Nexlink Global Services 800 Marshall Phelps Rd, \#2A
Windsor, CT 06095
(860) 640-4833

Jason Cheronis
520 S. Main Street, Suite 2531
Akron, OH 44311
(330) 572-2137
jcheronis@gpdgroup.com

GPD\# 2012801.10
April 24, 2012

RIGORCUS STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNAIION:	Site USID:	4340
	Site FA:	110096382
	Site Name:	NORTH PORTLAND
	AT\&T Project:	MOD LTE W3 012312
ANALYSIS CRITERIA:	Codes:	TIA-222-G, 2009 IBC \& ASCE 7-05
		100-mph 3-second gust with 0 " ice
		40 (1-mph 3 -second gust with $1^{\prime \prime}$ ice
SITE DATA:		1340 Riverside Street, Portland, ME 04103, Cumberland County
		Latitude $43^{\circ} 42{ }^{\prime} 59.831 " \mathrm{~N}$, Longitude $70^{\circ} 18{ }^{\prime} 18.936 " \mathrm{~W}$
		Market: New England
		1/7.5' PiROD Monopole

Mr. Mark Roberts,

GPD is pleased to submit this Structural Analy:sis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	82.1%	Pass
Foundation Ratio with Proposed Equipment:	58.1%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and NexLink. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T to N exLink. This report was commissioned by Mr. Mark Roberts of NexLink.

The proposed coax shall be installed internal to the monopole for the results of this analysis to be valid.
TO WER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	82.1%	Pass
Anchor Rods	48.2%	Pass
Base Plate	67.3%	Pass
Flange Bolts	79.1%	Pass
Flange Plates	75.7%	Pass
Foundation	58.1%	Pass

AN ALYSIS METHO D

tnxTower (Version 6.0.4.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Equipment M odification Form	AT\&T Internal Loading Document, uploaded 4/5/2012	Siterra
RF Data Sheet	Not Provided	N / A
Construction Drawings	Not Provided	N / A
Tower Design	PiROD File \#. A-113355, dated 3/5/97	Siterra
Foundation Design	PiROD File \#. A-113355, dated 3/5/97	Siterra
Geotechnical Report	Halaey \& Aldrich File \#. 80593-001, dated 2/28/97	Siterra
Previous Structural Analysis	GPD Project \#. 2008147.07, dated 8/15/08	Siterra

ASSU M PTIO NS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
10. All existing loading was obtained from GPD (Project \#: 2008147.07, dated 8/15/08), site photos, the provided Equipment M odification Form and is assumed to be accurate.
11. All proposed coax shall be installed inside internal to the monopole.
12. The proposed RRU's were assumed to be installed 2' below the proposed antenna centerline elevation.
13. The existing/proposed Ioading elevations listed within the Equipment Modification Form were found to vary from the loading elevations listed in the previous analysis as well as site photos. The existing/proposed loading has been modeled based on the elevations observed in site photos.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF W ARRANTIES

GPD GROUP has not performed a recent site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info
Site Name NORTH PORTLAND Site Number ME5015 (3340) FA Number 10096382 Date of Analysis $4 / 24 / 2012$ Company Performing Analysis GPD

The information contained in this summary report is not to be used
independently from the PE stamped tower analysis.

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	177.5'	
Tower Manufacturer	PiROD	
Tower Model	n/a	
Tower Design	PIROD File \#: A-113355	3/5/1997
Foundation Investigation	PIROD File \#: A-113355	3/5/1997
Geotech Investigation	Haley \& Aldrich File \#: 80593-001	2/28/1997
Tower Mapping	n/a	
Modification Drawings	n/a	
Previous Structural Analysis	GPD Project \#: 2008147.07	8/15/2008
Foundation Mapping	n/a	

Design Parameters

Design Code Used	TIA-222-G \& 2009 IBC
Location of Tower (County, State)	Cumberland, Maine
Basic Wind Speed (mph)	100
Ice Thickness (in)	1
Structure Classification (I, II, III)	II
Exposure Category (, C, D)	C
Topographic Category (1 to 5)	1

