PROJECT MANUAL FOR

CASCO BAY HIGH SCHOOL - RENOVATIONS Portland, Maine

Bid Documents

February 19, 2018

ARCHITECT

PDT Architects 49 Dartmouth Street Portland, ME 04101

PROJECT TITLE PAGE 000101 - 1

SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Project information.
- 2. Work covered by Contract Documents.
- 3. Access to site.
- 4. Coordination with occupants.
- 5. Work restrictions.
- 6. Specification and drawing conventions.

B. Related Requirements:

1. Section 015000 "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

1.3 PROJECT INFORMATION

- A. Project Identification: Casco Bay High School Renovations.
 - 1. Project Location: 196 Allen Avenue, Portland, Maine.
- B. Owner: Portland Public School.
- C. Architect Identification: The Contract Documents were prepared for Project by PDT Architects, 49 Dartmouth Street, Portland, Maine 04101. Telephone 207-775-1059.

1.4 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work of Project is defined by the Contract Documents and consists of the following:
 - 1. The Work involves the renovations to the existing Casco Bay High School at location indicated on Drawings. Work includes but is not limited to, selective demolition, earthwork, site improvements, and paving. Work also includes concrete foundations and slab-on-grade, steel structure, steel joists and decking, roof membrane over roof insulation, sheet metal flashing, masonry, metal stud partitions, insulation, gypsum board walls and ceilings, ceramic tile, acoustical ceilings, resilient flooring, carpeting, custom

cabinets and fixtures, carpentry, glass storefront and curtain walls systems, painting, metal doors, wood doors, metal frames, door hardware, signage, fire protection and detection systems, security systems, electrical, and heating, ventilating, and air conditioning complete and ready for use.

1.5 ACCESS TO SITE

- A. General: Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.
- B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Driveways, Walkways and Entrances: Keep driveways and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 - a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
- C. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.6 COORDINATION WITH OCCUPANTS

- A. Full Owner Occupancy: Owner will occupy site and existing building during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits unless otherwise indicated.
 - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and approval of authorities having jurisdiction.
 - 2. Notify Owner not less than 72 hours in advance of activities that will affect Owner's operations.

1.7 WORK RESTRICTIONS

- A. Work Restrictions, General: Comply with restrictions on construction operations.
 - 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

- B. On-Site Work Hours: Work shall be generally performed during normal business working hours of 7:00 a.m. to 5:00 p.m., Monday through Friday, except otherwise indicated.
 - 1. Weekend Hours: As approved by Architect and Owner.
 - 2. Early Morning Hours: As approved by Architect and Owner.
 - 3. Hours for Utility Shutdowns: As approved by Architect and Owner.
 - 4. Hours for Core Drilling and Noisy Activity: As approved by Architect and Owner.
 - 5. Provide 24 hour notice to Architect when performing work other than normal working hours
- A. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 - 2. Obtain Owner's written permission before proceeding with utility interruptions.
- B. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.
 - 1. Notify Owner not less than two days in advance of proposed disruptive operations.
 - 2. Obtain Owner's written permission before proceeding with disruptive operations.
- C. Smoking is prohibited in and on the grounds of the School.
- D. Drugs, Alcohol, Substance Abuses, and Firearms: It is strictly prohibited to posses, use, conceal, transport, traffic any drugs, alcohol, controlled substances, or firearms on the premises of the School. Any violations shall be grounds for dismissal and may be cause for termination of any contracts or portions thereof.
- E. Fraternization: Personnel associated with the Construction project shall not associate in any way with the students, faculty, or staff at the school. The General Contractor shall limit access of employees to the project site and to the approved access routes. In addition to fraternization, the use of vulgar language or obscene gestures shall be grounds for immediate dismissal from this project.

1.8 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Format: The Specifications are organized into Divisions and Sections using the 33-division format and CSI's "2012 MasterFormat" numbering system.
 - 1. Section Identification: The Specifications use Section numbers and titles to help cross-referencing in the Contract Documents. Sections in the Project Manual are in numeric sequence; however, the sequence is incomplete because all available Section numbers are not used. Consult the table of contents at the beginning of the Project Manual to determine numbers and names of Sections in the Contract Documents.
 - 2. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

- B. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.
- C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:
 - 1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
 - 2. Abbreviations: Materials and products are identified by abbreviations published as part of the U.S. National CAD Standard and scheduled on Drawings.
 - 3. Keynoting: Materials and products are identified by reference keynotes referencing Specification Section numbers found in this Project Manual.

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000

SECTION 012100 - ALLOWANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements governing allowances.
 - 1. Certain items are specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual materials and equipment to a later date when direction will be provided to Contractor. If necessary, additional requirements will be issued by Change Order.
 - 2. Include the cost of allowances in the contract bid price.
- B. Types of allowances include the following:
 - 1. Lump-sum allowances.
 - 2. Unit-cost allowances.
 - 3. Quantity allowances.

C. Related Requirements:

- 1. Section 012200 "Unit Prices" for procedures for using unit prices.
- 2. Section 014000 "Quality Requirements" for procedures governing the use of allowances for testing and inspecting.

1.3 SELECTION AND PURCHASE

- A. At the earliest practical date after award of the Contract, advise Architect of the date when final selection and purchase of each product or system described by an allowance must be completed to avoid delaying the Work.
- B. At Architect's request, obtain proposals for each allowance for use in making final selections. Include recommendations that are relevant to performing the Work.
- C. Purchase products and systems selected by Architect from the designated supplier.

1.4 ACTION SUBMITTALS

A. Submit proposals for purchase of products or systems included in allowances, in the form specified for Change Orders.

1.5 INFORMATIONAL SUBMITTALS

- A. Submit invoices or delivery slips to show actual quantities of materials delivered to the site for use in fulfillment of each allowance.
- B. Submit time sheets and other documentation to show labor time and cost for installation of allowance items that include installation as part of the allowance.
- C. Coordinate and process submittals for allowance items in same manner as for other portions of the Work.

1.6 COORDINATION

A. Coordinate allowance items with other portions of the Work. Furnish templates as required to coordinate installation.

1.7 LUMP-SUM AND QUANTITY ALLOWANCES

- A. Allowance shall include cost to Contractor of specific products and materials ordered by Owner or selected by Architect under allowance and shall include freight, and delivery to Project site.
- B. Unless otherwise indicated, Contractor's costs for receiving and handling at Project site, labor, installation, overhead and profit, and similar costs related to products and materials under allowance shall be included as part of the Contract Sum and not part of the allowance.
- C. Unused Materials: Return unused materials purchased under an allowance to manufacturer or supplier for credit to Owner, after installation has been completed and accepted.
 - 1. If requested by Architect, retain and prepare unused material for storage by Owner. Deliver unused material to Owner's storage space as directed.

1.8 ADJUSTMENT OF ALLOWANCES

- A. Allowance Adjustment: To adjust allowance amounts, prepare a Change Order proposal based on the difference between purchase amount and the allowance, multiplied by final measurement of work-in-place where applicable. If applicable, include reasonable allowances for cutting losses, tolerances, mixing wastes, normal product imperfections, and similar margins.
 - 1. Include installation costs in purchase amount only where indicated as part of the allowance.
 - 2. If requested, prepare explanation and documentation to substantiate distribution of overhead costs and other margins claimed.
 - 3. Submit substantiation of a change in scope of work, if any, claimed in Change Orders related to unit-cost allowances.
 - 4. Owner reserves the right to establish the quantity of work-in-place by independent quantity survey, measure, or count.

- B. Submit claims for increased costs because of a change in scope or nature of the allowance described in the Contract Documents, whether for the purchase order amount or Contractor's handling, labor, installation, overhead, and profit.
 - 1. Do not include Contractor's or subcontractor's indirect expense in the Change Order cost amount unless it is clearly shown that the nature or extent of work has changed from what could have been foreseen from information in the Contract Documents.
 - 2. No change to Contractor's indirect expense is permitted for selection of higher- or lower-priced materials or systems of the same scope and nature as originally indicated.
- C. Return unused Lump Sum amounts for credit to Owner in their entirety.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine products covered by an allowance promptly on delivery for damage or defects. Return damaged or defective products to manufacturer for replacement.

3.2 PREPARATION

A. Coordinate materials and their installation for each allowance with related materials and installations to ensure that each allowance item is completely integrated and interfaced with related work.

3.3 SCHEDULE OF ALLOWANCES

- A. Allowance No. 1: Quantity Allowance: Include 100 cu. yd. of open rock removal, as specified in Section 312000 "Earth Moving."
 - 1. Coordinate quantity allowance adjustment with unit-price requirements in Section 012200 "Unit Prices."
- B. Allowance No. 2: Quantity Allowance: Include 80 cu. yd. of trench rock removal, as specified in Section 312000 "Earth Moving."
 - 1. Coordinate quantity allowance adjustment with unit-price requirements in Section 012200 "Unit Prices."
- C. Allowance No. 3: Quantity Allowance: Include 50 sq. ft. of slab trenching (including cut, dig, backfill, patching, and doweling to perimeter) for new underground plumbing.
 - 1. This allowance includes material cost, receiving, handling, and installation, and Contractor overhead and profit.

- D. Allowance No. 4: Quantity Allowance: Include 1000 sq. ft. of selective plaster ceiling removal.
 - 1. This allowance includes material cost, receiving, handling, and installation, and Contractor overhead and profit.
- E. Allowance No. 5: Quantity Allowance: Include 1000 sq. ft. of plaster ceiling repair and patching.
 - 1. This allowance includes material cost, receiving, handling, and installation, and Contractor overhead and profit.
- F. Allowance No. 6: Lump-Sum Allowance: Include the sum of \$30,000: Include Impact Fee due at time of Building Permit.

END OF SECTION 012100

SECTION 012300 - ALTERNATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS

- A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.
 - 1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
 - 2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.4 PROCEDURES

- A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.
 - 1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.
- B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates.
- C. Execute accepted alternates under the same conditions as other work of the Contract.
- D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

ALTERNATES 012300 - 1

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

- A. Alternate No. < Insert number>: < Insert title of alternate>.
 - 1. Base Bid: <Insert brief description of base-bid requirement> [as indicated on Sheet <Insert title of sheet>] [and] [as specified in Section <Insert Section number> "<Insert Section title>."]
 - 2. Alternate: <Insert brief description of alternate requirement> [as indicated on Sheet <Insert title of sheet>] [and] [as specified in Section <Insert Section number> "<Insert Section title>."]

END OF SECTION 012300

ALTERNATES 012300 - 2

SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for substitutions.
- B. Related Requirements:
 - 1. Section 012100 "Allowances" for products selected under an allowance.
 - 2. Section 012300 "Alternates" for products selected under an alternate.
 - 3. Section 016000 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Submit electronic copy of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.

- c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
- d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
- e. Samples, where applicable or requested.
- f. Certificates and qualification data, where applicable or requested.
- g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
- h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
- i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
- j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- k. Cost information, including a proposal of change, if any, in the Contract Sum.
- 1. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within three days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution by addendum.
 - a. Use product specified if Architect cannot make a decision on use of a proposed substitution within time allocated or notification is not made by addendum.

1.5 QUALITY ASSURANCE

- A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.
- B. Products with asbestos: Asbestos containing materials are not to be purchased or installed in this project.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

- A. Substitutions: Architect will consider requests for substitution if received within 60 days after commencement of the Work. Requests received after that time may be considered or rejected at discretion of Architect.
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - b. Requested substitution does not require extensive revisions to the Contract Documents.
 - c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - d. Substitution request is fully documented and properly submitted.
 - e. Requested substitution will not adversely affect Contractor's construction schedule.
 - f. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - g. Requested substitution is compatible with other portions of the Work.
 - h. Requested substitution has been coordinated with other portions of the Work.
 - i. Requested substitution provides specified warranty.
 - j. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500

SECTION 012600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

B. Related Requirements:

1. Section 012500 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.

1.3 MINOR CHANGES IN THE WORK

A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions"

1.4 PROPOSAL REQUESTS

- A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - 1. Work Change Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change.
 - 2. Within 20 days, when not otherwise specified, after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 - a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - b. Indicate applicable bonds, insurance, delivery charges, equipment rental, and amounts of trade discounts.
 - c. Include costs of labor and supervision directly attributable to the change.
 - d. Include quotes on supplier's and subcontractor's letterhead for the requested change.

- e. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
- B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.
 - 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 - 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - 3. Indicate applicable bonds, insurance, delivery charges, equipment rental, and amounts of trade discounts.
 - 4. Include costs of labor and supervision directly attributable to the change.
 - 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 - 6. Comply with requirements in Section 012500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.
 - 7. Proposal Request Form: Use form acceptable to Architect.
- C. Proposal Request Form: Use AIA Document G709 for Proposal Requests.

1.5 ADMINISTRATIVE CHANGE ORDERS

A. Allowance Adjustment: See Section 012100 "Allowances" for administrative procedures for preparation of Change Order Proposal for adjusting the Contract Sum to reflect actual costs of allowances.

1.6 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Work Changes Proposal Request, Architect will issue a Change Order for signatures of Owner and Contractor on AIA Document G701.

1.7 CONSTRUCTION CHANGE DIRECTIVE

- A. Construction Change Directive: Architect may issue a Construction Change Directive on AIA Document G714. Construction Change Directive instructs Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.
 - 1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

- B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.
 - 1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012600

SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Requirements:

- 1. Section 012100 "Allowances" for procedural requirements governing the handling and processing of allowances.
- 2. Section 012600 "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.
- 3. Section 013200 "Construction Progress Documentation" for administrative requirements governing the preparation and submittal of the Contractor's construction schedule.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

- A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.
 - 1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 - a. Application for Payment forms with continuation sheets.
 - b. Submittal schedule.
 - c. Items required to be indicated as separate activities in Contractor's construction schedule.
 - 2. Submit the schedule of values to Architect at earliest possible date, but no later than seven days before the date scheduled for submittal of initial Applications for Payment.

- 3. Subschedules for Separate Elements of Work: Where the Contractor's construction schedule defines separate elements of the Work, provide subschedules showing values coordinated with each element.
- B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 - 1. Identification: Include the following Project identification on the schedule of values:
 - a. Project name and location.
 - b. Name of Architect.
 - c. Architect's project number.
 - d. Contractor's name and address.
 - e. Date of submittal.
 - 2. Arrange schedule of values consistent with format of AIA Document G703.
 - 3. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:
 - a. Related Specification Section or Division.
 - b. Description of the Work.
 - c. Name of subcontractor.
 - d. Name of manufacturer or fabricator.
 - e. Name of supplier.
 - f. Change Orders (numbers) that affect value.
 - g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.
 - 1) Labor.
 - 2) Materials.
 - 3) Equipment.
 - 4. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with Project Manual table of contents. Provide multiple line items for principal subcontract amounts in excess of five percent of the Contract Sum.
 - a. Include separate line items under Contractor and principal subcontracts for Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
 - 5. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
 - 6. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 - a. Differentiate between items stored on-site and items stored off-site. If required, include evidence of insurance.
 - 7. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

- 8. Allowances: Provide a separate line item in the schedule of values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.
- 9. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 - a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the schedule of values or distributed as general overhead expense, at Contractor's option.
- 10. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.
- C. Draw-Down Schedule: The Contractor shall furnish to the Architect, at the beginning of the project, an expected monthly requisition estimate for the Owner's use in planning funding.

1.5 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 - 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.
- B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
 - 1. Submit draft copy of Application for Payment seven days prior to due date for review by Architect.
- C. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.
- D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 - 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
 - 3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

- E. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.
 - 1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment, for stored materials.
 - 2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.
 - 3. Provide summary documentation for stored materials indicating the following:
 - a. Value of materials previously stored and remaining stored as of date of previous Applications for Payment.
 - b. Value of previously stored materials put in place after date of previous Application for Payment and on or before date of current Application for Payment.
 - c. Value of materials stored since date of previous Application for Payment and remaining stored as of date of current Application for Payment.
- F. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt within 24 hours. One copy shall include waivers of lien and similar attachments if required.
 - 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
- G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's liens from subcontractors, sub-subcontractors, and suppliers for construction period covered by the previous application.
 - 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 - 2. When an application shows completion of an item, submit conditional final or full waivers
 - 3. The list of subcontractors, principal suppliers and fabricators shall be used to designate which entities involved in the Work must submit waivers. The list shall be approved by the Owner.
 - 4. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
 - 5. Waiver Forms: Submit executed waivers of lien on forms, acceptable to Owner.
- H. Record Drawing Updates: With each Application of Payment, record documents shall be maintained and current for all trades, available for viewing at a central location.
- I. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 - 1. List of subcontractors.
 - 2. Schedule of values.
 - 3. Contractor's construction schedule (preliminary if not final).

- 4. Combined Contractor's construction schedule (preliminary if not final) incorporating Work of multiple contracts, with indication of acceptance of schedule by each Contractor.
- 5. Products list (preliminary if not final).
- 6. Submittal schedule (preliminary if not final).
- 7. List of Contractor's staff assignments.
- 8. List of Contractor's principal consultants.
- 9. Copies of building permits and other required permits.
- 10. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
- 11. Initial progress report.
- 12. Report of preconstruction conference.
- 13. Certificates of insurance and insurance policies.
- 14. Performance and payment bonds.
- J. Progress Applications for Payment: Administrative actions and submittals that must precede or coincide with submittal of progress Applications for Payment include the following:
 - 1. Contractor's Construction Schedule update.
 - 2. Submittals for Work being requisitioned for are complete and approved.
 - 3. Submit list of completed tests, checklists, commissioning, reports, and similar requirements for the work are submitted and in compliance with the Contract Documents.
 - 4. Minutes of previous month's progress meeting have been distributed.
 - 5. Record drawings and documents are current.
- K. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificate(s) of Substantial Completion issued previously for Owner occupancy of designated portions of the Work.
- L. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Final submittal of record documents and operation, maintenance data and demonstration and training.
 - 3. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 - 4. Updated final statement, accounting for final changes to the Contract Sum.
 - 5. Waiver Forms: Submit waivers of lien on forms, and executed in a manner, acceptable to the Owner.
 - 6. Evidence that claims have been settled.
 - 7. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.
 - 8. Final liquidated damages settlement statement, if applicable.

PART 3 - EXECUTION (Not Used)

END OF SECTION 012900

SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. General coordination procedures.
 - 2. Requests for Information (RFIs).
 - 3. Project meetings.
- B. Each contractor shall participate in coordination requirements. Certain areas of responsibility are assigned to a specific contractor.

C. Related Requirements:

- 1. Section 013200 "Construction Progress Documentation" for preparing and submitting Contractor's construction schedule.
- 2. Section 017300 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
- 3. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 - 1. Name, address, and telephone number of entity performing subcontract or supplying products.
 - 2. Number and title of related Specification Section(s) covered by subcontract.
 - 3. Drawing number and detail references, as appropriate, covered by subcontract.

- B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.
 - 1. Post copies of list in project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

1.5 GENERAL COORDINATION PROCEDURES

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
 - 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components, including mechanical and electrical. Coordinate location of pipes, conduits, ducts and similar items in confined areas to assure proper fit and access. Contractor is responsible for handling interferences created by the work of subcontractors (example, sprinkler pipe interfering with installation of duct work; duct work interfering with installation of light fixtures, overhead construction interfering with installation of finish ceilings at proper height).
 - 5. Coordinate the work to provide smoke and fire seals for component interfaces and penetrations of smoke walls and fire rated construction.
- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.
- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and activities of other contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.

- 5. Progress meetings.
- 6. Preinstallation conferences.
- 7. Project closeout activities.
- 8. Startup and adjustment of systems.
- D. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
 - 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

1.6 REQUESTS FOR INTERPRETATION (RFIs)

- A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 - 1. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.
 - 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.
- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name.
 - 2. Project number.
 - 3. Date.
 - 4. Name of Contractor.
 - 5. Name of Architect.
 - 6. RFI number, numbered sequentially.
 - 7. RFI subject.
 - 8. Specification Section number and title and related paragraphs, as appropriate.
 - 9. Drawing number and detail references, as appropriate.
 - 10. Field dimensions and conditions, as appropriate.
 - 11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
 - 12. Contractor's signature.
 - 13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 - a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.
- C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Architect.
 - 1. Attachments shall be electronic files in Adobe Acrobat PDF format.

- D. Architect's Action: Architect will review each RFI, determine action required, and respond. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.
 - 1. The following Contractor-generated RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for approval of Contractor's means and methods.
 - d. Requests for coordination information already indicated in the Contract Documents.
 - e. Requests for adjustments in the Contract Time or the Contract Sum.
 - f. Requests for interpretation of Architect's actions on submittals.
 - g. Incomplete RFIs or inaccurately prepared RFIs.
 - 2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.
 - 3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.
- E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Software log with not less than the following:
 - 1. Project name.
 - 2. Name and address of Contractor.
 - 3. Name and address of Architect.
 - 4. RFI number including RFIs that were returned without action or withdrawn.
 - 5. RFI description.
 - 6. Date the RFI was submitted.
 - 7. Date Architect's response was received.
- F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.
 - 1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
 - 2. Identification of related Field Order, Work Change Directive, and Proposal Request, as appropriate.

1.7 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

- 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
- 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
- 3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.
- B. Preconstruction Conference: Architect will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.
 - 1. Conduct the conference to review responsibilities and personnel assignments.
 - 2. Attendees: Authorized representatives of Owner Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. Tentative construction schedule.
 - b. Critical work sequencing and long-lead items.
 - c. Designation of key personnel and their duties.
 - d. Lines of communications.
 - e. Procedures for processing field decisions and Change Orders.
 - f. Procedures for RFIs.
 - g. Procedures for testing and inspecting.
 - h. Procedures for processing Applications for Payment.
 - i. Distribution of the Contract Documents.
 - j. Submittal procedures.
 - k. Preparation of record documents.
 - 1. Use of the premises and existing building.
 - m. Work restrictions.
 - n. Working hours.
 - o. Owner's occupancy requirements.
 - p. Responsibility for temporary facilities and controls.
 - q. Procedures for moisture and mold control.
 - r. Procedures for disruptions and shutdowns.
 - s. Construction waste management and recycling.
 - t. Parking availability.
 - u. Office, work, and storage areas.
 - v. Equipment deliveries and priorities.
 - w. First aid.
 - x. Security.
 - y. Progress cleaning.
 - 4. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.
- C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction.

- 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
- 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Options.
 - c. Related RFIs.
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Review of mockups.
 - i. Possible conflicts.
 - j. Compatibility requirements.
 - k. Time schedules.
 - 1. Weather limitations.
 - m. Manufacturer's written instructions.
 - n. Warranty requirements.
 - o. Compatibility of materials.
 - p. Acceptability of substrates.
 - q. Temporary facilities and controls.
 - r. Space and access limitations.
 - s. Regulations of authorities having jurisdiction.
 - t. Testing and inspecting requirements.
 - u. Installation procedures.
 - v. Coordination with other work.
 - w. Required performance results.
 - x. Protection of adjacent work.
 - y. Protection of construction and personnel.
- 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
- 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
- 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and Architect, but no later than 90 days prior to the scheduled date of Substantial Completion.
 - 1. Conduct the conference to review requirements and responsibilities related to Project closeout.
 - 2. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

- 3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 - a. Preparation of record documents.
 - b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 - c. Submittal of written warranties.
 - d. Requirements for preparing operations and maintenance data.
 - e. Requirements for delivery of material samples, attic stock, and spare parts.
 - f. Requirements for demonstration and training.
 - g. Preparation of Contractor's punch list.
 - h. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 - i. Submittal procedures.
 - j. Coordination of separate contracts.
 - k. Owner's partial occupancy requirements.
 - 1. Installation of Owner's furniture, fixtures, and equipment.
 - m. Responsibility for removing temporary facilities and controls.
- 4. Minutes: Entity conducting meeting will record and distribute meeting minutes.
- E. Progress Meetings: Conduct progress meetings at monthly intervals.
 - 1. Coordinate dates of meetings with preparation of payment requests.
 - 2. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Application for Payment: Contractor shall bring copy of Application for Payment to meeting. Review Application for Payment and required attachments, including record drawing and documents status, waivers of mechanic's liens, list of completed tests, checklists, commissioning, reports, and similar requirements for the work are submitted and in compliance with the Contract Documents.
 - c. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.

- 3) Status of submittals.
- 4) Deliveries.
- 5) Off-site fabrication.
- 6) Access.
- 7) Site utilization.
- 8) Temporary facilities and controls.
- 9) Progress cleaning.
- 10) Quality and work standards.
- 11) Status of correction of deficient items.
- 12) Field observations.
- 13) Status of RFIs.
- 14) Status of proposal requests.
- 15) Pending changes.
- 16) Status of Change Orders.
- 17) Pending claims and disputes.
- 18) Documentation of information for payment requests.
- 4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.
- F. Coordination Meetings: Conduct Project coordination meetings at regular intervals. Project coordination meetings are in addition to specific meetings held for other purposes, such as progress meetings and preinstallation conferences.
 - 1. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meetings shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Review and correct or approve minutes of the previous coordination meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Combined Contractor's Construction Schedule: Review progress since the last coordination meeting. Determine whether each contract is on time, ahead of schedule, or behind schedule, in relation to combined Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - b. Schedule Updating: Revise combined Contractor's construction schedule after each coordination meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with report of each meeting.
 - c. Review present and future needs of each contractor present, including the following:
 - 1) Interface requirements.

- 2) Sequence of operations.
- 3) Status of submittals.
- 4) Deliveries.
- 5) Off-site fabrication.
- 6) Access.
- 7) Site utilization.
- 8) Temporary facilities and controls.
- 9) Work hours.
- 10) Hazards and risks.
- 11) Progress cleaning.
- 12) Quality and work standards.
- 13) Change Orders.
- 3. Conduct coordination meetings with the mechanical, plumbing, sprinkler and electrical trades. Before the trades start work in an area of the building, make field measurements, review structural clearances and locations of ducts, pipes, conduits, light fixtures, equipment and other items that affect location and proper fit. Prepare coordination sketches to maximize utilization of space for efficient installation of different components. Verify depths and clearances before fabrication of ductwork.
- 4. Reporting: Record meeting results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from each meeting.

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100

SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. Startup construction schedule.
 - 2. Contractor's construction schedule.
 - 3. Construction schedule updating reports.
 - 4. Daily construction reports.
 - 5. Material location reports.
 - 6. Site condition reports.
 - 7. Special reports.

B. Related Requirements:

- 1. Section 013300 "Submittal Procedures" for submitting schedules and reports.
- 2. Section 014000 "Quality Requirements" for submitting a schedule of tests and inspections.

1.3 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- B. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- C. Event: The starting or ending point of an activity.
- D. Float: The measure of leeway in starting and completing an activity.

1.4 INFORMATIONAL SUBMITTALS

- A. Format for Submittals: Submit required submittals in the following format:
 - 1. PDF electronic file.
- B. Startup construction schedule.
- C. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
- D. Construction Schedule Updating Reports: Submit with Applications for Payment.
- E. Daily Construction Reports: Submit at weekly intervals.
- F. Material Location Reports: Submit at monthly intervals.
- G. Site Condition Reports: Submit at time of discovery of differing conditions.
- H. Special Reports: Submit at time of unusual event.
- I. Qualification Data: For scheduling consultant.

1.5 QUALITY ASSURANCE

- A. Prescheduling Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination." Review methods and procedures related to the preliminary construction schedule and Contractor's construction schedule, including, but not limited to, the following:
 - 1. Discuss constraints, including work stages, area separations and milestones.
 - 2. Review submittal requirements and procedures.
 - 3. Review time required for review of submittals and resubmittals.
 - 4. Review requirements for tests and inspections by independent testing and inspecting agencies.
 - 5. Review time required for Project closeout and Owner startup procedures.
 - 6. Review and finalize list of construction activities to be included in schedule.
 - 7. Review procedures for updating schedule.

1.6 COORDINATION

- A. Coordinate Contractor's construction schedule with the schedule of values, list of subcontracts, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 - 1. Secure time commitments for performing critical elements of the Work from entities involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

3. Allow for time in the construction schedule for materials to dry before they are enclosed to prevent the growth of mold and bacteria

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

- A. Time Frame: Extend schedule from date established for commencement of the Work to date of final completion.
 - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.
- B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 - 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect.
 - 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 - 3. Submittal Review Time: Include review and resubmittal times indicated in Section 013300 "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's construction schedule with submittal schedule.
 - 4. Startup and Testing Time: Include no fewer than 5 days for startup and testing.
 - 5. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Architect's administrative procedures necessary for certification of Substantial Completion.
 - 6. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.
- C. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
 - 1. Work Restrictions: Show the effect of the following items on the schedule:
 - a. Coordination with existing construction.
 - b. Limitations of continued occupancies.
 - c. Uninterruptible services.
 - d. Partial occupancy before Substantial Completion.
 - e. Use of premises restrictions.
 - f. Provisions for future construction.
 - g. Seasonal variations.
 - h. Environmental control.
 - 2. Work Stages: Indicate important stages of construction for each major portion of the Work, including, but not limited to, the following:

- a. Subcontract awards.
- b. Submittals.
- c. Purchases.
- d. Mockups.
- e. Fabrication.
- f. Sample testing.
- g. Deliveries.
- h. Installation.
- i. Tests and inspections.
- j. Adjusting.
- k. Curing.
- 1. Building flush-out.
- m. Startup and placement into final use and operation.
- 3. Construction Areas: Identify each major area of construction for each major portion of the Work. Indicate where each construction activity within a major area must be sequenced or integrated with other construction activities to provide for the following:
 - a. Structural completion.
 - b. Temporary enclosure and space conditioning.
 - c. Permanent space enclosure.
 - d. Completion of mechanical installation.
 - e. Completion of electrical installation.
 - f. Substantial Completion.
- D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and final completion.
- E. Cost Correlation: Superimpose a cost correlation timeline, indicating planned and actual costs. On the line, show planned and actual dollar volume of the Work performed as of planned and actual dates used for preparation of payment requests.
 - 1. See Section 012900 "Payment Procedures" for cost reporting and payment procedures.
- F. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 - 1. Unresolved issues.
 - 2. Unanswered Requests for Information.
 - 3. Rejected or unreturned submittals.
 - 4. Notations on returned submittals.
 - 5. Pending modifications affecting the Work and Contract Time.

2.2 STARTUP CONSTRUCTION SCHEDULE

- A. Bar-Chart Schedule: Submit startup, horizontal, bar-chart-type construction schedule within seven days of date established for commencement of the Work.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Outline significant construction activities for first 60

days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.

2.3 CONTRACTOR'S CONSTRUCTION SCHEDULE (GANTT CHART)

- A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal, Gantt-chart-type, Contractor's construction schedule within 30 days of date established for commencement of the Work. Base schedule on the startup construction schedule and additional information received since the start of Project.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.
 - 1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

2.4 REPORTS

- A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site:
 - 1. List of subcontractors at Project site.
 - 2. List of separate contractors at Project site.
 - 3. Approximate count of personnel at Project site.
 - 4. Equipment at Project site.
 - 5. Material deliveries.
 - 6. High and low temperatures and general weather conditions, including presence of rain or snow.
 - 7. Accidents.
 - 8. Meetings and significant decisions.
 - 9. Unusual events (see special reports).
 - 10. Stoppages, delays, shortages, and losses.
 - 11. Meter readings and similar recordings.
 - 12. Emergency procedures.
 - 13. Orders and requests of authorities having jurisdiction.
 - 14. Change Orders received and implemented.
 - 15. Construction Change Directives received and implemented.
 - 16. Services connected and disconnected.
 - 17. Equipment or system tests and startups.
 - 18. Partial completions and occupancies.
 - 19. Substantial Completions authorized.
- B. Material Location Reports: At monthly intervals, prepare and submit a comprehensive list of materials delivered to and stored at Project site. List shall be cumulative, showing materials previously reported plus items recently delivered. Include with list a statement of progress on and delivery dates for materials or items of equipment fabricated or stored away from Project site. Indicate the following categories for stored materials:
 - 1. Material stored prior to previous report and remaining in storage.

- 2. Material stored prior to previous report and since removed from storage and installed.
- 3. Material stored following previous report and remaining in storage.
- C. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Interpretation. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

2.5 SPECIAL REPORTS

- A. General: Submit special reports directly to Owner within one day of an occurrence. Distribute copies of report to parties affected by the occurrence.
- B. Reporting Unusual Events: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. Contractor's Construction Schedule Updating: At monthly intervals, review schedule for actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate final completion percentage for each activity.
- B. Distribution: Distribute copies of approved schedule to Architect, Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.
 - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 013200

SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. Related Requirements:

- 1. Section 012900 "Payment Procedures" for submitting Applications for Payment and the schedule of values.
- 2. Section 013200 "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
- 3. Section 017823 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
- 4. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
- C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.
- D. Portable Document Format (PDF): An open standard file format licensed by Adobe Systems used for representing documents in a device-independent and display resolution-independent fixed-layout document format.

1.4 ACTION SUBMITTALS

- A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.
 - 1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
 - 2. Submittals shall be scheduled in an orderly fashion that spreads the submissions out over a period of time to permit Architect adequate opportunity to schedule personnel for timely reviews. Where submittals are not required to be submitted concurrently, or do not require coordination with other submittals, Contractor shall review, stamp, and submit as submittals are received. Contractor shall not receive submittals, hold them, and then release them to the Architect all at once.
 - 3. Initial Submittal: Submit concurrently with startup construction schedule. Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
 - 4. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
 - a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.
 - 5. Format: Arrange the following information in a tabular format:
 - a. Scheduled date for first submittal.
 - b. Specification Section number and title.
 - c. Submittal category: Action; informational.
 - d. Name of subcontractor.
 - e. Description of the Work covered.
 - f. Scheduled date for Architect's final release or approval.
 - g. Scheduled date of fabrication.
 - h. Scheduled dates for purchasing.
 - i. Scheduled dates for installation.
 - j. Activity or event number.
- B. Arrange to have all submittals processed to the Architect within 90 days.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

- A. Architect's Digital Data Files: Electronic digital data files of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals, if requested.
 - 1. Architect will furnish Contractor one set of digital data drawing files of the Contract Drawings for use in preparing Shop Drawings and Project record drawings.
 - 2. Contractors requesting files shall sign the "Electronic Files Request Form and Waiver" and submit agreement included at the end of this section.

- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 - 4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow 28 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 28 days for review of each resubmittal.
 - 4. Sequential Review: Where sequential review of submittals by Architect's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.
 - a. Sitework submittals.
 - b. Commercial equipment submittals.
 - c. Structural submittals.
 - d. Mechanical submittals.
 - e. Electrical submittals.
 - f. Data & Communications Systems submittals.
 - 5. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing.
 - 6. Submittals with color selection: The Contractor shall deliver to Architect a list of submittals for the interior color package and a list for the exterior color package. The Contractor shall deliver all items for exterior color selection at one time. The Architect needs to coordinate the colors of all exterior items and the Contractor shall allow 4 weeks for return of exterior color selections. The Contractor shall deliver all items for interior color selection at the same time. The Architect needs to coordinate the colors of all interior items and the Contractor shall allow 6 weeks for return of interior color selections.
- D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

- 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
- 2. Name file with submittal number or other unique identifier, including revision identifier.
 - a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., ABCD-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., ABCD-061000.01.A).
- 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect.
- 4. Transmittal Form for Electronic Submittals: Use software-generated form from electronic project management software or electronic form acceptable to Owner, containing the following information:
 - a. Project name.
 - b. Date.
 - c. Name and address of Architect.
 - d. Name of Contractor.
 - e. Name of firm or entity that prepared submittal.
 - f. Names of subcontractor, manufacturer, and supplier.
 - g. Category and type of submittal.
 - h. Submittal purpose and description.
 - i. Specification Section number and title.
 - j. Specification paragraph number or drawing designation and generic name for each of multiple items.
 - k. Drawing number and detail references, as appropriate.
 - 1. Location(s) where product is to be installed, as appropriate.
 - m. Related physical samples submitted directly.
 - n. Indication of full or partial submittal.
 - o. Transmittal number, numbered consecutively.
 - p. Submittal and transmittal distribution record.
 - q. Other necessary identification.
 - r. Remarks.
- 5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 - a. Project name.
 - b. Number and title of appropriate Specification Section.
 - c. Manufacturer name.
 - d. Product name.
- E. Options: Identify options requiring selection by Architect.
- F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Architect on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.

- G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.
- H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

- A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Post electronic submittals as PDF electronic files directly to Architect's FTP site specifically established for Project.
 - a. Architect will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.
 - Certificates and Certifications Submittals: Provide a statement that includes signature of
 entity responsible for preparing certification. Certificates and certifications shall be
 signed by an officer or other individual authorized to sign documents on behalf of that
 entity.
 - a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
 - b. Provide a notarized statement on original paper copy certificates and certifications where indicated.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable. Mark with dark colored pen that permits photocopying.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.

- b. Manufacturer's product specifications.
- c. Standard color charts.
- d. Statement of compliance with specified referenced standards.
- e. Testing by recognized testing agency.
- f. Application of testing agency labels and seals.
- g. Notation of coordination requirements.
- h. Availability and delivery time information.
- 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams showing factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
- 5. Submit Product Data before or concurrent with Samples.
- 6. Submit Product Data in the following format:
 - a. PDF electronic file.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect's digital data drawing files is otherwise permitted.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.
 - 3. Submit Shop Drawings in the following format:
 - a. PDF electronic file.
- D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Attach label on unexposed side of Samples that includes the following:
 - a. Generic description of Sample.

- b. Product name and name of manufacturer.
- c. Sample source.
- d. Number and title of applicable Specification Section.
- e. Specification paragraph number and generic name of each item.
- 3. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.
- 4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 - a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 - b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
- 5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 - a. Number of Samples: Submit one full set of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.
- 6. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit three sets of Samples. Architect will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a project record sample.
 - 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 - 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
- E. Contractor's Construction Schedule: Comply with requirements specified in Section 013200 "Construction Progress Documentation."
- F. Application for Payment and Schedule of Values: Comply with requirements specified in Section 012900 "Payment Procedures."

- G. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Section 014000 "Quality Requirements."
- H. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 017700 "Closeout Procedures."
- I. Maintenance Data: Comply with requirements specified in Section 017823 "Operation and Maintenance Data."
- J. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- K. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- L. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- M. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- N. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- O. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
- P. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
- Q. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- R. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 - 1. Name of evaluation organization.
 - 2. Date of evaluation.
 - 3. Time period when report is in effect.
 - 4. Product and manufacturers' names.
 - 5. Description of product.
 - 6. Test procedures and results.

- 7. Limitations of use.
- S. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
- T. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
- U. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
- V. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF electronic file and three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

- 1. The Contractor shall review submittals for completeness and compliance with the Contract Documents. If submittal contains substitutions, Contractor shall process substitutions in accordance with Section 012500 "Substitution Procedures," and not part of specified Shop Drawings or Product Data submittals. Contractor is responsible for keeping Subcontractors on time with the submittal schedule. If the Contractor submits submittals that are repeatedly rejected, requiring the Architect to perform multiple reviews of the same submittal because of the failure to properly prepare and complete the submittals.
 - a. Owner will compensate Architect for such additional services.
 - b. Owner will deduct the amount of such compensation from the final payment of the Contractor.
- B. Project Closeout and Maintenance Material Submittals: See requirements in Section 017700 "Closeout Procedures."
- C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 - 1. Stamp or statement shall include the following: "The Contractor represents that he has determined and verified all materials, field measurements, and field construction criteria related thereto or will do so, and that he has checked and coordinated the information contained within such submittals with the requirements of the Work and of the Contract Documents."

3.2 ARCHITECT'S ACTION

- A. Action Submittals: Architect will review each submittal, provide a cover sheet with marks to indicate corrections or modifications required, and return it. Architect will provide a cover sheet with each submittal with an action stamp and will mark stamp appropriately to indicate action taken, as follows:
 - 1. Reviewed: Final Unrestricted Release. Work may proceed, provided it complies with the Contract Documents.
 - 2. Furnish as Corrected: Final But Conditional Release. Work may proceed, provided it complies with the notations and corrections on submittals and with Contract Documents. Architect's comments shall be considered a part of the original submittal. Should Contractor disagree with any such comments, so notify the Architect within fourteen (14) days after receipt of such transmittal and before commencing work on the items in question. Failing this, Contractor shall be deemed to have agreed to such comments by the Architect and to have accepted full responsibility for implementing them at no additional cost to the Owner.
 - 3. Revise and Resubmit: Returned for Resubmittal. Do not proceed with the work at the site or allow submittal at site. Fabrication in shop or factory may proceed on items not affected by the Architect's comments only. Revise submittal in accordance with notations thereon, and resubmit without delay to obtain a different action marking. Revise and Resubmit

- 4. Submit Specified Item: Resubmit using a specified item. Where submittal is rejected and returned for resubmittal of a specified product. Consult product section for list of acceptable manufacturers.
- 5. Rejected: Where submittal is returned for other reasons, with Architect's explanation included.
- B. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Submittals not required by the Contract Documents may be returned by the Architect without action.

END OF SECTION 013300

Electronic File Release

Date: [Date]

To/Company:

Project: [Project Name]

RE: Transfer and use of electronic 3D model file

[Contractors Representative]:

At your request PDT Architects will provide electronic files for your convenience and use in performing your work relating to the above referenced project, subject to the following terms and conditions:

- 1. Our electronic files are compatible with the specific software and hardware in use at PDT Architect's office. PDT Architects makes no representation as to the compatibility of these files with your software or your hardware.
- 2. Because data stored in electronic media format can deteriorate or be modified inadvertently or otherwise without authorization of the data's creator, the party receiving electronic data agrees that it will perform acceptance tests upon receipt, after which the receiving party shall be deemed to have accepted the data. PDT Architects makes no representations to the Recipient or others as to the long-term usability or readability of electronic media or of documents resulting from the use of software application packages, operating systems, or computer hardware differing from those used by the creating party.
- 3. The electronic files contain a 3D model prepared in the current version of Revit. The model is not and does not represent or imply construction documents. As a model, it is subject to change as the project proceeds. The construction requirements of the project will not be determined until the final construction documents are issued as 2D electronic files or paper copies. Any use of the 3D model for construction purposes is at the sole risk of the user and in violation of this agreement.
- 4. Since the electronic 3D model is intended for the sole purpose of PDT Architects developing its ongoing work, use of the model in determining estimating quantities or conditions shall be at the sole risk of the estimator.
- 5. Data contained on these electronic files are part of our instruments of service and shall not be used by [Contractor] or anyone else receiving these data through or from [Contractor] for any purpose other than as a convenience in your performing preconstruction services. Any other use or reuse by [Contractor] or by others will be at [Contractor] sole risk and without liability or legal exposure to PDT Architects. [Contractor] agrees to make no claim and hereby waive, to the fullest extent permitted by law, any claim or cause of action of any nature against PDT Architects, its officers, directors, employees, agents or subcontractors that may arise out of or in connection with [Contractor] use of the electronic files.

Electronic File Release

- 6. In the event that [Contractor] 's or its subcontractors, or anyone for whom [Contractor] is legally liable makes or permits to be made any changes to the 3D model without obtaining our written consent, [Contractor] shall assume full responsibility for the results of such changes. Therefore, [Contractor] agrees to waive any claim against PDT Architects and to release PDT Architects from any liability arising directly or indirectly from such changes.
- 7. Furthermore, [Contractor] shall, to the fullest extent permitted by law, indemnify and hold PDT Architects harmless against all damages, liabilities or costs, including reasonable attorney's fees and defense costs, arising out of or resulting from [Contractor] 's use of these electronic files.
- 8. Under no circumstances shall delivery of the electronic files for use by [Contractor] be deemed a sale by PDT Architects.

Accepted by:	

[Contractors Representative]

September 3, 2014

SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.
- C. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.

- D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.
- E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- F. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.
- G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
- J. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.5 INFORMATIONAL SUBMITTALS

A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.

- B. Qualification Data: For Contractor's quality-control personnel.
- C. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
- D. Schedule of Tests and Inspections: Prepare in tabular form and include the following:
 - 1. Specification Section number and title.
 - 2. Entity responsible for performing tests and inspections.
 - 3. Description of test and inspection.
 - 4. Identification of applicable standards.
 - 5. Identification of test and inspection methods.
 - 6. Number of tests and inspections required.
 - 7. Time schedule or time span for tests and inspections.
 - 8. Requirements for obtaining samples.
 - 9. Unique characteristics of each quality-control service.

1.6 CONTRACTOR'S QUALITY-CONTROL PLAN

- A. Quality-Control Plan, General: Submit quality-control plan within 10 days of Notice of Award or Notice to Proceed, and not less than five days prior to preconstruction conference. Submit in format acceptable to Architect. Identify personnel, procedures, controls, instructions, tests, records, and forms to be used to carry out Contractor's quality-assurance and quality-control responsibilities. Coordinate with Contractor's construction schedule.
- B. Quality-Control Personnel Qualifications: Engage qualified full-time personnel trained and experienced in managing and executing quality-assurance and quality-control procedures similar in nature and extent to those required for Project.
 - 1. Project quality-control manager may also serve as Project superintendent.
- C. Submittal Procedure: Describe procedures for ensuring compliance with requirements through review and management of submittal process. Indicate qualifications of personnel responsible for submittal review.
- D. Testing and Inspection: In quality-control plan, include a comprehensive schedule of Work requiring testing or inspection, including the following:
 - 1. Contractor-performed tests and inspections including subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections.
 - 2. Special inspections required by authorities having jurisdiction and indicated on the "Statement of Special Inspections."
 - 3. Owner-performed tests and inspections indicated in the Contract Documents.
- E. Continuous Inspection of Workmanship: Describe process for continuous inspection during construction to identify and correct deficiencies in workmanship in addition to testing and inspection specified. Indicate types of corrective actions to be required to bring work into

- compliance with standards of workmanship established by Contract requirements and approved mockups.
- F. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.

1.7 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and reinspecting.
- B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, and telephone number of technical representative making report.
 - 2. Statement on condition of substrates and their acceptability for installation of product.
 - 3. Statement that products at Project site comply with requirements.
 - 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 - 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 6. Statement whether conditions, products, and installation will affect warranty.
 - 7. Other required items indicated in individual Specification Sections.
- C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, and telephone number of factory-authorized service representative making report.
 - 2. Statement that equipment complies with requirements.

- 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
- 4. Statement whether conditions, products, and installation will affect warranty.
- 5. Other required items indicated in individual Specification Sections.
- D. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.8 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.
- F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 - 1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.
- G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.
 - 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 - 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.

- H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens, assemblies, and mockups, and laboratory mockups; do not reuse products on Project.
 - 2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- K. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
 - 2. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 3. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed during the construction at Project.
 - 4. Demonstrate the proposed range of aesthetic effects and workmanship.
 - 5. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 - a. Allow seven days for initial review and each re-review of each mockup.
 - 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.

7. Demolish and remove mockups when directed unless otherwise indicated.

1.9 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
 - 2. Payment for these services will be made from testing and inspecting allowances, as authorized by Change Orders.
 - 3. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.
- B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.
 - 1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 2. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
 - 4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 5. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- C. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."
- D. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

- E. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- F. Testing Agency Responsibilities: Cooperate with Architect and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform any duties of Contractor.
- G. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Delivery of samples to testing agencies.
 - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 7. Security and protection for samples and for testing and inspecting equipment at Project site.
- H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
- I. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar quality-control services required by the Contract Documents as a component of Contractor's quality-control plan. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.
 - 1. Distribution: Distribute schedule to Owner, Architect, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

1.10 SPECIAL TESTS AND INSPECTIONS

- A. Special Tests and Inspections: Owner will engage a qualified special inspector to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of Owner[, as indicated in Statement of Special Inspections attached to this Section], and as follows:
 - 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviews the completeness and adequacy of those procedures to perform the Work.
 - 2. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
 - 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction.
 - 4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
 - 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
 - 6. Retesting and reinspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."
- B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 014000

SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.
- J. Substantial Completion: The stage in the progress of the Work when the Work or designated portion thereof is sufficiently complete in accordance with the Contract Documents so the Owner can occupy or utilize the Work for its intended use. Minor corrections and repairs that can be performed while the Owner has occupied the building and without undue annoyance to personnel will be acceptable under the definition of Substantial Completion. It shall also include major final cleaning required under the Contract, removal of all surplus equipment and material

REFERENCES 014200 - 1

not required for completion or remaining work, and the placement of remaining materials and equipment in convenient locations as approved by the Owner.

1.3 INDUSTRY STANDARDS

- A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.
- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Gale's "Encyclopedia of Associations: National Organizations of the U.S." or in Columbia Books' "National Trade & Professional Associations of the United States."
- B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is believed to be accurate as of the date of the Contract Documents.
 - 1. IAPMO International Association of Plumbing and Mechanical Officials; www.iapmo.org.
 - 2. ICC International Code Council; www.iccsafe.org.
 - 3. ICC-ES ICC Evaluation Service, LLC; www.icc-es.org.
- C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.
 - 1. CPSC Consumer Product Safety Commission; www.cpsc.gov.
 - 2. DOC Department of Commerce; National Institute of Standards and Technology; www.nist.gov.
 - 3. DOE Department of Energy; www.energy.gov.
 - 4. EPA Environmental Protection Agency; www.epa.gov.
 - 5. HUD Department of Housing and Urban Development; www.hud.gov.
 - 6. LBL Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; www.eetd.lbl.gov.
 - 7. OSHA Occupational Safety & Health Administration; www.osha.gov.

REFERENCES 014200 - 2

- 8. SD Department of State; www.state.gov.
- 9. TRB Transportation Research Board; National Cooperative Highway Research Program; The National Academies; www.trb.org.
- 10. USDA Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; www.ars.usda.gov.
- 11. USDA Department of Agriculture; Rural Utilities Service; www.usda.gov.
- 12. USDOJ Department of Justice; Office of Justice Programs; National Institute of Justice; www.oip.usdoj.gov.
- 13. USP U.S. Pharmacopeial Convention; www.usp.org.
- 14. USPS United States Postal Service; <u>www.usps.com</u>.
- D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. CFR Code of Federal Regulations; Available from Government Printing Office; www.gpo.gov/fdsys.
 - 2. USAB United States Access Board; <u>www.access-board.gov</u>.
 - 3. USATBCB U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).
- E. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. BGS State of Maine Bureau of General Services.
 - 2. DOE State of Maine Department of Education.
 - 3. MDEP State of Maine Department of Environmental Protection.
 - 4. MDOT State of Maine Department of Transportation

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 014200

REFERENCES 014200 - 3

SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

1.3 USE CHARGES

- A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Architect, testing agencies, and authorities having jurisdiction.
- B. Water and Sewer Service from Existing System: Water from Owner's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.
- C. Electric Power Service from Existing System: Electric power from Owner's existing system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.
- D. Heating Fuel: Fuel required for temporary heating of Addition will be the responsibility of the Contractor.
- E. Telephone Service: Pay installation, service and use charges for telephone usage, by Contractor, at Project site.

1.4 INFORMATIONAL SUBMITTALS

- A. Site Plan: Show temporary facilities, utility hookups, staging areas, and parking areas for construction personnel.
- B. Erosion- and Sedimentation-Control Plan: Show compliance with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.
- C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.

- D. Dust- and HVAC-Control Plan: Submit coordination drawing and narrative that indicates the dust- and HVAC-control measures proposed for use, proposed locations, and proposed time frame for their operation. Include the following:
 - 1. Locations of dust-control partitions at each phase of work.
 - 2. HVAC system isolation schematic drawing.
 - 3. Location of proposed air-filtration system discharge.
 - 4. Waste-handling procedures.
 - 5. Other dust-control measures.
- E. Cold-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with cold-weather requirements to protect install concrete and masonry.

1.5 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.
- C. Accessible Temporary Egress: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.

1.6 PROJECT CONDITIONS

- A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.
- B. Frost Protection: Protect footings and slabs from freezing temperatures and prevent frost from occurring beneath footings and slabs. Frozen water found on soil or concrete surface shall be reason for rejection of protection method. Provide corrective measures within 24 hours after notice of condition is given. Evidence of frost at these locations shall be reason for rejection, removal, and replacement at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Vinyl Fencing: Standard 3 foot high, orange construction fence with steel posts.
- B. Lumber and Plywood: Comply with requirements in Division 06 Section "Rough Carpentry."
- C. Gypsum Board: Minimum 1/2 inch thick by 48 inches wide by maximum available lengths; regular-type panels with tapered edges. Comply with ASTM C 36/C 36M.

- D. Polyethylene Sheet: Reinforced, fire-resistive sheet, 10-mil minimum thickness, with flame-spread rating of 15 or less per ASTM E 84 and passing NFPA 701 Test Method 2.
- E. Dust-Control Adhesive-Surface Walk-off Mats: Provide mats minimum 36 by 60 inches.
- F. Insulation: Unfaced mineral-fiber blanket, manufactured from glass, slag wool, or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively.

2.2 TEMPORARY FACILITIES

- A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.
- B. Common-Use Field Office: Of sufficient size to accommodate needs of construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
 - 1. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.
 - 2. Conference room of sufficient size to accommodate meetings of 10 individuals. Provide electrical power service and 120-V ac duplex receptacles, with no fewer than one receptacle on each wall. Furnish room with conference table, chairs, and 4-foot-square tack and marker boards.
 - 3. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F.
 - 4. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.
- C. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.
 - 1. Store combustible materials apart from building.

2.3 EQUIPMENT

- A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.
- B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control. Heaters shall be located outside the building and combustion gases shall be vented outside the building. Maintain observation of units in operation.
 - 1. Use of gasoline-burning space heaters, interior open-flame heaters, or salamander-type heating units is prohibited.
 - 2. Heating Units: Listed and labeled for type of fuel being consumed, by a qualified testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.

C. Air-Filtration Units: Primary and secondary HEPA-filter-equipped portable units with four-stage filtration. Provide single switch for emergency shutoff. Configure to run continuously.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
 - 1. Locate facilities to limit site disturbance as specified in Section 011000 "Summary."
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

- A. General: Install temporary service or connect to existing service.
 - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.
- C. Water Service: Connect to Owner's existing water service facilities. Clean and maintain water service facilities in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
- D. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.
- E. Temporary Heating: Provide temporary heating required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.
 - 1. Maintain a minimum temperature of 50 deg F in permanently enclosed portions of building for normal construction activities, and 65 deg F for finishing activities and areas where finished Work has been installed.
 - a. Refer to Divisions 02 through 48 for additional temporary heat, ventilation, and humidity requirements for products in those Sections."
 - 2. Provide temporary heat to protect all concrete and masonry work during installation as well as other trades needing specific heat requirements to perform and protect their work. See individual specification sections for detailed information.

- 3. All concrete slabs on grade, footings and foundations not below the frost line shall be protected from freezing either by heating or protecting with insulation until substantial completion.
- F. Provide temporary dehumidification systems when required to reduce ambient and substrate moisture levels to level required to allow installation or application of finishes and their proper curing or drying.
- G. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.
 - 1. Prior to commencing work, isolate the HVAC system in area where work is to be performed.
 - a. Disconnect supply and return ductwork in work area from HVAC systems servicing occupied areas.
 - b. Maintain negative air pressure within work area using HEPA-equipped air-filtration units, starting with commencement of temporary partition construction, and continuing until removal of temporary partitions is complete. Route ductwork from the negative-air fans to the exterior of the building, filtering the air in the duct prior to being discharged, by means of a standard furnace air filter. The negative air pressure system shall be activated prior to the commencement of work each day, and remain operating until one-half hour after the stop of work for each day.
 - 2. Maintain dust partitions during the Work. Use vacuum collection attachments on dust-producing equipment. Isolate limited work within occupied areas using portable dust-containment devices.
 - 3. Perform daily construction cleanup and final cleanup using approved, HEPA-filter-equipped vacuum equipment.
- H. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.
 - 1. Provide dehumidification systems when required to reduce substrate moisture levels to level required to allow installation or application of finishes.
 - 2. All spaces shall be mechanically ventilated to protect occupants from application and installation of odor causing materials. The area where odor-causing material is being used shall be isolated from the new and existing ventilation system.
 - 3. Negative pressure shall be maintained within the construction areas inside the existing building to prevent the spread of dust and odors. Route ductwork from the negative-air fans to the exterior of the building, filtering the air in the duct prior to being discharged, by means of a standard furnace air filter. The negative air pressure system shall be activated prior to the commencement of work each day, and remain operating until one-half hour after the stop of work for each day.
 - 4. No work creating fumes shall be done in occupied areas of existing building while it is occupied by the Owner. Ventilation shall be maintained for a period of 24 hours or until release of fumes has subsided, whichever is longer.

- 5. The permanent ventilation system shall be fully operational and run full time for a minimum of 2 weeks before date established for Substantial Completion. Cost of operation shall be included as part of the work.
- I. Electric Power Service: Refer to Division 26 for requirements.
- J. Electric Power Service: Connect to Owner's existing electric power service. Maintain equipment in a condition acceptable to Owner.
- K. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.
 - 1. Install electric power service [overhead] [underground] unless otherwise indicated.
 - 2. Connect temporary service to Owner's existing power source, as directed by Owner.
- L. Lighting: Refer to Division 26 for requirements.
- M. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.
 - 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.
- N. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. [Install separate telephone lines for each field office.]
 - 1. Provide additional telephone lines for the following:
 - a. Provide a dedicated telephone line for each facsimile machine and computer in each field office.
 - b. Provide phone/answering/facsimile machine and separate telephone service accounts for two separate lines for the sole use of the Architect Field Representative.
 - 1) Contractor will arrange for installation and installation charges. Monthly phone charges will be forwarded to the Architects Office for payment.
 - 2. At each telephone, post a list of important telephone numbers.
 - a. Police and fire departments.
 - b. Ambulance service.
 - c. Contractor's home office.
 - d. Contractor's emergency after-hours telephone number.
 - e. Architect's office.
 - f. Engineers' offices.
 - g. Owner's office.
 - h. Principal subcontractors' field and home offices.
 - 3. Provide an answering service on superintendent's telephone.

- O. Telephone Service: Provide temporary cellular telephone service with voice mail throughout construction period.
- P. Internet Service: Provide high-speed internet service to Clerk-of-the-Works field office.
- Q. Internet Service: Provide laptop computer service for daily use at the site. Wireless internet connection is available at the site for the contractor's use.

3.3 SUPPORT FACILITIES INSTALLATION

- A. General: Comply with the following:
 - 1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.
 - 2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.
- B. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 - 1. Protect existing site improvements to remain including curbs, pavement, and utilities.
 - 2. Maintain access for fire-fighting equipment and access to fire hydrants.
- C. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.
 - 1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties or endanger permanent Work or temporary facilities.
 - 2. Remove snow and ice as required to minimize accumulations.
- D. Project Identification and Temporary Signs: Prepare Project identification and other signs in sizes indicated. Install signs where indicated to inform public and persons seeking entrance to Project. Do not permit installation of unauthorized signs.
 - 1. Engage an experienced sign painter to apply graphics for Project identification signs. Comply with details indicated. Include name of project, and names of Owner, Architect and Contractor. [Comply with details indicated on the sketch attached to the end of this section.]
 - 2. Construct signs of exterior-type Grade B-B high-density concrete form overlay plywood in size of 4 by 8 feet and 3/4 inch thickness, unless otherwise indicated. Support on posts or framing of preservative-treated wood or steel.
 - 3. Paint sign panel and applied graphics with exterior-grade alkyd gloss enamel over exterior primer.
 - 4. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 - a. Provide temporary, directional signs for construction personnel and visitors.

- 5. Maintain and touchup signs so they are legible at all times.
- E. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with progress cleaning requirements in Section 017300 "Execution."
- F. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 - 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.
- G. Existing Elevator Use: Use of elevators is not permitted.
- H. Temporary Stairs: Until permanent stairs are available, provide temporary stairs where ladders are not adequate.
- I. Existing Stair Usage: Use of Owner's existing stairs will be permitted, provided stairs are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore stairs to condition existing before initial use.
 - 1. Provide protective coverings, barriers, devices, signs, or other procedures to protect stairs and to maintain means of egress. If stairs become damaged, restore damaged areas so no evidence remains of correction work.
- J. Temporary Use of Permanent Stairs: Use of new stairs for construction traffic will be permitted, provided stairs are protected and finishes restored to new condition at time of Substantial Completion.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

- A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.
- B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
 - 1. Comply with work restrictions specified in Section 011000 "Summary."
- C. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to undisturbed areas and to adjacent properties and walkways.
 - 1. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross tree- or plant- protection zones.
 - 2. Inspect, repair, and maintain erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
 - 3. Clean, repair, and restore adjoining properties and roads affected by erosion and sedimentation from Project site during the course of Project.

- 4. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.
- D. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.
- E. Site Enclosure Fence: Prior to commencing earthwork, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates.
 - 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
- F. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each work day.
- G. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.
- H. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.
- I. Covered Walkway: Erect protective, covered walkway for passage of individuals through or adjacent to Project site. Coordinate with entrance gates, other facilities, and obstructions. Comply with regulations of authorities having jurisdiction[and requirements indicated on Drawings].
 - 1. Construct covered walkways using scaffold or shoring framing.
 - 2. Provide overhead decking, protective enclosure walls, handrails, barricades, warning signs, exit signs, lights, safe and well-drained walkways, and similar provisions for protection and safe passage.
 - 3. Paint and maintain appearance of walkway for duration of the Work.
- J. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 - 1. Where heating or cooling is needed and permanent enclosure is incomplete, insulate temporary enclosures.
- K. Temporary Partitions: Provide floor-to-ceiling dustproof partitions to limit dust and dirt migration and to separate areas occupied by Owner from fumes and noise.
 - 1. Construct dustproof partitions with gypsum wallboard with joints taped on occupied side, and fire-retardant-treated plywood on construction operations side.
 - 2. Construct dustproof partitions with two layers of 6-mil polyethylene sheet on each side. Cover floor with two layers of 6-mil polyethylene sheet, extending sheets 18 inches up the sidewalls. Overlap and tape full length of joints. Cover floor with fire-retardant-treated plywood.

- a. Construct vestibule and airlock at each entrance through temporary partition with not less than 48 inches between doors. Maintain water-dampened foot mats in vestibule.
- 3. Where fire-resistance-rated temporary partitions are indicated or are required by authorities having jurisdiction, construct partitions according to the rated assemblies.
- 4. Insulate partitions to control noise transmission to occupied areas.
- 5. Seal joints and perimeter. Equip partitions with gasketed dustproof doors and security locks where openings are required.
- 6. Protect air-handling equipment.
- 7. Provide walk-off mats at each entrance through temporary partition.
- L. Temporary Partition System: Provide floor-to-ceiling dustproof partition system to limit dust and dirt migration and to separate areas occupied by [Owner] [and] [tenants] from fumes and noise and to maintain security. The modular containment system utilizes a number of interchangeable components to create a safe, secure, dustless separation wall for many uses including construction renovation, critical care isolation or temporary isolation applications.
 - 1. Acceptable Product: The STARC System by STARC Systems 74 Orion Drive, Brunswick, ME 04111. 207-504-5670. https://starcsystems.com/ [No substitutions.]
 - 2. Substitutions must meet the following minimum requirements:
 - a. Height adjustment without the use of attached, loose connectors.
 - b. 1-1/2" insulated panels to resist sound transmission.
 - c. Interlocking, tongue and groove panel edges.
 - d. Class 1 commercial locksets and closers.
 - 3. System Performance Characteristics:
 - a. Extruded aluminum frame with height adjustment from 6'-10" to 10'-3".
 - b. Interior non-load bearing applications only.
 - c. Humidity: Up to 90% RH non-condensing.
 - d. Max pressure differential: .05" w.c.
 - e. Max floor pitch: 1/8" per foot.
 - f. Max floor roughness < 1/8" variance.
 - g. Chemical compatibility: May be cleaned or disinfected with all common water and solvent based cleaners and disinfectants.
 - h. Materials certified for zero flame spread and smoke generation, E-84 (fire & smoke class A).
 - i. Fully gasketed for air tight system meeting E-283 (air leakage) and sound transmission E-90 (STC).
 - j. One tool setup to adjust height.
 - k. Complete GREEN solution No disposal waste.
 - 4. System Components:
 - a. Wall Panels: Extruded aluminum frame with clean white exterior for finished appearance; durable galvanized steel interior surface. Panels available in widths of 18, 24, 32 and 42 inches.

- b. Negative Air Panels: Standard STARC® modular panel with integrated air exhaust register and pressure monitor ports.
 - 1) Standard duct collar 12" dia; 8" Available upon request.
 - 2) Integrated air pressure ports one each side.
 - 3) Configured to integrate optional Abatement Technologies digital monitor.
 - 4) Supports all common data recorders.
 - 5) Internal passage for power cords front to back.
 - 6) Rugged and durable all metal construction.
- c. Doors: Pre-hung Doors with Standard Module Interface Frames.
 - 1) Available in 36" and 48" clear openings.
 - 2) Seamless telescoping from 6'-10" to 10'-3".
 - 3) Full gasketing and brushes for air / dust seal.
 - 4) Integrated Upper panel kit over the door fully adjustable to any height.
 - 5) Swing Doors easily changed to swing in/out.
 - 6) Deadlatch set and ICU latch standard on Sliding door.
 - 7) Schlage Lockset and Yale closer options on swing door.
 - 8) Vision Kits available.
 - 9) All metal construction zero flame spread or smoke generation.

d. Corners:

- 1) Corners follow module interface standard simple and quick connection.
- 2) Air-tight seal against air / dust intrusion.
- 3) Seamless telescoping from 6'-10" to 10'-3".
- 4) Inside corner is fixed right angle.
- 5) Flexible corner provides 15-90 degree angle, flips over for inside or outside use.
- 6) All metal construction zero flame spread or smoke generation.

e. Wall Interfaces:

- 1) Corners follow module interface standard simple and quick connection.
- 2) Sealed for air / dust intrusion.
- 3) Seamless telescoping from 6'-10" to 10'-3".
- 4) Use the Filler Panel module to create a narrow width panel or a coped panel against wall details.
- 5) 'T' intersection connection module to form 3 way corners
- f. Accessories include transport carts, adjustable brackets for ceiling/floor/wall and numerous options for locksets, braces, clamps and installation aids.
- 5. Not applicable where fire-resistance-rated temporary partitions are indicated or are required by authorities having jurisdiction, construct partitions according to the rated assemblies.
- 6. The Perfect Panel Placement Program (P4): A free service where the Engineering Team of STARC Systems will review the drawing of your next temporary containment project, and prescribe the ideal combination of panels and accessories within 24 hours. You will

receive a panel-by-panel printout customized for that that specific project as a guide for your Set Up Team to reference during the installation.

- M. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire-prevention program.
 - 1. Prohibit smoking in construction areas.
 - 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 - 3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

3.5 MOISTURE AND MOLD CONTROL

- A. Contractor's Moisture-Protection Plan: Describe delivery, handling, storage, installation, and protection provisions for materials subject to water absorption or water damage.
 - 1. Indicate procedures for discarding water-damaged materials, protocols for mitigating water intrusion into completed Work, and replacing water-damaged Work.
 - 2. Indicate sequencing of work that requires water, such as sprayed fire-resistive materials, plastering, and terrazzo grinding, and describe plans for dealing with water from these operations. Show procedures for verifying that wet construction has dried sufficiently to permit installation of finish materials.
 - 3. Indicate methods to be used to avoid trapping water in finished work.
- B. Exposed Construction Phase: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:
 - 1. Protect porous materials from water damage.
 - 2. Protect stored and installed material from flowing or standing water.
 - 3. Keep porous and organic materials from coming into prolonged contact with concrete.
 - 4. Remove standing water from decks.
 - 5. Keep deck openings covered or dammed.
- C. Partially Enclosed Construction Phase: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:
 - 1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
 - 2. Keep interior spaces reasonably clean and protected from water damage.
 - 3. Periodically collect and remove waste containing cellulose or other organic matter.
 - 4. Discard or replace water-damaged material.
 - 5. Do not install material that is wet.
 - 6. Discard, replace, or clean stored or installed material that begins to grow mold.
 - 7. Perform work in a sequence that allows any wet materials adequate time to dry before enclosing the material in drywall or other interior finishes.

