

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=661, 8=661.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

000	Truss		Truss Type	9	Qty		Ply	DIDONAT	0			
641253C	002		ROOF TRUS	SS	13		1	A_PMT_E	130273_8/31/2	012 1:33:51 PM		
Boise Structural Solution	s, Biddeford, ME 04	4005	1		Run: 7.350 s Ju	n 22	2012 Print:	7.350 s Se	p 27 2012 MiTe	ek Industries, Inc. Th		:49:18 2012 Page 1
	- <u>1-0-0</u>	8-7-12	I	17-0-0		25	-4-4	, un nu nyi		34-0-0	<u>35-0-</u> 0	/
	1-0-0	8-7-12	'	8-4-4		8-	-4-4	'		8-7-12	1-0-0	
					6x6 =							Scale = 1:70.4
				7.00 12	-							
			4 4x6 = 11	x10 = 19 ₁₂ 8 4	5	6	20	4x10 ≈ ⁶ 21	4x6 ≈ 7			
1-1- <u>0-8</u>	12x12 = 1	17 6 11 B1		W8 +	B2			WI6	22	14 23 12 B3	2x12 =	[⁴
	⊠ 15	2	4 2	2514 13 26		27	12	1128	29		⊠ 10	
				5x6 =			3x8	 				
				3x8				5x6 =				
		11-5-3			22-6-13				34-0-	0		
Plate Offsets (X,Y):	[2:0-5-0,0-4-1]	<u>11-5-3</u> 2], [8:0-5-0,0-4-12	:]		11-1-11				11-5-	3		
LOADING (psf) TCLL 53 (Ground Snow=70.0 TCDL 10 BCLL 0 BCDL 10	9 S 9 P 0 Lu 0 * C 0	PACING 2 lates Increase umber Increase ep Stress Incr ode IBC2009/TPI2	2-0-0 1.15 1.15 YES 2007	CSI TC 0.91 BC 0.57 WB 0.83 (Matrix)	DEFL Vert(LL) Vert(TL) Horz(TL)	i -0.3 -0.4 0.1	in (loc) 32 12-13 5 12-13 0 10	l/defl >999 >898 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19	GRI 169, 19 lb F1	P /123 ⁻ = 0%
LUMBER TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4 W6,	SPF 1650F 1.5 SPF 1650F 1.5 SPF 1650F 1.5 SPF 1650F 1.5 W3: 2x4 SPF-S	E E E *Except* No.2, W1,W8: 2x	8 SYP M 2	3	BRACING TOP CHORD BOT CHORD WEBS		Structura end verti Rigid cei 1 Row at MiTek r be insta Installa	al wood s cals. ling dire midpt ecomme alled dur tion quic	sheathing dir ctly applied o 3-1 ends that Sta ing truss ere le.	rectly applied or a or 10-0-0 oc brac 5, 7-10 abilizers and req action, in accorda	2-2-0 oc p sing. uired cross unce with	ourlins, except as bracing Stabilizer
REACTIONS (Ib/si Max Max	ze) 15=2888/0 Horz 15=-590(L Uplift15=-788(L	0-5-8 (min. 0-4-8) .C 6) .C 8), 10=-788(LC	, 10=2888/ ; 9)	0-5-8 (min. 0-4-8)				<u> </u>	-			,
FORCES (lb) - Ma TOP CHORD 2-1 4-1 7-2 8-1	x. Comp./Max. 6=-1708/700, 1 9=-3281/1111, 1=-3569/1087, 0=-1434/765	Ten All forces 2 6-17=-1433/719, 5-19=-3242/1133 7-22=-1230/744,	50 (lb) or le 3-17=-1230 , 5-20=-324 22-23=-143	ess except when shown 0/744, 3-18=-3569/1087 42/1133, 6-20=-3281/1 33/719, 8-23=-1708/699	ı. 7, 4-18=-3411/10 111, 6-21=-3411/ 9, 2-15=-1434/76	97, 109 6,	7,					
BOT CHORD 15- 26- 10-	24=-628/3185, 27=-212/2231, 29=-628/3185	24-25=-628/3185 12-27=-212/2231	, 14-25=-62 , 11-12=-62	28/3185, 13-14=-628/31 28/3185, 11-28=-628/31	185, 13-26=-212/ 185, 28-29=-628/	223 318	1, 5,					
WEBS 5-1 7-1	2=-385/1492, 7 0=-2455/440	7-12=-972/538, 5-1	13=-385/14	92, 3-13=-972/538, 3-1	5=-2455/440,							
NOTES (10) 1) Wind: ASCE 7-0 zone and C-C Ex- cantilever left am 2) TCLL: ASCE 7-0 3) Unbalanced snov 4) This truss has be non-concurrent v 5) This truss has be 0) * This truss has be	5; 120mph (3-s; terior(2) -1-0-0 d right exposed 5; Pg = 70.0 psi w loads have be en designed fo with other live lo een designed designed	econd gust); TCD to 2-4-13, Interior ;C-C for members (ground snow); P sen considered foi r greater of min ro ads. r a 10.0 psf bottor for a live load of 2	L=6.0psf; E (1) 2-4-13 s and force f=53.9 psf r this desig oof live load n chord liv 0 0psf or t	3CDL=6.0psf; h=35ft; C to 13-7-3, Exterior(2) 13 es & MWFRS for reactio (flat roof snow); Catego n. d of 17.0 psf or 1.00 tim e load nonconcurrent w he bottom chord in all a	at. II; Exp C; enc 3-7-3 to 17-0-0, Ir ons shown; Lumb ory II; Exp C; Part es flat roof load c rith any other live	lose teri er D ially of 53	ed; MWFF or(1) 20-4 OOL=1.60 v Exp.; Ct 3.9 psf on ds. gle 3-6-0	RS (low-l l-13 to 3 plate gr =1.1 overhai	rise) gable e 1-7-3 zone; ip DOL=1.60 ngs	nd)		
 between the bott 7) Provide mechani 10=788. 8) This truss is desi 	om chord and a cal connection gned in accord	(by others) of trus	s, with BCI s to bearin 9 Internatio	DL = 10.0psf. g plate capable of withs onal Building Code sect	standing 100 lb up	plift	at joint(s)	except ndard A	(jt=lb) 15=78 NSI/TPI 1.	38,		