Analysis Results (\% Maximum Usage)

Existing/Reserved + Future + Proposed Condition	
Tower (\%)	82.1%
Tower Base $(\%)$	67.3%
Foundation $(\%)$	58.1%
Foundation Adequate?	Yes

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (tt)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	179	180	6	Panel	Powerwave	7770.00	50/160/280	1	Unknown	13' LP Platiorm	12	Unknown	1-5/8"	Internal
AT\&T Mobility	179	180	6	TMA	Powerwave	LGP21401				behind the antennas				
AT\&T Mobility	179	180	6	Diplexer	Powerwave	LGP21903				behind the antennas				
Nextel	160	160	12	Panel	Decibel	DB846G90A-XY		1	Unknown	15' LP Platform	15	Unknown	1-5/8"	Internal
Nextel	160	160	3	Panel	Decibel	932DG65T2E-M				on the same mount				
Unknown	125	125	2	Dish	Unknown	4' Dish				pipe mounted	2	Unknown	EW90	Internal

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	179	180	1	Panel	Powerwave	P65-17-XLH-RR				on existing mount	3	DC/Fiber	${ }^{1 / 2^{\prime \prime}}$	Internal
AT\&T Mobility	179	180	1	Panel	Andrew	SBNH-1D6565C				on existing mount				
AT\&T Mobility	179	180	1	Panel	KMW	AM-X-CD-14-65-00T				on existing mount				
AT\&T Mobility	179	178	6	RRH	Ericsson	RBS6601				on existing mount				
AT\&T Mobility	179	178	1	Surge	Raycap	DC6-48-60-18-8F				on existing mount				

Note: Proposed loading is in addition to the existing loading at the same elevation.

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (t)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face

APPENDIX B

tnxTower O utput File

tnxTower	ME5015 (4340) NORTH PORTLAND		$\text { Page } 1 \text { of } 4$
GPD Group 520 S. Main St., Suite 2531	Project	2012801.10	Date 14:17:48 04/24/12
Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Nexlink Global Communications	Designed by cburton

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Cumberland County, Maine.
Basic wind speed of 100 mph .
Structure Class II.
Exposure Category C.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
\checkmark Include Bolts In Member Capacity
$\sqrt{ }$ Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feedline Torque
Include Angle Block Shear Check Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow Use Top Mounted Sockets

tnxTower GPD Group 520 S. Main St., Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job ME5015 (4340) NORTH PORTLAND		Page 2 of 4 Date 14:17:48 04/24/12
	Project	2012801.10	
	Client	Nexlink Global Communications	Designed by cburton

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Allow Shield \& Component Type \& \begin{tabular}{l}
Placement \\
ft
\end{tabular} \& Total Number \& \& \(C_{A} A_{A}\)

$f t^{2} / f t$ \& Weight plf

\hline LDF7-50A(1-5/8") \& C \& No \& Inside Pole \& 177.50-8.00 \& 12 \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.82

\hline 1/2" DC/Fiber \& C \& No \& Inside Pole \& 177.50-8.00 \& 3 \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.15

\hline LDF7-50A(1-5/8") \& C \& No \& Inside Pole \& 160.00-8.00 \& 15 \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline EW90 \& C \& No \& Inside Pole \& 125.00-8.00 \& 2 \& No Ice \& 0.00 \& 0.32

