 lb down and 336 lb up at 16-10-10, l 204 lb up at 22-7-8, 436 lb down and 255 lb up at 25-5-8, 436 lb down also design/selection of such connection device(s) is the responsibility of
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Li Uniform Loads (plf) Vert: 1-2=-94, 2-11= Concentrated Loads (lb) Vert: 20=-1540(F=-		14=-20	S, B=-436) 32	2=-1414(F	F=-707, B=-707) 33=-1148(F=-574, B=-574) 34=-696(F=-348, B=-348)
35=-950(F=-475, B=	 1:0)				

BOT CHORD

6-0-0 oc bracing: 10-11. **WEBS** 1 Row at midpt

REACTIONS. (lb/size) 15=3564/0-4-9, 10=4165/0-5-8 Max Horz 15=804(LC 9)

Max Uplift15=-1023(LC 9), 10=-1744(LC 9) Max Grav 15=3575(LC 2), 10=4728(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-15=-3411/1036, 2-16=-5783/1444, 3-16=-5627/1463, 3-17=-5878/1499, 4-17=-5759/1499, 4-5=-5729/1510, 5-18=-2430/433, 6-18=-2311/440, 6-19=-2392/515, 7-19=-2369/518, 7-20=-2311/524, 8-20=-2154/533, 8-9=-283/0, 8-10=-4662/1770 TOP CHORD

14-15=-923/1016, 13-14=-1959/5194, 12-13=-1859/5327, 11-12=-1859/5327

WEBS 2-14=-1049/4227, 3-14=-627/249, 5-13=-1418/4412, 5-11=-4910/1750, 6-11=-426/208, 8-11=-1639/4768

JOINT STRESS INDEX

 $2 = 0.90, 3 = 0.64, 4 = 0.81, 5 = 0.94, 6 = 0.31, 7 = 0.36, 8 = 0.92, 10 = 0.82, 11 = 0.94, 12 = 0.92, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.93, 12 = 0.94, 12 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.93, 12 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.93, 12 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.93, 13 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.94, 12 = 0.94, 13 = 0.71, 14 = 0.61 \ \text{and} \ 15 = 0.94, 1$

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

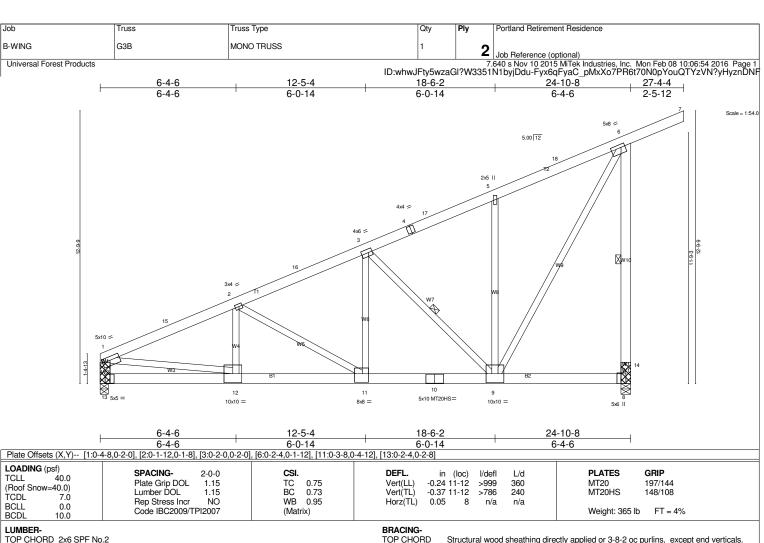
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-7-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
 Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 4) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 7) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=1023, 10=1744.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 4350 lb down and 1421 lb up at 13-5-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-94, 2-8=-94, 8-9=-94, 10-15=-20

Concentrated Loads (lb)

Vert: 13=-4350(F)

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SPF 2100F 1.8E **WEBS**

2x6 SPF No.2 *Except* W3,W9: 2x4 SPF 2100F 1.8E, W4,W5,W6,W7,W8: 2x4 SPF No.3

BOT CHORD **WEBS**

Structural wood sheathing directly applied or 3-8-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 6-8, 3-9

REACTIONS. (lb/size) 13=7703/(0-4-9 + bearing block) (req. 0-6-1), 8=7709/(0-5-8 + bearing block) (req. 0-6-7) Max Horz 13=653(LC 9)

Max Uplift13=-2178(LC 9), 8=-2752(LC 9) Max Grav 13=7738(LC 2), 8=8177(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-15=-11373/3133, 2-15=-11215/3144, 2-16=-8708/2346, 3-16=-8532/2356, 3-4=-4766/1178, 4-17=-4611/1181, 5-17=-4601/1190, 5-18=-4761/1308, 6-18=-4403/1321, 8-14=-6844/2348, 6-14=-6844/2348

12-13=-653/44, 11-12=-3482/10372, 10-11=-2610/7884, 9-10=-2610/7884

WEBS $1-13-6505/1803,\ 1-12-2868/10514,\ 2-12-567/1696,\ 2-11-2896/1012,\ 3-11-1372/4293,\ 3-9-5177/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-2896/1012,\ 3-11-1372/4293,\ 3-9-5177/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-1372/4293,\ 3-9-5177/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-1372/4293,\ 3-9-5177/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-1372/4293,\ 3-9-5177/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-1372/4293,\ 3-9-1377/1738,\ 5-9-767/287,\ 6-9-2832/8646,\ 5-11-1372/4293,\ 3-9-1377/1738,\ 5-9-767/287,\ 6-9-2832/8646,$

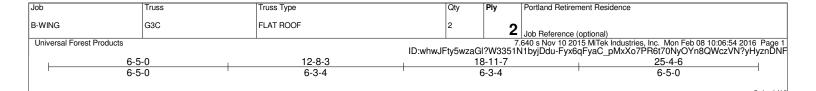
JOINT STRESS INDEX

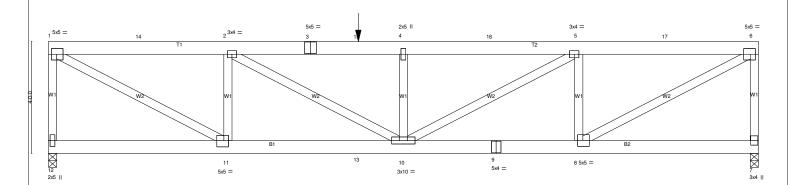
1 = 1.00, 1 = 0.00, 1 = 0.00, 2 = 0.88, 3 = 0.93, 4 = 0.66, 5 = 0.31, 6 = 0.95, 8 = 0.94, 8 = 0.00, 9 = 0.85, 10 = 0.79, 11 = 0.61, 12 = 0.96, 13 = 0.20, 13 = 0.00, 13 = 0.00, 14 = 0.00= 0.00

NOTES-

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 2 rows staggered at 0-7-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc


Webs connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc, 2x4 - 1 row at 0-9-0 oc.


- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) 2x6 SPF No.2 bearing block 12" long at jt. 13 attached to each face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 12 Total fasteners per block. User Defined Bearing crushing capacity= 425psi. 4) 2x6 SPF No.2 bearing block 12" long at it. 8 attached to each face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 12 Total fasteners per block. User Defined
- Bearing crushing capacity= 425psi. 5) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 6) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 7) Unbalanced snow loads have been considered for this design.
 8) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 9) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 10) All plates are MT20 plates unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 12) Bearing at joint(s) 13, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=2178, 8=2752.
- 14) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 15) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss
- 16) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
3-WING	G3B	MONO TRUSS	1	2	Job Reference (optional) 7 640 s Nov 10 2015 MiTek Industries Inc. Mon Feb 08 10:06:54 2016 Page 1
Universal Forest Products			ID:whwJFty5w	zaGI?W335	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:06:54 2016 Page : 1N1byjDdu-Fyx6qFyaC_pMxXo7PR6t70N0pYouQTYzVN?yHyznDN
Uniform Loads (plf) Vert: 8-13=-483(F= Trapezoidal Loads (plf) Vert: 1=-173-to-6= 2) Dead + Snow (Unbal. Left) Uniform Loads (plf) Vert: 8-13=-483(F= Trapezoidal Loads (plf) Vert: 1=-173-to-5= 3) Dead + Snow (Unbal. Righ Uniform Loads (plf) Vert: 8-13=-483(F= Trapezoidal Loads (plf) Vert: 1=-117-to-6= 13) Dead + Snow on Overhau Uniform Loads (plf) Vert: 8-13=-158(F= Trapezoidal Loads (plf)	-102, 6=-102-to-7=-94 :: Lumber Increase=1.15, Plate =-463) -120, 5=-177-to-6=-159, 6=-15t tt): Lumber Increase=1.15, Plate =-463) -46, 6=-46-to-7=-38 ngs: Lumber Increase=1.15, Plate	Increase=1.15 9-to-7=-151 e Increase=1.15			

6-5-0	1	12-8-3	18-11-7	25-4-6
6-5-0		6-3-4	6-3-4	6-5-0
Plate Offsets (X,Y) [1:0-2-4,0-2-8], [5:0-1	-12,0-1-8], [6:0-2-4,0-2	² -8], [8:0-2-4,0-2-8], [11:0-2-0,0-	-2-12]	
LOADING (psf) SPACING TCLL 20.0 Plate Grip		CSI. TC 0.97	DEFL. in (loc) I/defl L/ Vert(LL) 0.17 8-10 >999 36	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-9-12 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TCDL 7.0 Lumber DOL BC 0.78 Vert(TL) -0.35 8-10 >860 240 n/a BCLL 0.0 Rep Stress Incr NO WB 0.75 Horz(TL) 0.04 n/a Code IBC2006/TPI2002 **BCDL** 10.0 (Matrix) Weight: 363 lb FT = 4% BRACING-

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* W2: 2x4 SP No.2 **WEBS**

REACTIONS. (lb/size) 12=3617/0-3-8, 7=3608/0-3-8 Max Horz 12=-134(LC 3)

Max Uplift12=-1293(LC 3), 7=-1334(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12=-3507/1296, 1-14=-5463/2000, 2-14=-5463/2000, 2-3=-7658/2820, 3-15=-7658/2820, 4-15=-7658/2820, 4-16=-7658/2820, 5-16=-7658/2820, 5-17=-5180/1943, 6-17=-5180/1943, 6-7=-3064/1170

BOT CHORD 11-13=-2033/5463, 10-13=-2033/5463, 9-10=-1942/5180, 8-9=-1942/5180

2-11=-2954/1188, 4-10=-1753/731, 5-8=-1518/672, 1-11=-2208/6123, 2-10=-961/2521, 5-10=-1028/2846, 6-8=-2122/5753

JOINT STRESS INDEX

 $1 = 0.95, 2 = 0.87, 3 = 0.92, 4 = 0.22, 5 = 0.86, 6 = 0.90, 7 = 0.74, 8 = 0.87, 9 = 0.90, 10 = 0.90, 11 = 0.93 \ and 12 = 0.76, 12 = 0.90, 12$

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) This truss has been checked for uniform roof live load only, except as noted.

4) Wind: ASCE 7-05; 90mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

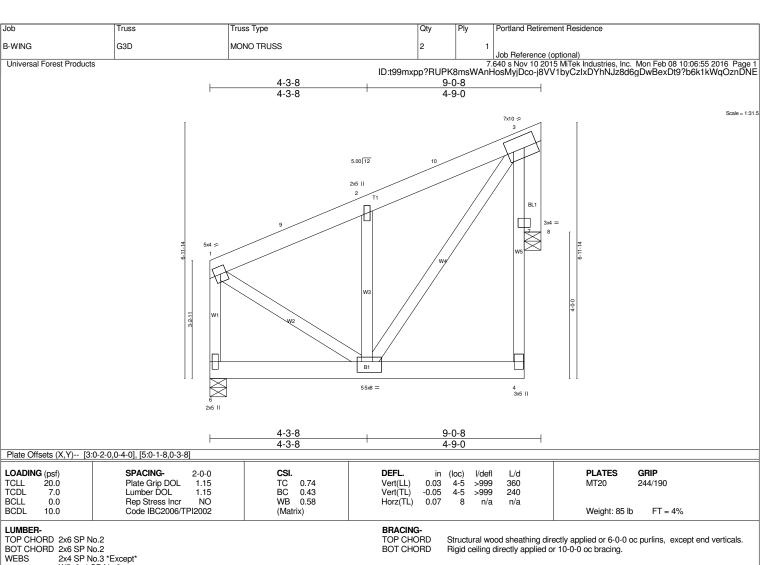
5) Provide adequate drainage to prevent water ponding.
6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=1293, 7=1334.

- 9) This truss is designed in accordance with the 2006 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1402 lb down and 505 lb up at 11-0-14 on top chord. The design/selection of such connection device(s) is the responsibility of others


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 12-13=-20, 7-13=-190(F=-170), 1-15=-197, 6-15=-54

Concentrated Loads (lb)

Vert: 15=-1402

2x4 SP No.3 *Except* W5: 2x4 SP No.2

OTHERS 2x6 SP No.2

REACTIONS. (lb/size) 6=1364/0-5-8, 8=1251/0-5-8

Max Horz 6=232(LC 7)

Max Uplift6=-417(LC 7), 8=-563(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

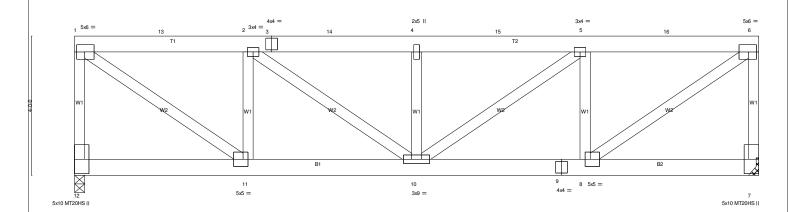
TOP CHORD 1-9=-863/266, 2-9=-817/272, 2-10=-875/361, 3-10=-817/366, 4-7=-159/485, 3-7=-159/485, 1-6=-891/271

WEBS 1-5=-216/818, 2-5=-357/213, 3-5=-586/1206

JOINT STRESS INDEX

1 = 0.63, 2 = 0.12, 3 = 0.69, 4 = 0.82, 5 = 0.96, 6 = 0.91, 7 = 0.00 and 7 = 0.00

- 1) This truss has been checked for uniform roof live load only, except as noted.
 2) Wind: ASCE 7-05; 90mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=417, 8=563.
 7) This truss is designed in accordance with the 2006 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


- 8) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-6=-261(F=-241), 1-3=-54

	OADING (psf) CLL 40.0	SPACING-	2-0-0	CSI.	DEFL.	in (loc) I/defl L/		PLATES GRIP	
P	Plate Offsets (X,Y) [1:0-2	2-12,0-2-8], [6:0-2-12,0-2-	8], [7:Edge,0-3-	8], [8:0-1-12,0-2-8], [11:0-1-1	2,0-2-8]				
		4-11-14	1	4-10-2		4-10-2		4-11-14	
		4-11-14	1	9-10-0		14-8-2	1	19-8-0	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TCLL (Roof Sno TCDL BCLL BCDL	" 40.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.90 BC 0.51 WB 0.68 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.11 10 >999 360 Vert(TL) -0.18 10 >999 240 Horz(TL) 0.03 7 n/a n/a	MT20 197/144 MT20HS 148/108 Weight: 226 lb FT = 4%
DODL	10.0				

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x6 SPF No.2
WEBS 2x4 SPF No.3 *Except*
W2: 2x4 SPF No.2

REACTIONS. (lb/size) 12=4337/0-3-8, 7=4337/Mechanical Max Horz 12=-166(LC 5)

Max Uplift12=-1375(LC 5), 7=-1375(LC 6)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-12=-4220/1366, 1-13=-4660/1521, 2-13=-4660/1521, 2-3=-6088/1968, 3-14=-6088/1968, 4-14=-6088/1968, 4-15=-6088/1968, 5-15=-6088/1968, 5-16=-4660/1521, 6-16=-4660/1521, 6-7=-4220/1366

BOT CHORD 10-11=-1562/4660, 9-10=-1521/4660, 8-9=-1521/4660

2-11=-3274/1135, 4-10=-1978/699, 5-8=-3274/1136, 1-11=-1776/5582, 2-10=-579/1770, 5-10=-580/1770, 6-8=-1776/5582

JOINT STRESS INDEX

 $1 = 0.91, 2 = 0.83, 3 = 0.87, 4 = 0.34, 5 = 0.83, 6 = 0.91, 7 = 0.78, 8 = 0.89, 9 = 0.90, 10 = 0.81, 11 = 0.89 \ and 12 = 0.78, 12 = 0.80, 12 = 0.80, 13 = 0.80, 13 = 0.80, 14$

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 3) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

4) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
5) Provide adequate drainage to prevent water ponding.
6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

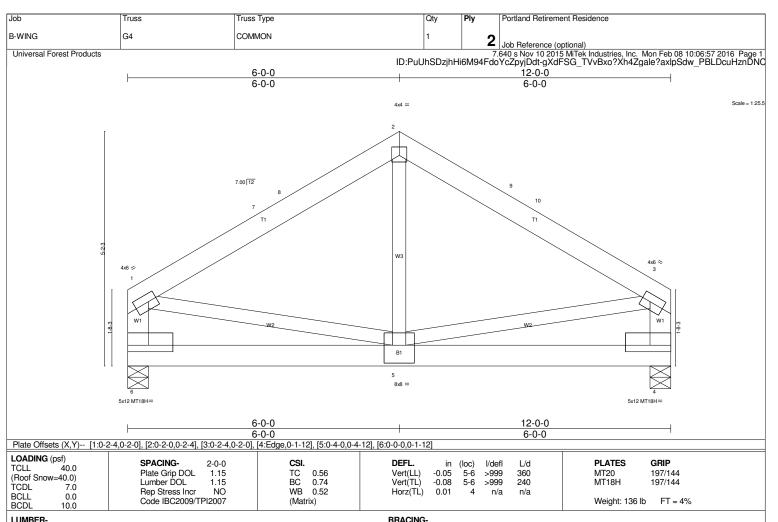
7) All plates are MT20 plates unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=1375, 7=1375.

11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

13) Girder carries tie-in span(s): 14-0-0 from 0-0-0 to 19-8-0

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 7-12=-20, 1-6=-428

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x6 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2

REACTIONS. (lb/size) 6=3378/0-5-8, 4=3378/0-5-8 Max Horz 6=161(LC 8)

Max Uplift6=-1137(LC 9), 4=-1137(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-2937/993, 7-8=-2785/993, 2-8=-2774/1005, 2-9=-2774/1005, 9-10=-2785/993, 3-10=-2937/993, 1-6=-1989/713, 3-4=-1989/713

BOT CHORD 5-6=-435/1197, 4-5=-396/1197

2-5=-744/2349, 1-5=-372/1310, 3-5=-378/1310 **WEBS**

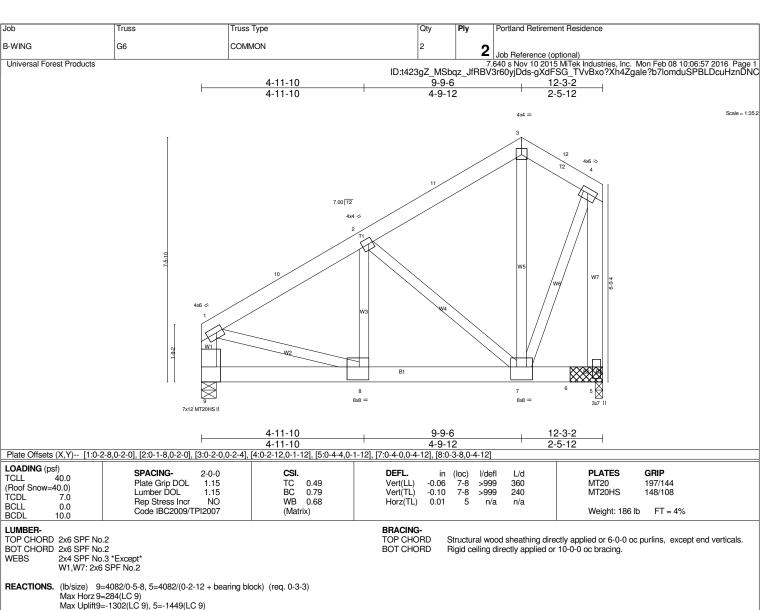
JOINT STRESS INDEX

1 = 0.85, 2 = 0.82, 3 = 0.85, 4 = 0.87, 5 = 0.31 and 6 = 0.87

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.

 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 4) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1


- 5) Unbalanced snow loads have been considered for this design.
 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=1137, 4=1137.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-94, 2-3=-94, 4-6=-491(F=-471)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-3677/1144, 2-10=-3531/1162, 2-11=-1464/483, 3-11=-1373/493, 3-12=-1341/525, 4-12=-1433/517, 1-9=-2682/868, 4-5=-3653/1308

BOT CHORD 8-9=-584/970 7-8=-1149/3050

2-8=-760/2382, 2-7=-2454/960, 3-7=-363/1066, 1-8=-594/2169, 4-7=-1088/3079 WEBS

JOINT STRESS INDEX

1 = 0.82, 2 = 0.86, 3 = 0.42, 4 = 0.89, 5 = 1.00, 5 = 0.00, 6 = 0.00, 6 = 0.00, 6 = 0.00, 6 = 0.00, 7 = 0.69, 8 = 0.34 and 9 = 0.85

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 2 rows staggered at 0-6-0 oc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.

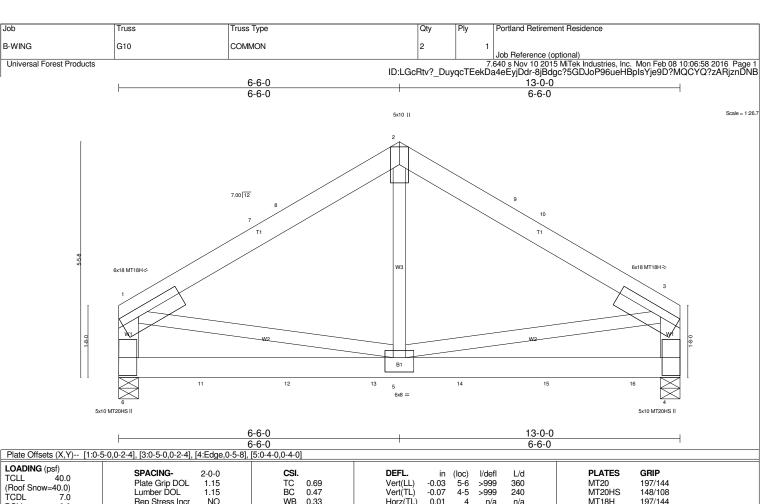
 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) 2x6 SPF No.2 bearing block 12" long at jt. 5 attached to each face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 12 Total fasteners per block. User Defined Bearing crushing capacity= 425psi. 4) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

6) Unbalanced snow loads have been considered for this design.

7) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

8) All plates are MT20 plates unless otherwise indicated.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=1302, 5=1449. 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-94, 3-4=-94, 5-9=-598(F=-578)

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-7-8 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SPF No.2

WEBS 2x6 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2

REACTIONS. (lb/size) 6=1947/0-5-8, 4=1947/0-5-8 Max Horz 6=169(LC 8)

Max Uplift6=-521(LC 9), 4=-502(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7-1985/474, 7-8=-1641/474, 2-8=-1574/488, 2-9=-1574/488, 9-10=-1641/474, 3-10=-1985/474, 1-6=-1638/396, 3-4=-1638/396

BOT CHORD 6-11=-209/790, 11-12=-209/790, 12-13=-209/790, 5-13=-209/790, 5-14=-200/790, 14-15=-200/790, 15-16=-200/790, 4-16=-200/790

WEBS 2-5=-180/747, 1-5=-87/744, 3-5=-107/744

JOINT STRESS INDEX

1 = 0.93, 2 = 0.97, 3 = 0.93, 4 = 1.00, 5 = 0.50 and 6 = 1.00

LUMBER-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=521, 4=502.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 153 lb down and 35 lb up at 0-2-12, 153 lb down and 35 lb up at 2-0-0, 153 lb down and 35 lb up at 4-0-0, 153 lb down and 35 lb up at 4-0-0, 153 lb down and 35 lb up at 8-0-0, and 153 lb down and 35 lb up at 10-0-0, and 153 lb down and 35 lb up at 12-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-218, 2-3=-218, 4-6=-92(F=-72)


2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-8=-218, 2-8=-241, 2-3=-162, 4-6=-92(F=-72)

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-162, 2-9=-241, 3-9=-218, 4-6=-92(F=-72)

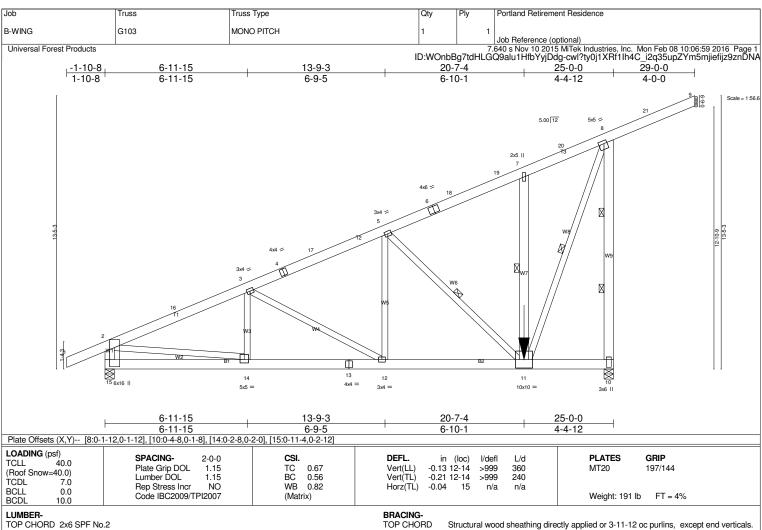
- Chord, nonconcurrent with any other live loads.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 513 lb down and 217 lb up at 6-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-7=-20, 6-7=-38(F=-18) Concentrated Loads (lb) Vert: 7=-513(F)

Trapezoidal Loads (plf)


Vert: 1=-218-to-4=-141, 4=-94(F=47)-to-5=-47(F=47)

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 2-7=-20, 6-7=-38(F=-18)

Job	Truss	Truss Type	Qty	F	Ply	Portland Retirement Residence
B-WING	G21	ROOF TRUSS	1		1	Job Reference (optional)
Universal Forest Products			ID:iEPKwc362F	Rb7iE	7. 7bXmA	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:06:58 2016 Page 2 FLHyjDdm-8jBdgc?5GDJoP96ueHBpIsYjN9GbMT2YQ?zARjznDNI
3) Dead + Snow (Unbal. Right Uniform Loads (plf)	-85, 4=-111(F=47)-to-5=-64(F=47)-to-5=-64(F=47)-to-5=-1.15, Plate 7=-18(F=1) =-278, 2=-118-to-4=-61, 4=-54(F=16)-to-4=-61, 4=-54(F=16)-to-6=-1.80 7=-38(F=-18) =-85, 4=-150(F=47)-to-5=-103(F=16)-to-6=-1.03(F=	7) e Increase=1.15 7) e Increase=1.15 =7)-to-5=-7(F=7) rease=1.15, Plate Increase=1.15 -47) rease=1.15, Plate Increase=1.15				

BOT CHORD

WEBS

Rigid ceiling directly applied or 6-0-0 oc bracing.

5-11, 7-11, 8-11 8-10

1 Row at midpt 2 Rows at 1/3 pts

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x6 SPF No.2

BOT CHORD 2x6 SPF No.2

WEBS 2x4 SPF No.3 *Except*

W7,W1,W9: 2x6 SPF No.2, W8: 2x4 SPF No.2

REACTIONS. (lb/size) 9=-0/Mechanical, 15=1852/0-5-8, 10=2672/0-5-8 Max Horz 9=-641(LC 24), 10=641(LC 24) Max Uplift15=-565(LC 9), 10=-1063(LC 9) Max Grav 15=1973(LC 2), 10=3127(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-16=-2821/591, 3-16=-2682/610, 3-4=-2393/489, 4-17=-2283/497, 5-17=-2173/508, 5-6=-1559/283, 6-18=-1435/292, 18-19=-1417/293, 7-19=-1351/303, 7-20=-1490/413, 8-20=-1266/425, 8-21=-729/164, 9-21=-718/175, 2-15=-1856/588

14-15=-76/629, 13-14=-371/2475, 12-13=-371/2475, 11-12=-127/2107, 10-11=-83/641

WEBS 3-12=-465/280, 5-12=-79/415, 5-11=-1125/497, 7-11=-531/284, 8-11=-986/2685, 2-14=-312/1865, 8-10=-3074/1067

JOINT STRESS INDEX

2 = 0.00, 3 = 0.64, 4 = 0.79, 5 = 0.64, 6 = 0.60, 7 = 0.31, 8 = 0.91, 10 = 0.79, 11 = 0.70, 12 = 0.54, 13 = 0.79, 14 = 0.64 and 15 = 0.84

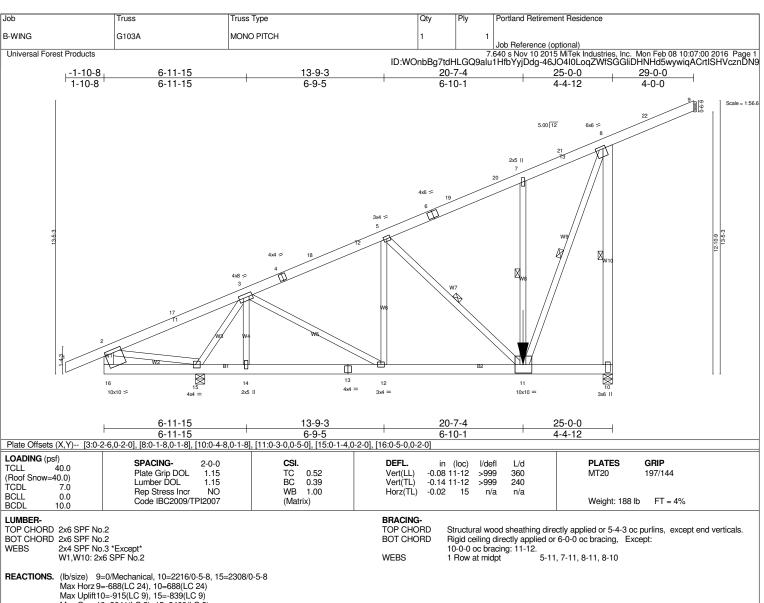
1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left

exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=565, 10=1063.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1137 lb down and 371 lb up at 20-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-94, 2-9=-94, 10-15=-20 Concentrated Loads (lb)

Vert: 11=-1137(F)

Max Grav 10=2641(LC 2), 15=2460(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-17=-483/830, 3-17=-472/930, 3-4=-1746/272, 4-18=-1624/281, 5-18=-1525/292, 5-6=-1483/246, 6-19=-1359/255, 19-20=-1346/256, 7-20=-1275/266, 7-21=-1439/382, 8-21=-1215/394, 8-22=-773/186, 9-22=-762/197
15-16=-359/242, 14-15=-254/602, 13-14=-254/602, 12-13=-254/602, 11-12=0/1500, 10-11=-60/688 TOP CHORD

WEBS 3-12=-176/1028, 5-12=-323/145, 5-11=-418/262, 7-11=-595/297, 8-11=-824/2191, 2-15=-781/569, 8-10=-2586/918, 3-15=-2454/700

JOINT STRESS INDEX

2 = 0.00, 3 = 0.96, 4 = 0.53, 5 = 0.64, 6 = 0.61, 7 = 0.31, 8 = 0.44, 10 = 0.66, 11 = 0.50, 12 = 0.90, 13 = 0.22, 14 = 0.31, 15 = 0.81 and 16 = 0.70

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=915, 15=839.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1137 lb down and 371 lb up at 20-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

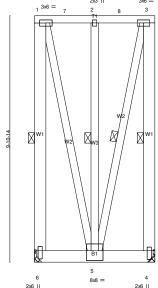
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-94, 2-9=-94, 10-16=-20 Concentrated Loads (lb) Vert: 11=-1137(F)

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
			1	1	
B-WING	G104	FLAT	4		
D-WING	G104	FLAI	'	'	11.54
					Job Reference (optional)
Universal Forest Products				7.	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:00 2016 Page 1

7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:00 2016 Page 1 ID:WOnbBg7tdHLGQ9alu1HfbYyjDdg-46JO4l0LoqZWfSGGliDHNHd7qyyNqB1rtlSHVcznDN9



Structural wood sheathing directly applied or 4-10-2 oc purlins, except end verticals.

1-6, 3-4, 2-5, 3-5

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

4-10-2 2-5-1 2-5-1

COADING (psf) SPACING- 2-0-0	CSI. TC 0.39 BC 0.28 WB 0.95 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 5 >999 360 Vert(TL) -0.03 5 >999 240 Horz(TL) 0.00 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 79 lb FT = 4%
--------------------------------	---	---	--

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 W1: 2x6 SPF No.2

REACTIONS. (Ib/size) 6=1453/Mechanical, 4=1453/Mechanical Max Horz 6=-355(LC 7)

Max Uplift6=-714(LC 5), 4=-837(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-6=-871/530, 3-4=-871/653 WEBS 2-5=-307/112, 1-5=-495/790, 3-5=-621/848

JOINT STRESS INDEX

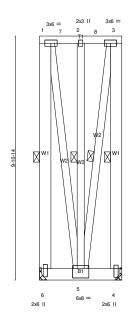
1 = 0.92, 2 = 0.16, 3 = 0.92, 4 = 0.38, 5 = 0.41 and 6 = 0.31

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Provide adequate drainage to prevent water ponding.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=714, 4=837.
 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 4-6=-569(F=-549), 1-3=-94

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	G104A	FLAT	1	1	Job Reference (optional)

Universal Forest Products


7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:01 2016 Page 1 ID:WOnbBg7tdHLGQ9alu1HfbYyjDdg-Yltmle1zZ8hMGcqTJPkWwUAlKMJoZfR?6yBq12znDN8

Structural wood sheathing directly applied or 3-4-0 oc purlins, except end verticals.

1-6, 3-4, 2-5, 3-5

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

1-8-0 3-4-0 1-8-0 1-8-0

ı	Plate Offsets (X,Y)	[4:0-4-4,0-1-0], [5:0-4-0,0-4-8], [6:0-4-0,0-1-0]

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.41 BC 0.20 WB 0.87	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 5 >999 360 Vert(TL) -0.01 5 >999 240 Horz(TL) 0.00 4 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2009/TPI2007	(Matrix)		Weight: 74 lb FT = 4%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 W1: 2x6 SPF No.2

REACTIONS. (lb/size) 6=953/Mechanical, 4=953/Mechanical Max Horz 6=-355(LC 7)

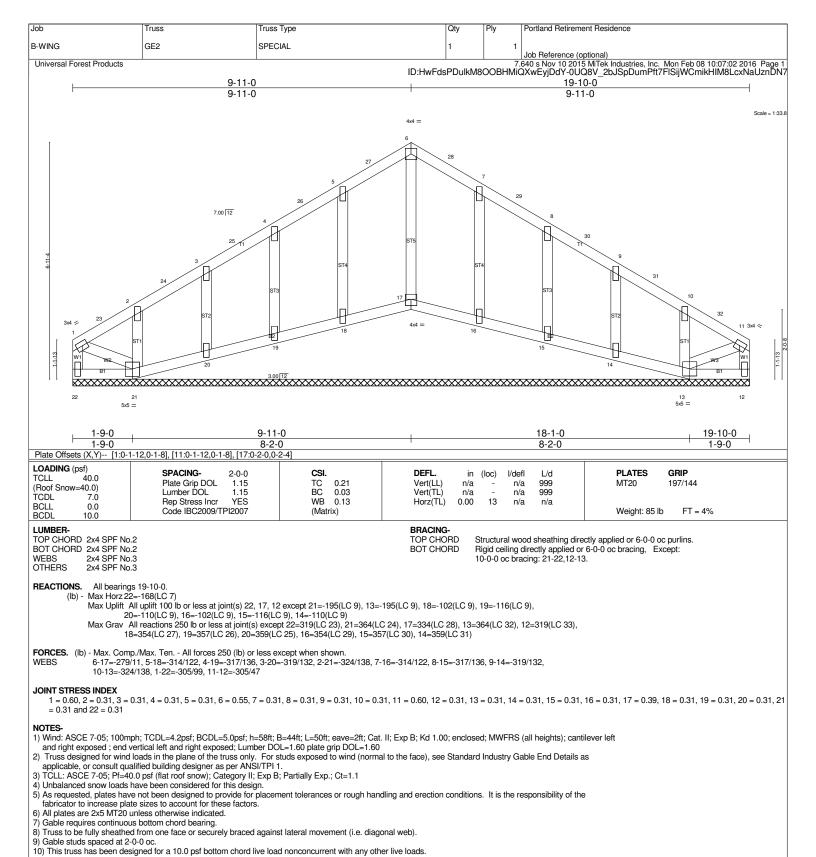
Max Uplift6=-663(LC 5), 4=-851(LC 9) Max Grav 6=953(LC 1), 4=1129(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-519/503, 3-4=-823/690 WEBS 2-5=-253/56, 1-5=-468/503, 3-5=-658/810

JOINT STRESS INDEX

1 = 0.44, 2 = 0.14, 3 = 0.70, 4 = 0.40, 5 = 0.89 and 6 = 0.29


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0

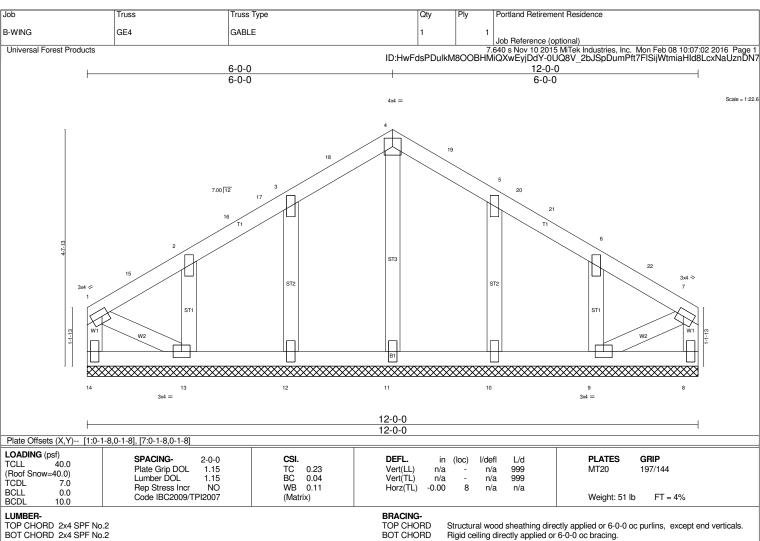
- 3) Provide adequate drainage to prevent water ponding.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=663, 4=851.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 4-6=-569(F=-549), 1-3=-94

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 17, 12 except (jt=lb) 21=195, 13=195, 18=102, 19=116, 20=110, 16=102, 15=116, 14=110.