- D. Controlled Construction Phase of Construction: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:
 - 1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
 - 2. Use temporary heating system, to control humidity within ranges specified for installed and stored materials.
 - 3. Comply with manufacturer's written instructions for temperature, relative humidity, and exposure to water limits.
 - a. Hygroscopic materials that may support mold growth, including wood and gypsum-based products, that become wet during the course of construction and remain wet for 48 hours are considered defective.
 - b. Measure moisture content of materials that have been exposed to moisture during construction operations or after installation. Record readings beginning at time of exposure and continuing daily for 48 hours. Identify materials containing moisture levels higher than allowed. Report findings in writing to Architect.
 - c. Remove materials that cannot be completely restored to their manufactured moisture level within 48 hours.

3.6 OPERATION, TERMINATION, AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
- B. Maintenance: Maintain facilities in good operating condition until removal.
 - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
- C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.
- D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 - 2. Remove temporary roads and paved areas not intended for or acceptable for integration into permanent construction. Where area is intended for landscape development, remove soil and aggregate fill that do not comply with requirements for fill or subsoil. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances that might impair growth of plant materials or lawns. Repair or replace street paving, curbs, and sidewalks at temporary entrances, as required by authorities having jurisdiction.

3. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Section 017700 "Closeout Procedures."

END OF SECTION 015000

SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

B. Related Requirements:

- 1. Section 012100 "Allowances" for products selected under an allowance.
- 2. Section 012300 "Alternates" for products selected under an alternate.
- 3. Section 012500 "Substitution Procedures" for requests for substitutions.
- 4. Section 014200 "References" for applicable industry standards for products specified.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
- B. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
- C. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS

- A. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 013300 "Submittal Procedures." Show compliance with requirements.
- B. General Contractor to submit certification that no asbestos containing materials have been used in the construction of this project, in conformance to AHERA (Asbestos Hazard Emergency Response Act).

1.5 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Architect will determine which products shall be used.
- B. Products with asbestos: Asbestos containing materials are not to be purchased or installed in this project. Comply with AHERA (Asbestos Hazard Emergency Response Act) and provide certification that no asbestos containing materials have been used in the construction of this project.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

- 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
- 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
- 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
- 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

- 1. Store products to allow for inspection and measurement of quantity or counting of units.
- 2. Store materials in a manner that will not endanger Project structure.

- 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
- 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
- 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
- 6. Protect stored products from damage and liquids from freezing.
- D. During the construction process, meet or exceed the following minimum requirements to prevent the growth of mold and bacteria:
 - 1. Keep building materials dry. Wood, porous insulation, paper, fabric, and similar absorptive materials shall be kept dry to prevent the growth of mold and bacteria. Cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials.
 - 2. Replace water-damaged materials, or dry within 24 hours, due to the possibility of mold and bacterial growth. Materials that are damp or wet for more than 24 hours shall be discarded if evidence of mold occurs.
 - 3. Immediately remove materials showing signs of mold and mildew, including materials with exposed moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.
 - 4. Require that moisture sensitive materials be delivered dry and protected from the elements.
 - 5. Allow for time in the construction schedule for materials to dry before they are enclosed.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.
- C. Submittal Time: Comply with requirements in Section 017700 "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
 - 6. Or Equal: Where products are specified by name and accompanied by the term "or equal" or "or approved equal" or "or approved substitute" or approved," comply with provisions in "Product Substitutions" Article to obtain approval for use of an unnamed product.

B. Product Selection Procedures:

- 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Substitutions for Contractor's convenience will not be considered.
- 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Substitutions for Contractor's convenience will not be considered.
- 3. Products:
 - a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Substitutions for Contractor's convenience will be considered, unless otherwise indicated.
 - b. Nonrestricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in Division 01 Section "Substitution Procedures" for consideration of an unnamed product.

4. Manufacturers:

a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Substitutions for Contractor's convenience will be considered, unless otherwise indicated.

- b. Non-restricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in Division 01 Section "Substitution Procedures" for consideration of an unnamed manufacturer.
- 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in Division 01 Section "Substitution Procedures" for consideration of an unnamed product or manufacturer.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.
- D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000

SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Installation of the Work.
 - 2. Cutting and patching.
 - 3. Progress cleaning.
 - 4. Starting and adjusting.
 - 5. Protection of installed construction.

B. Related Requirements:

- 1. Section 011000 "Summary" for limits on use of Project site.
- 2. Section 013300 "Submittal Procedures" for submitting surveys.
- 3. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.
- 4. Section 024119 "Selective Demolition" for demolition and removal of selected portions of the building.
- 5. Section 078413 "Penetration Firestopping" for patching penetrations in fire-rated construction.

1.3 DEFINITIONS

- A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
- B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 INFORMATIONAL SUBMITTALS

- A. Cutting and Patching Plan: Submit plan describing procedures at least 10 days prior to the time cutting and patching will be performed. Include the following information:
 - 1. Extent: Describe reason for and extent of each occurrence of cutting and patching.

- 2. Changes to In-Place Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building appearance and other significant visual elements.
- 3. Products: List products to be used for patching and firms or entities that will perform patching work.
- 4. Dates: Indicate when cutting and patching will be performed.
- 5. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate length of time permanent services and systems will be disrupted.
 - a. Include description of provisions for temporary services and systems during interruption of permanent services and systems.

1.5 QUALITY ASSURANCE

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection
 - 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
 - 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
 - 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.
- C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
- B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.
 - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.
 - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 - 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 - 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - 1. Description of the Work.
 - 2. List of detrimental conditions, including substrates.
 - 3. List of unacceptable installation tolerances.
 - 4. Recommended corrections.

D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Existing Utility Information: Furnish information to Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.
- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Section 013100 "Project Management and Coordination."

3.3 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.
- F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that

- adequate provisions are made for locating and installing products to comply with indicated requirements.
- H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 - 2. Allow for building movement, including thermal expansion and contraction.
 - 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.
- C. Temporary Support: Provide temporary support of work to be cut.
- D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."
- F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

- G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.
 - 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 - 6. Proceed with patching after construction operations requiring cutting are complete.
- H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.
- I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.5 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 - a. Use containers intended for holding waste materials of type to be stored.
 - 4. Coordinate progress cleaning for joint-use areas where Contractor and other contractors are working concurrently.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
 - a. Clean interior spaces prior to the start of finish painting, and continue cleaning on an as-needed basis until painting is finished.
 - b. Schedule operations so that dust and other contaminants resulting from cleaning process will not fall on wet or newly coated surfaces.
 - 3. Remove materials and debris that create tripping hazards.
- D. For general construction, each trade shall pick up the debris and rubbish, generated by that trade, and dispose of in dumpsters furnished by the General Contractor.
- E. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- F. Concealed Spaces: Remove dirt, debris and garbage from concealed spaces, including stud cavities before enclosing the space.
- G. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- H. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls."

- I. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- J. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- K. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.6 STARTING AND ADJUSTING

- A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 "Quality Requirements."

3.7 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.
- C. Protect resilient flooring against mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by flooring manufacturer.
 - 1. Cover products installed on floor surfaces with undyed, untreated building paper until inspection for Substantial Completion.
 - 2. Do not move heavy and sharp objects directly over floor surfaces. Place plywood or hardboard panels over flooring and under objects while they are being moved. Slide or roll objects over panels without moving panels.
- D. Protect roofing materials against cuts, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during the remainder of construction period.

1. Do not move heavy and sharp objects directly over roof surfaces. Place plywood or hardboard panels over roofing and under objects while they are being moved. Slide or roll objects over panels without moving panels.

END OF SECTION 017300

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
 - 5. Repair of the Work.

B. Related Requirements:

- 1. Section 017300 "Execution" for progress cleaning of Project site.
- 2. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.
- 3. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 ACTION SUBMITTALS

- A. Product Data: For cleaning agents.
- B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES

- A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
- B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number where applicable.
 - a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Architect's signature for receipt of submittals.
 - 5. Submit test/adjust/balance records.
 - 6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
 - 6. Advise Owner of changeover in heat and other utilities.

- 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
- 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
- 9. Complete final cleaning requirements, including touchup painting.
- 10. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
 - 2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 - 1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
 - 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
- B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.
 - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

C. Re-Inspection Fees:

1. If the Architect Perform Re-inspections Due to Failure of the Work to Comply with the Claims of Status of Completion Made by the Contractor, Or, Should the Contractor fail to complete the work, Or, Should the Contractor fail to promptly correct warranty items or work later found to be deficient:

- a. Owner will compensate Architect for such additional services.
- b. Owner will deduct the amount of such compensation from the final payment to the Contractor.
- 2. If the Work is not completed by the date set in the agreement, and the Architect needs to perform additional Contract Administrative and on site observation duties:
 - a. Owner will compensate Architect for such additional services.
 - b. Owner will deduct the amount of such compensation from the final payment to the Contractor.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect.
 - d. Name of Contractor.
 - e. Page number.
 - 4. Submit list of incomplete items in the following format:
 - a. PDF electronic file. Architect will return annotated file.

1.9 SUBMITTAL OF PROJECT WARRANTIES

- A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.
 - 1. Unless indicated otherwise, all warranties shall commence on the date of Substantial Completion.
- B. Partial Occupancy: Submit properly executed warranties within 15 days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.
- C. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

- 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper. Submit final warranties as a package for the entire project, assembled and identified as described below.
- 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
- 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
- 4. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
- D. Provide additional copies of each warranty to include in operation and maintenance manuals.
- E. Warranty Response Time: The Contract shall respond and begin to take necessary action within 7 days of receipt of written notification from the Owner. Response time for life safety items, and for building perimeter security shall be within 24 hours of receipt of written notification from the Owner.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.

- b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
- c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
- d. Remove tools, construction equipment, machinery, and surplus material from Project site.
- e. Remove snow and ice to provide safe access to building.
- f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
- g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
- h. Sweep concrete floors broom clean in unoccupied spaces.
- i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
- j. Resilient flooring shall be scrubbed and cleaned with cleaner recommended by the flooring manufacturer just prior to occupation by Owner. No-wax floors shall cleaned and buffed in accordance with flooring manufacturer's requirements.
- k. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces. Cleaning of windows shall be done just before Owner occupancy.
- 1. Remove labels that are not permanent.
- m. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- n. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- o. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- p. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
 - 1) Clean HVAC system in compliance with NADCA Standard 1992-01. Provide written report on completion of cleaning.
- q. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
- r. Leave Project clean and ready for occupancy.
- C. Construction Waste Disposal: Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls."

3.2 REPAIR OF THE WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly

adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

- 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
- 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
- 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
- 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Emergency manuals.
 - 3. Operation manuals for systems, subsystems, and equipment.
 - 4. Product maintenance manuals.
 - 5. Systems and equipment maintenance manuals.

B. Related Requirements:

1. Section 013300 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operations and maintenance manuals in the following format:

- 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Architect.
 - a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- 2. One paper copy. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves.
- C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect will comment on whether general scope and content of manual are acceptable.
- D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 - 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Subcontractor list.
 - 5. Warranties
 - 6. Table of contents.
- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the

Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor and primary subcontractors.
 - 6. Name and contact information for Architect.
 - 7. Name and contact information for Commissioning Authority.
 - 8. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
 - 9. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily

navigated file tree. Configure electronic manual to display bookmark panel on opening file.

- F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf or post-type binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number on bottom of spine. Indicate volume number for multiple-volume sets.
 - 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
 - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
 - 4. Supplementary Text: Prepared on 8-1/2-by-11-inch white bond paper.
 - 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts. Maximum size of drawings to be included in the binders shall not exceed 11-by-17-inch.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

- A. Emergency operations and shutdown information that must be immediately available during emergency situations to protect life and property and to minimize disruptions to building occupants.
- B. Content: Organize manual into a separate section for each of the following:
 - 1. Type of emergency.
 - 2. Emergency instructions.
 - 3. Emergency procedures.
- C. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:

- 1. Fire.
- 2. Flood.
- 3. Gas leak.
- 4. Water leak.
- 5. Power failure.
- 6. Water outage.
- 7. System, subsystem, or equipment failure.
- 8. Chemical release or spill.
- D. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.
- E. Emergency Procedures: Include the following, as applicable:
 - 1. Instructions on stopping.
 - 2. Shutdown instructions for each type of emergency.
 - 3. Operating instructions for conditions outside normal operating limits.
 - 4. Required sequences for electric or electronic systems.
 - 5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.

- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.
- B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.
- C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.

- 2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."
- G. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017823

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.
 - 4. Miscellaneous record submittals.
 - 5. Directories.

B. Related Requirements:

- 1. Section 017300 "Execution" for final property survey.
- 2. Section 017700 "Closeout Procedures" for general closeout procedures.
- 3. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

- A. Submit all project record documents as one submittal package.
- B. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set of marked-up record prints.
- C. Record Specifications: Submit one paper copy of Project's Specifications, including addenda and contract modifications.
- D. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.
 - 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.
- E. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous record-keeping requirements and submittals in connection with various construction activities. Submit annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding archive photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below first floor.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Changes made following Architect's written orders.
 - 1. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

- 1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
- 2. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 - 4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
 - 5. Note related Change Orders, record Product Data, and record Drawings where applicable.
- B. Format: Submit record Specifications as paper copy.

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Specifications, and record Drawings where applicable.
- B. Format: Submit record Product Data as annotated PDF electronic file.
 - 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

2.4 DIRECTORIES

A. Directories: Contractor/Subcontractor directory.

- 1. Submit one hard copy and one copy on electronic media CD-R or USB storage device in PDF format.
- B. Directory: Name, address and telephone number for General Contractor, all major subcontractors, organized by specification section. Provide a separate list in alphabetical order.

2.5 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file.
 - 1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 017839

SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Demolition and removal of selected portions of building or structure.
- 2. Demolition and removal of selected site elements.
- 3. Salvage of existing items to be reused or recycled.
- 4. Temporary dust and sound partitions.
- 5. Temporary ventilation.
- 6. Repair procedures for selective demolition operations.
- 7. Patching and repairs.
- 8. Coordination with Owner for renovations adjacent to existing occupied spaces.

B. Related Requirements:

- 1. Section 011000 "Summary" for restrictions on the use of the premises, Owner-occupancy requirements, and phasing requirements.
- 2. Section 017300 "Execution" for cutting and patching procedures.

1.2 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
- B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.
- C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
- D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.3 MATERIALS OWNERSHIP

- A. Unless otherwise indicated, demolition waste becomes property of Contractor.
- B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 - 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.4 PREINSTALLATION MEETINGS

- A. Predemolition Conference: Conduct conference at Project site.
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review structural load limitations of existing structure.
 - 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 - 5. Review areas where existing construction is to remain and requires protection.
 - 6. Review requirements to keep existing construction in place to minimize disruption of Owner's operations.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For refrigerant recovery technician.
- B. Proposed Dust-Control and Noise-Control Measures: Submit statement or drawing that indicates the measures proposed for use, proposed locations, and proposed time frame for their operation. Identify options if proposed measures are later determined to be inadequate.
- C. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 - 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - 4. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
- D. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.
- E. Predemolition Photographs or Video: Submit before Work begins.
- F. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.
- G. Warranties: Documentation indicated that existing warranties are still in effect after completion of selective demolition.

1.6 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

B. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.

1.7 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.8 FIELD CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Lead Paint: It is expected that materials coated with lead paint primer will be encountered in the Work.
 - 1. As a minimum, comply with OSHA lead standard 1926.62, State of Maine, federal EPA and local requirements. Firms conducting lead-related tasks affecting lead-based paint shall be EPA Lead-Safe Certified for Repair, Renovation and Painting (RRP) for lead-safe work practices. Provide copies of Lead-Safe Certifications.
 - 2. All penetrations that impact lead paint coated surfaces must be conducted using HEPA filtered hand tools (Drills) equipped with a dust collection shroud equivalent to or similar to Novatek's DDS-1/Dustless Drill Shroud and HEPA Vacuum dust collection system.
 - 3. Lead-containing dust and debris shall be placed in sealed, water tight containers properly labeled as a hazardous waste, and located to a designated location for disposal at the conclusion of each day's work. Lead-based paint waste shall not be stored on site for longer than 30 days. Store, handle, load, transport and dispose of in accordance with local, state and federal requirements.
- E. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials will be removed by Owner before start of the Work.
 - 2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- F. Storage or sale of removed items or materials on-site is not permitted.
- G. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

1. Maintain fire-protection facilities in service during selective demolition operations.

1.9 WARRANTY

- A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties. Notify warrantor before proceeding. Existing warranties include the following:
 - 1. Roof system.
- B. Notify warrantor on completion of selective demolition, and obtain documentation verifying that existing system has been inspected and warranty remains in effect. Submit documentation at Project closeout.

PART 2 - PRODUCTS

2.1 PEFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
- B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.
- C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- E. Engage a professional engineer to perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

- 1. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.
- 2. Steel Tendons: Locate tensioned steel tendons and include recommendations for detensioning.
- F. Survey of Existing Conditions: Record existing conditions by use of measured drawings, preconstruction photographs, or preconstruction videotapes and templates.
 - 1. Comply with requirements specified in Section 013233 "Photographic Documentation."
 - 2. Inventory and record the condition of items to be removed and salvaged. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations.
 - 3. Before selective demolition or removal of existing building elements that will be reproduced or duplicated in final Work, make permanent record of measurements, materials, and construction details required to make exact reproduction.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 - 1. Comply with requirements for existing services/systems interruptions specified in Section 011000 "Summary."
 - 2. All air-handling ducts shall be shut down or covered whenever possible during demolition activities. This covering or shut down of air-handling ducts shall be approved by the Owner prior to modifying existing conditions.
- B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 - a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

- f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
- g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
- C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Section 015000 "Temporary Facilities and Controls."
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 - 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 - 4. Flooring Protection:
 - a. At existing buildings where existing flooring is to remain, cover flooring with protection board that will prevent damage from construction activities, including moving of equipment and lifts, metal cuttings from steel cutting and threading operations, oils and fluids that could discolor flooring, water, construction worker traffic and activities.
 - 5. Cover and protect furniture, furnishings, and equipment that have not been removed.
 - 6. Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Section 015000 "Temporary Facilities and Controls."
- C. Temporary Partitions: Erect and maintain dustproof partitions and temporary enclosures and provide exhaust ventilation to limit dust and dirt migration and to separate areas from fumes and noise. Coordinate requirements with Section 015000 Temporary Facilities and Controls.
- D. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 - 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.
 - 5. Maintain adequate ventilation when using cutting torches.
 - 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 - 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 - 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 9. Dispose of demolished items and materials promptly.

B. Removed and Salvaged Items:

- 1. Clean salvaged items.
- 2. Pack or crate items after cleaning. Identify contents of containers.
- 3. Store items in a secure area until delivery to Owner.
- 4. Transport items to Owner's storage area on-site.
- 5. Protect items from damage during transport and storage.

C. Removed and Reinstalled Items:

- 1. Clean and repair items to functional condition adequate for intended reuse.
- 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
- 3. Protect items from damage during transport and storage.
- 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

- A. Concrete: Demolish in small sections. Using power-driven saw, cut concrete to a depth of at least 3/4 inch at junctures with construction to remain. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete. Neatly trim openings to dimensions indicated.
- B. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.
- C. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.
- D. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.
- E. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers.
- F. Roofing: Remove no more existing roofing than what can be covered in one day by new roofing and so that building interior remains watertight and weathertight. See Section 075323 "EPDM Roofing" for new roofing requirements.
 - 1. Remove existing roof membrane, flashings, copings, and roof accessories.
 - 2. Remove existing roofing system down to substrate.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be recycled, reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119

SECTION 03 30 00

CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section specifies cast-in place concrete, including formwork, reinforcement, concrete materials, mix design, placement procedures, and finishes.
- B. Related Sections include the following:
 - 1. Division 31 Section "Earthwork" for drainage fill under slabs-on-grade.
 - 2. Division 32 Section "Concrete Paving".

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume.

1.4 REFERENCES

- A. American Concrete Institute (ACI):
 - 1. 117 Specifications for Tolerances for Concrete Construction and Materials
 - 301 Specifications for Structural Concrete for Buildings
 - 3. 305R Hot Weather Concreting
 - 4. 306R Cold Weather Concreting
 - 5. 309R Guide for Consolidation of Concrete
 - 6. 315 Manual of Standard Practice for Detailing Reinforced Concrete
 - 7. 347 Recommended Practice for Concrete Formwork

- 8. 318 Building Code Requirements for Reinforced Concrete
- 9. 544.1R State-of-the-Art Report of Fiber Reinforced Concrete
- 10. 554.2R Measurement of Properties of Fiber Reinforced Concrete
- B. American Society for Testing and Materials (ASTM):
 - 1. A 615 Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
 - 2. C 33 Concrete Aggregate
 - 3. C 39 Compressive Strength of Cylindrical Concrete Specimens
 - 4. C 94 Ready-Mixed Cement
 - 5. C 150 Portland Cement
 - 6. C 260 Air-Entraining Admixtures for Concrete
 - 7. C 309 Liquid Membrane-Forming Compounds for Curing Concrete
 - 8. C 494 Chemical Admixtures for Concrete
 - 9. C 1018 Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)
 - 10. C 1116 Type III, Sections 4.1.3 and 4.2, and Performance Level I, Toughness Index I5 outlined in Section 21, Note 17, Standard Specification for Fiber-Reinforced Concrete and Shotcrete
- C. Federal Specifications (FS):
 - 1. TT-C-800- Curing Compound, Concrete, for New and Existing Surfaces
- D. Concrete Reinforcing Steel Institute (CRSI):
 - 1. CRSI Manual of Standard Practice and Recommended Practice for Placing Reinforcing Bars (MSP-latest edition)
- E. American Welding Society (AWS)
- F. Scaffolding and Shoring Institute (SSI):
 - 1. Scaffolding and Shoring Safety Rules

1.5 SUBMITTALS

- A. Product Data: For each type of manufactured material and product indicated.
- B. Design Mixes: For each concrete mix. Include alternate mix designs when characteristics of materials, project conditions,

weather, test results, or other circumstances warrant adjustments.

- 1. Provide cement manufacturer's letter of certification and chemical content test results stating that the Portland cement is in compliance with ASTM designation C 150.
- 2. Indicate amounts of mix water to be withheld for later addition at Project site.
- C. Steel Reinforcement Shop Drawings: Details of fabrication, bending, and placement, prepared according to ACI 315, "Details and Detailing of Concrete Reinforcement." Include material, grade, bar schedules, stirrup spacing, bent bar diagrams, arrangement, and supports of concrete reinforcement. Include special reinforcement required for openings through concrete structures.
- D. Welding Certificates: Copies of certificates for welding procedures and personnel.
- E. Flatwork Certificates: Copies of supervisors "ACI Concrete Flatwork Technician" certificate.
- F. Material Certificates: Signed by manufacturers certifying that each of the following items complies with requirements:
 - 1. Cementitious materials and aggregates.
 - 2. Form materials and form-release agents.
 - 3. Steel reinforcement and reinforcement accessories.
 - 4. Fiber reinforcement.
 - 5. Admixtures.
 - 6. Curing materials.
 - 7. Bonding agents.
 - 8. Adhesives.
 - 9. Waterstops.
 - 10. Vapor retarders.
 - 11. Epoxy joint filler.
 - 12. Joint-filler strips.
 - 13. Repair materials.
- G. Minutes of preinstallation conference.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed concrete Work similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

- 1. Flatwork (interior and exterior slabs) shall be placed, finished and cured under the direct supervision of a "Certified ACI Concrete Flatwork Technician".
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.
 - 1. Manufacturer must be certified according to the National Ready Mixed Concrete Association's Certification of Ready Mixed Concrete Production Facilities.
- C. Testing Agency Qualifications: An independent testing agency, approved by the Engineer and acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 to conduct the testing indicated, as documented according to ASTM E 548.
 - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
- D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, each aggregate from one source, and each admixture from the same manufacturer.
- E. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code--Reinforcing Steel."
- F. ACI Publications: Comply with the following, unless more stringent provisions are indicated:
 - 1. ACI 301, "Specification for Structural Concrete."
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle steel reinforcement to prevent bending and damage.

1.8 PROJECT CONDITIONS

A. To prevent exterior concrete entrance slabs, pavement and walls from repeated freeze thaw cycles and de-icers before adequate curing to protect concrete has occurred, placement shall meet the requirements of ACI 306R, Cold Weather Concreting. No deicers shall be used on the concrete during the project.

B. Apply surface evaporation retardant to slab surface when water loss reaches .15 lbs of water loss per square foot (.6kg per sm) per hour as determined in ACI 308.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. Structural 1, B-B, or better, mill oiled and edge sealed.
 - 2. Manufactured forming system: metal or other panel system with prior review and approval.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch, minimum.
- D. Form-Release Agent: Commercially formulated form-release agent with a maximum of 350 g/L volatile organic compounds (VOCs) that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- E. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of the exposed concrete surface.
 - 2. Furnish ties that, when removed, will leave holes not larger than 1 inch in diameter in concrete surface.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
 - 1. Bars shall be clean and free from rust, scale or coatings that will reduce bond. Reinforcing steel shall be capable of bending 180 degrees and rebending to original shape without fracture.
- B. Plain-Steel Wire: ASTM A 82, galvanized.

2.3 REINFORCEMENT ACCESSORIES

- A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete or fiber-reinforced concrete of greater compressive strength than concrete, and as follows:
 - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected or CRSI Class 2 stainless-steel bar supports.
- B. Joint Dowel Bars: Plain-steel bars, ASTM A 615/A 615M, Grade 60. Cut bars true to length with ends square and free of burrs.

2.4 CONCRETE MATERIALS

- A. Portland Cement: ASTM C 150, Type II.
 - Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 120.
 - a. At the contractor's option, slag cement may be blended with type II cement to modify specific properties of the concrete. The percentage of slag cement recommended by the supplier shall be approved by the Engineer.
 - b. At the supplier's option, slag cement may be blended with type II cement to achieve the performance of 0.60% alkali. The cement supplier shall provide a letter certifying the percentage of slag cement required to achieve the performance of low alkali cement specified.
 - c. May be used in foundation walls and footings. Not allowed for use in interior slabs-on-grade mixes.

- B. Normal-Weight Aggregate: ASTM C 33, uniformly graded, and as follows:
 - 1. Class: Severe weathering region, but not less than 3S.
 - 2. Nominal Maximum Aggregate Size: 3/4 inch.
- C. Lightweight Aggregate: ASTM C 330, 3/8-inch nominal maximum aggregate size.
- D. Water: Potable and complying with ASTM C 94.

2.5 ADMIXTURES

- A. General: Admixtures certified by manufacturer to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material and to be compatible with other admixtures and cementitious materials. Do not use admixtures containing calcium chloride.
- B. Air-Entraining Admixture: ASTM C 260.
- C. Water-Reducing Admixture: ASTM C 494, Type A.
- D. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.
- E. Water-Reducing and Accelerating Admixture: ASTM C 494, Type E.
- F. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.
- G. Non-Corrosive Accelerator: ASTM C 494, Type C or E.
 - 1. Non -corrosive accelerator shall have long-term test data proving its non-corrosive effect on reinforcing steel.
- H. Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Catexol 1000CL; Axim Concrete Technologies.
 - b. MCI 2000 or MCI 2005; Cortec Corporation.
 - c. DCI or DCI-S; W. R. Grace & Co., Construction Products Div.
 - d. Rheocrete 222+; Master Builders, Inc.
 - e. FerroGard-901; Sika Corporation.

2.6 WATERSTOPS

A. Self-Expanding Strip Waterstops: Manufactured rectangular or trapezoidal strip, sodium bentonite or other hydrophylic material for adhesive bonding to concrete. Parastop II by Paramount Technical Products, Inc. or approved equal.

2.7 FLOOR AND SLAB TREATMENTS

A. Water Repellent and Chloride Screen: Equal to Consolideck Saltguard by ProSoCo, Inc. Consolideck Saltguard.

2.8 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Clean and Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.
- F. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Evaporation Retarder:
 - a. Sure Film; Dayton Superior Corporation.
 - b. Eucobar; Euclid Chemical Co.
 - c. Confilm; Master Builders, Inc.
 - d. SikaFilm; Sika Corporation.
 - 2. Clear, Waterborne, Membrane-Forming Curing Compound:
 - a. AH Clear Cure WB; Anti-Hydro International, Inc.
 - b. Safe Cure and Seal; Dayton Superior Corporation.
 - c. Aqua Cure VOX; Euclid Chemical Co.
 - d. Vocomp-20; W. R. Meadows, Inc.
 - e. Kure-N-Seal WB; Sonneborn, Div. of ChemRex, Inc.

2.9 RELATED MATERIALS

- A. Isolation Joint Former (Columns): 4" x 24" diameter as manufactured by Greenstreak, P.O. Box 7139, St. Louis, MO 63177, or approved equal.
- B. Perimeter Isolation Joint: 2 lb. density, cross linked polyethylene with removable strip-off equal to ISO-STRIP as manufactured for Century Floors, Topsham, Maine.
 - Edge Tape: Vaporlock edge tape, pre-formed 3 inch wide twosided adhesive.
- C. Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or self-expanding cork.
- D. Epoxy Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Shore A hardness of 80 per ASTM D 2240.
- E. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- F. Epoxy-Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class and grade to suit requirements.
- G. Doweling Adhesive: A two-component, vinylester blend resin equal to HI HY150 adhesive as manufactured by Hilti Fastening Systems, Tulsa, Oklahoma or approved equal
- H. Key Joint (Construction Joint only): 24 gauge galvanized steel with 1-1/8" dowel knockouts 6" on center. Keyway shall be equal to "Key-Lock Joint" with removable plastic cap strip by Form-A-Key Products Div., Louisville, KY 40214, or approved equal.
- I. Dowels: 24 (608 mm) inch long square dowels with sawn ends (sheared bars not acceptable).
 - Dowel Sleeve: 3/4 inch (19 mm) by 12 (304 mm) inch long, plastic sleeve with 3/16 inch (4 mm) thick polyethylene foam on vertical legs equal to Expando-Lok by Jay Kay Sales.
 - 2. Dowel Aligner: Cast plastic dowel aligner with nailing flange.
- J. Reglets: Fabricate reglets of not less than 0.0217-inch- thick galvanized steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.
- K. Dovetail Anchor Slots: Hot-dip galvanized steel sheet, not less than 0.0336 inch thick, with bent tab anchors. Temporarily fill

- or cover face opening of slots to prevent intrusion of concrete or debris.
- L. Non-Shrink Grout: Premixed compound with non-metallic aggregate, cement, water-reducing and plasticizing agents capable of minimum compression strength of 2,400 lbs. Non-shrink grout shall be equal to "Eucon N-S" (non-metallic) by the Euclid Chemical Co., "Masterflow 713" (non-metallic) by Master Builders, or Five Star Grout by U.S. Grout Corp.

2.10 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inchand that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psiat 28 days when tested according to ASTM C 109/C 109M.

2.11 CONCRETE MIXES

- A. Prepare design mixes for each type and strength of concrete determined by either laboratory trial mix or field test data bases, as follows:
 - 1. Proportion normal-weight concrete according to ACI 211.1 and ACI 301.
- B. Use a qualified independent testing agency for preparing and reporting proposed mix designs for the laboratory trial mix basis.
- C. Footings and foundation walls: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 3500 psi at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.48 0.52.
 - 3. Slump Limit: 4 inches, plus or minus 1 inch.
 - 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inchnominal maximum aggregate size.
- D. Interior Slabs-on-Grade: Proportion normal-weight concrete mixture as follows:

- 1. Minimum Compressive Strength: 3500 psi at 28 days.
- 2. Maximum Water-Cementitious Materials Ratio: 0.47 0.50.
- 3. Slump Limit: 5 inches.
- 4. Air content below is maximum recommended by ACI 302.1R for trowel-finished floors.
- 5. Air Content: Do not allow air content of troweled finished floors to exceed 3 percent.
- 6. Reinforcement: Provide 6 x 6 x W1.4 x W1.4 WWM at areas of radiant heat.
- E. Elevated Slabs on Metal Decking: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 3500 psi at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.47 0.49.
 - 3. Slump Limit: 4 inches, plus or minus 2 inch.
 - 4. Air Content: Do not allow air content of troweled finished floors to exceed 3 percent.
 - 5. Reinforcement: Provide 6 x 6 x W2.9 x W2.9 WWM on bolsters at 1" clear below top of slab surface over entire slab area.
 - 6. Maximum aggregate size: 3/8"
- F. Miscellaneous Site Concrete not specified in other sections: Unless otherwise indicated, proportion normal-weight concrete mix as follows:
 - 1. Minimum Compressive Strength: 4000 psi at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.45.
 - 3. Slump Limit: 5 inches.
 - 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inchnominal maximum aggregate size.
- G. Cementitious Materials: For concrete exposed to deicers, limit percentage, by weight, of cementitious materials other than Portland cement according to ACI 301 requirements.
- H. Maximum Water-Cementitious Materials Ratio: 0.50 for concrete required to have low water permeability.
- I. Maximum Water-Cementitious Materials Ratio: 0.45 for concrete exposed to deicers or subject to freezing and thawing while moist.
- J. Air Content: Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content as follows within a tolerance of plus 1 or minus 1.5 percent, unless otherwise indicated:
 - 1. Air Content: 6 percent for 3/4-inch-nominal maximum aggregate size.

- K. Do not air entrain concrete to trowel-finished interior floors. Do not allow entrapped air content to exceed 3 percent.
- L. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.
- M. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 - Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - Use corrosion-inhibiting admixture in concrete mixes where indicated.

2.12 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.13 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information.
 - 1. When air temperature is between 85 and $90^{\circ}F$ (30 and $32^{\circ}C$), reduce mixing and delivery time from one and one-half (1-1/2) hours to seventy-five (75) minutes: when air temperature is above $90^{\circ}F$ (32°C), reduce mixing and delivery time to sixty (60) minutes.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until concrete structure can support such loads.
 - 1. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117. Excessive deflection of forms after concrete is poured shall be sufficient cause for rejection of that portion of concrete

- and formwork. Excessive deflection will be considered to be that which will produce visible and noticeable waves in the finished concrete.
- 2. Construct forms so that walls will key into each other at ends unless poured monolithically.
- B. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 - 1. Surfaces exposed to view: Class A, 1/8 inch
 - 2. Surfaces not exposed Class C, 1/2 inch
- C. Construct forms tight enough to prevent loss of concrete mortar.
- D. All possible care shall be taken in the formwork to produce surfaces free from honeycomb or other defects.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. Kerf wood inserts for forming keyways, reglets, recesses, and the like, for easy removal.
 - 1. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Schedule the work and notify other trades in time so that provisions for their work in the formwork can be made without delaying progress of the project. Verify that all sleeves, pipes, etc., for electrical, plumbing, heating and ventilation, or other work are installed.
- I. Chamfer exterior corners and edges of permanently exposed concrete.
- J. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

- K. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- L. Bolts, rods or other approved devices shall be used for internal ties. They shall be so arranged that when the forms are removed, no metal shall be within 1" of any surface.
- M. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- N. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.
- O. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - Secure information about and provide for all openings, offsets, recessed nailing blocks, channel chases, anchors, ties, inserts, etc., in the formwork before concrete is poured.
 - 2. Install anchor bolts, accurately located, to elevations required.
 - a. The setting of all anchor bolts and the grouting for all structural steel base plates shall be included as part of this contract. Bolts and base plates will be furnished under Section 05500 Metal Fabrications.
 - b. All column base plates, equipment bases, and other locations noted in the structural drawings shall be grouted with the specified non-shrink grout. All exposed grout shall be the specified non-metallic type.
 - 3. Install dovetail anchor slots in concrete structures as indicated.

3.2 REMOVING AND REUSING FORMS

A. General: Formwork, for sides of beams, walls, columns, and similar parts of the Work, that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete provided concrete is hard enough to not be damaged by form-removal operations and provided curing and protection operations are maintained.

- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Engineer.

3.3 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Steel reinforcing shall not be bent in a manner that will injure the material or the embedding concrete. Bars with kinks or bends not shown on the plans shall not be used. Heating of reinforcement for bending will not be permitted. Bars shall be bent once only (no rebending or straightening allowed) unless shown as such on the drawings.
 - 2. All details of reinforcement not shown or indicated on the drawings or specifically called for in the specifications shall conform to ACI 315.
 - 3. Lap all bars at splices, corners and intersections a minimum of 36 bar diameters unless otherwise indicated. Laps of welded-wire fabric shall be at least two times the spacing of the members in the direction lapped but not less than twelve inches.
 - 4. All intersecting concrete walls shall be tied with #4L bars 3'-0" long, bent 18" x 18" spaced 12" on center, outside face only unless otherwise indicated.
 - 5. Splices of reinforcement shall not be made at points of maximum stress. Splice lengths shall be a minimum of 36 bar diameters unless otherwise indicated and shall provide sufficient lap to transfer the stress between bars by bond and shear. Stagger splices of adjacent bars where possible. All splices and laps at corners and intersections shall be tied with wire at each end.
 - 6. Where obstructions (pipes, conduit, ducts, etc.) prevent the intended placement of reinforcing, provide additional reinforcing as directed by the Engineer or his Representative around the obstruction to match that reinforcing interrupted.
 - 7. Provide additional stirrups, ties, trim bars, etc., as directed around all openings, sleeves, pipes, and conduits, which pass through structural elements.
 - 8. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Coverage of bars (including stirrups and column ties) shall, unless otherwise shown, be as follows:

Footings:

Slabs (on grade):

top face

Walls:

2" clear to form at exterior

- 2. Misplaced Reinforcing: If any reinforcing bars are found to be misplaced after concrete has been placed, the Engineer shall be notified immediately and no correction or cutting shall be made without his direction. Misplaced bars shall not be bent or kinked. Any redesign and/or reinforcing required because of misplaced bars shall be at the Contractor's expense.
- 3. All reinforcing shall be kept separate from soil, pipe, conduit ducts, etc., by approved non-metallic separators.
- 4. Shop- or field-weld reinforcement according to AWS D1.4, where indicated.
- C. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

3.4 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Engineer.
 - Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form from preformed galvanized steel, plastic keyway-section forms, or bulkhead forms with keys, unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
 - 3. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.

- a. Wall control "V" joints shall have a depth of 1/8 times the thickness of the wall and be 1/2" wide at surface. "V" joints shall be placed as shown or as directed by the Engineer.
- 4. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness, or 3/4" minimum for soft-cut as follows:
 - 1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/4"maximum wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
 - a. Floor slab control joints shall be placed as shown on the foundation plan. Unless otherwise noted, control joints shall be spaced at intervals not to exceed 12'-0" on center in both directions.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants, specified in Division 7 Section "Joint Sealants," are indicated.
 - 2. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Dowel Joints: Install dowel sleeves and dowels or dowel bar and support assemblies at joints where indicated.
 - 1. All intersecting slab construction joints acting as control joints shall be doweled according to the following schedule unless otherwise indicated. Dowels shall be smooth, steel grade 60 with saw cut ends. Grease, wrap or cap one end.

Dowel Schedule				
		Dowel	Length	Spac-
		Dia.		ing
4"	Slab	11	12"	12"
5"	Slab	5/8"	14"	12"
6"	Slab	3/4"	14"	12"
7"	Slab	7/8"	14"	12"
8"	Slab	1"	14"	12"

3.5 WATERSTOPS

- A. Self-Expanding Strip Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions, bonding or mechanically fastening and firmly pressing into place. Install in longest lengths practicable.
 - 1. Remove all protrusions and indentations " or over in all areas.
 - Lay waterstop flat against concrete surface and nail every
 to 6" with case hardened washered nails.
 - 3. Overlap all joints a minimum of 2".

3.6 MIXING CONCRETE

- A. General: The concrete shall be mixed in the quantities required for immediate use, and any which has developed initial set or exceed the time limit of ASTM C 94 shall not be used. No retempering of mortar or concrete shall be allowed under any circumstances. Concrete shall be proportioned, mixed and placed only in the presence of the Engineer or his Authorized Representative. The Contractor shall give ample notice to the Engineer before mixing is commenced. Aggregate size will be adjusted to suit conditions of work. Pumping of concrete shall be permitted only after approval by the Engineer of the Pumping Contractor and the pumping equipment and method to be employed. The Engineer shall be notified of dates when pumping of concrete shall be performed to permit his on-the-job inspection of the operations.
- B. Final proportions shall be in accordance with approved mix designs. Adjustments to approved proportions, for whatever reason, shall be approved by the Engineer.
- C. Add fibrous concrete reinforcing to all concrete used at slabs on grade (interior and exterior), sidewalks and exterior stairs. The amount of fiber reinforcement shall be in accordance with

the manufacturer's recommendations and approved submittals. Add the fibrous reinforcement at the time the concrete is batched; mix in strict accordance with the manufacturer's instructions and recommendations for a uniform and complete distribution.

3.7 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Remove loose dirt, mud, standing water, and foreign matter from excavations or from cavities.
- C. Thoroughly clean reinforcement and other embedded items free from loose rust and other matter. Assure reinforcing is held securely in place.
- D. Thoroughly wet wood forms (except coated plywood), bottom and sides of trenches, base underslab, and adjacent concrete or masonry at least one hour in advance of placing concrete; securely close cleanout and inspection ports; repeat wetting as necessary to keep forms damp.
- E. Equipment shall be maintained clean and of sufficient quantity and capacity to efficiently execute the work required.
- F. Before placing concrete, water may be added at Project site, subject to limitations of ACI 301.
- G. Deposit concrete continuously or in layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as specified. Deposit concrete to avoid segregation.
- H. Deposit concrete in forms in horizontal layers no deeper than 24 inches and in a manner to avoid inclined construction joints. Place each layer while preceding layer is still plastic, to avoid cold joints.
 - 1. Consolidate placed concrete with mechanical vibrating equipment. Use equipment and procedures for consolidating concrete recommended by ACI 309R.
 - a. concrete shall be vibrated into final position in forms with an internal type vibrating machine. The vibration shall have a frequency of not less than 8,000 vibrations per minute. The mechanical vibrating equipment shall be satisfactory to the Engineer.

- b. The vibration shall be of sufficient intensity and duration to cause flow or settlement of the concrete and complete consolidation. Over vibration, especially of mixtures that are too wet, may cause segregation and will be avoided. A sufficient number of vibrators shall be provided to permit consolidation of each batch before the next batch is delivered and without delaying the delivery.
- c. The vibrations shall be applied directly to the concrete, and vibration through the forms shall not be permitted. Vibration shall be applied at the point of deposit and in the area of freshly deposited concrete. The concrete shall be placed in layers of uniform thickness
- 2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations no farther than the visible effectiveness of the vibrator. Place vibrators to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mix constituents to segregate.
- 3. When conditions make puddling difficult, or where the reinforcement is congested, batches of mortar containing the same proportions of cement to sand used in the concrete shall be deposited in the forms. The operation of filling with the regularly specified mix shall be carried on at such a rate that the mix is at all times plastic and flows readily into the spaces between the bars.
- 4. In thin walls or inaccessible portions of the forms where rodding is impractical, the concrete shall be worked into place by tapping or hammering forms adjacent to the freshly deposited concrete.
- 5. The Contractor's attention is called to the importance of making the concrete dense, and he shall provide sufficient labor to the entire satisfaction of the Engineer to thoroughly consolidate the concrete, avoid air pockets and voids in exposed sections, and leave smooth, uniform surfaces after forms are removed.
- 6. Should any honeycombed concrete be disclosed upon removal of forms, the Contractor shall immediately cut out the said honeycombed portions back to solid concrete and shall fill the opening thus formed with a concrete of the same proportions as that specified for the section of work in which the fault occurs.
- 7. When placing fresh concrete upon hardened concrete, the latter shall be thoroughly roughened and cleaned of all loose material, scum or latency. The bonding compound

- shall be applied and the new concrete placed while the bonding compound is still tacky.
- 8. Joints in the concrete work shall be made only in places and the manner specified by the Engineer.
- 9. The Contractor's attention is called to the importance of properly and carefully placing concrete around reinforcement, as the reinforcing metal must not be exposed; and in cases where reinforcing metal becomes exposed on the surface, that portion of work must be removed and re-laid as the covering of same by plastering with cement mortar will not be allowed. All reinforcing rods or other reinforcing material shall be lightly tapped so that they will retain their original position.
- 10. No concrete shall be retempered except as allowed in ASTM C 94 nor shall set concrete be used as aggregate.
- I. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - a. Reinforcement, unless otherwise indicated, shall be placed one-half the thickness of the slab.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, free of humps or hollows, before excess moisture or bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
 - 6. In addition to steel bar reinforcement, slabs shall be reinforced with fibrous concrete reinforcement which is to be added when the concrete is being batched in strict accordance with the manufacturer's recommendations.
 - 7. Slabs shall be monolithically placed with control joints. Sawed control joints will be located as indicated on the drawings and/or as directed by the Engineer. Floors shall be cleaned of objects before saw cutting begins. A true, continuous saw cut is what is expected as a finish result.
- J. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.

- 1. When air temperature has fallen to or is expected to fall below 40 deg F uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg Fand not more than 80 deg Fat point of placement.
- 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
- 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators, unless otherwise specified and approved in mix designs.
- 4. Contractor shall have on the job, ready to install, adequate equipment for heating the materials and the freshly placed concrete and for enclosing the work in accordance with the requirements specified herein.
- K. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R and as follows, when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg Fat time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

L. Protection:

- 1. Concrete just placed shall be protected from rain in an approved manner until the concrete has set, or if a slab, the curing compound has dried.
- 2. Concrete, when placed in the forms, shall have a temperature of not less than 50 degrees F or more than 90 degrees F. Freshly placed concrete and the surrounding air shall be maintained at a temperature of 50 degrees F or greater for a period of seven days after placing. If high early strength concrete is used, the aforementioned time period may be reduced to three days. The methods of protection and curing shall be such as to prevent evaporation of moisture from the concrete and injury to the surface.
- 3. Should it later develop that any concrete work has become injured in any way by freezing or otherwise, the defective concrete shall be repaired or replaced as directed by the Engineer at no added expense to the Owner. Repair

materials shall include all reinforcement grouts, dry pack, admixtures, epoxy and aggregates as may be necessary

M. Deicer Protection:

1. Apply deicer protection to all exterior slabs on grade, stairs, sidewalks, and related work 30 days after concrete placement in strict accordance with manufacturer s written recommendations.

3.8 PROTECTIVE COATING FOR STRUCTURAL STEEL

A. All structural steel and columns and their bases which extend into or through concrete floors or walls shall be thoroughly brush painted with two coats of foundation coating as specified in Section 07150 - Dampproofing, and applied in accordance with the manufacturer's directions, neatly cut off one inch below finish floor.

3.9 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defective areas repaired and patched. Remove fins and other projections exceeding ACI 347R limits for class of surface specified.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defective areas. Remove fins and other projections exceeding 1/8 inch in height.
 - Apply to concrete surfaces exposed to public view or to be covered with a coating or covering material applied directly to concrete, such as waterproofing, dampproofing, veneer plaster, or painting.
 - 2. Do not apply rubbed finish to smooth-formed finish.
- C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

3.10 FINISHING FLOORS AND SLABS

- A. General: Comply with recommendations in ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
 - 1. All interior concrete floor slabs shall be finished true and smooth by steel troweling or finishing machine. All exterior slabs, pads, ramps, stairs, and sidewalks shall be broom finished.
 - 2. When a section of the concrete floor is completed, it shall be left entirely undisturbed until the concrete is thoroughly hardened.
 - 3. Adequate provisions will be made to eliminate the possibility of accidental encroachment upon the newly concreted area.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces indicated, to surfaces to receive trowel finish.
- C. Trowel Finish: After applying float finish, apply first trowel finish and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - Apply a trowel finish to surfaces indicated and to floor and slab surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin film-finish coating system
 - 2. Finish surfaces to the following tolerances, measured within 24 hours according to ASTM E 1155/E 1155M for a randomly trafficked floor surface:
 - a. Tolerances will be in accordance with ACI Publication $\#117 \underline{\text{Class AX}}$. Depression in floor between high spots shall not be greater than 3/16" in 10'-0" + 1/16", and the measurement will be taken by the straight edge method no later than the day after the concrete floor has been poured.
- D. Trowel and Fine-Broom Finish: Apply a partial trowel finish, stopping after second troweling, to surfaces indicated and to surfaces where ceramic or quarry tile is to be installed by

either thickset or thin-set method. Immediately after second troweling, and when concrete is still plastic, slightly scarify surface with a fine broom.

- E. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, and ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Engineer before application.

3.11 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete Work.
- B. Equipment Bases: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates of manufacturer furnishing machines and equipment.
- C. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowelfinish concrete surfaces.
- D. Foundation Insulation: Install foundation insulation using a dab of emulsified asphalt mastic in each corner and the center to adhere the insulation to the concrete wall. Insulation will be installed on the inside face of all perimeter foundation walls extending from the underside of floor slab to top of footing. Insulation furnished under Section 07200 Insulation.

3.12 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and with recommendations in ACI 305R for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x hbefore and during finishing operations. Apply according to manufacturer's written

instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

- C. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, and other surfaces as indicated below.
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inchesand sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer recommends for use with floor coverings.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - 4. Waterproof Paper: Apply waterproof paper in accordance with manufacturer's recommendations in widths as wide as possible. Paper shall be lapped and seams taped with reinforced tape.
 - a. For Interior Non-Exposed Concrete: Typical curing operation for all interior slabs with moisture sensitive floor coverings. Verify individual requirements with flooring manufacture.
 - 5. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later

and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.13 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling till the completion of the project. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid epoxy joint filler full depth in saw-cut joints and at least 2 inchesdeep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.
- D. Install isolation joints around columns in accordance with the drawings and manufacturer's recommendations.
- E. Install perimeter isolation joints in accordance with the drawings and manufacturer's recommendations.

3.14 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Engineer. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16sieve, using only enough water for handling and placing.
- C. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inchwide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.

- 2. After concrete has cured at least 14 days, correct high areas by grinding.
- 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
- 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
- 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inchto match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
- 6. Repair defective areas, except random cracks and single holes 1 inchor less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least 3/4 inchclearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mix as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 7. Repair random cracks and single holes 1 inchor less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- D. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.15 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to sample materials, perform tests, and submit test reports during concrete placement. Sampling and testing for quality control may include those specified in this Article.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

- 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mix exceeding 5 cu. Yd, but less than 25 cu. yd. plus one set for each additional 50 cu. yd.or fraction thereof.
- 2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mix placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mix, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
- 3. Slump: ASTM C 143; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mix. Perform additional tests when concrete consistency appears to change.
- 4. Air Content: ASTM C 231, pressure method, for normal-weight concrete; ASTM C 173, volumetric method, for structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.
- 5. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F and below and when 80 deg Fand above, and one test for each composite sample.
- 6. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.
- 7. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of four standard cylinder specimens for each composite sample.
 - a. Cast and field cure one set of four standard cylinder specimens for each composite sample.
- 8. Compressive-Strength Tests: ASTM C 39; test two laboratory-cured specimens at 7 days and two at 28 days.
 - a. Test two field-cured specimens at 7 days and two at 28 days.
 - b. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at age indicated.
- C. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

- D. Strength of each concrete mix will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi
- E. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mix proportions and materials, compressive breaking strength, and type of break for both 7-and 28-day tests.
- F. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- G. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Engineer. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Engineer.

- - - E N D - - -

SECTION 042200 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Concrete masonry units.
 - 2. Mortar and grout.
 - 3. Steel reinforcing bars.
 - 4. Masonry-joint reinforcement.
 - 5. Miscellaneous masonry accessories.

1.3 DEFINITIONS

- A. CMU(s): Concrete masonry unit(s).
- B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For the following:
 - 1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 - 2. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315. Show elevations of reinforced walls.
- C. Samples for Initial Selection:
 - 1. Decorative CMUs, in the form of small-scale units.
- D. Samples for Verification: For each type and color of the following:

1. Decorative CMUs.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Material Certificates: For each type and size of the following:
 - 1. Masonry units.
 - a. Include data on material properties material test reports substantiating compliance with requirements.
 - b. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.
 - 2. Cementitious materials. Include name of manufacturer, brand name, and type.
 - 3. Mortar admixtures.
 - 4. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
 - 5. Grout mixes. Include description of type and proportions of ingredients.
 - 6. Reinforcing bars.
 - 7. Joint reinforcement.
 - 8. Anchors, ties, and metal accessories.
- C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.
 - 2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.
- D. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.
- E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Company specializing in performing the work of this Section with minimum 5 year experience.
- B. Testing Agency Qualifications: Qualified according to ASTM C 1093 for testing indicated.
- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."

1. At least 7 days prior to starting CMU masonry, conduct a meeting to review detailed requirements for mortar and grout mixes and to determine procedures for satisfactory construction and curing operations. Review requirements of submittals, status of coordinating work, and availability of materials. Review requirements tenting and heating. Establish preliminary work progress schedule and procedures for materials inspection, testing, and certifications. Require representatives of each entity directly concerned with masonry construction to attend, include Contractor's superintendent, masonry foreman and Architect.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.
- B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
- D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.
- E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.9 FIELD CONDITIONS

- A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 - 1. Extend cover a minimum of 24 inches down both sides of walls, and hold cover securely in place.
- B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.
- C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 - 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 - 2. Protect sills, ledges, and projections from mortar droppings.
 - 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.

- 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
- D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates or setting beds. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with the following requirements:
 - 1. Cold-Weather Construction: When the anticipated daytime low temperature is within the limits indicated, use the following procedures:
 - a. 40 to 32 deg F: Heat mixing water or sand to produce mortar temperatures between 40 and 120 deg F.
 - b. 32 to 25 deg F: Heat mixing water and sand to produce mortar temperatures between 40 and 120 deg F. Heat grout materials to produce grout temperatures between 40 and 120 deg F. Heat masonry units to 40 deg F. Maintain mortar and grout above freezing until used in masonry. Use heat on both sides of walls under construction.
 - c. 25 to 20 deg F: Heat mixing water and sand to produce mortar temperatures between 40 and 120 deg F. Heat grout materials to produce grout temperatures between 40 and 120 deg F. Maintain mortar and grout above freezing until used in masonry. Heat masonry units to 40 deg F.
 - d. 20 deg F and Below: Heat mixing water and sand to produce mortar temperatures between 40 and 120 deg F. Heat grout materials to produce grout temperatures between 40 and 120 deg F. Maintain mortar and grout above freezing until used in masonry. Heat masonry units to 40 deg F.
 - 2. Cold-Weather Protection: When the anticipated daytime low temperature is within the limits indicated, coordinate with the General Contractor to provide the following protection. This is in addition to construction procedures specified above:
 - a. 40 to 32 deg F: Cover masonry with insulating blankets for 48 hours after construction.
 - b. 32 deg F and Below: Provide enclosure and heat to maintain temperatures above 32 deg F within the enclosure for 72 hours after construction.
 - 3. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and above and will remain so until masonry has dried out, but not less than 7 days after completion of cleaning.
- E. Hot-Weather Requirements: Coordinate with the General Contractor to protect unit masonry work when temperature and humidity conditions produce excessive evaporation of water from mortar and grout. Provide artificial shade and wind breaks and use cooled materials as required.
 - 1. When ambient temperature exceeds 100 deg F, or 90 deg Fwith a wind velocity greater than 8 mph, do not spread mortar beds more than 48 inchesahead of masonry. Set masonry units within one minute of spreading mortar.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
- B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

- A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.
 - 1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.

2.3 UNIT MASONRY, GENERAL

- A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6 except as modified by requirements in the Contract Documents.
- B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.
- C. Fire-Resistance Ratings: Where indicated, provide units that comply with U.L. requirements for fire-resistance ratings indicated.

2.4 CONCRETE MASONRY UNITS

- A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 - 2. Provide square-edged units for outside corners unless otherwise indicated.

B. CMUs: ASTM C 90.

- 1. Density Classification: Normal weight.
- 2. Size (Width): Manufactured to dimensions 3/8 inch less-than-nominal dimensions.
- 3. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

- 4. Fire Rated Concrete Masonry Units: Provide 2 and 3-Hour UL Fire Rated CMU in locations indicated.
- C. Decorative Concrete Masonry Units: ASTM C 90.
 - 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 1900 psi.
 - 2. Weight Classification: Normal weight.
 - 3. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
 - 4. Pattern and Texture:
 - a. Standard pattern, ground finish.
 - 5. Colors: As selected by Architect from manufacturer's full range.
 - 6. Available Products:
 - a. "Ground Faced Masonry Units (Mirra-Tex Plus)" as manufactured by Genest Concrete, Sanford, Maine.
 - b. Architectural CMU Ground Face (with coating) by A Jandris, available from Gagne & Sons.

2.5 MASONRY LINTELS

A. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.6 MORTAR AND GROUT MATERIALS

- A. General: Mortar and grout may be provided in one of two options; field mix of Portland cement, lime and sand or with specified Portland Cement-Lime Mix.
- A. Portland Cement: ASTM C 150, Type I or II.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
 - 1. Available Products:
 - a. Lafarge: Eaglebond Portland and Lime, Type "S".
 - b. Ciment Quebec, Inc.: Portland and Lime / Type S.
 - c. Dragon Cement and Concrete: Type S Masonry Cement.
 - d. Quikrete: Portland and lime Quikrete.
- D. Aggregate for Mortar: ASTM C 144.

- E. Aggregate for Grout: ASTM C 404.
- F. Water: Potable.

2.7 REINFORCEMENT

- A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
- B. Masonry-Joint Reinforcement, General: Ladder type complying with ASTM A 951/A 951M.
 - 1. Interior Walls: Mill- galvanized carbon steel.
 - 2. Wire Size for Side Rods: 0.148-inch diameter.
 - 3. Wire Size for Cross Rods: 0.148-inch diameter.
 - 4. Spacing of Cross Rods: 16 inches o.c.
 - 5. Provide in lengths of not less than 10 feet.
- C. Masonry Joint Reinforcement for Single-Wythe Masonry: Truss type with single pair of side rods.
 - 1. Available Products:
 - a. Dayton Superior Corporation, Dur-O-Wal Division; Dur-O-Truss.
 - b. Hohmann & Barnard; Truss-Mesh, #120.
 - c. Wire-Bond; Series 300, Single Wythe.

2.8 TIES AND ANCHORS

- A. General: Ties and anchors shall extend at least 1-1/2 inches into masonry but with at least a 5/8-inch cover on outside face.
- B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
 - 1. Mill-Galvanized, Carbon-Steel Wire: ASTM A 82/A 82M, with ASTM A 641/A 641M, Class 1 coating.
- C. Partition Top anchors: 0.105-inch-thick metal plate with 3/8-inch-diameter metal rod 6 inches long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.
 - 1. Available Products:
 - a. Hohmann and Barnard #PTA 420.
 - b. Heckman: No. 419, Pin type.
 - c. Wire Bond: Partition Top Anchor.
- D. Rigid Anchors: Fabricate from steel bars 1-1/2 inches wide by 1/4 inch thick by 24 inches long, with ends turned up 2 inches or with cross pins unless otherwise indicated.
 - 1. Corrosion Protection: Hot-dip galvanized to comply with ASTM A 153/A 153M.

2.9 MISCELLANEOUS ANCHORS

- A. Anchor Bolts: Headed or L-shaped steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.
- B. Postinstalled Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Load Capacity: Capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
 - 2. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5 unless otherwise indicated.

2.10 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Holmann & Barnard: #NS Closed Cell Neoprene.
 - b. Sandell: Closed Cell Neoprene.
 - c. Wire Bond: 3000 Horizontal.
- B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and hold reinforcing bars in center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dayton Superior Corporation, Dur-O-Wal Division; D/A 810, D/A 812 or D/A 817.
 - b. Heckmann Building Products Inc.; No. 376 Rebar Positioner.
 - c. Hohmann & Barnard, Inc.; #RB or #RB-Twin Rebar Positioner.
 - d. Wire-Bond; O-Ring or Double O-Ring Rebar Positioner.

2.11 MASONRY CLEANERS

A. Job-Mixed Detergent Solution: Solution of 1/2-cup dry measure tetrasodium polyphosphate (Spic and Span) and 1/2-cup dry measure laundry detergent dissolved in 1 gal. of water.

2.12 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 1. Use portland cement-lime mortar unless otherwise indicated.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- C. Mortar for Unit Masonry: Comply with ASTM C 270, Property Specification. Provide the following types of mortar for applications stated unless another type is indicated.
 - 1. For reinforced masonry, use Type S.
 - 2. For interior load-bearing walls; for interior non-load-bearing partitions; and for other applications where another type is not indicated, use Type N.
- D. Grout for Unit Masonry: Comply with ASTM C 476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 1.15.1 in ACI 530.1/ASCE 6/TMS 602 for dimensions of grout spaces and pour height.
 - 2. Proportion grout in accordance with ASTM C 476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.
 - 3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 - 2. Verify that foundations are within tolerances specified.
 - 3. Verify that reinforcing dowels are properly placed.
 - 4. Verify that substrates are free of substances that would impair mortar bond.
- B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Build chases and recesses to accommodate items specified in this and other Sections.
- B. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.
- C. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
- D. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures.
 - 1. Mix units from several pallets or cubes as they are placed.
 - 2. In addition to ASTM C90 requirements for defects in CMU units, do not install interior CMU units with defects larger than 1/4 inch, and defects visible from 5 feet away.
- E. Bracing Walls During Construction: It is the sole responsibility of the masonry contractor to design and provide temporary bracing of masonry walls during construction. Refer to NCMA Tek Bulletin 3-4B and applicable OSHA standards. Provide 3' vinyl construction fencing around Restricted Zones.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

- 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
- 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
- 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

- 1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
- 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
- 3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
- 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
- 5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
- 6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet, or 1/2-inch maximum.

7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch.

C. Joints:

- 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
- 2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.
- 3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
- 4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.4 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less than nominal 4-inch horizontal face dimensions at corners or jambs.
- C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4 inches. Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.
- D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.
- E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.
- H. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.
- I. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 - 1. Install compressible filler in joint between top of partition and underside of structure above.

- 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch clearance between end of anchor rod and end of tube. Space anchors 48 inches o.c. unless otherwise indicated.
- 3. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 078443 "Joint Firestopping."

3.5 MORTAR BEDDING AND JOINTING

- A. Lay hollow CMUs as follows:
 - 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 - 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 - 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 - 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
- B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- D. Do not shift or tap masonry units after mortar has achieved initial set. Where adjustment is necessary, remove mortar and replace.

3.6 MASONRY-JOINT REINFORCEMENT

- A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 - 1. Space reinforcement not more than 16 inches o.c.
 - 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
 - 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
- C. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.7 CONTROL AND EXPANSION JOINTS

A. General: Install control joints in unit masonry where indicated. Provide control joints in masonry partitions at changes in wall heights, at control joints in the wall bottom support material, within 8' of wall corners or intersections for walls greater than 16', and at not less than 24' on center for straight walls. Build-in related items as masonry progresses. Do not form a

continuous span through movement joints unless provisions are made to prevent in-plane restraint of wall or partition movement.

- B. Form control joints in concrete masonry as follows:
 - 1. Install preformed control-joint gaskets designed to fit standard sash block.
 - 2. Joint reinforcement shall be discontinuous at control joints.
 - 3. Structural bond beam reinforcement shall be continuous through control joints.

3.8 LINTELS

- A. Install steel lintels where indicated.
- B. Provide masonry lintels where shown and where openings of more than 12 inches for brick-size units and 24 inches for block-size units are shown without structural steel or other supporting lintels.
- C. Provide minimum bearing of 8 inches at each jamb unless otherwise indicated.

3.9 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches.

3.10 FIRESTOPPING

A. Firestopping: Refer to Section 078443 "Joint Firestopping" for installation requirements. Provide firestopping, as part of the work of this section, at the top of fire-rated masonry walls between top of partition and underside of structure above, both for new and existing conditions. Where gypsum wallboard is installed at the top of rated existing masonry walls, the firestopping will be provided by others.

1. Bearing walls, not subject to vertical movement, may be grouted solid between top of wall and underside of structure, in lieu of firestopping.

3.11 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
- B. Inspections: Special inspections according to TMS 402/ACI 530/ASCE 5.
 - 1. Begin masonry construction only after inspectors have verified proportions of siteprepared mortar.
 - 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 - 3. Place grout only after inspectors have verified proportions of site-prepared grout.
- C. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
- D. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for compressive strength.
- E. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

3.12 REPAIRING, POINTING, AND CLEANING

- A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
- B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
- C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - 2. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 - 3. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.

4. Clean concrete masonry with job-mixed detergent solution by cleaning method indicated in NCMA TEK 8-2A and as applicable to type of stain on exposed surfaces.

3.13 MASONRY WASTE DISPOSAL

- A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.
- B. Excess Masonry Waste: Remove excess clean masonry waste and legally dispose of off Owner's property.

END OF SECTION 042200

SECTION 05 12 00

STRUCTURAL STEEL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes structural steel and architecturally exposed structural steel.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 1 Section "Quality Control" for independent testing agency procedures and administrative requirements.
 - 2. Division 5 Section "Metal Fabrications" for loose steel bearing plates and miscellaneous steel framing.
 - 3. Division 9 Section "Painting" for surface preparation and priming requirements.

1.3 DEFINITIONS

- A. Structural Steel: Elements of the structural frame indicated on Drawings and as described in AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."
- B. Heavy Sections: Rolled and built-up sections as follows:
 - 1. Shapes included in ASTM A 6/A 6M with flanges thicker than 1-1/2 inches.
 - 2. Column base plates thicker than 2 inches.
- C. Protected Zone: Structural members or portions of structural members indicated as "Protected Zone" on Drawings. Connections of structural and nonstructural elements to protected zones are limited.
- D. Demand Critical Welds: Those welds, the failure of which would result in significant degradation of the strength and stiffness of the Seismic-Load-Resisting System and which are indicated as "Demand Critical" or "Seismic Critical" on Drawings.

1.4 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

1.5 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Engineer structural steel connections required by the Contract Documents to be selected or completed by the fabricator to withstand design loadings indicated.
- B. Engineering Responsibility: Engage a fabricator who utilizes a qualified professional engineer to prepare calculations, Shop Drawings, and other structural data for structural steel connections.

1.6 SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.
- B. Product Data for each type of product specified.
- C. Shop Drawings: Show fabrication of structural-steel components.
 - Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 - 2. Include embedment Drawings.
 - 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
 - 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.
 - 5. Identify members and connections of the Seismic-Load-Resisting System.
 - 6. Indicate locations and dimensions of protected zones.
 - 7. Identify demand critical welds.
- D. Welding Procedure Specifications (WPSs) and Procedure Qualification Records (PQRs): Provide according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for each welded joint whether prequalified or qualified by testing, including the following:
 - 1. Power source (constant current or constant voltage).
 - 2. Electrode manufacturer and trade name, for demand critical welds.

E. Delegated-Design Submittal: For structural-steel connections indicated to comply with design loads, include analysis data signed and sealed by the qualified professional engineer, licensed in the project jurisdiction, responsible for their preparation.