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.10) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 17.0 psf or 1.00 times flat roof load of 53.9 psf on overhangs non-concurrent with other live loads.

All plates are 2x4 MT20 unless otherwise indicated. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	DIDONATO
641253C	003	GESI	1	1	A_MGE_E130273_8/31/2012 1:34:00 PM Job Reference (optional)
Boise Structural Solutions, Biddeford, ME 04005			Run: 7.350 s Jun 22 ID:oXFAgNR_2D	2012 Print: o3HOZaz	7.350 s Sep 27 2012 MiTek Industries, Inc. Thu Dec 20 15:49:18 2012 Page 2 XbHDYyiLve-prXxtQQi6m4DnZpoNU?3RoOQA5MFIcyQ40_33ky71wl

NOTES (15)

7) Gable requires continuous bottom chord bearing.

8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

9) Gable studs spaced at 2-0-0 oc.

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 34, 28, 24 except (jt=lb) 38=263, 20=167, 31=121,
- 32=103, 35=138, 36=130, 37=302, 27=121, 26=103, 23=137, 22=134, 21=278. 13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 15) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

Job	Truss	Truss Type	Qty	Ply	DIDONATO
641253C	004	GESTR	1	1	A_MGE_E130273_8/31/2012 1:34:05 PM Job Reference (optional)
Boise Structural Solutions, Biddeford, ME 04005			Run: 7.350 s Jun 22 ID:oXFAgNR_2Do	2012 Print: 03HOZaz	7.350 s Sep 27 2012 MiTek Industries, Inc. Thu Dec 20 15:49:19 2012 Page 2 KbHDYyiLve-H15J5mRKt3C4PiO_wBWIz0wVLVe31_2ZJgkccAy71wk

12) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

7) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=571,

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

10) Semi-rigid pitchbreaks including neels interiber end fixity model was used in the analysis and design (

11) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

â ș					
Job	Truss	Truss Type	Qty	Ply	HAMMOND LUMBER 1-14 MATT
641253	007	GESI	1	1	B_MGE_E130273_8/31/2012 1:34:17 PM Job Reference (optional)
Boise Structural Solutions, Bidd	eford, ME 04005	Run: 7 ID:o>	.350 s Jun 22 20 XFAgNR_2Do3	12 Print: 7. HOZazXb	350 s Sep 27 2012 MiTek Industries, Inc. Mon Dec 31 14:34:55 2012 Page 2 HDYyiLve-pkBwX31Bd1IbYRidEHwqxokLx2H5RLY3yeLOKHy3R_U

15) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

LOAD CASE(S) Standard

ч,

RECEIVED

MAR 2 1 2013

Dept. of Building Inspections City of Portland Maine

Continued on page 2

Job		Truss	Truss Type	Qty	Ply		DIDONATO
641253C		008	GIRDER	1		3	B_MOHC_E130273_8/31/2012 1:34:22 PM Job Reference (optional)
Boise Structural Solutions, Biddeford, ME 04005			Run: 7.350 s Ju	22 2012 F	rint:	7.350 s Sep 27 2012 MiTek Industries, Inc. Thu Dec 20 15:49:20 2012 Page 2	
				ID:0XFAgNH	_2D03HC	Zaz	XbHDYyiLve-iEeni6SzeNKx1szAUv2XWDTCAutVmSCjXKTA8cy/1wj

NOTES (14)

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2716 lb down and 707 lb up at 2-0-12, 2716 lb down and 707 lb up at 4-0-12, 5432 lb down and 1414 lb up at 5-3-8, 2716 lb down and 707 lb up at 8-0-12, 2716 lb down and 707 lb up at 10-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 12-0-12, 2716 lb down and 707 lb up at 10-0-12, 2716 lb down and 525 lb u

LOAD CASE(S) Standard

1) Snow: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-128, 4-7=-128, 1-7=-20

Concentrated Loads (Ib)

Vert: 10=-2716(B) 17=-2716(B) 18=-2716(B) 19=-5432(B) 20=-2716(B) 21=-2716(B) 22=-2716(B) 23=-2716(B) 24=-2716(B) 25=-1381(B)

11) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21, 18 except (jt=lb) 25=322, 14=217, 22=167, 23=163, 24=322, 17=167, 16=165, 15=247.

13) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 14) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

12) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Continued on page 2

Truss	Truss Type	Qty	Ply	DIDONATO
011	GIRDER	1	3	C_MOHC_E130273_8/31/2012 1:34:36 PM Job Reference (optional)
Boise Structural Solutions, Biddeford, ME 04005			2012 Print:	7.350 s Sep 27 2012 MiTek Industries, Inc. Thu Dec 20 15:49:21 2012 Page 2

NOTES (14)

 (14)
 (14)
 (15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2716 lb down and 707 lb up at 2-0-12, 5432 lb down and 1414 lb up at 3-3-8, 2716 lb down and 707 lb up at 6-0-12, 2716 lb down and 707 lb up at 10-0-12, 2716 lb down and 707 lb up at 12-0-12, and 2716 lb down and 707 lb up at 14-0-12, and 2716 lb down and 707 lb up at 14-0-12, and 2716 lb down and 707 lb up at 14-0-12, and 2716 lb down and 707 lb up at 16-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 14) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

LOAD CASE(S) Standard

1) Snow: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-128, 5-8=-128, 1-8=-20

Concentrated Loads (Ib)

Vert: 11=-2716(F) 15=-2716(F) 16=-5432(F) 17=-2716(F) 18=-2716(F) 19=-2716(F) 20=-2716(F) 21=-2716(F)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-7=-410/45, 2-9=-683/384, 4-6=-683/384

NOTES (9)

1) Wind: ASCE 7-05; 120mph (3-second gust); TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 5-10-8, Exterior(2) 5-10-8 to 8-10-8, Interior(1) 11-10-8 to 14-2-8 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-05; Pg= 70.0 psf (ground snow); Pf=53.9 psf (flat roof snow); Category II; Exp C; Partially Exp.; Ct=1.1

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=365, 6=365.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

			106	DIV	
Job	Truss	Truss Type	lain	riy	HAMMOND LOWBER 1-14 MATT
			1		
0.44050	012		2	1	
641253	013		1-		Job Reference (optional)
		D	0 07.00	10 Deats 7	250 a Son 27 2012 Mitck Industries, Inc. Mon Dec 31 14:34:57 2012, Page 2
Boise Structural Solutions, Bidd	Run: 7.350 s	S Sep 27 20	nz Plinc 7.	Sol S Sep 27 2012 Witter Industries, inc. Montpact of the AMOVAVAP	
	ID:o	XFAgNR_	2D03H04	cazxbHDYylLve-l6inyl3R9eYJnisoLizioDpdLi_kv37mQydvOAy3r_3	

LOAD CASE(S) Standard Except: Uniform Loads (plf) Vert: 1-3=-19, 3-5=41, 1-5=-12 Horz: 1-3=7, 3-5=53 7) MWFRS Wind Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=41, 3-5=-19, 1-5=-12 Horz: 1-3=-53, 3-5=-7 8) MWFRS 1st Wind Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-10=67, 3-10=43, 3-5=43, 1-5=-12 Horz: 1-10=-79, 3-10=-55, 3-5=55 9) MWFRS 2nd Wind Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=43, 3-11=43, 5-11=67, 1-5=-12 Horz: 1-3=-55, 3-11=55, 5-11=79 40) MWFRS 2nd Wind Parallel: Lumber Increase=1.60, Plate Increase=1.60

- 10) MWFRS 3rd Wind Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-10=33, 3-10=23, 3-5=23, 1-5=-12 Horz: 1-10=-45, 3-10=-35, 3-5=35
- 11) MWFR3 th Wind Parallel: Lumber Increase=1.60, Plate Increase=1.60
 - Uniform Loads (plf) Vert: 1-3=23, 3-11=23, 5-11=33, 1-5=-12 Horz: 1-3=-35, 3-11=35, 5-11=45

RECEIVED

MAR 2 1 2013

Dept. of Building Inspections City of Portland Maine

between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=127, 3=136. 4=189.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-4=-356/174, 2-4=-267/179, 2-5=-267/179, 3-5=-356/174

BOT CHORD 1-3=-91/255

NOTES (10)

- Wind: ASCE 7-05; 120mph (3-second gust); TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) automatic zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-05; Pg= 70.0 psf (ground snow); Pf=53.9 psf (flat roof snow); Category II; Exp C; Partially Exp.; Ct=1.1
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=129, 3=129.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

10) Drawing prepared exclusively for manufacturing by Boise Structural Solutions

between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8, 12, 10 except (jt=lb) 13=279, 9=273.

11) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

12) Drawing prepared exclusively for manufacturing by Boise Structural Solutions