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.32

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.32

\hline
\end{tabular}

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ ft ft	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
13' Rotatable Platform	C	None		0.0000	179.00	No Ice	32.79	32.79	2.04
						1/2" Ice	44.63	44.63	2.48
						$1{ }^{\prime \prime}$ Ice	56.47	56.47	2.91
(2) $7770.00 \mathrm{w} / 6$ ' Mount Pipe	A	From	4.00	0.0000	179.00	No Ice	6.22	4.35	0.06
		Centroid-	0.00			1/2" Ice	6.77	5.20	0.11
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	7.30	5.92	0.16
(2) $7770.00 \mathrm{w} / 6$ ' Mount Pipe	B	From	4.00	0.0000	179.00	No Ice	6.22	4.35	0.06
		Centroid-	0.00			1/2" Ice	6.77	5.20	0.11
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	7.30	5.92	0.16
(2) $7770.00 \mathrm{w} / 6$ ' Mount Pipe	C	From	4.00	0.0000	179.00	No Ice	6.22	4.35	0.06
		Centroid-	0.00			1/2" Ice	6.77	5.20	0.11
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	7.30	5.92	0.16
(2) LGP21903 Diplexer	A	From	4.00	0.0000	179.00	No Ice	0.27	0.18	0.01
		Centroid-	0.00			1/2" Ice	0.34	0.25	0.01
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	0.43	0.32	0.02
(2) LGP21903 Diplexer	B	From	4.00	0.0000	179.00	No Ice	0.27	0.18	0.01
		Centroid-	0.00			1/2" Ice	0.34	0.25	0.01
		Leg	1.00			1 " Ice	0.43	0.32	0.02
(2) LGP21903 Diplexer	C	From	4.00	0.0000	179.00	No Ice	0.27	0.18	0.01
		Centroid-	0.00			1/2" Ice	0.34	0.25	0.01
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	0.43	0.32	0.02
(2) LGP21401	A	From	4.00	0.0000	179.00	No Ice	1.29	0.23	0.01
		Centroid-	0.00			1/2" Ice	1.45	0.31	0.02
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	1.61	0.40	0.03
(2) LGP21401	B	From	4.00	0.0000	179.00	No Ice	1.29	0.23	0.01
		Centroid-	0.00			1/2" Ice	1.45	0.31	0.02
		Leg	1.00			$1^{\prime \prime}$ Ice	1.61	0.40	0.03
(2) LGP21401	C	From	4.00	0.0000	179.00	No Ice	1.29	0.23	0.01
		Centroid-	0.00			1/2" Ice	1.45	0.31	0.02
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	1.61	0.40	0.03
P65-17-XLH-RR w/ Mount Pipe	A	From	4.00	0.0000	179.00	No Ice	11.47	8.70	0.10
		Centroid-	0.00			1/2" Ice	12.08	10.11	0.18
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	12.71	11.38	0.27

tnxTower	Job ME5015 (4340) NORTH PORTLAND		$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
GPD Group 520 S. Main St., Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Project	2012801.10	Date 14:17:48 04/24/12
	Client	Nexlink Global Communications	Designed by cburton