F. Certification:

- 1. Submit a letter of certification from the material fabricator sealed by a professional engineer licensed to practice in the State of Maine attesting that all shop drawings were prepared under his direct supervision.
- 2. Submit certification that field welders are AWS certified.
- G. Qualification data for firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.
- H. Mill test reports signed by manufacturers certifying that their products, including the following, comply with requirements.
 - 1. Structural steel, including chemical and physical properties.
 - 2. Bolts, nuts, and washers, including mechanical properties and chemical analysis.
 - 3. Direct-tension indicators.
 - 4. Shop primers.
 - 5. Nonshrink grout.

1.7 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, fabricator, shop-painting applicators, professional engineer, and testing agency.
- B. Welding certificates.
- C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
- D. Mill test reports for structural steel, including chemical and physical properties.
- E. Product Test Reports: For the following:
 - Bolts, nuts, and washers including mechanical properties and chemical analysis.
 - 2. Direct-tension indicators.
 - 3. Tension-control, high-strength, bolt-nut-washer assemblies.
 - 4. Shear stud connectors.
 - 5. Shop primers.
 - 6. Nonshrink grout.
- F. Survey of existing conditions.

- G. Source quality-control reports.
- H. Field quality-control and special inspection reports.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced Installer who has completed structural steel work similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.
- B. Fabricator Qualifications: Engage a firm experienced in fabricating structural steel similar to that indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to fabricate structural steel without delaying the Work.
 - 1. Fabricator must participate in the AISC Quality Certification Program and be designated an AISC-Certified Plant as follows:
 - a. Category: Category II, complex steel building structures.
 - b. Fabricator shall be registered with and approved by authorities having jurisdiction.
- C. Comply with applicable provisions of the following specifications and documents:
 - 1. AISC's "Code of Standard Practice.
 - 2. AISC's "Specification for Structural Steel Buildings--Allowable Stress Design and Plastic Design."
 - 3. AISC's "Specification for Allowable Stress Design of Single-Angle Members."
 - 4. AISC's "Seismic Provisions for Structural Steel Buildings."
 - 5. ASTM A 992/A 992M "Specifications for High-Strength Low-Allow Columbium-Vanadium Structural Steel"
 - 6. ASTM A 307 "Specifications for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength"
 - 7. ASTM A 325 "Specifications for Structural Bolts, Steel Heat Treated, 120/105 ksi Minimum"
 - 8. ASTM A 500 "Specifications for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes"
 - 9. ASTM A 6 "Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use."
 - 10. Research Council on Structural Connections' (RCSC) "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
 - 11. Research Council on Structural Connections' (RCSC) "Load and Resistance Factor Design Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- D. Professional Engineer Qualifications: A professional engineer who is legally authorized to practice in the jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for projects with structural steel framing that are similar to that indicated for this Project in material, design, and extent.

- E. Welding Standards: Comply with applicable provisions of AWS D1.1 "Structural Welding Code--Steel."
 - 1. Present evidence that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.
- F. Structural Steel Painting Manual: Comply with applicable provisions of the "Structural Steel Painting Manual.
- G. Structural Steel Painting Council: Comply with provisions as follows:
 - 1. SSPC-SP3 Power Tool Cleaning
 - 2. SSPC-SP6 Commercial Blast Cleaning
- H. Preinstallation Conference: Conduct conference at Project site to comply with requirements of Division 1 Section "Project Meetings."

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver structural steel to Project site in such quantities and at such times to ensure continuity of installation.
- B. Store materials to permit easy access for inspection and identification. Keep steel members off ground by using pallets, platforms, or other supports. Protect steel members and packaged materials from erosion and deterioration.
 - 1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use.
 - 2. Do not store materials on structure in a manner that might cause distortion or damage to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.10 SEQUENCING

A. Supply anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, templates, instructions, and directions, as required, for installation.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Structural Steel W (rolled wide flange) Shapes: As follows:
 - 1. High-Strength, Low-Alloy Columbium-Vanadium Steel: ASTM A 992, Grade 50.

- B. Structural Steel Shapes (except rolled wide flange "W" shapes), Plates, and Bars: As follows:
 - 1. Carbon Steel: ASTM A 36.
- C. Cold-Formed Structural Steel Tubing: ASTM A 500, Grade B (Fy = 46 ksi.
- D. Steel Pipe: ASTM A 53, Type E or S, Grade B.
 - 1. Weight Class: Standard.
 - 2. Finish: Black.
- E. Anchor Rods, Bolts, Nuts, and Washers: As follows:
 - Anchor Rods: ASTM F 1554, Grade 36, unless otherwise noted; carbon-steel, hex-head bolts; and carbon-steel nuts.
 - 2. Headed Bolts: ASTM A 325, Type 1, heavy hex steel structural bolts and heavy hex carbon-steel nuts.
 - 3. Headed Bolts: ASTM A 490, Type 1, heavy hex steel structural bolts and heavy hex carbon-steel nuts.
 - 4. Washers: ASTM A 36.
- F. High-Strength Bolts, Nuts, and Washers: ASTM A 325, Type 1, heavy hex steel structural bolts, heavy hex carbon-steel nuts, and hardened carbon-steel washers.
 - 1. Finish: Plain, uncoated.
 - 2. Direct-Tension Indicators: ASTM F 959, Type 325.
 - 3. Optional: Snap off tension indicating high-strength bolts certified to provide the minimum fastener tension per AISC "Specifications for Structural Joints Using ASTM A 325 or ASTM A 490"
 - a. Finish: Plain, uncoated.
- G. High-Strength Bolts, Nuts, and Washers: ASTM A 490, Type 1, heavy hex steel structural bolts, heavy hex carbon-steel nuts, and hardened carbon-steel washers, uncoated.
 - 1. Direct-Tension Indicators: ASTM F 959, Type 490, uncoated.
 - 2. Optional: Snap off tension indicating high-strength bolts certified to provide the minimum fastener tension per AISC "Specifications for Structural Joints Using ASTM A 325 or ASTM A 490"
- H. Welding Electrodes: Comply with AWS requirements.

2.2 PRIMER

A. Primer: Exterior exposed steel shall be sandblasted to SSPC-SP6 and shop painted with primer paint - TNEMEC Chem-Prime #37-78 Gray, or approved equal.

B. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage compensating agents, plasticizing and water-reducing agents, complying with ASTM C 1107, of consistency suitable for application, and a 30-minute working time.

2.4 FABRICATION

- A. Fabricate and assemble structural steel in shop to greatest extent possible. Fabricate structural steel according to AISC specifications referenced in this Section and in Shop Drawings.
 - 1. Camber structural steel members where indicated.
 - 2. Identify high-strength structural steel according to ASTM A 6 and maintain markings until steel has been erected.
 - 3. Mark and match-mark materials for field assembly.
 - 4. Fabricate for delivery a sequence that will expedite erection and minimize field handling of structural steel.
 - 5. Complete structural steel assemblies, including welding of units, before starting shop-priming operations.
 - 6. Comply with fabrication tolerance limits of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for structural steel.
- B. Fabricate architecturally exposed structural steel with exposed surfaces smooth, square, and free of surface blemishes, including pitting, rust and scale seam marks, roller marks, rolled trade names, and roughness.
 - 1. Remove blemishes by filling, grinding, or by welding and grinding, prior to cleaning, treating, and shop priming.
 - 2. Comply with fabrication requirements, including tolerance limits, of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for architecturally exposed structural steel.
- C. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 - 1. Plane thermally cut edges to be welded.
- D. Finishing: Accurately mill ends of columns and other members transmitting loads in bearing.

2.5 SHOP CONNECTIONS

A. Shop install and tighten high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

- B. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.
 - 1. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch and larger. Grind flush butt welds. Dress exposed welds.

2.6 SHOP PRIMING

- A. Shop prime steel surfaces, except the following:
 - Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
 - 2. Surfaces to be field welded.
 - 3. Surfaces to be high-strength bolted with slip-critical connections.
 - 4. Surfaces to receive sprayed-on fireproofing.
- B. Surface Preparation: Clean surfaces to be painted. Remove loose rust, loose mill scale, and spatter, slag, or flux deposits. Prepare surfaces according to SSPC specifications as follows:
 - 1. SSPC-SP 3 "Power Tool Cleaning."
 - 2. SSPC-SP 6 "Commercial Blast Cleaning."
- C. Priming: Immediately after surface preparation, apply primer according to manufacturer's instructions and at rate recommended by SSPC to provide a dry film thickness of not less than 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

2.7 SOURCE QUALITY CONTROL

- A. Owner will engage an independent testing and inspecting agency to perform shop inspections and tests and to prepare test reports.
 - 1. Testing agency will conduct and interpret tests and state in each report whether test specimens comply with or deviate from requirements.
 - 2. Provide testing agency with access to places where structural steel Work is being fabricated or produced so required inspection and testing can be accomplished.
- B. Correct deficiencies in or remove and replace structural steel that inspections and test reports indicate do not comply with specified requirements.
- C. Additional testing, at Contractor's expense, will be performed to determine compliance of corrected Work with specified requirements.

- D. Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- E. In addition to visual inspection, shop-welded connections will be inspected and tested according to AWS D1.1 and the inspection procedures listed below, at testing agency's option.
 - 1. Liquid Penetrant Inspection: ASTM E 165.
 - 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 - 3. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level "2-2T."
 - 4. Ultrasonic Inspection: ASTM E 164.
- F. In addition to visual inspection, shop-welded shear connectors will be inspected and tested according to requirements of AWS D1.1 for stud welding and as follows:
 - 1. Bend tests will be performed when visual inspections reveal either less than a continuous 360-degree flash or welding repairs to any shear connector.
 - 2. Tests will be conducted on additional shear connectors when weld fracture occurs on shear connectors already tested, according to requirements of AWS D1.1.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before erection proceeds, and with the steel erector present, verify elevations of concrete and masonry bearing surfaces and locations of anchorages for compliance with requirements.
- B. Do not proceed with erection until unsatisfactory conditions have been corrected.

3.2 WORKMANSHIP - GENERAL

A. Workmanship shall be equal to the best practice in modern structural shops. Material shall be clean and straight. All holes shall be accurately drilled or punched. Burning and drifting to enlarge holes will not be permitted. Holes that must be enlarged shall be reamed. Particular care shall be taken to protect all materials from injury of any kind, either in transportation, storage or erection. Material that is damaged must be replaced by perfect material or repaired in a manner approved and accepted by the Engineer. The use of drift pins will be allowed only to bring together the several parts, and they must not be driven with such force as to distort or injure the material. Material that has been distorted by drift pins will not be accepted.

- B. All shop and field welding shall be performed by certified welders in conformance with American Welding Society's "Code for Arc and Gas Welding in Building Construction."
- C. No holes shall be burned in steel members under any circumstances without express approval and instructions from the Engineer.
- D. Bolted members shall have all parts well pinned-up and firmly drawn together. Abutting joints shall be dressed or cut true and straight and fitted closely together. In compression joints, depending upon contact bearing, the surfaces shall be truly faced so as to have even bearing after they are bolted up complete; and, when properly aligned, the several pieces forming one built-up member shall be straight and shall fit closely together. Finished members shall be free from twists, bends or open joints. Abutting joints in compression members faced for bearing shall be spliced sufficiently to hold the connecting members accurately in place. All other joints in bolted work, whether in tension or compression, shall be fully spliced.

3.3 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.

3.4 RECTION

- A. Set structural steel accurately in locations and to elevations indicated and according to AISC specifications referenced in this Section.
- B. Base and Bearing Plates: Clean concrete and masonry bearing surfaces of bond-reducing materials and roughen surfaces prior to setting base and bearing plates. Clean bottom surface of base and bearing plates.
 - 1. Set base and bearing plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Tighten anchor bolts after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base or bearing plate prior to packing with grout.
 - 3. Pack grout solidly between bearing surfaces and plates so no voids remain. Finish exposed surfaces, protect installed materials, and allow to cure.
 - a. Comply with manufacturer's instructions for proprietary grout materials.
- C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

- 1. Maintain erection tolerances of architecturally exposed structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."
- D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 - 1. Level and plumb individual members of structure.
- E. Splice members only where indicated.
- F. Remove erection bolts on welded, architecturally exposed structural steel; fill holes with plug welds; and grind smooth at exposed surfaces.
- G. Do not use thermal cutting during erection.
- H. Do not enlarge unfair holes in members by burning or by using drift pins. Ream holes that must be enlarged to admit bolts.
- I. Protect steel embedded in concrete or gravel with a liberal brushed coat of asphalt mastic.

3.5 FIELD CONNECTIONS

- A. Install and tighten non-high-strength bolts, except where high-strength bolts are indicated.
- B. Install and tighten high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- C. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.
 - 1. Comply with AISC specifications referenced in this Section for bearing, adequacy of temporary connections, alignment, and removal of paint on surfaces adjacent to field welds.
 - 2. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch and larger. Grind flush butt welds. Dress exposed welds.

3.6 FIELD QUALITY CONTROL

A. Owner will engage an independent testing and inspecting agency to perform field inspections and tests and to prepare test reports.

- 1. Testing agency will conduct and interpret tests and state in each report whether tested Work complies with or deviates from requirements.
- B. Correct deficiencies in or remove and replace structural steel that inspections and test reports indicate do not comply with specified requirements.
- C. Additional testing, at Contractor's expense, will be performed to determine compliance of corrected Work with specified requirements.
- D. Field-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- E. In addition to visual inspection, field-welded connections will be inspected and tested according to AWS D1.1 and the inspection procedures listed below, at testing agency's option.
 - 1. Liquid Penetrant Inspection: ASTM E 165.
 - 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 - 3. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level "2-2T."
 - 4. Ultrasonic Inspection: ASTM E 164.
- F. In addition to visual inspection, field-welded shear connectors will be inspected and tested according to requirements of AWS D1.1 for stud welding and as follows:
 - 1. Bend tests will be performed when visual inspections reveal either less than a continuous 360-degree flash or welding repairs to any shear connector.
 - 2. Tests will be conducted on additional shear connectors when weld fracture occurs on shear connectors already tested, according to requirements of AWS D1.1.

3.7 CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint. Apply paint to exposed areas using same material as used for shop painting.
 - Apply by brush or spray to provide a minimum dry film thickness of 1.5 mils.
- B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on structural steel are included in Division 9 Section "Painting."

C. Finish Painting: Finish painting of steel surfaces are included in Division 9 "Painting"

- - - E N D - - -

SECTION 05 31 00

STEEL DECK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Floor form deck.
- B. Related Sections include the following:
 - 1. Division 5 Section "Structural Steel" for shop-welded shear connectors.
 - 2. Division 5 Section "Metal Fabrications" for framing deck openings with miscellaneous steel shapes.

1.3 SUBMITTALS

- A. Product Data: For each type of deck, accessory, and product indicated.
- B. Shop Drawings: Show layout and types of deck panels, anchorage details, reinforcing channels, pans, deck openings, special jointing, accessories, and attachments to other construction.
- C. Product Certificates: Signed by steel deck manufacturers certifying that products furnished comply with requirements.
- D. Welding Certificates: Copies of certificates for welding procedures and personnel.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed steel deck similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

STEEL DECK 05 31 00 - 1

- B. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel," and AWS D1.3, "Structural Welding Code--Sheet Steel."
- C. AISI Specifications: Calculate structural characteristics of steel deck according to AISI's "Specification for the Design of Cold-Formed Steel Structural Members."

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and handling.
- B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a waterproof covering and ventilate to avoid condensation.

1.6 PROJECT CONDITIONS

A. Design:

- 1. Steel deck shall be designed in accordance with the AISI "Specifications for the Design of Cold-Formed Steel Structural Members." Simple short spans shall be avoided, and all deck units shall extend over three or more supports unless absolutely impractical.
- 2. Design Loads: As specified on the drawings.

PART 2 - PRODUCTS

2.1 FLOOR DECK

- A. Form Floor Deck: Fabricate ribbed-steel sheet non-composite form-deck panels to comply with "SDI Specifications and Commentary for Non-composite Steel Form Deck," in SDI Publication No. 31, with the minimum section properties indicated, and with the following:
 - Galvanized Steel Sheet: ASTM A1008-00, Grades C and D, or from A653-00, Structural Steel with a minimum yield strength of 40 KSI.
 - 2. Profile Depth: 0.60"
 - 3. Design Steel Thickness: 22 gage; 0.0295 inch; S_p = 0.073; S_n = 0.073
 - 4. Span Condition: Double span.
 - 5. Side Laps: Overlapped.
 - 6. Slab Reinforcement: 6 x 6 xW2.9 x W2.9 WWM
 - 7. Fastening: 5/8" puddle welds on 36/5 pattern, with washers.

2.2 ACCESSORIES

A. General: Provide manufacturer's standard accessory materials for deck that comply with requirements indicated.

- B. Adjusting Plates: Provide adjusting plates or segments of roof units in locations too narrow to accommodate full-size roof units. As far as practical, provide plates of the same gauge and configuration as the roof units. Plates of predetermined sizes shall be factory cut.
- C. Reinforcing Plates: Provide .057" thick reinforcing plates for all openings less than 12 inches in diameter. Length and width of plates as required satisfying The Steel Deck Institute requirements.
- D. Mechanical Fasteners: Corrosion-resistant, low-velocity, power-actuated or pneumatically driven carbon-steel fasteners; or self-drilling, self-threading screws.
- E. Side-Lap Fasteners: Corrosion-resistant, hexagonal washer head; self-drilling, carbon-steel screws, No. 10 minimum diameter.
- F. Flexible Closure Strips: Vulcanized, closed-cell, synthetic rubber.
- G. Miscellaneous Sheet Metal Deck Accessories: Steel sheet, minimum yield strength of 33,000 psi, not less than 0.0359-inch design uncoated thickness, of same material and finish as deck; of profile indicated or required for application.
- H. Steel Sheet Accessories: Steel sheet, of same material, finish, and thickness as deck, unless otherwise indicated.
- I. End Closures: Provide end closures of minimum 22 gauge to close the ends at end walls, eaves, and openings through the roof.
- J. Weld Washers: Uncoated steel sheet, shaped to fit deck rib, thickness as required by manufacturer.
- K. Recessed Sump Pans: Single-piece steel sheet, 0.0747 inch thick, of same material and finish as deck, with 3-inch-wide flanges and level recessed pans of 1-1/2- inch minimum depth. For drains, cut holes in the field.
- L. Shear Connectors: ASTM A 108, Grades 1010 through 1020 headed stud type, cold-finished carbon steel, AWS D1.1, Type B, with arc shields.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine supporting frame and field conditions for compliance with requirements for installation tolerances and other conditions affecting performance.

3.2 INSTALLATION, GENERAL

A. Install deck panels and accessories according to applicable specifications and commentary in SDI Publication No. 29, manufacturer's written instructions, and requirements in this Section.

- B. Install temporary shoring before placing deck panels, if required to meet deflection limitations.
- C. Locate decking bundles to prevent overloading of supporting members.
 - 1. Exercise special care not to damage the material or overload the decking during the entire construction period. The maximum uniform distribution storage load shall not exceed the design live load.
- D. Place deck panels on supporting frame and adjust to final position with ends accurately aligned and bearing on supporting frame before being permanently fastened. Do not stretch or contract side-lap interlocks.
 - 1. Simple short spans shall be avoided, and all deck units shall extend over three or more supports unless absolutely impractical.

 Do not use unanchored deck units as a work or storage platform.
- E. Place deck panels flat and square and fasten to supporting frame without warp or deflection.
- F. Cut and neatly fit deck panels and accessories around openings and other work projecting through or adjacent to decking. Reinforce and frame openings through roof in accordance with the drawings for rigidity and load-carrying capacity. Holes or other openings required for the work of other trades shall be drilled or cut and reinforced by the respective trades; the deck manufacturer and the Engineer shall approve such holes or other openings larger than 6 inches in diameter.
- G. Provide additional reinforcement and closure pieces at openings as required for strength, continuity of decking, and support of other work.
- H. Comply with AWS requirements and procedures for manual shielded metal arc welding, appearance and quality of welds, and methods used for correcting welding work.
- I. Mechanical fasteners may be used in lieu of welding to fasten deck. Locate mechanical fasteners and install according to deck manufacturer's written instructions.

3.3 DECK INSTALLATION

A. Immediately after placement and alignment, and after inaccuracies have been corrected, permanently fasten steel roof deck and floor deck units in place. Clamp or weight deck units to provide firm contact between deck units and structural supports while fastening is being performed. Decking shall be fastened as recommended by the manufacturer unless indicated otherwise on the drawings.

- B. End Bearing: Install deck ends over supporting frame as per drawings or unless otherwise noted, with a minimum end bearing of 1-1/2 inches, with end joints as follows:
 - 1. End Joints: Lapped 2 inches minimum
- C. Roof Sump Pans: Install over openings provided in roof decking and weld flanges to top of deck. Space welds not more than 12 inches apart with at least 1 weld at each corner.
- D. Miscellaneous Roof Deck Accessories: finish strips, cover plates, end closures, and reinforcing channels according to deck manufacturer's written instructions. Weld to substrate to provide a complete deck installation.

3.4 FIELD QUALITY CONTROL

- A. Inspect the decking top surface for flatness after installation. Place a four-foot straightedge across the decking ribs over the structural supporting members at all locations. If the straightedge fails to touch the entire top surface of the decking or if top surfaces of abutting units are not in alignment, corrective measures or replacement shall be provided. After corrective measures or replacement has been performed, the decking shall be reinspected.
- B. Field welds will be subject to inspection.
- C. Testing agency will report test results promptly and in writing to Contractor and Engineer.
- D. Remove and replace work that does not comply with specified requirements.

3.5 REPAIRS AND PROTECTION

- A. Repair Painting: Wire brush and clean rust spots, welds, and abraded areas on both surfaces of prime-painted deck immediately after installation, and apply repair paint.
- B. Provide final protection and maintain conditions to ensure that steel deck is without damage or deterioration at time of Substantial Completion.

- - - E N D - - -

SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Exterior non-load-bearing wall framing.

B. Related Requirements:

1. Section 092216 "Non-Structural Metal Framing" for interior non-load-bearing, metal-stud framing and ceiling-suspension assemblies.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of cold-formed steel framing product and accessory.

B. Shop Drawings:

- 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
- 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.

C. Delegated-Design Submittal: For cold-formed steel framing.

- 1. Include structural analysis calculations signed and sealed by the qualified professional engineer responsible for their preparation.
 - a. Review of structural analysis calculations is for general conformance with requirements and completeness. The responsibility for correctness rests soley with the designer. The Architect reserves the authority to require resubmittal for observed deficiencies, or incompleteness.
- 2. Include complete details for all member connections at openings and other discontinuities of the wall system.
- 3. Specify connections to supports at top and bottom of wall including spacings at jambs of openings.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

- B. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.
 - 1. Steel sheet.
 - 2. Expansion anchors.
 - 3. Power-actuated anchors.
 - 4. Mechanical fasteners.
 - 5. Vertical deflection clips.
 - 6. Horizontal drift deflection clips
 - 7. Miscellaneous structural clips and accessories.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who has completed cold-formed metal framing similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.
- B. Engineering Responsibility: Preparation of Shop Drawings, design calculations, and other structural data by a qualified professional engineer.
 - 1. Provide seal of professional engineer on calculations and shop drawings.
 - 2. Same engineer shall provide on-site review of installation.
- C. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of cold-formed metal framing that are similar to those indicated for this Project in material, design, and extent.
- D. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.
- E. SSMA Section Properties: Provide cold-formed metal framing members with section properties that equal or exceed the properties indicated in SSMA's "Product Technical Information" publication.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect cold-formed steel framing from corrosion, moisture staining, deformation, and other damage during delivery, storage, and handling.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Dale/Incor.
- 2. Dietrich Metal Framing; a Worthington Industries Company.
- 3. EB Metal, U.S.
- 4. MarinoWare; a division of Ware Industries.
- 5. Super Stud Building Products, Inc.
- 6. The Steel Network, Inc.
- 7. United Metal Products, Inc.

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.
- B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As indicated on the structural drawings or otherwise approved.
 - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 - a. Exterior Non-Load-Bearing Curtain-Wall Framing: Horizontal deflection of 1/360 of the wall height for siding, 1/600 of the wall height for masonry veneer.
 - 3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F.
 - 4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:
 - a. Upward and downward movement of 3/4 inch.
 - 5. Design exterior non-load-bearing wall framing to accommodate horizontal deflection without regard for contribution of sheathing materials.
- C. Cold-Formed Steel Framing Design Standards:
 - 1. Wall Studs: AISI S211.
 - 2. Headers: AISI S212.
 - 3. Lateral Design: AISI S213.
- D. AISI Specifications and Standards: Unless more stringent requirements are indicated, comply with AISI \$100 and AISI \$200.
- E. Fire-Resistance Ratings: Comply with ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.3 COLD-FORMED STEEL FRAMING, GENERAL

- A. Steel Sheet: ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of grade and coating weight as follows:
 - 1. Grade: ST33H or ST50H as required by structural performance.
 - 2. Coating: G90.
- B. Steel Sheet for Vertical Deflection or Drift Clips: ASTM A 653/A 653M, structural steel, zinc coated, of grade and coating as follows:
 - 1. Grade: 50, Class 1.
 - 2. Coating: G90.

2.4 EXTERIOR NON-LOAD-BEARING WALL FRAMING

- A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch (43 mils or 18 gage).
 - 2. Flange Width: 1-5/8 inches (162).
- B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: Matching steel studs.
 - 2. Flange Width: 1-1/4 inches (125).
- C. Vertical Deflection Clips: Manufacturer's standard bypass or head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. VertiClip, by The Steel Network. Series: SL, SLT, SLB, AND SLS as required by attachment condition.
 - b. Fast Top Clips by Dietrich, with FastClip deflection screws.
- D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 - 1. Minimum Base-Metal Thickness: As required to resist design loads.
 - 2. Flange Width: 1 inch plus the design gap for 1-story structures and 1 inch plus twice the design gap for other applications.

- E. Approved alternates to double studs for openings: ASTM A653/A653M, Grade 50 (340), 50ksi (340MPa), minimum yield strength, 65ksi (450 MPa), minimum tensile strength, G-60 (Z180) hot-dipped galvanized coating.
 - 1. JamStudTM by The Steel Network, Inc.
 - a. Approved engineered connections for openings: StiffClips® as manufactured by The Steel Network, Inc.
 - 2. HDS by Dietrich.

2.5 FRAMING ACCESSORIES

- A. Fabricate steel-framing accessories from steel sheet, ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of same grade and coating weight used for framing members.
- B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 - 1. Supplementary framing.
 - 2. Bracing, bridging, and solid blocking.
 - 3. Web stiffeners.
 - 4. Anchor clips.
 - 5. End clips.
 - 6. Foundation clips.
 - 7. Gusset plates.
 - 8. Stud kickers and knee braces.
 - 9. Joist hangers and end closures.
 - 10. Hole reinforcing plates.
 - 11. Backer plates.

2.6 ANCHORS, CLIPS, AND FASTENERS

- A. Steel Shapes and Clips: ASTM A 36/A 36M, zinc coated by hot-dip process according to ASTM A 123/A 123M.
- B. Expansion Anchors: Fabricated from corrosion-resistant materials, with allowable load or strength design capacities calculated according to ICC-ES AC193 and ACI 318 greater than or equal to the design load, as determined by testing per ASTM E 488 conducted by a qualified testing agency.
- C. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with allowable load capacities calculated according to ICC-ES AC70, greater than or equal to the design load, as determined by testing per ASTM E 1190 conducted by a qualified testing agency.
- D. Mechanical Fasteners: ASTM C 1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.

- 1. Head Type: Low-profile head beneath sheathing, manufacturer's standard elsewhere.
- 2. Minimum size; No. 10-16 (D=0.19"), with length adequate for 3 threads to project through the connected members.

2.7 MISCELLANEOUS MATERIALS

- A. Galvanizing Repair Paint: ASTM A 780.
- B. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to match width of bottom track or rim track members.
- C. Safing Insulation: ASTM C 612, maximum flame-spread and smoke-developed indices of 15 and 0, respectively; passing ASTM E 136 for combustion characteristics; and of the following density, type, thermal resistivity, and fiber color:
 - 1. Nominal density of 4 lb/cu. ft., Types IA and IB, thermal resistivity of 4 deg F x h x sq. ft./Btu x in. at 75 deg F.
 - 2. Color: Natural.
 - 3. Thickness: 4 inches.
 - 4. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fibrex Insulations Inc.
 - b. Owens Corning.
 - c. Thermafiber.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine supporting substrates and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.
- B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistive materials below that are required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage.
- C. Install sealer gaskets at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.3 INSTALLATION, GENERAL

- A. Cold-formed steel framing is to be field assembled.
- B. Install cold-formed steel framing according to AISI S200 and to manufacturer's written instructions unless more stringent requirements are indicated.
- C. Install field-fabricated, cold-formed framing and securely anchor to supporting structure.
 - 1. Screw or bolt wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch.
- D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
 - 1. Cut framing members by sawing or shearing; do not torch cut.
 - 2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 - a. Locate mechanical fasteners and install according to Shop Drawings, and complying with the following:
 - b. Power-actuated fasteners: In concrete, minimum spacing = 3", minimum edge distance = 3". In structural steel, minimum spacing = 1 ½", minimum edge distance = ½".
 - c. Screws: Minimum spacing and edge distance = $\frac{1}{2}$ ".
- E. Install framing members in one-piece lengths or multiple lengths as required by the design and load requirements.
- F. Install temporary bracing and supports to secure framing and support loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.
- G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.
- H. Fasten hole reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings or as indicated in the shop drawings.
- I. Erection Tolerances: Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:
 - 1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.4 EXTERIOR NON-LOAD-BEARING WALL INSTALLATION

- A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure as indicated.
- B. Fasten both flanges of studs to [top and] bottom track unless otherwise indicated. Space studs as follows:
 - 1. Stud Spacing: As required by design, but not greater than 24 inches on center.
- C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.
- D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 - 1. Install single deep-leg deflection tracks and anchor to building structure.
 - 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 - 3. Connect vertical deflection clips to [bypassing] [infill] studs and anchor to building structure.
 - 4. Connect drift clips to cold-formed metal framing and anchor to building structure.
- E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.
 - 1. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 - 2. Bridging: Cold-rolled steel channel, mechanically fastened to webs of punched studs.
- F. [Install horizontal support of safing insulation where indicated at exterior wall framing. Provide stud-track solid blocking of width and thickness to match studs.]
- G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 FIELD QUALITY CONTROL

- A. Engineer of cold-form metal framing shall review on-site installation and provide written documentation that installation conforms to design intent. If corrective work is required, same engineer shall specify repair work necessary to provide conforming installation.
- B. Remove and replace work where test results indicate that it does not comply with specified requirements.
- C. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.6 REPAIRS AND PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000

SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel framing and supports for mechanical and electrical equipment.
- 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
- 3. Loose bearing and leveling plates for applications where they are not specified in other Sections.

B. Related Requirements:

1. Section 051200 "Structural Steel Framing."

1.2 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.3 ACTION SUBMITTALS

- A. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 - 1. Steel framing and supports for mechanical and electrical equipment.
 - 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 3. Loose bearing and leveling plates for applications where they are not specified in other Sections.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer.
- B. Welding certificates.

C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- C. Steel Tubing: ASTM A 500/A 500M, cold-formed steel tubing.
- D. Steel Pipe: ASTM A 53/A 53M, Standard Weight (Schedule 40) unless otherwise indicated.

2.2 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
- C. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
 - 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
- D. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.

- E. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
- F. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.

2.3 MISCELLANEOUS MATERIALS

- A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 - 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- B. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Benjamin Moore & Co.; Epoxy Zinc-Rich Primer CM18/19.
 - b. ICI Devoe Coatings; Catha-Coat 313.
 - c. International Coatings Limited; Interzinc 315 Epoxy Zinc-Rich Primer.
 - d. PPG Architectural Finishes, Inc.; Epoxy Zinc Rich Primer 97-670.
 - e. Sherwin-Williams Company (The); Zinc Clad IV, B69A8/B69V8.
 - f. Tnemec Company, Inc.; Tneme-Zinc 90-97.

2.4 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.

- 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
- G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

2.5 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
- C. Prime miscellaneous framing and supports with universal shop primer.

2.6 LOOSE BEARING AND LEVELING PLATES

- A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.
- B. Prime plates with zinc-rich primer.

2.7 FINISHES, GENERAL

- A. Finish metal fabrications after assembly.
- B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.8 STEEL AND IRON FINISHES

- A. Shop prime iron and steel items unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 - 1. Shop prime with universal shop primer unless zinc-rich primer is indicated.

- B. Preparation for Shop Priming: Prepare surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."
- C. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.
- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

3.3 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

END OF SECTION 055000

SECTION 055100 - METAL STAIRS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Preassembled steel stairs with concrete-filled treads.
- 2. Steel tube railings attached to metal stairs.
- 3. Steel tube handrails attached to walls adjacent to metal stairs.

B. Related Sections:

1. Section 033000 "Cast-in-Place Concrete" for concrete fill for stair treads and platforms.

1.2 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written instructions to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorages for metal stairs and railings.
 - 1. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry.
 - 2. Deliver such items to Project site in time for installation.
- C. Coordinate locations of hanger rods and struts with other work so they do not encroach on required stair width and are within fire-resistance-rated stair enclosure.
- D. Schedule installation of railings so wall attachments are made only to completed walls.
 - 1. Do not support railings temporarily by any means that do not satisfy structural performance requirements.

1.3 ACTION SUBMITTALS

- A. Product Data: For metal stairs and the following:
 - 1. Handrail wall brackets.
 - 2. Paint products.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

C. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer's experience with providing delegated-design engineering services of the kind indicated, including documentation that engineer is licensed in the State in which Project is located.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. NAAMM Stair Standard: Comply with "Recommended Voluntary Minimum Standards for Fixed Metal Stairs" in NAAMM AMP 510, "Metal Stairs Manual," for class of stair designated, unless more stringent requirements are indicated.
 - 1. Preassembled Stairs: Commercial class.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.3, "Structural Welding Code Sheet Steel."
- C. Regulatory Requirements: Comply with the Americans with Disabilities Act (ADA) and with code provisions as adopted by authorities having jurisdiction.
 - 1. Stairs and Handrails: Provide stairs and handrails as required by accessibility regulations and requirements of authorities having jurisdiction. These include, but are not limited to, the following:
 - a. Treads and Risers:
 - 1) Provide treads with uniform riser heights and tread widths.
 - 2) Provide no less than 11 inch tread width.
 - b. Nosings:
 - 1) Provide the radius of curvature at the leading edge of the tread of not greater than 1/2 inch.
 - 2) Provide sloped risers or the angle on the underside of the nosing will not be less than 60 degrees from the horizontal.
 - 3) Project nosings not more than 2-1/4 inch.
 - c. Size and Spacing of Handrails:
 - 1) Handrail Diameter: 1-1/4 to 2 inches.
 - 2) Space between Wall and Rails: 2-1/4 inches.

- 3) Either round ends of handrails or return ends of handrails smoothly to floor, wall or post.
- 4) Handrails shall not rotate within their fittings.

d. Locations of Handrails:

- 1) Provide handrails at both sides of stairs.
- 2) Provide continuous inside handrail on switchback or dogleg stairs.
- 3) Provide continuous handrails on both sides of the stair. When handrails are not continuous, extend handrails at least 12 inches beyond the top riser and at least the width of one tread beyond the bottom riser. At the top, the extension shall be parallel with the floor or ground surface. At the bottom, continue the handrail to slope for a distance of the width of one tread from the bottom riser.
- 4) Mount the top of handrail gripping surface between 34 and 38 inches above stair nosing or ramp surface.
- e. Structural Strength of Handrails: Refer to article in this section "Performance Requirements".
- 2. Notify Architect of details or specifications not conforming to code.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store materials to permit easy access for inspection and identification.
 - 1. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers.
 - 2. Protect steel members and packaged materials from corrosion and deterioration.
 - 3. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures.
 - a. Repair or replace damaged materials or structures as directed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design stairs, railings, including attachment to building construction.
- B. Structural Performance of Stairs: Metal stairs shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated.
 - 1. Uniform Load: 100 lbf/sq. ft..
 - 2. Concentrated Load: 300 lbf applied on an area of 4 sq. in..
 - 3. Uniform and concentrated loads need not be assumed to act concurrently.

- 4. Stair Framing: Capable of withstanding stresses resulting from railing loads in addition to loads specified above.
- 5. Limit deflection of treads, platforms, and framing members to L/360 or 1/4 inch, whichever is less.
- C. Structural Performance of Railings: Railings shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated.
 - 1. Handrails and Top Rails of Guards:
 - a. Uniform load of 50 lbf/ ft. applied in any direction.
 - b. Concentrated load of 200 lbf applied in any direction.
 - c. Uniform and concentrated loads need not be assumed to act concurrently.
 - 2. Infill of Guards:
 - a. Concentrated load of 50 lbf applied horizontally on an area of 1 sq. ft..
 - b. Infill load and other loads need not be assumed to act concurrently.
- D. Seismic Performance: Metal stairs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. Component Importance Factor is 1.5.

2.2 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For components exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- C. Steel Tubing: ASTM A 500 (cold formed) or ASTM A 513.
- D. Steel Pipe for Railings: ASTM A 53/A 53M, Type F or Type S, Grade A, Standard Weight (Schedule 40), unless another grade and weight are required by structural loads.
- E. Uncoated, Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, either commercial steel, Type B, or structural steel, Grade 25, unless another grade is required by design loads; exposed.
- F. Uncoated, Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, either commercial steel, Type B, or structural steel, Grade 30, unless another grade is required by design loads.

2.3 FASTENERS

A. General: Provide zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 12 for exterior use, and Class Fe/Zn 5 where built into exterior walls. Select fasteners for type, grade, and class required.

- B. Fasteners for Anchoring Railings to Other Construction: Select fasteners of type, grade, and class required to produce connections suitable for anchoring railings to other types of construction indicated and capable of withstanding design loads.
- C. Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
- D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563; and, where indicated, flat washers.
- E. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, unless otherwise indicated.

2.4 MISCELLANEOUS MATERIALS

- A. Handrail Wall Brackets: Cast iron center of rail 3-1/8 inches from face of wall.
- B. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- C. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 - 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- D. Concrete Materials and Properties: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained, ready-mix concrete with a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
- E. Welded Wire Fabric: ASTM A 185/A 185M, 6 by 6 inches, W1.4 by W1.4, unless otherwise indicated.

2.5 FABRICATION, GENERAL

- A. Provide complete stair assemblies, including metal framing, hangers, struts, railings, clips, brackets, bearing plates, and other components necessary to support and anchor stairs and platforms on supporting structure.
 - 1. Join components by welding unless otherwise indicated.
 - 2. Use connections that maintain structural value of joined pieces.
 - 3. Fabricate treads and platforms of exterior stairs so finished walking surfaces slope to drain.

- B. Assemble stairs in shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- C. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- D. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- E. Form exposed work with accurate angles and surfaces and straight edges.
- F. Weld connections to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Weld exposed corners and seams continuously unless otherwise indicated.
 - 5. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 2 welds: completely sanded joint, some undercutting and pinholes okay.
- G. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts unless otherwise indicated. Locate joints where least conspicuous.
- H. Fabricate joints that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

2.6 FABRICATION OF STEEL-FRAMED STAIRS

- A. Stair Framing:
 - 1. Fabricate stringers steel channels.
 - a. Stringer Size: As indicated on Drawings.
 - b. Provide closures for exposed ends of channel and rectangular tube stringers.
 - c. Finish: Shop primed.
 - 2. Construct platforms of steel channel headers and miscellaneous framing members as indicated.
 - a. Provide closures for exposed ends of channel and rectangular tube framing.
 - b. Finish: Shop primed.
 - 3. Weld or bolt stringers to headers; weld or bolt framing members to stringers and headers. If using bolts, fabricate and join so bolts are not exposed on finished surfaces.

- 4. Where masonry walls support metal stairs, provide temporary supporting struts designed for erecting steel stair components before installing masonry.
- B. Metal-Pan Stairs: Form risers, subtread pans, and subplatforms to configurations shown from steel sheet of thickness needed to comply with performance requirements but not less than 0.067 inch.
 - 1. Steel Sheet: Uncoated cold-rolled steel sheet.
 - 2. Directly weld metal pans to stringers; locate welds on top of subtreads where they will be concealed by concrete fill. Do not weld risers to stringers.
 - 3. Attach risers and subtreads to stringers with brackets made of steel angles or bars. Weld brackets to stringers and attach metal pans to brackets by welding, riveting, or bolting.
 - 4. Shape metal pans to include nosing integral with riser.
 - 5. Provide subplatforms of configuration indicated or, if not indicated, the same as subtreads. Weld subplatforms to platform framing.
 - a. Smooth Soffit Construction: Construct subplatforms with flat metal under surfaces to produce smooth soffits.
- C. Risers: Solid.

2.7 FABRICATION OF STAIR RAILINGS

- A. Fabricate railings to comply with requirements indicated for design, dimensions, details, finish, and member sizes, including wall thickness of tube, post spacings, and anchorage, but not less than that needed to withstand indicated loads.
 - 1. Configuration: As indicated on the drawings.
- B. Welded Connections: Fabricate railings with welded connections.
 - 1. Fabricate connections that are exposed to weather in a manner that excludes water.
 - a. Provide weep holes where water may accumulate internally.
 - 2. Cope components at connections to provide close fit, or use fittings designed for this purpose.
 - 3. Weld all around at connections, including at fittings.
 - 4. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 5. Obtain fusion without undercut or overlap.
 - 6. Remove flux immediately.
 - 7. Finish welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 2 welds: completely sanded joint, some undercutting and pinholes okay.
- C. Form changes in direction of railings as follows:

1. As detailed.

- D. Form simple and compound curves by bending members in jigs to produce uniform curvature for each repetitive configuration required; maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.
- E. Close exposed ends of railing members with prefabricated end fittings.
- F. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated. Close ends of returns unless clearance between end of rail and wall is 1/4 inch or less.
- G. Connect posts to stair framing by direct welding unless otherwise indicated.
- H. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, end closures, flanges, miscellaneous fittings, and anchors for interconnecting components and for attaching to other work. Furnish inserts and other anchorage devices for connecting to concrete or masonry work.
 - 1. Connect posts to stair framing by direct welding unless otherwise indicated.
 - 2. For galvanized railings, provide galvanized fittings, brackets, fasteners, sleeves, and other ferrous-metal components.
 - 3. For nongalvanized railings, provide nongalvanized ferrous-metal fittings, brackets, fasteners, and sleeves, except galvanize anchors embedded in exterior masonry and concrete construction.
- I. Fillers: Provide fillers made from steel plate, or other suitably crush-resistant material, where needed to transfer wall bracket loads through wall finishes to structural supports. Size fillers to suit wall finish thicknesses and to produce adequate bearing area to prevent bracket rotation and overstressing of substrate.

2.8 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal stairs after assembly.
- C. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."
- D. Apply shop primer to uncoated surfaces of metal stair components, except those with galvanized finishes and those to be embedded in concrete or masonry unless otherwise indicated. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify elevations of floors, bearing surfaces and locations of bearing plates, and other embedments for compliance with requirements.
 - 1. For wall-mounted railings, verify locations of concealed reinforcement within gypsum board and plaster assemblies.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLING METAL STAIRS

- A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing metal stairs to in-place construction. Include threaded fasteners for concrete and masonry inserts, through-bolts, lag bolts, and other connectors.
- B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal stairs. Set units accurately in location, alignment, and elevation, measured from established lines and levels and free of rack.
- C. Install metal stairs by welding stair framing to steel structure or to weld plates cast into concrete unless otherwise indicated.
- D. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- E. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- F. Field Welding: Comply with requirements for welding in "Fabrication, General" Article.
- G. Place and finish concrete fill for treads and platforms to comply with Section 033000 "Cast-in-Place Concrete."

3.3 INSTALLING METAL STAIRS WITH ANCHORED BASEPLATES

- A. Clean concrete and masonry bearing surfaces. Clean bottom surface of baseplates.
- B. Set steel stair baseplates on wedges, shims, or leveling nuts. After stairs have been positioned and aligned, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate.

3.4 INSTALLING RAILINGS

- A. Adjust railing systems before anchoring to ensure matching alignment at abutting joints. Space posts at spacing indicated or, if not indicated, as required by design loads. Plumb posts in each direction. Secure posts and rail ends to building construction as follows:
 - 1. Anchor posts to steel by welding directly to steel supporting members.
 - 2. Anchor handrail ends to concrete and masonry with steel round flanges welded to rail ends and anchored with postinstalled anchors and bolts.
- B. Attach handrails to wall with wall brackets. Use type of bracket with predrilled hole for exposed bolt anchorage. Provide bracket with 2-1/4-inch clearance from inside face of handrail and finished wall surface. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads. Secure wall brackets to building construction as follows:
 - 1. For concrete and solid masonry anchorage, use drilled-in expansion shields and hanger or lag bolts.
 - 2. For hollow masonry anchorage, use toggle bolts.

3.5 REPAIR

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

END OF SECTION 055100

SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Rooftop equipment bases and support curbs.
- 2. Wood blocking, furring and nailers.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal thickness or less, 19 percent for more than 2-inch nominal thickness unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.
 - 2. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
- D. Application: Treat items indicated on Drawings, and the following:
 - 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, furring and similar concealed members in contact with masonry or concrete.
 - 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 - 4. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.
- B. For items of dimension lumber size, provide Construction or No. 2 grade lumber and the following species:
 - 1. Hem-fir (north); NLGA.
 - 2. Mixed southern pine; SPIB.
 - 3. Spruce-pine-fir; NLGA.
- C. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- D. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

2.4 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.
- B. Nails, Brads, and Staples: ASTM F 1667.
- C. Screws for Fastening to Metal Framing: ASTM C 1002 or ASTM C 954, length as recommended by screw manufacturer for material being fastened.
- D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- E. Post-Installed Anchors: Chemical anchor or expansion anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency.
 - 1. Material for Interior Locations: Carbon-steel components, zinc plated to comply with ASTM B 633, Class Fe/Zn 5.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate furring, nailers, blocking and similar supports to comply with requirements for attaching other construction.
- B. Do not splice structural members between supports unless otherwise indicated.
- C. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
- D. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
- E. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.
- F. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:

- 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code.
- 2. ICC-ES evaluation report for fastener.
- G. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

END OF SECTION 061053

SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Wall sheathing.
- 2. Sheathing joint and penetration treatment.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: From air-barrier and water-resistant glass-mat gypsum sheathing manufacturer, certifying compatibility of sheathing accessory materials with Project materials that connect to or that come in contact with the sheathing.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Resistance Ratings: As tested according to ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.
 - 2. Air-Barrier Performance: Air-barrier and water-resistant glass-mat gypsum sheathing assembly, and seals with adjacent construction, shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

SHEATHING 061600 - 1

2.2 WALL SHEATHING

- A. Glass-Mat Gypsum Sheathing: ASTM C 1177/1177M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. GlasRoc Sheathing; CertainTeed (BPB America, Inc.)
 - b. Dens-Glass Gold; Georgia-Pacific Corporation.
 - c. eXP Extended Exposure Sheathing; National Gypsum Company.
 - d. Securock Sheathing; United States Gypsum Co.
 - 2. Type and Thickness: Type X, 5/8 inch thick.

2.3 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. For wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.
- B. Screws for Fastening Sheathing to Wood Framing: ASTM C 1002.
- C. Screws for Fastening Wood Structural Panels to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.

2.4 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

- A. General: If required by the selected Air Barrier manufacturer, provide the following joint sealant:
- B. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C 834, compatible with sheathing tape and sheathing and recommended by tape and sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.
 - 1. Available Product: 895 Silicone building Sealant by Pecora Corporation.
 - 2. Sheathing Tape: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

SHEATHING 061600 - 2

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
 - 2. ICC-ES evaluation report for fastener.
- D. Use common wire nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections. Install fasteners without splitting wood.
- E. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- F. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.
- G. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

- A. Comply with GA-253 and with manufacturer's written instructions.
 - 1. Fasten gypsum sheathing to wood framing with screws.
 - 2. Fasten gypsum sheathing to cold-formed metal framing with screws.
 - 3. Install panels with a 3/8-inch gap where non-load-bearing construction abuts structural elements.
 - 4. Install panels with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.
- B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.
- C. Vertical Installation: Install vertical edges centered over studs. Abut ends and edges with those of adjacent panels. Attach at perimeter and within field of panel to each stud.
 - 1. Space fasteners approximately 8 inches o.c. and set back a minimum of 3/8 inch from edges and ends of panels.

SHEATHING 061600 - 3

- 2. For sheathing under stucco cladding, panels may be initially tacked in place with screws if overlying self-furring metal lath is screw-attached through sheathing to studs immediately after sheathing is installed.
- D. Seal sheathing joints according to sheathing manufacturer's written instructions.
 - 1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient amount of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
 - 2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION 061600

SHEATHING 061600 - 4

SECTION 071100 - DAMPPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Cold-applied, emulsified-asphalt dampproofing.
- 2. Capillary breaks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 FIELD CONDITIONS

- A. Weather Limitations: Proceed with application only when existing and forecasted weather conditions permit dampproofing to be performed according to manufacturers' written instructions.
- B. Ventilation: Provide adequate ventilation during application of dampproofing in enclosed spaces. Maintain ventilation until dampproofing has cured.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain primary dampproofing materials and primers from single source from single manufacturer. Provide [**protection course**] [**drainage panels**] [**and**] auxiliary materials recommended in writing by manufacturer of primary materials.

2.2 PERFORMANCE REQUIREMENTS

- A. VOC Content: Products shall comply with VOC content limits of authorities having jurisdiction unless otherwise indicated.
- B. Capillary Break: Minimum 10 year warranty up to 10 PSI water resistance.

2.3 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Degussa Building Systems; Sonneborn Brand Products.
 - 2. Karnak Corporation.
 - 3. W.R. Meadows, Inc.
- B. Trowel Coats: ASTM D 1227, Type II, Class 1 or Type IV.
 - 1. Available Products:
 - a. Sealmastic, Type 3; W. R. Meadows
 - b. Hydrocide 700; Sonneborn Building Products.
 - c. Karnak 920 AF; Karnac Chemical Corp.
- C. Fibered Brush and Spray Coats: ASTM D 1227, Type II, Class 1 or Type IV.
 - 1. Available Products:
 - a. Sealmastic, Type 2; W. R. Meadows
 - b. Hydrocide 700B; Sonneborn Building Products.
 - c. Karnak 220 AF; Karnac Chemical Corp.
- D. Brush and Spray Coats: ASTM D 1227, Type III, Class 1.
 - 1. Available Products:
 - a. Sealmastic, Type 1; W. R. Meadows
 - b. Hydrocide 600; Sonneborn Building Products.
 - c. Karnak 100 AF; Karnac Chemical Corp.

2.4 CAPILLIARY BREAK MATERIALS

- A. Water-based, waterproofing paint designed to provide a waterproof barrier on concrete or masonry surfaces.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Rust-Oleum-Zinsser; WaterTile Mold & Mildew-Proof Waterproofing Paint.
 - 2. Sealkrete; Damplock.
 - 3. UGL; Drylok Latex Masonry Waterproofer.
- C. Performance: Product shall provide a minimum of 10 years protection against 10 PSI water pressure.

2.5 AUXILIARY MATERIALS

- A. Furnish auxiliary materials recommended in writing by dampproofing manufacturer for intended use and compatible with bituminous dampproofing.
- B. Emulsified-Asphalt Primer: ASTM D 1227, Type III, Class 1, except diluted with water as recommended in writing by manufacturer.
- C. Asphalt-Coated Glass Fabric: ASTM D 1668/D 1668M, Type I.
- D. Patching Compound: Epoxy or latex-modified repair mortar or Asbestos-free fibered mastic of type recommended in writing by dampproofing manufacturer.

2.6 INSULATION

A. Insulation, General: Comply with Section 072100 "Thermal Insulation."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for surface smoothness, maximum surface moisture content, and other conditions affecting performance of the Work.
- B. Proceed with application only after substrate construction and penetrating work have been completed and unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean, prepare, and treat substrates according to manufacturer's written instructions. Provide clean, dust-free, and dry substrates for dampproofing and capillary break application.
- B. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with dampproofing. Prevent dampproofing materials from entering and clogging weep holes and drains.
- C. Clean substrates of projections and substances detrimental to dampproofing and capillary break work; fill voids, seal joints, and remove bond breakers if any.
- D. Apply patching compound to patch and fill tie holes, honeycombs, reveals, and other imperfections.

3.3 DAMPPROOFING APPLICATION, GENERAL

A. Comply with manufacturer's written instructions for dampproofing application, cure time between coats, and drying time before backfilling unless otherwise indicated.

- 1. Apply dampproofing to provide continuous plane of protection.
- 2. Apply additional coats if recommended in writing by manufacturer or to achieve a smooth surface and uninterrupted coverage.
- B. Where dampproofing footings and foundation walls, apply from finished-grade line to top of footing; extend over top of footing and down a minimum of 6 inches over outside face of footing.
 - 1. Extend dampproofing 12 inches onto intersecting walls and footings, but do not extend onto surfaces exposed to view when Project is completed.
 - 2. Install flashings and corner protection stripping at internal and external corners, changes in plane, construction joints, cracks, and where indicated as "reinforced," by embedding an 8-inch-wide strip of asphalt-coated glass fabric in a heavy coat of dampproofing. Dampproofing coat for embedding fabric is in addition to other coats required.

3.4 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

A. On Concrete Foundations: Apply 2 brush or spray coats at not less than 1.5 gal./100 sq. ft. for first coat and 1 gal./100 sq. ft. for second coat, 1 fibered brush or spray coat at not less than 3 gal./100 sq. ft., or 1 trowel coat at not less than 4 gal./100 sq. ft..

3.5 CAPILLIARY BREAK INSTALLATION

- A. Apply in two coats in accordance with manufacturer's instructions.
- B. Apply to the top of concrete foundation walls and down the inside and outside 2 to 3 inches.

3.6 PROTECTION

- A. Protect installed insulation drainage panels from damage due to UV light, harmful weather exposures, physical abuse, and other causes. Provide temporary coverings where panels are subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.
- B. Correct dampproofing that does not comply with requirements; repair substrates, and reapply dampproofing.

END OF SECTION 071100

SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Extruded polystyrene foam-plastic board.
- 2. Mineral-wool board.
- 3. Sprayed Foam insulation.

B. Related Requirements:

- 1. Section 074800 "Rainscreen Support System" for installation of mineral-wool board insulation.
- 2. Section 075323 "Ethylene-Propylene-Diene-Monomer (EPDM) Roofing" for insulation specified as part of roofing construction.
- 3. Section 092900 "Gypsum Board" for sound attenuation blanket used as acoustic insulation.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- B. Evaluation Reports: For foam-plastic insulation, from ICC-ES.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect foam-plastic board insulation as follows:
 - 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 - 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
 - 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD

- A. Extruded polystyrene boards in this article are also called "XPS boards." Roman numeral designators in ASTM C 578 are assigned in a fixed random sequence, and their numeric order does not reflect increasing strength or other characteristics.
- B. Extruded Polystyrene Board, Type IV: ASTM C 578, Type IV, 25-psi minimum compressive strength; unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E 84.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dow Chemical Company (The); Styrofoam Square Edge Insulation.
 - b. Owens Corning; Foamular® 250.
 - c. Pactiv Corporation; GreenGuard Type IV 25 PSI Insulation Board.
 - 2. R-Value: 5.0 per inch.
 - 3. Application: Foundation and below slab insulation.

2.2 MINERAL-WOOL BOARDS

- A. Mineral-Wool Board, Unfaced: ASTM C 612, Type IVB; consisting of fibers; with maximum flame-spread and smoke-developed indexes of 0 and 0, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Roxul Inc.; CavityRock DD.
 - b. Thermafiber Inc.; an Owens Corning company; RainBarrier HD.
 - 2. R-Value: 4.2 per inch.
- B. Mechanical fasteners in accordance with insulation manufacturer's written recommendations.

2.3 SPRAYED FOAM INSULATION

- A. Sprayed Polyurethane Foam Sealant for Perimeter of Doors and Windows: 1- or 2-component, foamed-in-place, polyurethane foam sealant, 1.5 to 2.0 lb/cu. ft. density; flame spread index of 25 or less according to ASTM E 162; with primer and noncorrosive substrate cleaner recommended by foam sealant manufacturer.
 - 1. Products:
 - a. Great Stuff Window & Door by Dow
 - b. Froth-Pak by Insta-Foam Products, Inc.

c. Zerodraft Insulating Air Sealant by Zerodraft.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.
- C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.
- D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF SLAB INSULATION

- A. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.
 - 1. If not otherwise indicated, extend insulation a minimum of 48 inches in from exterior walls.

3.4 INSTALLATION OF FOUNDATION WALL INSULATION

- A. On vertical foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.
 - 1. If not otherwise indicated, extend insulation a minimum of 48 inches below exterior grade line.

3.5 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

- A. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 - 1. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

B. Sprayed Foam Insulation: Comply with insulation manufacturer's written instructions applicable to products and applications. Spray insulation to envelop entire area to be insulated and fill voids. Apply in multiple passes to not exceed maximum thicknesses recommended by manufacturer. Do not spray into rising foam. Install into cavities formed by framing members to achieve thickness indicated on Drawings.

3.6 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100

SECTION 072616 - BELOW-GRADE VAPOR RETARDERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Vapor retarders under slabs-on-grade.

1.2 DEFINITIONS

- A. Vapor Retarder: Material with a water vapor transmission rating of not over 0.04g per square foot per hour.
- B. Vapor Barrier: Material with a water vapor transmission rating of not over 0.015g per square foot per hour.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples for Verification: 12 inch square units for each type of vapor retarder, vapor barrier, or air barrier indicated.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Protect materials from physical damage and from deterioration by moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

1.5 PROJECT CONDITIONS

A. Separate and recycle waste materials.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers and Products: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following products listed in Part 2 of this Section.

2.2 VAPOR RETARDERS FOR UNDER SLABS

A. Vapor Retarder with extremely low permeance for critically sensitive, low permeance floor coverings such as rubber, vinyl, urethane, epoxy and methyl methacrylate, as well as linoleum and wood, having the following qualities:

Minimum Permeance: ASTM E-96, not greater than 0.01 perms.
 Tensile Strength: ASTM E154 or D638, Class A – over 45 lbf/in.
 Puncture Resistance: ASTM E-154, Class B – over 1700 grams.
 Water Vapor Barrier: ASTM E-1745, meets or exceeds Class B.
 Thickness of Barrier (Plastic) ACI 302.1R-96, not less than 15 mils.

- B. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Stego Wrap, 15 mil thick vapor retarder by Stego Industries LLC, (877) 464-7834.
 - 2. Griffolyn® 15 by Reef Industries.
 - 3. Sealtight Perminator 15 mil Underslab Vapor-Mat by W.R. Meadows, Inc.
 - 4. Viper II 15 mil by Insulation Solutions, Inc.
- C. Vapor-Retarder Tape (for slabs): Stego Warp red polyethylene tape or tape as recommended by the manufacturer.
- D. Double-Stick Edge Tape: Preformed 1-1/2" wide two-sided adhesive. Available products include "Fab Tape" by Reef Industries.
- E. Expansion Joint Filler: Installer may elect to use Deck-O-Foam Expansion Joint Filler by WR Meadows or equal. Foam expansion joint filler with pre-scored removable strip for installation of joint sealant.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for Sections in which substrates and related work are specified and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrates of substances harmful to vapor retarders, including removing projections capable of puncturing vapor retarders, or of interfering with attachment.
- B. Do not install carpet over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet manufacturer.

3.3 INSTALLATION, GENERAL

- A. Comply with manufacturer's written instructions applicable to products and application indicated.
- B. Extend retarders in thickness indicated to envelop entire area to be covered. Cut and fit tightly around obstructions. Remove projections that interfere with placement.

3.4 INSTALLATION OF UNDER-SLAB VAPOR RETARDERS

- A. Moisture vapor retarder system shall be installed at all interior floor slabs and as otherwise indicated in the drawings in strict accordance with the manufacturer's printed instructions and as follows:
 - 1. Roll out vapor retarder material, overlapping edge rolls and all seams by 3". Tape all seams with vapor retarder seaming tape.
 - 2. At perimeter foundation, wrap vapor retarder material over top of foundation under exterior wall plate.
 - 3. Seal all penetrations (including pipes) per manufacturer's instructions.
 - 4. All tears, punctures, etc. to be repaired and taped as required to maintain the watertight integrity of the vapor retarder system.

3.5 PROTECTION

A. Protect installed vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where vapor retarders are subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072616

SECTION 072726 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes fluid-applied, vapor-retarding membrane air barriers.

B. Related Requirements:

1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.2 DEFINITIONS

- A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air
- B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.
- C. Air-Barrier Assembly: The collection of air-barrier materials and accessory materials applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review air-barrier requirements and installation, special details, mockups, air-leakage and bond testing, air-barrier protection, and work scheduling that covers air barriers.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written instructions for evaluating, preparing, and treating substrate; technical data; and tested physical and performance properties of products.
- B. Shop Drawings: For air-barrier assemblies.
 - 1. Show locations and extent of air barrier. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
 - 2. Include details of interfaces with other materials that form part of air barrier.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.
- B. Product Test Reports: For each air-barrier assembly, for tests performed by a qualified testing agency.
- C. Warranty: Provide sample warrantee for Installer and Manufacturer.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- B. Protect stored materials from direct sunlight.

1.8 FIELD CONDITIONS

- A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended by air-barrier manufacturer.
 - 1. Protect substrates from environmental conditions that affect air-barrier performance.
 - 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

1.9 WARRANTY

- A. Material Warranty: Manufacturer agrees to repair or replace components of air barrier system that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 5 years from date of Substantial Completion.
- B. Special Project Warranty: Submit air barrier Installer's warranty, signed by Installer, covering Work of this Section, including all components of air barrier system for the following warranty period:
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. General: Air barrier shall be capable of performing as a continuous vapor-retarding air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.
- B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft., when tested according to ASTM E 283, ASTM E 783 or ASTM E 2357.

2.3 VAPOR-RETARDING MEMBRANE AIR BARRIER

- A. Fluid-Applied, Vapor-Retarding Membrane Air Barrier: Elastomeric, modified bituminous or synthetic polymer membrane.
 - a. Elastomeric, Modified Bituminous Membrane:
 - 1) Henry Company; Air-Bloc 06WB.
 - 2) Meadows, W. R., Inc.; Air-Shield LM.
 - 3) Tremco Incorporated, an RPM company; ExoAir 120SP.
 - b. Synthetic Polymer Membrane:
 - 1) Grace, W. R., & Co. Conn.; Perm-A-Barrier Liquid.
 - 2) Henry Company; Air-Bloc 32MR.
 - 3) Rubber Polymer Corporation, Inc.; Rub-R-Wall Airtight.
 - 2. Physical and Performance Properties:
 - a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. pressure difference: ASTM E 2178.
 - b. Vapor Permeance: Maximum 0.08 perm; ASTM E 96/E 96M.
 - c. Ultimate Elongation: Minimum 500 percent; ASTM D 412, Die C.

2.4 ACCESSORY MATERIALS

A. General: Accessory materials recommended by air-barrier manufacturer to produce a complete air-barrier assembly and compatible with primary air-barrier material.

- B. Primer: Liquid primer recommended for substrate by air-barrier material manufacturer.
- C. Termination Sealant: Dow Corning, Dow 758 Sealant, or manufacturer's approved silicone sealant for adhering to polyethylene facer.
- D. Liquid Membrane: Air barrier manufacturer's two component liquid membrane.
- E. Joint Reinforcing Strip: Air-barrier manufacturer's glass-fiber-mesh tape.
- F. Substrate-Patching Membrane: Manufacturer's standard trowel-grade substrate filler.
- G. Adhesive and Tape: Air-barrier manufacturer's standard adhesive and pressure-sensitive adhesive tape.
- H. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304, [0.0187 inch] [0.0250 inch] <Insert dimension> thick, and Series 300 stainless-steel fasteners.
- I. Sprayed Foam Sealant: Refer to Division 07 Section "Thermal Insulation" for spray foam insulation applied at doors and windows.
- J. Membrane Strip Flashing: Vapor retarding, 40 mils thick, smooth surfaced, self-adhering; consisting of 36 mils of rubberized asphalt laminated to a 4-mil- thick polyethylene film with release liner backing.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Grace, W. R., & Co. Conn.; Perm-A-Barrier Wall Flashing.
 - b. Henry Company; Blueskin® TWF.
 - c. Meadows, W. R., Inc.; Air-ShieldTM Thru-Wall Flashing.
 - d. Rubber Polymer Corporation, Inc.; Rub-R-Wall® SA.
 - e. Tremco Incorporated, an RPM company; ExoAir TWF.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 - 2. Verify that masonry joints are flush and completely filled with mortar.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. Clean, prepare, treat, and seal substrate according to manufacturer's written instructions. Provide clean, dust-free, and dry substrate for air-barrier application.

- B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.
- C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.
- D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching membrane.
- E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.
- F. At changes in substrate plane, apply liquid membrane fillets at sharp corners and edges to form a smooth transition from one plane to another.
- G. Cover gaps in substrate plane greater than 1/2 inch and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.

3.3 JOINT TREATMENT

- A. Concrete and Masonry: Prepare, treat, rout, and fill joints and cracks in substrate according to ASTM C 1193 and air-barrier manufacturer's written instructions. Remove dust and dirt from joints and cracks complying with ASTM D 4258 before coating surfaces.
 - 1. Prime substrate and apply a single thickness of air-barrier manufacturer's recommended preparation coat extending a minimum of 3 inches along each side of joints and cracks. Apply a double thickness of fluid air-barrier material and embed a joint reinforcing strip in preparation coat.
- B. Gypsum Sheathing: Fill joints greater than 1/4 inch with sealant according to ASTM C 1193 and air-barrier manufacturer's written instructions. Apply first layer of fluid air-barrier material at joints. Tape joints with joint reinforcing strip after first layer is dry. Apply a second layer of fluid air-barrier material over joint reinforcing strip.

3.4 MEMBRANE STRIP FLASHING INSTALLATION

- A. General: Install membrane strip flashing and accessory materials according to air-barrier manufacturer's written instructions to form a seal with adjacent construction and maintain a continuous air barrier.
 - 1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
 - 2. Install membrane strip flashing on roofing membrane or base flashing so that a minimum of 3 inches of coverage is achieved over each substrate.
- B. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by fluid air-barrier material on same day. Reprime areas exposed for more than 24 hours.

- 1. Prime glass-fiber-surfaced gypsum sheathing with number of prime coats needed to achieve required bond, with adequate drying time between coats.
- C. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.
- D. At end of each working day, seal top edge of membrane strip flashing to substrate with termination sealant.
- E. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- F. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply membrane strip flashing so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames with not less than 1 inch of full contact.
 - 1. Membrane Strip Flashing: Roll firmly to enhance adhesion.
- G. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.
- H. Seal top of through-wall flashings to air barrier with an additional 6-inch-wide, membrane strip flashing.
- I. Seal exposed edges of membrane strip flashing at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination sealant.
- J. Repair punctures, voids, and deficient lapped seams in membrane strip flashing. Slit and flatten fishmouths and blisters. Patch with membrane strip flashing extending 6 inches beyond repaired areas in strip direction.

3.5 FLUID AIR-BARRIER MEMBRANE INSTALLATION

- A. General: Apply fluid air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions. Apply fluid air-barrier material within manufacturer's recommended application temperature ranges.
 - 1. Apply primer to substrates at required rate and allow it to dry.
 - 2. Limit priming to areas that will be covered by fluid air-barrier material on same day. Reprime areas exposed for more than 24 hours.
 - 3. Prime glass-fiber-surfaced gypsum sheathing with number of prime coats needed to achieve required bond, with adequate drying time between coats.