12) Bevelor place of similar equited to provide fail bearing surface with tross chold at joining, 21, 17, 13, 16, 18, 20, 16, 13, 14.

13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top

12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 21, 17, 13, 18, 19, 20, 16, 15, 14

Chord, nonconcurrent with any other live loads.

2x4 SPF No.3 2x4 SPF No.3 **WEBS** OTHERS

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 14=-144(LC 7)

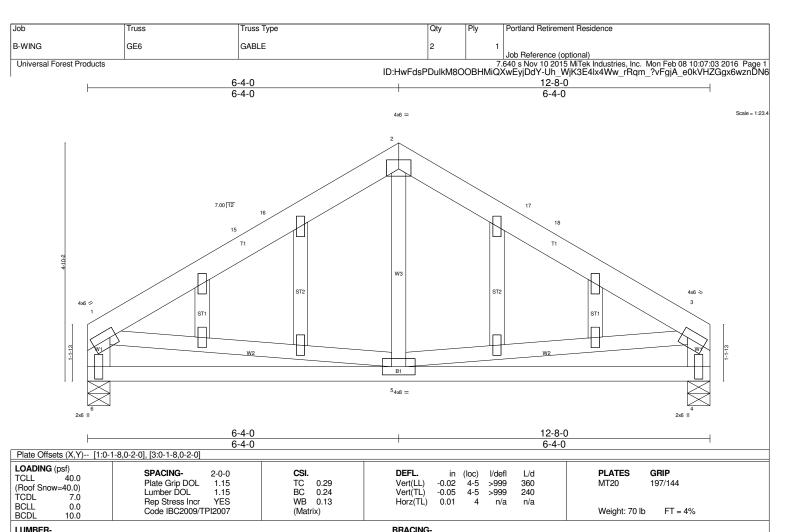
Max Uplift All uplift 100 lb or less at joint(s) 14, 8 except 12=-106(LC 9), 13=-151(LC 9), 10=-106(LC 9), 9=-151(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 14=321(LC 13), 8=321(LC 20), 11=302(LC 23), 12=357(LC 22), 13=362(LC 21), 10=357(LC 24), 9=362(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-14=-303/49, 7-8=-303/19

TOP CHORD

4-11=-262/6, 3-12=-317/126, 2-13=-319/135, 5-10=-317/126, 6-9=-319/135


JOINT STRESS INDEX

1 = 0.69, 2 = 0.14, 3 = 0.14, 4 = 0.54, 5 = 0.14, 6 = 0.14, 7 = 0.69, 8 = 0.18, 9 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15 and 14 = 0.18, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10, 11 = 0.08, 12 = 0.10, 13 = 0.15, 10 = 0.10,

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are 2x5 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8 except (jt=lb) 12=106, 13=151, 10=106,
- 12) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 13) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

OTHERS

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2 **WEBS**

2x4 SPF No.3

REACTIONS. (lb/size) 6=696/0-5-8. 4=696/0-5-8 Max Horz 6=-146(LC 7)

Max Uplift6=-227(LC 9), 4=-227(LC 9)

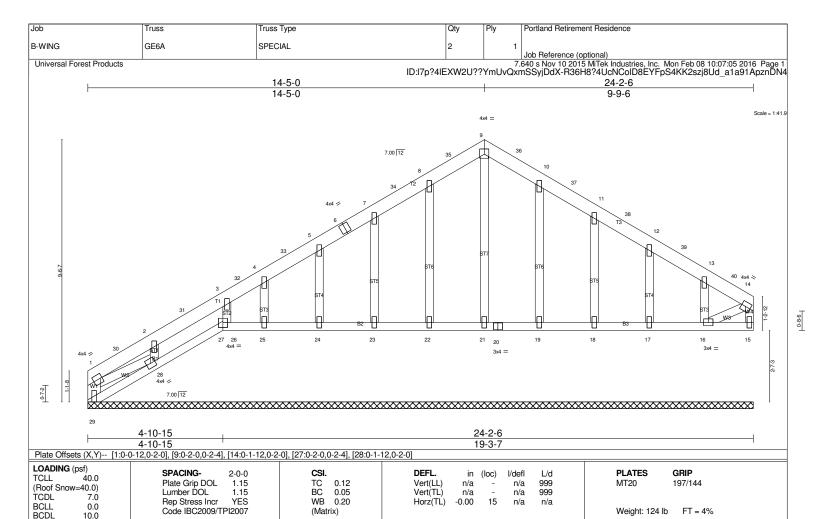
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-15=-789/252, 15-16=-644/252, 2-16=-528/265, 2-17=-528/265, 17-18=-644/252, 3-18=-789/252, 1-6=-634/258, 3-4=-634/258, 5-6=-137/401, 4-5=-132/401 TOP CHORD BOT CHORD

1-5=-93/301, 3-5=-111/301

JOINT STRESS INDEX

1 = 0.80, 2 = 0.96, 3 = 0.80, 4 = 0.99, 5 = 0.20, 6 = 0.99, 7 = 0.00, 8 = 0.00, 9 = 0.00, 10 = 0.00, 11 = 0.00, 12 = 0.00, 13 = 0.00 and 14 = 0.00


NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 4) Unbalanced snow loads have been considered for this design.
 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are 2x5 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=227, 4=227.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2 **WEBS**

OTHERS 2x4 SPF No.3

REACTIONS. All bearings 24-2-6.

Max Horz 29=-250(LC 7)

Max Uplift 100 lb or less at joint(s) 15, 22, 25, 19 except 29=-168(LC 7), 23=-125(LC 9), 24=-115(LC 9), 26=-165(LC 9), 28=-252(LC 9), 18=-125(LC 9), 17=-113(LC 9), 16=-146(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 27 except 29=330(LC 13), 15=318(LC 26), 21=271(LC 33), 22=316(LC 32), 23=325(LC 31), 24=335(LC 30), 25=322(LC 29), 26=270(LC 28), 28=381(LC 27), 19=323(LC 3), 18=325(LC 35), 17=335(LC 36), 16=342(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-29=-313/52, 8-35=-116/250, 9-35=-53/256, 9-36=-53/256, 10-36=-116/250, 14-15=-303/40 8-22=-276/90, 7-23=-285/145, 5-24=-294/136, 4-25=-285/98, 3-26=-313/137, 2-28=-328/186, 10-19=-283/90, 11-18=-285/145, TOP CHORD WFBS

12-17=-294/134, 13-16=-300/127

JOINT STRESS INDEX

1 = 0.58, 2 = 0.31, 3 = 0.31, 4 = 0.31, 5 = 0.31, 6 = 0.53, 7 = 0.31, 8 = 0.31, 9 = 0.45, 10 = 0.31, 11 = 0.31, 12 = 0.31, 13 = 0.31, 14 = 0.48, 15 = 0.31, 16 = 0.54, 17 = 0.31, 18 = 0.31, 19 = 0.31, 20 = 0.26, 21 = 0.31, 13 = 0.31, 14 = 0.48, 15 = 0.31, 16 = 0.54, 17 = 0.31, 18 = 0.31, 19 = 0.31, 20 = 0.26, 21 = 0.31, 13 = 0.31, 14 = 0.48, 15 = 0.31, 16 = 0.54, 17 = 0.31, 18 = 0.31, 19 = 0.31, 19 = 0.31, 10 = 0.= 0.31, 22 = 0.31, 23 = 0.31, 24 = 0.31, 25 = 0.31, 26 = 0.00, 27 = 0.44, 28 = 0.48 and 29 = 0.32

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 26-27.

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left

and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.

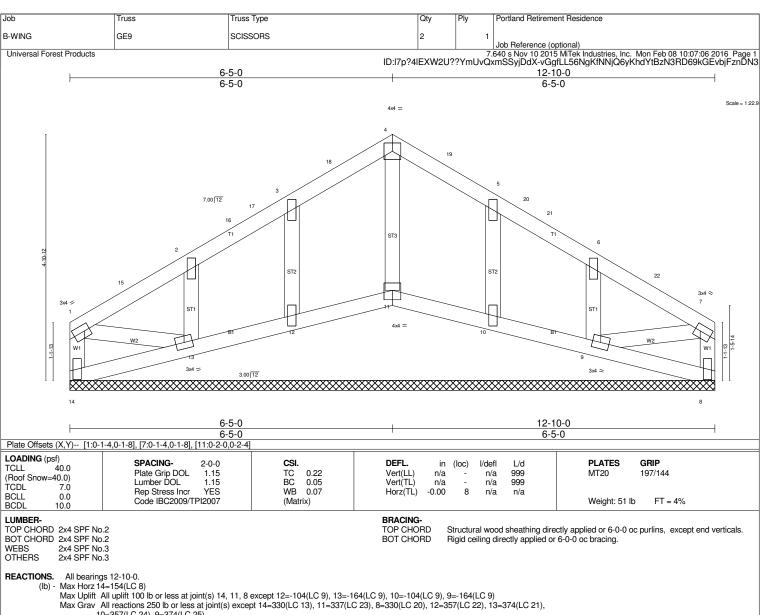
5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

6) All plates are 2x5 MT20 unless otherwise indicated.

7) Gable requires continuous bottom chord bearing.

8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

9) Gable studs spaced at 2-0-0 oc.


10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 22, 25, 19 except (jt=lb) 29=168, 23=125, 24=115, 26=165, 28=252, 18=125, 17=113, 16=146.

12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 27, 15, 21, 22, 23, 24, 25, 26, 28, 19, 18, 17, 16.

13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

10=357(LC 24), 9=374(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-14=-311/27, 7-8=-311/27

4-11=-279/10, 3-12=-319/123, 2-13=-325/150, 5-10=-319/123, 6-9=-325/150

JOINT STRESS INDEX

1 = 0.70, 2 = 0.14, 3 = 0.14, 4 = 0.55, 5 = 0.14, 6 = 0.14, 7 = 0.70, 8 = 0.23, 9 = 0.17, 10 = 0.10, 11 = 0.26, 12 = 0.10, 13 = 0.17 and 14 = 0.23

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are 2x5 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 11, 8 except (jt=lb) 12=104, 13=164,
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 12, 13, 10, 9.

 13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top

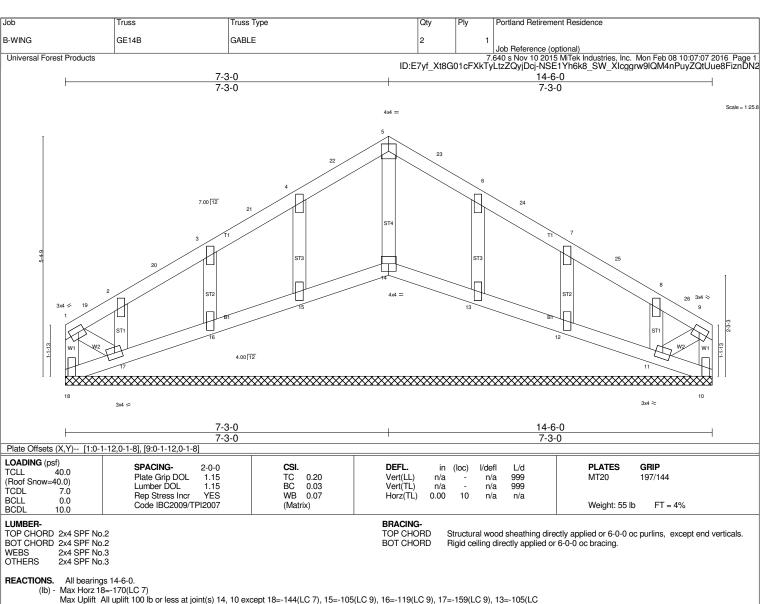
Chord, nonconcurrent with any other live loads.

Vert: 1-4=-218, 4-7=-218, 8-14=-20

Uniform Loads (plf) Vert: 1-17=-218, 4-17=-241, 4-7=-162, 8-14=-20

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15


3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Vert: 1-4=-162, 4-20=-241, 7-20=-218, 8-14=-20

LOAD CASE(S) Standard

Uniform Loads (plf)

Uniform Loads (plf)

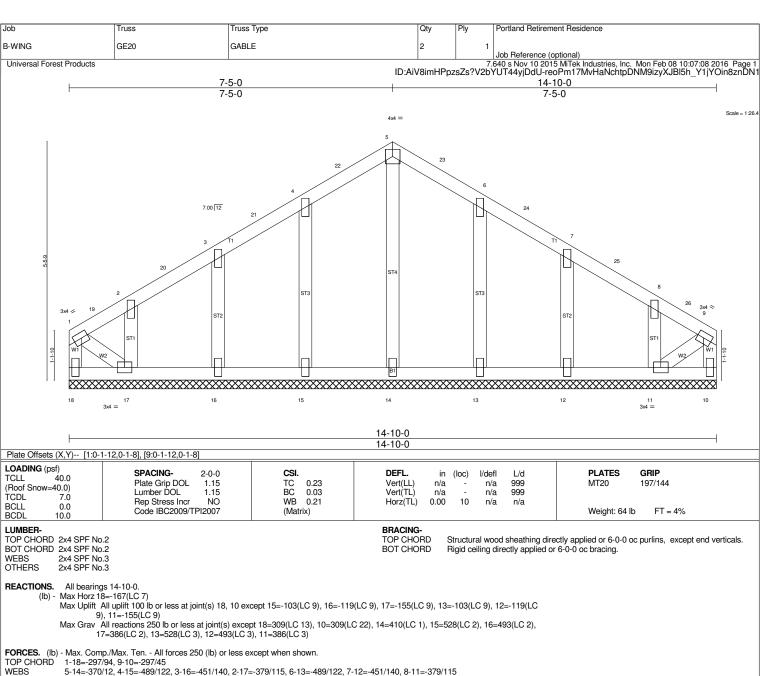
9), 12=-119(LC 9), 11=-159(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 18=302(LC 13), 14=347(LC 26), 10=302(LC 22), 15=359(LC 25), 16=363(LC 24), 17=348(LC 23), 13=359(LC 27), 12=363(LC 28), 11=348(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-18=-294/93, 9-10=-294/46 TOP CHORD

 $5-14=-290/19,\ 4-15=-319/125,\ 3-16=-322/139,\ 2-17=-311/110,\ 6-13=-319/125,\ 7-12=-322/139,\ 8-11=-311/110$


JOINT STRESS INDEX

1 = 0.42, 2 = 0.14, 3 = 0.14, 4 = 0.14, 5 = 0.55, 6 = 0.14, 7 = 0.14, 8 = 0.14, 9 = 0.42, 10 = 0.10, 11 = 0.17, 12 = 0.11, 13 = 0.11, 14 = 0.15, 15 = 0.11, 16 = 0.11, 17 = 0.17 and 18 = 0.10

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) All plates are 2x5 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 10 except (jt=lb) 18=144, 15=105, 16=119 17=159, 13=105, 12=119, 11=159.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 14, 15, 16, 17, 13, 12, 11.
- 13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

JOINT STRESS INDEX

1 = 0.54, 2 = 0.17, 3 = 0.20, 4 = 0.21, 5 = 0.86, 6 = 0.21, 7 = 0.20, 8 = 0.17, 9 = 0.54, 10 = 0.13, 11 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19 and 18 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 13 = 0.17, 14 = 0.13, 15 = 0.17, 16 = 0.16, 17 = 0.19, 12 = 0.16, 17 = 0.19, 12 = 0.16, 17 = 0.19, 12 = 0.18, 12 =

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) All plates are 2x5 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 10 except (jt=lb) 15=103, 16=119, 17=155 13=103, 12=119, 11=155.
- 12) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-5=-218, 5-9=-218, 10-18=-20 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15
- Vert: 1-21=-218, 5-21=-245, 5-9=-162, 10-18=-20
 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-5=-162, 5-24=-245, 9-24=-218, 10-18=-20

Job Truss Truss Type Portland Retirement Residence B-WING GE20A GABLE Universal Forest Products

Job Reference (optional)
7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:09 2016 Page 1
ID:AiV8imHPpzsZs?V2bYUT44yjDdU-JrLnzN7_gbiEErS?n5tOEAVi0b5BQNFAyC7FJaznDN0

12-1-0 12-1-0

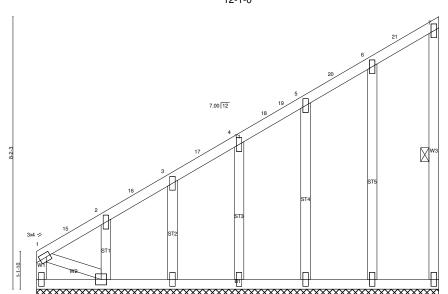


Plate Offsets (X,Y)-- [1:0-1-8,0-1-8]

COADING (psf)	1.15	CSI. TC 0.24 BC 0.04 WB 0.50 (Matrix)	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) n/a - n/a - -0.00 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 197/144
---------------	------	---	--	---------------------------------------	-----------------------------	--------------------------	---------------------------------	---------------------

12

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt 7-8

10

REACTIONS. All bearings 12-1-0.

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2

(lb) - Max Horz 14=413(LC 9)

2x4 SPF No.3

2x4 SPF No.3

Max Uplift All uplift 100 lb or less at joint(s) 14, 8 except 9=-110(LC 9), 10=-114(LC 9), 11=-113(LC 9), 12=-106(LC 9), 13=-315(LC 9) Max Grav All reactions 250 lb or less at joint(s) except 14=367(LC 9), 8=320(LC 20), 9=570(LC 2), 10=536(LC 2), 11=476(LC 1), 12=476(LC 1), 13=509(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1-14=-346/92,\ 1-15=-415/111,\ 2-15=-412/116,\ 2-16=-334/86,\ 3-16=-330/105,\ 3-17=-260/69,\ 4-17=-256/106,\ 7-8=-305/53$ TOP CHORD

BOT CHORD 13-14=-375/119

WEBS $6-9 = -534/135, \, 5-10 = -494/133, \, 4-11 = -436/133, \, 3-12 = -434/130, \, 2-13 = -445/145, \, 1-13 = -131/412$

14

JOINT STRESS INDEX

LUMBER-

WERS

OTHERS

1 = 0.73, 2 = 0.19, 3 = 0.19, 4 = 0.19, 5 = 0.22, 6 = 0.23, 7 = 0.24, 8 = 0.14, 9 = 0.19, 10 = 0.17, 11 = 0.15, 12 = 0.15, 13 = 0.22 and 14 = 0.30

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left

exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) All plates are 2x5 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

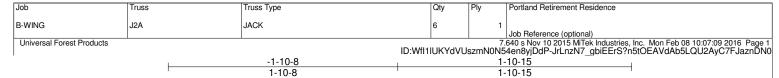
9) Gable studs spaced at 2-0-0 oc.

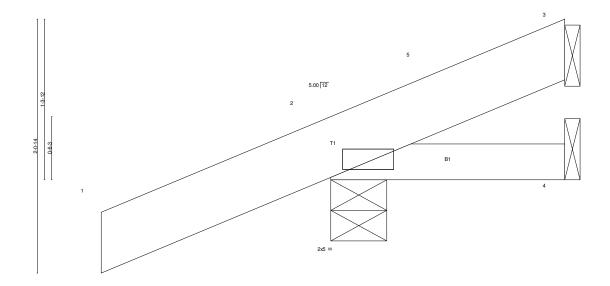
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8 except (jt=lb) 9=110, 10=114, 11=113, 12=106, 13=315.
- 12) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 14) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)


Vert: 1-7-218, 8-14=-20 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-19=-218, 7-19=-257, 8-14=-20 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-7=-162 8-14=-20

Plate Offsets (X,Y) [2:0-	Plate Offsets (X,Y) [2:0-6-3,0-0-12]							
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.55 BC 0.03 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2 >999 360 Vert(TL) -0.00 2-4 >999 240 Horz(TL) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 4%				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

REACTIONS. (lb/size) 3=-15/Mechanical, 2=856/0-5-8, 4=19/Mechanical

(MSAEG) 3-101/MORTHANDA 2-102/LC 9)
Max Horz 2=102/LC 9)
Max Uplift3=-169/LC 13), 2=-232/LC 9)
Max Grav 3=299/LC 16), 2=1015/LC 13), 4=37/LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

JOINT STRESS INDEX

2 = 0.85

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=169, 2=232.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

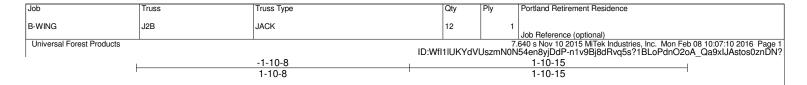
LOAD CASE(S) Standard

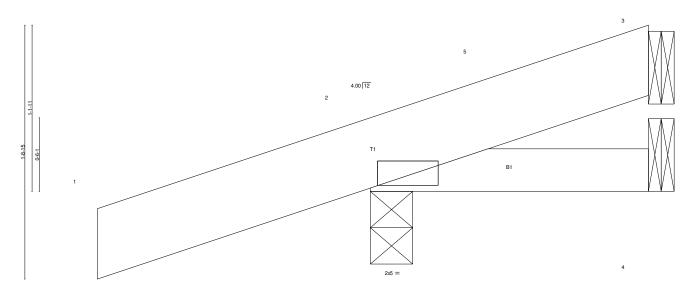
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-218, 2-4=-20 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-218, 2-3=-228, 2-4=-20


3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-162, 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Plate Offsets (X,Y) [2:0-0-10,Edge]							
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.53 BC 0.03 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 2 >999 360 Vert(TL) -0.00 2-4 >999 240 Horz(TL) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 4%			

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

REACTIONS. (lb/size) 3=-9/Mechanical, 2=849/0-3-8, 4=19/Mechanical

(MSAEP) 3-3-3-10-10-11-10-1

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

JOINT STRESS INDEX

2 = 0.79

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=161, 2=230.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-218, 2-4=-20 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-218, 2-3=-227, 2-4=-20

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-162, 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

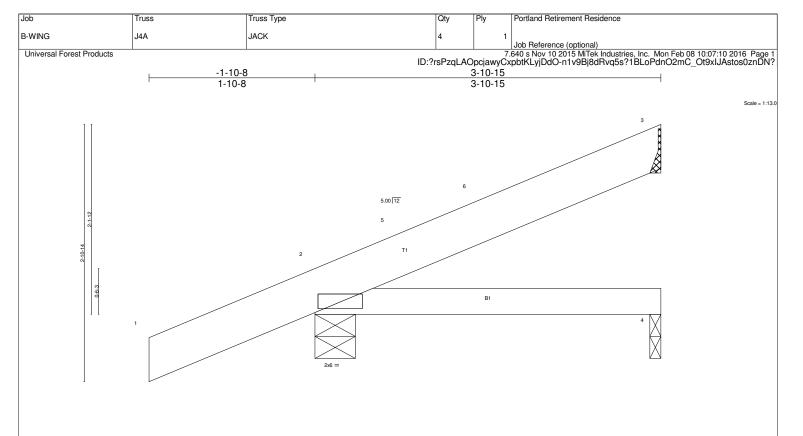


Plate Offsets (X,Y)-- [2:0-6-7,0-0-8]

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.66 BC 0.14 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 2-4 >999 360 Vert(TL) -0.03 2-4 >999 240 Horz(TL) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 4%
--	--	---	---	--

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

REACTIONS. (lb/size) 3=261/Mechanical, 2=1023/0-5-8, 4=36/0-1-8

(MSXEP) 3-20 (MAX HOT 2=147(LC 9) Max Horz 2=147(LC 9) Max Uplift3=-62(LC 9), 2=-290(LC 9), 4=-35(LC 5) Max Grav 3=317(LC 16), 2=1095(LC 13), 4=72(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

JOINT STRESS INDEX

2 = 0.83

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=290.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

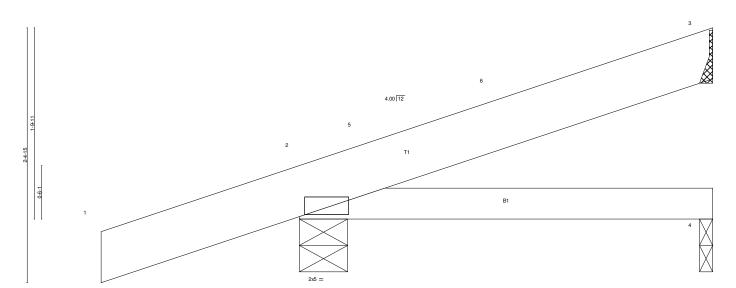
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-218, 2-4=-20

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-5=-218, 3-5=-236, 2-4=-20
3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-162. 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Plate Offsets (X,Y) [2:0-0-10,Edge]				
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.65 BC 0.14 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 2-4 >999 360 Vert(TL) -0.03 2-4 >999 240 Horz(TL) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 4%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

REACTIONS. (lb/size) 3=261/Mechanical, 2=1023/0-5-8, 4=36/0-1-8 (Max Horz 2=117(LC 9)
Max Uplift3=-56(LC 9), 2=-295(LC 9), 4=-35(LC 5)
Max Grav 3=317(LC 16), 2=1095(LC 13), 4=72(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

JOINT STRESS INDEX

2 = 0.85

NOTES-

LUMBER-

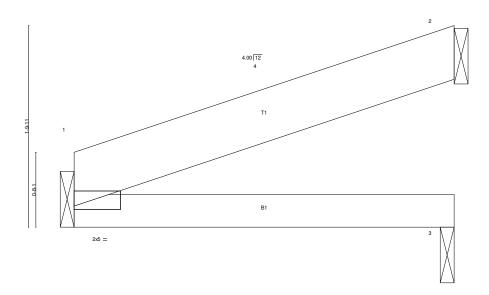
- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=295.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-218, 2-4=-20


2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-218, 3-5=-234, 2-4=-20
3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-162. 2-4=-20

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	J4C	MONO TRUSS	2	1	Job Reference (optional)
Universal Forest Produ	ıcts		ID:T2QnA9Mo96kaC4X	7. PVW66sZy	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:11 2016 Page 1 /jDdN-FDTYO39FCCyyT8bOvWwsKba1ROIXuNYTPWcMOTznDN_
			3-4-15 3-4-15		

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.30 BC 0.12 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 1-3 >999 360 Vert(TL) -0.02 1-3 >999 240 Horz(TL) -0.00 2 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2009/TPI2007	(Matrix)		Weight: 11 lb FT = 4%

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (lb/size) 1=391/Mechanical, 3=33/0-1-8, 2=358/Mechanical Max Horz 1=78(LC 9)

Max Uplift1=-93(LC 9), 3=-32(LC 5), 2=-94(LC 9)

Max Grav 1=393(LC 2), 3=66(LC 4), 2=366(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

JOINT STRESS INDEX

1 = 0.25

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
3) Unbalanced snow loads have been considered for this design.

- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

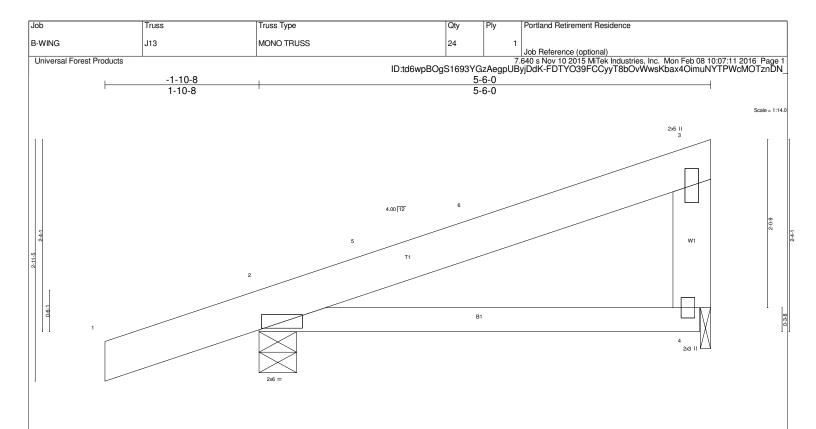
 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.

 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 2.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.


 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-20, 1-2=-218
2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-20, 1-4=-218, 2-4=-225 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 1-2=-162

Tidle Chock (A, T) [2.0	0 0,0 0 1, [1.0 1 0,0 1 0]			
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.65 BC 0.29 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) 0.06 2-4 >999 360 Vert(TL) -0.10 2-4 >625 240 Horz(TL) 0.00 n/a n/a	PLATES GRIP MT20 197/144 Weight: 23 lb FT = 4%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-6-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

Plate Offsets (X V)-- [2:0-6-6 0-0-4] [4:0-1-8 0-1-3]

WEBS 2x6 SPF No.2

REACTIONS. (lb/size) 2=1154/0-5-8, 4=504/0-1-8

Max Horz 2=144(LC 9) Max Uplift2=-326(LC 9), 4=-155(LC 9)

Max Grav 2=1183(LC 2), 4=551(LC 2)

 $\textbf{FORCES.} \ \underline{\ } (\underline{\textbf{lb}}) \text{ - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.}$

TOP CHORD

JOINT STRESS INDEX

2 = 0.81, 3 = 0.31 and 4 = 0.11

NOTES

LUMBER-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=326, 4=155.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

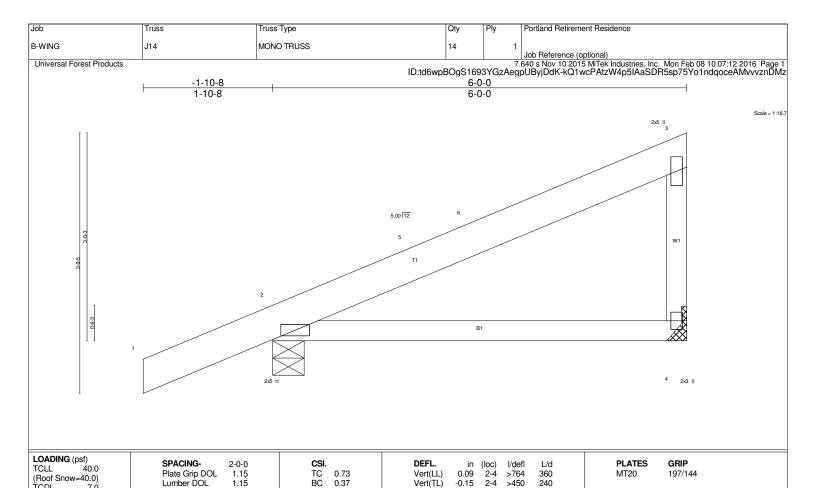
Vert: 2-4=-20, 1-3=-218

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 2-4=-20, 1-5=-218, 3-5=-238

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 2-4=-20, 1-3=-162

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 2-4=-20, 1-2=-298, 2-3=-138

2-4

0.00

>450

Vert(TL)

Horz(TL)

BRACING-

TOP CHORD

BOT CHORD

240

Weight: 25 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 4%

LUMBER-

(Roof Snow

TCDL

BCLL

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

40.0)

7.0

0.0

10.0

WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 2=775/0-5-8, 4=543/Mechanical Max Horz 2=193(LC 9) Max Uplift2=-330(LC 9), 4=-190(LC 9)

Max Grav 2=803(LC 2), 4=602(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Incr

Code IBC2009/TPI2007

NO

TOP CHORD 3-4=-546/135

JOINT STRESS INDEX

2 = 0.74, 3 = 0.70 and 4 = 0.32

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60

0.37

WB 0.00

(Matrix)

- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=330, 4=190.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20

Trapezoidal Loads (plf)
Vert: 1=-94-to-3=-218
2) Dead + Snow (Umbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 2-4=-20

Trapezoidal Loads (plf) Vert: 1=-94-to-5=-159, 5=-183-to-3=-242

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20

Trapezoidal Loads (plf)

Vert: 1=-38-to-3=-162
13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20

Continued on page 2

	_					
Job		Truss Type				Portland Retirement Residence
	J14	MONO TRUSS		14	1	Job Reference (optional)
Universal Forest Products			ID:td6wnF	3OgS1693	7. YGzAear	Job Reference (optional) 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:12 2016 Page 2 bUByjDdK-kQ1wcPAtzW4p5IAaSDR5sp75Yo1ndqoceAMvvvznDMz
LOAD CASE(S) Standard Trapezoidal Loads (plf) Vert: 1=-174-to-2=	-208, 2=-48-to-3=-138		ib.ldowpt	30g01030	Tuzneg	JOBYJOURNAT WEI AZWI-POINAGDHISSP/510 Haqueeniww2115wiz

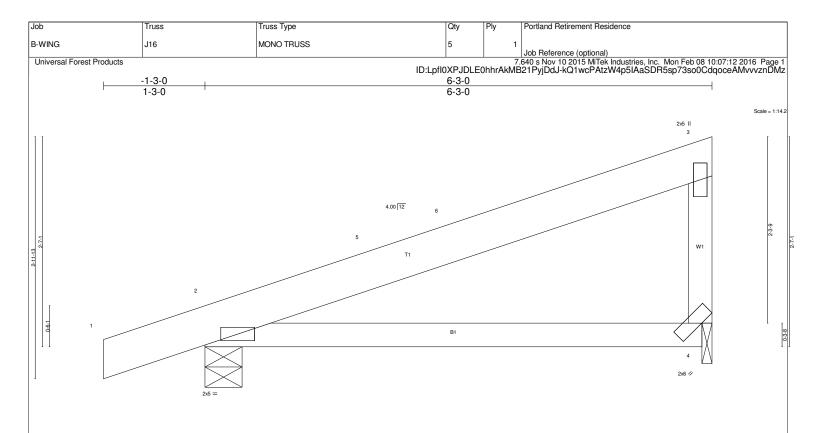


Plate Offsets (X,Y)-- [4:0-2-7,0-0-9] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl **PLATES GRIP** 40 n TC BC WB Plate Grip DOL 1.15 0.84 Vert(LL) 0.11 >670 360 MT20 197/144 (Roof Snow=40.0) Lumber DOL 1.15 0.41 Vert(TL) -0.18 2-4 >395 240 TCDL 7.0 Rep Stress Incr NO 0.00 Horz(TL) 0.00 n/a Code IBC2009/TPI2007 (Matrix) Weight: 23 lb FT = 4% **BCDL** 10.0

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=682/0-5-8, 4=583/0-1-8

2x4 SPF No.3

Max Horz 2=143(LC 9) Max Uplift2=-289(LC 9), 4=-204(LC 9)

Max Grav 2=708(LC 2), 4=636(LC 2)

 $\textbf{FORCES.} \ \underline{\ } (\underline{\textbf{lb}}) \text{ - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.}$

TOP CHORD

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

JOINT STRESS INDEX

2 = 0.61, 3 = 0.66 and 4 = 0.07

NOTES

LUMBER-

WEBS

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=289, 4=204.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

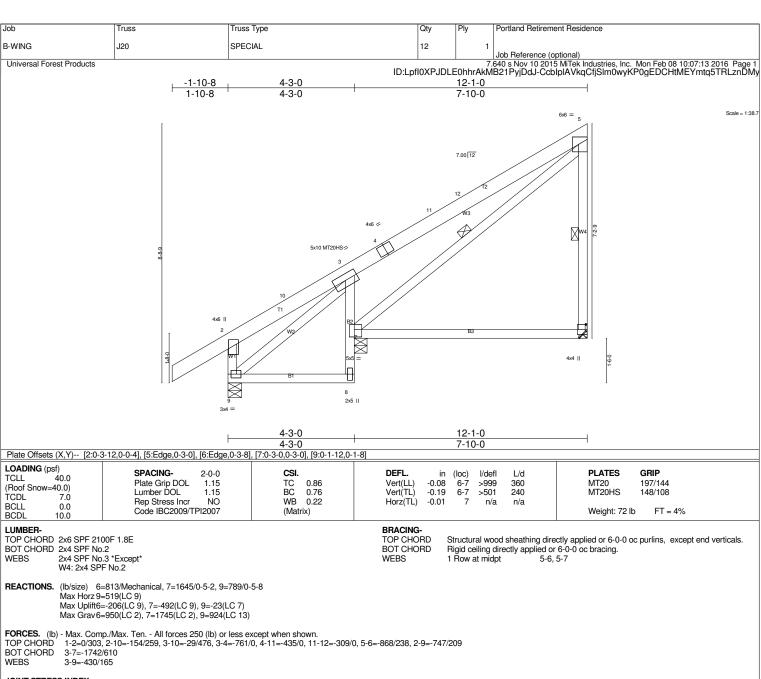
Uniform Loads (plf)