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
SBNH-1D6565C w/ 5' Mount Pipe	B	From	4.00	0.0000	179.00	No Ice	11.45	8.88	0.08
		Centroid-	0.00			1/2" Ice	12.06	9.78	0.16
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	12.69	10.70	0.25
AM-X-CD-14-65-00T w/ Mount Pipe	C	From	4.00	0.0000	179.00	No Ice	6.91	5.63	0.09
		Centroid-	0.00			1/2" Ice	7.60	6.54	0.15
		Leg	1.00			$1{ }^{\prime \prime}$ Ice	8.25	7.36	0.22
(2) RBS 6601	A	From	4.00	0.0000	179.00	No Ice	0.55	0.40	0.02
		Centroid-	0.00			1/2" Ice	0.70	0.52	0.03
		Leg	-1.00			$1{ }^{\prime \prime}$ Ice	0.86	0.64	0.05
(2) RBS 6601	B	From	4.00	0.0000	179.00	No Ice	0.55	0.40	0.02
		Centroid-	0.00			1/2" Ice	0.70	0.52	0.03
		Leg	-1.00			$1{ }^{\prime \prime}$ Ice	0.86	0.64	0.05
(2) RBS 6601	C	From	4.00	0.0000	179.00	No Ice	0.55	0.40	0.02
		Centroid-	0.00			1/2" Ice	0.70	0.52	0.03
		Leg	-1.00			1 " Ice	0.86	0.64	0.05
DC6-48-60-18-8F	C	From Leg	1.00	0.0000	179.00	No Ice	2.22	2.22	0.02
			0.00			1/2" Ice	2.44	2.44	0.04
			-1.00			$1{ }^{\prime \prime}$ Ice	2.66	2.66	0.06
15' LP Platform	C	None		0.0000	160.00	No Ice	18.85	18.85	1.50
						1/2" Ice	24.30	24.30	1.80
						$1{ }^{\prime \prime}$ Ice	29.75	29.75	2.09
(4) DB846G90A-XY w/ Mount Pipe	A	From	4.00	0.0000	160.00	No Ice	5.23	7.53	0.04
		Centroid-	0.00			1/2" Ice	5.78	8.72	0.09
		Leg	0.00			$1{ }^{\prime \prime}$ Ice	6.30	9.62	0.16
(4) DB846G90A-XY w/ Mount Pipe	B	From	4.00	0.0000	160.00	No Ice	5.23	7.53	0.04
		Centroid-	0.00			1/2" Ice	5.78	8.72	0.09
		Leg	0.00			$1{ }^{\prime \prime}$ Ice	6.30	9.62	0.16
(4) DB846G90A-XY w/ Mount Pipe	C	From	4.00	0.0000	160.00	No Ice	5.23	7.53	0.04
		Centroid-	0.00			1/2" Ice	5.78	8.72	0.09
		Leg	0.00			1 " Ice	6.30	9.62	0.16
932DG65T2E-M w/Mount Pipe	A	From	4.00	0.0000	160.00	No Ice	4.15	3.50	0.04
		Centroid-	0.00			1/2" Ice	4.79	4.54	0.07
		Leg	0.00			$1{ }^{\prime \prime}$ Ice	5.35	5.30	0.11
932DG65T2E-M w/Mount Pipe	B	From	4.00	0.0000	160.00	No Ice	4.15	3.50	0.04
		Centroid-	0.00			1/2" Ice	4.79	4.54	0.07
		Leg	0.00			$1{ }^{\prime \prime}$ Ice	5.35	5.30	0.11
932DG65T2E-M w/Mount Pipe	C	From	4.00	0.0000	160.00	No Ice	4.15	3.50	0.04
		Centroid-	0.00			1/2" Ice	4.79	4.54	0.07
		Leg	0.00			$1{ }^{\prime \prime}$ Ice	5.35	5.30	0.11
3" x 5' Mount Pipe	A	From Face	0.50	0.0000	125.00	No Ice	1.36	1.36	0.03
			0.00			1/2" Ice	1.67	1.67	0.04
			0.00			$1{ }^{\prime \prime}$ Ice	1.98	1.98	0.05
3" x 5' Mount Pipe	B	From Leg	0.50	0.0000	125.00	No Ice	1.36	1.36	0.03
			0.00			1/2" Ice	1.67	1.67	0.04
			0.00			$1{ }^{\prime \prime}$ Ice	1.98	1.98	0.05

tnxTower	Job ME5015 (4340) NORTH PORTLAND		$\text { Page } 4 \text { of } 4$
GPD Group 520 S. Main St., Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Project	2012801.10	$\begin{aligned} & \text { Date } \\ & \text { 14:17:48 04/24/12 } \end{aligned}$
	Client	Nexlink Global Communications	Designed by cburton

Dishes											
Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Dish } \\ & \text { Type } \end{aligned}$	Offset Type	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment	$3 d B$ Beam Width 。	Elevation	Outside Diameter ft		Aperture Area $f t^{2}$	Weight
4' Dish	A	Paraboloid	From	1.00	0.0000		125.00	4.00	No Ice	12.57	0.08
		w/Radome	Face	0.00					1/2" Ice	13.10	0.09
				0.00					$1^{\prime \prime}$ Ice	13.62	0.10
4' Dish	B	Paraboloid	From	1.00	0.0000		125.00	4.00	No Ice	12.57	0.08
		w/Radome	Leg	0.00					1/2" Ice	13.10	0.09
				0.00					$1^{\prime \prime}$ Ice	13.62	0.10