- B. Membrane Air Barriers: Apply a continuous unbroken air-barrier membrane to substrates according to the following thickness. Apply air-barrier membrane in full contact around protrusions such as masonry ties.
 - 1. Vapor-Retarding Membrane Air Barrier: Total dry film thickness as recommended in writing by manufacturer to meet performance requirements, but not less than 40-mil dry film thickness, applied in one or more equal coats.
- C. Apply membrane strip flashing a minimum of 1 inch onto cured air-barrier material or strip and transition strip over cured air-barrier material overlapping 3 inches onto each surface according to air-barrier manufacturer's written instructions.
- D. Do not cover air barrier until it has been tested and inspected by Owner's testing agency.
- E. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:
 - 1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
 - 2. Continuous structural support of air-barrier system has been provided.
 - 3. Masonry and concrete surfaces are smooth, clean, and free of cavities, protrusions, and mortar droppings.
 - 4. Site conditions for application temperature and dryness of substrates have been maintained.
 - 5. Maximum exposure time of materials to UV deterioration has not been exceeded.
 - 6. Surfaces have been primed, if applicable.
 - 7. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
 - 8. Termination mastic has been applied on cut edges.
 - 9. Strips and transition strips have been firmly adhered to substrate.
 - 10. Compatible materials have been used.
 - 11. Transitions at changes in direction and structural support at gaps have been provided.
 - 12. Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
 - 13. All penetrations have been sealed.
- C. Air barriers will be considered defective if they do not pass tests and inspections.
 - 1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 - 2. Remove and replace deficient air-barrier components for retesting as specified above.

D. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.

3.7 CLEANING AND PROTECTION

- A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.
 - 1. Protect air barrier from exposure to UV light and harmful weather exposure as required by manufacturer. If exposed to these conditions for more than 6 months, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed membrane according to air-barrier manufacturer's written instructions.
 - 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.
- B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended by manufacturer of affected construction.
- C. Remove masking materials after installation.

END OF SECTION 072726

SECTION 074646 - FIBER-CEMENT SIDING

PART 1 - GENERAL

1.1 SUMMARY

A. Fiber cement lap siding boards, panels, trim, fascia and accessories.

B. Related Requirements:

- 1. Section 061000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
- 2. Section 062013 "Exterior Finish Carpentry" for exterior cellular PVC trim.
- 3. Section 072500 "Weather Barriers" for weather-resistive barriers.
- 4. Section 076100 "Sheet Metal Flashing and Trim" for associated perimeter flashing.

1.2 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: Product Data: Submit manufacturer's product description, standard detail drawings relevant to the project, storage and handling requirements, and installation instructions.
- B. Shop Drawings: Submit drawings, including plan, section, and elevation drawings, showing installation details that demonstrate product layout, dimensions, finish colors, edge/termination conditions/treatments, compression and control joints, openings, and penetrations.
- C. Samples for Initial Selection: For fiber-cement siding and trim including related accessories.
- D. Samples for Verification:
 - 1. 12-inch long-by-actual-width Sample of siding.
 - 2. 12-inch long-by-actual-width Samples of trim and accessories.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Test Reports and Code Compliance: Documents demonstrating product compliance with local building code, such as test reports or Evaluation Reports from qualified, independent testing agencies.
- B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. All fiber cement panels specified in this section must be supplied by a manufacturer with a minimum of 10 years of experience in fabricating and supplying fiber cement cladding systems.
 - 2. Provide technical and design support as needed regarding installation requirements and warranty compliance provisions.
- B. Installer Qualifications: All products listed in this section are to be installed by a single installer trained by manufacturer or representative.
- C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 - 1. Build mockup of typical wall area as shown on Drawings.
 - 2. Build mockups for fiber-cement [siding] [trim] [and] [soffit] including accessories.
 - a. Size: [48 inches long by 60 inches high] <Insert dimensions>.
 - b. Include outside corner on one end of mockup[and inside corner on other end].
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Fiber cement panels must be stored flat and kept dry, off the ground before installation. A waterproof cover over panels and accessories should be used at all times prior to installation.
- B. If panels are exposed to water or water vapor prior to installation, allow to completely dry before installing. Moisture saturation before installation can cause shrinkage and panel damage.

- C. Panels MUST be carried on edge. Do not carry or lift panels flat. Improper handling may cause cracking or panel damage.
- D. Do not stack product more than three pallets high.

1.9 WARRANTY

- A. Provide manufacturer's 30-year limited warranty against manufactured defects in fiber cement panels.
- B. Warranty provides for the original purchaser and transfers to one subsequent owner. See warranty for detailed information on terms, conditions and limitations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

- A. Fiber Cement Cladding Must comply with ASTM C-1186, Type A, Grade II requirements:
 - 1. Linear Variation with Change in Moisture Content: 0.08% linear change.
 - 2. Wet Flexural Strength, lower limit: 1015 psi.
 - 3. Water Tightness: No water droplets observed on any specimen.
 - 4. Freeze-thaw: No damage or defects observed.
 - 5. Warm Water: No evidence of cracking, delamination, swelling, or other defects observed.
 - 6. Heat-Rain: No crazing, cracking, or other deleterious effects, surface or joint changes observed in any specimen.
- B. Surface Burning (ASTM E-84): Flame Spread: 0, Smoke Developed: 1.
- C. Fire Resistant (ASTM E-119): The wall assembly must successfully endure 60-minute fire exposure without developing excessive unexposed surface temperature or allowing flaming on the unexposed side of the assembly.
- D. Non-Combustible (ASTM E-136): Meets performance requirements.
- E. Wind Load (ASTM E-330): Ultimate loads vary depending upon board dimensions, fasteners, wall assembly type and dimensions. Consult siding manufacturer concerning project wind load requirements.
- F. Florida Building Code High Velocity Hurricane Zone (TAS 201-203): Approved.
 - 1. Miami-Dade County Product Control Division: Approved.

2.2 MANUFACTURERS

A. Acceptable Manufacturer: Nichiha USA, Inc., 3150 Avondale Mill Road, Macon, GA 31216, Tel. 478-238-9070, Fax: 478-238-9160, www.nichiha.com.

- B. Sales Office: Nichiha USA, Inc., 6465 East Johns Crossing, Suite 250, Johns Creek, GA 30097. Toll free: 1.866.424.4421, Office: 770.805.9466, Fax: 770.805.9467, www.nichiha.com.
 - 1. Basis of Design Product: NichiPanel.
 - a. Profiles: Cedar, Grooved, Smooth, or Stucco.
 - b. Profile color: primed.
 - 1) Finish Color(s): See finish schedule.
 - c. Width: 4 feet.
 - d. Lengths: 8, 10, or 12 feet.
 - e. Thickness: 5/16 inch.
 - f. Weight: 2.2 lbs. per square foot.
 - g. Coverage: 32 sq. ft. (8' panel); 40 sq. ft. (10' panel); or 48 sq. ft. (12' panel).
 - h. Factory sealed on five [5] sides.
- C. Requests for substitutions will be considered in accordance with provisions of Section 012500.

2.3 FIBER-CEMENT SIDING

A. Fiber cement panels are manufactured from a pressed, stamped, and autoclaved mix of Portland cement, fly ash, recycled rejects, and wood fiber bundles.

2.4 INSTALLATION COMPONENTS

- A. Fasteners: Corrosion resistant fasteners, such as hot-dipped galvanized nails and screws appropriate to local building codes and practices must be used. Use Stainless Steel fasteners in high humidity and high-moisture regions. Board manufacturer is not liable for corrosion resistance of fasteners. Do not use aluminum fasteners, staples, clipped head nails or fasteners that are not rated or designed for intended use. See manufacturer's instructions for appropriate fasteners for construction method used.
- B. Flashing: Flash all areas specified in manufacturer's instructions. Do not use raw aluminum flashing. Flashing must be galvanized, anodized, or PVC coated.
- C. Sealant: Sealant shall be polyurethane, or hybrid, and comply with ASTM C834 or C920.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of fiber-cement siding and related accessories.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

3.3 INSTALLATION

- A. General: Install products in accordance with the latest installation guidelines of the manufacturer and all applicable building codes and other laws, rules, regulations and ordinances. Review all manufacturer installation, maintenance instructions, and other applicable documents before installation.
 - 1. Consult with your local dealer or Nichiha Technical Department before installing any Nichiha fiber cement product on a building higher than 45 feet or three stories. Special installation conditions may be required.

B. Board Cutting

- 1. Always cut fiber cement panels outside or in a well ventilated area. Do not cut the products in an enclosed area.
- 2. Always wear safety glasses and NIOSH/OSHA approved respirator whenever cutting, drilling, sawing, sanding or abrading the products. Refer to manufacturer SDS for more information.
- 3. Use a dust-reducing circular saw with a diamond-tipped or carbide-tipped blade.
 - a. Recommended circular saw: Makita 7-1/4" Circular Saw with Dust Collector (#5057KB).
 - b. Recommended blade: Tenryu Board-Pro Plus PCD Blade (#BP-18505).
 - c. Shears (electric or pneumatic) or jig saw can be used for complicated cuttings, such as service openings, curves, radii and scrollwork.
- 4. Silica Dust Warning: Fiber cement products may contain some amounts of crystalline silica, a naturally occurring, potentially hazardous mineral when airborne in dust form. Consult product SDS or visit www.osha.gov/SLTC/silicacrystalline/index.html.

C. Fastening

- 1. Fiber cement panels must be jointed on studs.
- 2. Fasteners must penetrate studs at least 1" into wood studs and ½" into steel studs.
- 3. Fastener head must be flush to the board surface.
- 4. Fasteners shall be placed a minimum of 3/8" from board edges.
- 5. Fasten panels a maximum of 6" o.c. on all board horizontal and vertical edges and no more than 12" o.c. at intermediate framing.
- D. Joint Installation Using Caulk: Leave a 1/4" gap between each panel and fill with recommended sealant.
- E. Battens or Trim: Caulk panels when using battens or trim.
- F. Horizontal Joints: Non-corrosive Z-flashing shall be used. Do not fill the gap between the bottom of the panel and the flashing with sealant.

- G. Trim Joints (corners and around windows and doors): For vertical joints, leave a ¼" gap between panel edge and trim and fill with recommended sealant. For horizontal joints above windows and doors, use a metal flashing over the trim, leaving a ¼" gap between panel and flashing. For horizontal joints underneath window sills or trim, leave a ¼" gap and fill with recommended sealant.
- H. Field Cut Edges: All exposed field cut edges, such as outside edges, field cut butt joints, cuts around doors and windows, or bottom ends of corners and window trim, must be coated with primer, paint, or sealant.

3.4 ADJUSTING AND CLEANING

- A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.
- B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 074646

SECTION 074800 - RAINSCREEN ATTACHMENT SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Provide a thermally broken, rainscreen attachment system for attachment of exterior metal panels installed over exterior mineral fiber insulation.

B. Related Sections:

- 1. Refer to Section 054000 "Cold-Formed Metal Framing" for curtain wall framing.
- 2. Refer to Section 061000 "Rough Carpentry" for wood blocking.
- 3. Refer to Section 061600 "Sheathing" for exterior sheathing.
- 4. Refer to Section 072100 "Thermal Insulation" for exterior mineral fiber insulation.
- 5. Refer to Section 072726 "Fluid-Applied Membrane Air Barriers" for air barrier system.
- 6. Refer to Section 074213.13 "Formed Metal Wall Panels" for exterior claddings.

1.3 SYSTEM DESCRIPTION

- A. System assembly shall include the following components from the substrate out:
 - 1. Substrate: Wall framing assembly and sheathing.
 - 2. Air Barrier over substrate.
 - 3. Mineral fiber insulation.
 - 4. Thermally broken rainscreen attachment system.
 - 5. Exterior cladding.

B. Design Requirements:

- 1. Manufacturer is responsible for designing system, including anchorage to structural system and necessary modifications to meet specified requirements and maintain visual design concepts.
- 2. Employ registered professional engineer, licensed to practice engineering in jurisdiction where Project is located, to engineer each component of rainscreen attachment system.
- 3. Structural Design: Exterior-insulated rainscreen wall assembly capable of withstanding effects of load and stresses from dead loads, wind loads, ice loads (if applicable) as indicated on Structural General Notes on Structural Drawings, and normal thermal movement without evidence of permanent defects of assemblies or components.

- a. Thermal Movements: Provide assemblies that allow for thermal movements resulting from the following maximum ambient temperatures by preventing overstressing of components and other detrimental effects:
 - 1) Temperature Change (range): 120 degrees Fahrenheit (67 degrees C), ambient:

4. Support Framing/Attachment System:

a. Frequency and spacing of brackets as indicated by manufacture in project specific engineering package.

C. Performance Requirements:

1. Structural Performance:

a. Framing Members:

- 1) Test framing components to AAMA TIR- A8-04 Section 7.2 to determine structural performance and effective moment of inertia for each perforated component. Minimum Effective Moment of Inertia for Primary Rail: 0.0239 in⁴.
- 2) Localized bending stress for eccentrically loaded framing members must be evaluated with the maximum effective length of resisting element not more than 12 inches.

b. Fasteners:

- Tension shall be taken as sum of direct tension plus tension due to prying for eccentrically loaded connections. Prying may be reduced or eliminated if proven via engineering analysis or testing.
- 2) Minimum Safety Factor of 3 for both tension and shear values.
- 3) Combined tension and shear shall be evaluated according to an interaction formula. Sum of terms shall not exceed 1.0.

1.4 SUBMITTALS

A. Product Data: Submit manufacturer's product literature and descriptions of testing performed on system components to indicate meeting or exceeding specified performance.

B. Shop Drawings:

- 1. Submit connection details to the cladding manufacturer, showing interface of rainscreen attachment system to substrate and panels with adjacent construction, signed and sealed by Professional Engineer.
- 2. Show system installation and attachment, including fastener size and spacing.

C. Structural Calculations:

- 1. Submit rainscreen attachment manufacturer's comprehensive Structural Design analysis signed and sealed by a Professional Engineer.
- D. Samples: Submit following material samples for verification:
 - 1. Wall Brackets: Two (2) samples.
 - 2. Horizontal Rails: Two (2) 12-inch long samples.

E. Test Reports:

- 1. Test to the following standards and provide written test reports by a third party:
 - a. AAMA TIR-A8-04: Structural Performance of Composite Thermal Barrier Framing Systems Section 7.2.
- 2. Comprehensive three-dimensional thermal modeling report indicating framing systems impact on exterior insulation rated R-value.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications:

- 1. Minimum 5 years' experience specializing in the manufacturing of façade attachment/support framing similar to those specified.
- 2. Ability to demonstrate conformance to testing requirements.

B. Installer Qualifications:

- 1. Minimum of 3 years' documented experience or minimum of 5 completed projects of equivalent scope and quality and recommended by manufacturer to perform work of this Section.
- 2. Onsite superintendent or foreman overseeing installation on site during entire work of this Section with experience equivalent to installer and in good standing with the manufacturer.
- C. Engineer Qualifications: Registered professional engineer experienced in the design of curtain wall systems, anchors, fasteners and licensed to practice engineering in the jurisdiction where Project is located.

D. Pre-Installation Meeting:

- 1. Discuss sequence and scheduling of work and interface with other trades.
- 2. Review metal wall framing assemblies for potential interference and conflicts and coordinate layout and support provisions for interfacing work.
- 3. Review and document methods, procedures and manufacturer's installation guidelines and safety procedures for exterior wall assembly.
- E. Mock-Ups: Coordinate mock-up materials and requirements with mock-up specified in Section 074213.13 "Formed Metal Wall Panels."

1.6 QUALITY CONTROL

- A. Single source responsibility:
 - 1. Furnish engineered rainscreen attachment system components under direct responsibility of single manufacturer.
- B. Field Measurements: Verify actual supporting and adjoining construction before fabrication.
- C. Record field measurements on project record shop drawings.
- D. Established Dimensions: Where field measurements cannot be made without delaying work, guarantee dimensions and proceed with fabrication of rainscreen attachment system corresponding to established dimensions.

1.7 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Deliver materials and components in manufacturers' original, unopened and undamaged containers or bundles, fully identified. Exercise care to avoid damage during unloading, storing and installation.
- B. Store, protect and handle materials and components in accordance with manufacturer recommendations to prevent damage, contamination and deterioration. Keep materials clean, dry, and free of dirt and other foreign matter, and protect from damage due to weather or construction activities.

1.8 SEQUENCING

- A. Ordering: Comply with manufacturers' ordering instructions and lead time requirements to avoid construction delays.
- B. Coordinate construction to ensure that assemblies fit properly to supporting and adjoining construction; coordinate schedule with construction in progress to avoid delaying work.

1.9 WARRANTY

- A. Manufacturer Warranties:
 - 1. Attachment System: Ten (10) year Limited Warranty.
 - a. Covers components of the attachment system, including structural failure of components when all the materials and components are supplied and installed per manufacturer's requirements.
 - b. Includes labor and material for removal and replacement of defective material.
 - c. Includes labor to remove and reinstall façade finish panels, finish closures and façade finish accessories necessary to access defective material.
- B. Contractor's Warranties: 2-year labor warranty, starting from Substantial Completion, to cover repair of materials found to be defective as a result of installation errors.

C. Limitation of Warranties: Exclude repairs, replacement, and corrective work to the substrate, primary structure, finish panels, and/or property – unless otherwise noted above. Warranties exclude mechanical damage due to abuse, neglect, primary structure failure, or forces of nature greater than normal weather conditions.

PART 2 - PRODUCTS

2.1 RAINSCREEN ATTACHMENT/SUPPORT FRAMING SYSTEM

- A. Basis-of-Design System: Knight MFI® System Rainscreen Attachment by Knight Wall Systems.
- B. Comply with ANSI/ASHRAE 90.1-2010.
- C. Coating Material: ASTM A1046, Zinc-Aluminum-Magnesium, minimum thickness ZM40.
 - 1. ASTM A653 Galvanized steel is not acceptable.
- D. Steel Classification: Structural Steel (SS), Grade 50, 50 ksi Yield.
- E. Spacing: Comply with manufacturer's Professional Engineer's project specific calculations.
- F. Wall Brackets:
 - 1. Minimum 0.074 inch thick (14 gauge) sheet steel.
 - 2. Dimensions:
 - a. Bracket Base: Minimum 3.125 inch high by 2.125 inch wide.
 - b. Offset Brackets: 3 inch and custom 4.5 inch depth.
 - 1) Align offsets to differing wall planes as shown on Drawings.
 - 3. Pre-Punched Holes: Two wall anchors per bracket.
 - 4. Rail Connector Stem:
 - a. Pilot Drill Holes:
 - 1) Holes allow minimum 0.75 inch adjustment allowing for aligning and plumbing of framing, independent of substrate irregularities and proper cladding installation.
 - 2) Spaced appropriately to maintain proper alignment of rails.
 - 5. Basis of Design Product: ThermaBracket-D by Knight Wall Systems.
- G. Primary Horizontal and Vertical Rail, Dynamic D-Series:
 - 1. Minimum 0.046-inch thick (18 gauge) cold-formed steel for horizontal rail.
 - 2. Minimum 0.054-inch thick (16 gauge) cold-formed steel for vertical rail.
 - 3. Profile: C channel, two flanges of equal length and one web.

- 4. Nominal Dimensions: 1.625 inch flange for attaching to wall bracket and 1.625 inch at web.
- 5. Adjustment capability: 0.75-inches
- 6. Pre-Punched Attachment Holes: 1.0 inch on center along length of track and oversized allowing for thermal contraction and expansion of rail without placing stress on connection.
- 7. Basis of Design: D Rail by Knight Wall Systems.

H. Fasteners:

- 1. Sufficient length to provide solid attachment to structure as required by manufacturer.
- 2. Thermally isolated.
- 3. Framed substrate with sheathing: Self-drill hex-washer-head stainless steel with 1,000 hour salt-spray rated thermoset polyester coating.
 - a. Embedment depth: 0.625 inches or three full threads minimum, whichever is greater.
 - b. Minimum ultimate pull-out capacity from 18 gauge steel: 450 pounds.
- 4. For primary to secondary rail connection: Self-drill hex-washer-head stainless steel with 1,000 hour salt-spray rated thermoset polyester coating.
 - a. Embedment depth: 0.625 inches or three full threads minimum, whichever is greater.
 - b. Minimum ultimate pull-out capacity from 18 gauge steel: 450 pounds.

I. Accessories:

- 1. Bracing, Furring, Bridging, Plates, Gussets, and Clips: Formed sheet steel, thickness as necessary to meet structural requirements for special conditions encountered.
- 2. Galvanic Protection: Utilize tapes and other methods as necessary to separate and prevent contact between dissimilar metals.

2.2 MINERAL FIBER INSULATION

A. Refer to Section 072100 "Thermal Insulation".

2.3 SIDING/CLADDING PANEL

A. Refer to Section 0744213.13 "Formed Metal Wall Panels."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with manufacturer requirements for installation conditions affecting performance of the work.
 - 1. Do not proceed with installation until unsatisfactory conditions have been corrected.
 - 2. Ensure weather-resistant barrier (WRB) is installed prior to installing rainscreen attachment system.

- 3. Ensure fenestration, transitions, discontinuities, sills, and ledgers are flashed and sealed to move moisture to the exterior of the building.
- B. Field verify architectural details and mechanical and electrical requirements prior to commencing installation.
- C. Commencement of installation constitutes acceptance of existing conditions and acceptance of responsibility for satisfactory performance.

3.2 RAINSCREEN ATTACHMENT SYSTEM INSTALLATION

- A. Preparation: Review areas of potential interference and conflicts and coordinate layout and support provisions for interfacing work.
- B. Installation: Install in strict accordance with manufacturer's installation instructions.
- C. Wall Brackets and Primary Rail:
 - 1. Mount wall brackets at 48 inches on center horizontally and 48 inches on center vertically on support wall (at stud locations that are spaced 24 inches on center). Mount wall brackets at 32 inches on center horizontally and 48 inches on center vertically on support wall (at stud locations that are spaced 16 inches on center).
 - a. Brackets must be laid out at 0.5 inch increments vertically or horizontally.
 - b. Tighten screws to substructure to a snug tight condition and not stripped. Do not over-torque beyond manufacturer's recommendation. If installed using hand tools, verify for each installer at beginning of project using snug-tight criteria. Do not use stripped holes.
 - 2. Thermally isolate wall bracket attachments by sandwiching thermal break material between metal bracket and support wall substrate.
 - 3. Thermally isolate screw fastener washers using material to thermally isolate fastener heads from metal bracket.
 - 4. Mineral Fiber Insulation: Install to expand into and friction fit between wall brackets as specified by Section 072100 prior to installing horizontal rails.
 - 5. Attach primary rail to wall bracket stem by use of a self-tapping screw fastener through the pre-punched holes in the rail and into the pre-punched pilot holes on the bracket.
 - 6. Isolate primary rail from bracket by sandwiching a thermal break material between rail and bracket stem.
 - 7. Attach primary rail at proper pre-punched pilot holes on bracket stem to align plumb and true. Account for irregularities in support wall.
 - 8. Establish and re-establish and restart bracket locations using laser or chalk-line at fenestrations and other obstructions to establish horizontal alignments.
- D. Touch-up shop-applied protective coatings damaged during handling and installation.
- E. Use shearing instruments (i.e. snips, nibbler, etc.) for cutting metal framing components. Saws are not recommended, as the sparks produced during cutting will damage the anti-corrosion coating. If sparks are generated during cutting, be sure the portion of the component to be installed on the building is protected from sparks and that any stockpile near the cutting station is also protected.

- F. The systems components should not be cut while installed on the building, unless using a shearing instrument.
- G. Replace thermal isolator pieces that break during installation.
- H. Provide a 3/8" 1/2" gap between girts for expansion when multiple lengths of rail are installed.
- I. Minimum length of installed cut primary rail is 12" and must be attached to at least two separate wall brackets to prevent rotation of rail. Unsupported cantilever must not exceed 6" unless specified differently by manufacturer's engineer.
- J. Minimum length of installed cut secondary rail is 12" and must be mechanically attached to at least two separate primary rails.

3.3 ERECTION TOLERANCES

- A. Maximum Framing Member Variation from True Position: 1/4 inch.
- B. Maximum Framing Member Variation from Plane:
 - 1. Individual Framing Members: Do not exceed 1/4 inch in 10 foot.
 - 2. Accumulative Over-all Variation for Wall and Floor System: Do not exceed 1/4 inch.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Technical Service: Make intermittent and final inspection to verify installation in conformance to manufacturer instructions and suitable as framing assembly for subsequent metal panels, acrylic plastering, and other cladding installations.
 - 1. Confirm snug tight and fastener sizing.
 - 2. Confirm framing members installed in correct orientation.

3.5 ADJUSTING

- A. Inspect and adjust after installation. Replace or repair defective work.
- B. Adjust, and reconfigure as necessary to accommodate cladding systems for installations over work of this Section. Do not reuse pre-drilled holes unless fastener size is increased.

3.6 SIDING/CLADDING PANEL INSTALLATION

- A. Refer to section 074213.13 "Formed Metal Wall Panels."
- B. The cavity must be clear and free from air flow and drainage obstructions.

END OF SECTION 074800

SECTION 075323 - ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Adhered ethylene-propylene-diene-monomer (EPDM) roofing system.
- 2. Vapor retarder.
- 3. Roof insulation.
- 4. Fascia system.
- B. Products installed, but not furnished, under this Section include the following:
 - 1. Roof drains furnished under Division 22 Section "Plumbing".
- C. Related Requirements:
 - 1. Section 061053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.

1.2 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D 1079 and glossary of NRCA's "The NRCA Roofing and Waterproofing Manual" apply to work of this Section.

1.3 PREINSTALLATION MEETINGS

- A. Preliminary Roofing Conference: Before starting roof deck construction, conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule, and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.
 - 7. Review governing regulations and requirements for insurance and certificates if applicable.

- 8. Review temporary protection requirements for roofing system during and after installation.
- 9. Review roof observation and repair procedures after roofing installation.
- B. Preinstallation Roofing Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - 2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule, and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.
 - 7. Review governing regulations and requirements for insurance and certificates if applicable.
 - 8. Review temporary protection requirements for roofing system during and after installation.
 - 9. Review roof observation and repair procedures after roofing installation.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For roofing system. Include plans, elevations, sections, details, and attachments to other work, including:
 - 1. Base flashings and membrane terminations.
 - 2. Tapered insulation, including slopes.
 - 3. Roof plan showing orientation of steel roof deck and orientation of roofing and fastening spacings and patterns for mechanically fastened roofing.
 - 4. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
 - 5. Fascia system.
- C. Samples for Verification: For the following products:
 - 1. Sheet roofing, of color required.
 - 2. Fascia system.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and manufacturer.
- B. Manufacturer's installation rating of the roofing contractor.

- C. Manufacturer Certificates: Signed by roofing manufacturer certifying that roofing system complies with requirements specified in "Performance Requirements" Article.
 - 1. Submit evidence of complying with performance requirements.
- D. Product Test Reports: For components of roofing system, tests performed by manufacturer and witnessed by a qualified testing agency.
- E. Research/Evaluation Reports: For components of roofing system, from ICC-ES.
- F. Inspection Report: Copy of roofing system manufacturer's inspection report of completed roofing installation.
- G. Sample Warranties: For manufacturer's special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing system to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer that is UL listed for roofing system identical to that used for this Project.
- B. Installer Qualifications: Engage an experienced installer to perform work of this Section who has specialized in installing roofing similar to that required for this Project and who is approved, authorized, or licensed by the roofing system manufacturer to install manufacturer's product. Contractor shall have installed a minimum of 500,000 square feet and have a manufacturer's installation rating of 9.0 or better.
 - 1. Work associated with single-ply membrane roofing, including (but not limited to) insulation, flashing, and membrane sheet joint sealers, shall be performed by Installer of this Work.
- C. Upon completion of the installation, an inspection shall be made by the system manufacturer to ascertain that the roofing system has been installed according to the applicable manufacturer's specifications and details. No "early bird" warranty will be accepted. The results of the warranty inspection shall be submitted in writing to Owner for their review and records.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.
- B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight.

- 1. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.
- C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.
- D. Handle and store roofing materials, and place equipment in a manner to avoid permanent deflection of deck.

1.9 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.

1.10 WARRANTY

- A. A manufacturer's sole source 20-year written Total Roofing System Warranty shall be provided with roofing system design as indicated. Warranty shall cover both labor and materials with no dollar limitation and shall state that the Total roofing System will remain in a watertight condition. The contractor shall provide as part of the shop drawing submittal process, certification indicating that the manufacturer has reviewed and has agreed to such wind coverage indicated.
 - 1. Total Roofing System is defined as the following materials and provided by the roof system manufacturer: membrane, flashings, counterflashings, adhesives, sealants, insulation, cover boards, fasteners, fastener plates, fastener bars, metal work.
 - 2. The warranty shall be for twenty (20) years starting after final acceptance of the total roofing system by the roof system manufacturer. Defective materials or installation shall be removed, properly disposed of, and replaced at the manufacturer's expense.
 - 3. The warranty shall provide that if within the warranty period the roofing system becomes non-watertight or if the elastomeric sheet splits, tears, or separates at the seams because of defective materials and/or materials and cost thereof shall be the responsibility of the manufacturer. Should the manufacturer or his approve applicator fail to perform repairs within 72 hours of notification, the warranty will not be voided because of work being performed by others to repair the roofing regardless of the manufacturer's warranty to the contrary.
 - 4. The total Roofing System shall be applied by a roofing Contractor approved by the system manufacturer. After inspection and acceptance of the installed roof system, the warranty will be issued.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Installed roofing and base flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Roofing and base flashings shall remain watertight.
 - 1. Accelerated Weathering: Roofing system shall withstand 2000 hours of exposure when tested according to ASTM G 152, ASTM G 154, or ASTM G 155.
 - 2. Impact Resistance: Roofing system shall resist impact damage when tested according to ASTM D 3746 or ASTM D 4272.
- B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required, as demonstrated by roofing manufacturer based on testing and field experience.
- C. Roofing System Design: Tested by a qualified testing agency to resist the following uplift pressures:
 - 1. Corner Uplift Pressure: 52 lbf/sq. ft..
 - 2. Perimeter Uplift Pressure: 35 lbf/sq. ft..
 - 3. Field-of-Roof Uplift Pressure: 21 lbf/sq. ft..

2.2 EPDM ROOFING

- A. EPDM: ASTM D 4637, Type I, nonreinforced, uniform, flexible EPDM sheet.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carlisle SynTec Incorporated.
 - b. Firestone Building Products.
 - c. Versico Incorporated.
 - 2. Thickness: 60 mils, nominal.
 - 3. Exposed Face Color: Black.

2.3 AUXILIARY ROOFING MATERIALS

- A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with roofing.
 - 1. Adhesives and sealants that are not on the exterior side of weather barrier shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):

- a. Plastic Foam Adhesives: 50 g/L.
- b. Gypsum Board and Panel Adhesives: 50 g/L.
- c. Multipurpose Construction Adhesives: 70 g/L.
- d. Fiberglass Adhesives: 80 g/L.
- e. Contact Adhesive: 80 g/L.
- f. Other Adhesives: 250 g/L.
- g. Single-Ply Roof Membrane Sealants: 250 g/L.
- h. Nonmembrane Roof Sealants: 300 g/L.
- i. Sealant Primers for Nonporous Substrates: 250 g/L.
- j. Sealant Primers for Porous Substrates: 775 g/L.
- B. Sheet Flashing: 60-mil-thick EPDM, partially cured or cured, according to application.
- C. Protection Sheet: Epichlorohydrin or neoprene nonreinforced flexible sheet, 55- to 60-mil-thick, recommended by EPDM manufacturer for resistance to hydrocarbons, non-aromatic solvents, grease, and oil.
- D. Bonding Adhesive: Manufacturer's standard, State of Maine VOC Compliant.
- E. Seaming Material: Manufacturer's standard, synthetic-rubber polymer primer and 6-inch-wide minimum, butyl splice tape with release film.
- F. Lap Sealant: Manufacturer's standard, single-component sealant, colored to match membrane roofing.
- G. Water Cutoff Mastic: Manufacturer's standard butyl mastic sealant.
- H. Metal Termination Bars: Manufacturer's standard, predrilled stainless-steel or aluminum bars, approximately 1 by 1/8 inch thick; with anchors.
- I. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Global 4470, designed for fastening membrane to substrate, and acceptable to roofing system manufacturer.
- J. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, molded pipe boot flashings, preformed inside and outside corner sheet flashings, reinforced EPDM securement strips, T-joint covers, in-seam sealants, termination reglets, cover strips, and other accessories.

2.4 VAPOR RETARDER

- A. Self-Adhering-Sheet Vapor Retarder: Polyethylene film laminated to layer of SBS modified bitumen adhesive, minimum 30-mil-total thickness; maximum permeance rating of 0.1 perm; cold applied, with slip-resisting surface and release paper backing. Provide primer when recommended by vapor-retarder manufacturer.
 - 1. Sarnavap SA.
 - 2. Firestone: V-Force Vapor Barrier Membrane.

2.5 ROOF INSULATION

- A. General: Preformed roof insulation boards manufactured or approved by EPDM roofing manufacturer, selected from manufacturer's standard sizes suitable for application, of thicknesses indicated.
- B. Polyisocyanurate Board Insulation: ASTM C 1289, Type II, Class 1, Grade 2, felt or glass-fiber mat facer on both major surfaces.
 - 1. Thickness: As indicated on the drawings.
- C. Tapered Insulation: Provide factory-tapered insulation boards fabricated to slope of 1/4 inch per 12 inches unless otherwise indicated.
- D. Provide preformed saddles, crickets, tapered edge strips, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.

2.6 INSULATION ACCESSORIES

- A. General: Roof insulation accessories recommended by insulation manufacturer for intended use and compatibility with roofing.
- B. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Global 4470, designed for fastening roof insulation and cover boards to substrate, and acceptable to roofing system manufacturer.
- C. Cover Board: 1/2 inch thick, high-density polyiso insulation panel designed for use as cover board.
 - 1. Compressive Strength: 100 psi.
 - 2. R-Value: 2.5.
 - 3. Density: 4 lbs/pcf.

2.7 FASCIA SYSTEM

- A. Provide fasciae in shapes and sizes indicated. Include anchor plates; cleats or other attachment devices; concealed splice plates; and trim and other accessories indicated or required for complete installation, with no exposed fasteners.
 - 1. Provide scupper components where indicated on the drawings.
- B. Provide exposed fascia components fabricated from the following metal:
 - 1. Extruded aluminum in thickness indicated, but not less than 0.040 inch.
 - 2. Finish: Manufacturer's standard 2-coat, thermocured system composed of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with AAMA 1402, Test Method 7. Color as selected by the Architect.
 - 3. Product:

- a. Hickman: Extruded TerminEdge Roof Edging.
- b. Metal-Era: Anchor-Tite Fascia System.
- c. Provide face size as indicated on the drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work:
 - 1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
 - 2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
 - 3. Verify that surface plane flatness and fastening of steel roof deck complies with requirements in Section 053100 "Steel Decking."
 - 4. Verify that minimum concrete drying period recommended by roofing system manufacturer has passed.
 - 5. Verify that concrete substrate is visibly dry and free of moisture. Test for capillary moisture by plastic sheet method according to ASTM D 4263.
 - 6. Verify that concrete-curing compounds that will impair adhesion of roofing components to roof deck have been removed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing installation according to roofing system manufacturer's written instructions. Remove sharp projections.
- B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.

3.3 ROOFING INSTALLATION, GENERAL

- A. Install roofing system according to roofing system manufacturer's written instructions.
- B. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at the end of the workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.
- C. Install roofing and auxiliary materials to tie in to existing roofing to maintain weathertightness of transition and to not void warranty for existing roofing system.

3.4 VAPOR-RETARDER INSTALLATION

- A. Self-Adhering-Sheet Vapor Retarder: Prime substrate if required by manufacturer. Install self-adhering-sheet vapor retarder over area to receive vapor retarder, side and end lapping each sheet a minimum of 3-1/2 inches and 6 inches, respectively. Seal laps by rolling.
- B. Completely seal vapor retarder at terminations, obstructions, and penetrations to prevent air movement into roofing system.

3.5 INSULATION INSTALLATION

- A. Coordinate installing roofing system components so insulation is not exposed to precipitation or left exposed at the end of the workday.
- B. Comply with roofing system and insulation manufacturer's written instructions for installing roof insulation.
- C. Install tapered insulation under area of roofing to conform to slopes indicated.
- D. Install insulation under area of roofing to achieve required thickness. Where overall insulation thickness is 2.7 inches or greater, install two or more layers with joints of each succeeding layer staggered from joints of previous layer a minimum of 6 inches in each direction.
 - 1. Where installing composite and noncomposite insulation in two or more layers, install noncomposite board insulation for bottom layer and intermediate layers, if applicable, and install composite board insulation for top layer.
- E. Trim surface of insulation where necessary at roof drains so completed surface is flush and does not restrict flow of water.
- F. Install insulation with long joints of insulation in a continuous straight line with end joints staggered between rows, abutting edges and ends between boards. Fill gaps exceeding 1/4 inch with insulation.
 - 1. Cut and fit insulation within 1/4 inch of nailers, projections, and penetrations.
- G. Mechanically Fastened Insulation: Install each layer of insulation and secure to deck using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to deck type.
 - 1. Fasten insulation according to requirements of manufacturer for specified warranty and performance.
- H. Loosely Laid Insulation: Loosely lay insulation units over substrate.
- I. Install cover boards over insulation with long joints in continuous straight lines with end joints staggered between rows. Offset joints of insulation below a minimum of 6 inches in each direction. Loosely butt cover boards together and fasten to roof deck.

1. Fasten cover boards according to requirements of manufacturer for specified warranty and performance.

3.6 ADHERED MEMBRANE ROOFING INSTALLATION

- A. Adhere roofing over area to receive roofing according to membrane roofing system manufacturer's written instructions. Unroll membrane roofing and allow to relax before installing.
- B. Start installation of roofing in presence of roofing system manufacturer's technical personnel.
- C. Accurately align roofing, and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- D. Bonding Adhesive: Apply to substrate and underside of roofing at rate required by manufacturer, and allow to partially dry before installing roofing. Do not apply to splice area of roofing.
- E. In addition to adhering, mechanically fasten roofing securely at terminations, penetrations, and perimeters.
- F. Apply roofing with side laps shingled with slope of roof deck where possible.
- G. Tape Seam Installation: Clean and prime both faces of splice areas, apply splice tape, and firmly roll side and end laps of overlapping roofing according to manufacturer's written instructions to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of roofing terminations.
- H. Repair tears, voids, and lapped seams in roofing that do not comply with requirements.
- I. Spread sealant or mastic bed over deck-drain flange at roof drains, and securely seal membrane roofing in place with clamping ring.
- J. Install membrane roofing and auxiliary materials to tie in to existing membrane roofing to maintain weather-tightness of transition and to not void warranty for existing membrane roofing system.

3.7 BASE FLASHING INSTALLATION

- A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.
- B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.
- C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.

- D. Clean splice areas, apply splicing cement, and firmly roll side and end laps of overlapping sheets to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of sheet flashing terminations.
- E. Terminate and seal top of sheet flashings.

3.8 ROOF DRAIN INSTALLATION

- A. Install roof drain and accessories in strict accordance with manufacturer's written instructions, providing a permanent weather tight installation.
 - 1. Inspect and determine substrate to be in satisfactory condition, with deck fully anchored and aligned at proper location and elevation. All surfaces shall be smooth, dry, clean, free of sharp edges, and other irregularities.
 - 2. Attach deck flange securely to substrate.
 - 3. Assemble and flash gravel stop flange into roof system per roof system and roof drain manufacturer requirements.
 - 4. Securely attach strainer basket.

3.9 FASCIA SYSTEM INSTALLATION

- A. Comply with manufacturer's written installation instructions. Anchor products securely to structural substrates to withstand lateral and thermal stresses and inward and outward loading pressures.
- B. Expansion Provisions: Install running lengths to allow controlled expansion for movement of metal components in relation not only to one another but also to adjoining dissimilar materials, including flashing and roofing membrane materials, in a manner sufficient to prevent water leakage, deformation, or damage.

3.10 FIELD QUALITY CONTROL

- A. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion.
 - 1. Notify Architect or Owner 48 hours in advance of the date and time of inspection.
- B. Repair or remove and replace components of roofing system where inspections indicate that they do not comply with specified requirements.
- C. Additional testing and inspecting, at Contractor's expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.11 PROTECTING AND CLEANING

A. Protect membrane roofing system from damage and wear during remainder of construction period. When remaining construction does not affect or endanger roofing, inspect roofing for

- deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- B. Correct deficiencies in or remove membrane roofing system that does not comply with requirements, repair substrates, and repair or reinstall membrane roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 075323

SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Penetrations in fire-resistance-rated walls.
- 2. Penetrations in horizontal assemblies.
- 3. Penetrations in smoke barriers.

B. Related Requirements:

1. Section 078443 "Joint Firestopping" for joints in or between fire-resistance-rated construction, at exterior curtain-wall/floor intersections, and in smoke barriers.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product proposed. Include product characteristics, typical uses, performance and limitation criteria, test data, and installation instructions.
- B. Shop Drawings: For each through-penetration firestop system, show each kind of construction condition penetrated, relationships to adjoining construction, and kind of penetrating item. Include firestop design designation of testing and inspecting agency acceptable to authorities having jurisdiction that evidences compliance with requirements for each condition required.
- C. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.
 - 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer. Provide a list of at least 3 completed projects and name and contact information for installer.
- B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.4 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A person experienced in installing through-penetration firestop systems similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its through-penetration firestop system products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
- B. Preinstallation Conference: Conduct conference at Project site.
- C. Special Inspections: Allow for 1 of each type of firestopping system to be removed and inspected for conformance with approved submittals. All firestopping shall be inspected prior to the installation of ceilings.
- D. Above Ceiling review: Prior to the installation of ceilings, a review of construction completion shall be conducted for firestopping and other items that will not be visible when the ceilings have been installed.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.
- B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.7 COORDINATION

- A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.
- B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

- 1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
- 2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:
 - a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.
 - 1) UL in its "Fire Resistance Directory."
 - 2) Intertek Group in its "Directory of Listed Building Products."
 - 3) FM Global in its "Building Materials Approval Guide."

2.2 PENETRATION FIRESTOPPING SYSTEMS

- A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Fire Protection Products.
 - b. A/D Fire Protection Systems Inc.
 - c. Hilti, Inc.
 - d. RectorSeal.
 - e. Specified Technologies, Inc.
 - f. Tremco, Inc.
- B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
- C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 - 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 - 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 - 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
- D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg.

- 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at and no more than 50-cfm cumulative total for any 100 sq. ft. at both ambient and elevated temperatures.
- E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.
 - 1. For fire-resistive joint systems exposed to view in public spaces upon completion of Work, provide products that are paintable.
 - a. Mechanical, electrical and elevator machine rooms are not considered public spaces.
- F. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.
 - 1. Permanent forming/damming/backing materials.
 - 2. Substrate primers.
 - 3. Collars.
 - 4. Steel sleeves.

2.3 FILL MATERIALS

- A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer sleeve lined with an intumescent strip, a flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.
- B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.
- C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.
- D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.
- E. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.
- F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.
- G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.
- H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant

- additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.
- I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.
- J. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants.

2.4 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:
 - 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.
 - 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
 - 3. Remove laitance and form-release agents from concrete.
- B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

- B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.
 - 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.
- C. Install fill materials by proven techniques to produce the following results:
 - 1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
 - 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 - 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

- A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER PROTECT ALL OPENINGS," using lettering not less than 3 inches high and with minimum 0.375-inch strokes.
 - 1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet from end of wall and at intervals not exceeding 30 feet.
 - 2. Do not install identification on exposed finished wall locations.
- B. Penetration Identification: Identify each penetration firestopping system with legible labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
 - 1. The words "Warning Penetration Firestopping Do Not Disturb. Notify Building Management of Any Damage."
 - 2. Contractor's name, address, and phone number.
 - 3. Designation of applicable testing and inspecting agency.
 - 4. Date of installation.
 - 5. Manufacturer's name.
 - 6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.

- B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.
- C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.
- D. Reinstall firestopping materials that have been removed for inspection.

3.6 CLEANING AND PROTECTION

- A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.
- B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

END OF SECTION 078413

SECTION 078443 - JOINT FIRESTOPPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Joints in or between fire-resistance-rated constructions.
- 2. Joints in smoke barriers.

B. Related Requirements:

- 1. Section 078413 "Penetration Firestopping" for penetrations in fire-resistance-rated walls, horizontal assemblies, and smoke barriers and for wall identification.
- 2. Section 092216 "Non-Structural Metal Framing" for firestop tracks for metal-framed partition heads.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product proposed for use. List product characteristics, typical uses, performance and limitation criteria, test data, and installation instructions.
- B. Shop Drawings: For each fire-resistive joint system, show each kind of construction condition in which joints are installed; also show relationships to adjoining construction. Include fire-resistive joint system design designation of testing and inspecting agency acceptable to authorities having jurisdiction that demonstrates compliance with requirements for each condition indicated.
- C. Product Schedule: For each joint firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing agency.
 - 1. Engineering Judgments: Where Project conditions require modification to a qualified testing agency's illustration for a particular joint firestopping system condition, submit illustration, with modifications marked, approved by joint firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For each joint firestopping system, for tests performed by a qualified testing agency.

1.4 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that joint firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A firm experienced in installing fire-resistive joint systems similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its fire-resistive joint system products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
- B. Preinstallation Conference: Conduct conference at Project site.
- C. Special Inspections: Allow for 1 of each type of joint firestopping system to be removed and inspected for conformance with approved submittals.
- D. Above Ceiling review: Prior to the installation of ceilings, a review of construction completion shall be conducted for joint firestopping and other items that will not be visible when the ceilings have been installed.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install joint firestopping systems when ambient or substrate temperatures are outside limits permitted by joint firestopping system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.
- B. Install and cure joint firestopping systems per manufacturer's written instructions using natural means of ventilation or, where this is inadequate, forced-air circulation.

1.7 COORDINATION

- A. Coordinate construction of joints to ensure that joint firestopping systems can be installed according to specified firestopping system design.
- B. Coordinate sizing of joints to accommodate joint firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics:
 - 1. Perform joint firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

- 2. Test per testing standards referenced in "Joint Firestopping Systems" Article. Provide rated systems complying with the following requirements:
 - a. Joint firestopping systems shall bear classification marking of a qualified testing agency.
 - 1) UL in its "Fire Resistance Directory."

2.2 JOINT FIRESTOPPING SYSTEMS

- A. Joint Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of assemblies in or between which joint firestopping systems are installed. Joint firestopping systems shall accommodate building movements without impairing their ability to resist the passage of fire and hot gases.
- B. Joints in or between Fire-Resistance-Rated Construction: Provide joint firestopping systems with ratings determined per ASTM E 1966 or UL 2079.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Fire Protection Products.
 - b. A/D Fire Protection Systems Inc.
 - c. W.R. Grace & Co., Construction Products Division.
 - d. Hilti, Inc.
 - e. Nelson Firestop; a brand of Emerson Industrial Automation.
 - f. RectorSeal.
 - g. Specified Technologies, Inc.
 - h. Tremco, Inc.
 - i. United States Gypsum Company.
 - 2. Fire-Resistance Rating: Equal to or exceeding the fire-resistance rating of the wall, floor, or roof in or between which it is installed.
- C. Joints at Exterior Curtain-Wall/Floor Intersections: Provide joint firestopping systems with rating determined per ASTM E 2307.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Fire Protection Products.
 - b. A/D Fire Protection Systems Inc.
 - c. W.R. Grace & Co., Construction Products Division.
 - d. Hilti, Inc.
 - e. Nelson Firestop; a brand of Emerson Industrial Automation.
 - f. RectorSeal.
 - g. Specified Technologies, Inc.
 - h. Tremco, Inc.
 - 2. F-Rating: Equal to or exceeding the fire-resistance rating of the floor assembly.

- D. Joints in Smoke Barriers: Provide fire-resistive joint systems with ratings determined per UL 2079 based on testing at a positive pressure differential of 0.30-inch wg.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Fire Protection Products.
 - b. A/D Fire Protection Systems Inc.
 - c. W.R. Grace & Co., Construction Products Division.
 - d. Hilti, Inc.
 - e. Nelson Firestop; a brand of Emerson Industrial Automation.
 - f. RectorSeal.
 - g. Specified Technologies, Inc.
 - h. Tremco, Inc.
 - 2. L-Rating: Not exceeding 5.0 cfm/ft. of joint at both ambient and elevated temperatures. Provide systems with L-rating where walls and partitions also are smoke barriers. Where a fire-resistive joint system is not available with the ability to resist smoke, provide smoke sealant material to one side of wall to stop the passage of smoke.
- E. Exposed Joint Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.
 - 1. For fire-resistive joint systems exposed to view in public spaces upon completion of Work, provide products that are paintable.
 - a. Mechanical, electrical and elevator machine rooms are not considered public spaces.
- F. Accessories: Provide components of fire-resistive joint systems, including primers and forming materials, that are needed to install elastomeric fill materials and to maintain ratings required. Use only components specified by joint firestopping system manufacturer and approved by the qualified testing agency for conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for joint configurations, substrates, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing fire-resistive joint systems, clean joints immediately to comply with fire-resistive joint system manufacturer's written instructions and the following requirements:

- 1. Remove from surfaces of joint substrates foreign materials that could interfere with adhesion of elastomeric fill materials or compromise fire-resistive rating.
- 2. Clean joint substrates to produce clean, sound surfaces capable of developing optimum bond with elastomeric fill materials. Remove loose particles remaining from cleaning operation.
- 3. Remove laitance and form-release agents from concrete.
- B. Prime substrates where recommended in writing by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

- A. General: Install fire-resistive joint systems to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
- B. Install forming materials and other accessories of types required to support elastomeric fill materials during their application and in position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 - 1. After installing elastomeric fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of fire-resistive joint system.
- C. Install elastomeric fill materials for fire-resistive joint systems by proven techniques to produce the following results:
 - 1. Elastomeric fill voids and cavities formed by joints and forming materials as required to achieve fire-resistance ratings indicated.
 - 2. Apply elastomeric fill materials so they contact and adhere to substrates formed by joints.
 - 3. For elastomeric fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

- A. Inspecting Agency: Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2393.
- B. Before installation of ceilings, walls, and adjacent construction that would conceal fire-resistive joint systems, inspect joints to verify complete installation of fire-resistive joint systems materials.
- C. Where deficiencies are found or joint firestopping systems are damaged or removed due to testing, repair or replace joint firestopping systems so they comply with requirements.
- D. Proceed with enclosing joint firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.
- E. Reinstall firestopping materials that have been removed for inspection.

3.5 CLEANING AND PROTECTION

- A. Clean off excess elastomeric fill materials adjacent to joints as the Work progresses by methods and with cleaning materials that are approved in writing by joint firestopping system manufacturers and that do not damage materials in which joints occur.
- B. Provide final protection and maintain conditions during and after installation that ensure joint firestopping systems are without damage or deterioration at time of Substantial Completion. If damage or deterioration occurs despite such protection, cut out and remove damaged or deteriorated fire-resistive joint systems immediately and install new materials to produce fire-resistive joint systems complying with specified requirements.

3.6 JOINT FIRESTOPPING SYSTEM SCHEDULE

- A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHBN.
- B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under product category Firestop Systems.
- C. Head-of-Wall, Fire-Resistive Joint Firestopping Systems:
 - 1. UL-Classified Systems: Provide one of the following as applicable:
 - a. HW-D-0060. (firetrack at deck perpendicular or parrallel)
 - b. HW-D-0099. (fireproofing at deck parallel)
 - c. HW-D-0119. (shaftwall firetrack at deck perpendicular or parrallel)
 - d. HW-D-0252. (fireproofing at beam parallel)
 - e. HW-D-0365. (metal deck parallel)
 - f. HW-D-0456. (metal deck parallel)
 - g. HW-D-0548. (metal deck perpendicular, stud and shaftwall)
- D. Bottom-of-Wall, Joint Firestopping Systems:
 - 1. UL-Classified Systems: Provide one of the following as applicable:
 - a. BW-S-0003. (stud wall)

END OF SECTION 078443

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Silicone joint sealants.
- 2. Latex joint sealants.

B. Related Requirements:

1. Section 092900 "Gypsum Board" for sealing joints in sound-rated construction.

1.2 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
- C. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- D. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency or a qualified testing agency.
- C. Preconstruction Laboratory Test Schedule: Include the following information for each joint sealant and substrate material to be tested:
 - 1. Joint-sealant location and designation.
 - 2. Manufacturer and product name.
 - 3. Type of substrate material.
 - 4. Proposed test.

- 5. Number of samples required.
- D. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.
- E. Sample Warranties: For special warranties.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance.
- B. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.

1.5 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.6 WARRANTY

- A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

- A. Sealant Type 1: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Corning Corporation; 790; 756 SMS for cold applications.
 - b. GE Advanced Materials Silicones; SilPruf LM SCS2700.
 - c. Pecora Corporation; 890.
 - d. Sika Corporation, Construction Products Division; SikaSil-C990.
 - e. Tremco Incorporated; Spectrem 1.
- B. Sealant Type 2: Not used.
- C. Sealant Type 3: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Uses T and NT.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Pecora Corporation; 301 NS (VOC 50).
 - b. Tremco Incorporated; Spectrem 800 (VOC 1).

2.3 LATEX JOINT SEALANTS

- A. Sealant Type 4: Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BASF Building Systems; Sonolac (VOC 41).
 - b. Bostik, Inc.; Chem-Calk 600.
 - c. Pecora Corporation; AC-20 (VOC 31).

- d. Sherwin-Williams 950A
- e. Tremco Incorporated; Tremflex 834.

2.4 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.5 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

- 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
- 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
- 3. Remove laitance and form-release agents from concrete.
- 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 - a. Metal.
 - b. Glass.
 - c. Glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.
 - a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.6 JOINT-SEALANT SCHEDULE

- A. Exterior Isolation and Contraction Joints in Cast-in-place Concrete Slabs.
 - 1. Silicone Joint Sealant: Sealant Type 3.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- B. Under Exterior Door Thresholds.
 - 1. Silicone Joint Sealant: Sealant Type 1.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

- C. Exterior Joints for Which No Other Sealant Type is Indicated.
 - 1. Silicone Joint Sealant: Sealant Type 1.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- D. Interior Isolation and Contraction Joints in Cast-In-Place Concrete Slabs.
 - 1. Silicone Joint Sealant: Sealant Type 3.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- E. Concealed Interior Perimeter Joints of Exterior Openings.
 - 1. Silicone Joint Sealant: Sealant Type 1.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- F. Exposed Interior Perimeter Joints of Exterior Openings.
 - 1. Latex Joint Sealant: Sealant Type 4.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- G. Perimeter Joints Between Interior Wall Surfaces and Frames of Interior Doors and Windows.
 - 1. Latex Joint Sealant: Sealant Type 4.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.
- H. Interior Joints for Which No Other Sealant is Indicated.
 - 1. Latex Joint Sealant: Sealant Type 4.
 - 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 079200

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:
 - 1. Interior standard steel doors and frames.
- B. Related Requirements:
 - 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

- A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.
- B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.5 ACTION SUBMITTALS

- A. General: Submittals for Sections 081113, 081416 and 087100 shall be made concurrently.
- B. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.
- C. Shop Drawings: Include the following:
 - 1. Elevations of each door type.

- 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
- 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
- 4. Locations of reinforcement and preparations for hardware.
- 5. Details of each different wall opening condition.
- 6. Details of anchorages, joints, field splices, and connections.
- 7. Details of accessories.
- 8. Details of moldings, removable stops, and glazing.
- D. Samples for Initial Selection: For hollow-metal doors and frames with factory-applied color finishes.
- E. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For door inspector.
 - 1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, section 5.2.3.1.
 - 2. Egress Door Inspector: Submit documentation of compliance with NFPA 101, section 7.2.1.15.4.
 - 3. Submit copy of DHI Fire and Egress Door Assembly Inspector (FDAI) certificate.
- B. Product Test Reports: For each type of fire-rated hollow-metal door and frame assembly [fire-rated borrowed-lite assembly] [thermally rated door assemblies] for tests performed by a qualified testing agency indicating compliance with performance requirements.
- C. Field quality control reports.

1.7 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.8 QUALITY ASSURANCE

- A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of firerated door assemblies shall meet the qualifications set forth in NFPA 80, section 5.2.3.1 and the following:
 - 1. Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.
- B. Egress Door Inspector Qualifications: Inspector for field quality control inspections of egress door assemblies shall meet the qualifications set forth in NFPA 101, section 7.2.1.15.4 and the following:

1. Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
- C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Standard Steel Doors and Frames:
 - a. Ceco Door Products; an Assa Abloy Group company.
 - b. Curries Company.
 - c. J/R Metal Frames Manufacturing, Inc.
 - d. Steelcraft; a division of Ingersoll-Rand.
- B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Smoke- and Draft-Control Assemblies: Provide assemblies with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.
- B. Fire-Rated, Borrowed-Lite Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

C. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than [0.50 deg Btu/F x h x sq. ft.] [0.40 deg Btu/F x h x sq. ft.] [0.38 deg Btu/F x h x sq. ft.] < Insert U-factor> when tested according to ASTM C 518.

2.3 INTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
 - 1. Full hinge cut-outs for non-handed doors will not be acceptable.
- B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2; SDI A250.4, Level B..
 - 1. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches.
 - c. Face: Uncoated steel sheet, minimum thickness of 0.042 inch.
 - d. Edge Construction: Model 2, Seamless.
 - e. Edge Bevel: Bevel lock edge 1/8 inch in 2 inches.
 - f. Core: Manufacturer's standard.
 - g. Fire-Rated Core: Manufacturer's standard vertical steel stiffener or laminated mineral board core for fire-rateddoors.
 - 2. Frames:
 - a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 - b. Sidelite and Transom Frames: Fabricated from same thickness material as adjacent door frame.
 - c. Construction: Knocked down.
 - 3. Exposed Finish: Prime.

2.4 BORROWED LITES

- A. Fabricate of uncoated steel sheet, minimum thickness of 0.053 inch.
- B. Construction: Face welded.
- C. Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as metal as frames.
- D. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.

2.5 FRAME ANCHORS

A. Jamb Anchors:

- 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch thick, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
- 2. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
- 3. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.
- 4. Postinstalled Expansion Anchor: Minimum 3/8-inch-diameter bolts with expansion shields or inserts, with manufacturer's standard pipe spacer.
- B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.
- C. Material: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M; hot-dip galvanized according to ASTM A 153/A 153M, Class B.

2.6 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
- D. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- E. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smokedeveloped indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.
- F. Glazing: Comply with requirements in Section 088000 "Glazing."
- G. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.7 FABRICATION

- A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 - 1. Sidelite and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding.
 - 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 3. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- B. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware
 - 2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.
- C. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 - 1. Provide stops and moldings flush with face of door, and with square stops unless otherwise indicated.
 - 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
 - 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.
 - 4. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.
 - 5. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

2.8 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.
- B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
- C. Field apply bituminous coating to backs of frames that will be filled with grout or located in exterior walls.

3.2 INSTALLATION

- A. General: Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.
- B. Hollow-Metal Frames: Comply with SDI A250.11.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 - a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 - b. Install frames with removable stops located on secure side of opening.
 - 2. Fire-Rated Openings: Install frames according to NFPA 80.
 - 3. Floor Anchors: Secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
 - 4. Solidly pack mineral-fiber insulation inside frames.
 - 5. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.
 - **6.** In-Place Metal or Wood-Stud Partitions: Secure slip-on drywall frames in place according to manufacturer's written instructions.
 - 7. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.

- c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
- d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 - 1. Non-Fire-Rated Steel Doors: Comply with SDI A250.8.
 - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 - 3. Smoke-Control Doors: Install doors according to NFPA 105.
- D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.3 FIELD QUALITY CONTROL

- A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.
- B. Inspections:
 - 1. Fire-Rated Door Inspections: Inspect each fire-rated door according to NFPA 80, section 5.2
 - 2. Egress Door Inspections: Inspect each door equipped with panic hardware, each door equipped with fire exit hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements according to NFPA 101, section 7.2.1.15.
- C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
- E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80 and NFPA 101.

3.4 CLEANING AND TOUCHUP

- A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- B. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113

SECTION 081416 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Solid-core doors with wood-veneer faces.
- 2. Factory finishing flush wood doors.
- 3. Factory fitting flush wood doors to frames and factory machining for hardware.
- 4. Factory glazing of wood doors.

B. Related Requirements:

1. Section 088000 "Glazing" for glass view panels in flush wood doors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Door core materials and construction.
 - 2. Door edge construction
 - 3. Door face type and characteristics.
 - 4. Door trim for openings.
 - 5. Door frame construction.
 - 6. Factory-machining criteria.
 - 7. Factory- finishing specifications.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; and the following:
 - 1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
 - 2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
 - 3. Details of frame for each frame type, including dimensions and profile.
 - 4. Dimensions and locations of blocking for hardware attachment.
 - 5. Dimensions and locations of mortises and holes for hardware.
 - 6. Dimensions and locations of cutouts.
 - 7. Undercuts.

- 8. Requirements for veneer matching.
- 9. Doors to be factory finished and application requirements.
- 10. Fire-protection ratings for fire-rated doors.

C. Samples for Verification:

1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches (200 by 250 mm), for each material and finish.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For door inspector.
 - 1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, Section 5.2.3.1.
 - 2. Egress Door Inspector: Submit documentation of compliance with NFPA 101, Section 7.2.1.15.4.
 - 3. Submit copy of DHI's Fire and Egress Door Assembly Inspector (FDAI) certificate.
- B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Special warranties.
- B. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.6 QUALITY ASSURANCE

- A. Fire-Rated Door Inspector Qualifications: Inspector for field quality-control inspections of firerated door assemblies shall comply with qualifications set forth in NFPA 80, Section 5.2.3.1 and the following:
 - 1. DHI's Fire and Egress Door Assembly Inspector (FDAI) certification.
- B. Egress Door Inspector Qualifications: Inspector for field quality-control inspections of egress door assemblies shall comply with qualifications set forth in NFPA 101, Section 7.2.1.15.4 and the following:
 - 1. DHI's Fire and Egress Door Assembly Inspector (FDAI) certification.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Comply with requirements of referenced standard and manufacturer's written instructions.
- B. Package doors individually in plastic bags or cardboard cartons.

C. Mark each door on bottom rail with opening number used on Shop Drawings.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during remainder of construction period.

1.9 WARRANTY

- A. A. Special Warranty: Manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Warping (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section.
 - b. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.
 - 2. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.
 - 3. Warranty Period for Solid-Core Interior Doors: Life of installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flush Wood Doors:
 - a. Eggers Industries.
 - b. Graham Wood Doors; an Assa Abloy Group company.
 - c. Marshfield –Algoma.
 - d. VT Industries Inc.
- B. Source Limitations: Obtain flush wood doors from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Include all requirements as part of the door construction per Category "A" guidelines."

- 2. Cores: Provide core specified or mineral core as needed to provide fire-protection rating indicated.
- 3. Edge Construction: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed edges.
- 4. Pairs: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
- B. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control, based on testing according to UL 1784.

2.3 FLUSH WOOD DOORS, GENERAL

- A. Quality Standard: In addition to requirements specified, comply with WDMA I.S.1-A, "Architectural Wood Flush Doors."
 - 1. Contract Documents contain selections chosen from options in quality standard and additional requirements beyond those of quality standard. Comply with those selections and requirements in addition to quality standard.
- B. WDMA I.S.1-A Performance Grade: Extra Heavy Duty.
- C. Particleboard-Core Doors:
 - 1. Particleboard: ANSI A208.1, Grade LD-2.
 - 2. Blocking: Provide wood blocking in particleboard-core doors asneeded to eliminate through-bolting hardware.
- D. Structural-Composite-Lumber-Core Doors:
 - 1. Structural Composite Lumber: WDMA I.S.10.
 - a. Screw Withdrawal, Face: 700 lbf.
 - b. Screw Withdrawal, Edge: 400 lbf.
 - 2. Provide doors with structural-composite-lumber cores instead of particleboard cores for the following doors:
 - a. Doors indicated to receive exit devices.
 - b. Doors where oversized glass lites exceed more than 40 percent of the door surface area.
 - c. Doors where louvers exceed more than 40 percent of the door surface area.

E. Mineral-Core Doors:

- 1. Core: Noncombustible mineral product complying with requirements of referenced quality standard and testing and inspecting agency for fire-protection rating indicated.
- 2. Blocking: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated asneeded to eliminate through-bolting hardware.

- 3. Edge Construction: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - a. Screw-Holding Capability: 550 lbf per WDMA T.M.-10.

2.4 FIVE-PLY FLUSH WOOD VENEER-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Doors:

- 1. Performance Grade: WDMA I.S. 1A Extra Heavy Duty.
- 2. WDMA I.S. 1A Grade: Premium, with Grade A faces.
- 3. Faces: Single-ply wood veneer not less than 1/50 inch thick.
 - a. Species: Select white birch.
 - b. Cut: Rotary cut.
 - c. Match between Veneer Leaves: Book match.
 - d. Assembly of Veneer Leaves on Door Faces: Balance match.
 - e. Pair and Set Match: Provide for doors hung in same opening.
- 4. Exposed Vertical Edges: Same species as faces Architectural Woodwork Standards edge Type A.
 - a. Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed vertical edges.
 - b. Fire-Rated Pairs of Doors: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
 - c. Mineral-Core Doors: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - 1) Screw-Holding Capability: 550 lbf in accordance with WDMA T.M. 10.
- 5. Core for Non-Fire-Rated Doors: ANSI A208.1, Grade LD-2 particleboard.
 - a. Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 - b. Provide doors with WDMA I.S. 10 structural-composite-lumber cores instead of particleboard cores for doors scheduled for the following:
 - 1) Doors indicated to receive exit devices in Section 087100 "Door Hardware."
 - 2) Doors where oversized glass lites exceed more than 40 percent of the door surface area.
 - 3) Doors where louvers exceed more than 40 percent of the door surface area.
 - c. Screw Withdrawal, Face: 700 lbf.
 - d. Screw Withdrawal, Edge: 400 lbf.

- 6. Core for Fire-Rated Doors: As required to achieve fire-protection rating indicated on Drawings.
 - a. Blocking for Mineral-Core Doors: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated on Drawings as needed to eliminate through-bolting hardware.
- 7. Construction: Five plies, hot-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before veneering.

2.5 LIGHT FRAMES

- A. Wood Beads for Light Openings in Wood Doors: Provide manufacturer's standard wood beads unless otherwise indicated.
 - 1. Wood Species: Same species as door faces.
 - 2. Profile: Flush rectangular beads.
 - 3. At wood-core doors with 20-minute fire-protection ratings, provide wood beads and metal glazing clips approved for such use.
- B. Metal Frames for Light Openings in Fire-Rated Doors: Manufacturer's standard frame formed of 0.048-inch-thick, cold-rolled steel sheet; factory primed for paint finish; and approved for use in doors of fire-protection rating indicated.