Vert: 2-4=-20

Trapezoidal Loads (plf) Vert: 1=-94-to-3=-218

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20


Trapezoidal Loads (plf)

Vert: 1=-94-to-5=-152, 5=-172-to-3=-238
3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20 Trapezoidal Loads (plf)

Vert: 1=-38-to-3=-162

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	J16	MONO TRUSS	5	1	Job Reference (optional)
Universal Forest Products			ID:Lpfl0XPJDLE	7 OhhrAkME	Job Reference (optional) 1.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:12 2016 Page 2 321PyjDdJ-kQ1wcPAtzW4p5IAaSDR5sp73so0CdqoceAMvvvznDMz
Uniform Loads (plf) Vert: 2-4=-20 Trapezoidal Loads (plf)	ngs: Lumber Increase=1.15, Pla 199, 2=-39-to-3=-138	te Increase=1.15			

JOINT STRESS INDEX

2 = 1.00, 3 = 0.93, 4 = 0.87, 5 = 0.98, 6 = 0.95, 7 = 0.89, 8 = 0.41 and 9 = 0.70

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 6=206, 7=492.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

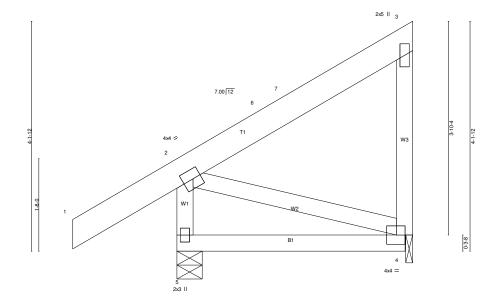
Vert: 1-2=-218, 2-5=-218, 8-9=-20, 6-7=-20

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-218, 2-11=-218, 5-11=-262, 8-9=-20, 6-7=-20

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-162, 2-5=-162, 8-9=-20, 6-7=-20


13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-298, 2-5=-138, 8-9=-20, 6-7=-20

-1-10-8 4-3-0 1-10-8 4-3-0

Plate Offsets (X,Y) [2:0-1-12	2.0-2-01	
-------------------------------	----------	--

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.63 BC 0.17 WB 0.08 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-5 >999 360 Vert(TL) -0.04 4-5 >999 240 Horz(TL) -0.00 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 27 lb FT = 4%
--	--	---------------------------------------	--	--

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-3-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 5=1024/0-5-8, 4=359/0-1-8

Max Horz 5=265(LC 9) Max Uplift5=-143(LC 9), 4=-144(LC 9)

Max Grav 5=1069(LC 13), 4=395(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=0/303, 2-6=-282/14, 3-4=-356/82, 2-5=-1029/162

WFBS 2-4=-72/256

JOINT STRESS INDEX

2 = 0.43, 3 = 0.48, 4 = 0.11 and 5 = 0.60

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=143, 4=144.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-5=-20, 1-2=-218, 2-3=-218 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-5=-20, 1-2=-218, 2-6=-218, 3-6=-240 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-5=-20, 1-2=-162, 2-3=-162
13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-5=-20, 1-2=-298, 2-3=-138

Portland Retirement Residence Job Truss Truss Type J21 B-WING MONO TRUSS 15 Job Reference (optional)
7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:14 2016 Page 1
ID:Lpfl0XPJDLE0hhrAkMB21PyjDdJ-go9g04B7V7KWKcKzaeTZxECSBcnP5klv5Ur0_oznDMx Universal Forest Products -1-10-8 3-6-0 1-10-8 3-6-0 5.00 12 W1 2x3 II

Plate Offsets (X,Y)-- [2:0-6-7,0-0-8], [4:Edge,0-1-14]

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2009/TPI2007	CSI. TC 0.66 BC 0.10 WB 0.00 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 2-4 >999 360 Vert(TL) -0.01 2-4 >999 240 Horz(TL) 0.00 n/a n/a	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 4%
--	--	---------------------------------------	---	--

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=985/0-5-8, 4=217/0-1-8

2x4 SPF No.3

Max Horz 2=136(LC 9) Max Uplift2=-237(LC 9), 4=-25(LC 9)

Max Grav 2=1085(LC 13), 4=343(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $\,$ 3-4=-312/40 $\,$

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2

JOINT STRESS INDEX

2 = 0.82, 3 = 0.36 and 4 = 0.07

NOTES-

LUMBER-

WEBS

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=237.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

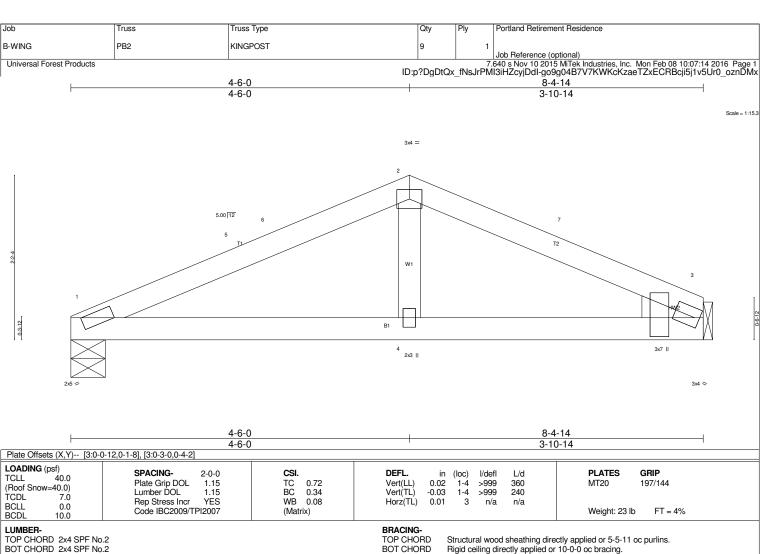
 11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-4=-20, 1-3=-218

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 2-4=-20, 1-5=-218, 3-5=-234

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 2-4=-20, 1-3=-162

13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 2-4=-20, 1-2=-298, 2-3=-138

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 WEBS WEDGE

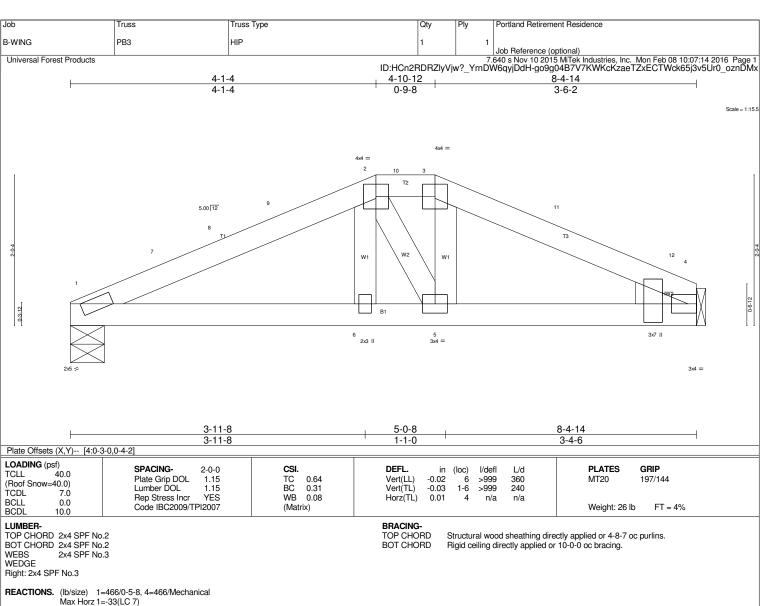
Right: 2x4 SPF No.3

REACTIONS. (lb/size) 1=466/0-5-8, 3=466/Mechanical

Max Horz 1=-36(LC 7)

Max Uplift1=-273(LC 9), 3=-273(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-5=-633/342, 5-6=-568/342, 2-6=-550/348, 2-7=-574/353, 3-7=-641/347 BOT CHORD 1-4=-260/520, 3-4=-260/520


JOINT STRESS INDEX

1 = 0.55, 2 = 0.20, 3 = 0.71, 3 = 0.20 and 4 = 0.21

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=273, 3=273.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

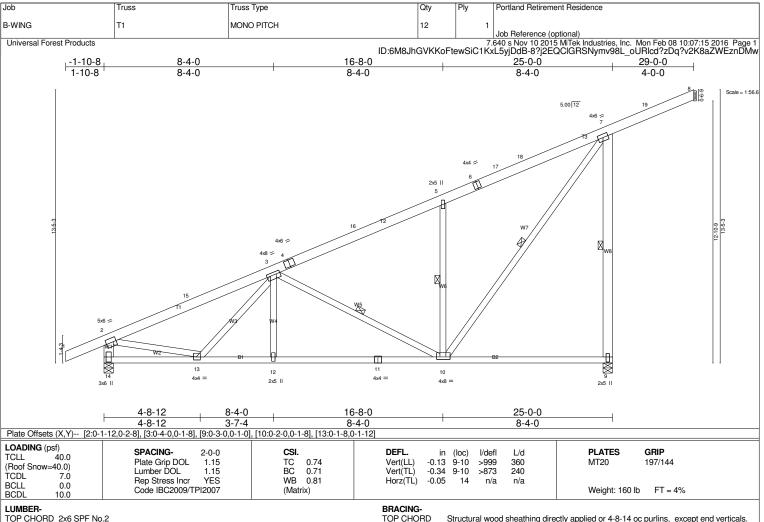
 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

Max Uplift1=-273(LC 9), 4=-273(LC 9) Max Grav 1=652(LC 18), 4=648(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP_CHORD 1-7=-897/365, 7-8=-803/367, 8-9=-803/367, 2-9=-755/373, 2-10=-711/370, 3-10=-711/370, 3-11=-783/369, 11-12=-799/364, 4-12=-892/359

BOT CHORD 1-6=-288/733, 5-6=-283/729, 4-5=-279/717

JOINT STRESS INDEX


1 = 0.79, 2 = 0.20, 3 = 0.24, 4 = 0.67, 4 = 0.27, 5 = 0.18 and 6 = 0.13

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60)

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0

 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=273, 4=273.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1,W8: 2x6 SPF No.2

BOT CHORD WEBS

Structural wood sheathing directly applied or 4-8-14 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 3-10, 5-10, 7-10, 7-9

REACTIONS. (Ib/size) 8=0/Mechanical, 14=1634/0-5-8, 9=1753/0-5-8 Max Horz 8=-659(LC 22), 9=659(LC 22) Max Uplift14=-471(LC 9), 9=-785(LC 9) Max Grav 14=1720(LC 2), 9=2243(LC 2)

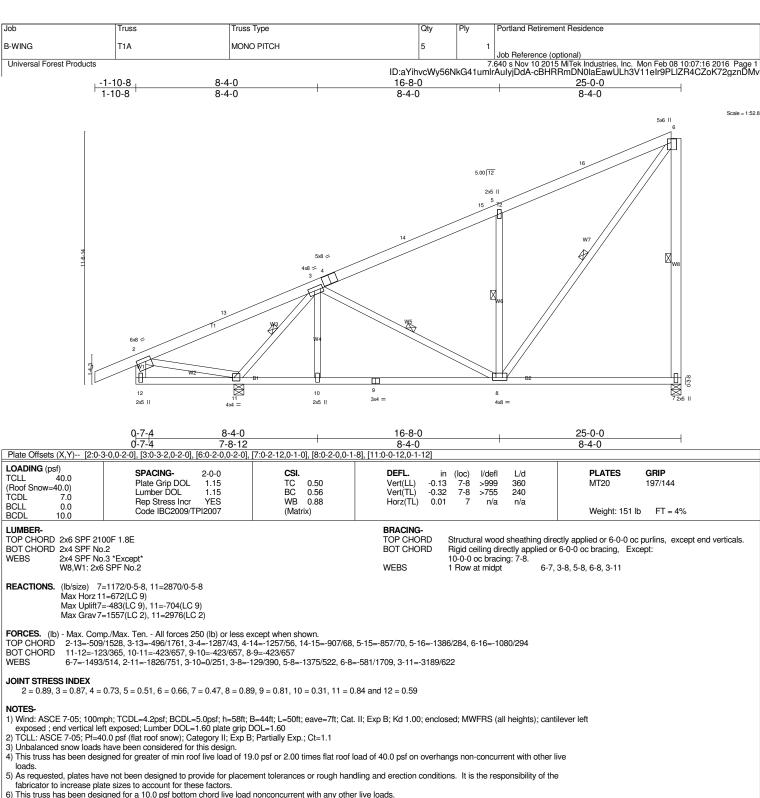
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-15=-2064/370, 3-15=-1915/384, 3-4=-1536/181, 4-16=-1507/195, 5-16=-1385/208, 5-6=-1561/394, 6-17=-1458/400, 17-18=-1390/404, 7-18=-1193/417, 7-19=-746/114, 8-19=-735/125, 2-14=-1654/494
13-14=-176/410, 12-13=-188/2016, 11-12=-188/2016, 10-11=-188/2016, 9-10=-133/659 TOP CHORD

WEBS $3-12=0/260,\ 3-10=-876/448,\ 5-10=-850/476,\ 7-10=-726/1760,\ 3-13=-385/65,\ 2-13=-76/1418,\ 7-9=-2179/816$

JOINT STRESS INDEX

2 = 0.97, 3 = 0.63, 4 = 0.64, 5 = 0.31, 6 = 0.66, 7 = 0.93, 9 = 0.64, 10 = 0.91, 11 = 0.84, 12 = 0.31, 13 = 0.71 and 14 = 0.82


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=471, 9=785.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=483, 11=704. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 7-12=-20

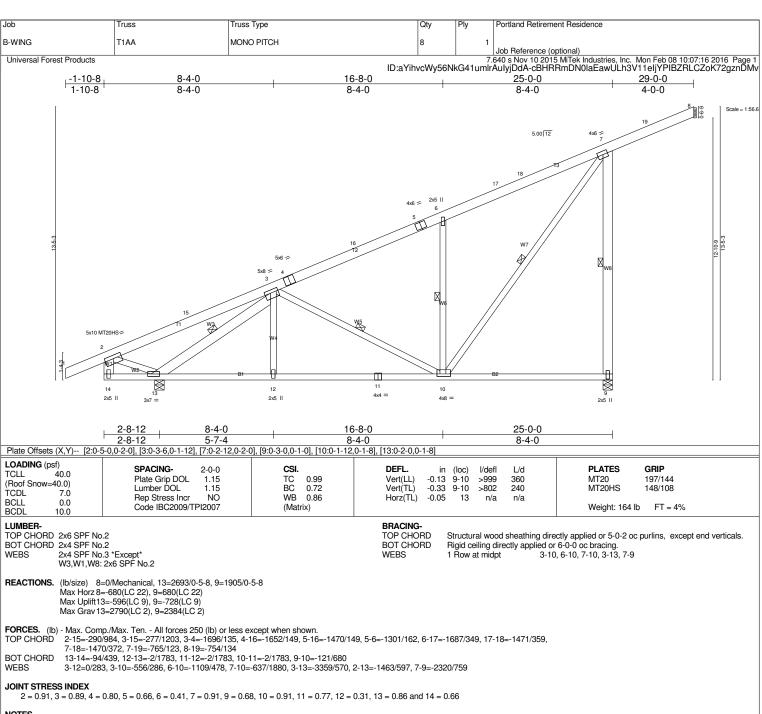
Trapezoidal Loads (plf)

Vert: 1=-173-to-2=-166, 2=-166-to-6=-94

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 7-12=-20


Trapezoidal Loads (plf) Vert: 1=-173-to-2=-166, 2=-166-to-15=-120, 15=-176-to-6=-150

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 7-12=-20

Trapezoidal Loads (plf)

Vert: 1=-117-to-2=-110. 2=-110-to-6=-38

ob	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
-WING	T1A	MONO PITCH	5		1
Universal Forest Produ					. Job Reference (optional) 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:16 2016 Page nlrAulyjDdA-cBHRRmDN0IaEawULh3V11eIr9PLIZR4CZoK72gznDI
OAD CASE(S) Stand 3) Dead + Snow on C Uniform Loads (plf Vert: 7-12:	dard Overhangs: Lumber Increase=) 20	=1.15, Plate Increase=1.15	ID:aYihvcWy5€	NkG41um	nlrAulyjDdA-cBHRRmDN0laEawULh3V11eIr9PLIZR4CZoK72gznĎl
Trapezoidal Loads Vert: 1=-2	(plf) 53-to-2=-246, 2=-86-to-6=-14				

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

6) All plates are MT20 plates unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=596, 9=728.

10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

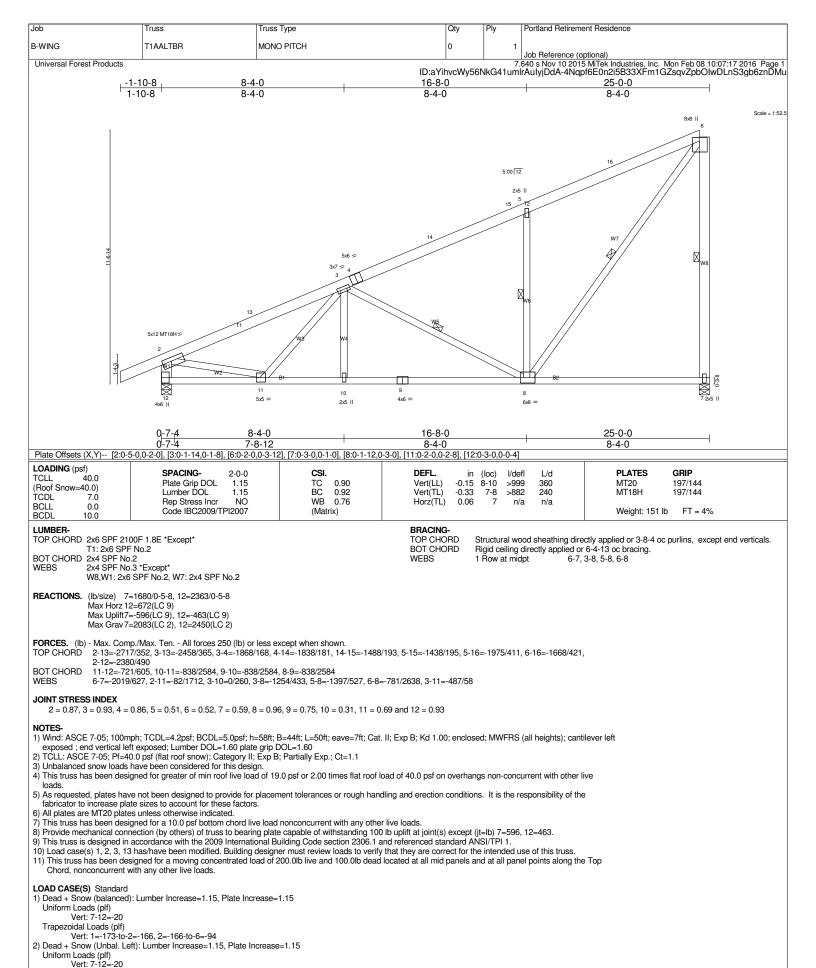
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 9-14=-20

Trapezoidal Loads (plf)

Vert: 1=-173-to-2=-167, 2=-167-to-8=-94

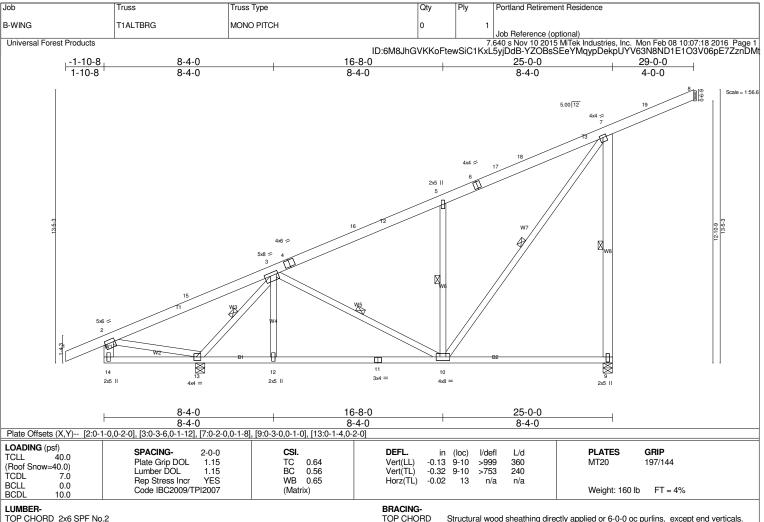
2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 9-14=-20

Trapezoidal Loads (plf) Vert: 1=-173-to-2=-167, 2=-167-to-17=-118, 17=-179-to-8=-155

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15


Name	B-WING T1AA MONO PITCH B 1 Job Reference (optional) 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:17 2016 Page ID:aYihvcWy56NkG41umlrAulyjDdA-4Nqpf6E0n2i5B33XFm1GZsqulpeQlubLnS3gb6znDN LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1-117-to-2=-111, 2=-1111-to-8=-38 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Trapezoidal Loads (plf)						
Universal Forest Products CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	Universal Forest Products Universal Forest Products LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1-117-to-2=-111, 2=-111-to-8=-38 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1=-117-to-2=-111, 2=-111-to-8=-38 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	B-WING	T1AA	MONO PITCH	8	1	Job Reference (optional)
LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1-117-to-2=-111, 2=-111-to-8=-38 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1=-117-to-2=-111, 2=-111-to-8=-38 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	Universal Forest Products		1	ID:aYihvcWv5	56NkG41u	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:17 2016 Page umlrAulviDdA-4Napf6E0n2i5B33XFm1GZsgulpeQlubLnS3gb6znDM
		LOAD CASE(S) Standard Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf) Vert: 1=-117-to-2=- 13) Dead + Snow on Overhar Uniform Loads (plf) Vert: 9-14=-20 Trapezoidal Loads (plf)	ngs: Lumber Increase=1.15, Pla	e Increase=1.15	ID:aYihvcWy5	J 56NkG41u	Jour Interence Optional) Jour Interence Optional) Jour Interence Optional Journal of Mark Industries, Inc. Mon Feb 08 10:07:17 2016 Page: ImlrAulyjDdA-4Nqpf6E0n2i5B33XFm1GZsqulpeQlubLnS3gb6znDM

Trapezoidal Loads (plf)

Vert: 1=-173-to-2=-166, 2=-166-to-15=-120, 15=-176-to-6=-150 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

	1=		12.	I Di	
ob	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
-WING	T1AALTBR	MONO PITCH	0		1 Joh Reference (antique)
Iniversal Forest Products					. Job Reference (optional) 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:17 2016 Page nlrAulyjDdA-4Nqpf6E0n2i5B33XFm1GZsqvZpbOlwDLnS3gb6znDM
			ID:aYihvcWy5	6NkG41ur	mlrAulyjDdA-4Nqpf6E0n2i5B33XFm1GZsqvZpbOlwDLnS3gb6znDN
OAD CASE(S) Standard					
OAD CASE(S) Standard Uniform Loads (plf)					
Vert: 7-12=-20					
Trapezoidal Loads (plf)					
Vert: 1=-117-to-2	2=-110, 2=-110-to-6=-38	5 Diete Incomes 4.45			
Uniform Loads (plf)	hangs: Lumber Increase=1.1	5, Plate increase=1.15			
Vert: 7-12=-20					
Trapezoidal Loads (plf))				
Vert: 1=-253-to	o-2=-246, 2=-86-to-6=-14				

WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1,W8: 2x6 SPF No.2

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 3-10, 5-10, 7-10, 3-13, 7-9

REACTIONS. (lb/size) 8=0/Mechanical, 13=2027/0-5-8, 9=1360/0-5-8 Max Horz 8=-690(LC 22), 9=690(LC 22) Max Uplift13=-724(LC 9), 9=-660(LC 9) Max Grav 13=2135(LC 2), 9=1829(LC 2)

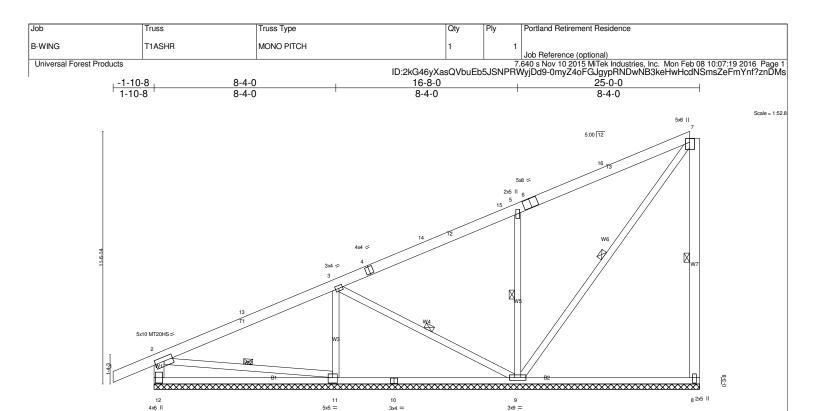
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-15=-508/891, 3-15=-484/1040, 3-4=-1197/68, 4-16=-1169/82, 5-16=-926/95, 5-6=-1226/281, 6-17=-1124/288, 17-18=-1052/291, 7-18=-1049/305, 7-19=-775/127, 8-19=-763/137 13-14=-245/350, 12-13=-150/682, 11-12=-150/682, 10-11=-150/682, 9-10=-114/690 TOP CHORD

WEBS 3-12=0/250, 3-10=-129/325, 5-10=-860/477, 7-10=-523/1109, 3-13=-2331/650, 2-13=-1093/747, 7-9=-1765/692

JOINT STRESS INDEX

2 = 0.88, 3 = 0.95, 4 = 0.80, 5 = 0.32, 6 = 0.65, 7 = 0.75, 9 = 0.51, 10 = 0.83, 11 = 0.67, 12 = 0.31, 13 = 0.83 and 14 = 0.60


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=724, 9=660.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

0-7-4 Plate Offsets (X,Y)-- [2:0-5-0,0-2-4], [7:0-2-0,0-2-4], [8:0-3-0,0-1-0], [11:0-2-8,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES GRIP** 40 n TC BC WB 0.00 197/144 Plate Grip DOL 1.15 0.80 Vert(LL) 180 MT20 n/r (Roof Snow=40.0) Lumber DOL 1.15 0.56 Vert(TL) 0.00 80 MT20HS 148/108 n/r TCDL 7.0 Rep Stress Incr NO 0.64 Horz(TL) -0.02 n/a n/a

16-8-0

8-4-0

BRACING-

WEBS

TOP CHORD

BOT CHORD

1 Row at midpt

25-0-0

8-4-0

Weight: 149 lb

Structural wood sheathing directly applied or 5-2-11 oc purlins, except end verticals. Rigid ceiling directly applied or 5-4-0 oc bracing.

7-8, 2-11, 3-9, 5-9, 7-9

FT = 4%

LUMBER-

TOP CHORD 2x6 SPF 2100F 1.8E *Except* T1: 2x6 SPF No.2

0-7-4

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W7,W1: 2x6 SPF No.2

10.0

REACTIONS.

All bearings 25-0-0. Max Horz 12=672(LC 28) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 8=-493(LC 29), 12=-693(LC 28), 11=-724(LC 28), 9=-565(LC 28) Max Grav All reactions 250 lb or less at joint(s) except 8=812(LC 16), 12=1669(LC 17), 11=1631(LC 15), 9=1883(LC 17)

(Matrix)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IBC2009/TPI2007

2-13=-1535/976, 3-13=-926/696, 3-4=-1369/1101, 4-14=-1034/974, 14-15=-706/750, 5-15=-620/670, 5-6=-608/359, 6-16=-450/311, TOP CHORD

7-16=-285/482, 2-12=-1585/733

BOT CHORD 11-12=-1151/1027, 10-11=-609/535, 9-10=-623/549, 8-9=-648/648

WFRS 7-8=-748/524, 2-11=-1162/1205, 3-11=-1550/872, 3-9=-1076/1044, 5-9=-1401/531, 7-9=-637/529

8-4-0

7-8-12

JOINT STRESS INDEX

2 = 0.90, 3 = 0.90, 4 = 0.66, 5 = 0.51, 6 = 0.93, 7 = 0.35, 8 = 0.39, 9 = 0.81, 10 = 0.49, 11 = 0.51 and 12 = 0.88

BCDL

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 493 lb uplift at joint 8, 693 lb uplift at joint 12, 724 lb uplift at joint 11
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) Load case(s) 1, 2, 3, 13, 14, 15, 16, 17, 18, 19 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 13) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 25-0-0 for 80.0 plf.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 8-12=-20

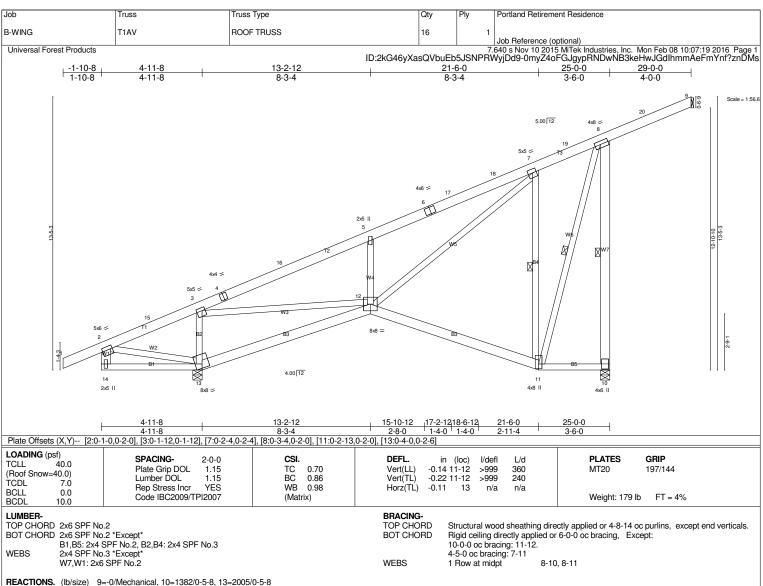
Trapezoidal Loads (plf)

Vert: 1=-173-to-2=-166. 2=-166-to-7=-94

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
D MINO	TAROUR	MONO DITOLI			
B-WING	T1ASHR	MONO PITCH	1		1 Job Reference (optional)
Universal Forest Produ	cts				7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:19 2016 Page 2
			ID:2kG46yXasQVbu	iEb5JSNPf	RWyjDd9-0myZ4oFGJgypRNDwNB3keHwHcdNSmsZeFmYnf?znĎMs
LOAD CASE(S) Stand	dard				
Uniform Loads (plf) Vert: 8-12=-	20				
Trapezoidal Loads (
	3-to-2=-166, 2=-166-to-15=-12	0 15176-to-7150			
	al. Right): Lumber Increase=1.				
Uniform Loads (plf)	ag,a	To, Thate increase Tite			
Vert: 8-12=-	20				
Trapezoidal Loads (
	7-to-2=-110, 2=-110-to-7=-38				
13) Dead + Snow on C	Overhangs: Lumber Increase=1	1.15, Plate Increase=1.15			
Uniform Loads (plf					
Vert: 8-12=					
Trapezoidal Loads					
	53-to-2=-246, 2=-86-to-7=-14	l l			
		ber Increase=1.33, Plate Increase=1.33			
Uniform Loads (plf Vert: 8-12=					
vert. o-12= Horz: 2-7=					
Drag: 8-12					
Trapezoidal Loads					
	73-to-2=-166, 2=-133-to-7=-61				
		mber Increase=1.33, Plate Increase=1.33			
Uniform Loads (plf		, , , , , , , , , , , , , , , , , , , ,			
Vert: 8-12=					
Horz: 2-7=	-192				
Drag: 8-12	=80				
Trapezoidal Loads					
	73-to-2=-166, 2=-200-to-7=-12				
		mber Increase=1.33, Plate Increase=1.33			
Uniform Loads (plf					
Vert: 8-12=					
Horz: 2-7= Drag: 8-12					
Trapezoidal Loads					
	73-to-2=-166, 2=-133-to-15=-8	6 15143-to-7117			
		umber Increase=1.33, Plate Increase=1.33			
Uniform Loads (plf		,			
Vert: 8-12=	, =-20				
Horz: 2-7=	-192				
Drag: 8-12					
Trapezoidal Loads					
	73-to-2=-166, 2=-200-to-15=-1				
		umber Increase=1.33, Plate Increase=1.33			
Uniform Loads (plf)				


Uniform Loads (plf) Vert: 8-12=-20 Horz: 2-7=192

Trajez - Borag: 8-12=-80

Trapezoidal Loads (plf)

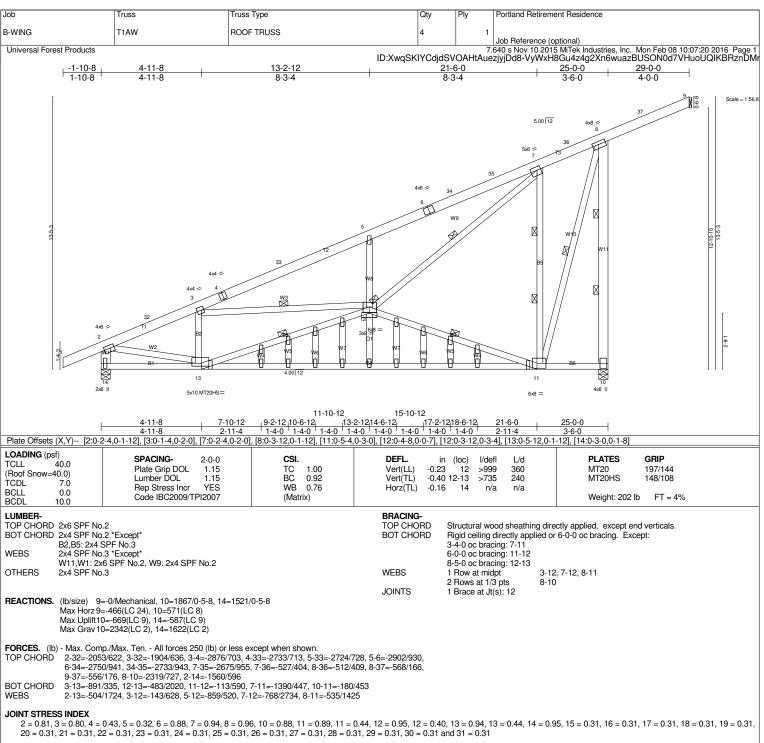
Vert: 1=-117-to-2=-110, 2=-77-to-7=-5

19) Dead + Snow (unbal. Right) + Drag LC#1 Right: Lumber Increase=1.33, Plate Increase=1.33

Max Horz 9=-564(LC 24), 10=601(LC 8) Max Uplift10=-470(LC 9), 13=-921(LC 9) Max Grav 10=1821(LC 2), 13=2142(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-15=-434/821, 3-15=-421/843, 3-4=-1991/298, 4-16=-1839/309, 5-16=-1837/323, 5-6=-1996/518, 6-17=-1849/528, 17-18=-1837/530,

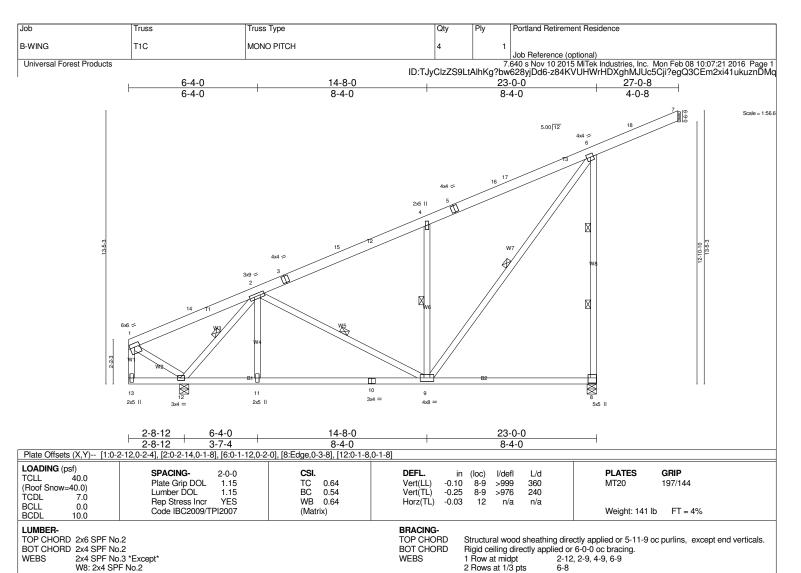
7-18=-1769/542, 7-19=-682/456, 8-19=-606/462, 8-20=-659/240, 9-20=-647/245, 8-10=-1799/544


BOT CHORD $13-14=-312/133,\ 3-13=-1682/631,\ 12-13=-809/569,\ 11-12=-89/666,\ 7-11=-1082/302,\ 10-11=-149/554,\ 11-12=-89/666,\ 11-12=-$

WFRS 2-13=-535/410, 3-12=-502/2227, 5-12=-804/500, 7-12=-210/1436, 8-11=-398/1051

JOINT STRESS INDEX

 $2 = 0.88, \ 3 = 0.96, \ 4 = 0.76, \ 5 = 0.31, \ 6 = 0.86, \ 7 = 0.71, \ 8 = 0.85, \ 10 = 0.90, \ 11 = 0.88, \ 12 = 0.69, \ 13 = 0.95 \ and \ 14 = 0.34 \ a$