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	o	。
179.00		49	15.315	0.7831	0.0010	58663
160.00	13' Rotatable Platform	49	12.496	0.7448	0.0006	17265
125.00	15' LP Platform	49	7.547	0.5865	0.0003	11168

Section Capacity Table

| Section | Elevation | Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | | |

Program Version 6.0.4.0-1/27/2012 File:O:/2012/2012801/10/tnx/4340 North Portland.eri

APPENDIX C

Tower Elevation Drawing

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
13' Rotatable Platform	179	(2) RBS 6601	179
(2) $7770.00 \mathrm{w} / 6$ ' Mount Pipe	179	(2) RBS 6601	179
(2) $7770.00 \mathrm{w} / 6^{\prime}$ Mount Pipe	179	DC6-48-60-18-8F	179
(2) $7770.00 \mathrm{w} / 6$ ' Mount Pipe	179	15' LP Platform	160
(2) LGP21903 Diplexer	179	(4) DB846G90A-XY w/ Mount Pipe	160
(2) LGP21903 Diplexer	179	(4) DB846G90A-XY w/ Mount Pipe	160
(2) LGP21903 Diplexer	179	(4) DB846G90A-XY w/ Mount Pipe	160
(2) LGP21401	179	932DG65T2E-M w/Mount Pipe	160
(2) LGP21401	179	932DG65T2E-M w/Mount Pipe	160
(2) LGP21401	179	932DG65T2E-M w/Mount Pipe	160
P65-17-XLH-RR w/ Mount Pipe	179	3" $\times 5$ ' Mount Pipe	125
SBNH-1D6565C w/ 5' Mount Pipe	179	3" \times 5' Mount Pipe	125
AM-X-CD-14-65-00T w/ Mount Pipe	179	4' Dish	125
(2) RBS 6601	179	4' Dish	125

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A53-B-42	42 ksi	63 ksi				

TOWER DESIGN NOTES

1. Tower is located in Cumberland County, Maine.
2. Tower designed for Exposure C to the TIA-222-G Standard.
3. Tower designed for a 100 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 82.1%

	GPD Group	${ }^{\text {Job: }}$ ME5015 (4340) NORTH PORTLAND		
	S. Main St., Suite 2531	Project: 2012801.10		
	Akron, OH 44311			
	Phone: (330) 572-2100	Code: TIA-222-G	Date: 04/24/12	Scale: NTS
	FAX: (330) 572-2101	Path: O:12012120128011101tnx 43440 North Portland.eri		Dwg No. E-1

APPENDIX D

Base Plate \& Anchor Rod Analysis
2012801.10
GPD GROUP

Overturning Moment = Axial Force = Shear Force =	$3904.00 \mathrm{k}^{*} \mathrm{ft}$
	54.00 k
	33.00 k

Anchor Rod and Base Plate Stresses, TIA-222-G-1
ME5015 (4340) NORTH PORTLAND
Anchor Rods
(Section 4.9.9, TIA-222-G-1)
${ }^{*}$ This analysis assumes the clear distance from the top of the concrete to the bottom of the leveling nut is less than the diameter of the anchor rod. Notify GPD Group immediately if existing field conditions do not meet this assumbtion.

Stiffeners	
Configuration = Thickness =	Every Rod
	0.75 in
Width $=$Notch $=$Height $=$Stiffener Strength $\left(\mathrm{F}_{\mathrm{y}}\right)=$	4.5 in
	0.5 in
	8 in
	36 ksi
Weld Info. Known? = Vertical Weld Size = Horiz. Weld Type =	Yes
	0.375 in
	Fillet
Fillet Size = Weld Strength = Stiffener Vertical Force = Vert. Weld Capacity = Horiz. Weld Capacity = Stiffener Capacity =	0.375 in
	70 ksi
	37.54 kips
	39.9\% kips
	60.3\% kips
	67.3\% kips
Controlling Capacity =	67.3\% OK