2.6 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated.
 - 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 - 2. Comply with NFPA 80 requirements for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied.
 - 1. Locate hardware to comply with DHI-WDHS-3.
 - 2. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.
 - 3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
 - 4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.
- C. Openings: Factory cut and trim openings through doors.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated. Attach wood rectangular glazing beads flush with door face. Apply shims and sealant as required to set glazing.
 - 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

2.7 FACTORY FINISHING

- A. General: Comply with referenced quality standard for factory finishing. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 - 1. Finish faces, all four edges, edges of cutouts, and mortises. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.
- B. Factory finish doors.
- C. Transparent Finish:
 - 1. Grade: Premium.
 - 2. Finish: WDMA TR-4 conversion varnish or WDMA TR-6 catalyzed polyurethane.
 - 3. Staining: [As selected by Architect from manufacturer's full range] [None required].
 - 4. Effect: Open-grain finish.
 - 5. Sheen: Satin.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and installed door frames, with Installer present, before hanging doors.
 - 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 - 2. Reject doors with defects.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Hardware: For installation, see Section 087100 "Door Hardware."
- B. Installation Instructions: Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 - 1. Install fire-rated doors according to NFPA 80.
 - 2. Install smoke- and draft-control doors according to NFPA 105.
- C. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.
- D. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.3 FIELD QUALITY CONTROL

A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.

B. Inspections:

- 1. Provide inspection of installed Work through AWI's Quality Certification Program, certifying that wood doors and frames, including installation, comply with requirements of AWI/AWMCA/WI's "Architectural Woodwork Standards" for the specified grade.
- 2. Fire-Rated Door Inspections: Inspect each fire-rated door in accordance with NFPA 80, Section 5.2.
- 3. Egress Door Inspections: Inspect each door equipped with panic hardware, each door equipped with fire exit hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements in accordance with NFPA 101, Section 7.2.1.15.
- C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
- E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80 and NFPA 101.

3.4 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 081416

SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Exterior and interior storefront framing.
- 2. Storefront framing for punched openings.
- 3. Exterior and interior manual-swing entrance doors and door-frame units.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Inspect and discuss condition of substrate and other preparatory work performed by other trades.
 - 2. Review structural loading limitations.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review tie-in to air barrier system.
 - 5. Review use of Rivnuts for hardware.
 - 6. Review sill flashing details and components.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 - 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 - 2. Include full-size isometric details of each vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:
 - a. Joinery, including concealed welds.

- b. Anchorage.
- c. Expansion provisions.
- d. Glazing.
- e. Flashing and drainage.
- 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
- E. Fabrication Sample: Of each vertical-to-horizontal intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
 - 1. Joinery, including concealed welds.
 - 2. Anchorage.
 - 3. Expansion provisions.
 - 4. Glazing.
 - 5. Flashing and drainage.
- F. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.
- G. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

- A. Energy Performance Certificates: For aluminum-framed entrances and storefronts, accessories, and components, from manufacturer.
 - 1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed entrance and storefront.
- B. Product Test Reports: For aluminum-framed entrances and storefronts, for tests performed by manufacturer and witnessed by a qualified testing agency or a qualified testing agency.
- C. Quality-Control Program: Developed specifically for Project, including fabrication and installation, according to recommendations in ASTM C 1401. Include periodic quality-control reports.
- D. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed entrances and storefronts to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated and accredited by IAS or ILAC Mutual Recognition Arrangement as complying with ISO/IEC 17025.
- C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 - 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including, but not limited to, excessive deflection.
 - b. Noise or vibration created by wind and thermal and structural movements.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - d. Water penetration through fixed glazing and framing areas.
 - e. Failure of operating components.
 - 2. Warranty Period: Two years from date of Substantial Completion.
- B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.
- B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 - 2. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Noise or vibration created by wind and thermal and structural movements.
 - d. Loosening or weakening of fasteners, attachments, and other components.
 - e. Failure of operating units.

C. Structural Loads:

- 1. Wind Loads: 30 psf.
- D. Deflection of Framing Members: At design wind pressure, as follows:
 - 1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans up to 13 feet 6 inches and to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 - 2. Deflection Parallel to Glazing Plane: Limited to amount not exceeding that which reduces glazing bite to less than 75 percent of design dimension and that which reduces edge clearance between framing members and glazing or other fixed components to less than 1/8 inch.
 - a. Operable Units: Provide a minimum 1/16-inch clearance between framing members and operable units.
 - 3. Cantilever Deflection: Where framing members overhang an anchor point, as follows:
 - a. Perpendicular to Plane of Wall: No greater than 1/240 of clear span plus 1/4 inch for spans greater than 11 feet 8-1/4 inches or 1/175 times span, for spans less than 11 feet 8-1/4 inches.

- E. Structural: Test according to ASTM E 330 as follows:
 - 1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.
 - 2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
 - 3. Test Durations: As required by design wind velocity, but not less than 10 seconds.
- F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:
 - 1. Fixed Framing and Glass Area:
 - a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft..
 - 2. Entrance Doors:
 - a. Pair of Doors: Maximum air leakage of 1.0 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..
- G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:
 - 1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft..
- H. Water Penetration under Dynamic Pressure: Test according to AAMA 501.1 as follows:
 - 1. No evidence of water penetration through fixed glazing and framing areas when tested at dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft..
 - 2. Maximum Water Leakage: No uncontrolled water penetrating assemblies or water appearing on assemblies' normally exposed interior surfaces from sources other than condensation. Water leakage does not include water controlled by flashing and gutters, or water that is drained to exterior.
- I. Seismic Performance: Aluminum-framed entrances and storefronts shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
- J. Energy Performance: Certify and label energy performance according to NFRC as follows:
 - 1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than 0.36 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
 - 2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.40 as determined according to NFRC 200.
 - 3. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 56 as determined according to NFRC 500.
- K. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide indicated products by one of the following:
 - 1. Kawneer North America; an Alcoa company.
- B. Products:
 - 1. Exterior Aluminum-Framed Storefronts:
 - a. Kawneer: Trifab VG 451 T.
 - 2. Interior Aluminum-Framed Storefronts:
 - a. Kawneer: Trifab VG 400.
 - 3. Doors and Entrances:
 - a. Kawneer: 500 Heavy Wall Entrance.

2.3 STOREFRONT SYSTEMS

- A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Construction:
 - a. Exterior: Thermally broken
 - b. Interior: Nonthermal.
 - 2. Glazing System: Retained mechanically with gaskets on four sides.
 - 3. Glazing Plane: Front.
 - 4. Finish: High-performance organic finish.
 - 5. Fabrication Method: Field-fabricated stick system.
 - 6. Exterior Jambs and Head Framing: Provide manufacturer's standard extruded aluminum continuous thermal flat filler for use at jambs and head framing. This extrusion provides the necessary profile for sealing with the building air barrier system. Channel type jamb components will not be acceptable.
 - 7. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - 8. Steel Reinforcement: As required by manufacturer.
- B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.
- C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 ENTRANCE DOOR SYSTEMS

- A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.
 - 1. Door Construction: 2-inch overall thickness, with minimum 0.188-inch thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 - 2. Door Design: Wide stile; 5-inch nominal width.
 - 3. Glazing Stops and Gaskets: Square, snap-on, extruded-aluminum stops and preformed gaskets.
 - a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

- A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."
- B. Weather Stripping: Manufacturer's standard replaceable components.
 - 1. Compression Type: Made of ASTM D 2000, molded neoprene, or ASTM D 2287, molded PVC.
- C. Silencers: BHMA A156.16, Grade 1.
- D. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.

2.6 GLAZING

- A. Glazing: Comply with Section 088000 "Glazing."
- B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.
- C. Glazing Sealants: As recommended by manufacturer.
- D. Weatherseal Sealants: ASTM C 920 for Type S; Grade NS; Class 25; Uses NT, G, A, and O; chemically curing silicone formulation that is compatible with structural sealant and other system components with which it comes in contact; recommended by structural-sealant, weatherseal-sealant, and structural-sealant-glazed storefront manufacturers for this use.
 - 1. Color: Match structural sealant.

2.7 MATERIALS

A. Sheet and Plate: ASTM B 209.

- B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
- C. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
- D. Structural Profiles: ASTM B 308/B 308M.
- E. Steel Reinforcement:
 - 1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 - 2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 - 3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.
 - 4. Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

2.8 ACCESSORIES

- A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 - 2. Reinforce members as required to receive fastener threads.
 - 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system, fabricated from 300 series stainless steel.
- B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 - 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.
- C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
- D. Bituminous Paint: Cold-applied asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos, formulated for 30-mil thickness per coat.
- E. Subsills for Exterior Storefronts: Manufacturer's standard thermally broken extruded aluminum sill flashing, color to match framing.

2.9 FABRICATION

A. Form or extrude aluminum shapes before finishing.

- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Physical and thermal isolation of glazing from framing members.
 - 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 5. Provisions for field replacement of glazing from exterior.
 - 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
- E. Storefront Framing: Fabricate framing in profiles indicated for flush glazing (without projecting stops). Provide subframes and reinforcing of types indicated or, if not indicated, as required for a complete system. Factory assemble components to greatest extent possible. Disassemble components only as necessary for shipment and installation.
- F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 - 1. At exterior doors, provide compression weather stripping at fixed stops.
 - 2. At interior doors, provide silencers at stops to prevent metal-to-metal contact. Install three silencers on strike jamb of single-door frames and two silencers on head of frames for pairs of doors.
- G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
 - 1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
 - 2. At exterior doors, provide weather sweeps applied to door bottoms.
- H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
- I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.10 ALUMINUM FINISHES

A. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent FEVE resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: As selected by Architect from manufacturer's full range.

2.11 HARDWARE FINISHES

- A. Standard: BHMA A156.18, as indicated in door hardware sets.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- D. Provide the following finishes:

Weatherstripping
 Threshold
 Aluminum

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare surfaces that are in contact with structural sealant according to sealant manufacturer's written instructions to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.

3.3 INSTALLATION

A. General:

- 1. Comply with manufacturer's written instructions.
- 2. Do not install damaged components.
- 3. Fit joints to produce hairline joints free of burrs and distortion.
- 4. Rigidly secure nonmovement joints.
- 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
- 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:

- 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
- 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Install components plumb and true in alignment with established lines and grades.
- D. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.
- E. Install glazing as specified in Section 088000 "Glazing."
- F. Install weatherseal sealant according to Section 079200 "Joint Sealants" and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.
- G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 - 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 - 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.
- H. Install windows in accordance with manufacturer's recommendations.

3.4 ERECTION TOLERANCES

- A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:
 - 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 - 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 - 3. Alignment:
 - a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 - b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 - c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
 - 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

END OF SECTION 084113

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Mechanical door hardware for the following:
 - a. Swinging doors.

B. Related Sections:

- 1. Section 081113 "Hollow Metal Doors and Frames" for door silencers provided as part of hollow-metal frames.
- 2. Section 081416 "Flush Wood Doors" for integral intumescent seals provided as part of labeled fire-rated assemblies.
- 3. Section 084113 "Aluminum-Framed Entrances and Storefronts" for installation of entrance door hardware, except hardware specified in this section.

1.3 ACTION SUBMITTALS

- A. General: Submittals for Sections 081113, 081416 and 087100 shall be made concurrently.
- B. Product Data: For each type of product indicated. Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes.
- C. Samples for Initial Selection: For plastic protective trim units in each finish, color, and texture required for each type of trim unit indicated.
- D. Samples for Verification: For exposed door hardware of each type required, in each finish specified, prepared on Samples of size indicated below. Tag Samples with full description for coordination with the door hardware schedule. Submit Samples before, or concurrent with, submission of door hardware schedule.
 - 1. Sample Size: Full-size units or minimum 2-by-4-inch Samples for sheet and 4-inch long Samples for other products.
 - a. Full-size Samples will be returned to Contractor. Units that are acceptable and remain undamaged through submittal, review, and field comparison process may,

after final check of operation, be incorporated into the Work, within limitations of keying requirements.

E. Other Action Submittals:

- 1. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - a. Submittal Sequence: Submit door hardware schedule concurrent with submissions of Product Data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate the fabrication of other work that is critical in Project construction schedule.
 - b. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule." Double space entries, and number and date each page.
 - c. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 - d. Content: Include the following information:
 - 1) Identification number, location, hand, fire rating, size, and material of each door and frame.
 - 2) Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 - 3) Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 - 4) Description of electrified door hardware sequences of operation and interfaces with other building control systems.
 - 5) Fastenings and other pertinent information.
 - 6) Explanation of abbreviations, symbols, and codes contained in schedule.
 - 7) Mounting locations for door hardware.
 - 8) List of related door devices specified in other Sections for each door and frame.
- 2. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For electrified door hardware, from the manufacturer.
 - 1. Certify that door hardware approved for use on types and sizes of labeled fire-rated doors complies with listed fire-rated door assemblies.
- B. Product Test Reports: For compliance with accessibility requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for door hardware on doors located in accessible routes.

C. Warranty: Special warranty specified in this Section.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of door hardware to include in maintenance manuals. Include final hardware and keying schedule.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who has completed door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.
- B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as follows:
 - 1. For door hardware, an Architectural Hardware Consultant (AHC)
- C. Source Limitations: Obtain each type of door hardware from a single manufacturer.
 - 1. Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that perform electrical modifications and that are listed by a testing and inspecting agency acceptable to authorities having jurisdiction are acceptable.
- D. Keying Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination." In addition to Owner Contractor, and Architect, conference participants shall also include Installer's Architectural Hardware Consultant. Incorporate keying conference decisions into final keying schedule after reviewing door hardware keying system including, but not limited to, the following:
 - 1. Function of building, flow of traffic, purpose of each area, degree of security required, and plans for future expansion.
 - 2. Preliminary key system schematic diagram.
 - 3. Address for delivery of keys.
- E. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Inspect and discuss preparatory work performed by other trades.
 - 3. Review required testing, inspecting, and certifying procedures.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.

- B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
- C. Deliver keys to Owner by registered mail or overnight package service.

1.8 COORDINATION

- A. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- B. Security: Coordinate installation of door hardware and keying with Owner.
- C. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of doors and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty does not include the following:
 - a. Removal of components.
 - b. Reinstallation of components.
 - 3. Warranty Period: Three years from date of Substantial Completion, unless otherwise indicated.
 - a. Exit Devices: Two years from date of Substantial Completion.
 - b. Manual Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of door hardware from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Door Assemblies: Where fire-rated doors are indicated, provide door hardware complying with NFPA 80 that is listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
- B. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that complies with requirements of assemblies tested according to UL 1784 and installed in compliance with NFPA 105.
 - 1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. at the tested pressure differential of 0.3-inch wg of water.
- C. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Means of Egress Doors: Latches do not require more than 15 lbf to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- E. Accessibility Requirements: For door hardware on doors in an accessible route, comply with the DOJ's "2010 ADA Standards for Accessible Design".
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
 - 2. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.
 - b. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.
 - 3. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch high.
 - 4. Adjust door closer sweep periods so that, from an open position of 90 degrees, the door will take at least 5 seconds to move to a position of 12 degrees from the latch.
 - 5. Adjust spring hinges so that, from an open position of 70 degrees, the door will take at least 1.5 seconds to move to the closed position.

2.3 SCHEDULED DOOR HARDWARE

- A. General: Provide door hardware for each door to comply with requirements in this Section and door hardware sets indicated in Part 3 "Door Hardware Sets" Article.
 - 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturers' products.
 - 2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.
- B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Schedule" Article. Products are identified by using door hardware designations, as follows:

- 1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements.

 Manufacturers' names are abbreviated in Part 3 "Door Hardware Schedule" Article.
- 2. References to BHMA Designations: Provide products complying with these designations and requirements for description, quality, and function.

2.4 HINGES, GENERAL

- A. Quantity: Provide the following, unless otherwise indicated:
 - 1. Two Hinges: For doors with heights up to 60 inches.
 - 2. Three Hinges: For doors with heights 61 to 90 inches.
 - 3. Four Hinges: For doors with heights 91 to 120 inches.
 - 4. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.
- B. Template Requirements: Except for hinges and pivots to be installed entirely (both leaves) into wood doors and frames, provide only template-produced units.
- C. Hinge Weight: Unless otherwise indicated, provide the following:
 - 1. Entrance Doors: Heavy-weight hinges.
 - 2. Doors with Closers: Antifriction-bearing hinges.
 - 3. Interior Doors: Antifriction-bearing hinges.
- D. Hinge Base Metal: Unless otherwise indicated, provide the following:
 - 1. Exterior Hinges: Stainless steel, with stainless-steel pin.
 - 2. Interior Hinges: Steel, with steel pin.
 - 3. Hinges for Fire-Rated Assemblies: Steel, with steel pin.
- E. Hinge Options: Where indicated in door hardware sets or on Drawings:
 - 1. Nonremovable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for outswinging exterior doors and outswinging corridor doors with locks.
 - 2. Corners: Square.
- F. Fasteners: Comply with the following:
 - 1. Machine Screws: For metal doors and frames. Install into drilled and tapped holes.
 - 2. Wood Screws: For wood doors and frames.
 - 3. Threaded-to-the-Head Wood Screws: For fire-rated wood doors.
 - 4. Screws: Phillips flat-head; machine screws (drilled and tapped holes) for metal doors and wood screws for wood doors and frames. Finish screw heads to match surface of hinges.

2.5 HINGES

A. Butts and Hinges: BHMA A156.1.

- B. Template Hinge Dimensions: BHMA A156.7.
- C. Available Manufacturers:
 - 1. Hager Companies (HAG).

Manufacturer

2. McKinney Products Company; an ASSA ABLOY Group company (MCK).

Interior:

- 3. Stanley Commercial Hardware; Div. of The Stanley Works (STH).
- D. The following is a guide for hinge size and type required for this project.

1-3/4" Doors	Stanley	FBB179-4 1/2"
up to 3'-0" wide	Hager	BB1279-4 1/2"
	McKinney	TA-TB2714-4 1/2"
1-3/4" Doors	Stanley	FBB168-4 1/2"
over 3'-0" wide	Hager	BB1168-4 1/2"
	McKinney	T4A-T4B3786-4 1/2"

2.6 CONTINUOUS HINGES

- A. Continuous-Geared Hinges: Minimum 0.120-inch- thick, hinge leaves with minimum overall width of 4 inches; fabricated to full height of door and frame. Provide concealed, self-lubricating thrust bearings, 2.56 inches on center. Finish components after milling and drilling are complete. Fabricate hinges to template screw locations.
 - 1. Basis-of-Design Product: 780-111 HD by Roton or a comparable product of one of the following:
 - a. McKinney Products Company; an ASSA ABLOY Group company; MCK-14 HD.
 - b. Select Products Limited; SL-14 HD.

2.7 MECHANICAL LOCKS AND LATCHES, GENERAL

- A. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 - 1. Bored Locks: Minimum 1/2-inch latchbolt throw.
- B. Lock Backset: 2-3/4 inches, unless otherwise indicated.
- C. Lock Trim:
 - 1. Levers: Cast.
 - 2. Escutcheons (Roses): Forged.
 - 3. Dummy Trim: Match lever lock trim and escutcheons.
 - 4. Operating Device: Lever with escutcheons (roses).

- D. Strikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 - 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 - 2. Rabbet Front and Strike: Provide on locksets for rabbeted meeting stiles.

2.8 BORED LOCKS AND LATCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mechanical Locks and Latches:
 - a. Best Lock Corporation (BLC).
 - b. Corbin Russwin Architectural Hardware; Div. of Yale Security Inc. (CR).
 - c. Sargent Manufacturing Company; an Assa Abloy Group company (SGT).
 - d. Schlage Lock Company; an Ingersoll-Rand Company (SCH).
- B. Bored Locks: BHMA Grade 1; Series 4000.
 - 1. Provide one of the following manufacturers and designs:
 - a. Best: 9K Series
 - b. Corbin Russwin: CL3300 Series.
 - c. Sargent: 10 Lined. Schlage: ND Series
- C. Auxiliary Locks: BHMA Grade 1.
- D. Lock Trim: Comply with the following:
 - 1. Lockset Designs: Provide the lockset design designated below or, if sets are provided by another manufacturer, provide designs that match those designated:
 - a. Best: 15 C
 - b. Corbin Russwin: NZD
 - c. Sargent: LLd. Schlage: Rhodes
- E. Lock Functions: Lock functions as indicated in the hardware schedule shall be as follows:

FUNCTION	SARGENT	SCHLAGE	CORBIN/RUSWIN	BEST
(1) (utility)	04	80	57	D
(2) (office)	05	53	51	AB
(3) (passage)	15	10	10	N
(4) (classroom)	37	70	55	R
(5) (entrance)	16	60	72	C

(6) (privacy)	65	40	20	L
(7) (security clsrm)	38	60	72	C

2.9 EXIT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Sargent Manufacturing Company; an Assa Abloy Group company (SGT).
 - 2. Von Duprin; an Ingersoll-Rand Company (VD).
- B. Products: All exit devices for this project shall be one of the following:
 - 1. The 80 Series exit device by Sargent & Co.
 - 2. 98 Series by Von Duprin Division
- C. Exit Devices: BHMA A156.3, Grade 1.
- D. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)."
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
- E. Exit Devices for Means of Egress Doors: Comply with NFPA 101. Exit devices shall not require more than 15 lbf to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation.
- F. Panic Exit Devices: Listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.
- G. Fire Exit Devices: Devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252.
- H. Removable Mullions: BHMA A156.3.
- I. Removable Mullions: Steel, keyed removable mullions. Paint finish to match doors.
- J. Outside Trim: Pull with cylinder; material and finish to match locksets, unless otherwise indicated.
- K. Top and Bottom Strikes: Where vertical rod exit devices are indicated for interior doors, provide standard surface-mounted top strike and flush or recessed bottom strike.
- L. The following functions shall be required where specified:

FUNCTION	VON DUPRIN	SARGENT
A	CD98NL-OP	16-8804
L	9827L x LBR	PP/PR8713ET

2.10 LOCK CYLINDERS

- A. Lock Cylinders: Tumbler type, constructed from brass or bronze, stainless steel, or nickel silver.
 - 1. Manufacturer: Same manufacturer as for locking devices.
- B. Standard Lock Cylinders: BHMA A156.5; Grade 1; permanent cores that are face finished to match lockset.
- C. Construction Master Keys: Provide cylinders with feature that permits voiding of construction keys without cylinder removal. Provide 10 construction master keys.

2.11 KEYING

- A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, Appendix A. Incorporate decisions made in keying conference.
 - 1. Existing System:
 - a. Master key or grand master key locks to Owner's existing system.
 - b. Re-key Owner's existing master key system into new keying system.
 - 2. Keyed Alike: Key all cylinders to same change key.
- B. Keys: Nickel silver.
 - 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 - a. Notation: Information to be furnished by Owner.
 - 2. Quantity: In addition to one extra key blank for each lock, provide the following:
 - a. Cylinder Change Keys: Three.
 - b. Master Keys: Five.
 - c. Grand Master Keys: Five.
 - d. Great-Grand Master Keys: Five.

2.12 OPERATING TRIM

A. Operating Trim: BHMA A156.6; stainless steel, unless otherwise indicated.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Burns Manufacturing Incorporated.
 - b. Don-Jo Mfg., Inc.
 - c. Hager Companies.
 - d. IVES Hardware; an Ingersoll-Rand Company (IVS).
 - e. Rockwood Manufacturing Company; an ASSA ABLOY Group company.
 - f. Trimco.
- B. Door Pulls, 1 inch diameter.
 - 1. Size: ADA compliant, unless indicated otherwise, provide 10 inches center to center, with 3 1/2 inch projection and 2 1/2 inch clearance.
 - 2. Available Products:
 - a. Hager Companies, H4J.
 - b. IVES Hardware; an Ingersoll-Rand Company; 8103EZ.
- C. Push Bars, 1 inch diameter.

2.13 SURFACE CLOSERS

- A. Surface Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Surface-Mounted Closers:
 - a. LCN Closers; an Ingersoll-Rand Company (LCN).
 - b. SARGENT Manufacturing Company; an ASSA ABLOY Group company.
- C. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)."
 - 1. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.
 - b. Sliding or Folding Doors: 5 lbf applied parallel to door at latch.
 - c. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.

- D. Door Closers for Means of Egress Doors: Comply with NFPA 101. Door closers shall not require more than 30 lbf to set door in motion and not more than 15 lbf to open door to minimum required width.
- E. Size of Units: Unless otherwise indicated, comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.
 - 1. LCN:

a. Exterior: 4040 Seriesb. Interior: 4040 Series

2. Sargent:

a. Exterior: 281b. Interior: 281

2.14 MECHANICAL STOPS AND HOLDERS

- A. Stops and Bumpers: BHMA A156.16, Grade 1.
 - 1. Provide wall stops for doors unless floor or other type stops are scheduled or indicated. Do not mount floor stops where they will impede traffic. Where floor or wall stops are not appropriate, provide overhead holders.
 - 2. Provide matching finishes for hardware units at each door or opening, to the greatest extent possible, and except as otherwise indicated. Reduce differences in color and textures as much as commercially possible where the base metal or metal forming process is different for individual units of hardware exposed at the same door or opening. In general, match items to the manufacturer's standard finish for the latch and lock set (or push-pull units if no latch-lock sets) for color and texture.
- B. Wall Stops: Wall type bumpers with concealed type flange shall be used where ever possible.
 - 1. Available Products:
 - a. Ives 407 1/2
 - b. Door Controls 3211T
 - c. Rockwood 409
- C. Floor Stops: Where wall type bumpers cannot be used, provide dome type, floor mounted stops of the proper height as follows:
 - 1. Available Products:
 - a. Ives 436, 438
 - b. Door Controls 3310X, 3320X
 - c. Rockwood 440, 442

- D. Exterior doors striking masonry and doors specified to have door stops and holders, shall have cast bronze wall or floor type door stops with hook or staple type holders to selectively hold doors in open position. The following will be acceptable:
 - 1. Available Products:
 - a. Ives 445, 446
 - b. Door Controls 3237X, 3347X
 - c. Rockwood 473, 477
- E. Silencers for Metal Door Frames: BHMA A156.16, Grade 1; neoprene or rubber, minimum diameter 1/2 inch; fabricated for drilled-in application to frame.

2.15 DOOR GASKETING

- A. Smoke-Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke-control ratings indicated, based on testing according to UL 1784.
 - 1. Provide smoke-labeled gasketing on fire-rated doors and on smoke-labeled doors. Basis-of-Design Product, No. 5050 by National Guard Products or approved substitute.

2.16 METAL PROTECTIVE TRIM UNITS

- A. Metal Protective Trim Units: BHMA A156.6; fabricated from 0.050-inch-thick stainless steel; with manufacturer's standard machine or self-tapping screw fasteners.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Burns Manufacturing Incorporated.
 - b. Don-Jo Mfg., Inc.
 - c. Hager Companies (HAG).
 - d. IVES Hardware; an Ingersoll-Rand Company (IVS).
 - e. Rockwood Manufacturing Company; an ASSA ABLOY Group company.
- B. Size: 1-1/2 inches less than door width on push side and 1/2 inch less than door width on pull side, by height specified in door hardware sets.
- C. Fasteners: Manufacturer's standard machine or self-tapping screws.
- D. Fabricate protection plates as follows:
 - 1. Push Plates: 16" high by 8" wide.
 - 2. Kick Plates: 10" high by 1-1/2" less than door width for single doors and 1" less than door width for pairs of doors. Kick plates shall be applied to push side of all doors where noted.

2.17 MISCELLANEOUS DOOR HARDWARE

A. Drip Strip: Extruded aluminum shape, 1-1/2 inches high by 2-1/2 inches deep, designed to mounted on door frame above door. Provide National Guard No. 16A or approved substitute.

2.18 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rated labels and as otherwise approved by Architect.
 - 1. Manufacturer's identification is permitted on rim of lock cylinders only.
- B. Base Metals: Produce door hardware units of base metal indicated, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18.
- C. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.
 - 2. Fire-Rated Applications:
 - a. Wood or Machine Screws: For the following:
 - 1) Hinges mortised to doors or frames; use threaded-to-the-head wood screws for wood doors and frames.
 - 2) Strike plates to frames.
 - 3) Closers to doors and frames.
 - b. Steel Through Bolts: For the following unless door blocking is provided:
 - 1) Surface hinges to doors.
 - 2) Closers to doors and frames.
 - 3) Surface-mounted exit devices.
 - 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
 - 4. Fasteners for Wood Doors: Comply with requirements in DHI WDHS.2, "Recommended Fasteners for Wood Doors."
 - 5. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.19 FINISHES

- A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Provide the following finishes:

1.	Butts and Hinges:	26D
2.	Continuous Gear Hinges	28
3.	Locks & Lock Trim:	26D
4.	Exit Devices:	32D

5. Door Controls - Closers: Sprayed Alum. Finish

6. Door Stops 26D/32D
7. Threshold Aluminum
8. Kickplates 32D
9. Pulls 32D

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance.
- B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
- B. Wood Doors: Comply with DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights indicated on Drawings or to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing. Do not install surface-mounted items until finishes have been completed on substrates involved.
 - 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
 - 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.
- C. Hinges: Install types and in quantities indicated in door hardware schedule but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 - 1. Replace construction cores with permanent cores as indicated in keying schedule.
- E. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.

3.4 FIELD QUALITY CONTROL

- A. Independent Architectural Hardware Consultant: Owner will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.
 - 1. Independent Architectural Hardware Consultant will inspect door hardware and state in each report whether installed work complies with or deviates from requirements, including whether door hardware is properly installed and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

- 1. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.
- B. Occupancy Adjustment: Approximately three months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust each item of door hardware, including adjusting operating forces, as necessary to ensure function of doors, door hardware, and electrified door hardware.

3.6 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.
- C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.7 DOOR HARDWARE SETS

A. The hardware sets listed below indicate the items of hardware required for each opening. It is the bidder's responsibility to accurately furnish the proper quantities, items, sizes, weights and functions as required by the plans and specifications. If an opening has, through error, been omitted from the following hardware sets, it shall be the bidder's responsibility to supply hardware of equivalent quality and quantity, as that which is specified for a comparable opening.

DOUBLE ALUMINUM ENTRANCE DOOR

HW1

Doors 001.1, 011.3

Exit Devices (function A)
Pulls
Closers
Removable mullion
Drip Strip
Exterior Stops

Balance of hardware by aluminum door supplier.

ALUMINUM VESTIBULE DOORS

HW2

Doors 022.1, 022.2

Push/Pulls

Closer with drop plate

Floor Stop

Balance of hardware by aluminum door supplier.

HM VESTIBULE

HW3

Doors 200.1, 200.2

Hinges

Push Plate

Pull

Closer

Kick Plate

Wall Stop

Smoke gasketing

DOUBLE FIRE RATED CORRIDOR OR ASSEMBLY EXIT

HW4

Doors 011.2, 012.2

Hinges

Closers

Exit Devices (function L)

Kickplates

Smoke gasketing

CORRIDOR CLASSROOMS (with security locksets)

HW5

Doors 100.1, 200.3, 200.4, 200.5, 200.6, 201.2, 250B1, 250B.2, 250.C1, 250C.2,

Hinges

Locksets (security classroom function 5)

Door Stop

Smoke gasketing

DOUBLE ASSEMBLY EXIT - NOT RATED

HW₆

Doors 223

Hinges

Closers

Exit Devices (function L)

Kickplates Wall Stops Smoke gasketing

END OF SECTION 087100

SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

- 1. Glass for windows, doors, interior borrowed lites, storefront framing and glazed curtain walls.
- 2. Glazing sealants and accessories.

1.3 DEFINITIONS

- A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
- B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
- C. IBC: International Building Code.
- D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Glass Samples: For each type of the following products; 12 inches square.
 - 1. Insulating glass.
 - 2. Security glass.
 - 3. Fire resistive glass.

- C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For glass.
- B. Product Test Reports: For insulating glass, for tests performed by a qualified testing agency.
- C. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.
- B. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
- B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.10 WARRANTY

A. Manufacturer's Special Warranty for Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass

breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

- 1. Warranty Period: Five years from date of Substantial Completion.
- B. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design glazing.
- C. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E 1300.
 - 1. Design Wind Pressures: As indicated on Structural Drawings.
 - 2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.
 - 3. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.
- D. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.
- E. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 - 1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
 - 2. For laminated-glass lites, properties are based on products of construction indicated.
 - 3. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.

- 4. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
- 5. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
- 6. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS, GENERAL

- A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. GANA Publications: "Laminated Glazing Reference Manual" and "Glazing Manual."
 - 2. IGMA Publication for Insulating Glass: SIGMA TM-3000, "North American Glazing Guidelines for Sealed Insulating Glass Units for Commercial and Residential Use."
- B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
- C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IgCC.
- D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.
 - 1. Minimum Glass Thickness for Exterior Lites: 6 mm.
 - 2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.
- E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.3 GLASS PRODUCTS

- A. Clear Annealed Float Glass: ASTM C 1036, Type I, Class 1 (clear), Quality-Q3.
- B. Fully Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 - 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
- C. Heat-Strengthened Float Glass: ASTM C 1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

2.4 LAMINATED GLASS

- A. Laminated Glass: ASTM C 1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 - 1. Construction: Laminate glass with polyvinyl butyral interlayer to comply with interlayer manufacturer's written instructions.
 - 2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
 - 3. Interlayer Color: Clear unless otherwise indicated.

2.5 INSULATING GLASS

- A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190.
 - 1. Sealing System: Dual seal, with silicone primary seal and butyl secondary seal.
 - 2. Spacer: Aluminum with mill or clear anodic finish.
 - 3. Desiccant: Molecular sieve or silica gel, or a blend of both.

2.6 FIRE-PROTECTION-RATED GLAZING

- A. Fire-Protection-Rated Glazing, General: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 252 for door assemblies and NFPA 257 for window assemblies.
- B. Laminated Ceramic Glazing (Type 1): Laminated glass made from 2 plies of clear, ceramic flat glass; 5/16-inch total nominal thickness; complying with testing requirements in 16 CFR 1201 for Category II materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Nippon Electric Glass Co., Ltd. (distributed by Technical Glass Products); FireLite Plus.
 - b. Schott North America, Inc.; Laminated Pyran Platinum L.
 - c. Vetrotech Saint-Gobain; SGG Keralite FR-L.
 - 2. Fire-Protection Rating: 20 minutes.
- C. Laminated Glass with Intumescent Interlayers (Type 2): Laminated glass made from multiple plies of uncoated, clear float glass; with intumescent interlayers; complying with testing requirements in 16 CFR 1201 for Category II materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. InterEdge, Inc., a subsidiary of AFG Industries, Inc.; Pyrobel.
- b. Pilkington Group Limited (distributed by Technical Glass Products); PyroStop.
- c. Vetrotech Saint-Gobain: SGG Contraflam N2.
- 2. Fire-Protection Rating: 45 minutes, 60 minutes and 90 minutes.

2.7 SECURITY GLAZING

- A. Security Laminated Glass: Laminated glass product consisting of outer layers of glass with a custom security strengthened substrate core.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. SG4TM by School Guard Glass (SGG) 5 Hoosac Street, Adams, ME 01220.
 - 2. Compliance:
 - a. ASTM C1036 Standard Specification-Flat Glass
 - b. ASTM C1172 Standard Specification for Laminated Architectural Flat Glass
 - c. ANSI Z97.1 Safety Materials Used in Buildings
 - d. CPSC 6 CFR 1201
 - 3. Ratings: UL 972; 5-aa1 rated for 6 minutes.
 - 4. Thickness: [1/4 inch.] [5/16 inch.] [3/8 inch.]
- B. Security Laminated Insulating Glass: Hermetically sealed make up consisting of SG4TM on the interior lite and [tempered] or [laminated] glass on the exterior lite.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. SG4TM IGU by School Guard Glass (SGG) 5 Hoosac Street, Adams, ME 01220.
 - 2. Construction: SG4TM on interior lite, [tempered] [laminated] glass on exterior lite
 - 3. Compliance:
 - a. ASTM 1048 Standard Specification-Heat Strengthened & Fully Tempered Flat Glass
 - b. ASTM C1036 Standard Specification-Flat Glass
 - c. ASTM C1172 Standard Specification for Laminated Architectural Flat Glass
 - d. ANSI Z97.1 Safety Materials Used in Buildings
 - e. CPSC 6 CFR 1201
 - 4. Ratings:
 - a. 5-aa1 rated for 6 minutes.
 - b. BR Level 2 low spall in certain configurations.
 - c. F1233 Class 1.
 - d. UL 972;
 - 5. Overall Unit Thickness: 1 inch.

2.8 GLAZING SEALANTS

A. General:

- 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
- 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
- 3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.
- B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Corning Corporation; 790.
 - b. GE Advanced Materials Silicones; SilPruf LM SCS2700.
 - c. May National Associates, Inc.; Bondaflex Sil 290.
 - d. Pecora Corporation; 890.
 - e. Sika Corporation, Construction Products Division; SikaSil-C990.
 - f. Tremco Incorporated; Spectrem 1.

2.9 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 - 1. AAMA 804.3 tape, where indicated.
 - 2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 - 3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 - 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 - 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.10 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
- D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
- E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.11 FABRICATION OF GLAZING UNITS

- A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 - 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 - a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep systems.
 - 3. Minimum required face and edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
- B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.
- C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
- D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- F. Provide spacers for glass lites where length plus width is larger than 50 inches.
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
- G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.
- H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
- I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.
- J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
- C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
- E. Do not remove release paper from tape until right before each glazing unit is installed.
- F. Apply heel bead of elastomeric sealant.
- G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.
- H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

- A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
- B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
- C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.
- D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION

- A. Immediately after installation remove nonpermanent labels and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
 - 1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.
- C. Remove and replace glass that is damaged during construction period.
- D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.7 MONOLITHIC GLASS SCHEDULE

- A. Tempered Glass: Clear fully tempered float glass.
 - 1. Minimum Thickness: 6 mm.
 - 2. Safety glazing required.
 - 3. Application: All interior glass, unless noted otherwise.

3.8 INSULATING GLASS SCHEDULE

- A. Insulated Glass: Low-E-coated, clear insulating glass.
 - 1. Basis-of-Design Product: PPG Solarban 70XL.
 - 2. Overall Unit Thickness: 1 inch.
 - 3. Minimum Thickness of Each Glass Lite: 6 mm.
 - 4. Outdoor Lite: Annealed float glass.
 - a. Fully tempered where required by code.
 - 5. Interspace Content: Argon.
 - 6. Indoor Lite: Annealed float glass.
 - a. Fully tempered where required by code.
 - 7. Low-E Coating: Pyrolytic or sputtered on second and third surface.
 - 8. Winter Nighttime U-Factor: 0.28 maximum.
 - 9. Summer Daytime U-Factor: 0.26 maximum.
 - 10. Visible Light Transmittance: 64 percent minimum.

- 11. Solar Heat Gain Coefficient: 0.27 maximum.
- 12. Safety glazing where required.
- 13. Application: Exterior storefronts, entrances and curtain wall systems, unless noted otherwise.

3.9 SECURITY GLASS

- A. Security Laminated Glass: Clear laminated security glass.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. SG4TM by School Guard Glass (SGG) 5 Hoosac Street, Adams, ME 01220.
 - 2. Thickness: 1/4 inch.
 - 3. Application: Where indicated.
- B. Security Laminated Insulating Glass: Clear insulating laminated security glass.
 - 1. Basis-of-Design Product: SG4TM IGU.
 - 2. Overall Unit Thickness: 1 inch.
 - 3. Coating Type: Pyrolytic.
 - 4. Coating Location: Second and third surfaces.
 - 5. Minimum Thickness of Outdoor Lite: 1/4 inch.
 - 6. Outdoor Lite: Fully tempered glass.
 - 7. Interspace Content: Argon.
 - 8. Indoor Lite: Security Laminated Glass SG4.
 - a. Minimum Thickness of Each Glass Ply: 1/4 inch.
 - 9. Application: Where indicated.

3.10 FIRE-PROTECTION-RATED GLAZING TYPES

- A. Fire Rated Glass, Type 1: 45-minute fire-rated glazing; laminated ceramic glazing.
 - 1. Provide safety glazing labeling.
- B. Fire Rated Glass, Type 2: 60-minute and 90-minute fire-rated glazing; laminated glass with intumescent interlayers.
 - 1. Provide safety glazing labeling.

END OF SECTION 088000

SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Non-load-bearing steel framing systems for interior partitions.
- 2. Suspension systems for interior ceilings and soffits.

B. Related Requirements:

1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; roof rafters and ceiling joists; and roof trusses.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Studs and Runners: Provide documentation that framing members' certification is according to SIFA's "Code Compliance Certification Program for Cold-Formed Steel Structural and Non-Structural Framing Members."

1.4 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For embossed steel studs and runners firestop tracks, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 FRAMING SYSTEMS

- A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dietrich Metal Framing; a Worthington Industries Company.
 - b. EB Metal, U.S.
 - c. MarinoWare; a division of Ware Industries.
 - d. Super Stud Building Products, Inc.
 - e. The Steel Network, Inc.
 - 2. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 - 3. Protective Coating: ASTM A 653/A 653M, G40, hot-dip galvanized unless otherwise indicated.
- B. Studs and Tracks: ASTM C 645. Use either, steel studs and tracks or embossed steel studs and tracks.
 - 1. Steel Studs and Tracks:
 - a. Minimum Base-Metal Thickness: 0.0179 inch (18 mils) for furring and framing for soffits, 0.0269 inch (27 mils) for wall framing and 0.0296 inch (30 mils) for fire fire-rated wall framing.
 - b. Depth: As indicated on Drawings.
 - 2. Embossed Steel Studs and Tracks: Roll-formed and embossed with surface deformations to stiffen the framing members so that they are structurally equivalent to conventional ASTM C 645 steel studs and tracks.
 - a. Minimum Base-Metal Thickness: 0.0147 inch for equivalent to 18 mil and 0.0190 inch for equivalent to 27 mil.
 - b. Depth: As indicated on Drawings.
- C. Slip-Type Head Joints: Where indicated, provide one of the following:
 - 1. Single Long-Leg Runner System: ASTM C 645 top runner with 2-inch-deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top runner and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.
 - 2. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch-deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.

- 3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Dietrich Metal Framing; SLP-TRK Slotted Deflection Track.
 - 2) MBA Building Supplies; FlatSteel Deflection Track or Slotted Deflecto Track.
 - 3) Steel Network Inc. (The); VertiClip SLD or VertiTrack VTD Series.
 - 4) Superior Metal Trim; Superior Flex Track System (SFT).
 - 5) Telling Industries; Vertical Slip Track or Vertical Slip Track II.
- D. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 - 1. Available Product: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire Trak Corp.; Fire Trak.
- E. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 - 1. Minimum Base-Metal Thickness: 0.0179 inch.
 - 2. Depth: As indicated on Drawings.

2.3 SUSPENSION SYSTEMS

- A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch-diameter wire, or double strand of 0.048-inch-diameter wire.
- B. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.16 inch in diameter.
- C. Flat Hangers: Steel sheet, 1 by 3/16 inch by length indicated.
- D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.0538 inch and minimum 1/2-inch-wide flanges.
 - 1. Depth: 1-1/2 inches.
- E. Furring Channels (Furring Members):
 - 1. Steel Studs and Runners: ASTM C 645.
 - a. Minimum Base-Metal Thickness: 0.0179 inch (18 mils).
 - b. Depth: As indicated on Drawings.
 - 2. Hat-Shaped, Rigid Furring Channels: ASTM C 645, 7/8 inch deep.
 - a. Minimum Base-Metal Thickness: 0.0179 inch.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
- B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
- C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
- D. Install bracing at terminations in assemblies.
- E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

- A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Single-Layer Application: 16 inches o.c. unless otherwise indicated.
- B. Install studs so flanges within framing system point in same direction.

- C. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two 0.0296 inch (30 mils) studs at each jamb, unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 - c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 - 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 - a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
 - 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.
- D. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLING SUSPENSION SYSTEMS

- A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Hangers: 48 inches o.c.
 - 2. Carrying Channels: 48 inches o.c.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.
- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.

- a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
- 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
- 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
- 4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
- 5. Do not attach hangers to steel roof deck.
- 6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
- 7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
- 8. Do not connect or suspend steel framing from ducts, pipes, or conduit.
- D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.
- E. Seismic Bracing: Sway-brace suspension systems with hangers used for support.
- F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.
- G. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 092216

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for gypsum sheathing for exterior walls.
 - 2. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Drawings: Submit drawings indicating locations of control joints.
- C. Samples: For the following products:
 - 1. Trim Accessories: Full-size Sample in 12-inch-long length for each trim accessory indicated.

1.4 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

- C. Do not install panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
- B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Gypsum.
 - 2. CertainTeed Corp.
 - 3. Georgia-Pacific Gypsum LLC.
 - 4. Lafarge North America Inc.
 - 5. National Gypsum Company.
 - 6. PABCO Gypsum.
 - 7. Temple-Inland.
 - 8. USG Corporation.
- B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 - 1. Thickness: 5/8 inch.
 - 2. Long Edges: Tapered.

2.4 SPECIALTY GYPSUM BOARD

A. Glass-Mat Interior Gypsum Board (GMGB): ASTM C 1658/C 1658M. With fiberglass mat laminated to both sides. Specifically designed for interior use.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Georgia-Pacific Building Products; DensArmor Plus Fireguard.
 - b. National Gypsum Company; Gold Bond® Brand eXP Fire-Shield Interior Extreme Gypsum Panel.
- 2. Core: 5/8 inch, Type X.
- 3. Long Edges: Tapered.
- 4. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TILE BACKING PANELS

- A. Glass-Mat, Water-Resistant Backing Board: ASTM C 1178/C 1178M, with manufacturer's standard edges.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation: Diamondback® GlasRoc Tile Backer.
 - b. Georgia-Pacific Building Products; DensShield Tile Backer.
 - c. National Gypsum Company.
 - 2. Core: 5/8 inch, Type X.
 - 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.6 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material:
 - a. Galvanized or aluminum-coated steel sheet or rolled zinc.
 - b. Trim-Tex, Super Seal Tear AwayTM L Bead where abutting exterior metal doors and windows.
 - 2. Shapes:
 - a. Cornerbead.
 - b. Bullnose bead.
 - c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - d. Expansion (control) joint.

2.7 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475/C 475M.
- B. Joint Tape:

- 1. Interior Gypsum Board: Paper.
- 2. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping or drying-type, all-purpose compound.
 - a. Use setting-type taping with mold-resistant gypsum wallboard.
 - b. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping or drying-type, all-purpose compound.
 - 4. Finish Coat: For third coat, use drying-type, all-purpose compound.
 - 5. Skim Coat: Not required.
- D. Joint Compound for Tile Backing Panels:
 - 1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.

2.8 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
- B. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
- C. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Roxul Inc.; Roxul AFB.
 - b. USG Corporation; ThermaFiber SAFB.
- D. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Pecora Corporation; AC-20 FTR or AIS-919.
- b. USG Corporation; SHEETROCK Acoustical Sealant.
- E. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."
- F. Fire-Resistive Joint Systems: As specified in Division 07 Section "Fire-Resistive Joint Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

- A. Comply with ASTM C 840.
- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.
- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- E. Form control and expansion joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch-wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.
- I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.
- J. Fire-Resistance-Rated Gypsum Board Assemblies: Provide fire-resistive joint system at the top of fire-resistance-rated gypsum board assemblies. Provide firestop system around any structural penetration of wall assembly.
- K. Smoke-Rated Gypsum Board Assemblies: Provide a tight, taped joint at the top of smoke-rated assemblies and around any penetrations to assemblies at both side of the assembly. The use of acoustical sealant will be acceptable to fill gaps up to 3/8 inch wide.
- L. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

- A. Install interior gypsum board in the following locations:
 - 1. Type X: Vertical and horizontal surfaces unless otherwise indicated.
 - 2. Mold and Moisture-Resistant Type: As indicated on Drawings.
- B. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 - 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

3.4 APPLYING TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Panels: Comply with manufacturer's written installation instructions and install at locations indicated to receive tile. Install with 1/4-inch gap where panels abut other construction or penetrations.

B. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.5 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints at locations indicated on approved Shop Drawings according to ASTM C 840 and in specific locations approved by Architect for visual effect.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners unless otherwise indicated.
 - 2. Bullnose Bead: Use where indicated.
 - 3. LC-Bead: Use at exposed panel edges.

3.6 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- D. Gypsum Board Finish Levels: Finish interior panels to levels indicated below and according to ASTM C 840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 2: Panels that are substrate for tile.
 - 3. Level 3: Where indicated on Drawings.
 - 4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 - 5. Level 5: Not required.
- E. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

3.7 FIELD QUALITY CONTROL

- A. Above-Ceiling Observation: Before Contractor installs gypsum board ceilings, conduct an above-ceiling observation and report deficiencies in the Work observed. Do not proceed with installation of gypsum board to ceiling support framing until deficiencies have been corrected.
 - 1. Complete the following in areas to receive gypsum board ceilings:
 - a. Installation, insulation, and leak and pressure testing of water piping systems.

- b. Installation of air-duct systems.
- c. Installation of air devices.
- d. Installation of mechanical system control-air tubing.
- e. Installation of ceiling support framing.
- f. Installation of Penetration Firestopping and Joint Firestopping.

3.8 PROTECTION

- A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.
- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 092900

SECTION 096513 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Thermoset-rubber base.
- 2. Thermoplastic-rubber base.
- 3. Vinyl base.
- 4. Rubber stair accessories.
- 5. Vinyl stair accessories.
- 6. Rubber molding accessories.
- 7. Vinyl molding accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
 - 1. < Double click to insert sustainable design text for adhesives. >
 - 2. < Double click to insert sustainable design text for sealants.>

 - 4. < Double click to insert sustainable design text for environmental product declarations.>
- C. Samples: For each exposed product and for each color and texture specified, not less than 12 inches long.
- D. Samples for Initial Selection: For each type of product indicated.
- E. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches long.
- F. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.6 FIELD CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
- C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. < Double click to insert sustainable design text for floor finishes.>

2.2 THERMOSET-RUBBER BASE

- A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following]:
 - 1. Armstrong Flooring.
 - 2. Burke Mercer Flooring Products, Division of Burke Industries Inc.
 - 3. Flexco.
 - 4. Johnsonite.
 - 5. Roppe Corporation, USA.

- B. Product Standard: ASTM F 1861, Type TS (rubber, vulcanized thermoset), Group I (solid, homogeneous).
 - 1. Style and Location:
 - a. Style A, Straight: Provide in areas with carpet.
 - b. Style B, Cove: Provide in areas with resilient floor coverings.
 - c. Style C, Butt to: [**Provide in areas indicated**].
- C. Thickness: 0.125 inch.
- D. Height: [2-1/2 inches] [4 inches] [6 inches] [As indicated on Drawings].
- E. Lengths: [Cut lengths 48 inches long] Coils in manufacturer's standard length.
- F. Outside Corners: Job formed or preformed.
- G. Inside Corners: Job formed or preformed.
- H. Colors: As selected by Architect from full range of industry colors.

2.3 THERMOPLASTIC-RUBBER BASE

- A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following]:
 - 1. Armstrong World Industries, Inc.
 - 2. Burke Mercer Flooring Products, Division of Burke Industries Inc.
 - 3. Flexco
 - 4. Johnsonite; A Tarkett Company.
 - 5. Nora Systems, Inc.
 - 6. Roppe Corporation, USA.
- B. Product Standard: ASTM F 1861, Type TP (rubber, thermoplastic).
 - 1. Group: I (solid, homogeneous).
 - 2. Style and Location:
 - a. Style A, Straight: Provide in areas with carpet.
 - b. Style B, Cove: Provide in areas with resilient floor coverings.
 - c. Style C, Butt to: [**Provide in areas indicated**].
 - d. Style D, Sculptured: [**Provide in areas indicated**].
 - 1) Profile: [As indicated].
- C. Thickness: 0.125 inch.
- D. Height: [2-1/2 inches] [4 inches] [6 inches] [As indicated on Drawings].
- E. Lengths: [Cut lengths 48 inches long] Coils in manufacturer's standard length.

- F. Outside Corners: Job formed or preformed.
- G. Inside Corners: Job formed or preformed.
- H. Colors: As selected by Architect from full range of industry colors.

2.4 VINYL BASE < Insert drawing designation>

- A. < Double click here to find, evaluate, and insert list of manufacturers and products.>
- B. Product Standard: ASTM F 1861, Type TV (vinyl, thermoplastic).
 - 1. Group: I (solid, homogeneous) or II (layered).
 - 2. Style and Location:
 - a. Style A, Straight: Provide in areas with carpet.
 - b. Style B, Cove: Provide in areas with resilient floor coverings.
- C. Minimum Thickness: 0.125 inch [0.080 inch].
- D. Height: [2-1/2 inches] [4 inches] [6 inches] [As indicated on Drawings].
- E. Lengths: Coils in manufacturer's standard length.
- F. Outside Corners: Job formed or preformed.
- G. Inside Corners: Job formed or preformed.
- H. Colors: As selected by Architect from full range of industry colors.

2.5 RUBBER STAIR ACCESSORIES

- A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Johnsonite: VIRTR-RD
 - 2. Roppe: No. 96 Raised Circular Vantage with Relief Cut and nosing strip.
- C. Stair Treads: ASTM F 2169.
 - 1. Type: TS (rubber, vulcanized thermoset).
 - 2. Class: 2 (pattern; embossed, grooved, or ribbed).
 - 3. Group: 2 (with contrasting color for the visually impaired).
 - 4. Nosing Style: Square, adjustable to cover angles between 60 and 90 degrees.
 - 5. Nosing Height: 1-1/2 inches.

- 6. Thickness: 1/4 inch and tapered to back edge.
- 7. Size: Lengths and depths to fit each stair tread in one piece or, for treads exceeding maximum lengths manufactured, in equal-length units.
- D. Integral Risers: Smooth, flat; in height that fully covers substrate.
- E. Separate Risers: Smooth, flat; in height that fully covers substrate; produced by same manufacturer as treads and recommended by manufacturer for installation with treads.
 - 1. Style: [Coved toe, 7 inches high by length matching treads] [Toeless, by length matching treads].
 - 2. Thickness: [0.125 inch] [Manufacturer's standard] <Insert thickness>.
- F. Stringers: Height and length after cutting to fit risers and treads and to cover stair stringers, produced by same manufacturer as treads, and recommended by manufacturer for installation with treads.
 - 1. Thickness: [0.125 inch] [0.080 inch] [Manufacturer's standard] < Insert thickness>.
- G. Landing Tile: Matching treads; produced by same manufacturer as treads and recommended by manufacturer for installation with treads.
- H. Riser and Tread Fillers: Provide Johnsonite Subfloor Leveling System components to fill the riser space below the existing nosing to comply with details. Also use Subfloor Leveling System to level the top tread to surrounding floor surface.
- I. Colors and Patterns: As selected by Architect from full range of industry colors.

2.6 VINYL MOLDING ACCESSORY

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong World Industries, Inc.
 - 2. Burke Mercer Flooring Products, Division of Burke Industries Inc.
 - 3. Flexco.
 - 4. Johnsonite; A Tarkett Company.
 - 5. Musson Rubber Company.
 - 6. Roppe Corporation, USA.
- B. Profile and Dimensions:
 - 1. Transition Strip between VCT and Carpet/Ceramic Tile: CE-XX-A by Johnsonite or approved substitute.
 - 2. Transition Strip between VCT and Carpet: CE-XX-A by Johnsonite or approved substitute.
 - 3. Transition Strip between Sheet Flooring and VCT: CD-XX-C by Johnsonite or approved substitute.
 - 4. Reducer Strip between Concrete and VCT: RRS-XX-C by Johnsonite or approved substitute.

- 5. Reducer Strip between Concrete and Carpet: EG-XX-L by Johnsonite or approved substitute.
- 6. Reducer Strip between Quarry Tile and VCT: CTA-XX-P by Johnsonite or approved substitute.
- 7. Cove Cap for Sheet Flooring: SCC-XX-B by Johnsonite or approved substitute.
- 8. Stair Nosing: Stair nosing to VCT: RCN 58B by Johnsonite or approved substitute.
- C. [VCT Control Joints: Provide Schluter Schiene A30 joint where control joint is indicated for VCT.]
- D. Colors and Patterns: As selected by Architect from full range of industry colors.

2.7 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.
 - 1. < Double click to insert sustainable design text for VOC content for adhesives.>
- C. Stair-Tread Nose Filler: Two-part epoxy compound recommended by resilient stair-tread manufacturer to fill nosing substrates that do not conform to tread contours.
 - 1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Rubber Floor Adhesives: 60 g/L.
- D. Epoxy Adhesives: Two-part epoxy compound recommended by resilient tread manufacturer to adhere rubber treads and risers to substrates.
 - 1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Rubber Floor Adhesives: 60 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
- B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- C. Do not install resilient products until materials are the same temperature as space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.
- D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient base.
- B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
- C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
- D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
- E. Do not stretch resilient base during installation.
- F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.
- G. Preformed Corners: Install preformed corners before installing straight pieces.
- H. Job-Formed Corners:
 - 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 - a. Form without producing discoloration (whitening) at bends.
 - 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.

- a. Miter or cope corners to minimize open joints.
- 3. At outside corners or bullnose CMU corners with less than 6 inches of length, provide contact or epoxy cement to hold base tight to wall.

3.4 RESILIENT ACCESSORY INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient accessories.
- B. Resilient Stair Accessories:
 - 1. Use stair-tread-nose filler to fill nosing substrates that do not conform to tread contours.
 - 2. Tightly adhere to substrates throughout length of each piece.
 - 3. For treads installed as separate, equal-length units, install to produce a flush joint between units.
- C. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.
- B. Perform the following operations immediately after completing resilient-product installation:
 - 1. Remove adhesive and other blemishes from surfaces.
 - 2. Sweep and vacuum horizontal surfaces thoroughly.
 - 3. Damp-mop horizontal surfaces to remove marks and soil.
- C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 096513

SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on the following interior substrates:
 - 1. Steel.
 - 2. Concrete masonry units.
 - 3. Gypsum board.

B. Related Requirements:

- 1. Section 051200 "Structural Steel Framing" for shop priming structural steel.
- 2. Section 055000 "Metal Fabrications" for shop priming metal fabrications.
- 3. Section 055113 "Metal Pan Stairs" for shop priming metal pan stairs.

1.3 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
- E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
- F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
- G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Indicate VOC content.
- B. Samples for Initial Selection: For each type of topcoat product.
- C. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- D. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Coating Maintenance Manual: Upon conclusion of the project, the Contractor or paint manufacturer/supplier shall furnish a coating maintenance manual, such as Sherwin-Williams "Custodian Project Color and Product Information" report or equal. Manual shall include an Area Summary with finish schedule, Area Detail designating where each product/color/finish was used, product data pages, Material Safety Data Sheets, care and cleaning instructions, touch-up procedures, and color samples of each color and finish used.

1.6 QUALITY ASSURANCE

- A. Applicator Qualifications: Engage an experienced Applicator who has completed painting system applications similar in material, design, and extent to those indicated for this Project, whose work has resulted in applications with a record of successful in-service performance.
- B. Source Limitations: Obtain block fillers, primers and undercoat materials for each coating system from the same manufacturer as the finish coats.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Benjamin Moore & Co.
 - 2. California Paints.
 - 3. PPG Architectural Finishes, Inc. (Pittsburgh Paints, Glidden Professional, Flood Stains)
 - 4. Samuel Cabot, Inc. (Cabot).
 - 5. Sherwin-Williams Company (The).
- B. Products: Subject to compliance with requirements, provide one of the products listed in the Interior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

- A. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- B. Colors: As selected by Architect from manufacturer's full range.
 - 1. Allow for up to 5 different color selections.

2.3 BLOCK FILLERS

- A. Latex Block Filler:
 - 1. Cal: Mason Cote 100% Acrylic Block Filler, 3751.
 - 2. Devoe Coatings: Bloxfil 4000-1000 Interior/Exterior Heavy Duty Acrylic Block Filler. (67 g/L)
 - 3. Moore: Latex Block Filler No. M88.
 - 4. PPG: 6-7 Speedhide Interior/Exterior Masonry Latex Block Filler. (<50 g/L)
 - 5. S-W: PrepRite Block Filler Interior/Exterior Latex B25W25 Series. (45 g/L)

2.4 PRIMERS/SEALERS

A. Low-VOC Latex Primer/Sealer:

- 1. Cal: Envirotech Zero VOC Interior Latex Primer/Sealer, 64600.
- 2. Moore: Pristine Eco Spec Interior Latex Primer Sealer, No. 231
- 3. Glidden Professional: 9116-1200 LifeMaster No VOC Interior Primer. (0 g/L)
- 4. PPG: Pure Performance Interior Latex Primer, 9-900 Series. (0 g/L)
- 5. SW: ProMar 200 Zero VOC Interior Latex Primer B28W02600 Series. (0 g/L)]

2.5 METAL PRIMERS

A. Rust-Inhibitive Primer (Water Based):

- 1. Cal: Rust Stop DTM 100% Acrylic Semi-Gloss, 10XX.
- 2. Devoe Coatings: 4020-1000 Devflex 4020PF DTM Primer & Flat Finish. (91 g/L)
- 3. Moore: IMC Acrylic Metal Primer M04. (51 g/L)
- 4. Pittsburgh Paints; 90-712 Pitt-Tech One Pack Interior/Exterior Primer Finish DTM Industrial Enamel. (123 g/L)
- 5. S-W: IMC Pro-Cryl Universal Primer, B66-310 Series. (100 g/L)

2.6 LATEX PAINTS

A. Low-VOC Latex (Flat):

- 1. California Paints: Envirotech Zero VOC 100% Acrylic Flat, 633XX.
- 2. Glidden Professional: 1209-XXXXN Ultra-hide No VOC Interior Flat Paint (0 g/L)
- 3. Moore: Eco Spec Interior Latex Flat, No. 219.
- 4. PPG: 6-4110XI Series, Speedhide zero Interior Zero VOC Interior Flat Latex. (0 g/L)
- 5. SW: ProMar 200 Zero VOC Interior Latex Flat B30-2600 Series. (0 g/L)]

B. Low-VOC Latex (Low Luster):

- 1. California Paints: Envirotech Zero VOC 100% Acrylic Eggshell, 631XX.
- 2. Glidden Professional: 1411-XXXX Ultra-hide No VOC Interior Eggshell Paint (0 g/L)
- 3. Moore: Pristine Eco Spec Interior Latex Eggshell, No. 223
- 4. PPG: 6-4310XI Series, Speedhide zero Interior Zero VOC Latex Eggshell Interior. (0 g/L)
- 5. SW: ProMar 200 Zero VOC Interior Latex Eg-Shell B20-2600 Series. (0 g/L)]

C. Low-VOC Latex (Semi-gloss):

- 1. California Paints: Envirotech Zero VOC 100% Acrylic Semi-Gloss, 663XX.
- 2. Glidden Professional: 1415-XXXXN Ultra-hide No VOC Interior Semi-Gloss Paint (0 g/L)
- 3. Moore: Pristine Acrylic Semi-Gloss, No. 214
- 4. PPG: 6-4510XI Series, Speedhide zero Interior Zero VOC Latex Semi-Gloss. (0 g/L)
- 5. SW: ProMar 200 Zero VOC Interior Latex Semi-Gloss B31-2600 Series. (0 g/L)]

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Masonry (Clay and CMUs): 12 percent.
 - 2. Gypsum Board: 12 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.
- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- F. Existing Painted Surfaces: Remove any loose paint by scraping or sanding. Sand any rough or "orange peel" or crazing areas.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. Tinting: Tint primer of colors such as reds, yellows, and oranges with a gray basecoat system designed to help provide color coverage.
 - 1. Do not tint prime or base coat for multi-colored finishes.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces. When using colors such as red, yellow or orange, an extra coat of finish may be necessary. Notify Architect when additional coats do not fix the problem.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed in equipment rooms: Not applicable.
 - 2. Paint the following work where exposed in occupied spaces:
 - a. Equipment, including panelboards.
 - b. Uninsulated metal piping.
 - c. Uninsulated plastic piping.
 - d. Pipe hangers and supports.
 - e. Metal conduit.
 - f. Plastic conduit.
 - g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 - h. Other items as directed by Architect.
 - 3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

- A. CMU Substrates:
 - 1. Low-Odor/VOC Latex System:
 - a. Block Filler: Block filler, latex, interior/exterior.
 - b. Intermediate Coat: Latex, interior, low odor/VOC, matching topcoat.
 - c. Topcoat: Latex, interior, low odor/VOC, flat (MPI Gloss Level 1).
 - d. Topcoat: Latex, interior, low odor/VOC eggshell (MPI Gloss Level 3).
 - e. Topcoat: Latex, interior, low odor/VOC, semi-gloss (MPI Gloss Level 5).
- B. Steel Substrates: Hollow metal doors and frames, stair framing and railings, metal glass lite frames in wood doors.
 - 1. Low-Odor/VOC Latex System:
 - a. Prime Coat: Primer, rust inhibitive, water based.
 - b. Intermediate Coat: Latex, interior, low odor/VOC, matching topcoat.
 - c. Topcoat: Latex, interior, low odor/VOC, semi-gloss (MPI Gloss Level 5).
 - 2. High-Performance Epoxy System:
 - a. Prime Coat: Primer, epoxy, anti-corrosive, for metal.
 - b. Intermediate Coat: Epoxy, interior, high performance architectural, matching topcoat.
 - c. Topcoat: Latex, interior, high performance architectural, semi-gloss (MPI Gloss Level 5).
- C. Gypsum Board Substrates:
 - 1. Low-Odor/VOC Latex System:
 - a. Prime Coat: Primer sealer, interior, low odor/VOC.
 - b. Intermediate Coat: Latex, interior, institutional low odor/VOC, matching topcoat.

- c. Topcoat: Latex, interior, institutional low odor/VOC, flat (MPI Gloss Level 1) for ceilings.
- d. Topcoat: Latex, interior, institutional low odor/VOC eggshell (MPI Gloss Level 3) for walls.

END OF SECTION 099123

SECTION 101100 - VISUAL DISPLAY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Visual display board assemblies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, and accessories for visual display units.
 - 2. Include electrical characteristics for motorized units.
- B. Shop Drawings: For visual display units.
 - 1. Include plans, elevations, sections, details, and attachment to other work.
 - 2. Show locations of panel joints. Show locations of field-assembled joints for factory-fabricated units too large to ship in one piece.
 - 3. Include sections of typical trim members.
- C. Samples for Initial Selection: For each type of visual display unit indicated, for units with factory-applied color finishes, and as follows:
 - 1. Samples of facings for each visual display panel type, indicating color and texture.
 - 2. Fabric swatches of fabric facings for tackboards.
 - 3. Include accessory Samples to verify color selected.
- D. Samples for Verification: For each type of visual display unit indicated.
 - 1. Visual Display Panel: Not less than 8-1/2 by 11 inches, with facing, core, and backing indicated for final Work. Include one panel for each type, color, and texture required.
 - 2. Trim: 6-inch-long sections of each trim profile.
 - 3. Display Rail: 6-inch-long section of each type.
 - 4. Accessories: Full-size Sample of each type of accessory.
- E. Product Schedule: For visual display units. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for surface-burning characteristics of tackboards.
- B. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For visual display units to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver factory-fabricated visual display units completely assembled in one piece. If dimensions exceed maximum manufactured unit size, or if unit size is impracticable to ship in one piece, provide two or more pieces with joints in locations indicated on approved Shop Drawings.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations: Do not deliver or install visual display units until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
- B. Field Measurements: Verify actual dimensions of construction contiguous with visual display units by field measurements before fabrication.
 - 1. Allow for trimming and fitting where taking field measurements before fabrication might delay the Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of visual display unit from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.