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 470 lb uplift at joint 10 and 921 lb uplift at joint 13. 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

NOTES-

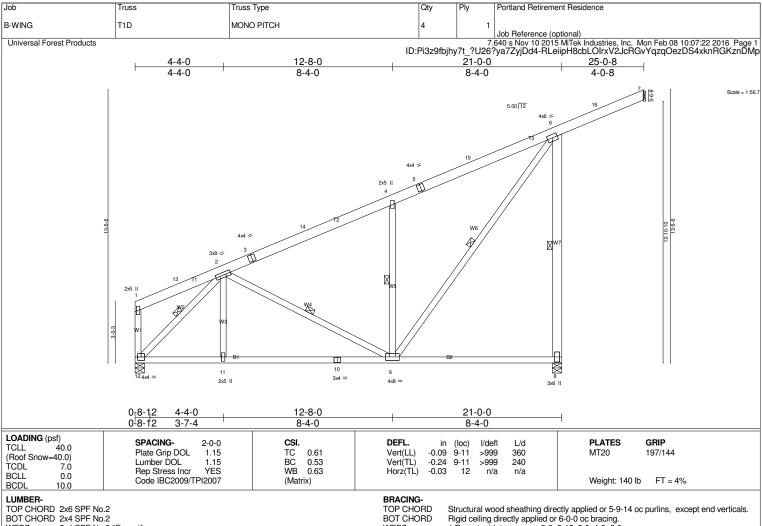
- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) All plates are 2x5 MT20 unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 669 lb uplift at joint 10 and 587 lb uplift at joint 14.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 7=-0/Mechanical, 8=1439/0-5-8, 12=1533/0-5-8 Max Horz 7=-690(LC 22), 8=690(LC 22) Max Uplift8=-716(LC 9), 12=-322(LC 9) Max Grav 8=1833(LC 2), 12=1632(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-14=-40/319, 2-14=-22/339, 2-3=-1295/138, 3-15=-1151/149, 4-15=-1144/162, 4-5=-1320/353, 5-16=-1192/362, 16-17=-1161/364, 6-17=-1151/377, 6-18=-774/125, 7-18=-763/136, 6-8=-1759/750


11-12=-124/999, 10-11=-124/999, 9-10=-124/999, 8-9=-87/694

WEBS 2-12=-1817/326, 2-11=0/267, 2-9=-179/269, 4-9=-850/490, 6-9=-635/1229, 1-12=-387/156

JOINT STRESS INDEX

1 = 0.88, 2 = 0.87, 3 = 0.48, 4 = 0.31, 5 = 0.74, 6 = 0.84, 8 = 1.00, 9 = 0.92, 10 = 0.61, 11 = 0.31, 12 = 0.92 and 13 = 0.54

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 716 lb uplift at joint 8 and 322 lb uplift at joint 12.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

WEBS

6-8, 2-12, 2-9, 4-9, 6-9

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except*

W7: 2x6 SPF No.2

REACTIONS. (lb/size) 7=0/Mechanical, 8=1478/0-5-8, 12=1269/0-5-8

Max Horz 7=-685(LC 22), 8=-685(LC 22) Max Uplift8=-717(LC 9), 12=-250(LC 9) Max Grav 8=1829(LC 2), 12=1369(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1361/156, 3-14=-1220/166, 4-14=-1211/181, 4-5=-1381/371, 5-15=-1238/382, 6-15=-1220/395, 6-16=-770/142, 7-16=-759/152,

6-8=-1751/752, 1-12=-321/63

BOT CHORD 11-12=-189/1169, 10-11=-189/1169, 9-10=-189/1169, 8-9=-49/689 2-12=-1657/270, 2-11=0/277, 2-9=-233/255, 4-9=-835/489, 6-9=-638/1268

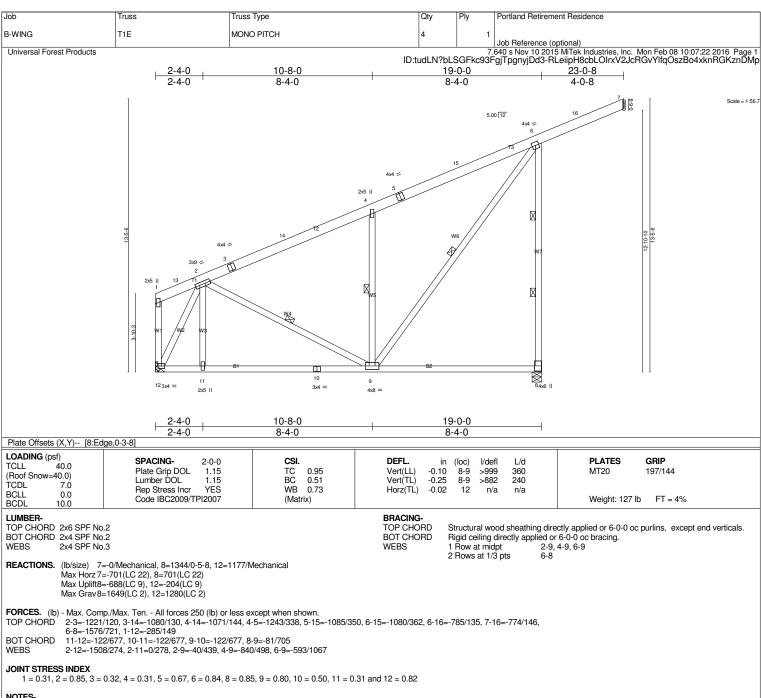
JOINT STRESS INDEX

1 = 0.94, 2 = 0.88, 3 = 0.40, 4 = 0.31, 5 = 0.72, 6 = 0.67, 8 = 0.99, 9 = 0.95, 10 = 0.71, 11 = 0.31 and 12 = 0.71

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

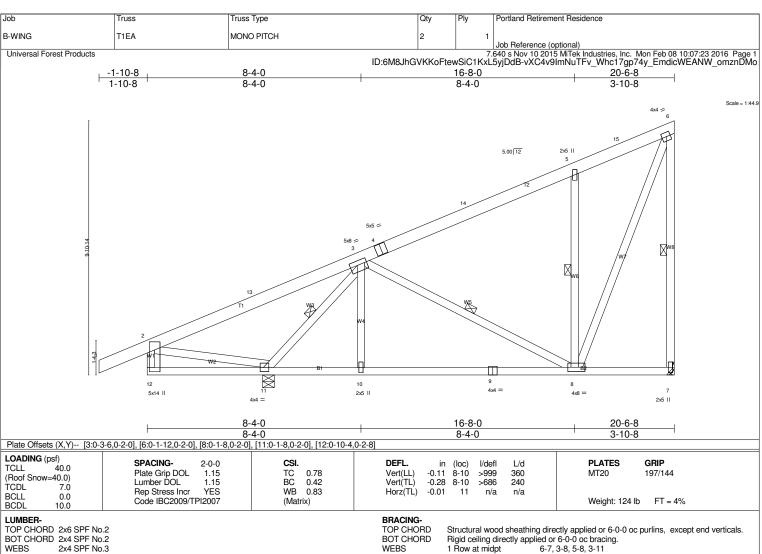

 3) Unbalanced snow loads have been considered for this design.

- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 717 lb uplift at joint 8 and 250 lb uplift at joint 12.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.



NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 688 lb uplift at joint 8 and 204 lb uplift at joint 12.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS

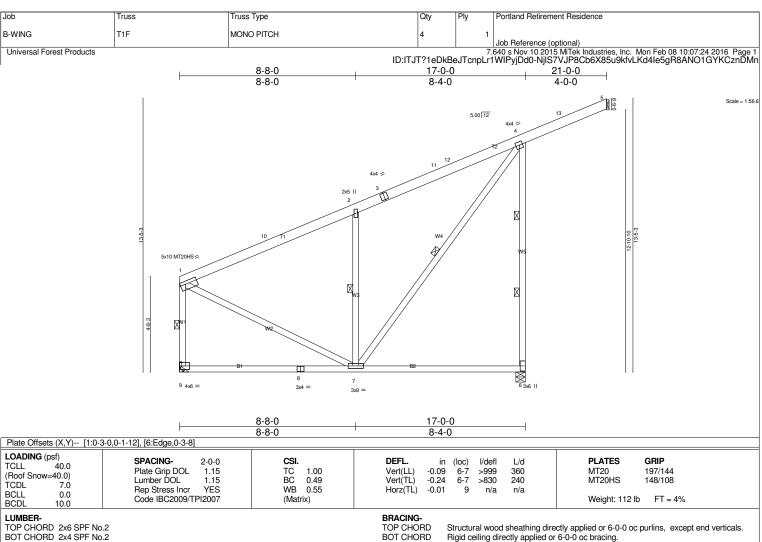
1 Row at midpt

REACTIONS. (lb/size) 7=764/Mechanical, 11=1735/0-5-8

Max Horz 7=569(LC 9) Max Uplift7=-363(LC 9), 11=-661(LC 9) Max Grav 7=1062(LC 2), 11=1833(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-13=-513/902, 3-13=-490/1062, 3-4=-647/0, 4-14=-618/0, 5-14=-469/0, 5-15=-624/135, 6-15=-469/146, 6-7=-1044/366


BOT CHORD 11-12=-180/295, 10-11=-180/463, 9-10=-180/463, 8-9=-180/463, 7-8=-74/567

3-10=0/279, 3-8=-211/259, 5-8=-932/382, 6-8=-409/1170, 3-11=-1994/579, 2-11=-1052/733 **WEBS**

JOINT STRESS INDEX

 $2 = 0.00, \ 3 = 0.92, \ 4 = 0.90, \ 5 = 0.34, \ 6 = 0.84, \ 7 = 0.36, \ 8 = 0.94, \ 9 = 0.78, \ 10 = 0.31, \ 11 = 0.85 \ and \ 12 = 0.46$

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 363 lb uplift at joint 7 and 661 lb uplift at joint 11.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3

BOT CHORD **WEBS**

1 Row at midpt 2 Rows at 1/3 pts 2-7, 4-7, 1-9 4-6

REACTIONS. (lb/size) 5=-0/Mechanical, 6=1202/0-5-8, 9=1086/Mechanical

Max Horz 5=-696(LC 20), 6=696(LC 20) Max Uplift6=-646(LC 9), 9=-169(LC 9) Max Grav 6=1459(LC 2), 9=1195(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-10=-1069/99, 2-10=-915/115, 2-3=-1099/324, 3-11=-951/335, 11-12=-934/336, 4-12=-927/348, 4-13=-780/144, 5-13=-769/155,

4-6=-1384/678, 1-9=-1109/203 6-7=-77/700

BOT CHORD

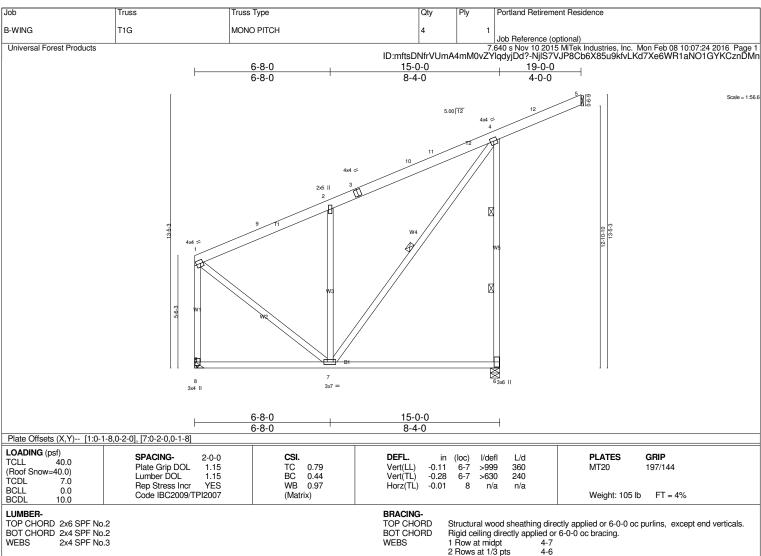
1-7=0/880, 2-7=-879/537, 4-7=-546/855

JOINT STRESS INDEX

1 = 0.95, 2 = 0.32, 3 = 0.88, 4 = 0.67, 6 = 0.95, 7 = 0.96, 8 = 0.54 and 9 = 0.83

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60


 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

 3) Unbalanced snow loads have been considered for this design.

- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 646 lb uplift at joint 6 and 169 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

4-6

REACTIONS. (lb/size) 5=-0/Mechanical, 6=1083/0-5-8, 8=978/Mechanical

Max Horz 5=-694(LC 20), 6=694(LC 20) Max Uplift6=-624(LC 9), 8=-117(LC 9) Max Grav 6=1285(LC 2), 8=1098(LC 2)

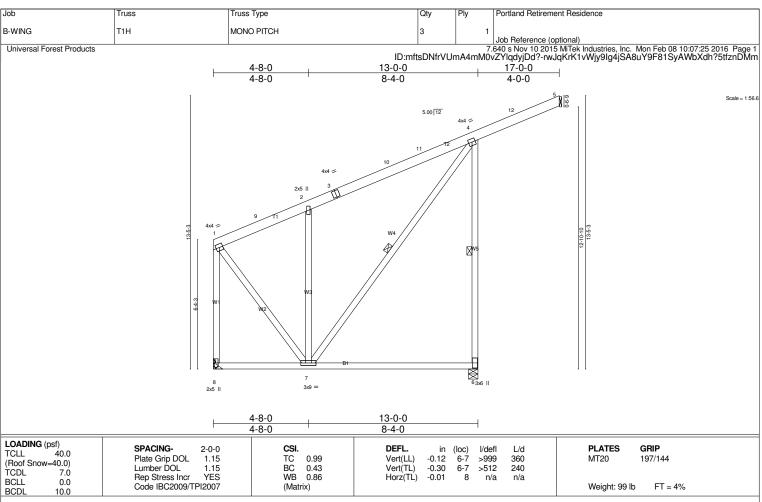
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-9=-826/64, 2-9=-613/77, 2-3=-885/261, 3-10=-737/272, 10-11=-732/273, 4-11=-697/285, 4-12=-778/133, 5-12=-767/144, 4-6=-1207/658, 1-8=-1040/139

BOT CHORD 6-7=-70/699

1-7=0/828, 2-7=-768/473, 4-7=-476/590

JOINT STRESS INDEX


1 = 0.71, 2 = 0.28, 3 = 0.57, 4 = 0.46, 6 = 0.95, 7 = 0.96 and 8 = 0.71

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 624 lb uplift at joint 6 and 117 lb uplift at joint 8.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

BRACING-

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 4-6, 4-7

REACTIONS. (lb/size) 5=0/Mechanical, 6=957/0-5-8, 8=875/Mechanical

Max Horz 5=-682(LC 20), 6=682(LC 20) Max Uplift6=-595(LC 9), 8=-72(LC 9) Max Grav 6=1104(LC 2), 8=1008(LC 2)

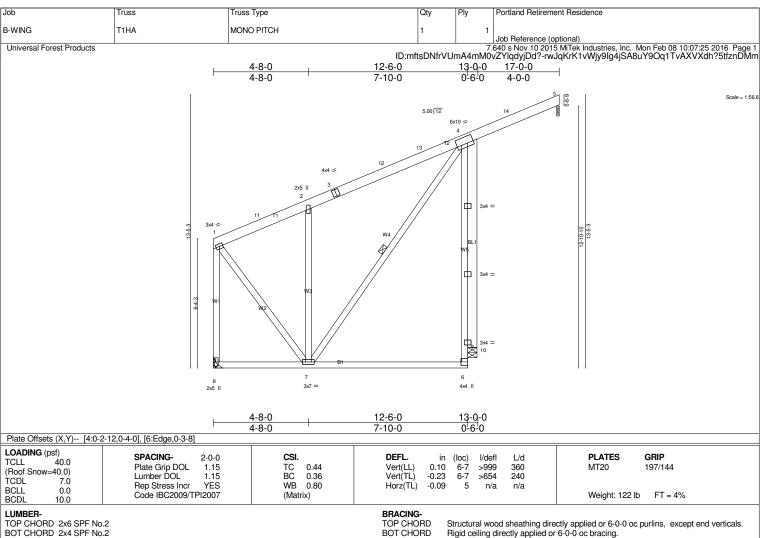
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-9 = -566/38, 2-9 = -471/48, 2-3 = -680/214, 3-10 = -534/224, 10-11 = -532/225, 4-11 = -447/238, 4-12 = -767/130, 5-12 = -756/141, 4-6 = -1026/629, 3-10 = -756/38, 3-10 =TOP CHORD

1-8=-980/79 BOT CHORD 6-7=-63/687

1-7=-7/812, 2-7=-679/423, 4-7=-428/338 **WEBS**

JOINT STRESS INDEX


1 = 0.52, 2 = 0.25, 3 = 0.28, 4 = 0.41, 6 = 0.92, 7 = 0.90 and 8 = 0.34

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 595 lb uplift at joint 6 and 72 lb uplift at joint 8.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

WEBS

1 Row at midpt

4-7

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

OTHERS 2x6 SP No.2

REACTIONS. (lb/size) 5=137/0-1-8, 8=697/Mechanical, 10=988/0-5-8 Max Horz 10=389(LC 9) Max Uplift5=-91(LC 9), 10=-616(LC 9)

Max Grav 5=323(LC 20), 8=703(LC 2), 10=1183(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-11=-372/0, 2-3=-469/134, 3-12=-335/144, 12-13=-330/144, 1-8=-672/0 BOT CHORD 6-7=-19/343

TOP CHORD BOT CHORD

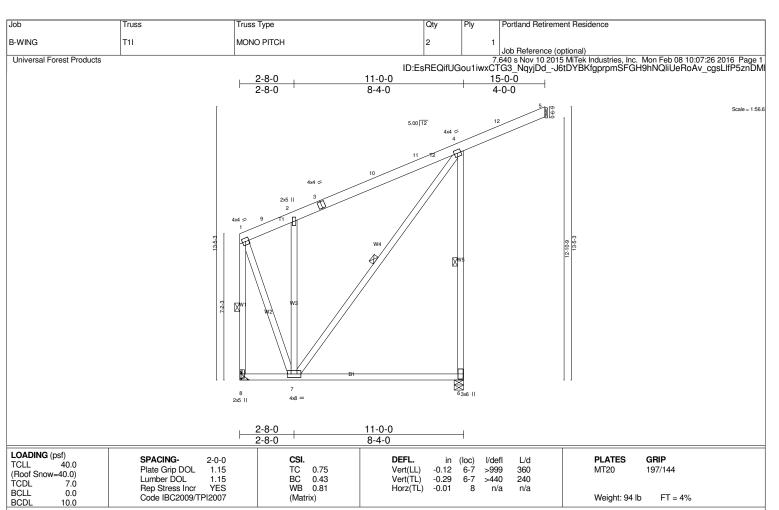
1-7=0/504, 2-7=-633/378, 4-7=-504/450

JOINT STRESS INDEX

1 = 0.69, 2 = 0.23, 3 = 0.28, 4 = 0.41, 6 = 0.90, 7 = 0.69, 8 = 0.28, 9 = 0.00, 9 = 0.00, 9 = 0.00 and 9 = 0.00

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.


- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 5 and 616 lb uplift at joint 10.

- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 5.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 4-6, 4-7, 1-8

REACTIONS. (lb/size) 5=-0/Mechanical, 6=829/0-5-8, 8=775/Mechanical

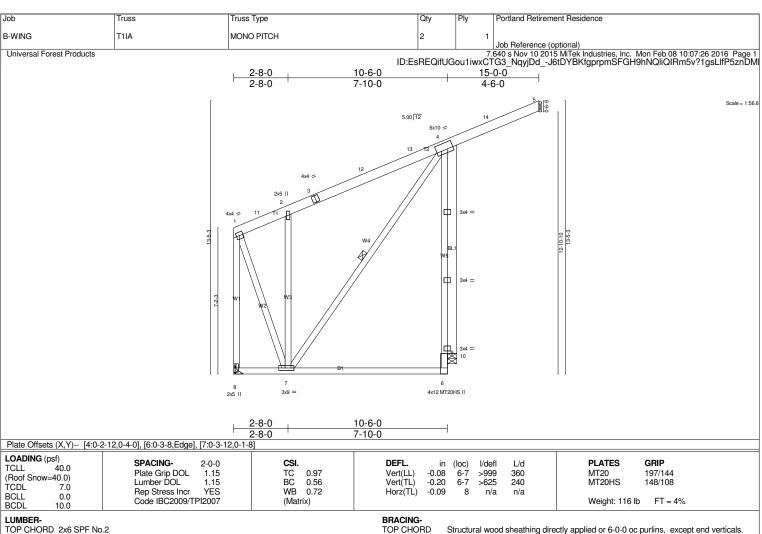
Max Horz 5=-653(LC 20), 6=653(LC 20) Max Uplift6=-555(LC 9), 8=-37(LC 9) Max Grav 6=921(LC 2), 8=920(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-9=-313/11, 2-9=-294/15, 2-3=-475/177, 3-10=-333/188, 10-11=-327/188, 4-11=-266/201, 4-12=-740/134, 5-12=-729/145, 4-6=-843/589,

1-8=-929/20 BOT CHORD 6-7=-57/656

1-7=-49/884, 2-7=-640/415, 4-7=-656/273 **WEBS**

JOINT STRESS INDEX


1 = 0.62, 2 = 0.24, 3 = 0.24, 4 = 0.40, 6 = 0.89, 7 = 0.81 and 8 = 0.32

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 555 lb uplift at joint 6 and 37 lb uplift at joint 8.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

BOT CHORD

WEBS

Rigid ceiling directly applied or 6-0-0 oc bracing.

4-7

1 Row at midpt

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

OTHERS 2x6 SP No.2

REACTIONS. (Ib/size) 5=-0/Mechanical, 8=794/Mechanical, 10=800/0-5-8 Max Horz 5=-550(LC 20), 10=550(LC 20) Max Uplift8=-116(LC 9), 10=-481(LC 9) Max Grav 8=909(LC 2), 10=922(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-11=302/43, 2-3=-432/190, 3-12=-307/199, 12-13=-293/200, 4-14=-648/190, 5-14=-635/201, 1-8=-885/111 6-7=0/510 TOP CHORD BOT CHORD

1-7=-111/807, 2-7=-568/364, 4-7=-538/161

JOINT STRESS INDEX

1 = 0.57, 2 = 0.21, 3 = 0.34, 4 = 0.80, 6 = 0.95, 7 = 0.96, 8 = 0.35, 9 = 0.00, 9 = 0.00, 9 = 0.00 and 9 = 0.00

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

 3) Unbalanced snow loads have been considered for this design.

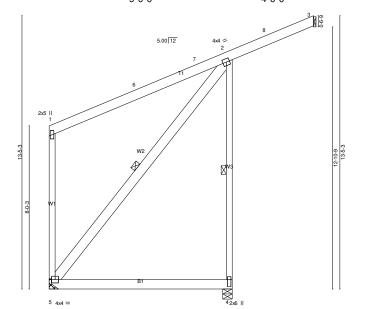
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 116 lb uplift at joint 8 and 481 lb uplift at joint 10.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.


Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	T1J	MONO PITCH	2	1	
					Job Reference (optional)
7.040 - No. 40.0045 MT-1: Indication Inc. Man Entropy 20040 De					

Universal Forest Products

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

2-4, 2-5

Plate Offsets (X,Y) [4:0-4-4,0-1-0]					
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.66 BC 0.38 WB 0.62 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.09 4-5 >999 360 Vert(TL) -0.22 4-5 >470 240 Horz(TL) -0.01 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 87 lb FT = 4%	

BRACING-

TOP CHORD

BOT CHORD **WEBS**

1 Row at midpt

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x6 SPF No.2 WEBS 2x4 SPF No.3 *Except* W2: 2x6 SPF No.2

REACTIONS. (lb/size) 3=-0/Mechanical, 4=837/0-5-8, 5=540/Mechanical Max Horz 3=-668(LC 18), 4=668(LC 18)

Max Uplift4=-631(LC 9) Max Grav 4=853(LC 2), 5=986(LC 18)

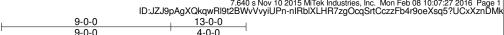
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-754/124, 3-8=-743/142, 2-4=-766/675, 1-5=-350/209 BOT CHORD 4-5=-156/668

TOP CHORD BOT CHORD 2-5=-1091/254

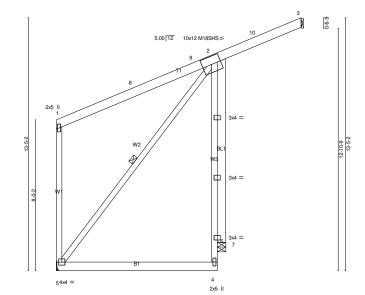
JOINT STRESS INDEX

1 = 0.40, 2 = 0.45, 4 = 0.39 and 5 = 0.42

NOTES-


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


 6) Refer to girder(s) for truss to truss connections.

- 7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 631 lb uplift at joint 4.
 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

	Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
	B-WING	T1JA	MONO TRUSS	2	1	
						Job Reference (optional)
Universal Forest Products			7	640 s Nov 10 2015 MiTek Industries Inc. Mon Feb 08 10:07:27 2016 Page 1		

Structural wood sheathing directly applied or 3-11-15 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.97 BC 0.34 WB 0.43	DEFL. in (loc) l/defl L/d Vert(LL) -0.07 4-5 >999 360 Vert(TL) -0.18 4-5 >566 240 Horz(TL) -0.25 5 n/a n/a	PLATES GRIP MT20 197/144 M18SHS 197/144
BCDL 10.0	Code IBC2009/TPI2007	(Matrix)		Weight: 94 lb $FT = 4\%$

BRACING-

WEBS

TOP CHORD BOT CHORD

1 Row at midpt

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.3 *Except* W3: 2x4 SPF No.2 2x6 SPF No.2

OTHERS

REACTIONS. (lb/size) 3=0/Mechanical, 5=513/Mechanical, 7=854/0-5-8 Max Horz 3=-341(LC 18), 7=341(LC 18) Max Uplift5=-182(LC 9), 7=-340(LC 9)

Max Grav 5=583(LC 2), 7=978(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-10=-455/303, 3-10=-443/310, 1-5=-344/251 BOT CHORD 4-5=-93/259

TOP CHORD BOT CHORD

JOINT STRESS INDEX

1 = 0.62, 2 = 0.82, 4 = 0.20, 5 = 0.23, 6 = 0.00, 6 = 0.00, 6 = 0.00 and 6 = 0.00

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.

- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 182 lb uplift at joint 5 and 340 lb uplift at joint 7.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job Reference (optional)
7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:28 2016 Page 1
ID:i2?cd2g6160uK4WO0_aDw2yjDcz-GV?zztMvCR5X0mPfOajrWAnv3FTUNuqzJfEIT_znDMj 11-0-8 7-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

2-4, 1-5 2-5

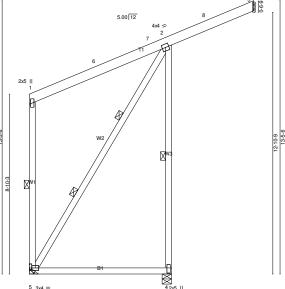


Plate Offsets (X,Y)-- [4:0-3-0,0-1-0]

BCLL 0.0 Code IBC2009/TPI2007 (Matrix) Weight: 66 lb FT = 4%	LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.44 BC 0.50 WB 0.83 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.12 4-5 >663 360 Vert(TL) -0.30 4-5 >265 240 Horz(TL) -0.01 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 66 lb FT = 4%
--	--	---	---	--	--

BRACING-

WEBS

TOP CHORD

BOT CHORD

1 Row at midpt 2 Rows at 1/3 pts

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3

REACTIONS. (lb/size) 3=0/Mechanical, 4=467/0-5-8, 5=686/Mechanical

Max Horz 3=-617(LC 18), 4=617(LC 18) Max Uplift4=-525(LC 18), 5=-7(LC 9) Max Grav 4=470(LC 15), 5=1111(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-707/152, 3-8=-696/163, 2-4=-403/592, 1-5=-337/164 BOT CHORD 4-5=-67/617

BOT CHORD **WEBS** 2-5=-1210/132

JOINT STRESS INDEX

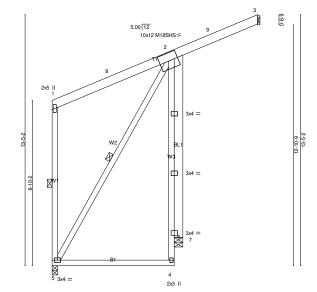
1 = 0.39, 2 = 0.45, 4 = 0.35 and 5 = 0.62

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 525 lb uplift at joint 4 and 7 lb uplift at joint 5.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.


	Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
	B-WING	T1KA	MONO TRUSS	2	1	
						Job Reference (optional)
Total - New 40 0045 MT-Is Indicated as Inc. May						0.40 - Nov. 40 0045 MT-1: Indication Inc. Mars Feb 00 40:07:00 0040 Person

Universal Forest Products

7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:28 2016 Page 1 ID:JZJ9pAgXQkqwRl9t2BWvVvyiUPn-GV?zztMvCR5X0mPfOajrWAnntFUdN_GzJfEIT_znDMj

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. VES	CSI. TC 0.90 BC 0.43 WB 0.42	DEFL. in (loc) I/defl L/d Vert(LL) -0.09 4-5 >861 360 Vert(TL) -0.23 4-5 >343 240 Horz(TI) -0.26 5 p/a	PLATES GRIP MT20 197/144 M18SHS 197/144	
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IBC2009/TPI2007	WB 0.42 (Matrix)	Horz(TĹ) -0.26 5 n/a n/a	Weight: 82 lb FT = 4%	

BRACING-TOP CHORD BOT CHORD

1 Row at midpt

WEBS

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2 *Except* W1: 2x4 SPF 2100F 1.8E, W2: 2x4 SPF No.3 2x6 SPF No.2

OTHERS

REACTIONS. (lb/size) 3=-0/Mechanical, 5=479/0·3-8, 7=661/0-5-8 Max Horz 3=369(LC 9), 7=324(LC 18) Max Uplift5=-225(LC 9), 7=-267(LC 5) Max Grav 5=549(LC 2), 7=732(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-9=-439/332, 3-9=-427/339, 1-5=-331/215

2-5=-486/68 WEBS

JOINT STRESS INDEX

1 = 0.62, 2 = 0.84, 4 = 0.27, 5 = 0.30, 6 = 0.00, 6 = 0.00, 6 = 0.00 and 6 = 0.00

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the
- fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 5 and 267 lb uplift at joint 7.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Plv	Portland Retirement Residence
	1		~-,	,	
B-WING	T1L	MONO PITCH	2	1	
					Job Reference (optional)
Universal Forest Products				7.	640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:29 2016 Page 1

7.640 s Nov 10 2015 MTek Industries, Inc. Mon Feb 08 10:07:29 2016 Page 1 ID:AEY_rOhkoP8IxE5bah5SSFyjDcy-khZLADNXzkDOdvzryHE42OK5qfsr6KG6YJzJ0QznDMi

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

2-4, 1-5 2-5

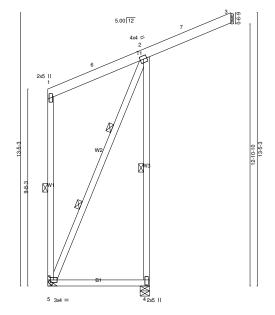


Plate Offsets (X,Y)-- [4:0-3-0,0-1-0]

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.37 BC 0.24 WB 0.82 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.03 4-5 >999 360 Vert(TL) -0.07 4-5 >767 240 Horz(TL) -0.00 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 60 lb FT = 4%
--	---	---	--	--

BRACING-

WEBS

TOP CHORD

BOT CHORD

1 Row at midpt 2 Rows at 1/3 pts

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3

REACTIONS. (lb/size) 3=-0/Mechanical, 4=121/0-5-8, 5=800/Mechanical

Max Horz 3=-522(LC 18), 4=522(LC 18) Max Uplift4=-721(LC 18), 5=-124(LC 9) Max Grav 4=326(LC 15), 5=1238(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-619/195, 3-7=-608/201, 2-4=-279/768, 1-5=-321/112 BOT CHORD 4-5=-15/522

WEBS 2-5=-1359/39

JOINT STRESS INDEX

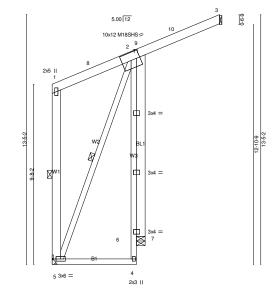
1 = 0.37, 2 = 0.52, 4 = 0.45 and 5 = 0.69

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 721 lb uplift at joint 4 and 124 lb uplift at joint 5.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.


Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	T1LA	MONO TRUSS	2	1	Job Reference (optional)

Universal Forest Products

7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:29 2016 Page 1 ID:nltX1WhAB2yn3vk3cv1827yiUPm-khZLADNXzkDOdvzryHE42OKzOftk6Pb6YJzJ0QznDMi

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.15	TC 0.85	Vert(LL) -0.02 4-5 >999 360	MT20 197/144
(Roof Snow=40.0)	Lumber DOL 1.15	BC 0.18	Vert(TL) -0.05 4-5 >999 240	M18SHS 197/144
TCDL 7.0 BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IBC2009/TPI2007	WB 0.47 (Matrix)	Horz(TL) -0.25 5 n/a n/a	Weight: 82 lb FT = 4%

BRACING-

WEBS

TOP CHORD BOT CHORD

1 Row at midpt

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2 *Except* W1: 2x6 SPF No.2, W2: 2x4 SPF No.3

2x6 SPF No.2 **OTHERS**

REACTIONS. (lb/size) 3=0/Mechanical, 5=474/Mechanical, 7=428/0-5-8 Max Horz 3=379(LC 9), 7=312(LC 18) Max Uplift5=-290(LC 9), 7=-285(LC 5)

Max Grav 5=575(LC 18), 7=459(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-428/336, 9-10=-425/340, 3-10=-416/348, 1-5=-314/176

WEBS 2-5=-639/144

JOINT STRESS INDEX

1 = 0.37, 2 = 0.80, 4 = 0.25, 5 = 0.31, 6 = 0.00, 6 = 0.00, 6 = 0.00 and 6 = 0.00

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.
 9) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 290 lb uplift at joint 5 and 285 lb uplift at joint 7.
- 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

REACTIONS.

All bearings 25-0-0 except (jt=length) 9=Mechanical. Max Horz 9=-722(LC 46), 31=2024(LC 26)

Max Uplift All uplift 100 lb or less at joint(s) 24, 16, 14, 12 except 10=-391(LC 27), 31=-555(LC 28), 30=-479(LC 29), 11=-1368(LC 29),

20=-816(LC 28), 22=-178(LC 28), 18=-179(LC 28)

Max Grav All reactions 250 lb or less at joint(s) 24, 26, 28, 16, 14, 12 except 10=516(LC 16), 31=962(LC 17), 30=950(LC 16), 11=1995(LC 16), 20=1250(LC 17), 22=341(LC 17), 18=342(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-32=-1020/803, 3-32=-632/459, 3-4=-1603/1258, 4-33=-1117/939, 5-33=-1091/845, 5-6=-897/657,

6-34=-456/306, 34-35=-454/279, 7-35=-486/513, 7-36=-857/569, 8-36=-721/489, 8-37=-820/310,

9-37=-793/317, 8-10=-490/281, 2-31=-926/606

30-31=-1941/1543, 3-30=-990/687, 29-30=-939/717, 27-29=-678/464, 25-27=-564/341, 23-25=-436/234, **BOT CHORD**

21-23=-498/269, 19-21=-1214/1314, 17-19=-1143/1215, 15-17=-1021/1101, 13-15=-899/977,

11-13=-802/887, 7-11=-1650/1242, 10-11=-452/435, 28-30=-1234/1176, 26-28=-987/928, 24-26=-870/822, 22-24=-774/715, 20-22=-667/608, 18-20=-559/501, 16-18=-453/394, 14-16=-346/288, 11-12=-367/285 2-30=-767/910, 3-21=-797/894, 5-21=-861/521, 7-21=-895/628, 8-11=-576/317, 20-21=-1223/830,

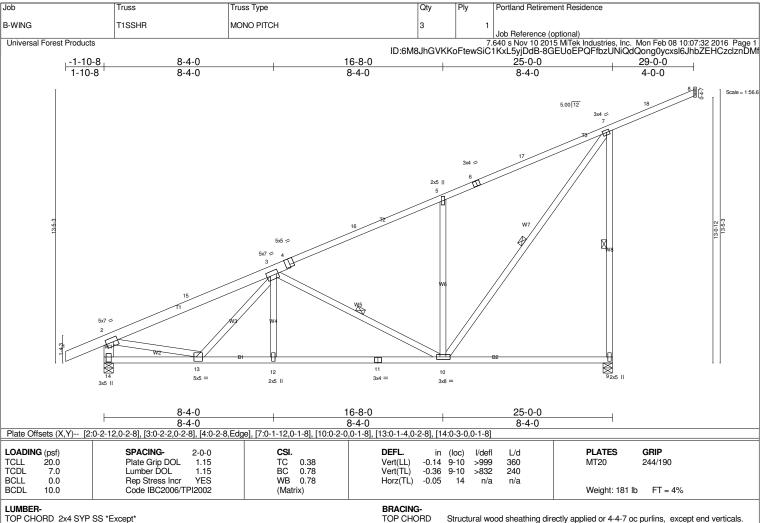
22-23=-315/191, 18-19=-316/191

JOINT STRESS INDEX

2 = 0.76, 3 = 0.73, 4 = 0.53, 5 = 0.32, 6 = 0.68, 7 = 0.56, 8 = 0.85, 10 = 0.90, 11 = 0.57, 12 = 0.31, 13 = 0.31, 14 = 0.31, 15 = 0.31, 16 = 0.31, 17 = 0.31, 18 = 0.31, 19 = 0.31, 20 = 0.48, 21 = 0.42, 22 = 0.31, 23 = 0.31, 24 = 0.31, 25 = 0.31, 26 = 0.31, 27 = 0.31, 28 = 0.31, 29 = 0.31, 30 = 0.40 and 31 = 0.84

JOINTS

1 Row at midpt


1 Brace at Jt(s): 21, 25, 29, 17, 13

NOTES

WEBS

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) All plates are 2x5 MT20 unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 16, 14, 12 except (jt=lb) 10=391, 31=555, 30=479, 11=1368, 20=816, 22=178, 18=179.
- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 13) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.
- 14) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 25-0-0 for 80.0 plf.