APPENDIXE

Flange Plate Analysis

Existing Flange Connection @ ME5015 (4340) NORTH PORTLAND

Acceptable Stress	
Ratio $=$	

Existing Flange Connection @ ME5015 (4340) NORTH PORTLAND 2012801.10

Acceptable Stress	
Ratio $=$	

2012801.10
GPD GROUP

Flange Bolts	
\# Bolts =	48
Bolt Type =	A325
Threads Included? =	Yes
Bolt Diameter =	1
Bolt Circle $=$	57
$\phi_{\mathrm{t}}=$	0.75
$\phi_{\mathrm{v}}=$	0.75

Prying Action Check
N/A, top flange thickness > tc

Existing Flange Connection @ ME5015 (4340) NORTH PORTLAND

Acceptable Stress	
Ratio $=$	
	105.0%

Flange Bolts	
\# Bolts =	36
Bolt Type =	A325
Threads Included? =	Yes
Bolt Diameter =	1
Bolt Circle $=$	51
$\phi_{t}=$	0.75
$\phi_{\mathrm{v}}=$	0.75

Prying Action Check
N/A, top flange thickness > tc

Acceptable Stress	
Ratio $=$	

Stiffeners ineffective - check plate unstiffened

Existing Flange Connection @

ME5015 (4340) NORTH PORTLAND

 2012801.10GPD GROUP

Acceptable Stress	
Ratio $=$	
	105.0%

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

$\mathrm{F}_{\mathrm{ub}}=$	120	ksi
$A_{b}=$	0.785398	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	0.606	in ${ }^{\text {c }}$
$\phi \mathrm{R}_{\mathrm{nv}}=$	31.81	kips
$\phi \mathrm{R}_{\mathrm{nt}}=$	54.54	s
$\mathrm{V}_{\mathrm{ub}}=$	0.66	s
$\mathrm{T}_{\mathrm{ub}}=$	38.00	k

Prying Action Check
N/A, top flange thickness > tc

Stiffeners ineffective - check plate unstiffened

Stiffeners ineffective - check plate unstiffened

Existing Flange Connection @
 ME5015 (4340) NORTH PORTLAND 2012801.10

GPD GROUP

Acceptable Stress	
Ratio $=$	

Prying Action Check
N/A, top flange thickness > tc

Stiffeners ineffective - check plate unstiffened

Existing Flange Connection @
ME5015 (4340) NORTH PORTLAND 2012801.10
GPD GROUP

Acceptable Stress	
Ratio $=$	

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

=	120	ksi
$\mathrm{A}_{\mathrm{b}}=$	0.785398	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	0.606	$\mathrm{in}^{\text {c }}$
$\phi \mathrm{R}_{\mathrm{nv}}$	31.81	ps
$\phi \mathrm{R}_{\mathrm{nt}}$	54.54	s
$\mathrm{V}_{\mathrm{ub}}=$	0.64	
$\mathrm{T}_{\mathrm{ub}}=$	25.42	kips

Prying Action Check
N/A, top flange thickness > tc

Upper Flange Plate	
Location =	External
Plate Strength $\left(\mathrm{F}_{\mathrm{y}}\right)=$	36 ksi
Plate Tensile (F_{u}) $=$	58 ksi
Plate Thickness	1.25 in
Outer Diameter =	36 in
$\phi_{\mathrm{f}}=$	0.9
wcalc $=$	13.75 in
wmax $=$	21.04 in
	13.75 in
$\mathrm{Z}=$	$5.37 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{u}}=$	87.20 k-in
$\phi \mathrm{M}_{\mathrm{n}}=$	173.9947 k-in
UP Capacity =	50.1\% OK