2.3 VISUAL DISPLAY BOARD ASSEMBLY

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AARCO Products, Inc.
 - 2. ADP Lemco.
 - 3. Claridge Products and Equipment, Inc.
 - 4. Ghent Manufacturing, Inc.
- B. Visual Display Board Assembly: Factory fabricated.
 - 1. Assembly: Tackboard.
 - 2. Corners: Square.
 - 3. Width: As indicated on Drawings.
 - 4. Height: As indicated on Drawings.
 - 5. Mounting Method: Direct to wall.
- C. Tackboard Panel: Natural-cork tackboard panel on core indicated.
- D. Aluminum Frames and Trim: Fabricated from not less than 0.062-inch-thick, extruded aluminum; standard size and shape.
 - 1. Field-Applied Trim: Manufacturer's standard.
 - 2. Aluminum Finish: Clear anodic finish.
- E. Joints: Make joints only where total length exceeds maximum manufactured length. Fabricate with minimum number of joints, balanced around center of board, as acceptable to Architect.
- F. Combination Assemblies: Provide H-trim between abutting sections of visual display panels.

2.4 TACKBOARD PANELS

- A. Tackboard Panels:
 - 1. Facing: 1/8-inch-thick natural cork.
 - 2. Core: 3/8-inch-thick fiberboard.

2.5 MATERIALS

- A. Porcelain-Enamel Face Sheet: PEI-1002, with face sheet manufacturer's standard two- or three-coat process.
- B. Natural-Cork Sheet: Seamless, single-layer, compressed fine-grain cork sheet; bulletin board quality; face sanded for natural finish with surface-burning characteristics indicated.
- C. Fiberboard: ASTM C 208 cellulosic fiber insulating board.
- D. Extruded Aluminum: ASTM B 221, Alloy 6063.
- E. Adhesives for Field Application: Mildew-resistant, nonstaining adhesive for use with specific type of panels, sheets, or assemblies; and for substrate application; as recommended in writing by visual display unit manufacturer.

2.6 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, surface conditions of wall, and other conditions affecting performance of the Work.
- B. Examine walls and partitions for proper preparation and backing for visual display units.
- C. Examine walls and partitions for suitable framing depth where sliding visual display units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions for surface preparation.
- B. Clean substrates of substances, such as dirt, mold, and mildew, that could impair the performance of and affect the smooth, finished surfaces of visual display boards.
- C. Prepare surfaces to achieve a smooth, dry, clean surface free of flaking, unsound coatings, cracks, defects, projections, depressions, and substances that will impair bond between visual display units and wall surfaces.
- D. Verify that wall surfaces are primed where indicated to receive visual display units and as recommended in writing by primer/sealer manufacturer and visual display unit manufacturer.

3.3 INSTALLATION

- A. General: Install visual display surfaces in locations and at mounting heights indicated on Drawings, or if not indicated, at heights indicated below. Keep perimeter lines straight, level, and plumb. Provide grounds, clips, backing materials, adhesives, brackets, anchors, trim, and accessories necessary for complete installation.
- B. Field-Assembled Visual Display Board Assemblies: Coordinate field-assembled units with grounds, trim, and accessories indicated. Join parts with a neat, precision fit.
 - 1. Make joints only where total length exceeds maximum manufactured length. Fabricate with minimum number of joints, balanced around center of board, as acceptable to Architect or as indicated on approved Shop Drawings.
 - 2. Where size of visual display board assemblies or other conditions require support in addition to normal trim, provide structural supports or modify trim as indicated or as selected by Architect from manufacturer's standard structural support accessories to suit conditions indicated.
- C. Factory-Fabricated Visual Display Board Assemblies: Attach concealed clips, hangers, and grounds to wall surfaces and to visual display board assemblies with fasteners at not more than 16 inches o.c. Secure tops and bottoms of boards to walls.

3.4 CLEANING AND PROTECTION

- A. Clean visual display units according to manufacturer's written instructions. Attach one removable cleaning instructions label to visual display unit in each room.
- B. Touch up factory-applied finishes to restore damaged or soiled areas.
- C. Cover and protect visual display units after installation and cleaning.

END OF SECTION 101100

SECTION 101400 - SIGNS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of signs:
 - 1. Panel signs.

1.3 DEFINITIONS

A. ADA-ABA Accessibility Guidelines: U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines."

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of sign specified, including details of construction relative to materials, dimensions of individual components, profiles, and finishes.
- B. Shop Drawings: Show fabrication and erection of signs. Include plans, elevations, and large-scale sections of typical members and other components.
 - 1. Provide message list for each sign required, including large-scale details of wording and lettering layout.
- C. Samples for Selection: Manufacturer's color charts consisting of actual units or sections of units showing the full range of colors available.

1.5 INFORMATION SUBMITTALS

A. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For signs to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Sign Fabricator Qualifications: Firm experienced in producing signs similar to those indicated for this Project, with a record of successful in-service performance, and sufficient production capacity to produce sign units required without causing delay in the Work.
- B. Single-Source Responsibility: For each separate sign type required, obtain signs from one source of a single manufacturer.
- C. Regulatory Requirements: Comply with the Americans with Disabilities Act (ADA) and with code provisions as adopted by authorities having jurisdiction.
- D. Design Concept: The Drawings indicate sizes, profiles, and dimensional requirements of signs and are based on the specific types and models indicated. Sign units by other manufacturers may be considered provided deviations in dimensions and profiles do not change the design concept as judged by the Architect. The burden of proof of equality is on the proposer.

1.8 PROJECT CONDITIONS

A. Field Measurements: Take field measurements prior to preparation of shop drawings and fabrication to ensure proper fitting. Show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delay.

1.9 COORDINATION

A. Coordinate placement of anchorage devices with templates for installing signs.

1.10 WARRANTY

- A. Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Deterioration of polymer finishes beyond normal weathering.
 - b. Deterioration of embedded graphic image colors and sign lamination.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Acrylic Sheet: ASTM D 4802, Category A-1 (cell-cast sheet), Type UVA (UV absorbing).

2.2 PANEL SIGNS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include, but are not limited to, the following:
 - 1. Mohawk Sign Systems.
 - 2. Welch Architectural Signage.
- B. Substrate: Fabricate signs from 1/8 inch thick matte clear acrylic with edges mechanically and smoothly finished to eliminate cut marks. Background color to be subsurface.
 - 1. Background Color: As selected by the Architect from manufacturer's standard colors.
 - 2. Edge Condition: Straight.
 - 3. Corner Condition: Rounded to 3/8 inch radius.
 - 4. Size: 6 by 6 inch, unless noted otherwise.
- C. Copy: Complying with ADA Accessibility Guidelines.
- D. Letterform: Route copy into face of substrate 1/32 inch deep. Chemically weld (inlay) computer precision cut tactile copy into routed letter openings so that tactile copy is embedded in substrate and remains at least 1/32" above surface of substrate.
 - 1. Height: 5/8 inch minimum letter height.
- E. Braille: Use engrave process for all Braille areas. Engrave Braille dots into surface of clear material.
- F. Provide characters complying with ADA Accessibility Guidelines and ICC/ANSI A117.1. Text shall be accompanied by Grade 2 braille.

2.3 ACRYLIC SHEET FINISHES

A. Colored Coatings for Acrylic Sheet: For copy and background colors, provide colored coatings, including inks, dyes, and paints, that are recommended by acrylic manufacturers for optimum adherence to acrylic surface and that are UV and water resistant for five years for application intended.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Verify that items are sized and located to accommodate signs.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Locate sign units and accessories where indicated, using mounting methods of the type described and in compliance with the manufacturer's instructions.
 - 1. Install signs level, plumb, and at the height indicated, with sign surfaces free from distortion or other defects in appearance.
 - 2. Interior Wall Signs: Install signs on walls adjacent to latch side of door where applicable. Where not indicated or possible, such as double doors, install signs on nearest adjacent walls. Locate to allow approach within 3 inches of sign without encountering protruding objects or standing within swing of door.
- B. Wall-Mounted Signs: Comply with sign manufacturer's written instructions except where more stringent requirements apply.
 - 1. Two-Face Tape: Mount signs to smooth, nonporous surfaces. Do not use this method for vinyl-covered or rough surfaces.
 - 2. Signs Mounted on Glass: Provide matching opaque plate on opposite side of glass to conceal mounting materials.

3.3 CLEANING AND PROTECTION

A. After installation, clean soiled sign surfaces according to the manufacturer's instructions. Protect units from damage until acceptance by the Owner.

Quantity:

3.4 PANEL SIGN SCHEDULE

• •		•	
Classrooms	Provide 4" x 4"	one for each room	
Ciassioonis	110VIUC 4 A 4	one for each foom	

Sizes:

Stairs Provide 4" x 4" one for each fooling one for each door to stair Landings Provide 18" x 18" one for each landing

(per Life Safety Code)

Exit Provide 6" x 6" one for each exit

END OF SECTION 101400

Types:

A.

SECTION 21 10 00

FIRE-SUPPRESSION SPRINKLER SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The existing wet pipe fire protection system shall be extended and revised as required to facilitate the renovations to properly protect the building maintain compliance with NFPA 13, local, and State requirements.
- B. This Section includes fire-suppression sprinklers, piping, and equipment.
- C. The Sprinkler Contractor shall place the sprinkler system in service and hand over the sprinkler system to the General Contractor for care and maintenance.
- D. Performance and Design Criteria: Provide products and systems complying with specific performance and design criteria indicated.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

- A. Design sprinklers and obtain approval from authorities having jurisdiction. The design of the automatic sprinkler system shall be complete with all necessary accessories for proper operation.
- B. The system shall be hydraulically calculated in accordance with all provisions of the Contract Documents and any authority having jurisdiction.
- C. Design sprinkler piping according to the following and obtain approval from authorities having jurisdiction:
 - 1. Include a 5 percent margin of safety for available water flow and pressure.
 - Include losses through water-service piping, valves, and backflow preventers.

- D. Sprinkler Occupancy Hazard Classifications:
 - 1. Light Hazard:
 - a. Office and Public Areas
 - b. Corridors
 - 2. Ordinary Hazard, Group 1:
 - a. General Storage Areas
 - b. Mechanical Equipment Rooms
 - c. Building Service Areas.
 - d. Electrical Equipment Rooms
- E. Minimum Density for Automatic-Sprinkler Piping Design shall be in accordance with NFPA 13. Maximum Protection Area per Sprinkler shall be in accordance with NFPA 13.

1.4 GENERAL REQUIREMENTS

- A. Components and Installation: Capable of producing piping systems with 175-psig minimum working-pressure rating, unless otherwise indicated.
- B. Seismic Performance: If required by the authority with jurisdiction, fire-suppression piping shall be capable of withstanding the effects of earthquake motions determined according to NFPA 13.
- C. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: Refer to Structural Drawings.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: Refer to Structural Drawings.
 - a. Component Importance Factor: 1.5.
 - b. Component Response Modification Factor: Refer to Structural Drawings.
 - c. Component Amplification Factor: Refer to Structural Drawings.
 - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): Refer to Structural Drawings.
 - 4. Design Spectral Response Acceleration at 1.0-Second Period: Refer to Structural Drawings.
 - 5. Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they are subjected.
- D. Contractor shall obtain and pay for required permits.

1.5 SUBMITTALS

- A. Shop Drawings: Submit working plans, prepared according to NFPA 13, and hydraulic calculations with cross reference to applicable drawings, water supply data, and equipment schedule with ratings for the system to the Owner's Representative, Insurance Underwriter, and other authorities having jurisdiction.
- B. Product Data: Catalog sheets, specifications, and installation instructions. Indicate UL or FM approval for each product. Include the following additional information:
 - 1. Pipe and fitting materials and methods of joining for sprinkler piping.
 - 2. Pipe hangers and supports.
 - 3. Piping seismic restraints.
 - 4. Valves, including specialty valves, accessories, and devices.
 - 5. Alarm devices. Include electrical data.
 - 6. Electrical Devices: Complete description of intended use, wiring diagrams, data plate information and, in the case of switching devices, whether normally on or normally off. Include motor test data.
 - 7. Mechanical Devices: Complete description of intended use, including normal operating capacities and working pressures.
 - 8. Enclosures: Dimensions, materials, gages of metals; type of door hinges and locks, and methods of securing the enclosure members to the building construction.
 - 9. Hose Threads: Verify that hose threads on fire department connections match threads on equipment used by the local or servicing fire department.
- C. Design Data: The portions of the sprinkler system not sized on the Contract Drawings shall be sized in accordance with NFPA requirements for Hydraulically Designed Systems. Submit drawings and hydraulic calculations for approval.
- D. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- E. Maintenance Data: For each type of sprinkler specialty to include in maintenance manuals specified in Division 1.

1.6 QUALITY ASSURANCE

- A. Sprinkler Contractor
 - 1. Installer Qualifications: An experienced installer who has designed and installed fire-suppression piping similar to that indicated for this Project and obtained design approval and inspection approval from authorities having jurisdiction.
 - 2. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified sprinkler

designer. Base calculations on results of fire hydrant flow test. Sprinkler designer shall be legally qualified and licensed to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of fire-suppression piping that are similar to those indicated for this Project in material, design, and extent.

3. Contractor shall be a licensed fire sprinkler contractor.

B. Manufacturer Qualifications:

- 1. Firms whose equipment, specialties, and accessories are listed by product name and manufacturer in UL's "Fire Protection Equipment Directory" and FM's "Fire Protection Approval Guide" and that comply with other requirements indicated.
- 2. Sprinkler Components: Listing/approval stamp, label, or other marking by a testing agency acceptable to authorities having jurisdiction.
- 3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- 4. Factory Mutual Engineering Corporation (FM) Approval Guide
- C. NFPA Requirements: Year edition per authority of jurisdiction.
 - 1. NFPA#1 Fire Prevention Code
 - 2. NFPA #13 "Standard for the Installation of Sprinkler Systems".

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for firesuppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 8.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Sprinkler Cabinets: Finished, wall-mounting steel cabinet and hinged cover, with space for a minimum of six spare sprinklers plus sprinkler wrench. Include the number of sprinklers required by NFPA 13 and wrench for sprinklers. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

PART 2 - PRODUCTS

2.1 PIPING

- A. Pipe and fittings shall conform to the requirements of NFPA 13. Pipe shall be listed by UL and be FM approved, and installed per its listing and approval.
- B. Sprinkler piping shall be black steel schedule 40 for 2 inch and smaller, and thinwall for 2 ½ inch and larger. C factor 120.
- C. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in N.F.P.A. 13. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application.

2.2 JOINING MATERIALS

- A. Furnish in accordance with NFPA 13.
- B. Transition Couplings: AWWA C219, sleeve type, or other manufactured fitting the same size as, with pressure rating at least equal to, and with ends compatible with piping to be joined.

2.3 SPRINKLERS

- A. Fire sprinklers shall be of one manufacturer throughout the building. No mixing of sprinkler brands shall be permitted. Sprinklers shall be of all brass frame construction with a quick response frangible bulb type fusible element.
- B. Automatic Sprinklers: With U.L. listed heat-responsive elements.
- C. Sprinkler Types and Categories: Nominal 1/2-inch orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.
- D. Provide quick response sprinklers.
- E. Institutional Semi-Recessed or "Vandal-Resistant" sprinkler heads as required by application.
- F. Sprinkler Escutcheons: Materials, types, and finishes of sprinklers. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
- G. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler.

2.4 SPRINKLER SPECIALTY FITTINGS

- A. Sprinkler specialty fittings shall be UL listed or FMG approved, with 175-psig minimum working-pressure rating, and made of materials compatible with piping.
- B. Sprinkler Drain and Alarm Test Fittings: Cast- or ductile-iron body; with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.
- C. Sprinkler Branch-Line Test Fittings: Brass body with threaded inlet, capped drain outlet, and threaded outlet for sprinkler.
- D. Drop-Nipple Fittings: UL 1474, adjustable with threaded inlet and outlet, and seals.
- E. Provide flexible sprinkler hose with fittings intended for use in sprinkler systems between the branch line and sprinkler. Provide in accordance with NFPA 13 and the manufacturer's installation instructions. Length: 38".
 - 1. U.L. 2443 listed for sprinkler hose application.
 - 2. Flexible Hose: Corrugated Stainless Steel AISI 304
 - 3. Slip Nuts: Brass C3771BC
 - 4. Reducer Fitting: Yellow Zinc/Steel SPPS
 - 5. Special Shoulder Nipple (Inlet): Yellow Zinc/Steel SPPS
 - 6. Reducing Nipple Clamp & Bolt: Galvanized Steel SS41
 - 7. Maximum Working Pressure of Flexible Connection: 200 PSI
 - 8. Test Pressure of Flexible Connection: 400 PSI
 - 9. Maximum Temperature Rating of Flexible Connection: 300 °F
 - 10. Provide ceiling bracket.

2.5 VALVES

- A. Valves shall be UL listed and FMG approved
- B. System Control Valve: The wet system control valve shall be a listed indicating type valve. Control valve shall be UL Listed and Factory Mutual Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Manual or automatic air venting valve to exhaust trapped air in the wet sprinkler system.

PART 3 - EXECUTION

3.1 EXISTING SYSTEMS

A. Refer to Division 1 demolition requirements and procedures. Disconnect, demolish, and remove fire-suppression systems, equipment, and components indicated to be removed.

B. Existing Sprinkler System Shutdown: Follow NFPA 13 and NFPA 25 recommendations. Before shutting down the sprinkler system to perform the Work, notify the Owner's Representative in writing, the local fire department, and the alarm company, that the system is to be shut down temporarily. Give schedule which states date and time of proposed shut down and the approximate length of time that the system will be out of service. Request instructions for precautions that should be taken during the shutdown period. Do not shut down the system until schedule is approved by the Owner's Representative. Return the existing system to pre-shutdown operation immediately after the Work has been completed. Give written notice to the Director's Representative that the system has been returned to pre-shutdown operation.

3.2 PREPARATION

A. The nature of the work requires coordination with other trades. Shop fabrication shall be done at the Contractor's risk. Relocation of piping and components to avoid obstructions may be necessary. Relocation, if required, shall be done at the Contractor's expense. The installation shall be performed in a workmanlike manner as determined by the Owner's Representative and in accordance with the Contract Documents, manufacturer's printed installation instructions, and submitted and Owner's Representative reviewed drawings.

3.3 SPRINKLER APPLICATIONS

- A. General: Use sprinklers according to the following applications:
 - 1. Rooms/spaces without Ceilings: Upright sprinklers.
 - 2. All occupied rooms with Finished Ceilings: Recessed Pendent.
 - 3. Provide sprinkler guards for heads in mechanical and storage spaces, less than 8 ft. above finished floor subject to mechanical damage.
 - 4. Low ceilings (under 8 feet): Concealed
 - 5. Special Applications: Use extended-coverage, flow-control, and quick-response sprinklers where indicated.

B. Finishes

- a. Unfinished spaces not exposed to view: rough bronze.
- b. Recessed Sprinklers: White
- c. Provide escutcheons with matching color for finished spaces.

3.4 SYSTEM INSTALLATIONS

- A. Earthquake Protection: Provide piping according to NFPA 13 to protect from earthquake damage.
- B. Water supply control valves shall be electrically supervised and mechanically locked for proper position. Water flow and supervisory circuits shall be in accordance with the requirements of electrical

specifications. Electric connections to sprinkler system shall be by Division 26. Furnish wiring diagrams for all equipment.

- C. A sprinkler head wrench of each style and model installed shall be provided to the owner at the completion of the project. A representative sampling of each sprinkler head style and model shall be provided to the owner and housed in a sprinkler head cabinet at or near the sprinkler riser. The number of sprinkler heads provided to the owner shall be in accordance with NFPA 13.
- D. Provide "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, sized and located according to NFPA 13
- E. Provide a vent near a high point in the system to allow air to be removed from that portion of the system.

3.5 SPRINKLER INSTALLATION

- A. Provide sprinklers in suspended ceilings in center of 2 X 2 ceiling tiles (not required for 2 X 4).
- B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space per NFPA 13.
- C. Provide sprinkler piping with drains for complete system drainage.
- D. Hangers and Supports: Comply with NFPA 13 for hanger materials.

3.6 LABELING AND IDENTIFICATION

A. Provide labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

3.7 FIELD QUALITY CONTROL

- A. Flush, test, and inspect sprinkler piping according to NFPA 13, "System Acceptance" Chapter.
- B. Verify that specialty valves, trim, fittings, controls, and accessories are installed and operate correctly.
- C. Verify that specified tests of piping are complete.
- D. Verify that damaged sprinklers and sprinklers with paint or coating not specified are replaced with new, correct type.
- E. Verify that sprinklers are correct types, have correct finishes and temperature ratings, and have guards as required for each application.
- F. Replace piping system components that do not pass test procedures and retest to demonstrate compliance. Repeat procedure until satisfactory results are obtained.

- G. Fill wet-pipe sprinkler piping with water.
- H. Energize circuits to electrical equipment and devices.
- I. Coordinate with fire alarm tests. Operate as required.

3.8 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers having paint other than factory finish.
- C. Clean and disinfect fire-suppression water-service piping as follows:
 - 1. Purge new piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651.
 - 4. Prepare reports.

3.9 PAINTING

- A. Painting of fire-suppression systems, equipment, and components is specified in Division 9.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.10 PROTECTION

A. Protect sprinklers from damage until Substantial Completion.

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Refer to Section 23 05 00, common work results for plumbing are included in this section.

THERMOMETERS AND PRESSURE GAUGES FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Refer to Section 23 05 19 for thermometer and pressure gauges for plumbing.

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Refer to Section 23 05 29 for hangers and supports for plumbing piping and equipment.

IDENTIFICATION FOR PLUMBING PIPING & EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Refer to Section 23 05 53 for identification for plumbing piping and equipment.

PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Refer to Section 23 07 00 for plumbing insulation.

SECTION 22 13 16

PLUMBING SANITARY AND STORM PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 22 Section "Common Work Results for Plumbing"
 - 2. Division 22 Section "Plumbing Specialties" for soil, waste, and vent piping systems specialties.

1.2 SUMMARY

- A. This Section includes storm-drainage piping inside the building and to locations indicated.
- B. Drawings show the general layout of piping and accessories but do not show all required fittings and offsets that may be necessary to connect piping to equipment and to coordinate with other trades. Fabricate piping based on field measurements. Provide all necessary fittings and offsets.
- C. General layout shown, provide piping to fixtures as required by the Maine Plumbing Code. A licensed master plumber shall perform or supervise the work and provide layouts, piping, and fittings as required by code.

1.3 PERFORMANCE REQUIREMENTS

- A. Comply with the utility requirements for the connection of to the municipal utility services. Obtain and pay for all necessary permits from the applicable municipal department. Obtain authority to connect to their existing mains.
- B. Provide components and installation capable of producing piping systems with working-pressure ratings per local plumbing code.

1.4 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with the local building and plumbing codes.
- C. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.2 CAST-IRON SOIL PIPING

A. Hubless

- 1. Hubless Cast Iron pipe and fittings shall be manufactured from gray cast iron and shall conform to ASTM A-888 and CISPI Standard 301. All pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute.
- 2. Hubless couplings shall conform to ASTM C-1540 heavy duty couplings.
- 3. Gaskets shall conform to ASTM C-564. All pipe and fittings to be produced by a single manufacturer and are to be installed in accordance with manufacturer's recommendations and local code requirements.
- 4. Couplings shall be installed in accordance with the manufacturer's band tightening sequence and torque. Tighten bands with a properly calibrated torque limiting device.
- B. Hub and Spigot Cast Iron Soil Pipe and Fittings:
 - 1. Hub and Spigot Cast Iron pipe and fittings shall be manufactured from gray cast iron and shall conform to ASTM A-74. All pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Pipe Institute. Pipe and fittings to be Extra Heavy (XH).
 - 2. Joints can be made using a compression gasket manufactured from a neoprene elastomer meeting the requirements of ASTM C-564 or lead and oakum. All pipe and fittings to be produced by a single

manufacturer and are to be installed in accordance with manufacturer's recommendations and local code requirements. The system shall be hydrostatically tested after installation to 10 ft. of head (4.3 psi maximum).

2.3 PVC DRAINAGE PIPING

- A. Pipe and fittings shall be manufactured from PVC compound with a cell class of 12454 per ASTM D-1784 and conform with National Sanitation Foundation (NSF) standard 14. Pipe shall be iron pipe size (IPS) conforming to ASTM D-1785 and ASTM D-2665. Fittings shall conform to ASTM D-2665.
- B. All pipe and fittings to be produced by a single manufacturer and to be installed in accordance with manufacturer's recommendations and local code requirements. Solvent cements shall conform to ASTM D-2564, primer shall conform to ASTM F-656. The system to be manufactured by Charlotte Pipe and Foundry Co. or approved equal; and shall be intended for non-pressure drainage applications where the temperature will not exceed 140°F.
- C. Solvent cement joints for PVC pipe and fittings shall be clean from dirt and moisture. Pipe shall be cut square and pipe shall be deburred. Where surfaces to be joined are cleaned and free of dirt, moisture, oil and other foreign material, apply primer in accordance with ASTM F656.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31.

3.2 PIPING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated.
- B. Storm Drain Piping:
 - 1. Cast iron
 - 2. Schedule 40 PVC DWV

3.3 PIPING INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for basic piping installation.

- B. Provide firestopping as per Section 23 05 00 "Common Work Results for HVAC".
- C. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- D. Install PVC soil and waste drainage and vent piping according to ASTM D 2665.
- E. Install underground PVC soil and waste drainage piping according to ASTM D 2321.
- F. Make changes in direction for drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- G. Provide drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- H. Install drainage and vent piping at the minimum slopes as required by the local plumbing code.
- I. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- J. Install cleanouts at grade and extend to where building drains connect to site piping. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

3.4 JOINT CONSTRUCTION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for basic piping joint construction.
- B. Cast-Iron, Soil-Piping Joints: Make joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings." Gasketed Joints: Make with rubber gasket matching class of pipe and fittings. Hubless Joints: Make with rubber gasket and sleeve or clamp.

3.5 VALVE INSTALLATION

- A. Shutoff Valves: Install full-port ball valve on each pump discharge.
- B. Check Valves: Install swing check valve, downstream from shutoff valve, on each pump discharge.
- C. Backwater Valves: Install backwater valves in piping subject to sewage backflow.

3.6 HANGER AND SUPPORT INSTALLATION

A. Hanger, support, and anchor devices are specified in Division 22 Section "Hangers and Supports."

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior drainage piping to exterior drainage piping.
- C. Use transition fitting to join dissimilar piping materials.
- D. Connect drainage and vent piping to fixtures and equipment as shown on the plans.
- E. Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Test piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and

- approved. Expose work that was covered or concealed before it was tested.
- 3. Roughing-in Plumbing Test Procedure: Test piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
- 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use Utube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- C. Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.
- D. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

3.9 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

- - - E N D - - -

SECTION 23 05 00

COMMON WORK RESULTS FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. This section applies to Division 21, 22, & 23 sections.

1.2 GENERAL

- A. This Section includes mechanical items common to all of this division specification sections.
- B. Provide services, skilled and common labor, and all apparatus and materials required for the complete installation as shown and within the intent of the contract documents, field conditions, and code requirements.
- C. The intention of these Contract Documents is to call for finished work, fully tested and ready for operation. Any components or labor not mentioned in the Contract Documents but required for functioning systems shall be provided. Should there appear to be any discrepancies or questions of intent, the Contractor shall refer the matter to the Architect/Engineer for decision before start of any related work.
- D. This contractor will be responsible to carry out the commissioning requirements specified. Refer to Division 1 for additional requirements.

1.3 MANUFACTURERS INSTRUCTIONS

- A. Provide equipment and components to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
- B. Follow manufacturer's instructions for inspection, start-up, calibration, and testing.

1.4 EFFICIENCY MAINE

A. This project intends to pursue Efficient Maine prescriptive and/or custom incentives. The contractor shall participate in the activities

associated with Efficiency Maine incentive approval process including but not limited to; preparation and submission of required incentive applications and the tracking and submission of measure specific invoices to Efficiency Maine within 60 days of the completion of the work.

B. The contractor shall also:

- 1. Become familiar with the Efficiency Maine Business Program including available incentives and the application and review process.
- http://www.efficiencymaine.com/at-work/business-programs/
- Review plans and specifications for compliance with Efficiency Maine standards for applicable systems and technologies.
- 4. Review plans and specifications for any and all incentive opportunities.
- C. The project schedule shall reflect and accommodate the time required to achieve application pre-approval from Efficiency Maine (EM). No equipment shall be purchased until pre-approval is received from EM.
- D. All invoices shall be forwarded to EM within 60 days of the completion of work. This deliverable shall be shown on the project schedule as a milestone date and coordinated with all contractors to assure compliance with this requirement.
- E. Efficiency Maine is available to assist in the application process and can be reached at 866-376-2463. Contractor must contact EM prior to submittals to review the project equipment and scope.
 - 1. Multi-Split Heat Pump

1.5 DEFINITIONS

- A. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- B. "Provide": Furnish and install, complete and ready for the intended use.
- C. "Shall": The word shall is used to indicate mandatory requirements strictly to be followed in order to conform to the standard and procedures and from which no deviation is permitted.
- D. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and attics.
- E. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- F. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

- G. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- H. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- I. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.

1.6 SUBMITTALS

A. Provide in accordance with Division 1 of the specifications.

1.7 SUBSTITUTIONS

A. Provide in accordance with Division 1 of the specifications.

1.8 QUALITY ASSURANCE

- A. All work, materials, and equipment shall comply with the rules and regulations of all codes and ordinances of the local, state, and federal authorities. Such codes, when more restrictive, shall take precedence over these plans and specifications.
- B. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- C. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- D. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications." Comply with provisions in ASME B31 Series, "Code for Pressure Piping." Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- E. Electrical Characteristics for Equipment: Equipment electrical characteristics different than scheduled may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified at no additional cost. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- F. The Contractor shall hold a license to perform the work as issued by the local jurisdiction.

- G. Plumbing work shall be performed by, or under, the direct supervision of a licensed master plumber.
- H. Electrical work shall be performed by, or under, the direct supervision of a licensed electrician.
- I. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, product selected shall be compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Engineer will determine which products shall be used.

1.9 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Provide in accordance with Division 1.
- B. Piping:
 - 1. Pipe and tube required by the applicable standard to be cleaned and capped shall be delivered to the job site with factory-applied end-caps. Maintain end-caps through shipping, storage, and handling to prevent pipe-end damage and prevent entrance of dirt, debris, and moisture.
 - 2. Protect stored pipe and tube from moisture and dirt. Elevate above grade. When stored inside, do not exceed the structural capacity of the floor.
 - Protect fittings, flanges, and piping specialties from moisture and dirt.
 - 4. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.10 COORDINATION

- A. Coordinate use of project space and sequence of installation of mechanical and electrical work, which is indicated diagrammatically on drawings. Follow routings shown for pipes, ducts, and conduits as closely as practicable, with due allowance for available physical space; make runs parallel with lines of building. Utilize space efficiently to maximize accessibility for other installations, for maintenance, and for repairs.
- B. The drawings show the general arrangement of systems and equipment but do not show all required fittings and offsets that may be necessary to connect pipes and ductwork to equipment, and to coordinate with other trades. Provide all necessary fittings, offsets and runs based on field measurements and at no additional cost. Coordinate with other trades for space available and relative location of equipment and accessories. Pipe and duct location on the drawings shall be altered

by contractor where necessary to avoid interferences and clearance difficulties.

- C. Corrections or comments made on the Shop Drawings during the review do not relieve Contractor from compliance with requirements of the drawings and specifications. The Contractor is responsible for: confirming and correcting all quantities; checking electrical characteristics and dimensions; selecting fabrication processes and techniques of construction; coordinating his work with that of all other trades; and performing his work in a safe and satisfactory manner.
- D. Coordinate use of project space and sequence of installation of work.
- E. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for installations. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- F. Coordinate requirements for access panels and doors for items requiring access that are concealed behind finished surfaces. Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced.
 - 1. Access panels and doors are specified and provided by Division 8.

1.11 TEST ADJUST AND BALANCE READINESS

- A. The Contractor shall provide and coordinate the services of qualified, responsible sub-contractors, suppliers and personnel as required to correct, repair, and/or replace any and all deficient items or conditions found during the course of this project, including the testing, adjusting, and balancing period.
- B. In order that all systems may be properly tested, balanced, and adjusted as required herein by these Specifications, the Contractor shall operate the systems at his expense for the length of time necessary to properly verify their completion and readiness for TAB.
- C. Project Contract completion schedules shall allow for sufficient time to permit the completion of TAB services prior to Owner occupancy. The Contractor shall allow adequate time for the testing and balancing activities of the Owner provided services, during the construction period, and prior to Substantial Completion as defined in the Uniform General Conditions of this Construction Document.
- D. The Drawings and Specifications indicate valves, dampers, and miscellaneous adjustment devices for the purpose of adjustment to obtain optimum operating conditions, and it will be the responsibility of the Contractor to install these devices in a manner that will leave them accessible and readily adjustable. Should any such device not be readily accessible, the Contractor shall provide access as requested by the TAB Firm. Also, any malfunction encountered by TAB personnel

and reported to the Contractor shall be corrected by the Contractor immediately so that the balancing work can proceed with the minimum of delays.

E. Complete operational readiness of the HVAC systems also requires that the following be accomplished:

1. Distribution Systems:

- a. Verify installation for conformity to design. All supply, return, and exhaust ducts shall be terminated and tested as required by the Specification.
- b. Dampers shall be properly located and functional. Dampers shall have tight closure and open fully with smooth and free operation.
- c. Supply, return, exhaust, and transfer grilles, registers, diffusers, and terminal devices shall be installed and secured in a full open position.
- d. Air handling systems, units, and associated apparatus shall be sealed to eliminate uncontrolled bypass or leakage of air. Final clean filters shall be in place, coils shall be clean with fins straightened, bearings properly greased, and the system shall be completely operational. The Contractor shall verify that all systems are operating within the design pressure limits of the piping and ductwork.
- e. Under normal operating conditions, check condensate drains for proper connections and functioning. Cooling coil drain pans have a positive slope to drain. Cooling coil condensate drain trap maintains an air seal.
- f. Check for proper sealing of air-handling unit components.
- g. Fans shall be operating and verified for freedom from vibration, proper fan rotation and belt tension; heater elements in motor starters to be of proper size and rating, as per the starter manufacturer; record motor amperage and voltage on each phase at start-up, and verify they do not exceed nameplate ratings.
- h. Thermal overload protection is in place for fans and other equipment. Bearings shall be greased. Belts shall be aligned and tight
- i. Terminal units shall be installed and functional (i.e. controls functioning).

2. Automatic Controls

- a. The BAS Contractor shall verify that all control components are installed in accordance with project requirements and are functional, including all electrical interlocks, damper sequences, air and water resets, fire and freeze stats, high and low temperature thermostats, safeties, etc.
- b. The BAS Contractor shall verify that all controlling instruments are calibrated and set for design operating conditions with the exception of components that require input from the TAB Agency, but a default shall be set. The Control Contractor shall cooperate with the TAB Agency and provide all software and interfaces to communicate with the system.

- c. The BAS Contractor shall thoroughly check all controls, sensors, operators, sequences, etc. before notifying the TAB Agency that the BAS is operational. The BAS Contractor shall provide technical support (technicians and necessary computers) to the TAB Agency for a complete check of these systems.
- d. Prior to occupancy, each ventilation system shall be tested to ensure that OA dampers operate properly in accordance with system design.
- e. Fire Alarm: Division 26 shall thoroughly check all detection devices, sequences, inter-locks, etc. before notifying the TAB Agency that the system is operational. Division 26 shall certify that the systems are totally operational to the Contractor prior to the TAB beginning.

1.12 RENOVATION PROJECTS

- A. Project Conditions: Full Owner Occupancy: The Owner intends to occupy the project site during construction. The Contractor shall cooperate with the Owner to minimize conflicts with the Owner's operations.
- B. The Contractor shall study all drawings and specifications, visit the site, and get acquainted with the existing conditions and the requirements of the plans and specifications. No claim will be recognized for extra compensation due to the failure of the Contractor to be familiarized with the conditions and extent of the proposed work. The Contractor shall execute all alterations, additions, removals, relocations or new work, etc., as indicated or required to provide a complete installation in accordance with the intent of the drawing and specifications.
- C. Use of Site: Limit use of premises to work in areas indicated. Do not disturb portions of site beyond areas in which the Work is indicated.
- D. Driveways and Entrances: Keep driveways and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize use of driveways and entrances. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
- E. Follow the recommended procedures of the SMACNA IAQ Guidelines for Occupied Buildings under Construction.
 - 1. Dust partitions and depressurization of the work are performed under Division 1.
 - 2. The return side of an HVAC system is, by definition, under negative pressure and thus capable of drawing in nearby construction dust and odor. When possible, the entire system shall be shut down during heavy construction or demolition. The system shall be isolated from the surrounding environment as much as possible (e.g., all tiles in place for a ceiling plenum, duct and air handler leaks repaired) to prevent induction of pollutants.

- 3. Return system openings in (and immediately adjacent to) the construction area shall be sealed with plastic.
- 4. When the system must remain operational during construction, temporary filters shall be added to return grilles. All filters must receive frequent periodic maintenance and be replaced at end of project.
- 5. When the general system must remain operational, the heaviest work areas shall be dampered off or otherwise blocked if temporary imbalance of the return air system does not create a greater problem.
- 6. The mechanical room shall not be used to store construction or waste materials.
- 7. Diffusers, VAV boxes, and ducts may be adequately protected in most cases where the above measures are implemented. When the system is off for the duration of construction, diffusers shall also be sealed in plastic for further protection. Ducts, diffusers, and window units shall be inspected upon completion of the work for the amount of deposited particulate present and cleaned where needed. If significant dust deposits are observed in the system during construction, some particulate discharge can be expected during start-up. When such a discharge is only minor, delaying re-occupancy long enough to clean up the dust may be sufficient. In more severe cases, installing temporary coarse filters on diffusers or cleaning the ducts may be necessary. The condition of the main filters shall be checked whenever visible particulates are discharged from the system.
- F. Continuity of Services: The building will be in use during construction operations. Maintain existing systems in operation within all rooms of building at all times. Refer to "General Conditions of the Contract for Construction" for temporary facilities for additional contract requirements. Schedules for various phases of contract work shall be coordinated with all other trades and with Owner's Representative. Provide, as part of contract, temporary plumbing and mechanical and electrical connections and relocations as required to accomplish the above.
- G. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services. Notify Owner at least two days in advance of proposed utility interruptions. Identify extent and duration of utility interruptions. Indicate method of providing temporary utilities. Do not proceed with utility interruptions without Owner's written permission.

PART 2 - PRODUCT

2.1 PRODUCT CRITERIA

A. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.

- B. Equipment Service: Products shall be supported by a service organization that maintains a complete inventory of repair parts and is located reasonably close to the site.
- C. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- D. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- E. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- F. Asbestos products or equipment or materials containing asbestos shall not be used.

2.2 PIPE JOINING MATERIALS

- A. Refer to individual Division 22 and 23 piping Sections for pipe, tube, and fitting materials and joining methods. Refer to individual piping Sections for special joining materials not listed below.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.
- C. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated. Full-Face Type: For flat-face, Class 125, cast-iron and castbronze flanges. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- D. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- E. Mechanical Coupling Gasket Materials: Suitable for the chemical and thermal conditions of the piping system contents and exterior environment. Gasket design shall be such that the entire coupling housing is isolated from the system contents to prevent galvanic action and inhibit galvanic corrosion.
- F. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- G. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- H. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- I. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- J. Solvent Cements for Joining Plastic Piping: CPVC Piping: ASTM F 493.
 PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
- K. Press connections: Copper and copper alloy press connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. The joints shall be pressed using the tools approved by the manufacturer.

2.3 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
- C. Flexible Transition Couplings for Underground Non-pressure Drainage Piping: ASTM C 1173 with elastomeric sleeve; ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.4 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. Fittings shall match piping specifications. Threaded dielectric union, ANSI B16.39. Watts Series LF3000 (lead free) or approved equal. Flange union with dielectric gasket and bolt sleeves, ANSI B16.42. Dielectric flange fittings: Watts Series LF3100.

2.5 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- F. Mechanical Sleeve Seals: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve; Thunderline Link-Seal, or approved equal.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Glass-reinforced nylon.
 - 3. Connecting Bolts and Nuts: Stainless steel, of length required to secure pressure plates to sealing elements.

2.6 ESCUTCHEONS

- A. Escutcheons shall be manufactured from nonferrous metals and shall be chrome-plated. Metals and finish shall conform to ASME A112.19.2. Escutcheons shall be one-piece type where mounted on chrome-plated pipe or tubing, and one-piece of split-pattern type elsewhere. ID shall closely fit around pipe, tube, and insulation of insulated piping and an OD that completely cover the opening.
- B. All escutcheons shall have setscrews for maintaining a fixed position against a surface.

2.7 ROOFING

- A. Coordinate roofing with Division 7.
- B. Roof Edge Protection System, required for any mechanical items located within 10 feet of roof edge.
 - 1. Roof edge protection system shall be KeeGuard Roof Edge Protection System, or approved equal. System shall be a counterweighted guardrail system with 42" min. height to provide code-compliant protection for mechanical equipment located less than 10 feet from the edge of the roof. System shall withstand a minimum load of 200 lbs. in any direction to all components per OSHA Regulation 29 CFR 1910.23.
 - 2. Components: Pipe: ASTM A53 1-1/2 inch schedule 40, Galvanized. Rails, Posts, and fittings: 1-1/2 inch diameter steel pipe, galvanized. Mounting Bases: Galvanized steel bases to have a rubber pad placed under the plate at the job site. Counterweights: Galvanized steel counterweights to have a rubber pad placed under the plate at the job site. Finish: galvanized mill finish to the requirements of ASTM A53. Provide per manufacturers recommendations.

2.8 VIBRATION ISOLATION

A. All equipment shall be isolated to prevent vibration transmission to the building structure.

PART 3 - EXECUTION

3.1 DEMOLITION AND REMOVALS

- A. Refer to Division 1 for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove plumbing and mechanical systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and cap and seal remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap and seal ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 COMMON REQUIREMENTS

- A. Provide piping, ductwork, and equipment to allow maximum possible headroom unless specific mounting heights are indicated. Provide equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- B. Provide equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- C. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and

- equipment clear of windows, doors, openings, light outlets, and other services and utilities.
- D. Any structural member weakened or impaired by cutting, notching, or otherwise shall be reinforced, repaired, or replaced so as to be left in safe structural condition in accordance with the local building code requirements.
- E. Provide piping and ductwork in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- F. Provide piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- G. Provide systems above accessible ceilings to allow sufficient space for ceiling panel removal.
- H. Provide piping to permit valve servicing.
- I. Provide equipment and other components to allow right of way for piping installed at required slope.
- J. Provide free of sags and bends.
- K. Provide unions or flanges at connections to equipment.
- L. Provide fittings for changes in direction and branch connections.
- M. Make allowances for application of insulation.
- N. Select system components with pressure rating equal to or greater than system operating pressure.
- O. Verify final equipment locations for roughing-in.
- P. Protection and Cleaning: Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations. Damaged or defective items shall be replaced. Protect all finished parts of equipment. Close duct and pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water, chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and the relevant specification section specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

- C. Joints shall be fabricated, joined, and tested per the piping and fitting manufacturer's instructions. Joint preparation, setting and alignment, joining process, timing, hanger spacing, and working pressure shall be in accordance with the pipe and fitting manufacturer's specifications.
- D. Installer Qualifications
 - Pipe fitters shall be qualified to the procedure used to perform the pipe joining.
 - 2. The contractor is responsible for documenting all qualification and training records of each pipe fitter. Pipe fitters shall have current, formal training on the pipe jointing method.
 - 3. Contractor must submit documentation that lists personnel assigned to this project prior to beginning construction who have successfully completed formal training conducted by an authorized manufacturer's representative. The Contractor Training documentation shall be specific to the manufacturer of the pipe and fittings.
 - 4. Personnel's training documentation must be current and have been updated within the past two (2) years. Training received more than two years prior to operation with no evidence of activity within the past 6 months shall not be considered current.
 - 5. Piping Warranty: Contractor shall provide and document required training and required by the piping system manufacturer in order to maintain the piping manufacturer's warranty.
- E. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedures recommended by fitting manufacturer. Leave insertion marks on pipe after assembly.
- F. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- G. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- H. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- I. Fusion Joints: The employer of the fusion machine operator is responsible for the fusion joint quality of the fusion weld made by that individual. Fusion equipment operators shall be qualified to the procedure used to perform pipe joining. Fusion equipment operators shall have current, formal training on all fusion equipment employed

- on the project. Training received more than two years prior to operation with no evidence of activity within the past 6 months shall not be considered current.
- J. Pipe Joint Construction: PEX-a Connections: Provide per manufacturer's recommendations. Use manufacturer-recommended cold-expansion tool for F1960 connections.
- K. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- L. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Provide gasket concentrically positioned. Use suitable lubricants on bolt threads.
- M. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Piping: Join according to ASTM D 2855.

3.4 PIPE PENETRATIONS & SLEEVES

- A. Provide sealants for all pipe penetrations. All pipe penetrations shall be sealed.
- B. Refer to Section 23 07 00 "Mechanical Insulation".
- C. Provide allowance for thermal expansion and contraction of copper tubing passing through a wall, floor, ceiling or partition by wrapping with an approved tape or pipe insulation or by installing through an appropriately sized sleeve.
- D. Sleeve Clearance: Sleeve through floors, walls, partitions, and beams shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation.
- E. Provide sleeves for pipes passing through concrete and masonry construction. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint. Cut sleeves to length for mounting flush with both surfaces. Provide sleeves in new walls and slabs as new walls and slabs are constructed. Provide steel pipe sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Piping through concrete or masonry shall not be subject to any load from the building construction.
 - 1. Sleeves are not required in drywall construction.
 - 2. Sleeves are not required for core-drilled holes.

- F. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 1-1/2 inch above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- G. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 7.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated: Provide unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment. Provide flanges in piping NPS 2-1/2 and larger, adjacent to valves and at final connection to each piece of equipment.
- B. Provide dielectric fittings at connection between copper and ferrous metal.
- C. Swing Connections for Expansion: Connect risers and branch connections to mains with at least five pipe fittings, including tee in main. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.6 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Provide fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Provide in accordance with Division 5.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor materials and equipment. Field Welding: Comply with AWS D1.1.

3.8 FIRESTOPPING

A. Provide through-penetration firestop systems. Refer to Division 7 for materials. Seal penetrations through fire-or smoke-rated wall, partition, ceiling, or roof assemblies with firestopping systems. Refer to Architectural plans for location of rated assemblies.

3.9 PAINTING

- A. Painting of plumbing and mechanical systems, equipment, and components is specified in Division 9.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.10 ROOFING

- A. Refer to Division 7.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

3.11 PROJECT CLOSEOUT

- A. Provide Demonstration and Training in accordance Division 1.
- B. Provide Project Record Documents in accordance with Division 1.
- C. Follow Closeout procedures as per Division 1.
- D. Provide Operation and Maintenance information in accordance with Division 1. In addition, provide the following.
 - 1. An O&M manual describing basic data relating to the operation and maintenance of systems and equipment as installed.
 - HVAC control information consisting of diagrams, schedules, control sequence narratives, and maintenance and/or calibration information.
 - 3. TAB report
 - 4. Construction drawings of record, control drawings and final design drawings.

- - - E N D - - -

SECTION 22 05 29

HANGERS AND SUPPORTS FOR PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 23 Section "Common Work Results for Mechanical"
 - 2. Division 23 Section "Mechanical Insulation"

1.2 SUMMARY

A. This Section includes hangers and supports for piping and equipment.

1.3 ACTION SUBMITTALS

- A. Submit product data on all hanger and support devices, including shields and attachment methods. Product data to include, but not limited to materials, finishes, approvals, load ratings, and dimensional information.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 QUALITY ASSURANCE

A. Provide in accordance with MSS SP69 - Manufacturers Standardization Society: Pipe Hangers and Supports- Selection and Application

- B. Steel pipe hangers and supports shall have the manufacturer's name, part number, and applicable size stamped in the part itself for identification.
- C. Pipe Hangers, Supports, and Components: The materials of all pipe hanging and supporting elements shall be in accordance with MSS SP-58.
- D. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. B-Line Systems, Inc.
 - 2. Carpenter & Patterson, Inc.
 - 3. Grinnell Corp.
 - 4. Hubbard Enterprises/Holdrite
 - 5. National Pipe Hanger Corp.
 - 6. Piping Technology & Products, Inc.
 - 7. Unistrut
 - 8. Anvil International, Inc.
 - 9. Empire

2.2 PIPE HANGERS AND SUPPORTS

- A. Conform to Manufacturers Standardization Society ANSI/MSS SP-69 & SP-58 Types indicated below.
- B. Hangers:
 - 1. Uninsulated pipes 2 inch and smaller:
 - a. Adjustable steel swivel ring (band type) hanger, Type 10, B-Line B3170.
 - b. Adjustable steel swivel J-hanger, Type 5, B-Line B3690.
 - c. Malleable iron ring hanger, Type 12, B-Line B3198R or hinged ring hanger, B3198H.
 - d. Adjustable steel clevis hanger, Type 1, B-Line B3100.
 - 2. Uninsulated pipes 2-1/2 inch and larger:
 - a. Adjustable steel clevis hanger, Type 1, B-Line B3100.
 - b. Pipe roll with sockets, Type 41, B-Line B3114.
 - c. Adjustable steel yoke pipe roll, Type 43, B-Line B3110.

3. Insulated pipe- Hot piping:

- a. 2 inch and smaller pipes: use adjustable steel clevis with galvanized sheet metal shield. Type 1, B-Line B3100 with Type 40, B-Line B3151 series insulation protection shield.
- b. 2-1/2 inch and larger pipes: Type 41 or Type 43 with Type 39A/39B, B3160-B3165 series pipe covering protection saddle.

4. Insulated pipe- Cold piping:

- a. 5 inch and smaller pipes: use adjustable steel clevis with galvanized sheet metal shield. Type 1, B-Line B3100 with Type 40, B-Line B3151 series insulation protection shield.
- b. 6 inch and larger pipes: Type 41 or Type 43 with Type 39A/39B, B3160-B3165 series pipe covering protection saddle.
- C. Pipe Clamps: When flexibility in the hanger assembly is required due to horizontal movement, use pipe clamps with weldless eye nuts, Type 4, B-Line B3140. For insulated lines use double bolted pipe clamps, Type 3, B-Line B3144.

D. Multiple or Trapeze Hanger

- 1. Trapeze hangers shall be constructed from 12 gauge roll formed ASTM A1011 SS Grade 33 structural steel channel, 1-5/8 inch by 1-5/8 inch minimum, B-Line B22 strut or stronger as required.
- Mount pipes to trapeze with 2 piece pipe straps sized for outside diameter of pipe,
 B-Line B2000 Series.
- 3. For pipes subjected to axial movement: Strut mounted roller support, B-Line B3126. Use pipe protection shield or saddles on insulated lines. Strut mounted pipe quide, B-Line B2417.

E. Wall Supports

- 1. Pipes 4 inch and smaller: Carbon steel J-hanger, B-Line B3690.
- Pipes larger than 4 inch: Welded strut bracket and pipe straps,
 Type 31 light welded steel bracket, B-Line B3064. Provide Type
 32 or Type 33 for heavier loads.

F. Floor Supports

- 1. Hot piping under 6 inch and all cold piping: Carbon steel adjustable pipe saddle and nipple attached to steel base stand sized for pipe elevation. Type 38 adjustable pipe saddle, B-Line B3093 and B3088T base stand; or Type 39, B3090 and B3088 base stand. Pipe saddle shall be screwed or welded to appropriate base stand.
- 2. Hot piping 6 inch and larger: Adjustable Roller stand with base plate, Type 46, B3118SL. Adjustable roller support and steel support sized for elevation, B-Line B3124.
- G. Vertical Supports: Steel riser clamp sized to fit OD of pipe, Type 8, B-Line B3373.

H. Copper Tubing Supports

- 1. Hangers shall be sized to fit copper tubing outside diameters.
 - a. Adjustable steel swivel ring (band type) hanger, Type 10, B-Line B3170CT.
 - b. Malleable iron ring hanger, Type 12, B-Line B3198RCT or hinged ring hanger B3198HCT.
 - c. Adjustable steel clevis hanger, Type 1, B-Line B3104CT.
- 2. For supporting copper tube to strut use epoxy painted pipe straps sized for copper tubing, B-Line B2000 series, or plastic inserted vibration isolation clamps, B-Line BVT series.
- I. Plastic Pipe Supports: V-Bottom clevis hanger with galvanized 18-gauge continuous support channel, Type 1, B-Line B3106 and B3106V plastic pipe support channel, to form a continuous support system for plastic pipe or flexible tubing.
- J. Supplementary Structural Supports: Design and fabricate supports using structural quality steel bolted framing materials as manufactured by Cooper B-Line. Channels shall be roll formed, 12 gauge ASTM A1011 SS Grade 33 steel, 1-5/8 inch by 1-5/8 inch or greater as required by loading conditions. Submit designs for pipe tunnels, pipe galleries, etc., to engineer for approval. Use clamps and fittings designed for use with the strut system.

2.3 UPPER ATTACHMENTS

A. Beam Clamps

- 1. Beam clamps shall be used where piping is to be suspended from building steel. Clamp type shall be selected on the basis of load to be supported, and load configuration.
- 2. C-Clamps shall have locknuts and cup point set screws, Type 23, B-Line B351L. Refer to manufacturer's recommendation for setscrew torque. Retaining straps shall be used to maintain the clamps position on the beam where required.

B. Concrete Inserts

- 1. Cast in place spot concrete inserts shall be used where applicable; either steel or malleable iron body, Type 18, B-Line B2500 or B3014. Spot inserts shall allow for lateral adjustment and have means for attachment to forms. Select inserts to suit threaded hanger rod sizes, B-Line N2500 or B3014N series.
- 2. Continuous concrete inserts shall be used where applicable. Channels shall be 12 gauge, ASTM A1011 SS Grade 33 structural quality carbon steel, complete with Styrofoam inserts and end caps with nail holes for attachment to forms. The continuous concrete insert shall have a load rating of 2,000 lbs/ft. in concrete, B-Line B22I, 32I, or 52I. Select channel nuts suitable for strut and rod sizes.

2.4 VIBRATION ISOLATION AND SUPPORTS

- A. For air conditioning and other vibrating system applications, use a clamp that has a vibration dampening insert and a nylon inserted locknut. For copper and steel tubing use B-Line BVT-Series Vibraclamps.
- B. For larger tubing or piping subjected to vibration, use neoprene or spring hangers as required.
- C. For base mounted equipment use vibration pads, molded neoprene mounts, or spring mounts as required.

2.5 ACCESSORIES

- A. Hanger Rods shall be threaded both ends, or continuous threaded rods of circular cross section. Use adjusting locknuts at upper attachments and hangers. No wire, chain, or perforated straps are allowed.
- B. Shields shall be 180 degree galvanized sheet metal, 12 inch minimum length, 18 gauge minimum thickness, designed to match outside diameter of the insulated pipe, B-Line B3151.
- C. Pipe protection saddles shall be formed from carbon steel, 1/8 inch minimum thickness, sized for insulation thickness. Saddles for pipe sizes greater than 12 inch shall have a center support rib.

2.6 FINISHES

A. Indoor Finishes:

- Hangers and clamps for support of bare copper piping shall be coated with copper colored epoxy paint, B-Line Dura-Copper®. Additional PVC coating of the epoxy painted hanger shall be used where necessary.
- 2. Hangers for other than bare copper pipe shall be zinc plated in accordance with ASTM B633; or shall have an electro-deposited green epoxy finish, B-Line Dura-Green®.
- 3. Strut channels shall be pre-galvanized in accordance with ASTM A653 SS Grade 33 G90 OR have an electro-deposited green epoxy finish, B-Line Dura-Green®.
- B. Outdoor Finishes: Hangers and strut located outdoors shall be hot dip galvanized after fabrication in accordance with ASTM A123. All hanger hardware shall be hot dip galvanized or stainless steel. Zinc plated hardware is not acceptable for outdoor or corrosive use.

2.7 METAL FRAMING SYSTEMS ("UNISTRUT")

- A. MFMA Manufacturer Metal Framing Systems:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-Line, Inc.
 - b. Flex-Strut Inc.
 - c. Thomas & Betts Corporation.
 - d. Unistrut Corporation; Tyco International, Ltd.
 - Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with in-turned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Coating: Unistrut Perma-green or similar.

2.8 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Pipe Stand:
 - Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
 - 5. Pipe Supports, multiple pipes: Galvanized-steel, clevis-type pipe hangers.
- E. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Provide hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Provide per manufactures recommendations and calculations.
- D. Thermal-Hanger Shield Installation: Provide in pipe hanger or shield for insulated piping.
- E. Fastener System Installation: Provide powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Provide fasteners according to powder-actuated tool manufacturer's operating manual. Provide mechanical-expansion anchors in concrete after concrete is placed and completely cured. Provide fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation: Provide per manufactures recommendations and calculations. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- G. Provide hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Provide hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Provide lateral bracing with pipe hangers and supports to prevent swaying.
- K. Provide building attachments within concrete slabs or attach to structural steel. Provide additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger

and at changes in direction of piping. Provide concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

- L. Load Distribution: Provide hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Provide hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by plumbing code and ASME B31.9 for building services piping. Piping shall be supported in such a manner as to maintain its alignment and prevent sagging.

N. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Thermal-Hanger Shields: Provide with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. Obtain fusion without undercut or overlap. Remove welding flux immediately. Finish welds at exposed connections so no roughness

shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

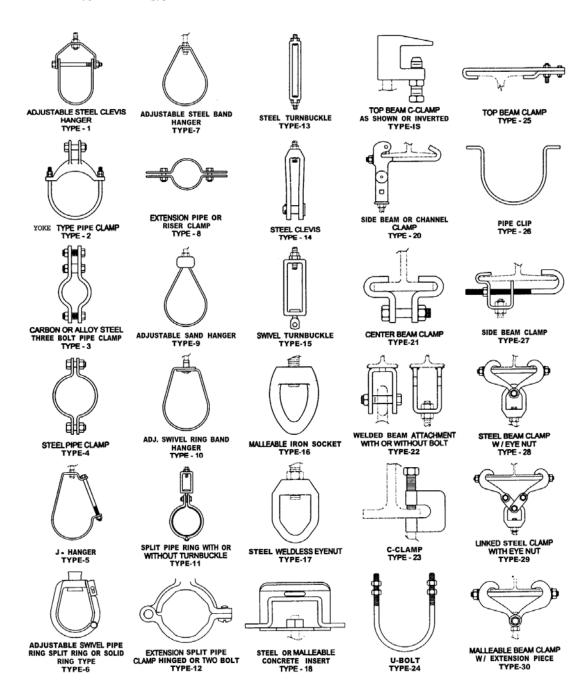
- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

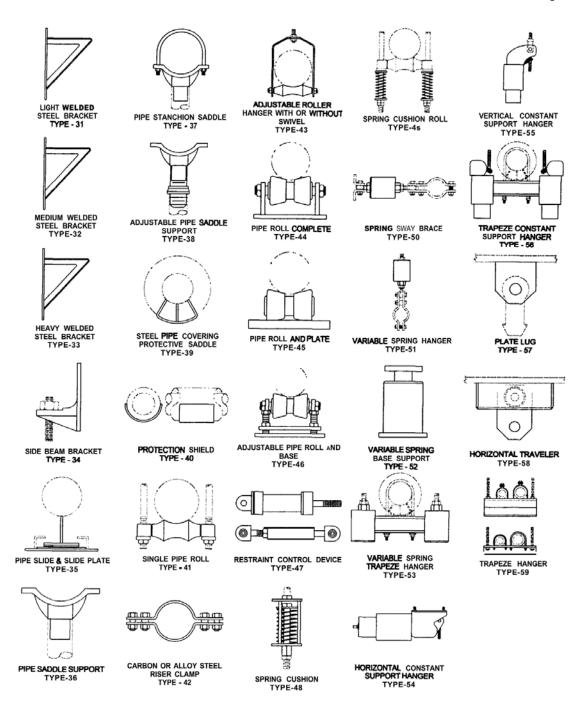
3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- E. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- F. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.


3.7 HANGER SPACING


- A. Support piping and tubing not listed below according to MSS SP-69 and manufacturer's written instructions.
- B. Provide hangers for steel piping with the following maximum horizontal spacing and minimum rod sizes:
 - 1. NPS 1/2": Maximum span, 6 feet; minimum rod size, 3/8 inch.

- 2. NPS ¾ to 1: Maximum span, 8 feet; minimum rod size, 3/8 inch.
- 3. NPS 1-1/4: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- 4. NPS 1-1/2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- 5. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- 6. NPS 2-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- 7. NPS 3: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- 8. NPS 4: Maximum span, 10 feet; minimum rod size, 5/8 inch.
- C. Provide hangers for drawn-temper copper piping with the following maximum horizontal spacing and minimum rod sizes:
 - 1. NPS ½ and 3/4: Maximum span, 5 feet; minimum rod size, 3/8 inch.
 - NPS 1 to 1-1/2": Maximum span, 6 feet; minimum rod size, 3/8 inch.
 - 3. NPS 2: Maximum span, 9 feet; minimum rod size, 1/2 inch.
 - 4. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 1/2 inch.
 - 5. NPS 3: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 6. NPS 4: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 7. Maximum vertical steel and copper pipe attachment spacing: 10 feet.
- D. Piping Hangers for Plastic Piping:
 - 1. Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
 - 2. In systems where large fluctuations in temperature occur, allowances must be made for expansion and contraction of the piping system. Since changes in direction in the system are usually sufficient to allow for expansion and contraction, hangers must be placed so as not to restrict this movement.
 - 3. Hangers shall not compress, distort, cut or abrade the piping. All piping shall be supported at intervals sufficiently close to maintain correct pipe alignment and to prevent sagging or grade reversal. Pipe should also be supported at all branch ends and at all changes of direction.
 - 4. Hangers shall be placed next to the pipe joint not more than 18" from the point joint.
 - 5. Maximum horizontal spacing and minimum rod diameters (pipe temperature $100\,^{\circ}\text{F}$ or lower).
 - a. Solvent cemented PVC
 - 1) NPS 1 and smaller: 48" with 3/8-inch rod.
 - 2) NPS 1-1/4 to NPS 3: 48" with 3/8-inch rod.
 - 3) NPS 3: 48" with 1/2-inch rod.
 - 4) NPS 4: 48" with 5/8-inch rod.
 - 5) NPS 6 and 8: 48" with 3/4-inch rod.
 - b. Solvent cemented CPVC
 - 1) NPS 1 and smaller: 36" with 3/8-inch rod.
 - 2) NPS 1-1/4 to NPS 3: 48" with 3/8-inch rod.
 - 3) NPS 3: 48" with 1/2-inch rod.
 - 4) NPS 4: 48" with 5/8-inch rod.

- 5) NPS 6 and 8: 48" with 3/4-inch rod.
- c. PEX or PP
 - 1) NPS 1 and smaller: 32" with 3/8-inch rod.
 - 2) NPS 1-1/4 to NPS 3: 48" with 3/8-inch rod.
 - 3) NPS 3: 48" with 1/2-inch rod.
- 6. Provide supports for vertical piping every 10 feet.
- E. Support vertical piping independently of connected horizontal piping. Support vertical pipes at base and at every floor. Wherever possible, locate riser clamps directly below pipe couplings or shear lugs.
- F. Place a hanger within 12 inches of each horizontal elbow.

3.8 MSS SP-69 REFERENCE

- - - E N D - -

SECTION 23 05 53

IDENTIFICATION FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Division 23 Section "Common Work Results for Mechanical"

1.2 SUMMARY

A. This Section includes the following mechanical identification materials and their installation.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Valve numbering scheme. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping.

1.5 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with location of access panels and doors.
- C. Provide identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

- A. Terminology: Match schedules as closely as possible.
- B. Tag and description: Example: "EF-1 Bathroom Exhaust"
- C. Equipment Markers: Custom Vinyl Decals with a clear polyester overlaminate to endure outdoor conditions and are UV and scuff resistant. Decals shall be made of flexible vinyl with a permanent pressure-sensitive adhesive backing suitable for curved surfaces. Service temperature range of -40°F to 176°F.
- D. In addition to the equipment tag, equipment located above the ceiling that requires servicing shall be labeled on the ceiling grid using a labeling machine.

2.2 PIPING IDENTIFICATION DEVICES

- A. Manufactured Pipe Markers, General: Seton, Brady, or approved equal; preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 - 1. Colors: Comply with ASME Al3.1, unless otherwise indicated.
 - 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length. Size of letters and length of color field per ASME Al3.1.
 - 3. Pipes with OD, Including Insulation; Full-band snap-around pipe markers extending 360 degrees around pipe at each location.
 - 4. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.
 - 5. Minimum length of color field and size of letters shall be in accordance with Plumbing Code requirements.

B. Types:

- 1. Self-adhesive type: Seton Opti-Code.
- 2. Snap-around type: Seton Setmark.
- Wrap-around type: Seton Ultra-mark; PVF over-laminated polyester construction seals in and protects graphics; suitable for outdoor or harsh environments.

2.3 DUCT IDENTIFICATION DEVICES

A. Duct Markers: Engraved, color-coded laminated plastic. Include direction and quantity of airflow and duct service (such as supply, return, and exhaust). Include contact-type, permanent adhesive.

2.4 VALVE TAGS & SCHEDULES

- A. Valve Tags: Stamped or engraved 1-1/2 round with 1/4-inch letters for piping system legend and 1/2-inch black-filled numbers, with numbering scheme; 3/16" hole for fastener; Material: 19-gauge brass; Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.
 - 2. Frame: aluminum.
 - 3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.

2.5 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 22 or 23 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

- A. Provide equipment markers on each item of scheduled equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.
 - 1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater

- viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
- 3. Locate markers where accessible and visible.
- B. Equipment located above the ceiling that requires servicing shall be labeled on the ceiling using a labeling machine.
 - 1. Ceilings 10 feet and lower: Letters shall be $\frac{1}{4}$ " high, black.
 - 2. Ceilings higher than 10 feet: Letters shall be 3/8" high, black.
 - Label all equipment above ceiling that requires servicing or access.
 - 4. Locate labels on the ceiling grid, adjacent to the ceiling tile that provides the best access to the valve or item that requires servicing.

3.3 PIPING IDENTIFICATION

- A. Provide manufactured pipe markers indicating service on each piping system.
 - 1. Provide pipe markers to manufacturer's instructions.
 - Identify piping, concealed or exposed. Include service and flow direction.
 - 3. Provide in clear view and align with axis of piping.
 - 4. Locate identification at maximum 20 feet centers on straight runs including risers and drops, adjacent to each valve and tee, at each side of penetration of structure or enclosure, and at each obstruction.
 - 5. At access doors and similar access points that permit view of concealed piping.
 - 6. At least one per room.
- B. Unions covered by insulation: Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

3.4 DUCT IDENTIFICATION

- A. Locate duct markers as follows.
 - 1. Ducts leaving mechanical rooms.
 - 2. Ducts at riser shaft branches.
- B. Provide duct markers with permanent adhesive on air ducts in the following color codes:
 - 1. Green: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Blue: For return ducts.
 - 4. Red: For exhaust-, outside, or relief air ducts
 - 5. Identify by system tag and type.