BOT CHORD

WEBS

Rigid ceiling directly applied or 4-11-10 oc bracing.

3-10, 7-10, 7-9

1 Row at midpt

T1: 2x6 SYP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except*

W1: 2x6 SYP No.2

REACTIONS. (lb/size) 8=0/Mechanical, 14=1064/0-5-8, 9=1093/0-5-8

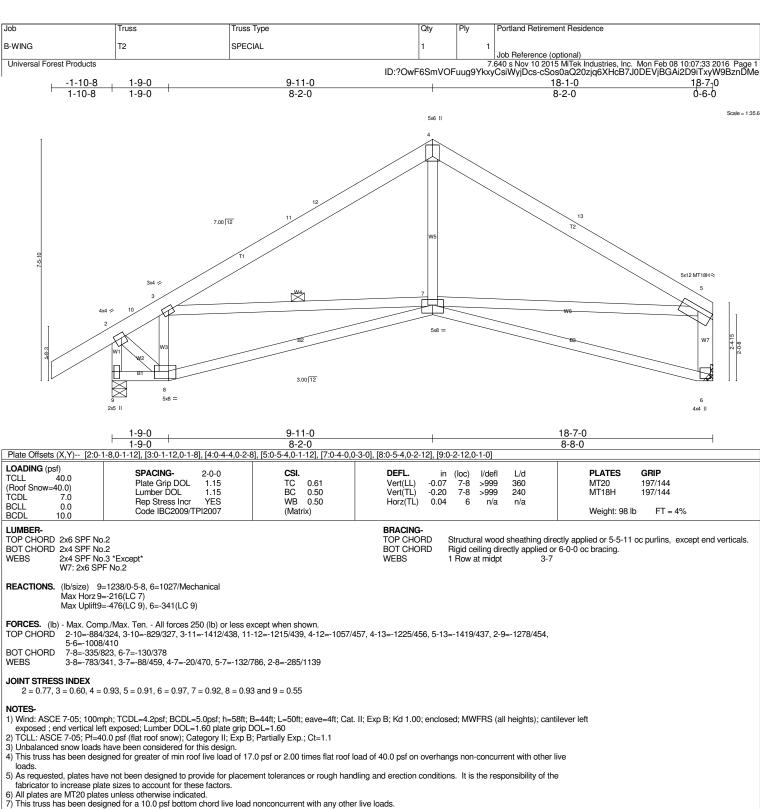
Max Horz 8=-715(LC 37), 9=715(LC 37) Max Uplift14=-1233(LC 21), 9=-660(LC 22) Max Grav 14=1964(LC 12), 9=1165(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-15=-2766/1712, 3-15=-2285/1350, 3-4=-2126/1422, 4-16=-2119/1349, 5-16=-1730/1050, 5-6=-1469/855, 6-17=-1063/514, 7-17=-1042/513,

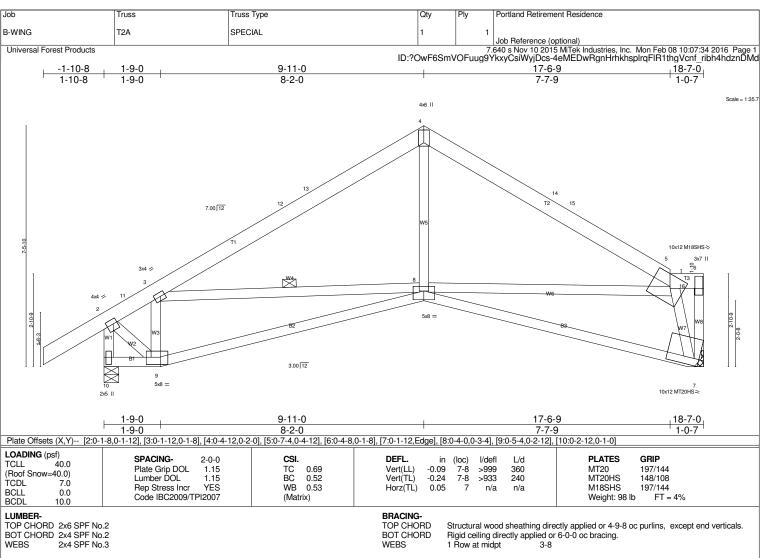
7-18=-797/109, 8-18=-786/120, 2-14=-1892/1243

BOT CHORD $13-14 = -228/462, \ 12-13 = -1379/2493, \ 11-12 = -1080/2224, \ 10-11 = -480/1624, \ 9-10 = -680/1151$


3-12=0/258, 3-10=-819/600, 5-10=-451/383, 7-10=-699/1265, 3-13=-628/465, 2-13=-1309/2174, 7-9=-1101/692**WFRS**

JOINT STRESS INDEX

 $2 = 0.70, \ 3 = 0.41, \ 4 = 0.84, \ 5 = 0.22, \ 6 = 0.62, \ 7 = 0.80, \ 9 = 0.34, \ 10 = 0.93, \ 11 = 0.70, \ 12 = 0.22, \ 13 = 0.88 \ and \ 14 = 0.52 \ a$


- 1) This truss has been checked for uniform roof live load only, except as noted.
 2) Wind: ASCE 7-05; 90mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=1233, 9=660.
- 7) This truss is designed in accordance with the 2006 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

 9) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord
- from 0-0-0 to 25-0-0 for 80.0 plf.

- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=476, 6=341.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 7=1033/Mechanical, 10=1242/0-5-8

Max Horz 10=-211(LC 7) Max Uplift7=-346(LC 9), 10=-475(LC 9) Max Grav7=1218(LC 19), 10=1242(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-11=-887/325, 3-11=-832/329, 3-12=-1418/440, 12-13=-1221/441, 4-13=-1184/458, 4-14=-1247/464, 14-15=-1257/446, 5-15=-1570/446,

6-7=-295/668, 2-10=-1277/453 8-9=-361/823, 7-8=-227/795 BOT CHORD

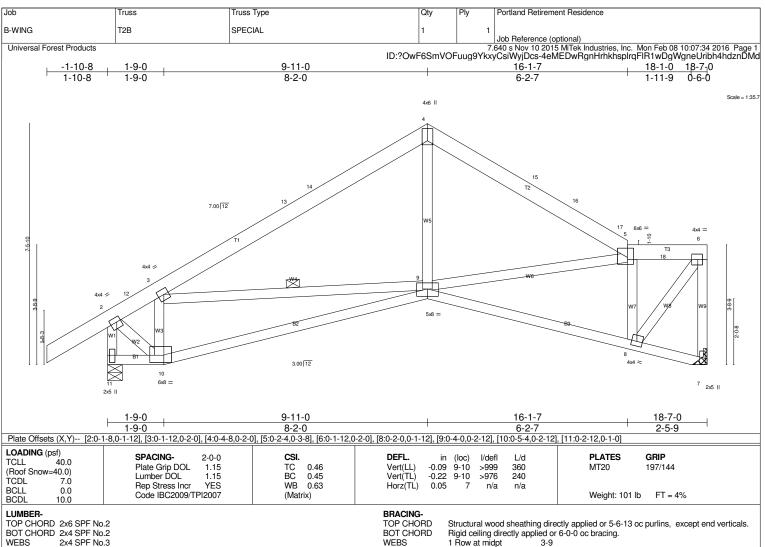
3-9=-787/352, 3-8=-80/571, 4-8=-48/483, 5-8=-60/628, 2-9=-294/1138, 5-7=-2101/713

JOINT STRESS INDEX

2 = 0.77, 3 = 0.60, 4 = 0.85, 5 = 0.92, 6 = 0.81, 7 = 0.77, 8 = 0.84, 9 = 0.90 and 10 = 0.53

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60


 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0

 3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads
- 5) Provide adequate drainage to prevent water ponding.
- 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.

 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=346, 10=475.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

1 Row at midpt

REACTIONS. (lb/size) 7=1032/Mechanical, 11=1243/0-5-8

Max Horz 11=247(LC 9) Max Uplift7=-353(LC 9), 11=-468(LC 9) Max Grav7=1059(LC 19), 11=1243(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-12=-896/319, 3-12=-841/322, 3-13=-1407/443, 13-14=-1210/444, 4-14=-1172/461, 4-15=-1172/478, 15-16=-1218/462, 16-17=-1386/460,

5-17=-1425/452, 5-18=-857/251, 6-18=-859/251, 6-7=-1041/348, 2-11=-1285/441

BOT CHORD 9-10=-409/827, 8-9=-288/972

3-10=-782/372, 3-9=-77/493, 4-9=-82/490, 5-9=-75/410, 5-8=-1287/448, 2-10=-295/1146, 6-8=-406/1417

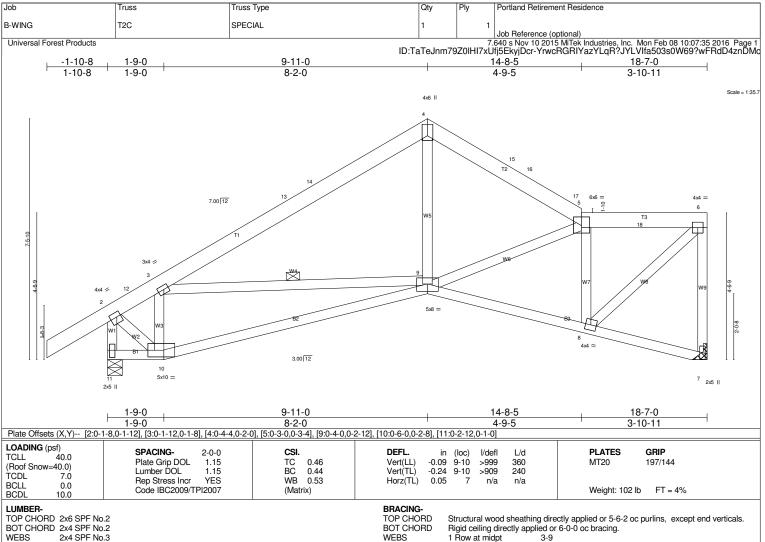
JOINT STRESS INDEX

2 = 0.78, 3 = 0.48, 4 = 0.82, 5 = 0.88, 6 = 0.86, 7 = 0.42, 8 = 0.79, 9 = 0.93, 10 = 0.96 and 11 = 0.58

NOTES

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0


 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- loads. 5) Provide adequate drainage to prevent water ponding.
- 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=353, 11=468.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

WEBS

1 Row at midpt 3-9

REACTIONS. (lb/size) 7=1032/Mechanical, 11=1243/0-5-8

Max Horz 11=293(LC 9)

Max Uplift7=-362(LC 9), 11=-458(LC 9)

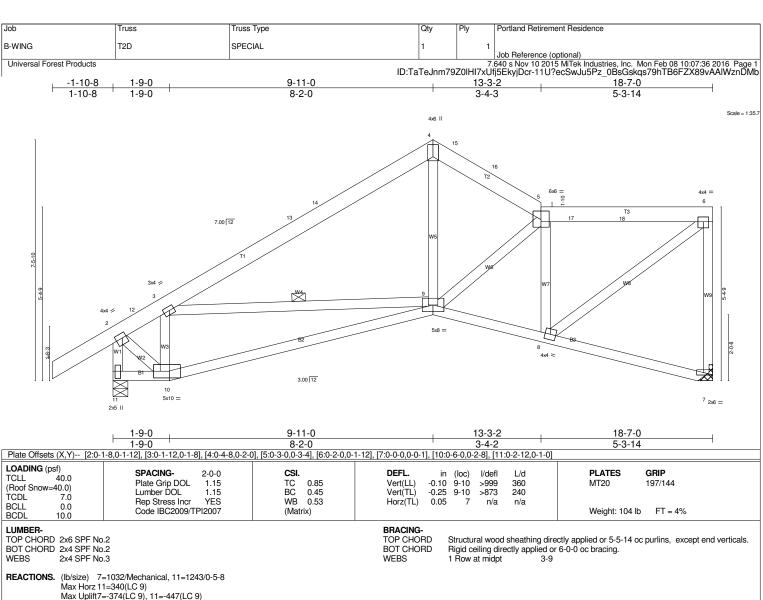
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-12=-901/312, 3-12=-846/315, 3-13=-1398/441, 13-14=-1201/441, 4-14=-1164/458, 4-15=-1069/487, 15-16=-1187/474, 16-17=-1253/473, TOP CHORD

5-17=-1263/466, 5-18=-894/313, 6-18=-896/312, 6-7=-992/376, 2-11=-1289/430

BOT CHORD 9-10=-454/836, 8-9=-343/983 **WEBS**

3-10=-782/385, 3-9=-69/412, 4-9=-109/517, 5-9=-108/284, 5-8=-994/409, 2-10=-294/1151, 6-8=-418/1209


JOINT STRESS INDEX

2 = 0.79, 3 = 0.60, 4 = 0.85, 5 = 0.52, 6 = 0.79, 7 = 0.67, 8 = 0.73, 9 = 0.83, 10 = 0.67 and 11 = 0.61

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0

- 3) Unbalanced snow loads have been considered for this design.
 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) Provide adequate drainage to prevent water ponding.
 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=362, 11=458.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

BOT CHORD 2x4 SPF No.2

Max Grav7=1068(LC 18), 11=1243(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-12=-904/303, 3-12=-849/306, 3-13=-1394/435, 13-14=-1196/436, 4-14=-1160/453, 4-15=-1081/494, 15-16=-1086/492, 5-16=-1226/487,

5-17=-972/363, 17-18=-973/363, 6-18=-976/363, 6-7=-1015/396, 2-11=-1291/418 10-11=-276/131, 9-10=-494/840, 8-9=-391/1052

BOT CHORD

3-10=-785/391, 3-9=-68/342, 4-9=-132/621, 5-8=-913/404, 2-10=-287/1158, 6-8=-448/1189

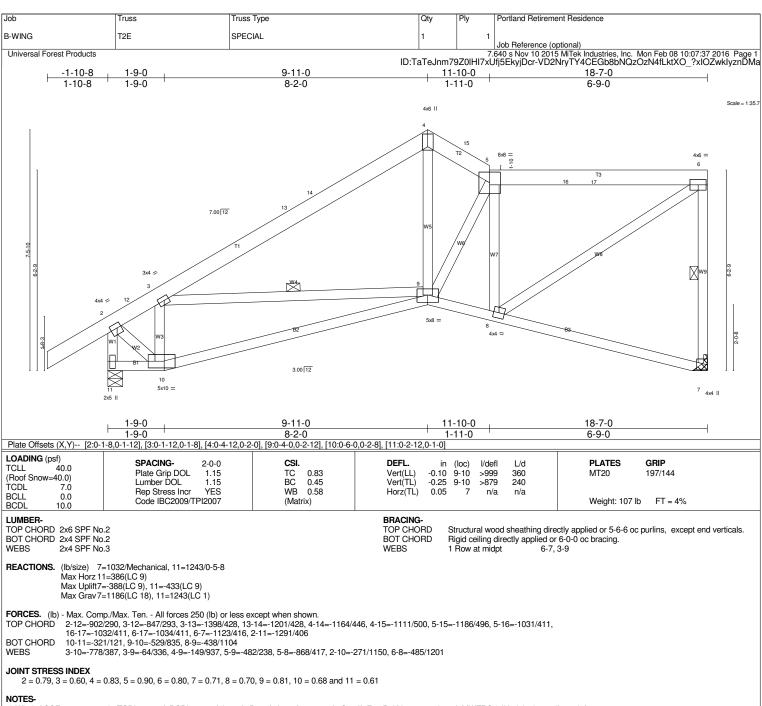
JOINT STRESS INDEX

2 = 0.79, 3 = 0.60, 4 = 0.82, 5 = 0.69, 6 = 0.83, 7 = 0.68, 8 = 0.71, 9 = 0.96, 10 = 0.68 and 11 = 0.62

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0


 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- loads. 5) Provide adequate drainage to prevent water ponding.
- 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

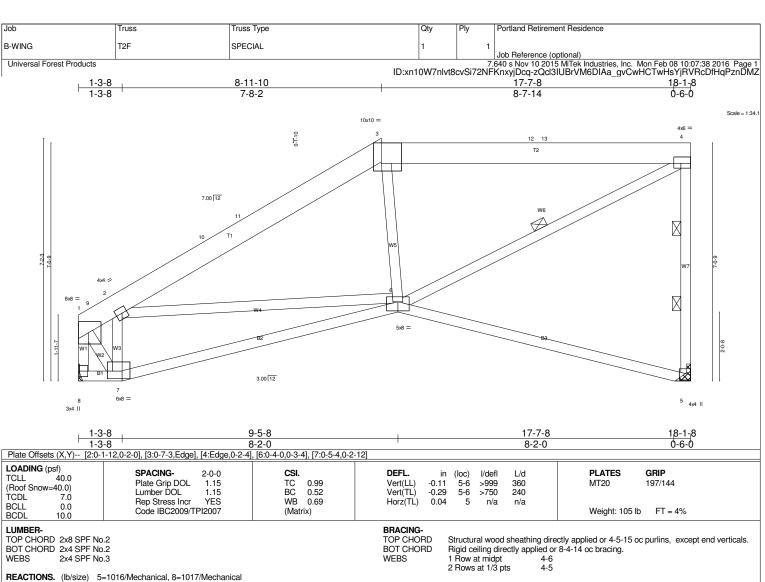
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=374, 11=447.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0


 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=388, 11=433.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

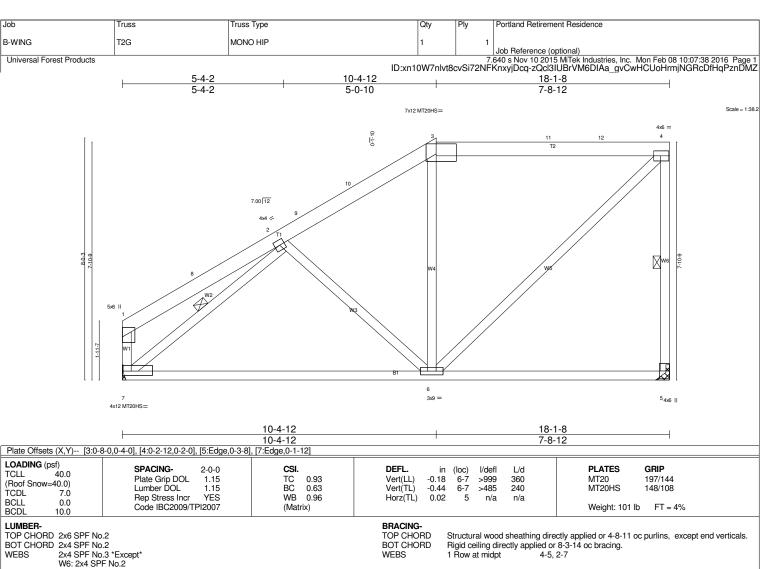
Max Horz 8=282(LC 9) Max Uplift5=-396(LC 9), 8=-268(LC 9) Max Grav 5=1339(LC 13), 8=1328(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-9=-916/169, 2-9=-851/171, 2-10=-1637/432, 10-11=-1356/435, 3-11=-1317/453, 3-12=-1190/488, 12-13=-1190/488, 4-13=-1192/488,

4-5=-1264/433, 1-8=-1332/215 7-8=-309/88, 6-7=-482/970 BOT CHORD

2-7=-1377/463, 2-6=-158/875, 3-6=-354/240, 4-6=-552/1296, 1-7=-306/1557


JOINT STRESS INDEX

1 = 0.30, 2 = 0.57, 3 = 0.99, 4 = 0.82, 5 = 1.00, 6 = 0.88, 7 = 0.85 and 8 = 0.95

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0 3) Unbalanced snow loads have been considered for this design.

- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=396, 8=268.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 5=1017/Mechanical, 7=1017/Mechanical Max Horz 7=327(LC 9)
Max Uplift5=-416(LC 9), 7=-248(LC 9)

Max Grav 5=1246(LC 13), 7=1408(LC 14)

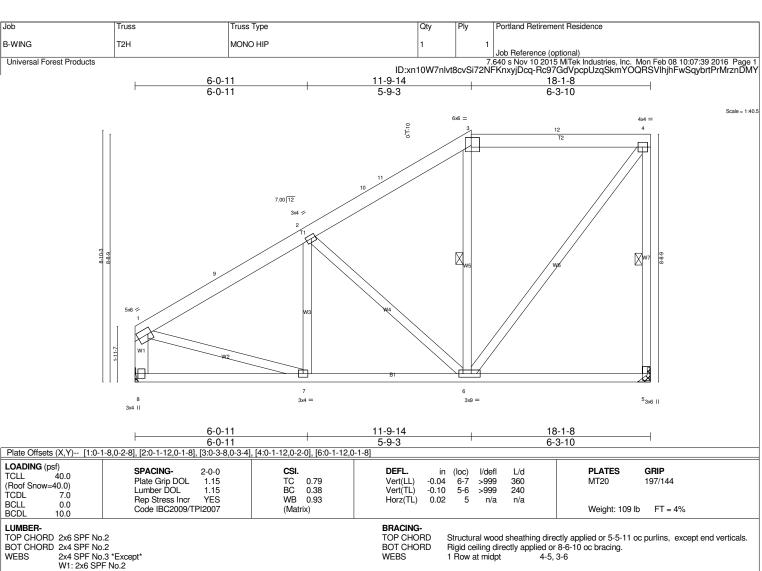
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1-8=-485/75,\ 2-8=-291/87,\ 2-9=-1049/231,\ 9-10=-841/239,\ 3-10=-834/251,\ 3-11=-726/303,\ 11-12=-727/303,\ 4-12=-727/303,\ 4-5=-1173/443,\ 1-7=-526/145$ TOP CHORD

BOT CHORD 6-7=-485/1111

WEBS 2-6=-520/252, 3-6=-509/222, 4-6=-412/991, 2-7=-1156/226

JOINT STRESS INDEX


1 = 0.86, 2 = 0.47, 3 = 0.96, 4 = 0.97, 5 = 0.89, 6 = 0.96 and 7 = 0.84

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=416, 7=248.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 5=1012/Mechanical, 8=1012/Mechanical Max Horz 8=371(LC 9)

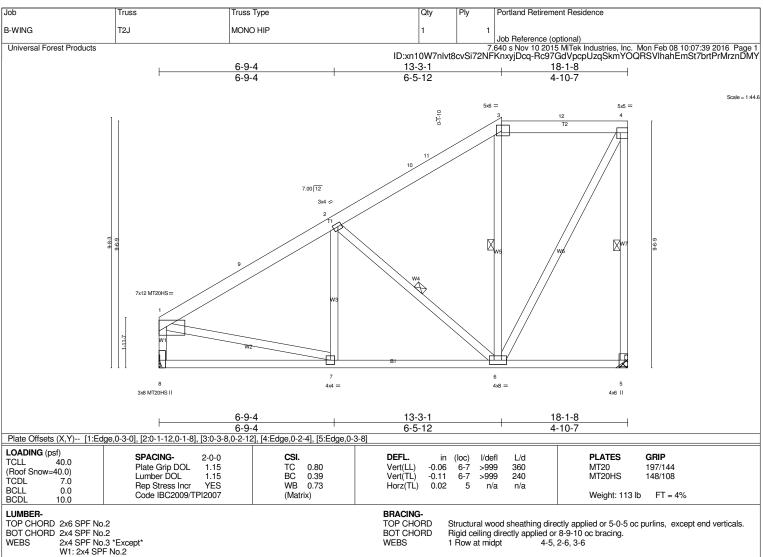
Max Uplift5=-435(LC 9), 8=-226(LC 9) Max Grav 5=1135(LC 13), 8=1467(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-9=-1596/224, 2-9=-1361/237, 2-10=-981/182, 10-11=-751/192, 3-11=-735/204, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 4-12=-642/260, 4-5=-1070/461, 3-12=-640/261, 3-1TOP CHORD

1-8=-1399/255

BOT CHORD 7-8=-434/287, 6-7=-474/1182


WEBS 2-6=-734/295, 3-6=-432/211, 4-6=-427/1050, 1-7=-42/932

JOINT STRESS INDEX

1 = 0.94, 2 = 0.60, 3 = 0.98, 4 = 0.82, 5 = 0.88, 6 = 0.96, 7 = 0.78 and 8 = 0.80

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=435, 8=226.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 5=1017/Mechanical, 8=1017/Mechanical Max Horz 8=466(LC 8)

Max Uplift5=-383(LC 9), 8=-282(LC 9) Max Grav 5=1105(LC 14), 8=1529(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

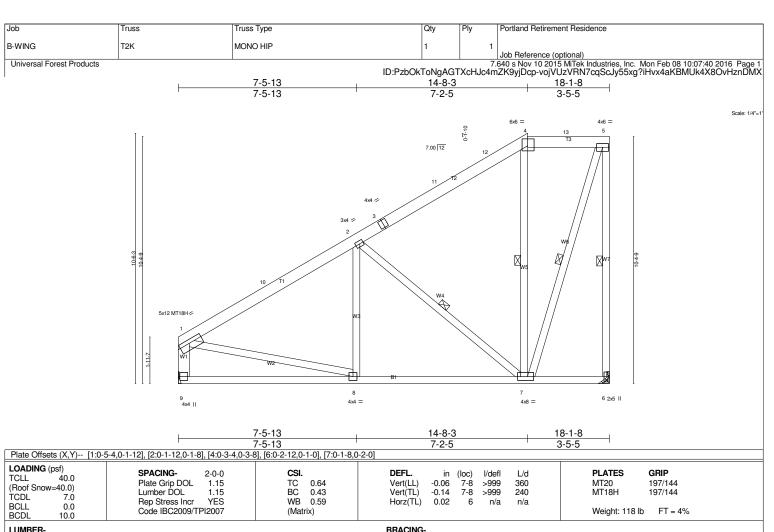
1-9=-1695/302, 2-9=-1428/318, 2-10=-916/256, 10-11=-632/268, 3-11=-606/280, 3-12=-551/324, 4-12=-553/324, 4-5=-1063/442, 1-8=-1453/309 TOP CHORD

BOT CHORD

7-8=-448/290, 6-7=-357/1254

WEBS 2-6=-934/351, 3-6=-359/252, 4-6=-338/1171, 1-7=-76/1001

JOINT STRESS INDEX


1 = 0.80, 2 = 0.60, 3 = 0.98, 4 = 0.95, 5 = 0.92, 6 = 0.95, 7 = 0.65 and 8 = 1.00

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=383, 8=282.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD

BOT CHORD

1 Row at midpt

WEBS

Structural wood sheathing directly applied or 4-11-9 oc purlins, except end verticals. Rigid ceiling directly applied or 7-10-14 oc bracing.

5-6, 2-7, 4-7, 5-7

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2

REACTIONS. (lb/size) 6=1012/Mechanical, 9=1012/Mechanical Max Horz 9=464(LC 9)

Max Uplift6=-483(LC 9), 9=-178(LC 9)

Max Grav 6=1233(LC 14), 9=1560(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $\frac{1-10=-1734/145, 2-10=-1441/161, 2-3=-811/50, 3-11=-521/61, 11-12=-499/62, 4-12=-350/76, 4-13=-436/161, 5-13=-438/161, 5-6=-1207/487, 1-9=-1483/214$ TOP CHORD

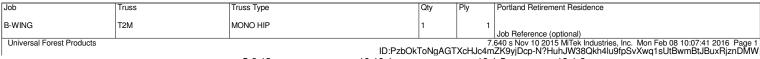
BOT CHORD 8-9=-557/420, 7-8=-480/1255

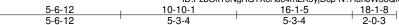
WEBS 2-7=-1074/422, 4-7=-469/255, 5-7=-487/1341, 1-8=0/857

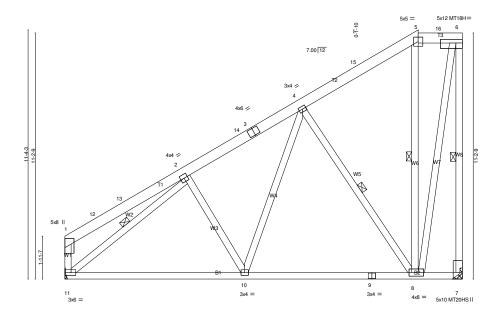
JOINT STRESS INDEX

1 = 0.85, 2 = 0.60, 3 = 0.86, 4 = 0.99, 5 = 0.79, 6 = 0.48, 7 = 0.87, 8 = 0.56 and 9 = 0.74

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0


5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the


- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding. fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.


- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=483, 9=178.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

	8-2-7	16-1-5	18-1-8
Г	8-2-7	7-10-15	2-0-3

Plate Offsets (X,Y)	[6:Edge,0-2-0], [7:0-3-8,Edge], [8:0-1-8,0-2-0], [11:Edge,0-1-8]

LOADING (psf) SPACING- 2-0-0 CSI. TCLL 40.0 Plate Grip DOL 1.15 TC 0 (Roof Snow=40.0) Lumber DOL 1.15 BC 0 TCDL 7.0 Rep Stress Incr YES WB 0 BCLL 0.0 Rep Stress Incr YES WB 0 BCDL 10.0 Code IBC2009/TPI2007 (Matrix)	2 Vert(TL) -0.20 8-10 >999 240 MT20HS 148/1 2 Horz(TL) 0.03 7 n/a n/a MT18H 197/1	144 108
--	--	------------

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.2
WEBS 2x4 SPF No.3 *Except*
W8: 2x4 SPF No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-9-12 oc purlins, except end verticals. Rigid ceiling directly applied or 9-2-14 oc bracing. BOT CHORD **WEBS** 1 Row at midpt 6-7, 4-8, 5-8, 2-11

REACTIONS. (lb/size) 7=1017/Mechanical, 11=1017/Mechanical Max Horz 11=552(LC 8) Max Uplift7=-403(LC 9), 11=-261(LC 9)

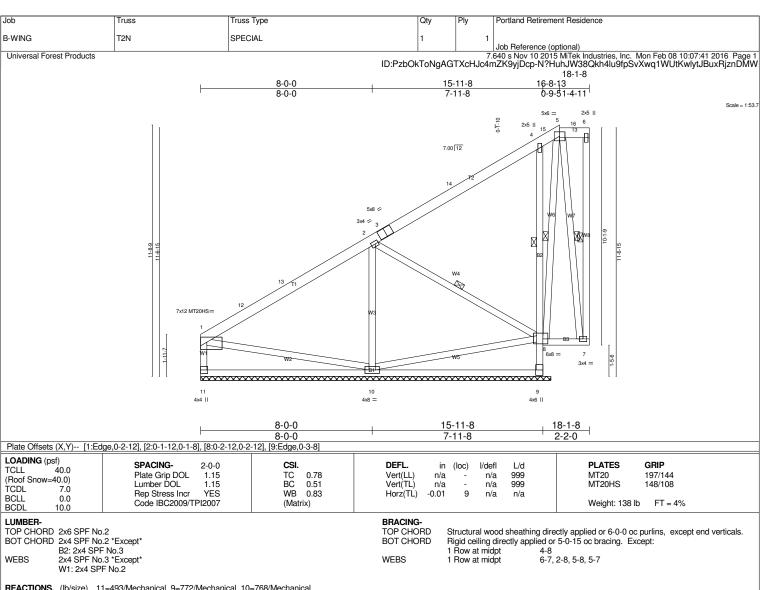
Max Grav 7=1385(LC 14), 11=1503(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12-429/142, 12-13=-266/146, 2-13=-263/158, 2-14=-1463/324, 3-14=-1246/333, 3-4=-1072/345, 4-15=-537/208, 5-15=-300/219, 5-16=-262/257, 6-16=-264/257, 6-7=-1366/533, 1-11=-460/186

10-11=-402/1306, 9-10=-281/903, 8-9=-281/903

WEBS 2-10=-439/287, 4-10=-167/571, 4-8=-1176/431, 5-8=-306/337, 6-8=-336/1407, 2-11=-1443/167


JOINT STRESS INDEX

1 = 0.86, 2 = 0.62, 3 = 0.61, 4 = 0.69, 5 = 0.71, 6 = 0.84, 7 = 0.89, 8 = 0.88, 9 = 0.63, 10 = 0.60 and 11 = 0.92

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=403, 11=261.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 11=493/Mechanical, 9=772/Mechanical, 10=768/Mechanical

Max Horz 11=533(LC 9)

Max Uplift9=-487(LC 9), 10=-218(LC 9)

Max Grav 11=677(LC 14), 9=1054(LC 14), 10=1192(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-12=-548/11, 12-13=-326/17, 2-13=-299/35, 2-3=-383/52, 3-14=-334/5

1-12=-548/11, 12-13=-326/17, 2-13=-299/35, 2-3=-383/52, 3-14=-334/58, 6-7=-254/167, 1-11=-597/0

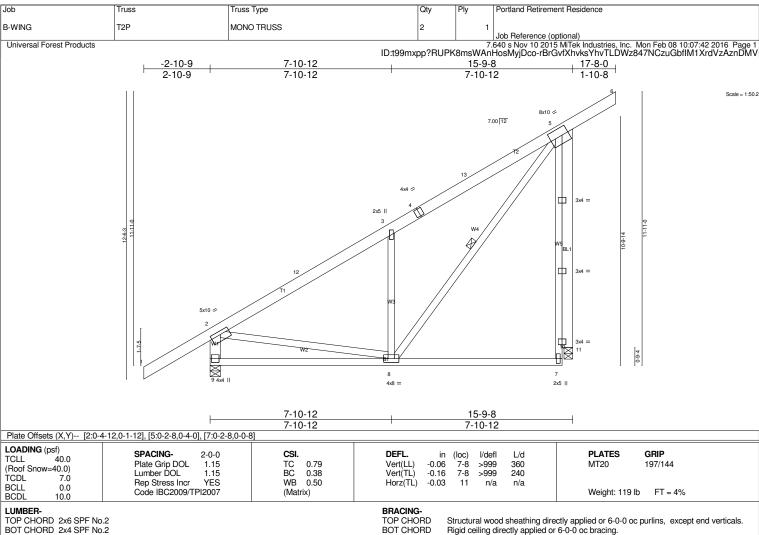
10-11=-599/320, 8-9=-977/523, 4-8=-918/373 BOT CHORD

WEBS 2-10=-1066/284, 8-10=-286/209, 2-8=-287/289, 5-8=-328/136, 5-7=-123/263, 1-10=-136/346

JOINT STRESS INDEX

1 = 0.85, 2 = 0.60, 3 = 0.93, 4 = 0.69, 5 = 0.94, 6 = 0.31, 7 = 0.56, 8 = 0.65, 9 = 0.86, 10 = 0.48 and 11 = 0.87

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0


5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the

- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- fabricator to increase plate sizes to account for these factors. 6) All plates are MT20 plates unless otherwise indicated.7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=487, 10=218.