UpperStiffeners	
Configuration =	Every Other
Thickness =	0.625 in
Width $=$	3 in
Notch $=$	0.5 in
Height $=$	5 in
Stiffener Strength (F_{y}) $=$	36 ksi
Weld Info. Known? =	Yes
Vertical Weld Size $=$	0.375 in
Horiz. Weld Type =	Fillet
Fillet Size $=$	0.375 in
Weld Strength =	70 ksi

Stiffeners ineffective - check plate unstiffened

Existing Flange Connection @

ME5015 (4340) NORTH PORTLAND

 2012801.10GPD GROUP

Acceptable Stress	
Ratio $=$	

Tension \& Shear (TIA-222-G-1, Section 4.9.6)

$\mathrm{F}_{\mathrm{ub}}=$	120	ksi
A_{b}	0.785398	in^{2}
$\mathrm{A}_{\mathrm{n}}=$	0.606	$\mathrm{in}^{\text {c }}$
$\phi \mathrm{R}_{\mathrm{nv}}=$	31.81	kips
$\phi \mathrm{R}_{\mathrm{nt}}=$	54.54	S
$=$	0.40	s
$\mathrm{T}_{\mathrm{ub}}=$	12.14	kips

Prying Action Check
N/A, top flange thickness > tc

Upper Flange Plate	
Location =	External
Plate Strength (F_{y}) $=$	36 ksi
Plate Tensile (F_{u}) $=$	58 ksi
Plate Thickness	1.25 in
Outer Diameter =	30 in
$\phi_{\mathrm{f}}=$	0.9
wcalc $=$	12.37 in
wmax $=$	20.84 in
	12.37 in
$\mathrm{Z}=$	$4.83 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{u}}=$	39.22 k -in
$\phi \mathrm{M}_{\mathrm{n}}=$	156.5492 k-in
UP Capacity =	25.1\% OK

UpperStiffeners	
Configuration $=$	Every Other
Thickness $=$	0.625 in
Width $=$	3 in
Notch =	0.5 in
Height $=$	5 in
Stiffener Strength (F_{y}) $=$	36 ksi
Weld Info. Known? =	Yes
Vertical Weld Size $=$	0.375 in
Horiz. Weld Type =	Fillet
Fillet Size $=$	0.375 in
Weld Strength $=$	70 ksi

Stiffeners ineffective - check plate unstiffened

Stiffeners ineffective - check plate unstiffened

APPENDIX F

Foundation Analysis

Mat Foundation Analysis ME5015 (4340) NORTH PORTLAND

General Info	
Code	TIA-222-G
Bearing On	Soil
Foundation Type	Mono Pad
Pier Type	Round
Reinforcing Known	Yes
Max Capacity	1.05

Tower Reactions	
M oment, M	$3904 \mathrm{k}-\mathrm{ft}$
Axial, P	54 k
Shear, V	33 k

Pad \& Pier Geometry		
Pier Diameter, \varnothing	7	ft
Pad Length, L	24	ft
Pad Width, W	24	ft
Pad Thickness, t	3	ft
Depth, D	12	ft
Height Above Grade, HG	0.5	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	4	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 10$	
Pad Quantity Per Layer	31	
Pier Rebar Size	$\# 11$	
Pier Quantity of Rebar	38	

Soil Properties	
Soil Type	Cohesive
Soil Unit Weight	120 pcf
Cohesion, Cu	0 ksf
Bearing Type	Gross
Ultimate Bearing	9 ksf
Water Table Depth	5 ft
Frost Depth	5.833 ft

GPD M at Foundation Analysis - V1.01

Bearing Summary			Load Case
Qxmax	2.57	ksf	0.9D+1.6W
Qymax	2.57	ksf	0.9D+1.6W
Qmax @ 45 ${ }^{\circ}$	3.10	ksf	0.9D+1.6W
$\mathrm{Q}_{\text {(all) Gross }}$	6.75	ksf	
Controlling Capacity	45.9\%	Pass	

Overturning Summary (Required FS=1.0)		Load Case	
FS(ot)x	1.72	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
FS(ot)y	1.72	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Controlling Capacity	$\mathbf{5 8 . 1} \%$	Pass	