- 6. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- C. Locate markers near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Provide tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Mount valve schedule on wall in accessible location in each major equipment room. Provide (2) copies of valve schedules burned to a DVD or memory stick; Word or Excel format.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.7 ADJUSTING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.8 CLEANING

A. Clean faces of mechanical identification devices.

- - - E N D - - -

SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes Testing, Adjusting, & Balancing

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation of AABC agency and personnel, including a sample copy of the AABC "National Performance Guaranty." If not submitted within the timeframe specified, the engineer has the right to choose an AABC agency at the Contractor's expense.
- B. As indicated on the drawings, prior to the start of construction, take traverse air flow readings for each of the main supply and return ducts associated with the existing rooftop unit serving the Great Space as well as measurements at RGD's at the existing spaces surrounding the Great Space, for duplication and re-balance subsequent to the completion of the renovations.
- C. Examination Report: Provide a summary report of the examination review required in Section 3.1, if issues are discovered that may preclude the proper testing and balancing of the systems.

1.4 ACTION SUBMITTALS

A. Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems." NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems." SMACNA's TABB "HVAC Systems - Testing, Adjusting, and Balancing." TAB firm's forms approved by Architect. TABB "Contractors Certification Manual."

1.5 QUALITY ASSURANCE

A. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper T&B of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Note the locations of devices that are not accessible for testing and balancing.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that are properly separated from adjacent areas.
- E. Examine equipment performance data including fan and pump curves.
- F. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, clean permanent filters are installed, and equipment with functioning controls is ready for operation.
- G. Examine terminal units and verify that they are accessible and their controls are connected, configured by the controls contractor, and functioning.
- H. Examine strainers to verify that startup screens have been replaced with permanent screens and that all strainers have been cleaned.
- I. Examine control valves for proper installation and function.
- J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- K. Examine air vents to verify that mechanical contractor has removed all air from all hydronic systems.

3.2 PREPARATION

- A. Prepare a T&B plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Prepare system-readiness checklists, as described in the "AABC National Standards for Total System Balance," for use by systems installers in verifying system readiness for T&B. These shall include, at a minimum, the following:

1. Airside:

- a. Ductwork is complete with terminals installed.
- b. Volume and life-safety dampers are open and functional.
- c. Clean filters are installed.
- d. Fans are operating, free of vibration, and rotating in correct direction.
- e. Variable-frequency controllers' start-up is complete and safeties are verified.
- f. Automatic temperature-control systems are operational.
- g. Ceilings are installed.
- h. Windows and doors are installed.
- Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.
- B. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- C. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain approved submittals and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare single-line schematic diagram of systems for the purpose of identifying HVAC components.
- C. For variable-air-volume systems, develop a plan to simulate diversity.

- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check condensate drains for proper connections and functioning.
- H. Check for proper sealing of air-handling-unit components.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside air, return air and relief air dampers for proper position that simulates minimum outdoor air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report any artificial loading of filters at the time static pressures are measured.
 - 3. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.

- Adjust sub-main and branch duct volume dampers for specified airflow.
- 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air outlets and inlets for each space to indicated airflows
 - Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure airflow at all inlets and outlets.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after all have been adjusted.
- D. Verify final system conditions.
 - Re-measure and confirm minimum outdoor air, return and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust, if necessary. Measure and record all operating data.
 - 6. Record final fan-performance data.

3.6 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Minimum Outside Air: Zero to plus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.7 FINAL TEST & BALANCE REPORT

- A. The report shall be a complete record of the HVAC system performance, including conditions of operation, items outstanding, and any deviations found during the T&B process. The final report also provides a reference of actual operating conditions for the owner and/or operations personnel. All measurements and test results that appear in the reports must be made on site and dated by the AABC technicians or test and balance engineers.
- B. The report must be organized by systems and shall include the following information as a minimum:

- 1. Title Page:
 - a. Company address
 - b. Company telephone number
 - c. Project identification number
 - d. Location
 - e. Project Architect
 - f. Project Engineer
 - g. Project Contractor
 - h. Project number
 - i. Date of report
- 2. Table of Contents.
- 3. AABC National Performance Guaranty.
- 4. Report Summary:
 - a. The summary shall include a list of items that do not meet design tolerances, with information that may be considered in resolving deficiencies.
- 5. Instrument List:
 - a. Type.
 - b. Manufacturer.
 - c. Model.
 - d. Serial Number.
 - e. Calibration Date.
- 6. T&B Data: Provide test data for specific systems and equipment as required by the most recent edition of the "AABC National Standards."

- - - E N D - - -

SECTION 23 07 00

MECHANICAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 7 for firestopping materials and requirements for penetrations through fire and smoke barriers.
 - 2. Division 23 Section "Common Work Results for Mechanical"
 - 3. Division 23 Section "Hangers and Supports for Piping and Equipment" for pipe insulation shields and protection saddles.
 - 4. Division 23 Section "Metal Ducts" for duct liner.
 - 5. Division 23 Section "Heat Tracing for Piping"

1.2 SUMMARY

A. This Section includes insulation and related components.

1.3 ACTION SUBMITTALS

A. Product Data: Identify thermal conductivity, Greenguard Certification, thickness, and jackets (both factory and field applied, if any), for each type of product indicated. For adhesives and sealants, provide documentation including printed a statement of VOC content.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the U.S. Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
- C. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less. Insulation Installed Outdoors:

Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.
- B. All of the insulation materials and accessories covered by this specification shall be delivered to the job site and stored in a safe, dry place with appropriate labels and/or other product identification.
- C. Store tapes, adhesives, mastics, cements, and insulation materials in ambient conditions in accordance with the recommendations of the manufacturer.
- D. Follow manufacturer's recommended handling practices.
- E. The contractor shall use whatever means are necessary to protect the insulation materials and accessories before, during, and after installation. No insulation material shall be installed that has become damaged in any way. The contractor shall also use all means necessary to protect work and materials installed by other trades.
- F. Fiber Glass and Mold: Contractor shall take precaution to protect insulation. Any fiber glass insulation that becomes wet or torn should be replaced at no additional cost. Air handling insulation used in the air stream must be discarded if exposed to water.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields. Coordinate clearance requirements with other trades for insulation application.
- B. Schedule insulation application after testing systems. Insulation application may begin on segments of systems that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Certainteed
 - 2. Knauf
 - 3. Owens-Corning
 - 4. John Mansville
 - 5. Armstrong

- 6. Aeroflex USA
- 7. Nomaco K-Flex
- 8. Pabco.

2.2 PIPING INSULATION MATERIALS

A. General

- Supply fiber glass products that have achieved GREENGUARD Children & Schools Certification.
- 2. Surface Burning Characteristics: Insulation and related materials shall have surface burning characteristics determined by test performed on identical products per ASTM E 84 mounted and installed as per ASTM E 2231. All testing shall be performed by a testing and inspecting agency acceptable to authorities having jurisdiction. Insulation, jacket materials, adhesives, mastics, tapes and cement material containers shall be labeled with appropriate markings of applicable testing and inspecting agency. Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 3. Supply fiber glass products that are manufactured using a certified 25 % minimum recycled content.
- B. Provide thermal hanger shields as specified in Section 23 05 29 "Hangers and Supports for Piping and Equipment".

C. Glass Fiber:

- 1. Knauf 1000° Pipe Insulation with ECOSE Technology meeting ASTM C547 Type IV Grade A, ASTM C585, and ASTM C795; rigid, molded, noncombustible per ASTM E136; k value: ASTM C335, 0.23 at 75°F mean temperature. Maximum Service Temperature: 1000°F, or Johns Manville's Micro-Lok® HP meeting ASTM C547, Type I, maximum service temperature of 850°F meeting the other requirements. Vapor Retarder Jacket: ASJ/SSL conforming to ASTM C1136 Type I, secured with self-sealing longitudinal laps and butt strips.
- 2. PVC Fitting Covers: The Proto Fitting Cover System or Johns Manville Zeston® polyvinyl chloride (PVC) parts shall consist of one piece and two piece pre-molded high impact UV-resistant PVC fitting covers with fiberglass inserts and accessories, which include elbows, tee/valves, end caps, mechanical line couplings, and specialty fittings. Fittings shall be made of Zeston® or LoSMOKE® grade PVC, 25/50 rated per ASTM E-84. Thermal Value of fiberglass insert: K value of 0.26 at 75°F; resistance to fungi and bacteria. (ASTM G 21, ASTM G 22): does not promote growth of fungi or bacteria.
- D. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- 3. Materials shall have a maximum thermal conductivity of 0.27 Btu-in/h-ft2- °F at a 75°F mean temperature when tested in accordance with ASTM C 177 or ASTM C 518, latest revisions.
- 4. Materials shall have a maximum water vapor transmission of 0.08 perm-inches when tested in accordance with ASTM E 96, Procedure-A, latest revision.
- 5. Materials shall have a flame spread index of less than 25 and a smoke developed index of less than 50 when tested in accordance with ASTM E 84, latest revision.
- 6. Provide Armaflex WB finish for outdoor exposed piping.
- E. Closed Cell Pipe Insulation: Pittsburgh Corning Foamglas, or approved equal; a lightweight, rigid insulating material composed of millions of completely sealed glass cells, each an insulating space. ASTM C 552-00 "Specification for Cellular Glass Thermal Insulation" operating temperatures from -450°F to +900°F; water permeability 0.00 perm-inch.
- F. Pipe & Tank Insulation: Glass Fiber, Knauf with ECOSE Technology or equivalent; semi-rigid, limited combustible meeting requirements of NRC 1.36; ASTM C 795 and MIL-I-24244 C; k value: ASTM C 177, 0.25 at 75°F mean temperature. Maximum Service Temperature: 850°F. Compressive Strength: not less than 150 PSF @ 10% deformation for 2 inch thickness per ASTM C 165. Vapor Retarder Jacket: ASJ conforming to ASTM C 1136 Type II. Johns Manville Micro-Flex® Large Diameter Pipe and Tank Wrap meeting ASTM C1393, Type III. Limited combustible meeting k value: ASTM C 177, 0.25 at 75°F mean temperature. Maximum Service Temperature: 850°F. Compressive Strength: not less than 150 PSF @ 10% deformation for 2 inch thickness per ASTM C 165. Vapor Retarder Jacket: ASJ conforming to ASTM C 1136 Type II
- G. Removable/reusable Insulation Blankets: Auburn Manufacturing EverGreen Cut 'n Wrap, or approved equal; engineered insulating composite with a fiberglass inner core and high-performance polymer coated woven glass fiber fabric outer layer on both sides. Kits contain a 4'x 8' modularized blanket rated to 500°F and a roll of double sided hook and loop fastener making onsite fabrication of removable/reusable insulation blankets quick and easy. Up to 500°F; Weight, oz/ft2 7.65; Effective Thickness, in. 1.25 ± 0.25; Surface Burning Characteristics: Does not exceed 25 Flame Spread, 50 Smoke Developed when tested in accordance with ASTM E-84. Materials shall have a maximum thermal conductivity of 0.372 Btu-in/h-ft2- °F at a 100°F mean temperature when tested in accordance with ASTM C335.

2.3 FIELD-APPLIED JACKETS FOR PIPING

- A. General: ASTM C 921, Type 1, unless otherwise indicated.
- B. PVC: Johns Manville's Zeston® PVC fittings, jacketing, and accessories or Proto Corporation 25/50 or Indoor/Outdoor, UV-resistant fittings,

jacketing and accessories, white. Fitting cover system consists of pre-molded, high-impact PVC materials with fiber glass inserts. Fiber glass insert has a thermal conductivity (k value) of 0.26 at 75° F mean temperature. Closures: stainless steel tacks, matching PVC tape, or PVC adhesive per manufacturer's recommendations.

- C. Aluminum Jacket: Factory cut and rolled to required size. Comply with ASTM B 209, 3003 alloy, and H-14 temper. Finish and Thickness: Corrugated finish, 0.010 inch thick. Moisture Barrier: 1-mil- thick, heat-bonded polyethylene and Kraft paper. Elbows: Preformed, 45- and 90-degree, short- and long-radius elbows; same material, finish, and thickness as jacket.
- D. Stainless-Steel Jacket: ASTM A666, Type 304 or 316; 0.10 inch thick; and factory cut and rolled to required size. Moisture Barrier: 3-mil-thick, heat-bonded polyethylene and Kraft paper. Elbows: Gore type, for 45- and 90-degree elbows in same material, finish, and thickness as jacket. Jacket Bands: Stainless steel, Type 304, 3/4 inch wide.

2.4 DUCTWORK INSULATION MATERIALS

- A. Flexible Fiber Glass Blanket: Glass Mineral Wool Blanket Insulation: Glass Mineral Wool bonded with a bio-based thermosetting resin. Comply with ASTM C 553, Types I, II, and III, ASTM C 1136 Type II, and ASTM C 1290, Type III. UL/ULC Classified per UL 723 for FSK, FHC 25/50 per ASTM E 84 for PSK only.
 - 1. Factory-applied jacket: ASJ: White, kraft paper, fiberglass reinforced scrim with aluminum foil backing; complying with ASTM C 1136, Type I.
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide Knauf Insulation; Atmosphere Duct Wrap.
 - 1. Density: 1.5 PCF
 - 2. R-Value: R6.1 for 1-1/2" thick blanket.
- B. Rigid Fiber Glass Board: Johns Manville's 817 Series Spin-Glas® or Knauf Insulation Board with ECOSE Technology meeting ASTM C 612 Type IA and IB; rigid. Maximum Service Temperature: 450°. Density: Minimum 3.0 PCF; R4.2 per inch. Vapor Retarder Jacket: ASJ conforming to ASTM C1136 Type I, or FSK or PSK conforming to ASTM C1136 Type II in combination with protective jacket where necessary.

2.5 ACCESSORY MATERIALS

- A. Accessory materials installed as part of insulation work under his section shall include (but not be limited to):
 - Closure Materials Butt strips, bands, wires, staples, mastics, adhesives; pressure-sensitive tapes.
 - 2. Adhesive: As recommended by insulation material manufacturer.

 Materials shall be compatible with insulation materials, jackets,
 and substrates and for bonding insulation to itself and to
 surfaces to be insulated

- Support Materials Hanger straps, hanger rods, saddles, support rings
- B. All accessory materials shall be installed in accordance with manufacturer's instructions.
- C. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION & PREPARATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application. Verify that systems to be insulated have been tested and are free of defects. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. Before starting work under this section, carefully inspect the site and installed work of other trades and verify that such work is complete to the point where installation of materials and accessories under this section can begin.
- D. Ensure that all pipe and fitting surfaces over which insulation is to be installed are clean and dry. Ensure that insulation is clean, dry, and in good mechanical condition with all factory-applied vapor or weather barriers intact and undamaged. Wet, dirty, or damaged insulation shall not be acceptable for installation. Ensure that pressure testing of piping and fittings has been completed prior to installing insulation.

3.2 GENERAL APPLICATION REQUIREMENTS

- A. Provide insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout, including the length of ducts and fittings, valves, and specialties.
- B. Provide insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each system as specified in insulation system schedules.
- C. Provide accessories compatible with insulation materials and suitable for the service. Provide accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Provide insulation with longitudinal seams at top and bottom of horizontal pipe runs and equipment.

- E. Provide multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- H. Keep insulation materials dry during application and finishing.
- I. Provide insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- J. Provide insulation over fittings, valves, and specialties, with continuous thermal and least number of joints practical.
- K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - Install insulation continuously through hangers and specialties around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Provide insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

- O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PIPE AND DUCTWORK PENETRATIONS

- A. Insulation Installation at Roof or Aboveground Exterior Wall Penetrations: Install insulation continuously through penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof/wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof/wall flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof/wall flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Penetrations:
 - 1. Pipe or duct penetrations (no fire damper): Install insulation continuously through penetrations of fire-rated walls and partitions. Comply with requirements in Division 7 for firestopping and fire-resistive joint sealers.

3.4 INSTALLATION OF PIPING INSULATION

- A. Metal shields shall be installed between hangers or supports and the piping insulation. Provide in accordance with Section 23 05 29.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt

- each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- C. Insulate instrument connections for specialties (examples: thermometers, sensors, etc.) on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at fittings and equipment that require servicing and locations with service requirements.
- E. Locate seams in the least visible location.
- F. Insulation installed on piping operating below ambient temperatures must have a continuous vapor retarder. All joints, seams and fittings must be sealed. On systems operating above ambient, the butt joints should not be sealed.

G. Flexible Elastomeric Insulation

- 1. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- 2. Insulation Installation on Pipe Flanges: Install pipe insulation to outer diameter of pipe flange. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- 3. Insulation Installation on Pipe Fittings and Elbows: Install mitered sections of pipe insulation. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- 4. Insulation Installation on Valves and Pipe Specialties: Install preformed valve covers manufactured of same material as pipe insulation when available. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. Install insulation to flanges as specified for flange insulation application. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- 5. After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating. Prior to applying the finish, the insulation shall be wiped clean with denatured alcohol. The finish shall not be tinted. To insure good adhesion, the temperature should be above 50 °F during application and drying. Outdoor exposed piping shall have the seams located on the lower half of the pipe.
- 6. Outdoor exposed piping shall be painted with two coats of Armaflex WB Finish. Prior to applying the Finish, the insulation shall be wiped clean with denatured alcohol. The Finish shall not be tinted. Outdoor exposed piping shall have the seams located on the lower half of the pipe.

3.5 INSTALLATION OF DUCTWORK INSULATION

- A. Flexible Fiberglass Blanket Insulation Installation:
 - 1. Secure with adhesive and insulation pins.
 - 2. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 3. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 4. Firmly butt all joints.

- 5. Where vapor retarder performance is required, all penetrations and damage to the facing shall be repaired using pressure-sensitive tape matching the facing, or mastic prior to system startup. Pressure-sensitive tapes shall be a minimum 3 inches wide and shall be applied with moving pressure using a squeegee or other appropriate sealing tool. Closure shall have a 25/50 Flame Spread/Smoke Developed Rating per UL 723. The longitudinal seam of the vapor retarder must be overlapped a minimum of 2 inches.
- 6. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Insulation shall be additionally secured to the bottom of rectangular ductwork over 24 inches wide using mechanical fasteners on 18-inch centers. Care should be exercised to avoid over-compression of the insulation during installation.
 - d. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - e. Do not over-compress insulation during installation. Install Duct Wrap using manufacturer's stretch-out tables to obtain specified R-value using a maximum compression of 25%.
 - f. Impale insulation over pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 7. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 8. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 9. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over-compress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flatoval duct elbows with individually mitered gores cut to fit the elbow.
- 5. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- C. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or fieldapplied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - 1. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - 2. Install vapor stops for ductwork and plenums operating below 50°F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- D. Fire-rated insulation system installation: Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating. Insulate duct access panels and doors to achieve same fire rating as duct.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturers recommended adhesive. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

- A. Pipe Insulation with ASJ, Glass-Cloth, or other paintable jacket material: Paint jacket with paint system identified below and as specified in Division 9.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.8 FIELD QUALITY CONTROL

- A. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION APPLICATION SCHEDULE

- A. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements. For piping systems not indicated, insulate to with a similar thickness and type as those specified.
- B. All cold surfaces that may "sweat" must be insulated. Vapor barrier must be maintained, insulation shall be applied with a continuous, unbroken moisture and vapor seal. All hangers, supports, anchors, or other projections that are secured to cold surfaces shall be insulated and vapor sealed to prevent condensation.

- C. For above-ambient services, do not install insulation to the following: testing agency labels and stamps, nameplates, and cleanouts.
- D. Insulation thicknesses and installations shall meet or exceed the requirements of the local energy code, or thicknesses indicated, whichever is of superior insulating performance. If piping type is omitted from list below, provide insulation per energy code or as per similar duty.
- E. Provide PVC jackets in the following locations:
 - 1. Exposed vertical piping in finished spaces.
- F. Rainwater conductors: Glass Fiber, 1" thickness. Provide for all horizontal piping and any vertical piping within 10 feet of the roof drain. Alternative: Roof drain bowls may be insulated with 2" of closed-cell spray-foam provided by Division 7. Coordinate with Division 7.
- G. Roof Drain Bodies: Flexible Elastomeric, ½" thickness.
- H. AC pan drain or other cold drain piping: Flexible Elastomeric, ½" thickness. Or provide pre-insulated hose as specified in 238130.
- I. Refrigerant suction or hot gas piping: Flexible Elastomeric, 1.5" thickness.
- J. Ductless split: ½" Armaflex for liquid and gas piping. Coordinate with Section 23 81 30, insulated line kits may be furnished.
- K. Low Pressure (115 psig/250°F and cooler) Steam and condensate; pumped condensate, boiler feed water, vents for PRV safety valves receivers and flash tanks, and related hot pipes.
 - 1. Pipe size 1-1/4" and less: Glass Fiber; 2.5" thickness.
 - 2. Pipe size 4" and larger: Glass Fiber; 3" thickness.
 - 3. In hot piping: Unions, flexible connectors, control valves, PRV's, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 3/4 inch and smaller. Insulate piping to within approximately ½ inch of un-insulated items.

3.10 DUCT SYSTEM APPLICATIONS

- A. Insulation materials and thicknesses are specified in schedules at the end of this Section. For duct systems not indicated, insulate to with a similar thickness and type as those specified.
- B. Insulation thicknesses and installations shall meet or exceed the requirements of the local energy code, or thicknesses indicated, whichever is of superior insulating performance.
- C. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:

- 1. Metal ducts with duct liner.
- 2. Factory-insulated flexible ducts.
- 3. Factory-insulated plenums, casings, and access doors.
- 4. Flexible connectors.

3.11 DUCT AND PLENUM APPLICATION SCHEDULE

- A. Supply Ducts: Flexible Fiber Glass Blanket;
 - 1. Located within the conditioned space (above ceilings, mechanical rooms, concealed, etc.) not directly served by that ductwork: Flexible Fiber Glass Blanket; 1.5" thickness.
 - 2. Exposed to Conditioned Space: None
- B. ERU or DOAS Ductwork:
 - 1. SA between ERU and duct heating coil: Yes, R-6.1, 1.5" thickness.
 - 2. SA after heating coil: None.
 - 3. RA: None
 - 4. EA: Yes, see below.
 - 5. OA: Yes, see below.
- C. Outside air intake ducts and plenums between the OA intake and the air handling unit: Flexible Fiber Glass Blanket; R-12, 3" thickness.
- D. Relief, or exhaust ducts and plenums between the OA intake and the air handling unit: Flexible Fiber Glass Blanket; R-8.2, 2" thickness.
- E. Return ducts within conditioned space: None required.

- - - E N D - - -

SECTION 23 09 00

DIRECT DIGITAL CONTROL (DDC) SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

- A. Provide all labor, materials, equipment, and service necessary for a complete and operating building automation system.
- B. Provide all labor, materials, equipment, and service necessary for an extension of the existing/addition to the existing building automation system (Maine Controls) as required for control as outlined herein-refer also the Section 23 09 93-Sequence of Operation. Generally, the controls scope shall include the following:
 - Operation of the ERV units, including start/stop, status alarm, MOD operation, and duct heating coil discharge air temperature control
 - 2. Interface with the mini-split heat pump unit controller to monitor space temperature and unit status-refer to Section 23 81 30 Ductless Split-System Air-Conditioning Units
 - 3. Space temperature control at the Vestibule and Stair Tower
 - 4. Start/Stop for CUH's
 - 5. Status alarm for all equipment
 - 6. Steam control valves at CUH's
- C. The Controls Contractor's work shall consist of the provision of all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, project-specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, warranty, specified services and items required by the Contract that are required for the functional turn-key operation of the complete and fully functional Controls Systems. Documents are diagrammatic only. Equipment and labor not specifically referred to herein or on the plans, which are required to meet the functional intent, shall be provided without additional cost to the Owner.
- D. Related Sections include the following:
 - 1. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
 - 2. Division 13 Section "Fire Alarm"
 - 3. Division 23 Section "Common Work Results for Mechanical"
 - 4. Division 23 Sections with controller interfaces shall be integrated with the work of this Section.

5.

- 6. Division 23 Section "Testing, Adjusting, and Balancing"
- 7. Division 26

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product include the following:
 - Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation, operation and maintenance instructions including factors effecting performance.
 - 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
 - 7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

B. Shop Drawings:

- 1. General Requirements:
 - a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 - b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 - c. Prepare Drawings using CAD.
- 2. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.

- e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
- f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
- g. Narrative sequence of operation.
- h. Graphic sequence of operation, showing all inputs and output logical blocks.
- 3. Control panel drawings indicating the following:
 - a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 - b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 - c. Front, rear, and side elevations and nameplate legend.
 - d. Unique drawing for each panel.
- 4. DDC system network riser diagram indicating the following:
 - a. Each device connected to network with unique identification for each.
 - b. Interconnection of each different network in DDC system.
 - c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or fiber-optic cable type. Indicate raceway type and size for each.
 - d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.
- 5. DDC system electrical power riser diagram indicating the following:
 - a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 - c. Each product requiring power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - d. Power wiring type and size, race type, and size for each.
- 6. Monitoring and control signal diagrams indicating the following:
 - a. Control signal cable and wiring between controllers and I/O.
 - b. Point-to-point schematic wiring diagrams for each product.
- 7. Color graphics indicating the following:
 - a. Itemized list of color graphic displays to be provided.
 - b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.

C. System Description:

- 1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
- 2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
- 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Server failure.
 - f. Gateway failure.
 - g. Network failure
 - h. Controller failure.
 - i. Instrument failure.
 - j. Control damper and valve actuator failure.
- 4. Complete bibliography of documentation and media to be delivered to Owner.
- 5. Description of testing plans and procedures.
- 6. Description of Owner training.

1.3 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.
 - 1. In addition to items specified in Division 1, include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to:

- Design and install new points, panels, and other hardware.
- 2) Perform preventive maintenance and calibration.
- 3) Debug hardware problems.
- 4) Repair or replace hardware.
- h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
- i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
- j. List of recommended spare parts with part numbers and suppliers.
- k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
- 1. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
- m. Licenses, guarantees, and warranty documents.
- n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
- o. Owner training materials.

1.4 QUALITY ASSURANCE

- A. All products used in this project installation shall be new and currently under manufacture and shall have been applied in similar installations for a minimum of two years. This installation shall not be used as a test site for any new products unless explicitly approved by the owner's representative in writing. Spare parts shall be available for at least five years after completion of this contract.
- B. All work described in this section shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work and in the regular employment of the temperature control system manufacturer. Use only employees who are qualified, skilled, experienced, manufacturer trained and familiar with the specific equipment, software and configurations to be provided for this Project.
- C. Provide a complete, neat and workmanlike installation.
- D. All work, materials, and equipment shall comply with the rules and regulations of all codes and ordinances of the local, state, and federal authorities. Such codes, when more restrictive, shall take precedence over these plans and specifications.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- F. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilation Systems."
- G. Comply with ASHRAE 135 for DDC system control components.
- H. The contractor shall protect all work and material from damage by his/her work or employees. The contractor shall be responsible for his/her work and equipment until finally inspected, tested, and accepted. The contractor shall protect any material that is not immediately installed. The contractor shall close all open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

1.5 CONTRACTOR QUALIFICATIONS

- A. Qualified Bidders: System shall be as manufactured, installed and serviced by:
 - 1. Schneider Electric I/A, (Maine Controls)
- B. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- C. The above list of manufacturers applies to operator workstation software, controller software, the custom application programming language, and controllers. All other products specified herein (e.g., sensors, valves, dampers, and actuators) need not be manufactured by the above manufacturers.
- D. Longevity: The Facilities Management System contractor shall have a minimum of ten years experience installing, and servicing computerized Building Automation Systems (BAS). All subcontractors utilized by the BAS contractor shall have a minimum of five-year experience within their appropriate trades.
- E. Past Projects: The BAS contractor shall have completed a minimum of ten projects within the last five years that are at least equal in dollar value and scope to this project. A list of similar projects, dollar volume, scope, contact name and contact number shall be provided by the BAS contractor if asked for by the owner.
- F. Personnel, Coverage and Response Capabilities: The BAS contractor shall have a minimum of ten full time electronic service personnel within a 120 mile radius of the project location. One of the five full time electronic service personnel must work within a 60-mile radius of the project location.
- G. The BAS contractor shall have an established 24-hour emergency service organization. A dedicated telephone number shall be provided to the owner for requesting emergency service. A maximum of four hour, electronic service technician on sight, response time shall be guaranteed by the BAS contractor.

H. Parts Stocking: The BAS contractor shall have an independently verifiable inventory of electronic service parts. This electronic service parts inventory must have a worth of at least \$100,000 per year over the last five years.

1.6 COORDINATION

- A. Where the mechanical work will be installed in close proximity to, or will interfere with, work of other trades, the contractor shall assist in working out space conditions to make a satisfactory adjustment. If the contractor installs his/her work before coordinating with other trades, so as to cause any interference with work of other trades, the contractor shall make the necessary changes in his/her work to correct the condition.
- B. Coordinate details of telephone line, internet service provider, and associated requirements.
- C. Coordinate and schedule work with all other work in the same area, or with work that is dependent upon other work, to facilitate mutual progress.
- D. Coordinate location of thermostats and other exposed control sensors with plans and room details before installation.
- E. Coordination with controls specified in other sections or divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the controls system specified in this section. These controls shall be integrated into the system and coordinated by the contractor.
- F. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to unit manufacturer.
- G. Sheet Metal Subcontractor:
 - 1. Installation of duct-mounted control devices.
 - 2. Access doors where indicated and as required for proper servicing.

H. HVAC Contractor:

- Installation of immersion wells and sockets, along with associated shut-off cocks.
- 2. Installation of pipe-mounted control devices.
- I. Testing and Balancing Contractor:
 - The contractor shall furnish a single set of all tools necessary to interface to the control Alsystem for test and balance purposes.
 - 2. The contractor shall provide training in the use of these tools. This training will be planned for a minimum of 4 hours.

- 3. In addition, the contractor shall provide a qualified technician to assist in the test and balance process, until the first 20 terminal units are balanced.
- 4. The tools used during the test and balance process shall be returned at the completion of the testing and balancing.
- J. Electrical Subcontractor: Complying with the principle of "unit responsibility" all electrical work for automatic controls, except as otherwise specified, or shown on the electrical drawings shall be included in Division 23. Electrical work shall, in general, comply with the following, unless otherwise directed by Division 26:
 - 1. Power wiring.
 - 2. All control wiring shown on electric plans such as unit heater line-voltage room thermostats.
 - 3. Duct smoke detectors required for air handler shutdown are supplied under Division 26. Coordinate required length of sampling tube, for full span of ductwork. The contractor shall connect the DDC system to the auxiliary contacts provided on the smoke detector for system safeties and to provide alarms to the DDC system.
 - 4. All electrical work shall comply with the N.E.C. and local electrical codes.
 - 5. All safety devices shall be wired through both hand and auto positions of motor starting device to insure 100% safety shutoff.
 - 6. The motor starter supplier shall provide auxiliary contacts as required for interlock by BAS Contractor; the supplier shall estimate an allowance of at least one auxiliary contract per starter.
- K. Coordinate with controls specified in other sections of divisions. Other sections and/or divisions of this specification include controls and control devices that are to be part of or interfaced to the control system specified in this section. These controls shall be integrated into the system and coordinated by the BAS contractor as follows:
 - 1. All communication media and equipment shall be provided as specified hereinafter.
 - 2. Each supplier of a control product is responsible for the configuration, programming, start-up, and testing of that product to meet the sequences of operation described in this section.
 - 3. The BAS contractor shall coordinate and resolve any incompatibility issues that arise between the control products provided under this section and those provided under other sections or divisions of this specification.
 - 4. The BAS contractor is responsible for providing all controls described in the contract documents regardless of where within the contract documents these controls are described.
 - 5. The contractor is responsible for the interface of control products provided by multiple suppliers regardless of where this interface is described within the contract documents.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. System Software: Update to latest version of software at Project completion.

1.8 WARRANTY

- A. Refer to Division 1 Requirements.
- B. At the end of the final start-up, testing, and commissioning phase, if equipment and systems are operating satisfactorily to the engineer, the engineer shall sign certificates certifying that the control system's operation has been tested and accepted in accordance with the terms of this specification. The date of acceptance shall be the start of warranty. All work shall have a single warranty date, even when the owner has received beneficial use due to an early system start-up.
- C. All components, system software, and parts supplied by the BAS contractor shall be guaranteed against defects in materials and workmanship for one year from acceptance date. The BAS contractor at no charge shall furnish Labor to repair, reprogram, or replace components during the warranty period. All corrective software modifications made during warranty periods shall be updated on all user documentation and on user and manufacturer archived software disks. The Contractor shall respond to the owner's request for warranty service within 24 hours during normal business hours.
- D. Provide remote service diagnostic monitoring from the nearest service location. At the request of the owner, a service diagnostic call will be made to troubleshoot and resolve (if possible) any reported system complaints. The owner will provide a dedicated telephone line for connection to the system.
- E. Operator workstation software, project-specific software, graphic software, database software, and firmware updates that resolve known software deficiencies as identified by the contractor shall be provided at no charge during the warranty period. Any upgrades or functional enhancements associated with the above-mentioned items also can be provided during the warranty period for an additional charge to the owner by purchasing an in-warranty service agreement from the contractor. Written authorization by the owner must, however, be granted prior to the installation of any of the above-mentioned items.

PART 2 - PRODUCTS

2.1 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and

- operator interface communication shall conform to ${\tt ANSI/ASHRAE}$ Standard 135, ${\tt BACnet}$.
- B. Install new wiring and network devices as required to provide a complete and workable control network.
- C. Each controller shall have a communication port for temporary connection to a laptop computer or other operator interface. Connection shall support memory downloads and other commissioning and troubleshooting operations.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
- E. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, and control algorithms shall be viewable and editable from each internetwork controller.
- F. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute control strategies specified in Section 23 09 93. An authorized operator shall be able to edit cross-controller links by typing a standard object address or by using a point-and-click interface.
- G. Workstations, Building Control Panels, and Controllers with real-time clocks shall use the BACnet Time Synchronization service. System shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight saving and standard time as applicable.
- H. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring.

2.2 DDC EQUIPMENT

- A. Communication. Web server or workstation and controllers shall communicate using BACnet protocol. Web server or workstation and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ANSI/ASHRAE 135, BACnet Annex J.
- B. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.

- 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:

- a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
- b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
- c. Chiller Control Programs: Control function of condenserwater reset, chilled-water reset, and equipment sequencing.
- d. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
- e. Remote communications.
- f. Maintenance management.
- g. Units of Measure: Inch-pound and SI (metric).
- 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
- 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- 6. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- C. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.

- 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- 5. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- D. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA).
 - 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
 - 7. Universal I/Os: Provide software selectable binary or analog outputs.
- E. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- F. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.3 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 - 1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.

- 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms. Perform scheduling with real-time clock. Perform automatic system diagnostics; monitor system and report failures.
- 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
- 4. LonWorks Compliance: Communicate using EIA/CEA 709.1 datalink/physical layer protocol using LonTalk protocol.
- 5. Enclosure: Dustproof rated for operation at 32 to 120 deg F.

2.4 SENSING DEVICES

- A. Where feasible, provide the same sensor type throughout the project. Avoid using transmitters unless absolutely necessary.
- B. Thermistors: Precision thermistors may be used in applications below 200 degrees F. Sensor accuracy over the application range shall be 0.36 degree F or less between 32 to 150 degrees F. Stability error of the thermistor over five years shall not exceed 0.25 degree F cumulative. A/D conversion resolution error shall be kept to 0.1 degree F. Total error for a thermistor circuit shall not exceed 0.5 degree F.
- C. Resistance Temperature Detectors (RTDs): Provide RTD sensors with platinum elements compatible with the digital controllers. Encapsulate sensors in epoxy, series 300 stainless steel, anodized aluminum, or copper. Temperature sensor accuracy shall be 0.1 percent (1 ohm) of expected ohms (1000 ohms) at 32 degrees F. Temperature sensor stability error over five years shall not exceed 0.25 degree F cumulative. Direct connection of RTDs to digital controllers without transmitters is preferred. When RTDs are connected directly, lead resistance error shall be less than 0.25 degrees F. The total error for a RTD circuit shall not exceed 0.5 degree F.
- D. Temperature Sensor Details
 - 1. Room Type: Provide the sensing element components within a decorative protective cover suitable for surrounding decor.
 - a. Provide room temperature sensors with:
 - 1) Timed override button
 - 2) Setpoint adjustment lever or knob.
 - 3) Override switch.
 - 4) Digital temperature display.
 - 5) Insulating Bases: For temperature sensors/thermostats located on exterior walls.
 - 6) Guards: Locking; heavy-duty, transparent plastic; mounted on separate base.

- b. Provide a communication port or 802.11x wireless support for a portable operator interface like a notebook computer or PDA.
- 2. Duct Probe Type: Ensure the probe is long enough to properly sense the air stream temperature.
- 3. Duct Averaging Type: Continuous averaging sensors shall be one foot in length for each 4 square feet of duct cross-sectional area, and a minimum length of 6 ft.
- 4. Pipe Immersion Type: Provide minimum three-inch immersion. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel when used in steel piping, and brass when used in copper piping. Provide the sensor well with a heat-sensitive transfer agent between the sensor and the well interior.
- 5. Outside Air Type: Provide the sensing element on the building's north side with a protective weather shade that positions the sensor approximately 3 inches off the wall surface, does not inhibit free air flow across the sensing element, and protects the sensor from snow, ice, and rain.
- E. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.
- F. Transmitters: Provide transmitters with 4 to 20 mA or 0 to 10 VDC linear output scaled to the sensed input. Transmitters shall be matched to the respective sensor, factory calibrated, and sealed. Size transmitters for an output near 50 percent of its full-scale range at normal operating conditions. The total transmitter error shall not exceed 0.1 percent at any point across the measured span. Supply voltage shall be 12 to 24 volts AC or DC. Transmitters shall have non-interactive offset and span adjustments. For temperature sensing, transmitter drift shall not exceed 0.03 degrees F a year.
- G. Current Transducers: Provide current transducers to monitor motor amperage, unless current switches are shown on design drawings or point tables.
- H. Input Switches
 - 1. Timed Local Overrides: Provide buttons or switches to override the DDC occupancy schedule programming for each major building zone during unoccupied periods, and to return HVAC equipment to the occupied mode. This requirement is waived for zones clearly intended for 24 hour continuous operation.

2.5 OUTPUT HARDWARE

- A. Motorized control dampers, unless otherwise specified elsewhere, shall be as follows:
 - 1. Submittals shall include leakage, maximum airflow and maximum pressure ratings based on AMCA Publication 500. Dampers shall meet the leakage requirements of the International Energy

- Conservation Code by leaking less than 3 cfm/sq. ft. at 1" of static pressure and shall be AMCA licensed as Class 1A. Dampers shall be Ruskin model CD60, or approved equal.
- 2. Control dampers shall be the parallel or opposed blade type as follows: Outdoor and/or return air mixing dampers shall be parallel blade, arranged to direct airstreams toward each other. Other modulating dampers shall be the opposed blade type. Two-position shutoff dampers may be parallel or opposed blade type with blade and side seals.
- 3. Frame: 5 inches x minimum 16 gage roll formed, galvanized steel hat-shaped channel, reinforced at corners. Structurally equivalent to 13 gage U-channel. Damper blades shall not exceed 8 inches in width or 48 inches in length. Blades shall be suitable for medium velocity performance 2000 fpm. Blades shall be not less than 16-gauge.
- 4. Bearings shall be corrosion resistant, permanently lubricated stainless steel sleeve type turning in an extruded hole in the damper frame.
- 5. All blade edges, top, and bottom of the frame shall be provided with replaceable butyl rubber or neoprene seals. Side seals shall be spring-loaded stainless steel.
- 6. Individual damper sections shall not be larger than 48 in. \times 60 in. Provide a minimum of one damper actuator per section.
- 7. Modulating dampers shall provide a linear flow characteristic where possible.
- 8. Dampers shall have exposed linkages. Dampers over 48" in applications where sectioning is not applicable shall be supplied with a jackshaft to provide sufficient force throughout the intended operating range.
- B. Electronic damper/valve actuation shall be provided.
 - 1. Manufactured, brand labeled or distributed by BELIMO, or approved equal.
 - 2. Size for torque required for damper seal at load conditions.
 - 3. Coupling: V-bolt dual nut clamp with a V-shaped, toothed cradle.
 - 4. Mounting: Actuators shall be capable of being mechanically and electrically paralleled to increase torque if required.
 - 5. Overload protected electronically throughout rotation.
 - 6. Fail-Safe Operation: Mechanical, spring-return mechanism.
 - 7. Proportional Actuators shall be fully programmable through an EEPROM without the use of actuator mounted switches.
 - 8. Proportional actuators shall have an external, built-in switch to allow the reversing of direction of rotation.
 - 9. Proportional actuators shall accept a 0 to 10 VDC or 0 to 20 mA control signal and provide a 2 to 10 VDC or 4 to 20 mA operating range. An actuator capable of accepting a pulse width modulating control signal and providing full proportional operation of the damper is acceptable. All actuators shall provide a 2 to 10 VDC position feedback signal.
 - 10. Temperature Rating: -22 to +122°F -30 to +50°C [-58 to +122°F -50 to +50°C]
 - 11. Housing: Minimum requirement NEMA type 2 mounted in any orientation. .
 - 12. Agency Listings: ISO 9001, cULus, CE or CSA

- 13. The manufacturer shall warrant all components for a period of 5 years from the date of production, with the first two years unconditional.
- C. Control Valves: Control valves shall be two-way or three-way type for two-position or modulating service as shown.
 - 1. Close-off (differential) Pressure Rating: Valve actuator and trim shall be furnished to provide the following minimum close-off pressure ratings:
 - a. Two-way: 150% of total system (pump) head.
 - b. Three-way: 300% of pressure differential between ports A and B at design flow or 100% of total system (pump) head.
 - c. Steam Valves: 150% of operating (inlet) pressure.
 - d. Application:
 - 1) CUH and Convectors: two-way two position, spring open 100%.
 - e. Valves ½ in. through 2 in. shall be bronze body or cast brass ANSI Class 250, spring-loaded, PTFE packing, quick opening for two-position service. Two-way valves to have replaceable composition disc or stainless steel ball.
 - f. Valves 2½ in. and larger shall be cast iron ANSI Class 125 with guided plug and PTFE packing.
 - 2. Steam valves: Body and trim materials shall be in accordance with manufacturer's recommendations for design conditions and service with linear ports for modulating service. Sizing Criteria: Two-position service: pressure drop 10% to 20% of inlet psig. Modulating service: 15 psig or less; pressure drop 80% of inlet of psig. Modulating service: 16 to 50 psig; pressure drop 50% of inlet psig.
- D. Output Switches: Control Relays; Field installed and DDC panel relays shall be double pole, double throw, UL864 listed, with contacts rated for the intended application, indicator light, and dust proof enclosure. The indicator light shall be lit when the coil is energized and off when coil is not energized. Relays shall be the socket type, plug into a fixed base, and replaceable without tools or removing wiring. Encapsulated "PAM" type relays may be used for terminal control applications.

2.6 STATUS SENSORS

- A. Status Inputs for Electric Motors: Veris Hawkeye 908 Series, or approved equal; split-core adjustable current sensors designed to provide accurate, reliable and maintenance-free fan and pump status indication. Comply with ISA 50.00.01, current-sensing split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- B. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

C. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.7 ELECTRICAL POWER AND DISTRIBUTION

- A. Transformers: Transformers shall conform to UL 506. For control power other than terminal level equipment, provide a fuse or circuit breaker on the secondary side of each transformer.
- B. Surge and Transient Protection
 - 1. Provide each digital controller with surge and transient power protection. Surge and transient protection shall consist of the following devices, installed externally to the controllers.
 - 2. Power Line Surge Protection: Provide surge suppressors on the incoming power at each controller or grouped terminal controllers. Surge suppressors shall be rated in accordance with UL 1449, have a fault indicating light, and conform to the following:
 - a. The device shall be a transient voltage surge suppressor, hard-wire type individual equipment protector for 120 VAC/1 phase/2 wire plus ground.
 - b. The device shall react within 5 nanoseconds and automatically reset.
 - c. The voltage protection threshold, line to neutral, shall be no more than 211 volts.
 - d. The device shall have an independent secondary stage equal to or greater than the primary stage joule rating.
 - e. The primary suppression system components shall be pure silicon avalanche diodes.
 - f. The secondary suppression system components shall be silicon avalanche diodes or metal oxide varistors.
 - g. The device shall have an indication light to indicate the protection components are functioning.
 - h. All system functions of the transient suppression system shall be individually fused and not short circuit the AC power line at any time.
 - i. The device shall have an EMI/RFI noise filter with a minimum attenuation of 13 dB at 10 kHz to 300 MHz.
 - j. The device shall comply with IEEE C62.41.1 and IEEE C62.41.2, Class "B" requirements and be tested according to IEEE C62.45.
 - k. The device shall be capable of operating between -20 degrees F and 122 degrees F.
 - 3. Telephone and Communication Line Surge Protection: Provide surge and transient protection for DDC controllers and DDC network related devices connected to phone and network communication lines. The device shall provide continuous, non-interrupting protection, and shall automatically reset after safely eliminating transient surges. The protection shall react within 5 nanoseconds using only solid-state silicon avalanche technology. The device shall be installed at the distance recommended by its manufacturer.

- 4. Controller Input/Output Protection: Provide controller inputs and outputs with surge protection via optical isolation, metal oxide varistors (MOV), or silicon avalanche devices. Fuses are not permitted for surge protection.
- C. Wiring: Provide complete electrical wiring for the DDC System, coordinate line of demarcation with Division 26. Unless indicated otherwise, provide all normally visible or otherwise exposed wiring in conduit. Where conduit is required, control circuit wiring shall not run in the same conduit as power wiring over 100 volts. Circuits operating at more than 100 volts shall be in accordance with Division 26. Run all circuits over 100 volts in conduit, metallic tubing, covered metal raceways, or armored cable. Use plenum-rated cable for circuits under 100 volts in enclosed spaces. Examples of these spaces include HVAC plenums, within walls, attics, or above suspended ceilings.
- D. Power Wiring: The following requirements are for field-installed wiring:
 - Wiring for 24 V circuits shall be insulated copper 18 AWG minimum and rated for 300 VAC service.
 - Wiring for 120 V circuits shall be insulated copper 14 AWG minimum and rated for 600 VAC service.
- E. Analog Signal Wiring: Field-installed analog signal wiring shall be 18 AWG single or multiple twisted pair. Each cable shall be 100 percent shielded and have a 20 AWG drain wire. Each wire shall have insulation rated for 300 VAC service. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. The project plans shall be thoroughly examined for control device and equipment locations. Any discrepancies, conflicts, or omissions shall be reported to the architect/engineer for resolution before rough-in work is started.
- B. The contractor shall inspect the site to verify that equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the engineer for resolution before rough-in work is started. Verify that duct-, pipe-, and equipment-mounted devices and wiring are installed before proceeding with installation.
- C. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate— or if any discrepancies occur between the plans and the contractor's work of others—the contractor shall report these discrepancies to the engineer and shall obtain written instructions for any changes necessary to accommodate the contractor's work with the work of others. Any changes in the work covered by this specification made

necessary by the failure or neglect of the contractor to report such discrepancies shall be made by—and the expense of—this contractor.

3.2 INSTALLATION

- A. Provide software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation. Connect and configure equipment and software to achieve sequence of operation specified.
- B. Provide all components in accordance with the manufacturer's recommendations. Perform the installation under the supervision of competent technicians regularly employed in the installation of DDC systems.
- C. Provide equipment, piping, and wiring/raceway parallel to building lines (i.e., horizontal, vertical, and parallel to walls) wherever possible.
- D. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- E. All equipment, installation, and wiring shall comply with acceptable industry specifications and standards for performance, reliability, and compatibility and be executed in strict adherence to local codes and standard practices. Contractor shall continually monitor the field installation for code compliance and quality of workmanship. Contractor shall have work inspected by local and/or state authorities having jurisdiction over the work.
- F. Temperature Sensors: Provide temperature sensors in locations that are accessible and provide a good representation of sensed media. Installations in dead spaces are not acceptable. Calibrate sensors according to manufacturer's instructions. Do not use sensors designed for one application in a different application.
- G. Room Temperature Sensors: Verify location of thermostats and other exposed control sensors with plans and room details before installation. Mount the sensors on interior walls to sense the average room temperature at the locations indicated. Avoid locations near heat sources such as copy machines or locations by supply air outlet drafts. Mount the center of the sensor 48 inches above the floor to meet ADA requirements.
 - Provide guards on room temperature sensors within the Vestibule and Stair Tower.

H. Duct Temperature Sensors

- 1. Probe Type: Provide a gasket between the sensor housing and the duct wall. Seal the duct penetration air tight. Seal the duct insulation penetration vapor tight.
- 2. Averaging Type (and coil freeze protection thermostats): Weave the capillary tube sensing element in a serpentine fashion perpendicular to the flow, across the duct or air handler cross-

section, using durable non-metal supports. Prevent contact between the capillary and the duct or air handler internals. Provide a duct access door at the sensor location. The access door shall be hinged on the side, factory insulated, have cam type locks, and be as large as the duct will permit; maximum 18 x 18 inches. For sensors inside air handlers, the sensors shall be fully accessible through the air handler's access doors without removing any of the air handler's internals.

- I. Provide automatic dampers according to Section 23 31 13 "Ductwork."
- J. Provide damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- K. Provide labels and nameplates to identify control components according to Section 23 05 53 "Identification for HVAC Piping and Equipment."
- L. Provide steam and condensate instrument wells, valves, and other accessories according to Section 23 22 16 Steam and Condensate Piping Specialties."
- M. Provide refrigerant instrument wells, valves, and other accessories according to Section 23 23 00 "Refrigerant Piping."
- N. Provide duct volume-control dampers according to Section 23 31 13 "Ductwork"

3.3 WIRING

- A. All control and interlock wiring shall comply with national and local electrical codes, and Division 26 of this specification. Where the requirements of this section differ from Division 26, the requirements of this section shall take precedence.
- B. NEC Class 1 (line voltage) wiring shall be UL listed in approved raceway according to NEC and Division 26 requirements. Low-voltage wiring shall meet NEC Class 2 requirements. Low-voltage power circuits shall be sub-fused when required to meet Class 2 current limit.
- C. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in raceway may be used provided that cables are UL listed for the intended application.
- Do not install Class 2 wiring in raceways containing Class 1 wiring. Boxes and panels containing high-voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g. relays and transformers).
- E. Where Class 2 wiring is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 10 ft intervals.
- F. Where plenum cables are used without raceway, they shall be supported from or anchored to structural members. Cables shall not be supported

- by or anchored to ductwork, electrical raceways, piping, or ceiling suspension systems.
- G. All wire-to-device connections shall be made at a terminal block or terminal strip. All wire-to-wire connections shall be at a terminal block.
- H. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.
- I. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers.
- J. All wiring shall be installed as continuous lengths, with no splices permitted between termination points.
- K. Install plenum wiring in sleeves where it passes through walls and floors. Maintain fire rating at all penetrations.
- L. Size of raceway and size and type of wire type shall be the responsibility of the contractor in keeping with the manufacturer's recommendations and NEC requirements, except as noted elsewhere.
- M. Include one pull string in each raceway 2.5 cm (1 in.) or larger.
- N. Use color-coded conductors throughout with conductors of different colors.
- O. Control and status relays are to be located in designated enclosures only. These enclosures include packaged equipment control panel enclosures unless they also contain Class 1 starters.
- P. Conceal all raceways except within mechanical, electrical, or service rooms.
- Q. Secure raceways with raceway clamps fastened to the structure and spaced according to code requirements. Raceways and pull boxes may not be hung on flexible duct strap or tie rods. Raceways may not be run on or attached to ductwork.
- R. Adhere to this specification's Division 26 requirements where raceway crosses building expansion joints.
- S. Install insulated bushings on all raceway ends and openings to enclosures. Seal top end of vertical raceways.
- T. The contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.
- U. Flexible metal raceways and liquid-tight flexible metal raceways shall not exceed 1 m (3 ft) in length and shall be supported at each end. Flexible metal raceway less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including chiller and boiler rooms, liquid-tight, flexible metal raceways shall be used.

V. Raceway must be rigidly installed, adequately supported, properly reamed at both ends, and left clean and free of obstructions. Raceway sections shall be joined with couplings (according to code). Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.4 COMMUNICATION WIRING

- A. The contractor shall adhere to the items listed in the "Wiring" article in Part 3 of the specification. All cabling shall be installed in a neat and workmanlike manner. Follow manufacturer's installation recommendations for all communication cabling
- B. Do not install communication wiring in raceways and enclosures containing Class 1 or other Class 2 wiring.
- C. Maximum pulling, tension, and bend radius for the cable installation, as specified by the cable manufacturer, shall not be exceeded during installation.
- D. Contractor shall verify the integrity of the entire network following cable installation. Use appropriate test measures for each particular cable.
- E. When a cable enters or exits a building, a lightning arrestor must be installed between the lines and ground. The lighting arrestor shall be installed according to manufacturer's instructions.
- F. All runs of communication wiring shall be unspliced length when that length is commercially available.
- G. All communication wiring shall be labeled to indicate origination and destination data.
- H. Grounding of coaxial cable shall be in accordance with NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."
- I. BACnet MS/TP communications wiring shall be installed in accordance with ASHRAE/ANSI Standard 135. This includes but is not limited to:
 - 1. The network shall use shielded, twisted-pair cable with characteristic impedance between 100 and 120 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot.)
 - 2. The maximum length of an MS/TP segment is 1200 meters (4000 ft) with AWG 18 cable. The use of greater distances and/or different wire gauges shall comply with the electrical specifications of EIA-485.
 - 3. The maximum number of nodes per segment shall be 32, as specified in the EIA 485 standard. Additional nodes may be accommodated by the use of repeaters.
 - 4. An MS/TP EIA-485 network shall have no T connections.
- J. Fiber Optic Cable: Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post-

installation residual cable tension shall be within cable manufacturer's specifications. All cabling and associated components shall be installed in accordance with manufacturers' instructions. Minimum cable and unjacketed fiber bend radii, as specified by cable manufacturer, shall be maintained.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Test calibration of controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 - 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 - 6. Test each system for compliance with sequence of operation.
 - 7. Test software and hardware interlocks.

B. DDC Verification:

- Verify that instruments are installed before calibration, testing, and loop or leak checks.
- 2. Check instruments for proper location and accessibility.
- Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
- 4. Check instrument tubing for proper fittings, slope, material, and support.
- 5. Check installation of air supply for each instrument.
- 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
- 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
- 8. Check temperature instruments and material and length of sensing elements.
- 9. Check control valves. Verify that they are in correct direction.
- 10. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
- 11. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.

- d. Verify that DDC controllers are protected from power supply surges.
- C. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.6 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Calibrate instruments.
 - Make three-point calibration test for both linearity and accuracy for each analog instrument.
 - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
 - 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:

- a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
- b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:

- Calibrate pressure transmitters at 0, 50, and 100 percent of span.
- b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

- a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
- b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.

- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section 01 79 00 "Demonstration and Training."
- B. Provide a qualified instructor (or instructors) with five years minimum field experience with the installation and programming of similar BACnet DDC systems. Orient training to the specific systems installed. Coordinate training times with the Owner. Training shall take place at the job site.
- C. This training shall last 8 hours and shall be conducted at the DDC system workstation, at a notebook computer connected to the DDC system in the field, and at other site locations as necessary. Upon completion of the Training, each trainee should fully understand the project's DDC system operation. The training session shall include the following:
- D. Provide basic control system fundamentals training.
 - 1. This project's list of control system components
 - 2. This project's list of points and objects
 - 3. This project's device and network communication architecture
 - 4. This project's sequences of control, and:
 - 5. Alarm capabilities
 - 6. Trending capabilities
 - 7. Troubleshooting communication errors
 - 8. Troubleshooting hardware errors
- E. Provide additional project-specific training:
 - A walk-through tour of the mechanical system and the installed DDC components (controllers, valves, dampers, surge protection, switches, thermostats, sensors, etc.)
 - 2. A discussion of the components and functions at each DDC panel
 - 3. Logging-in and navigating at each operator interface type
 - Using each operator interface to find, read, and write to specific controllers and objects
 - 5. Modifying and downloading control program changes
 - 6. Modifying setpoints

- 7. Creating, editing, and viewing trends
- 8. Creating, editing, and viewing alarms
- Creating, editing, and viewing operating schedules and schedule objects
- 10. Backing-up and restoring programming and data bases
- 11. Modifying graphic text, backgrounds, dynamic data displays, and links to other graphics
- 12. Creating new graphics and adding new dynamic data displays and links
- 13. Alarm and Event management
- 14. Adding and removing network devices

3.8 TEST AND BALANCE SUPPORT

- A. The controls contractor shall coordinate with and provide on-site support to the test and balance (TAB) personnel This support shall include:
 - 1. On-site operation and manipulation of control systems during the testing and balancing.
 - 2. Control setpoint adjustments for balancing all relevant mechanical systems.
 - 3. Tuning control loops with setpoints and adjustments determined by TAB personnel.

3.9 CONTROLS SYSTEM OPERATORS MANUALS

- A. Provide with each manual: CDs of the project's control system drawings, control programs, data bases, graphics, and all items listed below. Include gateway back-up data and configuration tools where applicable. Provide CDs in jewel case with printed and dated project-specific labels on both the CD and the case. For text and drawings, use Adobe Acrobat or MS Office file types. When approved by the Owner, AutoCAD and Visio files are allowed. Give files descriptive English names and organize in folders.
- B. Provide printed manuals in sturdy 3-ring binders with a title sheet on the outside of each binder indicating the project title, project location, contract number, and the controls contractor name, address, and telephone number. Each binder shall include a table of contents and tabbed dividers, with all material neatly organized. Manuals shall include the following:
 - 1. A copy of the as-built control system (shop) drawings set, with all items specified under the paragraph "Submittals." Indicate all field changes and modifications.
 - 2. A copy of the project's mechanical design drawings, including any official modifications and revisions.
 - 3. A copy of the project's approved Product Data submittals provided under the paragraph "Submittals."
 - 4. A copy of the project's approved Performance Verification Testing Plan and Report.
 - 5. A copy of the project's approved final TAB Report.

- 6. Printouts of all control system programs, including controller setup pages if used. Include plain-English narratives of application programs, flowcharts, and source code.
- 7. Printouts of all physical input and output object properties, including tuning values, alarm limits, calibration factors, and set points.
- 8. A table entitled "AC Power Table" listing the electrical power source for each controller. Include the building electrical panel number, panel location, and circuit breaker number.
- 9. The DDC manufacturer's hardware and software manuals in both print and CD format with printed project-specific labels. Include installation and technical manuals for all controller hardware, operator manuals for all controllers, programming manuals for all controllers, operator manuals for all workstation software, installation and technical manuals for the workstation and notebook, and programming manuals for the workstation and notebook software.
- 10. A list of qualified control system service organizations for the work provided under this contract. Include their addresses and telephone numbers.
- 11. A written statement entitled "Software Upgrades" stating software and firmware patches and updates will be provided upon request at no additional cost to the Owner for a minimum of two years from contract acceptance. Include a table of all DDC system software and firmware provided under this contract, listing the original release dates, version numbers, part numbers, and serial numbers.

3.10 CLEANING

- A. The contractor shall clean up all debris resulting from his/her activities daily. The contractor shall remove all cartons, containers, crates, etc., under his/her control as soon as their contents have been removed. Waste shall be collected and placed in a designated location.
- B. At the completion of work in any area, the contractor shall clean all work, equipment, etc., keeping it free from dust, dirt, and debris, etc.
- C. At the completion of work, all equipment furnished under this section shall be checked for paint damage, and any factory-finished paint that has been damaged shall be required to match the adjacent areas. Any cabinet or enclosure that has been deformed shall be replaced with new material and repainted to match the adjacent areas.

- - - E N D - -

SECTION 23 09 93

SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 23 Section "Common Work Results for Mechanical"
 - 2. Section 23 09 00 Instrumentation and Control for HVAC for control equipment and devices and submittal requirements.
 - 3. Division 23 Sections Equipment with built in DDC controllers
 - 4. Division 23 Section "Testing, Adjusting, and Balancing"
 - 5. Division 26

1.2 GENERAL

- A. This Section includes control sequences for HVAC systems, subsystems, and equipment. Provide control devices, control software and control wiring as required for automatic operation of each sequence specified. The system is BAS controlled using electric actuation.
 - 1. Provide automatic control for system operation as described herein, although word "automatic" or "automatically", is not used.
 - 2. Manual operation is limited only where specifically described; however, provide manual override for each automatic operation.
 - 3. Where manual start-up is called for, also provide scheduled automatic start-stop capabilities.
- B. These sequences are intended to be performance based. Implementations that provide the same functional result using different underlying detailed logic will be acceptable.
- C. Unless otherwise indicated, control loops shall be enabled and disabled based on the status of the system being controlled to prevent windup. When a control loop is enabled or re-enabled, it and all its constituents (such as the proportional and integral terms) shall be set initially to a Neutral value. A control loop in Neutral shall correspond to a condition that applies the minimum control effect, i.e., valves/dampers closed, VFDs at minimum speed, etc.
- D. The term "proven" (i.e., "proven on"/ "proven off") shall mean that the equipment's DI status point (where provided, e.g. current switch, DP switch, or VFD status) matches the state set by the equipment's DO command point.

- E. The term "software point" shall mean an analog variable, and "software switch" shall mean a digital (binary) variable, that are not associated with real I/O points. They shall be read/write capable (e.g., BACnet analog variable and binary variable).
- F. Functions called for in sequence of operations are minimum requirements and not to limit additional BAS system capabilities. Determine, through operation of the system, proportional bands, interval time, integral periods, adjustment rates, and any other input information required to provide stable operation of the control programs.
- G. To avoid abrupt changes in equipment operation, the output of every control loop shall be capable of being limited by a user adjustable maximum rate of change, with a default of 25% per minute.
- H. Setpoints, timers, deadbands, PID gains, etc., listed in sequences shall be adjustable by the user with appropriate access level whether indicated as adjustable in sequences or not. Software points shall be used for these variables. Fixed scalar numbers shall not be embedded in programs except for physical constants and conversion factors.
- I. Values for all points, including real (hardware) points used in control sequences shall be capable of being overridden by the user with appropriate access level (e.g., for testing and commissioning). If hardware design prevents this for hardware points, they shall be equated to a software point and the software point shall be used in all sequences.
- J. For each item of equipment, provide following functions which are not specifically mentioned in each Sequence of Operation:
 - 1. Start-Stop, manual, and scheduled
 - 2. On-Off status of each piece of equipment
 - 3. Run-time
 - 4. Alarm
- K. Provide Sequenced starting of HVAC equipment, whether or not specifically mentioned in each Sequence of Operation: At initial start-up; for automatic starting on emergency power, or after power blackout.

L. Setback Controls:

- 1. Heating systems shall be equipped with controls configured to automatically restart and temporarily operate the system as required to maintain zone temperatures above an adjustable heating setpoint at least10°F below the occupied heating setpoint.
- 2. Cooling systems shall be equipped with controls configured to automatically restart and temporarily operate the mechanical cooling system as required to maintain zone temperatures below an adjustable cooling setpoint at least 5°F above the occupied cooling setpoint or to prevent high space humidity levels.
- 3. Optimum Start Controls. Individual heating and cooling systems with setback controls shall have optimum start controls. The

- control algorithm shall, as a minimum, be a function of the difference between space temperature and occupied setpoint, the outdoor temperature, and the amount of time prior to scheduled occupancy.
- Radiant heating systems configured with a setback heating setpoint at least 4°F below the occupied heating setpoint. These systems shall incorporate floor temperature into the optimum start algorithm.
- Μ. All setpoints shall be monitored and adjustable. Setpoints listed herein are approximate. It is the responsibility of the BAS contractor to calibrate the system and all setpoints to actual working conditions once the system is on line.

Ν. Alarms

- All alarms shall include a Time/Date Stamp using the standalone control module time and date.
- 2. . Each alarm can be configured in terms of criticality (Critical/Not Critical), operator acknowledgement (Requires Acknowledgement/Does Not Require Acknowledgement), and conditions required for an alarm to clear automatically (Requires Acknowledgement of a Return to Normal/Does Not Require Acknowledgement of a Return to Normal).
- An operator shall be able to sort alarms based on level, 3. time/date, and current status.
- Alarms should be reported with the following information:
 - Date and time of the alarm a.
 - Level of the alarm b.
 - Description of the alarm
 - Equipment tags for the units in alarm
 - Possible causes of the alarm, if provided by the fault e. detection routines
 - f. The source that serves the equipment in alarm
- There shall be 5 levels of alarm

 - Level 1: Critical/life safety
 Level 2: Significant equipment failure b.
 - c. Level 3: Non-critical equipment failure/operation
 - d. Level 4: Energy conservation monitor
 - e. Level 5: Maintenance indication, notification
 - f. 19.
- Hierarchical Alarm Suppression: For each piece of equipment or space controlled by the BAS, define its relationship (if any) to other equipment in terms of "source," "load," or "system."
 - Source: A component is a "source" if it provides resources to a downstream component, such as a chiller providing chilled water to an AHU.
 - Load: A component is a "load" if it receives resources from b. an upstream component, such as an AHU that receives chilled water from a chiller.

- c. The same component may be both a load (receiving resources from an upstream source) and a source (providing resources to a downstream load).
- d. System: A set of components is a "system" if they share a load in common (i.e., collectively act as a source to downstream equipment, such as a set of chillers in a lead/lag relationship serving air handlers).
 - 1) If a single component acts as a source for downstream loads (e.g., an AHU as a source for its VAV boxes), then that single source component shall be defined as a "system" of one element.
 - For equipment with associated pumps (chillers, boilers, cooling towers):
 - a) If the pumps are in a one-to-one relationship with equipment they serve, the pumps shall be treated as part of the system to which they are associated (i.e., they are not considered loads) since a pump failure will necessarily disable its associated equipment.
 - b) If the pumps are headered to the equipment they serve, then the pumps may be treated as a system, which is a load relative to the upstream equipment (e.g., chillers) and a source relative to downstream equipment (e.g., air handlers).
- e. For each system as defined above, there shall be a SystemOK flag, which is either true or false.
- f. SystemOK shall be true when all of the following are true:
 - 1) The system is proven on.
 - The system is achieving its temperature and/or pressure setpoint(s) for at least five minutes
 - 3) The system is ready and able to serve its load
- g. SystemOK shall be false while the system is starting up (i.e., before reaching setpoint) or when enough of the system's components are unavailable (in alarm, disabled, or turned off) to disrupt the ability of the system to serve its load. This threshold shall be defined by the design engineer for each system.
 - 1) By default, Level 1 through Level 3 component alarms (indicating equipment failure) shall inhibit SystemOK. Level 4 and Level 5 component alarms (maintenance and energy efficiency alarms) shall not affect SystemOK.
 - 2) The operator shall have the ability to individually determine which component alarms may or may not inhibit SystemOK.
- h. The BAS shall selectively suppress (i.e., fail to announce; alarms may still be logged to a database) alarms for load components if SystemOK is false for the source system that serves that load.