 10) Non Standard bearing condition. Review required.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

WEBS

1 Row at midpt

5-8

WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2

OTHERS 2x6 SPF No.2

REACTIONS. (lb/size) 9=1185/0-5-8, 11=1045/0-4-8

Max Horz 9=782(LC 9) Max Uplift9=-249(LC 9), 11=-693(LC 9) Max Grav 9=1211(LC 2), 11=1380(LC 2)

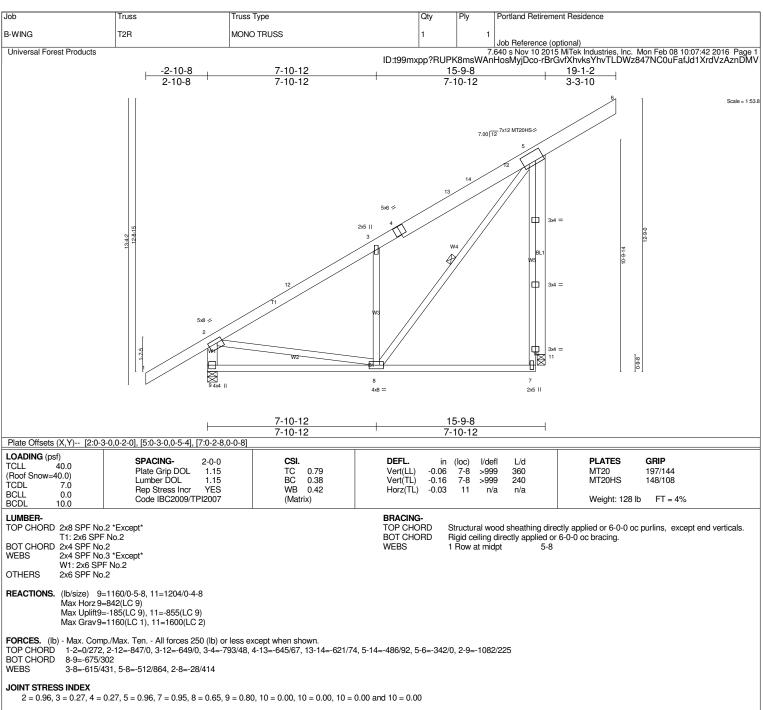
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=0/273, 2-12=-936/0, 3-12=-750/0, 3-4=-942/136, 4-13=-777/148, 5-13=-750/164, 2-9=-1131/288

8-9=-603/306 BOT CHORD

WEBS 3-8=-733/494, 5-8=-562/975, 2-8=-8/537

JOINT STRESS INDEX

2 = 0.98, 3 = 0.32, 4 = 0.56, 5 = 0.62, 7 = 0.96, 8 = 0.73, 9 = 0.80, 10 = 0.00, 10 = 0.00, 10 = 0.00 and 10 = 0.00


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=249, 11=693.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

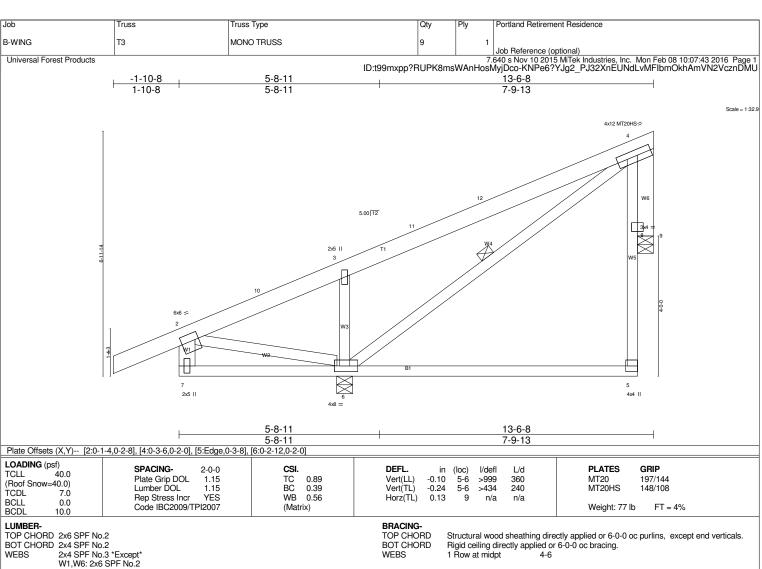
2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live

5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

6) All plates are MT20 plates unless otherwise indicated.


7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=185, 11=855.

10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 6=1476/0-5-8, 9=170/0-5-8 Max Horz 6=398(LC 9)

Max Uplift6=-652(LC 9), 9=-153(LC 13) Max Grav 6=1571(LC 2), 9=357(LC 17)

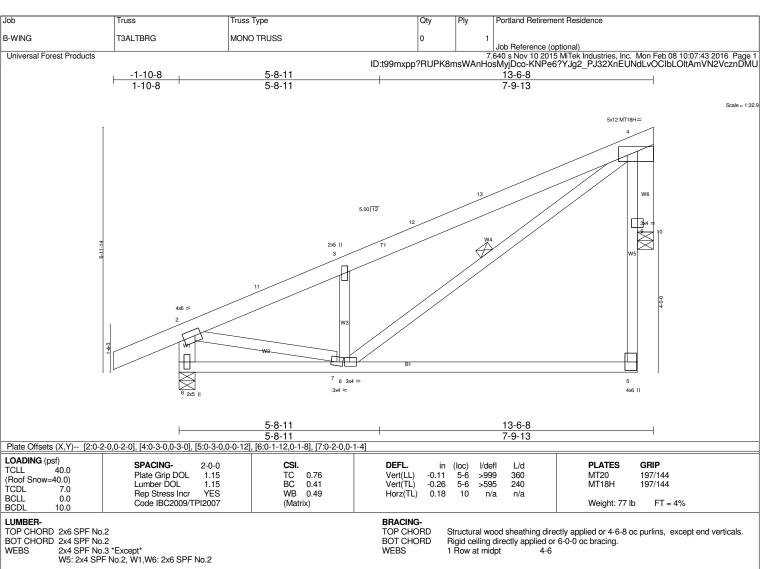
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 2-10=-432/805, 3-10=-420/818, 3-11=-254/785, 11-12=-241/802, 4-12=-239/824 6-7=-343/138

3-6=-890/460, 4-6=-956/201, 2-6=-486/393

JOINT STRESS INDEX

2 = 0.86, 3 = 0.32, 4 = 0.89, 5 = 0.74, 6 = 0.75, 7 = 0.49, 8 = 0.00 and 8 = 0.00


NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=652, 9=153.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

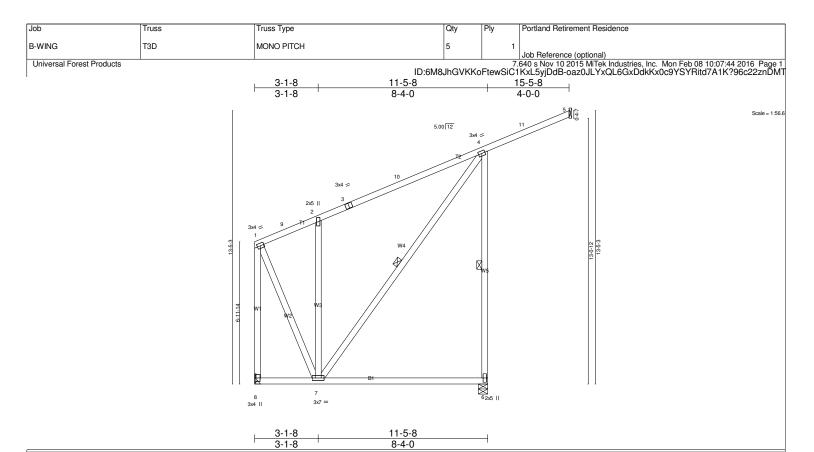
REACTIONS. (lb/size) 8=959/0-5-8, 10=688/0-5-8 Max Horz 8=398(LC 9) Max Uplift8=-312(LC 9), 10=-306(LC 9)

Max Grav 8=1020(LC 2), 10=863(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 2-11=-1123/182, 3-11=-976/189, 3-12=-1276/367, 12-13=-1098/373, 4-13=-1082/386, 2-8=-982/319 6-7=-431/999

3-6=-821/443, 4-6=-498/1092, 2-7=-200/1102


JOINT STRESS INDEX

2 = 0.82, 3 = 0.30, 4 = 0.68, 5 = 1.00, 6 = 0.87, 7 = 0.80, 8 = 0.60, 9 = 0.00 and 9 = 0.00

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) This truss has been designed for a 10.0 bit bottom chord live load not concerned with any other live loads.
 8) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=312, 10=306.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

BCDL LUMBER-

TCLL TCDL

BCLL

LOADING (psf)

TOP CHORD 2x4 SYP SS BOT CHORD 2x4 SP No.2 2x4 SP No.3

20.0 7.0

0.0

10.0

BRACING-

(loc)

6-7

8 n/a

>356

-0.15 6-7 >898

-0.38

-0.01

DEFL

Vert(LL)

Vert(TL)

Horz(TL)

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 4-7, 4-6

360

240

PLATES

MT20

GRIP

Weight: 111 lb FT = 4%

244/190

REACTIONS. (lb/size) 5=0/Mechanical, 8=504/Mechanical, 6=543/0-5-8

SPACING-

Plate Grip DOL Lumber DOL

Rep Stress Incr

Code IBC2006/TPI2002

1.15 1.15

YES

Max Horz 5=-718(LC 17), 6=718(LC 17) Max Uplift6=-513(LC 7) Max Grav 8=912(LC 17), 6=558(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP_CHORD 1-9=-374/70, 2-9=-359/75, 2-3=-389/190, 3-10=-371/200, 4-10=-350/213, 4-11=-800/85, 5-11=-789/95, 1-8=-925/0 BOT CHORD 6-7=-199/718

WFBS

1-7=0/847, 2-7=-395/292, 4-7=-644/340, 4-6=-492/547

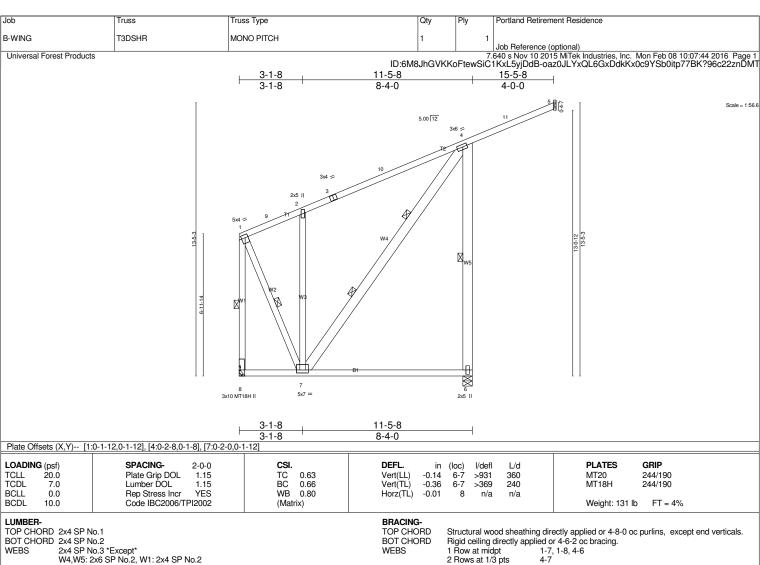
JOINT STRESS INDEX

1 = 0.77, 2 = 0.13, 3 = 0.15, 4 = 0.26, 6 = 0.27, 7 = 0.87 and 8 = 0.28

- 1) This truss has been checked for uniform roof live load only, except as noted.
- 2) Wind: ASCE 7-05; 90mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the

CSI. TC BC

WB 0.62


(Matrix)

0.80

0.67

- fabricator to increase plate sizes to account for these factors.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Refer to girder(s) for truss to truss connections.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=513.
 8) This truss is designed in accordance with the 2006 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

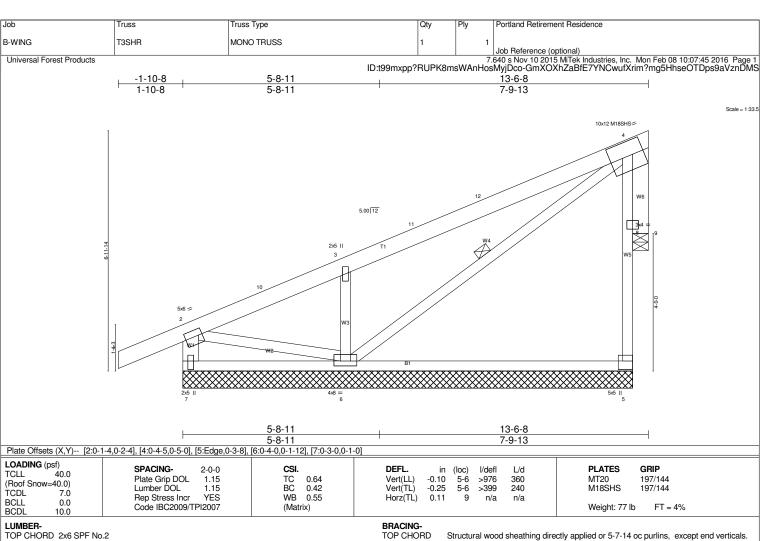
REACTIONS. (lb/size) 5=-0/Mechanical, 8=510/Mechanical, 6=535/0-5-8 Max Horz 5=-728(LC 35), 6=728(LC 35)

Max Uplift8=-1910(LC 13), 6=-1642(LC 22) Max Grav 8=2443(LC 12), 6=1663(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $\frac{1.99-991/848, 2.9-630/488, 2.3-501/393, 3-10-768/757, 4-10-1450/1537, 4-11-810/127, 5-11-799/138, 1-8-2444/1877, 2-10-1570/1734}{1.99-991/848, 2.9-630/488, 2.3-501/393, 3-10-768/757, 4-10-1450/1537, 4-11-810/127, 5-11-799/138, 1-8-2444/1877, 3-10-1570/1734}$ TOP CHORD BOT CHORD

1-7=-1748/2243, 2-7=-415/320, 4-7=-2422/2210, 4-6=-1598/1677


JOINT STRESS INDEX

1 = 0.87, 2 = 0.14, 3 = 0.20, 4 = 0.91, 6 = 0.82, 7 = 0.88 and 8 = 0.49

NOTES-

- 1) This truss has been checked for uniform roof live load only, except as noted.
 2) Wind: ASCE 7-05; 90mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=1910, 6=1642.
- 9) This truss is designed in accordance with the 2006 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

 11) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord
- from 0-0-0 to 11-5-8 for 174.6 plf.

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1,W6: 2x6 SPF No.2

BOT CHORD WEBS

Rigid ceiling directly applied or 5-2-2 oc bracing.

1 Row at midpt 4-6

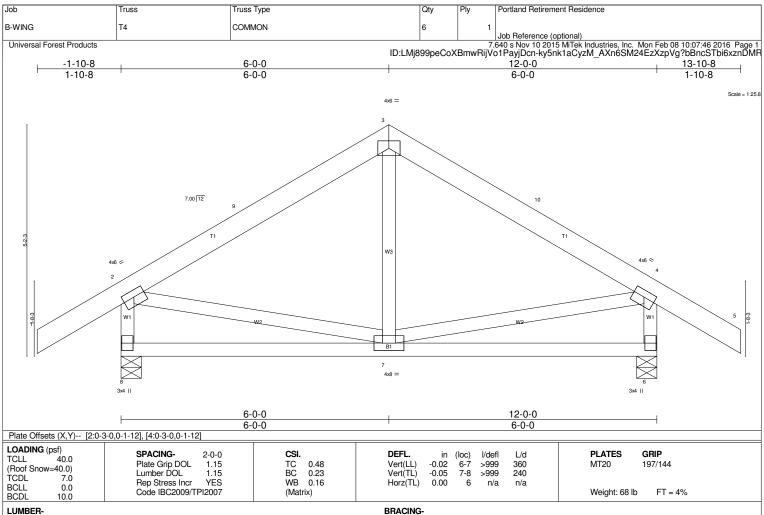
ONS. All bearings 13-1-0 except (jt=length) 9=0-5-8. (lb) - Max Horz 7=398(LC 28) REACTIONS.

Max Uplift All uplift 100 lb or less at joint(s) except 7=-942(LC 28), 5=-526(LC 29), 6=-493(LC 28), 9=-601(LC 17) Max Grav All reactions 250 lb or less at joint(s) except 7=1238(LC 15), 5=1046(LC 16), 6=1164(LC 17), 9=422(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 2-10=-1655/1489, 3-10=-1108/1113, 3-11=-848/707, 4-12=-671/899, 5-8=-958/561, 4-8=-958/561, 2-7=-1202/945 6-7=-749/576, 5-6=-1256/1313

3-6=-871/476, 4-6=-888/726, 2-6=-1266/1413


JOINT STRESS INDEX

2 = 0.87, 3 = 0.31, 4 = 0.75, 5 = 0.84, 6 = 0.74, 7 = 0.80, 8 = 0.00 and 8 = 0.00

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 19.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 942 lb uplift at joint 7, 526 lb uplift at joint 5, 493 lb uplift at joint 6 and 601 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

 12) This truss has been designed for a total drag load of 2000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 13-1-0 for 152.9 plf.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 8=857/0-5-8, 6=857/0-5-8

Max Horz 8=-199(LC 7) Max Uplift8=-357(LC 9), 6=-357(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-9=-642/213, 3-9=-504/226, 3-10=-504/226, 4-10=-642/213, 2-8=-798/385, 4-6=-798/385

2-7=-48/354, 4-7=-57/354

JOINT STRESS INDEX

2 = 0.89, 3 = 0.97, 4 = 0.89, 6 = 0.80, 7 = 0.26 and 8 = 0.80

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 357 lb uplift at joint 8 and 357 lb uplift at joint 6.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job Truss Truss Type Portland Retirement Residence B-WING T5 SPECIAL 10 Job Reference (optional)
7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:46 2016 Page 1
ID:LMj899peCoXBmwRijVo1PayjDcn-ky5nk1aCyzM_AXn6SM24EzXtdVaGb_dcSTbi6xznDMR Universal Forest Products

4-10-15 9-6-12 14-6-0 4-10-15 4-7-12 4-11-4

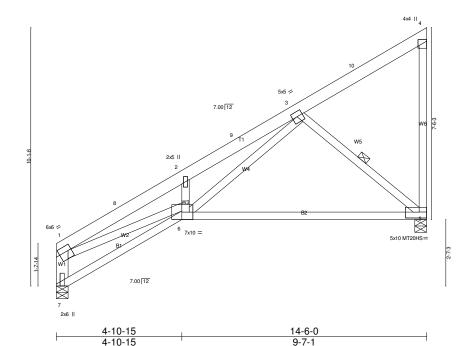


Plate Offsets (X,Y)-- [1:0-1-8,0-2-8], [3:0-2-4,0-2-4], [4:Edge,0-3-8], [5:Edge,0-2-12], [6:0-5-4,Edge] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL 40 n TC BC WB Plate Grip DOL -0.21 360 197/144 1.15 0.88 Vert(LL) 5-6 >814 MT20 (Roof Snow=40.0) Lumber DOL 1.15 0.59 Vert(TL) -0.54 5-6 >315 240 MT20HS 148/108 TCDL 7.0 Rep Stress Incr YES 1.00 Horz(TL) 0.14 5 n/a BCLL Code IBC2009/TPI2007 (Matrix) Weight: 79 lb FT = 4%**BCDL** 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-11-3 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-11-2 oc bracing.

3-5

1 Row at midpt

LUMBER-TOP CHORD 2x6 SPF No.2

WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1: 2x6 SPF No.2

REACTIONS. (lb/size) 7=1097/0-5-8, 5=1389/0-5-8 Max Horz 7=508(LC 9) Max Uplift7=-78(LC 9), 5=-448(LC 9)

Max Grav 7=1136(LC 2), 5=1573(LC 2) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-7=-1268/420, 1-8=-3086/807, 2-8=-2895/815, 2-9=-2976/963, 3-9=-2706/975, 3-10=-383/0, 4-5=-507/131 6-7=-684/383, 5-6=-430/1204 TOP CHORD BOT CHORD

1-6=-487/2261, 2-6=-380/241, 3-6=-892/1815, 3-5=-1512/562

JOINT STRESS INDEX

1 = 0.96, 2 = 0.19, 3 = 0.80, 4 = 0.74, 5 = 0.58, 6 = 0.93 and 7 = 0.85

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI1 angle to grain formula. Building designer should verify capacity of bearing surface.

 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 7 and 448 lb uplift at joint 5.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

- 10) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 6-7=-20, 5-6=-20

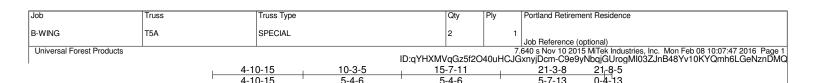
Trapezoidal Loads (plf)

Vert: 1=-94-to-4=-218

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 6-7=-20, 5-6=-20


Trapezoidal Loads (plf) Vert: 1=-94-to-3=-174, 3=-219-to-4=-263

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 6-7=-20, 5-6=-20

Trapezoidal Loads (plf)

Vert: 1=-38-to-4=-162

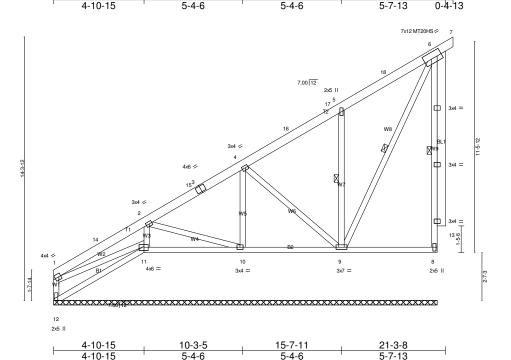


Plate Offsets (X,Y)-- [1:0-1-4,0-2-0], [2:0-1-12,0-1-8], [4:0-1-12,0-1-8], [6:0-5-0,0-4-0], [11:0-2-12,0-2-4] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL 40 n TC BC WB Plate Grip DOL -0.00 180 197/144 1.15 0.48 Vert(LL) MT20 6-7 n/r (Roof Snow=40.0) Lumber DOL 1.15 0.18 Vert(TL) -0.00 6-7 80 MT20HS 148/108 n/r TCDL 7.0 Rep Stress Incr YES 0.45 Horz(TL) -0.01 8 n/a n/a **BCLL** Code IBC2009/TPI2007 (Matrix) Weight: 147 lb FT = 4%

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

10.0

BCDL

LUMBER-

WEBS 2x4 SPF No.3 OTHERS 2x6 SPF No.2 BRACING-

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 6-8, 5-9, 6-9

REACTIONS. All bearings 20-10-0.

(lb) - Max Horz 12=710(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 12 except 8=-246(LC 9), 11=-453(LC 9), 10=-126(LC 9), 9=-410(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 12=404(LC 9), 8=790(LC 2), 11=808(LC 1), 10=680(LC 1), 9=1641(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-12=340/28, 1-14=-303/65, 2-14=-294/85, 2-15=-340/64, 3-15=-328/73, 3-4=-320/84, 4-16=-331/82, 16-17=-319/294, 5-17=-308/346, 6-18=-114/415, 8-13=-740/267, 6-13=-740/266 TOP CHORD

11-12=-826/251, 10-11=-406/128

WEBS 1-11=-97/326, 2-11=-664/179, 4-10=-564/111, 5-9=-1198/362

JOINT STRESS INDEX

1 = 0.81, 2 = 0.60, 3 = 0.66, 4 = 0.60, 5 = 0.52, 6 = 0.81, 8 = 0.75, 9 = 0.78, 10 = 0.54, 11 = 0.95, 12 = 0.58, 13 = 0.00, 13 = 0.26, 13 = 0.26 and 13 = 0.26

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) All plates are MT20 plates unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 8=246, 11=453, 10=126,
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8, 11, 10, 9.
- 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 12) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 13) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

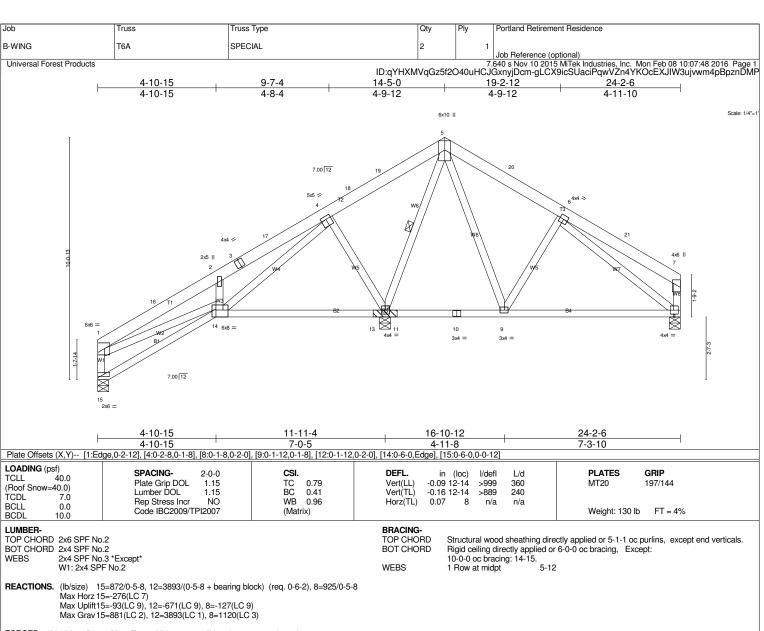
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 11-12=-20, 8-11=-20

Trapezoidal Loads (plf) Vert: 1=-94-to-6=-213, 6=-213-to-7=-218


2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 11-12=-20, 8-11=-20

Trapezoidal Loads (plf)

Vert: 1=-94-to-17=-181, 17=-240-to-6=-272, 6=-272-to-7=-277

Continued on page 2

Job	Truss	Truss Type		Ply	Portland Retirement Residence
B-WING	T5A	SPECIAL	2	1	Job Reference (optional)
Universal Forest Products			ID:qYHXMVqGz5f2O4	7. OuHCJC	Job Reference (optional) 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:47 2016 Page 2 ixnyjDcm-C9e9yNbqjGUrogMI03ZJnB48Yv10KYQmh6LGeNznDMQ
Uniform Loads (plf) Vert: 11-12=-20, 8- Trapezoidal Loads (plf) Vert: 1=-38-to-6=-1 13) Dead + Snow on Overhar Uniform Loads (plf) Vert: 11-12=-20, 8 Trapezoidal Loads (plf)	157, 6=-157-to-7=-162 ngs: Lumber Increase=1.15, Plat	Increase=1.15			

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-15=-969/210, 1-16=-1522/196, 2-16=-1240/207, 2-3=-1540/392, 3-17=-1341/399, 4-17=-1102/409, 4-18=-148/1078, 18-19=-137/1295, 5-19=-133/1598, 5-20=-304/286, 6-20=-637/138, 7-21=-498/111, 7-8=-598/153

14-15=-307/340, 13-14=-415/159, 12-13=-415/159, 11-12=-299/221, 10-11=-299/221, 9-10=-299/221, 8-9=-63/735

WEBS 1-14=-14/837, 2-14=-978/316, 4-14=-516/2106, 4-12=-1471/390, 5-12=-2675/411, 5-9=-198/951, 6-9=-933/291, 6-8=-672/177, 3-12=-14/837, 3-14/837, 3-14/87

JOINT STRESS INDEX

1 = 0.96, 2 = 0.49, 3 = 0.43, 4 = 0.72, 5 = 0.91, 6 = 0.41, 7 = 0.93, 8 = 0.91, 9 = 0.95, 10 = 0.26, 11 = 0.00, 11 = 0.00, 12 = 0.94, 12 = 0.00, 13 = 0.00, 13 = 0.00, 14 = 0.83 and 15 = 0.83

crushing capacity= 425psi

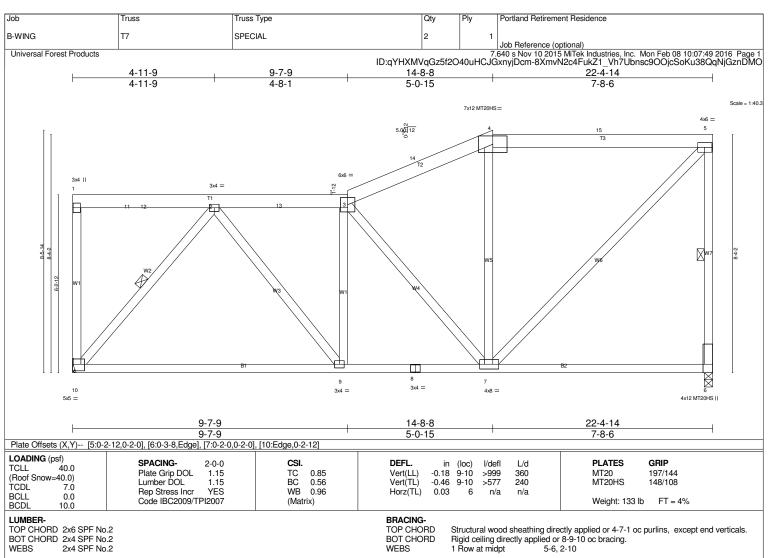
- 1) 2x4 SPF No.2 bearing block 12" long at jt. 12 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. User Defined Bearing
- 2) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15 except (it=lb) 12=671, 8=127
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) Load case(s) 1, 2, 3 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-5=-218, 5-7=-218, 14-15=-20, 8-14=-20

2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-18=-218, 5-18=-252, 5-7=-162, 14-15=-20, 8-14=-20

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-162, 5-6=-263, 6-7=-218, 14-15=-20, 8-14=-20

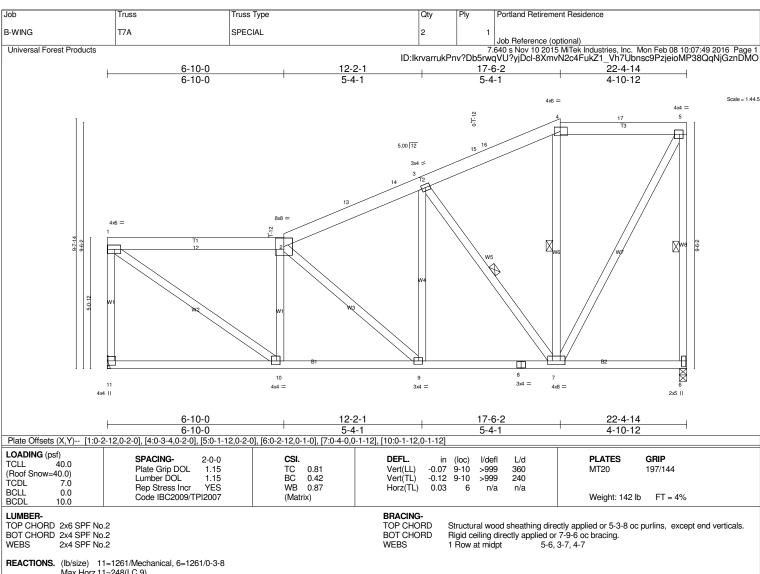
REACTIONS. (lb/size) 10=1261/Mechanical, 6=1261/0-3-8

Max Horz 10=118(LC 9) Max Uplift10=-375(LC 9), 6=-449(LC 9) Max Grav 10=1618(LC 17), 6=1569(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-339/90, 2-13=-1318/317, 3-13=-1312/317, 3-14=-1031/267, 4-14=-964/277, 4-15=-968/322, 5-15=-972/322, 5-6=-1483/483

BOT CHORD 9-10=-380/1041, 8-9=-436/1316, 7-8=-436/1316


2-10=-1577/428, 2-9=-86/700, 3-9=-401/145, 3-7=-632/188, 4-7=-425/248, 5-7=-457/1335 **WEBS**

JOINT STRESS INDEX

1 = 0.92, 2 = 0.74, 3 = 0.65, 4 = 0.89, 5 = 0.90, 6 = 0.69, 7 = 0.87, 8 = 0.57, 9 = 0.66 and 10 = 1.00

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

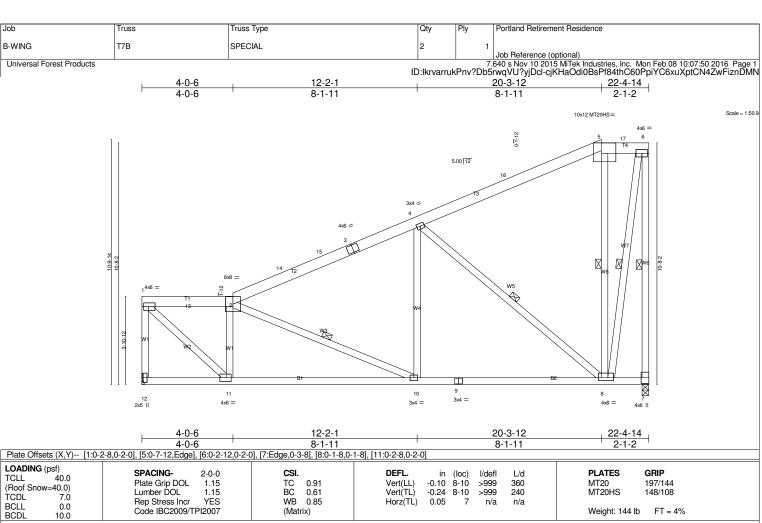
 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=375, 6=449.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Max Horz 11=248(LC 9) Max Uplift11=-334(LC 9), 6=-489(LC 9) Max Grav 11=1333(LC 17), 6=1290(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-11=-1258/362, 1-12=-1420/318, 2-12=-1418/318, 2-13=-1521/268, 13-14=-1364/275, 3-14=-1238/284, 3-15=-851/176, 15-16=-701/177,

4-16=-686/186, 4-17=-638/226, 5-17=-640/225, 5-6=-1243/507 10-11=-256/68, 9-10=-572/1446, 8-9=-429/1268, 7-8=-429/1268 **BOT CHORD**


1-10=-379/1709, 2-10=-876/291, 2-9=-547/192, 3-9=-80/473, 3-7=-1066/351, 4-7=-350/192, 5-7=-471/1341

JOINT STRESS INDEX

1 = 0.94, 2 = 0.70, 3 = 0.64, 4 = 0.90, 5 = 0.86, 6 = 0.93, 7 = 0.92, 8 = 0.55, 9 = 0.54, 10 = 0.86 and 11 = 0.98

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=334, 6=489.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LUMBER-BRACING-

TOP CHORD 2x6 SPF No.2

BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.2

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 4-8-4 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 6-7, 2-10, 4-8, 5-8, 6-8

REACTIONS. (lb/size) 12=1261/Mechanical, 7=1261/0-3-8

Max Horz 12=377(LC 9) Max Uplift12=-294(LC 9), 7=-530(LC 9)

Max Grav 12=1472(LC 18), 7=1631(LC 18)

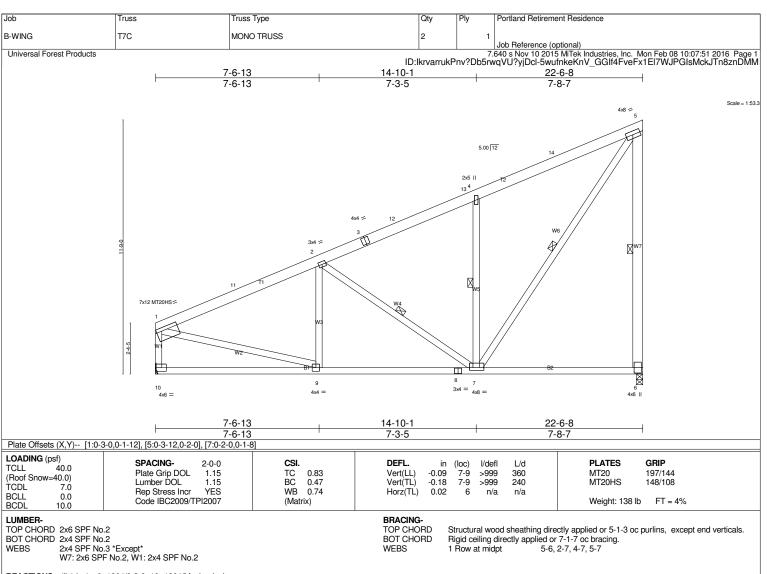
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12=-1446/298, 1-13=-1562/273, 2-13=-1560/274, 2-14=-1897/219, 14-15=-1683/224, 3-15=-1657/225, 3-4=-1470/239, 4-16=-614/22,

5-16=-363/35, 5-17=-317/97, 6-17=-319/97, 6-7=-1610/494 11-12=-380/33, 10-11=-663/1618, 9-10=-491/1547, 8-9=-491/1547 BOT CHORD

1-11=-371/2141, 2-11=-1346/328, 4-10=0/383, 4-8=-1589/509, 5-8=-698/308, 6-8=-551/1842

JOINT STRESS INDEX


 $1 = 0.92, 2 = 0.79, 3 = 0.90, 4 = 0.67, 5 = 0.95, 6 = 0.95, 7 = 0.75, 8 = 0.89, 9 = 0.60, 10 = 0.54, 11 = 0.92 \ and \ 12 = 0.80, 10 = 0.54, 11 = 0.92, 12 = 0.80,$

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
 3) Unbalanced snow loads have been considered for this design.

- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=294, 7=530.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 6=1264/0-3-8, 10=1264/Mechanical

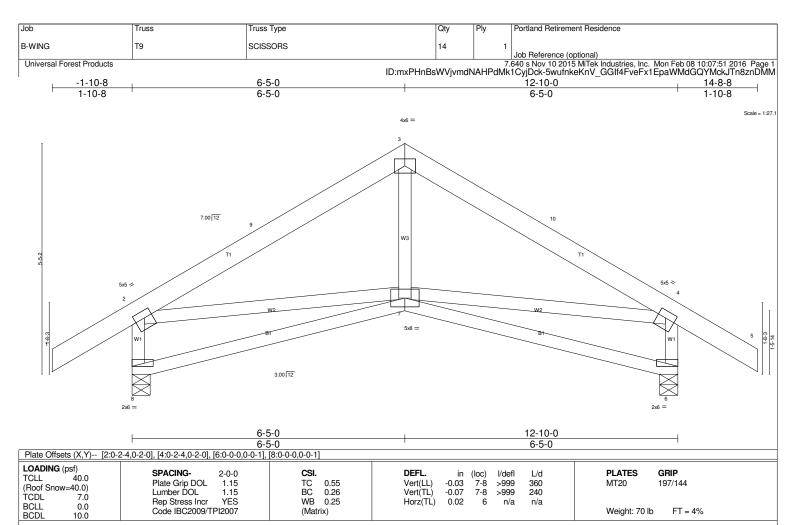
Max Horz 10=514(LC 9)
Max Uplift6=-567(LC 9), 10=-259(LC 9) Max Grav 6=1589(LC 2), 10=1333(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-11=-1656/265, 2-11=-1522/278, 2-3=-1176/129, 3-12=-1055/139, 12-13=-939/149, 4-13=-906/151, 4-14=-1274/332, 5-14=-1055/344, 5-6=-1505/598, 1-10=-1253/292

BOT CHORD

9-10=-558/200, 8-9=-681/1410, 7-8=-681/1410


WEBS 2-7=-594/362, 4-7=-955/439, 5-7=-680/1680, 1-9=-128/1255

JOINT STRESS INDEX

1 = 1.00, 2 = 0.64, 3 = 0.84, 4 = 0.35, 5 = 0.96, 6 = 0.85, 7 = 0.89, 8 = 0.63, 9 = 0.84 and 10 = 0.93

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=567, 10=259.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

LUMBER-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 8=905/0-5-2, 6=905/0-5-2

Max Horz 8=-209(LC 7) Max Uplift8=-373(LC 9), 6=-373(LC 9)

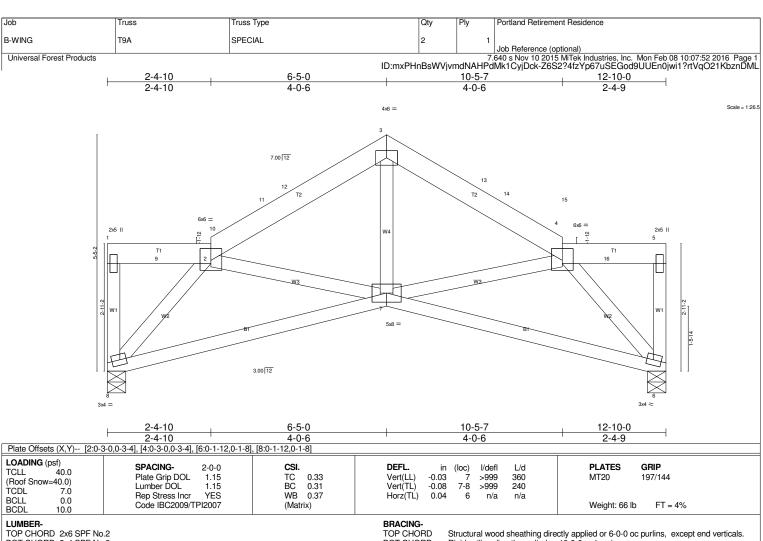
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-936/213, 3-9=-789/227, 3-10=-789/227, 4-10=-936/213, 2-8=-868/393, 4-6=-868/393 TOP CHORD

BOT CHORD 7-8=-193/252

WFBS 3-7=0/323, 2-7=0/567, 4-7=-74/567

JOINT STRESS INDEX


2 = 0.88, 3 = 0.97, 4 = 0.88, 6 = 0.81, 7 = 0.78 and 8 = 0.81

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=373, 6=373.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 8=715/0-5-2, 6=715/0-5-2

Max Horz 8=73(LC 8) Max Uplift8=-234(LC 9), 6=-234(LC 9) Max Grav 8=856(LC 20), 6=856(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-326/46, 2-10=-1296/274, 10-11=-1295/280, 11-12=-1193/281, 3-12=-1160/291, 3-13=-1160/291, 13-14=-1193/281, 14-15=-1295/280, 4-15=-1296/274, 5-6=-326/47

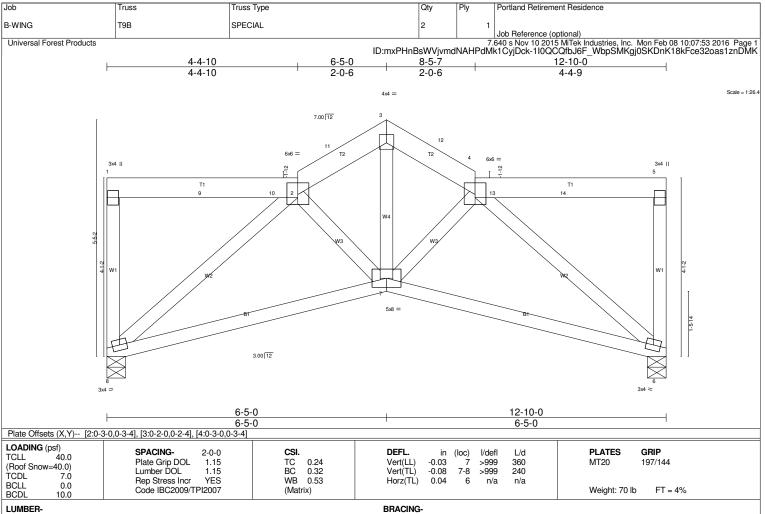
BOT CHORD 7-8=-248/900, 6-7=-248/899

2-8=-1269/374, 3-7=-75/472, 4-6=-1269/374

JOINT STRESS INDEX

1 = 0.64, 2 = 0.62, 3 = 0.88, 4 = 0.62, 5 = 0.64, 6 = 0.74, 7 = 0.83 and 8 = 0.74

NOTES-


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
 3) Unbalanced snow loads have been considered for this design.

- 4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=234, 6=234.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 8=715/0-5-2, 6=715/0-5-2

Max Horz 8=38(LC 8) Max Uplift8=-234(LC 9), 6=-234(LC 9) Max Grav 8=881(LC 19), 6=881(LC 19)

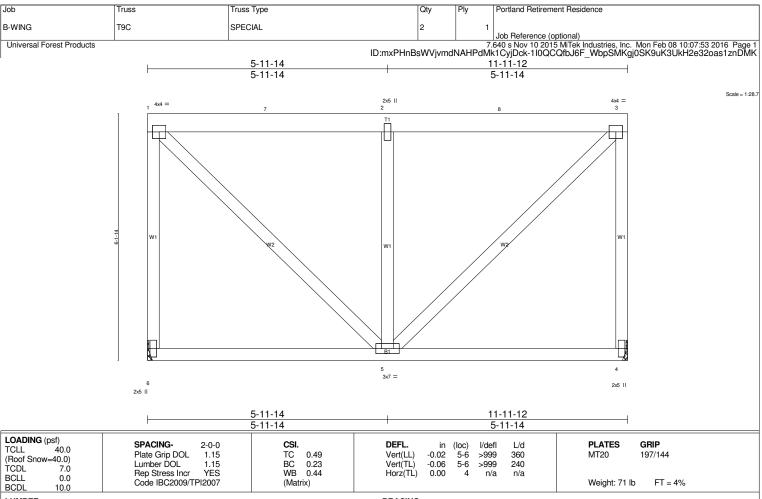
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-337/94, 2-11=-915/267, 3-11=-802/276, 3-12=-802/276, 4-12=-915/267, 5-6=-337/94

BOT CHORD 7-8=-273/846, 6-7=-273/846

2-8=-1024/345, 3-7=-208/869, 4-6=-1024/345 **WEBS**

JOINT STRESS INDEX


1 = 0.90, 2 = 0.66, 3 = 0.60, 4 = 0.66, 5 = 0.90, 6 = 0.84, 7 = 0.83 and 8 = 0.84

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.4) Provide adequate drainage to prevent water ponding.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=234, 6=234.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=666/Mechanical, 4=666/Mechanical

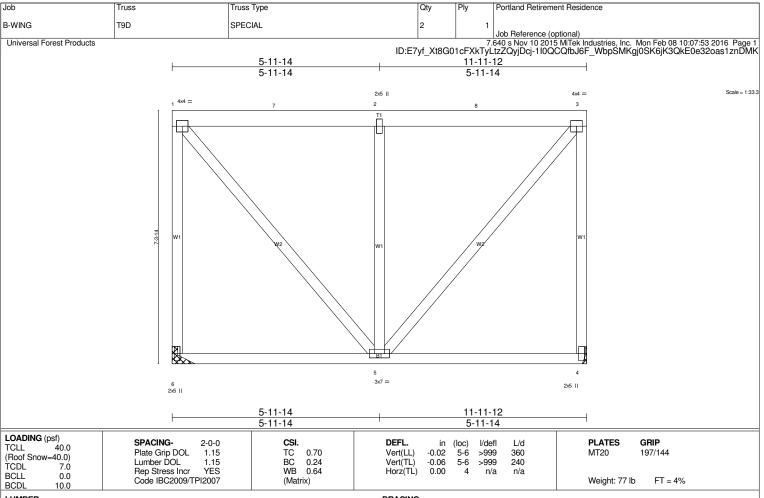
Max Uplift6=-218(LC 5), 4=-218(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-6=-608/240, 1-7=-404/133, 2-7=-404/133, 2-8=-404/133, 3-8=-404/133, 3-4=-608/240 1-5=-183/540, 2-5=-641/330, 3-5=-183/540 TOP CHORD

WFBS

1 = 0.55, 2 = 0.22, 3 = 0.55, 4 = 0.81, 5 = 0.72 and 6 = 0.81


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Provide adequate drainage to prevent water ponding.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the
- fabricator to increase plate sizes to account for these factors.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=218, 4=218.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=666/Mechanical, 4=666/Mechanical

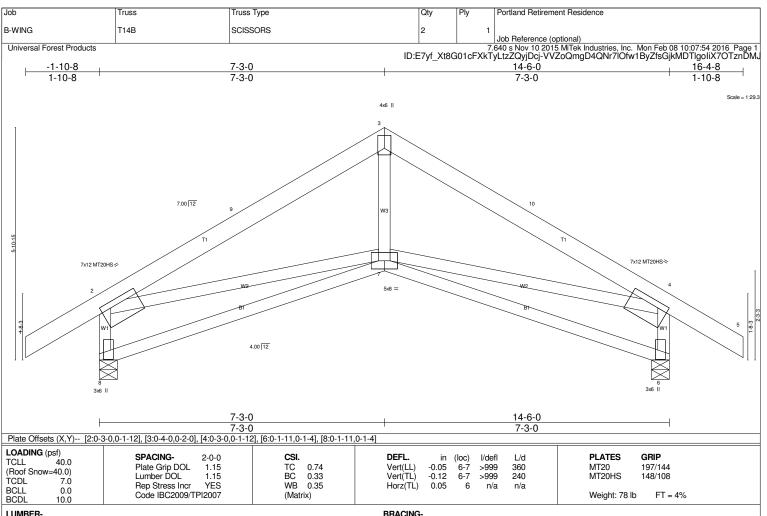
Max Uplift6=-218(LC 5), 4=-218(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-610/240, 1-7=-337/111, 2-7=-337/111, 2-8=-337/111, 3-8=-337/111, 3-4=-610/240

WEBS 1-5=-169/500, 2-5=-645/331, 3-5=-169/500

1 = 0.50, 2 = 0.22, 3 = 0.50, 4 = 0.74, 5 = 0.68 and 6 = 0.74


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Provide adequate drainage to prevent water ponding.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the
- fabricator to increase plate sizes to account for these factors.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=218, 4=218.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

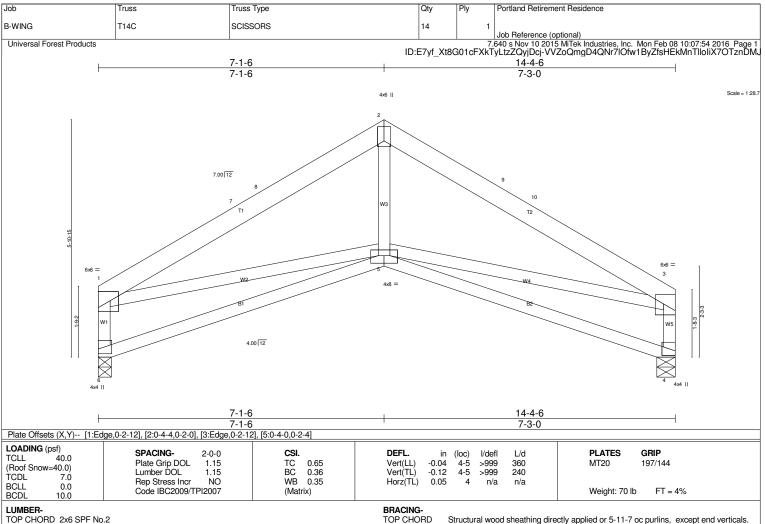
REACTIONS. (lb/size) 8=1000/0-5-8, 6=1000/0-5-8

Max Horz 8=-225(LC 7) Max Uplift8=-404(LC 9), 6=-404(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-9=-1288/255, 3-9=-1120/270, 3-10=-1119/270, 4-10=-1286/255, 2-8=-982/430, 4-6=-982/430

BOT CHORD 7-8=-217/302, 6-7=-65/252 WFBS 3-7=0/472, 2-7=0/801, 4-7=-94/800

JOINT STRESS INDEX


2 = 0.79, 3 = 0.82, 4 = 0.79, 6 = 0.98, 7 = 0.79 and 8 = 0.97

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pre 40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=404, 6=404.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 *Except* W1,W5: 2x4 SPF No.2

REACTIONS. (lb/size) 6=802/0-3-14, 4=802/0-5-8 Max Horz 6=-190(LC 7)

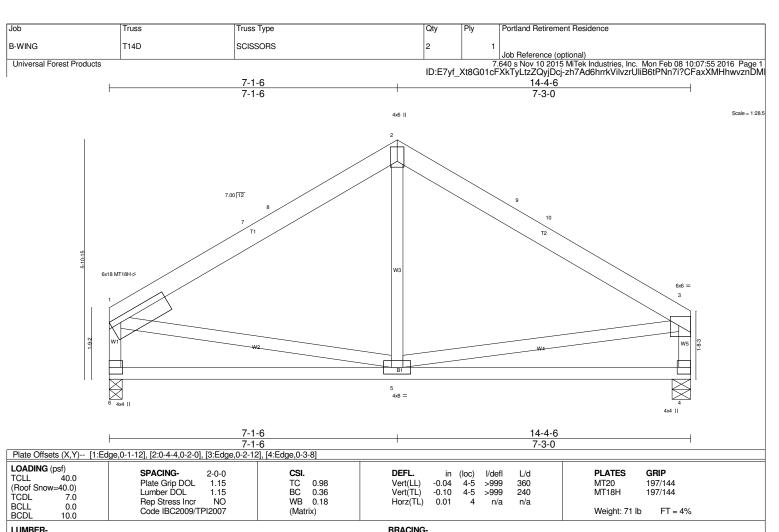
Max Uplift6=-262(LC 9), 4=-262(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-1334/349, 7-8=-1169/351, 2-8=-1139/365, 2-9=-1134/364, 9-10=-1169/349, 3-10=-1337/347, 1-6=-804/309, 3-4=-809/314

BOT CHORD 5-6=-201/305, 4-5=-78/326

2-5=0/482, 1-5=-95/789, 3-5=-96/768 **WEBS**


JOINT STRESS INDEX

1 = 0.87, 2 = 0.83, 3 = 0.92, 4 = 0.81, 5 = 0.96 and 6 = 0.76

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) Bearing at joint(s) 6, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (ji=lb) 6=262, 4=262.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.2 W5: 2x4 SPF No.2

REACTIONS. (lb/size) 6=802/0-3-14, 4=802/0-5-8 Max Horz 6=-187(LC 7)

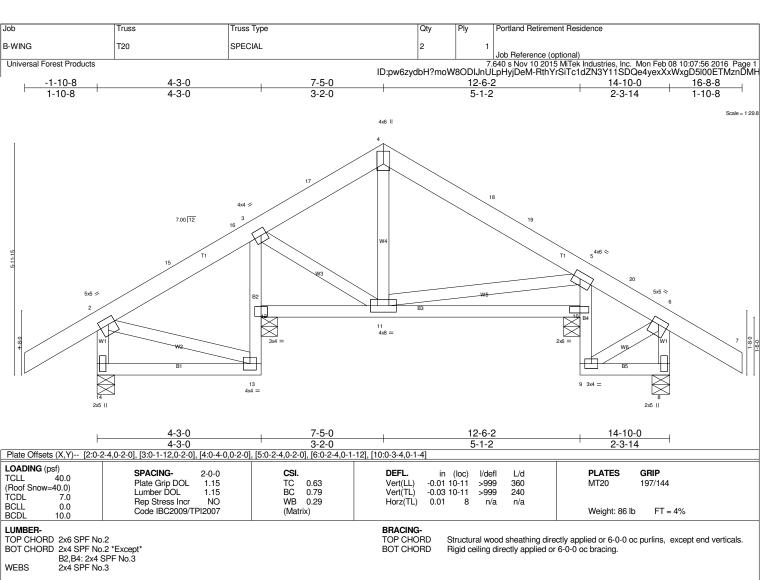
Max Uplift6=-262(LC 9), 4=-262(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-853/278, 7-8=-688/280, 2-8=-555/295, 2-9=-555/295, 9-10=-690/280, 3-10=-858/278, 1-6=-729/292, 3-4=-727/293

BOT CHORD 5-6=-176/253, 4-5=-72/294

WEBS 1-5=-71/415, 3-5=-91/394


JOINT STRESS INDEX

1 = 0.87, 2 = 0.84, 3 = 0.88, 4 = 0.79, 5 = 0.30 and 6 = 0.73

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=262, 4=262.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

BOT CHORD 2x4 SPF No.2 *Except*

ONS. All bearings 0-5-8 except (jt=length) 12=0-5-2, 10=0-5-2. (lb) - Max Horz 14=-222(LC 7) REACTIONS.

Max Uplift All uplift 100 lb or less at joint(s) 12, 10 except 14=-360(LC 9), 8=-340(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 14=1064(LC 13), 12=1422(LC 2), 10=1244(LC 3), 8=998(LC 13)

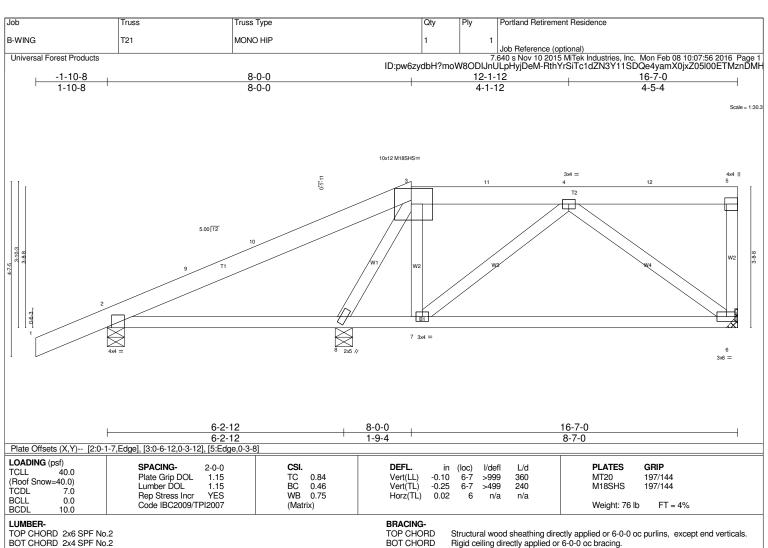
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=0/303, 2-15=-268/216, 3-17=-798/242, 4-17=-500/251, 4-18=-654/233, 18-19=-668/221, 5-19=-972/217, 6-7=0/303, 2-14=-1030/379, 6-8=-988/352TOP CHORD

BOT CHORD 3-12=-1360/99, 10-11=-5/275, 5-10=-1227/139 **WEBS** 3-11=0/648, 4-11=-332/104, 5-11=-38/312

JOINT STRESS INDEX

2 = 0.79, 3 = 0.56, 4 = 0.80, 5 = 0.82, 6 = 0.87, 8 = 0.45, 9 = 0.14, 10 = 0.98, 11 = 0.45, 12 = 0.83, 13 = 0.51 and 14 = 0.60


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 17.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 10 except (jt=lb) 14=360, 8=340. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 1-2=-218, 2-4=-218, 4-6=-218, 6-7=-218, 13-14=-20, 10-12=-20, 8-9=-20
- 2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-2=-218, 2-16=-218, 4-16=-251, 4-6=-162, 6-7=-162, 13-14=-20, 10-12=-20, 8-9=-20
- 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

 - Uniform Loads (plf) Vert: 1-2=-162, 2-4=-162, 4-19=-251, 6-19=-218, 6-7=-218, 13-14=-20, 10-12=-20, 8-9=-20
- 13) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-298, 2-4=-138, 4-6=-138, 6-7=-298, 13-14=-20, 10-12=-20, 8-9=-20

BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 6=1099/Mechanical, 2=658/0-5-8, 8=1423/0-5-8

Max Horz 2=236(LC 9) Max Uplift6=-203(LC 9), 2=-251(LC 9), 8=-294(LC 9) Max Grav 6=1353(LC 14), 2=988(LC 15), 8=1426(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-10=-87/351, 3-11=-665/167, 4-11=-672/167, 5-6=-569/95

7-8=-169/671, 6-7=-181/1031 BOT CHORD **WEBS**

3-8=-1488/329, 3-7=0/397, 4-7=-485/98, 4-6=-1203/240

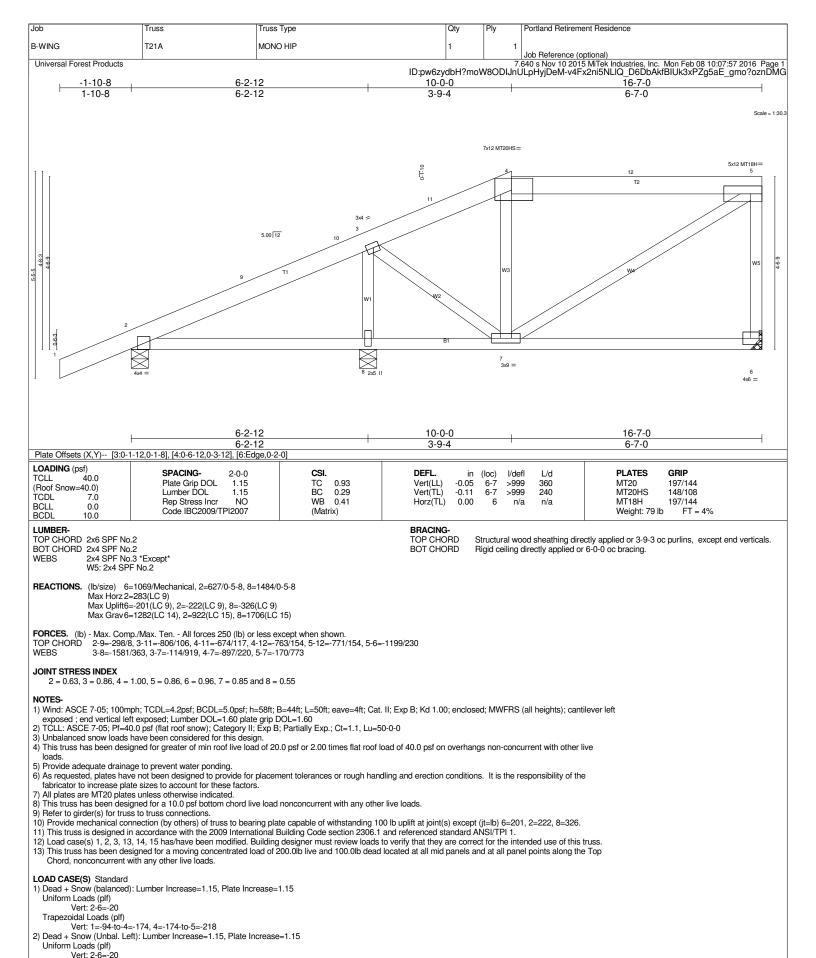
JOINT STRESS INDEX

2 = 0.87, 3 = 0.95, 4 = 0.54, 5 = 0.93, 6 = 0.93, 7 = 0.54 and 8 = 0.66

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live
- 5) Provide adequate drainage to prevent water ponding.
 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the
- fabricator to increase plate sizes to account for these factors.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=203, 2=251, 8=294.

 11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

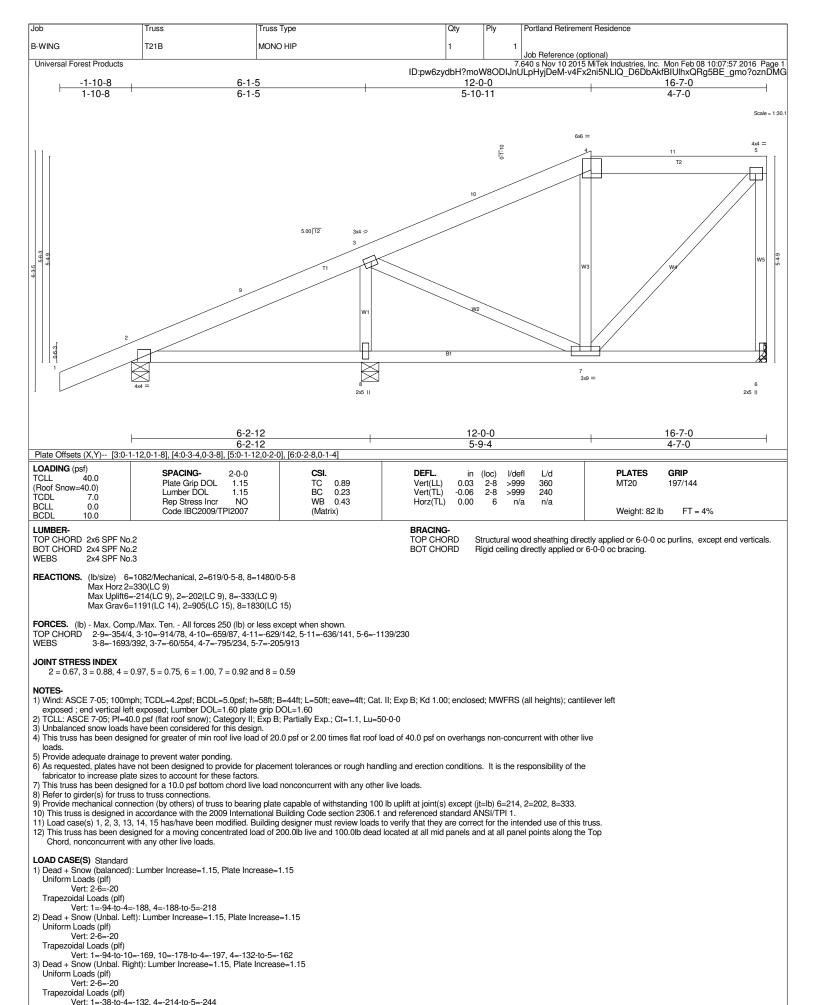

 12) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

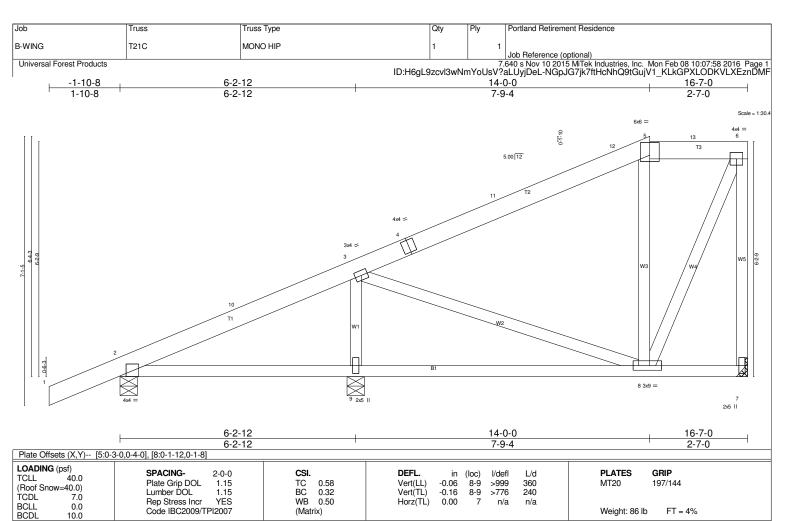
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf)

Vert: 1=-94-to-3=-161, 3=-161-to-5=-218


Continued on page 2

Trapezoidal Loads (plf)


Uniform Loads (plf) Vert: 2-6=-20

Vert: 1=-94-to-10=-145, 10=-159-to-4=-189, 4=-118-to-5=-162 3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	T21A	MONO HIP	1	1	Job Reference (optional)
Universal Forest Products	s		ID:pw6zvdbH?mo	W8ODIJn	, 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:57 2016 Page 2 ULpHyjDeM-v4Fx2ni5NLIQ_D6DbAkfBIUk3xPZg5aE_gmo?oznDMG
13) Dead + Snow on Overhang Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf) Vert: 1=-174-to-2=- 14) 3rd Unbal.Dead + Snow (bi Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf) Vert: 1=-38-to-4=-1 15) 4th Unbal.Dead + Snow (bi Uniform Loads (plf) Vert: 2-6=-20 Trapezoidal Loads (plf)	ff) -4=-118, 4=-198-to-5=-242 erhangs: Lumber Increase=1.15, Pla 0 0lf) -to-2=-188, 2=-28-to-4=-94, 4=-94-to- now (balanced) + Parallel: Lumber In 0 0lf) to-4=-118, 4=-230-to-5=-274 now (balanced) + Parallel: Lumber In	-5=-138 crease=1.15, Plate Increase=1.15	io-pwozydun (IIIO	WOODIJIII	IO-LPI TYJESIMI VALI IOINELIA EUODOANI DIUROXE ZYSAE YIIIO (OZIIDINIO

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	T21B	MONO HIP	1		1
Universal Forest Produ		2			Job Reference (optional) 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:57 2016 Page 2 InULpHyjDeM-v4Fx2ni5NLIQ_D6DbAkfBIUlhxQRg5BE_gmo?oznDMG
			ID:pw6zydbH?m	w80DIJ	InULpHyjDeM-v4Fx2ni5NLIQ_D6DbAkfBlUlhxQRg5BE_gmo?oznDMG
LOAD CASE(S) Stan	dard	on 1.15 Dieto lec 1.15			
Uniform Loads (plf	f)	se=1.15, Plate Increase=1.15			
Vert: 2-6≕ Trapezoidal Loads	-20 s (plf)				
Vert: 1=-1	74-to-2=-188, 2=-28-to-4=-	108, 4=-108-to-5=-138 I: Lumber Increase=1.15, Plate Increase=1.15	5		
Uniform Loads (plf Vert: 2-6=	f)				
Trapezoidal Loads	s (plf)				
15) 4th Unbal Dead +	8-to-4=-132, 4=-244-to-5=- Snow (balanced) + Paralle	274 I: Lumber Increase=1.15, Plate Increase=1.15	5		
Uniform Loads (plf Vert: 2-6=	f) -20				
Trapezoidal Loads	s (plf) 50-to-4=-244, 4=-132-to-5=	:-162			
13 1	00 10 1-211, 1-10210 0-				

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **WEBS** 2x4 SPF No.3 BRACING-

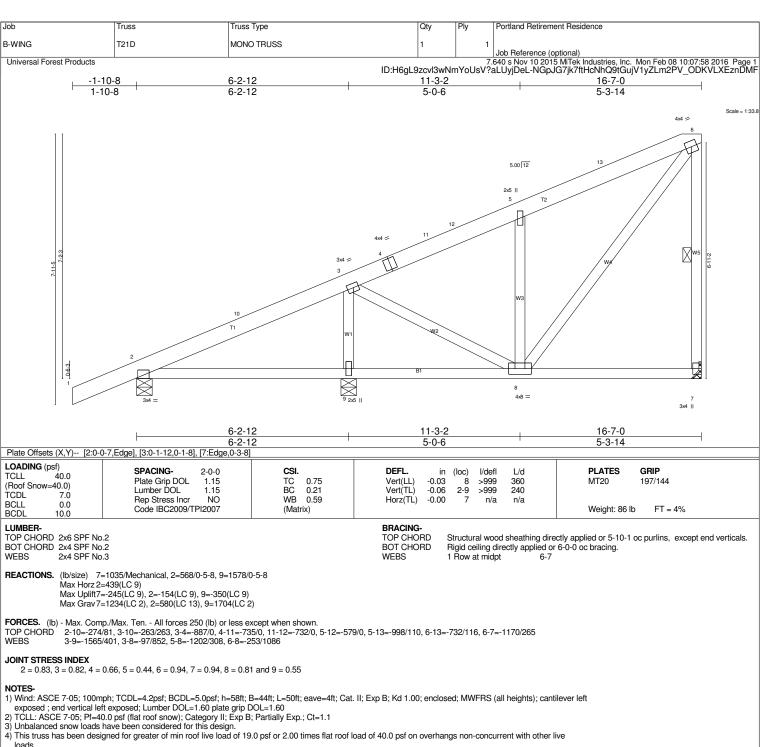
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 7=547/Mechanical, 2=515/0-5-8, 9=984/0-5-8

Max Horz 2=376(LC 9) Max Uplift7=-219(LC 9), 2=-175(LC 9), 9=-355(LC 9) Max Grav 7=578(LC 15), 2=797(LC 15), 9=1420(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-281/9, 3-4=-573/10, 4-11=-349/19, 11-12=-342/29, 5-13=-328/109, 6-13=-329/109, 6-7=-576/212


WEBS 3-9=-1269/429, 5-8=-707/320, 6-8=-266/827

JOINT STRESS INDEX

2 = 0.68, 3 = 0.76, 4 = 0.57, 5 = 0.99, 6 = 0.60, 7 = 0.31, 8 = 0.94 and 9 = 0.44

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1, Lu=50-0-0
 3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 40.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=219, 2=175, 9=355.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

- loads.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=245, 2=154, 9=350.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) Load case(s) 1, 2, 3, 13 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

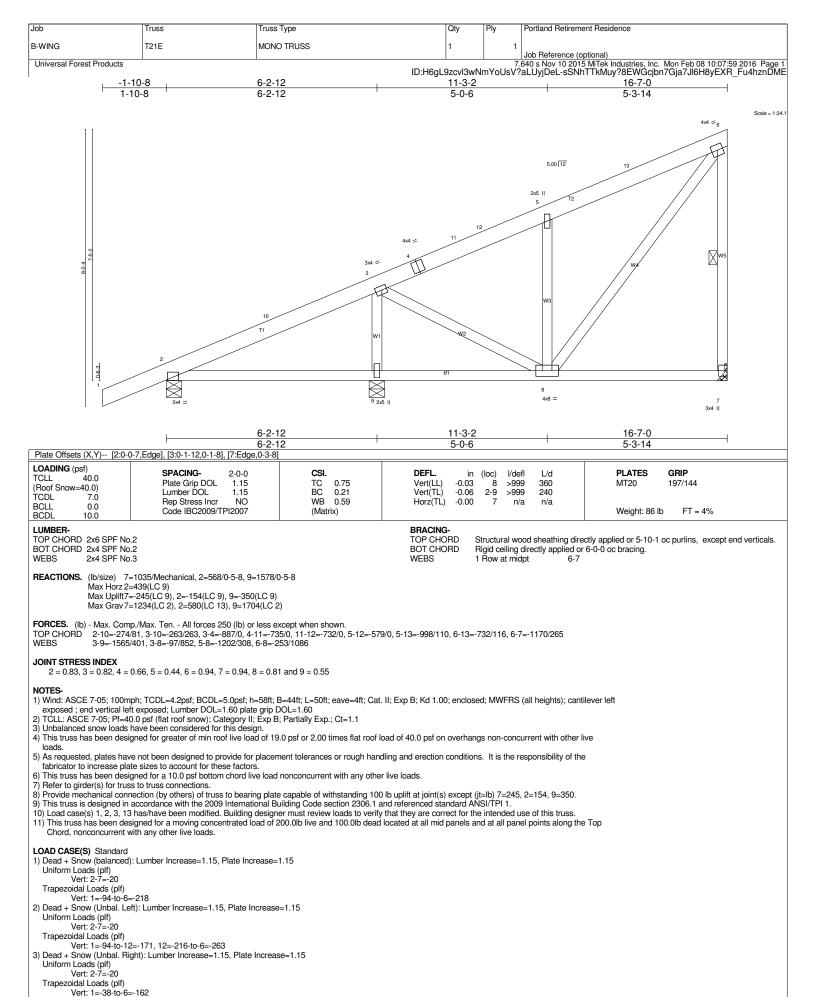
Uniform Loads (plf) Vert: 2-7=-20

Trapezoidal Loads (plf) Vert: 1=-94-to-6=-218

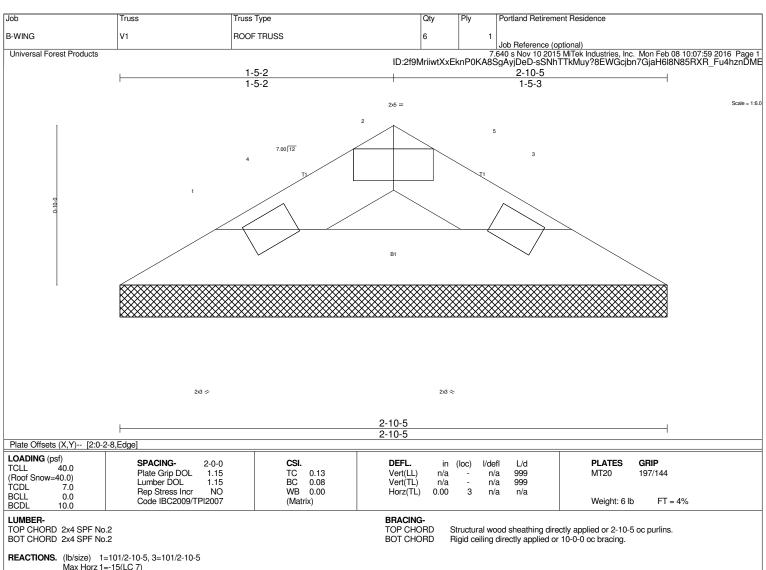
2) Dead + Snow (Unbal. Left): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 2-7=-20

Trapezoidal Loads (plf)


Vert: 1=-94-to-12=-171, 12=-216-to-6=-263

3) Dead + Snow (Unbal. Right): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 2-7=-20 Trapezoidal Loads (plf) Vert: 1=-38-to-6=-162

Continued on page 2

1	Truss	Truss Type	Qty	'	Ply	Portland Retirement Residence	
VING	T21D	MONO TRUSS	1		1		
niversal Forest Products					7.6	Job Reference (optional) 640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07 kLUyjDeL-NGpJG7jk7ftHcNhQ9tGujV1yZLm2PV_OD	:58 2016 Page
Uniform Loads (plf) Vert: 2-7=-20	angs: Lumber Increase=1.15, 2=-188, 2=-28-to-6=-138	Plate Increase=1.15	ID:H6gL9zcv	'l3wNm	YoUsV?a	nLUyjDeL-NGpJG7jk7ftHcNhQ9tGujV1yZLm2PV_OD)KVLXEznDN

ob	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
-WING	T21E	MONO TRUSS	1	1	Job Reference (optional)
Universal Forest Prod	ucts		ID:H6gL9zcvl3v	vNmYoUsV	. Job Reference (optional) 7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:07:59 2016 Pa ??aLUyjDeL-sSNhTTkMuy?8EWGcjbn7Gja7Jl6H8yEXR_Fu4hznI
OAD CASE(S) Star 3) Dead + Snow on Uniform Loads (p Vert: 2-7= Trapezoidal Load Vert: 1=-1	odard Overhangs: Lumber Increase= f) -20 s (plf) 74-to-2=-188, 2=-28-to-6=-13	=1.15, Plate Increase=1.15	ŭ		,,,,,,

Max Horz 1=-15(LC 7)
Max Uplift1=-33(LC 9), 3=-33(LC 9)
Max Grav 1=330(LC 15), 3=330(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-4=-313/42, 2-4=-310/43, 2-5=-310/43, 3-5=-312/42

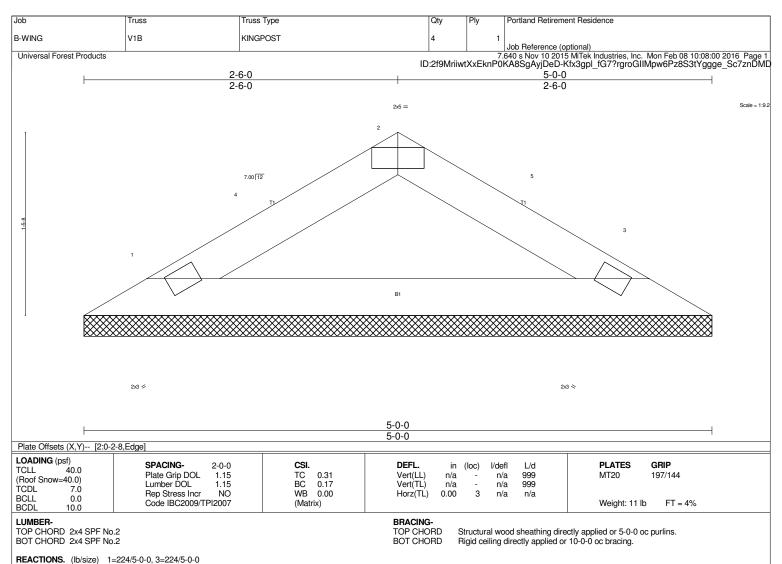
BOT CHORD 1-3=-22/268

JOINT STRESS INDEX

1 = 0.42, 2 = 0.07 and 3 = 0.42

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.


- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Max Horz 1=-34(LC 7)
Max Uplift1=-73(LC 9), 3=-73(LC 9)
Max Grav 1=367(LC 15), 3=367(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-4=-330/92, 2-4=-325/95, 2-5=-325/95, 3-5=-330/92

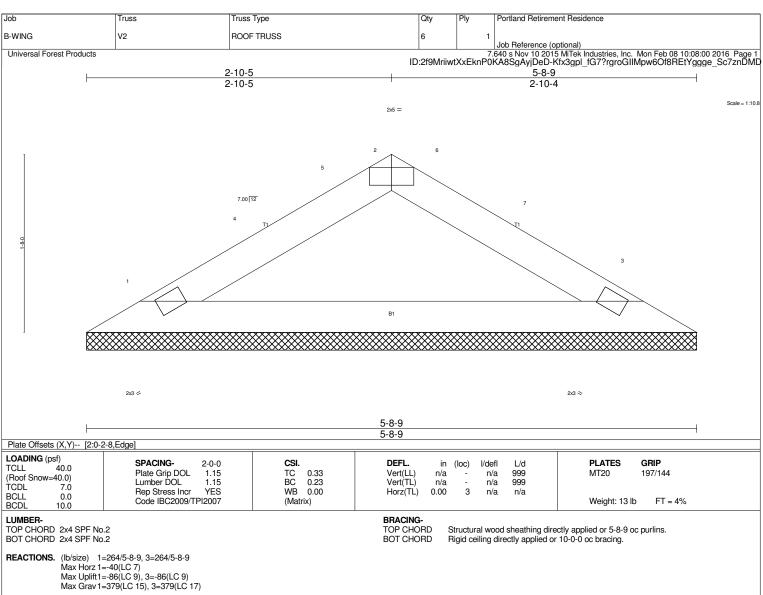
BOT CHORD 1-3=-48/281

JOINT STRESS INDEX

1 = 0.45, 2 = 0.07 and 3 = 0.45

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.


- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

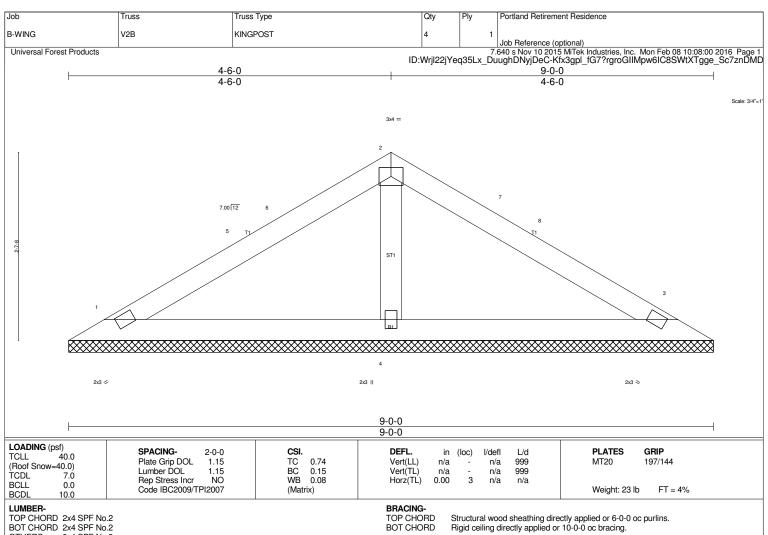
 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-4=-336/109, 4-5=-330/109, 2-5=-324/113, 2-6=-324/113, 6-7=-330/109, 3-7=-336/109

BOT CHORD 1-3=-56/285

JOINT STRESS INDEX

1 = 0.46, 2 = 0.08 and 3 = 0.46


NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

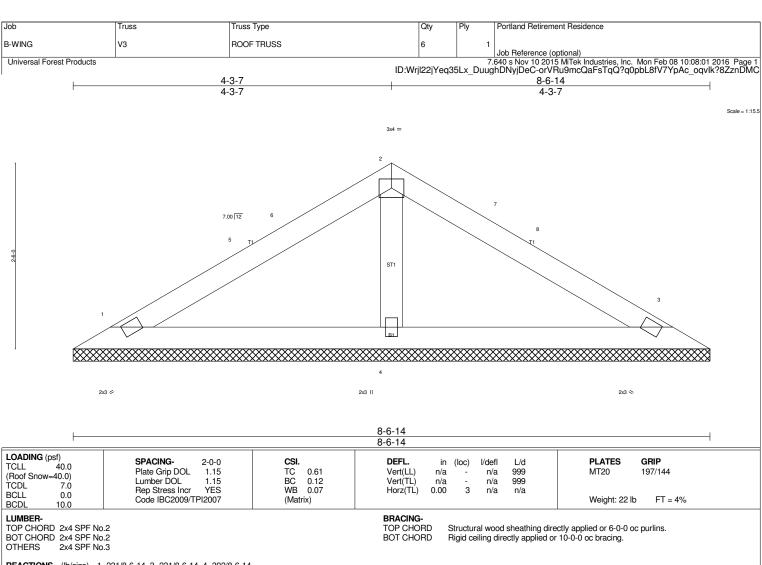
 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

OTHERS 2x4 SPF No.3

REACTIONS. (lb/size) 1=244/9-0-0, 3=244/9-0-0, 4=414/9-0-0

(MSLGE) 1-2-7-0 G, 1-7-0 G, Max Horz 1=-68(LC 7)
Max Horz 1=-68(LC 7)
Max Uplift1=-106(LC 9), 3=-106(LC 9), 4=-84(LC 9)
Max Grav 1=362(LC 15), 3=362(LC 17), 4=414(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-315/134 WEBS

JOINT STRESS INDEX

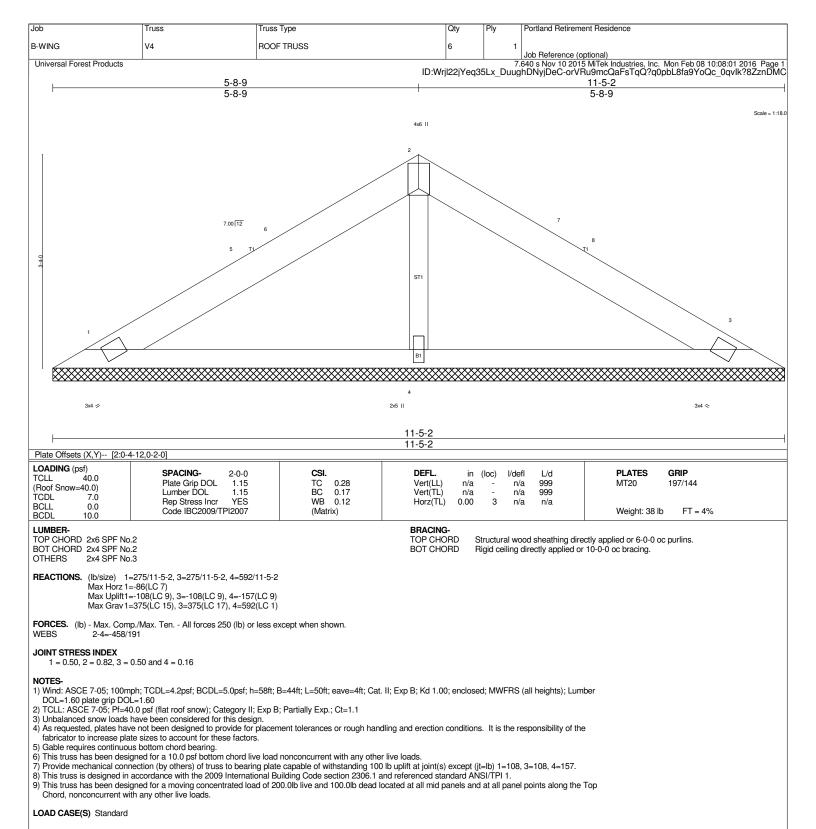
1 = 0.39, 2 = 0.16, 3 = 0.39 and 4 = 0.18

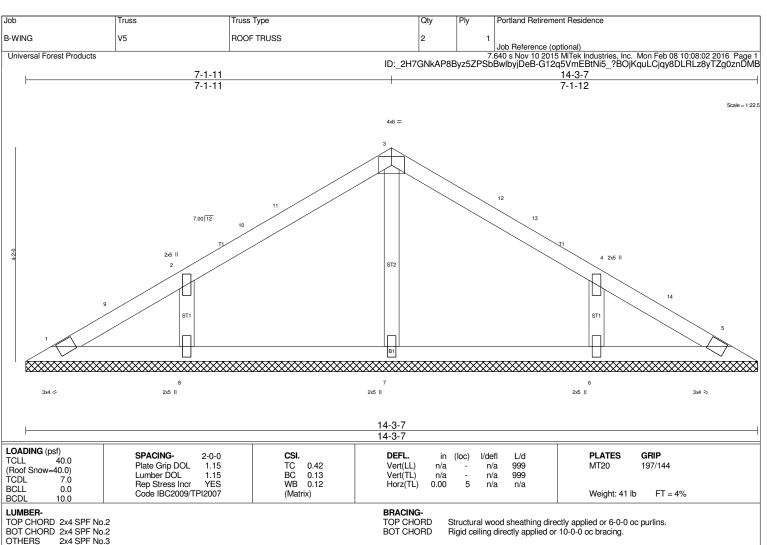
- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 1=106, 3=106.
 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. (lb/size) 1=231/8-6-14, 3=231/8-6-14, 4=392/8-6-14

(ID/SIZE) 1-2-04(LC 7) Max Horz 1=-64(LC 7) Max Uplift1=-100(LC 9), 3=-100(LC 9), 4=-79(LC 9) Max Grav 1=358(LC 15), 3=358(LC 17), 4=392(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


2-4=-298/126 WEBS


JOINT STRESS INDEX

1 = 0.37, 2 = 0.15, 3 = 0.37 and 4 = 0.17

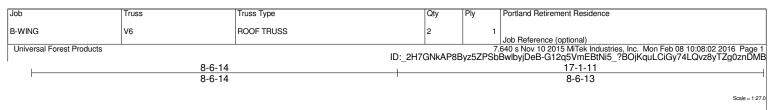
- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.

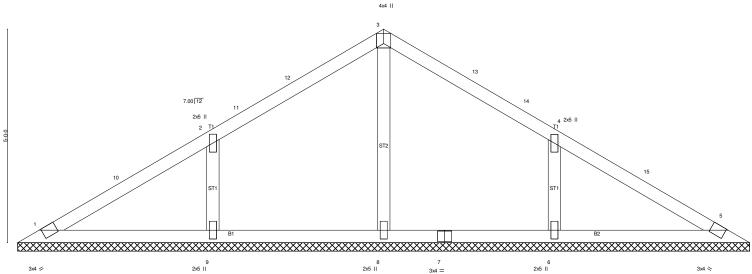
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. All bearings 14-3-7.

Max Uplift 100 lb or less at joint(s) 1, 5, 7 except 8=-204(LC 9), 6=-204(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=335(LC 17), 5=335(LC 21), 7=409(LC 1), 8=460(LC 2), 6=460(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


3-7=-328/86, 2-8=-384/232, 4-6=-384/232 WEBS

JOINT STRESS INDEX

1 = 0.56, 2 = 0.17, 3 = 0.89, 4 = 0.17, 5 = 0.56, 6 = 0.14, 7 = 0.11 and 8 = 0.14

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 7 except (jt=lb) 8=204, 6=204.
 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

17-1-11 17-1-11

Prate Offsets (A, 1) [1.0-0-6,Edge], [3.0-2-12,0-2-0], [5.0-1-6,Edge]									
LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.45 BC 0.20 WB 0.15 (Matrix)	DEFL. Vert(LL) Vert(TL) Horz(TL)	in (loc) n/a - n/a - 0.00 5	l/defl n/a n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144	
BCDL 10.0		(/					- 3		

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.3 BRACING-

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-1-11.

(lb) - Max Horz 1=-138(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-257(LC 9), 6=-257(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=358(LC 17), 5=358(LC 21), 8=370(LC 19), 9=577(LC 2), 6=576(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-8=-303/39, 2-9=-465/279, 4-6=-465/279

Dieta Offesta (V.V) [1:0.0.0 Edga] [2:0.0.110.0.0] [E:0.1.0 Edga]

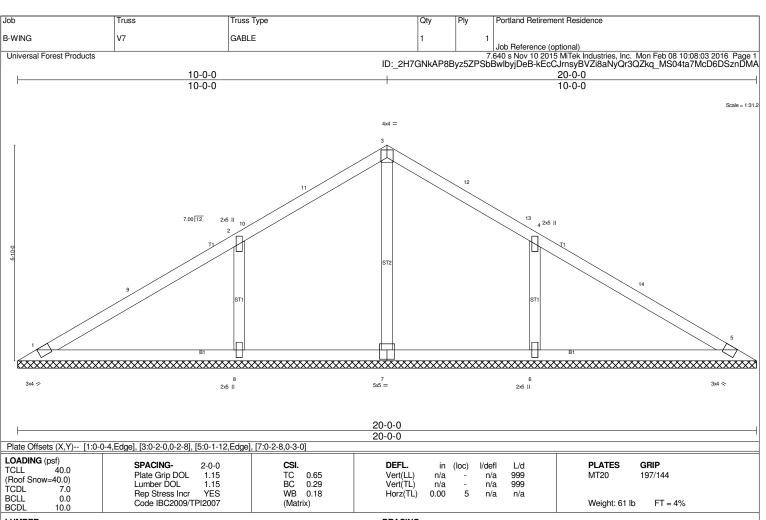
JOINT STRESS INDEX

1 = 0.71, 2 = 0.31, 3 = 0.84, 4 = 0.31, 5 = 0.71, 6 = 0.31, 7 = 0.26, 8 = 0.31 and 9 = 0.31

NOTES

LUMBER-

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.


- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=257, 6=257.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 1=-163(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-326(LC 9), 6=-326(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=378(LC 17), 5=378(LC 21), 7=343(LC 19), 8=728(LC 2), 6=728(LC 3)

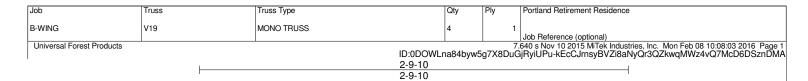
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-7=-285/13, 2-8=-575/344, 4-6=-575/344

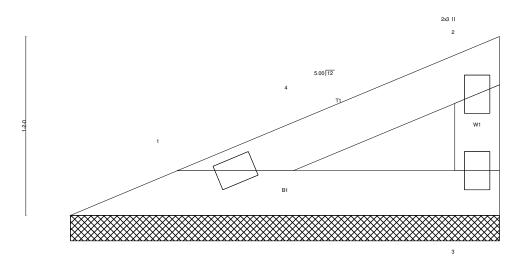
JOINT STRESS INDEX

1 = 0.80, 2 = 0.31, 3 = 0.81, 4 = 0.31, 5 = 0.80, 6 = 0.31, 7 = 0.22 and 8 = 0.31

NOTES

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=7ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
 3) Unbalanced snow loads have been considered for this design.


- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.


 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=326, 6=326.

 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

2x3 = 2x3 II

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-9-10 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.27 BC 0.03 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(TL) n/a - n/a 999 Horz(TL) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144
BCLL 0.0 BCDI 10.0	Code IBC2009/TPI2007	(Matrix)	110.2(12) 0.00 0 1.00 1.00	Weight: 6 lb FT = 4%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 1=110/2-9-10, 3=110/2-9-10

Max Horz 1=41(LC 6)

Max Uplift1=-32(LC 9), 3=-40(LC 9) Max Grav 1=333(LC 15), 3=333(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-313/49

JOINT STRESS INDEX

1 = 0.13, 2 = 0.23 and 3 = 0.17

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.
 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Portland Retirement Residence
B-WING	V20	MONO TRUSS	4	1	1 Job Reference (optional)
Universal Forest Products			ID:0DOWLna84byw	5g7X8Du	7.640 s Nov 10 2015 MiTek Industries, Inc. Mon Feb 08 10:08:04 2016 Page 1 GjRyiUPu-CQAaWBoUjVdQKI9aV8NIzmHzNmp7pMgGbGyfluznDM9
	-		5-7-3 5-7-3		
			3-7-3		
					Scale = 1:12.6
İ					2
			5.00 12		
			5.00 12		
			ŢĮ	_	
24.0					W1

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Post Street Lory VES	CSI. TC 0.80 BC 0.23	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(TL) n/a - n/a 999 Herr(TL) 0.00 2 n/a n/a	PLATES GRIP MT20 197/144
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IBC2009/TPI2007	WB 0.00 (Matrix)	Horz(TL) -0.00 3 n/a n/a	Weight: 14 lb FT = 4%

BRACING-TOP CHORD BOT CHORD

2x3 II

Structural wood sheathing directly applied or 5-7-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

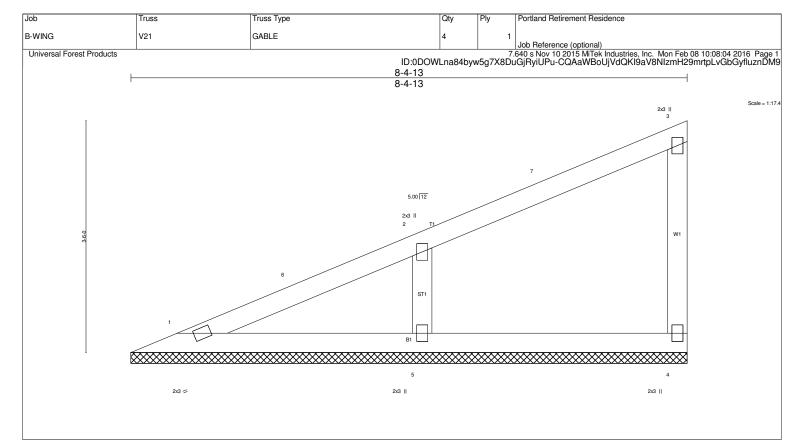
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (lb/size) 1=269/5-7-3, 3=269/5-7-3

Max Horz 1=101(LC 6)
Max Uplift1=-79(LC 9), 3=-97(LC 9)
Max Grav 1=380(LC 15), 3=380(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-333/121

JOINT STRESS INDEX 1 = 0.19, 2 = 0.24 and 3 = 0.18


- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=4ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1

- 3) Unbalanced snow loads have been considered for this design.
 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2x3 =

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 9) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.49 BC 0.12 WB 0.11	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(TL) n/a - n/a 999 Horz(TL) -0.00 4 n/a n/a	PLATES GRIP MT20 197/144
BCLL 0.0 BCDL 10.0	Code IBC2009/TPI2007	(Matrix)	1.0.2(1.2) 0.00 1 1.00	Weight: 24 lb FT = 4%

BRACING-

TOP CHORD

BOT CHORD

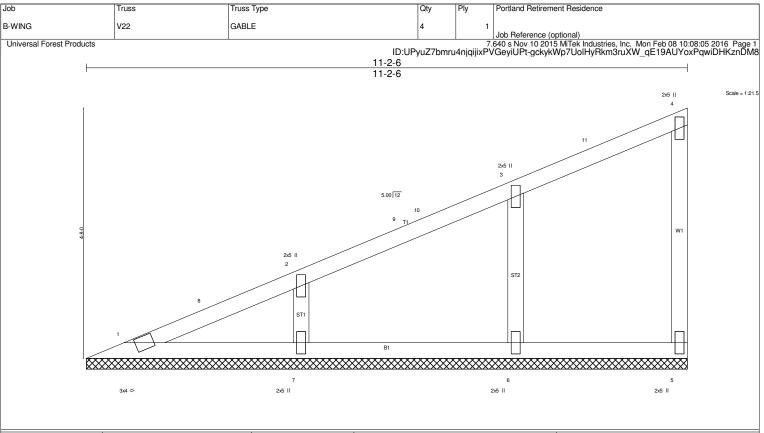
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 **OTHERS** 2x4 SPF No.3

REACTIONS. (lb/size) 1=155/8-4-13, 4=167/8-4-13, 5=536/8-4-13

Max Horz 1=162(LC 6) Max Uplift1=-13(LC 9), 4=-47(LC 9), 5=-220(LC 9) Max Grav 1=346(LC 16), 4=350(LC 15), 5=592(LC 2)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-320/62 WEBS 2-5=-498/268

JOINT STRESS INDEX

1 = 0.13, 2 = 0.31, 3 = 0.23, 4 = 0.17 and 5 = 0.29

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=220.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

LOADING (psf) TCLL 40.0 (Roof Snow=40.0) TCDL 7.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.42 BC 0.16 WB 0.13 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(TL) n/a - n/a 999 Horz(TL) -0.00 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 35 lb FT = 4%
BCDL 10.0	Code IBC2009/TPI2007	(Matrix)		Weight: 35 lb F1 = 4%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

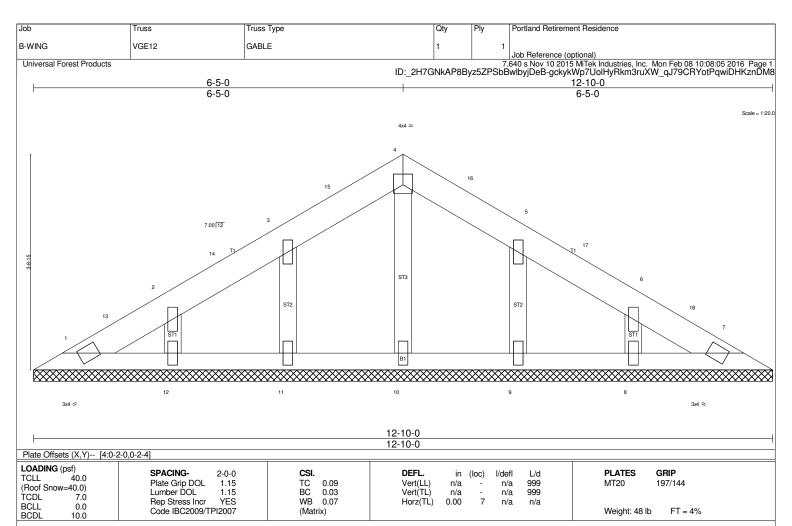
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 **OTHERS** 2x4 SPF No.3

REACTIONS.

All bearings 11-2-7

(lb) - Max Horz 1=222(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 5 except 7=-193(LC 9), 6=-175(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=342(LC 17), 5=341(LC 16), 7=474(LC 2), 6=521(LC 2)


 $\textbf{FORCES.} \ \underline{\underline{}} (\underline{\textbf{lb}}) \text{ - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.}$

TOP CHORD 4-5=-316/52 WEBS 2-7=-378/226, 3-6=-453/200

JOINT STRESS INDEX

1 = 0.60, 2 = 0.14, 3 = 0.17, 4 = 0.84, 5 = 0.58, 6 = 0.16 and 7 = 0.13

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=2ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); cantilever left
- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 4) Unbalanced snow loads have been considered for this design.
- 5) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 7=193, 6=175.
 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 **OTHERS** 2x4 SPF No.3 BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

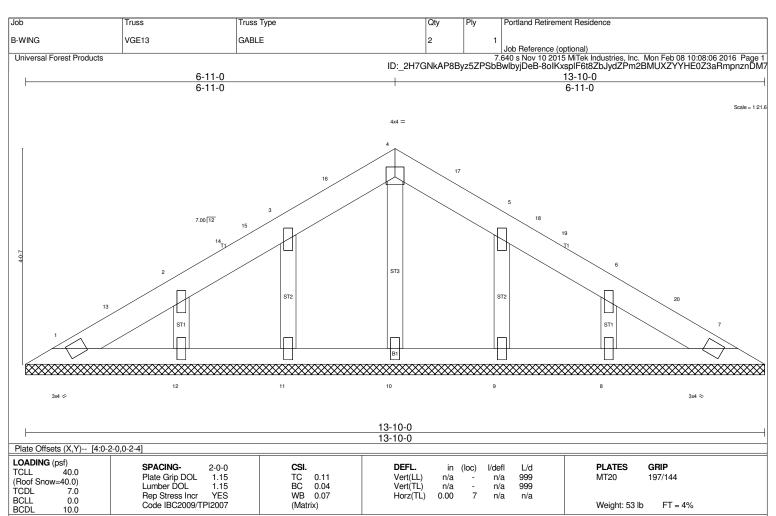
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-0.

(lb) - Max Horz 1=-98(LC 7)
Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 9 except 12=-122(LC 9), 8=-122(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=325(LC 19), 7=325(LC 25), 10=281(LC 22), 11=341(LC 21), 12=359(LC 20), 9=341(LC 23), 8=359(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-11=-301/119, 2-12=-317/137, 5-9=-301/119, 6-8=-317/137


JOINT STRESS INDEX

1 = 0.19, 2 = 0.14, 3 = 0.13, 4 = 0.43, 5 = 0.13, 6 = 0.14, 7 = 0.19, 8 = 0.10, 9 = 0.10, 10 = 0.08, 11 = 0.10 and 12 = 0.10

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are 2x5 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 9 except (jt=lb) 12=122, 8=122.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.3 BRACING-TOP CHORD **BOT CHORD**

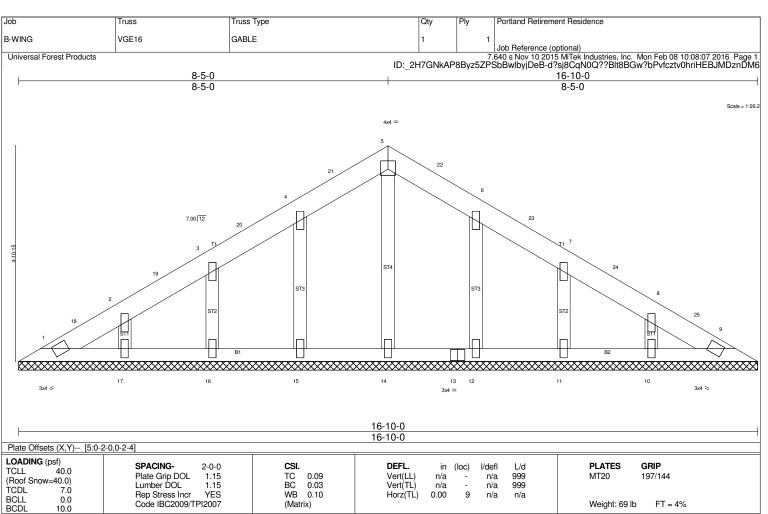
Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-10-0.

(lb) - Max Horz 1=107(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 9 except 12=-141(LC 9), 8=-141(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=333(LC 19), 7=333(LC 25), 10=281(LC 22), 11=336(LC 21), 12=372(LC 20), 9=336(LC 23), 8=372(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-11=-297/112, 2-12=-325/157, 5-9=-297/112, 6-8=-325/157


JOINT STRESS INDEX

1 = 0.21, 2 = 0.14, 3 = 0.13, 4 = 0.43, 5 = 0.13, 6 = 0.14, 7 = 0.21, 8 = 0.10, 9 = 0.10, 10 = 0.08, 11 = 0.10 and 12 = 0.10

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are 2x5 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 9 except (jt=lb) 12=141, 8=141.

 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top
- Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.3 BRACING-

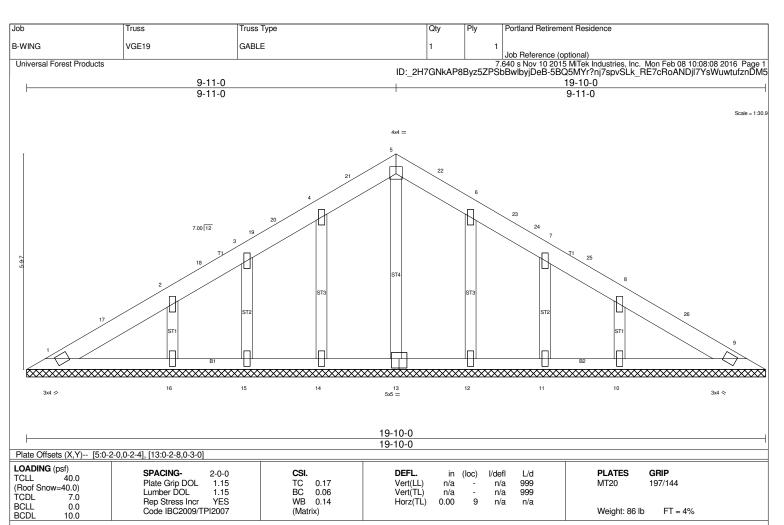
TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-10-0.

(lb) - Max Horz 1=132(LC 8)
Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 15, 12 except 16=-120(LC 9), 17=-115(LC 9), 11=-120(LC 9), 10=-115(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=325(LC 21), 9=325(LC 29), 14=275(LC 25), 15=331(LC 24), 16=342(LC 23),


17=359(LC 22), 12=331(LC 26), 11=342(LC 27), 10=359(LC 28)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 4-15=-291/109, 3-16=-301/141, 2-17=-317/130, 6-12=-291/109, 7-11=-301/141, 8-10=-317/130

JOINT STRESS INDEX

1 = 0.19, 2 = 0.14, 3 = 0.13, 4 = 0.13, 5 = 0.42, 6 = 0.13, 7 = 0.13, 8 = 0.14, 9 = 0.19, 10 = 0.10, 11 = 0.10, 12 = 0.09, 13 = 0.03, 14 = 0.08, 15 = 0.09, 16 = 0.10 and 17 = 0.10 and 18 = 0.10 and 19 = 0.10 and 10 = 0.10 an

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are 2x5 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 15, 12 except (jt=lb) 16=120, 17=115, 11=120, 10=115.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.3 BRACING-

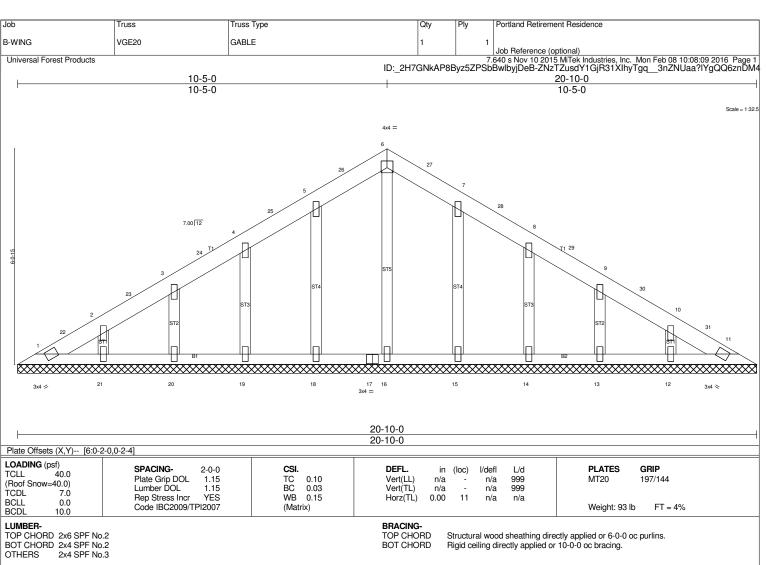
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-10-0.

(lb) - Max Horz 1=-158(LC 7)
Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 14, 12 except 15=-101(LC 9), 16=-180(LC 9), 11=-101(LC 9), 10=-180(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=348(LC 21), 9=348(LC 29), 13=270(LC 25), 14=328(LC 24), 15=322(LC 23),

16=401(LC 22), 12=326(LC 26), 11=322(LC 27), 10=400(LC 28)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WFBS 4-14=-285/105, 3-15=-289/122, 2-16=-340/198, 6-12=-285/105, 7-11=-289/122, 8-10=-340/198

JOINT STRESS INDEX

1 = 0.26, 2 = 0.31, 3 = 0.31, 4 = 0.31, 5 = 0.41, 6 = 0.31, 7 = 0.31, 8 = 0.31, 9 = 0.26, 10 = 0.31, 11 = 0.31, 12 = 0.31, 13 = 0.24, 14 = 0.31, 15 = 0.31 and 16 = 0.31

- 1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber
- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are 2x5 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 12 except (jt=lb) 15=101, 16=180, 11=101, 10=180.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 200.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Top Chord, nonconcurrent with any other live loads.

REACTIONS. All bearings 20-10-0.

(lb) - Max Horz 1=-167(LC 7)
Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 18, 15 except 19=-123(LC 9), 20=-111(LC 9), 21=-116(LC 9), 14=-123(LC 9),

13=-111(LC 9), 12=-116(LC 9)

Max Grav All reactions 250 lb or less at joint(s) except 1=325(LC 23), 11=325(LC 33), 16=270(LC 28), 18=322(LC 27), 19=332(LC 26), 20=342(LC 25), 21=359(LC 24), 15=322(LC 29), 14=332(LC 30), 13=342(LC 31), 12=359(LC 32)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5-18=-282/99, 4-19=-292/143, 3-20=-301/132, 2-21=-317/131, 7-15=-282/99, 8-14=-292/143, 9-13=-301/132, 10-12=-317/131 WEBS

JOINT STRESS INDEX

1 = 0.26, 2 = 0.31, 3 = 0.31, 4 = 0.31, 5 = 0.31, 6 = 0.41, 7 = 0.31, 8 = 0.31, 9 = 0.31, 10 = 0.31, 11 = 0.26, 12 = 0.31, 13 = 0.31, 14 = 0.31, 15 = 0.31, 16 = 0.31, 17 = 0.26, 18 = 0.31, 19 = 0.31, 20 = 0.31, 10 = 0.and 21 = 0.31

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=4.2psf; BCDL=5.0psf; h=58ft; B=44ft; L=50ft; eave=6ft; Cat. II; Exp B; Kd 1.00; enclosed; MWFRS (all heights); Lumber

- DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-05; Pf=40.0 psf (flat roof snow); Category II; Exp B; Partially Exp.; Ct=1.1 3) Unbalanced snow loads have been considered for this design.
- 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) All plates are 2x5 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 18, 15 except (jt=lb) 19=123, 20=111, 21=116, 14=123, 13=111, 12=116.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- Chord, nonconcurrent with any other live loads.