- 1) If SystemOK is false for a cooling water system (i.e., chiller, cooling tower, or associated pump) then only high temperature alarms from the loads shall be suppressed.
- 2) If SystemOK is false for a heating water system (i.e., boiler or associated pump) then only low temperature alarms from the loads shall be suppressed.
- 3) If SystemOK is false for an airside system (air handler, fan coil, VAV box, etc.), then all alarms from the loads shall be suppressed.
- i. This hierarchical suppression shall cascade through multiple levels of load-source relationship, such that alarms at downstream loads shall also be suppressed.
- j. The following types of alarms will never be suppressed by this logic:
 - 1) Life/safety and Level 1 alarms
 - 2) Failure-to-start alarms (i.e., equipment is commanded on, but status point shows equipment to be off)
 - 3) Failure-to-stop/hand alarms (i.e., equipment is commanded off, but status point shows equipment to be on)
- O. Time-Based Suppression Block: This block is used to suppress reset requests and alarms after a change in setpoint. This includes automatic changes in setpoint, e.g., due to a change in occupancy sensor status, as well as changes made by occupants. This block shall calculate a time delay period after any change in setpoint based on the difference between the controlled variable (e.g., zone temperature) at the time of the change and the new setpoint. The default time delay period shall be:
 - For thermal zone temperature alarms: 10 minutes per °F of difference, but no longer than 120 minutes
 - 2. For thermal zone temperature cooling requests: 5 minutes per °F of difference, but no longer than 30 minutes
 - 3. For thermal zone heating requests: 5 minutes per °F of difference, but no longer than 30 minutes
- P. Normal positions for controlled devices:
 - 1. Unless noted, the following valves and dampers shall fail closed:
 - a. Outside air dampers
 - b. Relief air dampers
 - c. Exhaust air closure dampers
 - d. Steam valves at convertors
 - e. Cooling coil valves for coils located indoors shall close to the coil.
 - f. Domestic hot water heat source.
 - q. Humidifier valves.

- 2. Unless noted, the following valves and dampers shall fail open:
 - a. Heating coils.
 - b. Cooling coil valves for coils located outdoors shall open to the coil.

PART 2 - AIR HANDLING SYSTEMS

2.1 ENERGY RECOVERY UNITS

- A. Simple ERU
 - 1. Occupied mode:
 - a. Normally closed outside air and exhaust dampers shall be open.
 - b. Supply and Exhaust fans operate continuously during occupied hours, subject to damper end switches.
 - c. Prove supply fan operation by current switch.
 - d. Prove exhaust fan operation by current switch.
 - e. Duct heating coil operation: Electric coil shall be energized to maintain discharge air temperature setpoint 70°F (adj.).
 - 2. Unoccupied mode:
 - a. OA and EA dampers 100% closed.
 - b. Fans off.
 - 3. BAS: Display the following data:
 - a. Monitoring DA temperature.
 - b. Monitor supply fan and exhaust fan status.

PART 3 - HVAC DISTRIBUTION

3.1 TERMINAL UNITS

- A. The unit shall use an optimal start algorithm for morning start-up. This algorithm shall minimize the unoccupied warm-up or cool-down period while still achieving comfort conditions by the start of scheduled occupied period.
- B. Each zone shall have separate occupied and unoccupied heating and cooling setpoints.
- C. The software shall prevent:
 - 1. The heating setpoint from exceeding the cooling setpoint minus $1^{\circ}F$ (i.e., the minimum difference between heating and cooling setpoints shall be $1^{\circ}F$).

- 2. The unoccupied heating setpoint from exceeding the occupied heating setpoint; and
- The unoccupied cooling setpoint from being less than the occupied cooling setpoint.

D. Zone Unoccupied Override:

- 1. A timed local override control shall allow an occupant to override the schedule and place the unit into an occupied mode for an adjustable period of time. At the expiration of this time, control of the unit shall automatically return to the schedule. The adjustment shall be capable of being limited in software. These are absolute limits imposed by programming, which are in addition to the range limits (e.g., ±4°F) of the thermostat adjustment device.
 - a. As a default, the active occupied cooling setpoint shall be limited between $72^{\circ}F$ and $80^{\circ}F$.
 - b. As a default, the active occupied heating setpoint shall be limited between $60\,^{\circ}\text{F}$ and $72\,^{\circ}\text{F}$.
- 2. The active heating and cooling setpoints shall be independently adjustable, respecting the limits and anti-overlap logic described above. If zone thermostat provides only a single setpoint adjustment, then the adjustment shall move both the active heating and cooling setpoints upwards or downwards by the same amount, within the limits described above.
- 3. The adjustment shall only affect occupied setpoints in Occupied Mode, and shall have no impact on setpoints in all other modes.
- 4. At the onset of demand limiting, the local setpoint adjustment value shall be frozen. Further adjustment of the setpoint by local controls shall be suspended for the duration of the demand limit event.

E. Control Loops

- 1. Two separate control loops shall operate to maintain space temperature at setpoint, the Cooling Loop and the Heating Loop.
 - a. The Heating Loop shall be enabled whenever the space temperature is below the current zone heating setpoint temperature, and disabled when space temperature is above the current zone heating setpoint temperature and the Loop output is zero for 30 seconds. The Loop may remain active at all times if provisions are made to minimize integral windup.
 - b. The Cooling Loop shall be enabled whenever the space temperature is above the current zone cooling setpoint temperature, and disabled when space temperature is below the current zone cooling setpoint temperature and the Loop output is zero for 30 seconds. The Loop may remain active at all times if provisions are made to minimize integral windup.
- 2. The Cooling Loop shall maintain the space temperature at the active cooling setpoint. The output of the loop shall be a software point ranging from 0% (no cooling) to 100% (full cooling).

- 3. The Heating Loop shall maintain the space temperature at the active heating setpoint. The output of the loop shall be a software point ranging from 0% (no heating) to 100% (full heating).
- 4. Loops shall use proportional + integral logic or other technology with similar performance. Proportional-only control is not acceptable, although the integral gain shall be small relative to the proportional gain. P and I gains shall be adjustable by the operator.

5. Zone State

- a. Heating: when the output of the space heating control loop is nonzero and the output of the cooling loop is equal to zero.
- b. Cooling: when the output of the space cooling control loop is nonzero and the output of the heating loop is equal to zero.
- c. Deadband: when not in either Heating or Cooling.

6. Zone temperature alarms

- a. High temperature alarm
 - 1) If the zone is 3°F above cooling setpoint for 10 minutes, generate Level 3 alarm.
 - 2) If the zone is 5°F above cooling setpoint for 10 minutes, generate Level 2 alarm.

b. Low temperature alarm

- 1) If the zone is 3°F below heating setpoint for 10 minutes, generate Level 3 alarm.
- 2) If the zone is 5°F below heating setpoint for 10 minutes, generate Level 2 alarm.
- c. Suppress zone temperature alarms as follows:
 - 1) After zone setpoint is changed.
 - Zone alarms are not suppressed in Setup, Setback, or Unoccupied Modes so that you detect heating or cooling equipment or control failures that could result in excessive pull down or pick up loads and even freezing of pipes if left undetected.

d. For zones with CO2 sensors:

- 1) CO2 sensors: If the CO2 concentration is less than 300 ppm, or the zone is in Unoccupied Mode for more than 2 hours and zone CO2 concentration exceeds 600 ppm, generate a Level 3 alarm. The alarm text shall identify the sensor and indicate that it may be out of calibration.
- 2) If the CO2 concentration exceeds setpoint plus 10% for more than 10 minutes generate a Level 3 alarm.

- F. Cabinet Unit Heaters Steam
 - 1. Enable:
 - a. Input Device: BAS softwareb. Output Device: BAS software
 - 2. Room Temperature:
 - a. Input Device: Electronic temperature sensor.
 - b. Output Device: BAS system binary output.
 - c. Output Device: Normally-open 2-position, 2-way control valve.
 - d. Action: Open control valve and cycle fan to maintain space temperature (occupied & unoccupied). Minimum run time: 1 minute. Space temperature setpoint: 68°F.
- G. Operator Workstation: Display the following data:
 - a. DDC system graphic.
 - b. DDC system on-off indication.
 - c. DDC system occupied/unoccupied mode.
 - d. Room temperature indication.
 - e. Room temperature set point.
 - f. Control-valve position.

PART 4 - MISCELLANEOUS SEQUENCES

4.1 DUCTLESS SPLIT AIR CONDITIONING UNITS

- A. AC unit shall operate by manufacturer-supplied controls and wall thermostat to maintain setpoint during occupied and unoccupied modes.
- B. Display the following thru BAS for the above:
 - 1. Unit status ON/OFF.

- - - E N D - - -

SECTION 23 22 13

STEAM AND CONDENSATE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following for LP steam and condensate piping, valves, fittings, and accessories.

1.3 DEFINITIONS

A. LP Systems: Low-pressure piping operating at 15 psig or less as required by ASME B31.9.

1.4 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures:
 - 1. LP Steam Piping: 5 psig.
 - 2. Condensate Piping: at 250 deg F.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pressure-reducing and safety valve.
 - 2. Steam trap.
 - 3. Air vent and vacuum breaker.
 - 4. Flash tank.
 - 5. Meter.
- B. Shop Drawings: Detail, 1/4 inch equals 1 foot scale, flash tank assemblies and fabrication of pipe anchors, hangers, pipe, multiple pipes, alignment guides, and expansion joints and loops and their attachment to the building structure. Detail locations of anchors, alignment guides, and expansion joints and loops.
- C. Qualification Data: For Installer.
- D. Welding certificates.

- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For valves, safety valves, pressure-reducing valves, steam traps, air vents, vacuum breakers, and meters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code Steel."
- B. Pipe Welding: Qualify processes and operators according to the following:
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping" for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp flash tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, plain ends, Type, Grade, and Schedule as indicated in Part 3 piping applications articles.
- B. Steel Pipe: ASTM A106 / A106M 10 Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service
- C. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125, 150, and 300 as indicated in Part 3 piping applications articles.
- D. Malleable-Iron Threaded Fittings: ASME B16.3; Classes 150 and 300 as indicated in Part 3 piping applications articles.
- E. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 piping applications articles.
- F. Cast-Iron Threaded Flanges and Flanged Fittings: ASME B16.1, Classes 125 and 250 as indicated in Part 3 piping applications articles; raised ground face, and bolt holes spot faced.
- G. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

- H. Wrought-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- I. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, black steel of same Type, Grade, and Schedule as pipe in which installed.
- J. Stainless-Steel Bellows, Flexible Connectors:
 - Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforced, protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch misalignment.
 - 4. CWP Rating: 150-psig.
 - 5. Maximum Operating Temperature: 250 deg F.

2.2 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Welding Materials: Comply with Section II, Part C, of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries, International Inc.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group.
 - 2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Water Technologies, Inc..
- Factory-fabricated companion-flange assembly, for 150- or 300psig minimum working pressure as required to suit system pressures.

E. Dielectric-Flange Kits:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
- 3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure as required to suit system pressures.

2.4 STEAM VALVES

- A. Refer to Part 3 "Valve Applications" Article for applications of each valve.
- B. Gate Valves:
 - 1. Threaded Ends 2" and Smaller, Low Pressure Steam and condensate: Class 150, bronze body, union bonnet, rising stem, solid wedge: Hammond IB629, Nibco T-134, Stockham B120, Milwaukee 1151 or approved equal.
 - 2. Threaded Ends 2" and Smaller, High Pressure Steam and condensate: Class 300, bronze body, union bonnet, rising stem, solid stainless wedge and stainless seat: Hammond IB654, Nibco T-174SS, Stockham B145, Milwaukee 1184 or approved equal.
 - 3. Flanged Ends 2-1/2" and Larger, Low Pressure Steam and condensate: Class 125, iron body, bronze mounted, bolted bonnet, rising stem, OS&Y, solid wedge: Hammond IR1140, Nibco F617-0, Stockham G623, Milwaukee F2885 or approved equal.
 - 4. Comply with the following standards:
 - a. Cast Iron Valves: MSS SP 70
 - b. Bronze Valves: MSS SP 80
- C. Swing check valves:
 - 1. Construct pressure containing parts of Valves as follows:
 - a. Bronze Valves: 125 or 150 psi: ANSI/ASTM B 62
 - b. Iron Body Valves: ANSI/ASTM A-126, Grade B
 - 2. Comply with the following standards for design, workmanship, material and testing:
 - a. Bronze Valves: MSS SP 80
 - b. Cast Iron Valves: MSS SP 71
 - 3. Construct valves of pressure casting free of any impregnating materials. Construct disc and hanger as one piece. Support hanger pins by removable side plug.
 - 4. Threaded Ends 2" and Smaller, Low Pressure Steam: Class 150, bronze body, screwed cap, Teflon disc: Hammond IB946, Stockham B316, Milwaukee 510T or approved equal.
- D. Stop-Check Valves:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.
 - b. Jenkins Valves; a Crane Company.
 - c. Lunkenheimer Valves.
 - d. A.Y. McDonald Mfg. Co.
 - 2. Body and Bonnet: Malleable iron.
 - 3. End Connections: Flanged.
 - 4. Disc: Cylindrical with removable liner and machined seat.

- 5. Stem: Brass alloy.
- 6. Operator: Outside screw and yoke with cast-iron handwheel.
- 7. Packing: Polytetrafluoroethylene-impregnated packing with two-piece packing gland assembly.
- 8. Pressure Class: 250.

2.5 STRAINERS

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B cast iron, with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.
- Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. Tapped blowoff plug.
- 5. CWP Rating: 250-psig working steam pressure.

2.6 STEAM TRAPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong International, Inc.
 - 2. Barnes & Jones, Inc.
 - 3. Dunham-Bush, Inc.
 - 4. Hoffman Specialty; Division of ITT Industries.
 - 5. Spirax Sarco, Inc.

B. Thermostatic Traps:

- 1. Body: Bronze angle-pattern body with integral union tailpiece and screw-in cap.
- 2. Trap Type: Balanced-pressure.
- 3. Bellows: Stainless steel or monel.
- 4. Head and Seat: Replaceable, hardened stainless steel.
- 5. Pressure Class: 125.

C. Thermodynamic Traps:

- 1. Body: Stainless steel with screw-in cap.
- 2. End Connections: Threaded.
- 3. Disc and Seat: Stainless steel.
- 4. Maximum Operating Pressure: 600 psig.

D. Float and Thermostatic Traps:

- 1. Body and Bolted Cap: ASTM A 126, cast iron.
- 2. End Connections: Threaded.
- 3. Float Mechanism: Replaceable, stainless steel.
- 4. Head and Seat: Hardened stainless steel.
- 5. Trap Type: Balanced pressure.
- 6. Thermostatic Bellows: Stainless steel or monel.

- 7. Thermostatic air vent capable of withstanding 45 deg F of superheat and resisting water hammer without sustaining damage.
- 8. Vacuum Breaker: Thermostatic with phosphor bronze bellows, and stainless steel cage, valve, and seat.
- 9. Maximum Operating Pressure: 125 psig.

2.7 THERMOSTATIC AIR VENTS AND VACUUM BREAKERS

A. Thermostatic Air Vents:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Barnes & Jones, Inc.
 - c. Dunham-Bush, Inc.
 - d. Hoffman Specialty; Division of ITT Industries.
 - e. Spirax Sarco, Inc.
 - f. Sterling.
- 2. Body: Cast iron, bronze or stainless steel.
- 3. End Connections: Threaded.
- 4. Float, Valve, and Seat: Stainless steel.
- 5. Thermostatic Element: Phosphor bronze bellows in a stainless-steel cage.
- 6. Pressure Rating: 125 psig.
- 7. Maximum Temperature Rating: 350 deg F.

B. Vacuum Breakers:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Dunham-Bush, Inc.
 - c. Hoffman Specialty; Division of ITT Industries.
 - d. Johnson Corporation (The).
 - e. Spirax Sarco, Inc.
- 2. Body: Cast iron, bronze, or stainless steel.
- 3. End Connections: Threaded.
- 4. Sealing Ball, Retainer, Spring, and Screen: Stainless steel.
- 5. O-ring Seal: EPR.
- 6. Pressure Rating: 125 psig.
- 7. Maximum Temperature Rating: 350 deg F.

PART 3 - EXECUTION

3.1 LP STEAM PIPING APPLICATIONS

A. Steam Piping, NPS 2 and Smaller: Schedule 40 steel pipe, with threaded joints using Class 125 cast-iron fittings.

- B. Steam Piping, NPS 2-1/2 through NPS 12: Schedule 40 steel pipe, with welded joints using Schedule 40 wrought-steel welding fittings and Class 150 wrought-steel flanges.
- C. Condensate Piping, NPS 2 and Smaller: Schedule 80 steel pipe, with threaded joints using Class 125 malleable-iron fittings.
- D. Condensate Piping, NPS 2-1/2 through NPS 12: Schedule 80 steel pipe, with welded joints using Schedule 80 wrought-steel welding fittings and Class 150 wrought-steel flanges.

3.2 VALVE APPLICATIONS

A. Install shutoff duty valves at branch connections to steam supply mains, at steam supply connections to equipment, and at the outlet of steam traps.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Use indicated piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Install piping to allow application of insulation.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- K. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

- L. Install steam supply piping at a minimum uniform grade of $\frac{1}{4}$ " per 10 feet downward in direction of steam flow.
- M. Install condensate return piping at a minimum uniform grade of $\frac{1}{4}$ " per 10 feet downward in direction of condensate flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side down.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to top of main pipe.
- P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- R. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated. Install NPS 3/4 nipple and full port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- S. Identify piping as specified in Division 23 Section "Mechanical Identification."
- T. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, and control valves.
 - 1. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 300 feet.
 - 2. Size drip legs same size as main. In steam mains NPS 6 and larger, drip leg size can be reduced, but to no less than NPS 4.

3.4 STEAM-TRAP INSTALLATION

- A. Install steam traps in accessible locations as close as possible to connected equipment.
- B. Install full-port ball valve, strainer, and union upstream from trap; install union, check valve, and full-port ball valve downstream from trap unless otherwise indicated.

3.5 HANGERS AND SUPPORTS

- A. Install hangers and supports according to Division 23 Section "Hangers and Supports." Comply with requirements below for maximum spacing.
- B. Refer to Division 23 Section "Mechanical Seismic Restraints" for seismic-restraint devices.

- C. Install the following pipe attachments:
 - Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
- D. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.6 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube ends. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Size for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install traps and control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install vacuum breakers downstream from control valve, close to coil inlet connection.
- E. Install a drip leg at coil outlet.

3.8 FIELD QUALITY CONTROL

- A. Prepare steam and condensate piping according to ASME B31.9, "Building Services Piping," and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush system with clean water. Clean strainers.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
- B. Perform the following tests on steam and condensate piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength.
 - 3. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- C. Prepare written report of testing.

- - - E N D - - -

SECTION 23 31 13

DUCTWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 8 for Access Doors
 - 2. Division 23 Section "Common Work Results for Mechanical"
 - 3. Division 23 Section "Mechanical Insulation"
 - 4. Division 23 Section "Diffusers, Registers, and Grilles."
 - 5. Division 23 Control Section
 - 6. Division 23 Section "Testing, Adjusting, and Balancing".

1.2 SUMMARY

A. This Section includes ducts and accessories.

1.3 SYSTEM DESCRIPTION

- A. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions, which may be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
- B. The contractor must comply with the enclosed specification in its entirety. If on inspections, the engineer finds changes have been made without prior written approval, the contractor will make the applicable changes to comply with this specification, at the contractor's expense.
- C. At the discretion of the engineer, sheet metal gauges, and reinforcing may be randomly checked to verify all duct construction is in compliance.

DUCTWORK 23 31 13 - 1

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible", ASCE/SEI 7, and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1. Exception: Sheet metal surfaces and fasteners.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Fittings.
- 4. Reinforcement and spacing.
- 5. Seam and joint construction.
- 6. Penetrations through fire-rated and other partitions.
- 7. Equipment installation based on equipment being used on Project.
- 8. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- D. Ductwork Specialties Product Data; provide for the following:
 - 1. Sealant
 - 2. Duct Liner
 - 3. Duct-mounted access doors and panels.
 - 4. Flexible ducts.
 - 5. Backdraft dampers.

DUCTWORK 23 31 13 - 2

- 6. Manual-volume dampers: Damper manufacturer's printed application and performance data including pressure, velocity and temperature limitations shall be submitted for approval.
- 7. Life Safety dampers: Provide complete submittal information (including installation instructions) and the manufacturer's certification of compliance with these specifications for approval prior to bidding. Contractor shall include damper manufacturer's Installation Instructions as part of the submittal. These instructions shall describe the applicable requirements for damper sleeve thickness, retaining angles, and methods of attachment, duct-to-sleeve connections, preparation of wall or floor openings, and all other requirements to provide an installation equivalent to that tested by the damper manufacturer during the UL Standard 555 qualification procedures. Contractor shall detail any proposed installations that deviate from these manufacturer's instructions and explain the needed deviations.
- 8. Duct Silencers: The manufacturer shall supply certified test data for each scheduled silencer. The data shall include dimensions, weights, dynamic insertion loss, generated noise and pressure drop for forward or reverse flow, matching the project's air distribution system requirement. All ratings shall be conducted in the same facility and shall utilize the same silencer. Silencer performance must have been substantiated by laboratory testing according to ASTM E-477-99 and so certified when submitted for approval.
- 9. Louvers: Include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals. For units with factory-applied color finishes, provide color chart. Provide product test reports: Based on evaluation of comprehensive tests performed by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - Items penetrating finished ceiling examples: lighting fixtures, sprinklers, etc.
 - 7. Areas of building where coordination drawings are required:
 - a. All Mechanical Rooms
 - b. All ductwork 30" wide and larger.
 - c. Congested areas
- B. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

C. Record Drawings: Indicate actual routing, fitting details, reinforcement, support, and installed accessories and devices.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- C. National Fire Protection Association (NFPA)
 - 90A: Standard for the Installation of Air Conditioning and Ventilating Systems
 - 2. 96-2008: Ventilation Control and Fire Protection of Commercial Cooking Operations
- D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 1. 3rd Edition: 2005 HVAC Duct Construction Standards, Metal and Flexible
 - 1st Edition: 2012 ANSI/SMACNA 016-2012 HVAC Air Duct Leakage Test Manual

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver sealant and fire stopping materials to site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multi-component materials.
- B. Deliver, store and handle materials according to manufacturer's written recommendations.
- C. All ductwork, equipment, and fittings delivered and stored on the job site must be capped to prevent the entry of moisture, construction dust or other debris.

PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M. Galvanized Coating Designation: G60 or G90 as indicated. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A-1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A-480/A-480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be as indicated in the "Duct Schedule" Article.
- E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- F. Reinforcement Shapes and Plates: ASTM A-36/A-36M, steel plates, shapes, and bars; black and galvanized.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

- D. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of un-braced panel area, unless ducts are lined. All large ducts must be braced as required to prevent drumming.
- E. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fig. 2-3 Rectangular Elbows: Type RE2 square throat with vanes, Type RE1 radius (1.5W minimum), or Type RE5 dual radius. Square throat is not allowed.
 - 2. Vane support in elbows: Fig 2-4. Turning vanes shall be Harper double wall turning vanes fabricated from the same material as the duct. Mounting rails shall have friction insert tabs that align the vanes automatically. Tab spacing shall be as specified in Figure 2-3 of the 1995 SMACNA Manual, "HVAC Duct Construction Standards, Metal & Flexible" Second Edition standard. Rail systems with non-standard tab spacing shall not be accepted. Due to tensile loading, vanes shall be capable of supporting 250 pounds when secured according to the manufacturer's instructions.
 - Fig. 2-5 Rectangular Divided Flow Branches: Type 1, Type 2, Type 4A, or 4B.
 - 4. Fig. 2-6 Branch Connections: 45-degree entry, 45-degree lead-in, bell-mouth or spin-in (single diffuser supply only).
 - 5. Fig. 2-7 Offsets and Transitions. Use gradual offsets as shown, 90-degree offsets shall be avoided.
 - 6. Fig 2-9 Duct Coils: Duct coils with transitions and upstream access door as shown.

2.3 ROUND DUCT FABRICATION

- A. Fabricate supply ducts of galvanized steel according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" latest edition.
- B. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Exposed Round Ducts: Shall be Spiral Seam (RL-1 seam) at 2-inch wg construction.
 - 2. Concealed Round Ducts: Shall be longitudinal Grooved Seam Flat lock (RL-5 seam) at 2-inch wg construction.
 - 3. Snap lock seams shall not be used for this project.
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class,

applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.4 HANGERS AND SUPPORTS

- A. Hanger Rods: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Outdoor Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A-603. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
- G. Supports For Roof Mounted Items:
 - 1. Equipment rails shall be galvanized steel, minimum 18-gauge, with integral baseplate, continuous welded corner seams, factory installed 2x4 treated wood nailer, 18-gauge galvanized steel counter flashing cap with screws, built-in cant strip; minimum height 11 inches. Provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/duct pedestals: Provide a galvanized unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.

2.5 SEALANT MATERIALS

A. Joint Sealant/Mastic: Shall be flexible, water-based, adhesive sealant designed for use in all pressure duct systems. After curing, it shall be resistant to ultraviolet light and shall prevent the entry of water, air and moisture into the duct system. Sealer shall be UL 723 listed; UL 181A-M or 181B-M listed; and meet NFPA 90A requirements. Pressure sensitive tape shall not be used as a sealing mechanism.

- 1. Maximum 5 flame spread and 0 smoke-developed (ASTM E-84 Tunnel Test).
- 2. Generally provide liquid sealant for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger.
- 3. Resistance to mold, mildew and water: Excellent
- 4. Color: Gray
- 5. Duct sealant/mastic shall meet requirement for "LEED IEQ Credit 4.1: Low Emitting Materials: Adhesive and Sealant". ITW TACC Miracle Kingco water-based sealants, or approved equal.
- B. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- C. Round Duct Joint O-Ring Seals: Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 FITTINGS

- A. Tees, Laterals, and Conical Tees: Use 45 degree; fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal seam straight duct.
- B. Diverging-Flow Fittings: Fabricate with a reduced entrance to branch taps with no excess material projecting from body onto branch tap entrance.
- C. Elbows: Diameters 3 through 8 inches shall be two-section die stamped; all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
- D. Low-point drains: Ductmate moisture drain with funnel collection design; ¾" connection with drain fitting and cap.

2.7 LOUVERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ruskin Company
 - 2. American Warming and Ventilating, Inc.
 - 3. Arrow United Industries.
 - 4. Cesco Products.
 - 5. Construction Specialties, Inc.
 - 6. Greenheck.
- B. Louvers shall be AMCA Licensed. Louvers shall comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" for fabrication, construction details, and installation procedures.

- C. Fabrication: Design: Stationary drainable louver type with drain gutters in each blade and head with downspouts in jambs and mullions with all welded construction. Hidden vertical supports to allow continuous line appearance up to 120 inches. Steeply angled integral sill. Frame Depth: 4 inches; Wall Thickness: 0.081 inch nominal. Material: Extruded aluminum, Alloy 6063-T6. Blades: Style: Drainable. 45 degrees at 4 inches nominal. Wall Thickness: 0.081 inch nominal. Material: Extruded aluminum, Alloy 6063-T6. Recycled Content: 18% post-consumer. 55% pre-consumer, post-industrial, total 73% by weight.
- D. Performance Data: Based on testing 48 inch \times 48 inch size unit in accordance with AMCA 500.
 - 1. Free Area: 52 percent, nominal.
 - 2. Free Area Size: 8.34 square feet.
 - 3. Maximum Recommended Air Flow through Free Area: 1075 feet per minute.
 - 4. Air Flow: 8966 cubic feet per minute.
 - 5. Maximum Pressure Drop (Intake): 0.225 inches w.g.
 - 6. Water Penetration: Maximum of 0.01 ounces per square foot of free area at an air flow of 1075 feet per minute free area velocity when tested for 15 minutes.
 - 7. Design Wind load: Per Code.
 - 8. Louvers shall be factory engineered to withstand the specified seismic loads. Minimum design loads shall be calculated to comply with ASCE 7, or local requirements of Authority Having Jurisdiction (AHJ).
- E. Bird Screen: aluminum, 5/8" mesh, removable frame, re-wireable.
- F. Premium Kynar Paint Finish: Before paint application, louvers shall be thoroughly cleaned and pretreated. Cleaning includes complete submersion in alkali cleaner, detergent deoxidization, amorphous chrome phosphate conversion ® ® coating and acidulated final rinse. Kynar 500 or Hylar 5000 finish shall be applied to provide 1.2 mils factory applied, baked-on film build in accordance with AAMA 2605-98* "Voluntary Specification Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Architectural Extrusions and Panels". Color shall be as selected by Architect.

G. Accessories

- Insulated Blank-Off Panels: 0.040 aluminum sheet, 2 inches thick, aluminum skin insulated core, factory installed with removable fasteners and neoprene gaskets.
- 2. Aluminum Insect Screen 18-16 mesh, mill finish, .011 inch wire.

2.8 MANUAL-VOLUME DAMPERS

A. Manual balancing dampers meeting the following specifications shall be furnished and installed on all branch ducts and where shown on plans. Testing and ratings to be in accordance with AMCA Standard 500-D.

- B. Single-Blade Rectangular Dampers shall consist of: an 18 ga. galvanized steel frame with 3-1/2 in. depth; blades fabricated from 20 ga. galvanized steel; integral 1/2 in. diameter axles. Damper suitable for pressures to 1.0 in. wg, velocities to 2000 fpm and temperatures to 180°F. Basis of design is Greenheck model MBD-10.
- C. Multi-Blade Rectangular Dampers shall consist of: a 16 ga. galvanized steel hat channel frame with 5 in. depth; triple V type blades fabricated from 16 ga. galvanized steel; ½ in. dia. plated steel axles; external (out of the airstream) blade-to-blade linkage. Damper suitable for pressures to 4.0 in. w.g. (996 Pa), velocities to 2000 fpm and temperatures to 180°F. Basis of design is Greenheck model MBD15.
- D. Round dampers shall consist of: a 20 ga. galvanized steel frame with 6 in. depth; blades fabricated from 20 ga. galvanized steel; 3/8 in. square plated steel axles turning in acetal bearings. Damper suitable for pressures to 1.0 in. wg, velocities to 2000 fpm and temperatures to 180°F. Basis of design is Greenheck model MBDR50.

2.9 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. McGill Air Flow LLC.
 - 4. Nailor Industries Inc.
 - 5. Durodyne
 - 6. Cesco
 - 7. Buckley
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels - Round Duct."
 - 1. Door: Double wall, rated for up to 4.5" static pressure. Door panel filled with 1" fiberglass insulation; ¾ lb. density. Hinges and Latches: 1-by-1-inch continuous piano hinge and cam latches. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs.
 - 3. Provide 1/8" thick neoprene gaskets.
 - 4. Locks: Access doors less than 16 Inches Square: Two cam locks.

 Doors over 16" shall have four locks.

2.10 FLEXIBLE CONNECTORS

A. Provide for all air moving equipment. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 0 or 1. Factory fabricated with a strip of fabric 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick,

- galvanized, sheet steel or 0.032-inch aluminum sheets. Select metal compatible with connected ducts. Duro-Dyne, Hardcast, or approved equal.
- B. Indoor Flexible Connector Fabric: Glass fabric double coated with polychloroprene or neoprene. Minimum Weight: 26 oz. /sq. yd. Tensile Strength: 480 lbf/inch in the warp, and 360 lbf/inch in the filling.

2.11 FLEXIBLE DUCTS

- A. General: Comply with UL 181, Class 0 Or 1. Flame Spread: Less than 25; Smoke Developed: Less than 50.
- B. All products shall be certified by Greenguard Environmental Institute; independent testing of products for emissions of respirable particles and Volatile Organic Compounds (VOC's), including formaldehyde and other specific product-related pollutants. Greenguard provides independent, third-party certification of IAQ performance. Certification is based upon criteria used by EPA, OSHA and WHO.
- C. Rated Positive Pressure: 10" w.g. per UL-181. Maximum negative pressure: $\frac{3}{4}$ ".
- D. Flexible Ducts, Insulated: Factory-fabricated, insulated, round duct, with an outer jacket enclosing glass-fiber insulation around a continuous inner liner.
 - 1. R6 insulation, Basis of Design: Atco #86
 - 2. Reinforcement: Steel-wire helix encapsulated in inner liner.
 - 3. Jacket (inner and outer): Polyethylene film.
- E. Exhaust/Return Flexible Ducts, not insulated: Atco#50 Factory-fabricated, round duct. Reinforcement: Triple lamination of tough metallized polyester, aluminum foil and polyester encapsulates a steel wire helix. Rated for ¾" w.g. negative pressure.
- F. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 to 18 inches to suit duct size.
- G. Hangers shall be band type, 1" wide minimum.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION, GENERAL

A. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost. Coordinate with other trades for space available and

relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- B. Provide volume dampers at all branch ducts to RGD's. If volume dampers are inadvertently not shown, contractor shall provide, the intent is to provide volume dampers at all branches.
- C. Provide ducts and accessories according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.
- D. Construct and install each duct system for the specific duct pressure classification indicated.
- E. Properly seam, brace, stiffen, support and render ducts mechanically airtight. Adjust ducts to suit job conditions. Dimensions may be changed as approved, if cross sectional area is maintained.
- F. Provide ducts in lengths not less than 12 feet, unless interrupted by fittings. Provide ducts with fewest possible joints.
- G. Provide fabricated fittings for changes in directions, changes in size and shape, and connections.
- H. Provide couplings tight to duct wall surface with a minimum of projections into duct.
- I. Provide ductwork to allow maximum headroom. Provide ducts, unless otherwise indicated, vertically and horizontally, parallel and perpendicular to building lines; avoid diagonal runs. Provide ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- J. Provide ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- K. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions, unless specifically indicated.
- L. Coordinate layout with suspended ceiling, lighting layouts, and similar finished work.
- M. Electrical Equipment Spaces: Route ductwork to avoid passing through transformer vaults and electrical equipment spaces and enclosures.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Hangers Exposed to View: Threaded rod and angle or channel supports.

- C. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system. Seal duct joints to prevent dirt marks.
- D. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- E. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- F. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 MATERIALS

- A. Hangers, accessories, and dampers shall be same material as parent duct.
- B. Refer to Specification Section 23 07 00 for sheet metal covering of rigid insulation for protection from maintenance personnel crossing insulated ductwork in mechanical spaces.
- C. All ducts shall be G60 galvanized steel except as follows:
 - 1. Louver sleeves and plenums: G90 galvanized steel.
 - 2. Un-insulated exterior ductwork: G90 galvanized steel.
 - 3. Exterior ductwork: Hangers and attachments shall be electrogalvanized, all-thread rod or galvanized rods with threads painted after installation. Refer to SMACNA Fig. 5-3. All ductwork shall be pitched or sloped to prevent "ponding" of water.
 - 4. Exposed Ductwork: Galvaneal (ready for paint)
 - 5. Swimming Pool (natatorium) ductwork: Aluminum, water-tight.
 - 6. Plenums at outside louvers: G90 galvanized steel, water-tight, pitched to drain. Provide low-point drain fittings at low points.
 - 7. Locker Room Shower area exhaust ductwork: Aluminum
 - 8. Radon exhaust: See 221216.
 - 9. Dust collection: Galvanized steel ASTM 525, G90

3.4 DUCT CLASSIFICATIONS AND SEALING

- A. Static-Pressure Classifications: Unless otherwise indicated, construct ducts to the following:
 - 1. Supply duct upstream of VAV terminal units: 3 in. w.g.
 - 2. Supply Ducts downstream of VAV terminal units: 2-inch wg.
 - 3. Supply Ducts: 2-inch wg.
 - 4. Supply Ducts: 3 in. w.g.
 - 5. Return Ducts: 2-inch wg, negative pressure.
 - 6. Exhaust Ducts: 2-inch wg, negative pressure.

7. Rooftop air handlers and RTU's: The first 20 feet of ductwork (supply and return) shall be fabricated and installed in a stiff and rigid manner, with cross bracing for minimal "drumming"; minimum 6-inch pressure class.

B. Seam And Joint Sealing

- 1. General: Seal duct seams and joints according to the duct pressure class indicated and as described in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- 2. Seal to SMACNA Class A; <u>all</u> joints, longitudinal and transverse seams, and connections in ductwork shall be securely fastened and sealed with welds, gaskets, or duct sealant. Exceptions:
 - a. Continuously welded and locking-type longitudinal joints and seams on ducts operating at less than 2 in. wg pressure classification.
 - b. Exposed exhaust or return ducts operating at less than 2 in. wg pressure classification.
 - c. Exposed supply ducts in the space that the duct serves.
- 3. Seal externally insulated ducts before insulation installation.

3.5 DUCT PENETRATIONS

- A. Fire or Smoke Rated Penetrations not requiring a fire and/or smoke damper: Where ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and fire dampers are not required, the opening in the construction around the duct shall be as follows:
 - 1. Not exceeding a 1" average clearance on all sides.
 - 2. Filled solid with firestopping material as specified in Section 23 05 00.
- B. Fire or Smoke Rated Penetrations: Provide fire and/or smoke damper as specified under Duct Accessories paragraph.
- C. Non-Fire-Rated Exposed Penetrations: Where ducts pass through interior partitions and exterior walls, and are exposed to view, conceal space between construction opening and duct or duct insulation with sheet metal flanges of same metal thickness as duct. Overlap opening on four sides by at least 1-1/2 inches.
- D. Non-Fire-Rated Concealed Penetrations: Provide insulation infill and acoustical sealant around gaps. Tightly seal to prevent sound transmission. Neatly finish.
- E. Mechanical room floor penetrations: Provide 4-inch high concrete curbs or other sealing method to prevent leakage from mechanical room into floor penetration.
- F. Roof penetrations by ducts shall use counter-flashed curbs.

G. Flexible air ducts or connectors shall not pass through any wall, floor, or ceiling.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Provide powder-actuated concrete fasteners after concrete is placed and completely cured.
 - Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- E. Provide upper attachments to structures. Select and size upper attachments with pull-out, tension,

3.7 FLEXIBLE DUCT

- A. Provide in accordance with manufacturer's and Air Diffusion Council recommendations.
- B. Flexible ducts hall be supported at manufacturer's recommended intervals, but at no greater distance than 5 feet. Maximum permissible sag is ½" per foot of spacing between supports.
- C. Provide duct fully extended; do not install in the compressed state or use excess lengths.
- D. Avoid bending ducts across sharp corners or incidental contact with metal fixtures, pipes, conduits, or hot equipment. Radius at centerline shall not be less than one duct diameter.
- E. Hanger or saddle material in contact with the duct shall be at least 1-1/2" wide.

F. Provide at least 2 duct diameters of straight duct at the entrance to register, grilles, and diffusers.

3.8 DUCT ACCESSORIES INSTALLATION

- A. Provide duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible".
- B. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards
- C. Each register, grille, or diffuser shall have a means of air flow adjustment. Provide volume damper in branch duct if not furnished with the RGD.
- D. Adjust operable devices for proper action.
- E. Perform the following as directed by the controls contractor:
 - 1. Installation of control devices
 - 2. Access doors where indicated and as required.
- F. Provide duct access panels for access components that require servicing.
 - 1. Provide duct access panels to allow access to interior of ducts for cleaning, inspecting, adjusting, and maintaining per equipment manufacturers' requirements.
 - Provide access panels on side of duct where adequate clearance is available.
 - Locate panel upstream and/or downstream as recommended by manufacturer.
 - 4. Locations:
 - a. On both sides of duct coils.
 - b. Upstream from duct filters.
 - c. At outdoor-air intakes.
 - d. At drain pans and seals.
 - e. Adjacent to and close enough to life safety dampers, to reset or reinstall fusible links. Access doors for access to dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - f. Control devices requiring inspection.
 - g. Elsewhere as indicated or required by duct accessory manufacturer
 - 5. Inspect locations of access doors and verify that purpose of access door can be performed.
- G. Control Damper Installation
 - 1. Damper submittals shall be coordinated for type, quantity, and size to ensure compatibility with sheet metal design.

- 2. Duct openings shall be free of any obstruction or irregularities that might interfere with blade or linkage rotation or actuator mounting. Duct openings shall measure ¼ in. larger than damper dimensions and shall be square, straight, and level.
- 3. Individual damper sections, as well as entire multiple section assemblies, must be completely square and free from racking, twisting, or bending. Measure diagonally from upper corners to opposite lower corners of each damper section. Both dimensions must be within 1/8 in. of each other.
- 4. Follow the manufacturer's instructions for field installation of control dampers. Unless specifically designed for vertical blade application, dampers must be mounted with blade axis horizontal.
- 5. Damper blades, axles, and linkage must operate without binding. Before system operation, cycle damper after installation to ensure proper operation. On multiple section assemblies, all sections must open and close simultaneously.
- 6. Provide a visible and accessible indication of damper position on the drive shaft end.
- 7. Support ductwork in area of damper when required to prevent sagging due to damper weight.
- 8. After installation of low-leakage dampers with seals, caulk between frame and duct opening to prevent leakage around perimeter of damper.

3.9 LOUVER INSTALLATION

- A. Louvers to be furnished by Division 23; mounted and installed by the contractor responsible for the outside wall construction. Ductwork shall be connected to the louvers by Division 23.
- B. Verify louver openings by field measurements before fabrication and indicate measurements on Shop Drawings. For new construction, or where field measurements cannot be made without delaying the Work, establish opening dimensions and proceed with fabricating louvers without field measurements. Coordinate construction to ensure that actual opening dimensions correspond to established dimensions. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

C. Installation

- 1. Locate and place louvers and vents level, plumb, and at indicated alignment with adjacent work.
- 2. Pitch horizontal ducts and plenums connected to louvers downward toward louvers not less than 1 inch in 10 feet. Connect to louver to allow drainage to exterior. Seal duct water-tight.
- 3. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weather tight connection.
- 4. Form closely fitted joints with exposed connections accurately located and secured.
- 5. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

- 6. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.
- 7. Provide concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weather tight louver joints are required.
- D. Clean exposed surfaces of louvers and vents that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate until final cleaning. Restore louvers and vents damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

3.10 FIELD QUALITY CONTROL

- A. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- B. HVAC systems shall not be operated during construction.
- C. Systems shall not be operated without filters in place.
- D. Upon completion of installation duct systems and before HVAC system start-up, visually inspect the ductwork proper installation
- E. Cover supply openings with filter media prior to system start-up to catch any loose material that may remain inside the ductwork. Turn the HVAC system on and allow it to run until steady state operation is reached. Remove the temporary filter media from supply openings and, along with it, any loose material blown downstream and caught by the filter media.
- F. All ductwork shall be provided with temporary enclosures to keep the HVAC system free of dust and construction debris. The HVAC system includes any interior surface of the facility's air distribution system for conditioned spaces and/or occupied zones. This includes the entire duct from the points where the air enters the system to the points where the air is discharged from the system.
- G. Check all filters in accordance with their manufacturer's instructions. Use specified grade of filters at all times that system is operating.

- - - E N D - - -

SECTION 23 37 13

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 23 Section "Common Work Results for HVAC"
 - 2. Division 23 Section "Ductwork"
 - 3. Division 23 Section "Testing, Adjusting, and Balancing" for balancing diffusers, registers, and grilles.

1.2 SUMMARY

A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.

1.3 DEFINITIONS

- A. Diffuser: Circular, square, or rectangular air distribution outlet, generally located in the ceiling and comprised of deflecting members discharging supply air in various directions and planes and arranged to promote mixing of primary air with secondary room air.
- B. Grille: A louvered or perforated covering for an opening in an air passage, which can be located in a sidewall, ceiling, or floor.
- C. Register: A combination grille and damper.

1.4 SUBMITTALS

- A. Each manufacturer shall check noise level ratings for registers and diffusers to insure that the sizes selected will not produce noise to exceed 30 db, "A" scale, measured at occupant level; notify Owner's representative of problems prior to shop drawing submittal.
- B. Pressure drop, airflow and noise criteria selection is based on design equipment. Manufacturers not submitting design makes must provide written certification in front of submittal that equipment submitted has been checked against and performs equal to the design make.

- C. Product Data: For each model indicated, include the following:
 - 1. Data Sheet: For each type of air outlet and inlet, and accessory furnished; indicate construction, finish, and mounting details.
 - Performance Data: Include throw and drop, static-pressure drop, and noise ratings for each type of air outlet and inlet.
 - Schedule of diffusers, registers, and grilles indicating drawing designation, room location, quantity, model number, size, and accessories furnished.
 - 4. Assembly Drawing: For each type of air outlet and inlet; indicate materials and methods of assembly of components.
- D. Coordinate locations with reflected ceiling plans and wall elevations as applicable.
- E. Coordinate mounting frame with associated mounting surface.

1.5 QUALITY ASSURANCE

- A. Product Options: Drawings and schedules indicate specific requirements of diffusers, registers, and grilles and are based on the specific requirements of the systems indicated. Other manufacturers' products with equal performance characteristics may be considered. Refer to Division 1 Section "Substitutions."
- B. NFPA Compliance: Install diffusers, registers, and grilles according to NFPA 90A, "Standard for the Installation of Air-Conditioning and Ventilating Systems."
- C. Sound pressure levels shall be determined by using AHRI Standard 885-2008 "Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Outlets".

PART 2 - PRODUCTS

2.1 GENERAL

- A. Diffusers, registers, and grilles are scheduled on Drawings.
- B. Mounting type shall match the mounting surface. Coordinate with mounting conditions.
- C. Material shall match the specified ductwork. Coordinate with Section 23 31 13 "Ductwork".
- D. Testing: Test performance according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- E. Provide with a White Powder Coat finish, unless noted otherwise.
- F. Grille blade orientation: Vertical rectangle (wall grille with height longer than width): The blades shall run parallel to the short

dimension of the grille. Horizontal rectangle: The blades shall run parallel to the long dimension of the grille.

G. Manufacturers

- 1. Price
- 2. Titus
- 3. Metal-Aire
- 4. Anemostat
- 5. Nailor

2.2 RETURN OR EXHAUST

- A. Return/Exhaust Grille, 45-degree deflection
 - 1. Material: steel (Price 530 Series) or aluminum (Price 630 Series)
 - 2. Provide damper as scheduled.
 - Grilles of the sizes indicated on the plans. Grilles shall be 45 degree deflection fixed louver type with blades spaced 3/4" on center.

2.3 SUPPLY

- A. Square ceiling diffusers, Fixed pattern
 - 1. Material: steel (Price Model SCD) or aluminum (Price Model ASCD)
 - Diffusers shall consist of a precision formed back cone of one piece seamless construction which incorporates a round inlet collar of sufficient length for connecting rigid or flexible duct.
 - 3. The diffuser shall integrate with all duct sizes shown on the plans without affecting the face size and appearance of the unit. An inner cone assembly shall consist of 3 cones (or optional 4 cones) which drop below the ceiling plane to assure optimal VAV air diffusion performance.
 - 4. The inner cone assembly shall be completely removable from the diffuser face to allow full access to any dampers or other ductwork components located near the diffuser neck.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb, according to manufacturer's written instructions, Coordination Drawings, original design, and referenced standards.
- B. Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of the panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Provide diffusers, registers, and grilles with airtight connection to ducts.
- D. Provide 2 feet minimum of straight ductwork at the entrance to diffusers.
- E. Plenum boxes on grilles/registers shall be 8" minimum height.

3.3 ADJUSTING

- A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.
- B. Adjustable outlet diffuser: adjust pattern for draft-free air distribution.

3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

- - - E N D - - -

SECTION 23 72 00

AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Packaged Energy Recovery Units - Fixed Plate Enthalpic

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, furnished specialties, and accessories.
- B. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Wiring Diagrams: For power, signal, and control wiring.
- D. Operation and Maintenance Data: For air-to-air energy recovery equipment to include in maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ARI Compliance: Capacity ratings for air-to-air energy recovery equipment shall comply with ARI 1060, "Rating Air-to-Air Energy Recovery Equipment."

C. ASHRAE Compliance:

- Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 - "Construction and Startup."
- Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."

D. UL Compliance: UL 1812.

1.5 COORDINATION

- A. Coordinate layout and installation of air-to-air energy recovery equipment and suspension system with other construction that penetrates ceilings or is supported by them.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 PACKAGED ENERGY RECOVERY UNITS - FIXED PLATE ENTHALPIC

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mitsubishi Electric Sales Canada Inc.
 - 2. RenewAire LLC.

B. Quality Assurance

- 1. The energy recovery cores used in these products shall be third party Certified by AHRI under its Standard 1060 for Energy Recovery Ventilators. AHRI published certifications shall confirm manufacture's published performance for airflow, static pressure, temperature and total effectiveness, purge air (OACF) and exhaust air leakage (EATR). Products that are not currently AHRI Certified will not be accepted.
- 2. Manufacturer shall be able to provide evidence of independent testing of the core by Underwriters Laboratory (UL), verifying a maximum flame spread index (FSI) of 25 and a maximum smoke developed index (SDI) of 50 thereby meeting NFPA 90A and NFPA 90B requirements for materials in a compartment handling air intended for circulation through a duct system. The method of test shall be UL Standard 723.
- 3. Unit shall be Listed under UL 1812 Standard for Ducted Air to Air Heat Exchangers. Some exceptions to UL Listing may apply. Units intended for "Outdoor Use" shall be listed using the specific UL requirements for rain penetration, corrosion protection and seal durability and shall be so labeled.
- 4. The ERV core shall be warranted to be free of manufacturing defects and to retain its functional characteristics, under circumstances of normal use, for a period of ten years from the date of purchase. The balance-of-unit shall be warranted to be free of manufacturing defects and to retain its functional characteristics, under circumstances of normal use, for a period of two years from the date of purchase.

C. Performance

- 1. Energy Transfer: The ERV shall be capable of transferring both sensible and latent energy between airstreams. Latent energy transfer shall be accomplished by direct water vapor transfer from one air stream to the other, without exposing transfer media in succeeding cycles directly to the exhaust air and then to the fresh air.
- 2. Passive Frost Control: The ERV core shall perform without condensing or frosting under normal operating conditions (defined as outside temperatures above -10°F and inside relative humidity below 40%). Occasional more extreme conditions shall not affect the usual function, performance or durability of the core. No condensate drains will be allowed.
- 3. Continuous Ventilation: Unit shall have the capacity to operate continuously without the need for bypass, recirculation, preheaters, or defrost cycles under normal operating conditions.
- 4. Positive Airstream Separation: Water vapor transfer shall be through molecular transport by hydroscopic resin and shall not be accomplished by "porous plate" mechanisms. Exhaust and fresh airstreams shall travel at all times in separate passages, and airstreams shall not mix.
- 5. Laminar Flow: Airflow through the ERV core shall be laminar over the products entire operating airflow range, avoiding deposition of particulates on the interior of the energy exchange plate material.

D. Construction

- 1. The energy recovery component shall be of fixed-plate cross-flow construction, with no moving parts.
- 2. No condensate drain pans or drains shall be allowed and unit shall be capable of operating in both winter and summer conditions without generating condensate.
- 3. The unit case shall be constructed of G90 galvanized, 20-gauge steel, with lapped corners and zinc plated screw fasteners. The unit roof shall be one piece or have watertight standing seam joints and shall overlap wall panels and doors in order to positively shed water.
- 4. Access doors shall provide easy access to blowers, ERV cores, and filters. Doors shall have an airtight compression seal using closed cell foam gaskets rated for outdoor exposure. Pressure taps, with captive plugs, shall be provided allowing cross-core pressure measurement allowing for accurate airflow measurement.
- 5. Weather hoods shall be screened to exclude birds and animals. Inlet weather hoods shall be sized to maintain inlet velocities below 500 fpm, and equipped with rain excluder baffles.
- 6. Case walls and doors shall be insulated with 1 inch, 4 pound density, foil/scrim faced, high-density fiberglass board insulation, providing a cleanable surface and eliminating the possibility of exposing the fresh air to glass fibers, and with minimum R-value of 4.3 (hr·ft2·oF/BTU).
- 7. The ERV cores shall be protected by a MERV-8 rated, 2" nominal, pleated, disposable filter in both airstreams.
- 8. Unit shall have single-point power connection and a single-point 24 VAC contactor control connection

- 9. Blower motors shall be Premium Efficiency, EISA compliant for energy efficiency. The blower motors shall be totally enclosed (TEFC) and shall be supplied with factory installed motor starters (HE6X and HE8X 208-230/460V models are open drip proof). Direct drive models (EV450 and HE1X models) shall be EISA compliant for energy efficiency with open drip proof design and integral thermal protection.
- 10. Blowers shall be quiet running, forward curve type and be either direct drive (EV450 and HE1X only) or belt drive. HE6X and HE8X units use backward incline, belt drive blower packages. Belt drive motors shall be provided with adjustable pulleys and motor mounts allowing for blower speed adjustment, proper motor shaft orientation and proper belt tensioning.
- 11. The unit electrical box shall include a factory installed, non-fused disconnect switch and a 24 VAC, Class II transformer/relay package.
- 12. The ERV shall be provided "inverter-ready" allowing for applications of inverters supplied and installed by others

E. Options

- Provide unit and duct connection orientation per project schedule.
- 2. Provide double wall construction with 24-gauge galvanized steel liner.
- 3. Provide factory installed disconnect fuses.
- 4. Provide ECM controlled motors (available for EV450IN and HE1XIN models) allowing for to preset speeds or variable speed operation with a 0-10 volt DC control signal.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-to-air energy recovery equipment installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.
- E. Locate and orient unit to provide the shortest and most straight duct connections. Provide service clearances as indicated on the plans. Locate units distant from sound critical occupancies.

3.2 INSTALLATION

- A. Install units with clearances for service and maintenance.
- B. Equipment Mounting: Install floor-mounted air-to-air energy recovery equipment on concrete bases. Comply with requirements for concrete bases specified in Section 23 05 00 "Common Work Results for HVAC".
- C. Suspended Units: Suspend and brace units from structural-steel support frame using threaded steel rods and spring hangers. Comply with requirements for vibration isolation devices specified in Division 23 Section vibration/seismic specification section.
- D. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- E. Sound Control: To control sound associated with the two blower outlets:
 - 1. Provide straight, gradual transition ductwork for a minimum of 2-1/2 duct diameters downstream from the blower outlet.
 - Provide continuous acoustic insulation treatment of the duct until after the first elbow or tee.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Comply with requirements for ductwork specified in Division 23 Section "Ductwork."
- C. Install piping adjacent to machine to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Test and Balancing: Test and Balancing may not begin until 100% of the installation is complete and fully functional.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Tests and Inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

- D. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy recovery units.

- - - E N D - - -

SECTION 23 81 30

DUCTLESS SPLIT-SYSTEM AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Division 23 Section "Common Work Results for HVAC"

1.2 SUMMARY

A. This Section includes low temperature (-13 F) heat pump units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
- C. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of split-system units and are based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."

- D. Coefficient of Performance: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- E. A dry air holding charge shall be provided in the indoor section.
- F. The outdoor unit shall be pre-charged with R-410a refrigerant for 70 feet of refrigerant tubing.

1.5 COORDINATION

- A. Coordinate size and location of concrete bases for units. Cast anchor-bolt inserts into bases. Refer to Section 23 05 00.
- B. Provide equipment supports and roof penetrations in accordance with Division 7.

1.6 WARRANTY

A. The units shall have a manufacturer's parts and defects warranty for a period five (5) years from date of installation. The compressor shall have an extended warranty of seven (7) years from date of installation. If, during this period, any part should fail to function properly due to defects in workmanship or material, it shall be replaced or repaired at the discretion of the manufacturer. This warranty will not include labor.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mitsubishi
 - 2. Samsung
 - 3. Fujitsu
 - 4. Trane
 - 5. Daikin

2.2 MULTI SPLITS -COLD WEATHER RATED HEAT PUMP

A. The MXZ outdoor (above 0F) or The MXZ HZ outdoor (below 0F) units shall be specifically designed to work with the manufacturer's family of indoor units. The outdoor unit shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory prior to shipment.

1. Unit Cabinet:

- a. The casing shall be fabricated of galvanized steel, bonderized, finished with an electrostatically applied, thermally fused acrylic or polyester powder coating for corrosion protection. Assembly hardware shall be cadmium plated for weather resistance.
- b. Cabinet color shall be Munsell 3Y 7.8/1.1.
- c. Two (2) mild steel mounting feet, traverse mounted across the cabinet base pan, welded mount, providing four (4) slotted mounting holes shall be furnished. Assembly shall withstand lateral wind gust up to 155 MPH to meet applicable weather codes.

2. Fan:

- a. The unit shall be furnished with a direct drive, high performance propeller type fan.
- b. The condenser fan motor shall be a variable speed, direct current (DC) motor and shall have permanently lubricated bearings.
- c. Fan speed shall be switch automatically according to the number of operating indoor units and the compressor operating frequency.
- d. The fan motor shall be mounted with vibration isolation for quiet operation.
- e. The fan shall be provided with a raised guard to prevent contact with moving parts.
- f. The outdoor unit shall have horizontal discharge airflow.
- g. Outdoor unit sound level shall not exceed 55 dB (A).

3. Coil:

- a. The outdoor unit coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
- b. The coil shall be protected with an integral guard.
- c. Refrigerant flow from the outdoor unit to the indoor units shall be independently controlled by means of individual electronic linear expansion valves for each indoor unit.
- d. Outdoor unit shall be pre-charged with sufficient R-410a refrigerant for up to one hundred and thirty-one (131) feet of refrigerant piping.
- e. All refrigerant lines between outdoor and indoor units shall be of annealed, refrigeration grade copper tubing, ARC Type, meeting ASTM B280 requirements, individually insulated in twin-tube, flexible, closed-cell, CFC-free (ozone depletion potential of zero), elastomeric material for the insulation of refrigerant pipes and tubes with thermal conductivity equal to or better than 0.27 BTU-inch/hour per Sq Ft / °F, a water vapor transmission equal to or better than 0.08 Perminch and superior fire ratings such that insulation will not contribute significantly to fire and up to 1" thick insulation shall have a Flame-Spread Index of less than 25 and a Smoke-development Index of less than 50 as tested by ASTM E 84 and CAN / ULC S-102.

f. All refrigerant connections between outdoor and indoor units shall be flare type.

4. Compressor:

- a. The compressor shall be a high performance, hermetic, inverter driven, variable speed, dual rotary type manufactured by Mitsubishi Electric Corporation.
- b. The compressor motor shall be direct current (DC) type equipped with a factory supplied and installed inverter drive package.
- c. The outdoor unit shall be equipped with a suction side refrigerant accumulator.
- d. The compressor will be equipped with an internal thermal overload.
- e. The compressor shall be mounted to avoid the transmission of vibration.
- 5. Piping Requirements: The outdoor unit must have the ability to operate within the following refrigerant piping and height limitations without the need for line size changes, traps or additional oil.
- 6. Electrical:
 - a. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - b. The unit shall be capable of satisfactory operation within voltage limits of 187 volts to 253 volts.
 - c. The outdoor unit shall be controlled by the microprocessors located in the indoor unit and in the outdoor unit communicating system status, operation, and instructions digitally over A-Control a system directing that the indoor unit be powered directly from the outdoor unit using a 3-wire, 14 gauge AWG connection plus ground.
 - d. The outdoor unit shall be equipped with Pulse Amplitude Modulation (PAM) compressor inverter drive control for maximum efficiency with minimum power consumption.
- B. The indoor unit shall be fully factory assembled, wired and run tested prior to shipment. Contained within the indoor unit shall be all factory wiring, piping, control circuit board, fan, and fan motor. The unit shall have a self-diagnostic function, 3-minute restart time delay mechanism, an auto restart function, an emergency / test operation. Indoor unit shall be charged with dry air before shipment from factory.
 - 1. The indoor units shall be capable of working with single-zone or multi-zone outdoor units.
 - 2. Unit Cabinet:
 - a. The casing shall have a white finish- Munsell 1.0Y 9.2/0.2.
 - b. Multi directional drain and refrigerant piping, offering three (3) direction pipe alignment for all refrigerant piping and two (2) direction pipe alignment for condensate draining shall be standard.

- c. Horizontal Ducted: The cabinet shall be low profile, ceiling-concealed ducted not to exceed 7-7/8" in depth and equipped with four corner mounting brackets. The unit shall include a condensate lift mechanism that will be able to raise drain water 21" inches above the condensate pan.
- 3. Fan Horizontal Ducted Units
 - a. The indoor unit fan shall be an assembly with Sirocco blowers.
 - b. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
 - c. The indoor fan shall consist of three (3) speeds, High, Mid, and Low.
 - d. The indoor unit shall have a ducted air outlet system and ducted return air system.
 - e. Provide a return air inlet box with MERV8 filters. Cabinet constructed of non-insulated 20 gauge G-60 galvanized steel; knurled thumb screws on access door allow easy filter replacement. UL 723 foam gasket provides air-tight connection to indoor unit and access. Return connection in rear shall be easily field converted to bottom

4. Coil:

- a. The indoor unit coil shall be of nonferrous construction with smooth plate fins on copper tubing.
- b. The refrigerant tubing shall have inner groves for high efficiency heat exchange.
- c. All tube joints shall be brazed with PhosCopper or silver alloy.
- d. The coils shall be pressure tested at the factory.
- e. A sloped, corrosion resistant condensate pan with drain shall be provided under the coil.
- f. Provide the optional drain pan level switch (DPLS1), designed to connect to the control board, shall be provided, and installed on the condensate pan to prevent condensate from overflowing.

5. Electrical:

- a. The indoor unit electrical power shall be 208 / 230 volts, 1-phase, 60 hertz.
- b. The system shall be equipped with A-Control a system allowing each indoor unit to be powered and controlled directly from the outdoor unit using a 14 gauge (AWG) 3-wire connection plus ground providing both primary power and integrated, by-directional, digital control signal without additional connections.
- c. The indoor units shall not have any supplemental or "back-up" electrical heating elements.

6. Control:

a. Wired Remote Controller

- 1) The Wired Remote Controller shall require a terminal interface for communications. Interface will be mounted at the indoor unit. A two (2) conductor, stranded, 22 AWG twisted pair, jacketed; cable shall connect the interface to the wall controller. Connection shall not be polarity sensitive and controller wire shall not exceed thirty-three (33) feet (10m) length.
- The wired remote controller shall be approximately 5" x 5" in size and white in color with a light-green LCD display. The controller shall support a selection from multiple languages for display information. There shall be a built-in weekly timer with up to 8 pattern settings per day. The controller shall consist of an On/Off button, Increase/Decrease Set Temperature buttons, a Cool/Auto/Fan/Dry mode selector, a Timer Menu button, a Timer On/Off button, Set Time buttons, a Fan Speed selector, a Ventilation button, a Test Run button, and a Check Mode button. The controller shall have a built-in temperature sensor. Temperature shall be displayed in either Fahrenheit (°F) or Celsius (°C), and Temperature changes shall be by increments of 1°F (0.5°C). The controller shall have the capability of controlling up to a maximum of 16 systems, as a group with the same mode and set-point for all, at a maximum developed control cable distance of 1,500 feet.

2.3 OUTDOOR UNIT SUPPORT STANDS

- A. Provide for systems that provide year round operation.
- B. Quick-Sling Model QSSSVRF/VRV SUPER STANDS, or approved equal.
- C. Quick-Sling Model QSMS, or approved equal.
 - 1. 14 gauge square steel tubing powder coated for outdoor use.
 - 2. 24" height; sized to match the condensing unit, adjustable.
 - 3. Each foot shall be 6"x6" 11 gauge steel, adjustable up to 1.25" in height. Provide four (4) 3/8" holes, bolt the unit to the subsurface support. Securely fasten to [roof sleepers] [concrete pad] with corrosion resistant fasteners.
 - 4. Adjustable in height up to 1.25"
 - 5. 50 durometer pads on each foot
 - 6. Max capacity 400 lbs.
 - 7. 4 points of anti-vibration isolation washers
 - 8. 2 additional support arms included
 - 9. Provide all required hardware.

23 81 30 - 6

2.4 LINE SETS

- A. PDM Preinsulated Pipes; "Gelcopper", Mitsubishi Diamondback Linesets; or approved equal.
- B. Polyethylene closed cell foam: assures thermal insulation from surroundings.
 - 1. ASTM C 1427-07 compliant
 - 2. Type I (tubular)
 - 3. Grade I (insulation material for use on typical commercial system non-crosslinked).
 - Low-density polyethylene foam: closed cells foam, CFC and HCFC gas free
 - 5. Water vapor permeability: ASTM E96-00 compliant
 - 6. Working temperature: ASTM C 1427-07 compliant
 - 7. Wall thickness: 1/2" and 3/4"
 - 8. Surface burning characteristics: UL 94, top rated UL 723,
 - 9. ASTM E84 (25/50) compliant, flame and Spread Index less than 25 and Smoke Development Index less than 50 as tested according to UL 723.
 - 10. R-Value: between 6.0 and 3.0 (depending on pipe diameter)
- C. Copper: Manufactured according to ASTM B280; No. C122200 DHP (phosphorous deoxidized, high residual phosphorous), 99.90%. R410a approved.
- D. Outer Jacket: Additional white polyethylene jacket cover protects foam insulation from tearing during installation process. Marking: insulation incrementally marked by every foot to ensure accurate initial unit charge. UV resistant. Paintable: The insulation can be painted to match the surroundings.
- E. Line Set Covers: Mitsubishi, Rectorseal, or approved equal. Precision engineered system of prefabricated PVC duct and fittings which conceals and protects exposed refrigeration line sets, wiring, and drain pipes. Made from extruded PVC duct with a full range of injection molded Polypropylene fittings, all of which meet the requirements of the current UL -94V-0 specification. Color: white. Provide stainless steel screws, retainer clips, wall covers, sleeves, fittings, and hardware for a neat, finished installation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Provide roof-mounting condensing unit support components on equipment supports in accordance with Division 7. Provide quick-sling support stands.

- D. Anchor units to supports with removable, cadmium-plated fasteners.
- E. Install and connect pre-charged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Coordinate locations of indoor units with structure, ceiling grid, and other trades - must maintain heat pump manufacturer's recommended service clearances.
- D. Provide insulated refrigerant piping per heat pump manufacturer's recommendations. Provide and connect pre-charged refrigerant tubing to component's quick-connect fittings. Provide tubing to allow access to unit. Test and inspect refrigerant piping according to ASME B31.5, Chapter VI.
- E. Exterior piping and wiring shall be enclosed in line set covers.
- F. Route indoor unit condensate drains to sink traps, floor drains, plumbing code compliant, or other locations as indicated.
- G. Electrical Connections: Comply with requirements in Electrical Specification Sections for power wiring, switches, and motor controls.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - Leak Test: After installation, charge system and test for leaks.
 Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.
- B. Refer to Division 1 for further requirements.

- - - E N D - - -

SECTION 23 82 39

UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 23 Section "Common Work Results for Mechanical"

1.2 SUMMARY

A. This Section includes hydronic unit heaters.

1.3 SUBMITTALS

- A. Product Data: Include specialties and accessories for each unit type and configuration.
 - 1. Plans, elevations, sections, and details.
 - 2. Power, signal, and control wiring diagrams. Differentiate between manufacturer-installed and field-installed wiring.
 - Equipment schedules to include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
 - 4. Cabinet Unit Heater color samples for initial selection: Manufacturer's color charts showing the full range of colors available for units with factory-applied color finishes.
- B. Maintenance Data: For unit heaters to include in maintenance manuals specified in Division 1. Include maintenance schedules and repair parts lists for motors, coils, integral controls, and filters.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 COORDINATION

- A. Coordinate layout and installation of unit heaters and suspension system components
- B. Coordinate wall construction and conditions with recessed or semirecessed cabinet unit heater installation requirements.

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Cabinet Unit Heater Filters: Furnish one set of spare filter for each filter installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Corp.
 - 2. Trane
 - 3. McQuay
 - 4. Sterling
 - 5. Vulcan
 - 6. Modine
 - 7. Rittling

2.2 CABINET UNIT HEATERS

- A. Description: An assembly including filter, chassis, coil, fan, and motor in blow-through configuration with heating coil.
- B. Cabinet: For one or more of the following configurations:
 - Surface, wall mounting. Air Inlet: Front grille or open bottom as indicated. Air Outlet: Top grille.
 - Semi-recessed, wall-mounting front grilles for air inlet and outlet.
 - 3. Semi-recessed, ceiling-mounting front grilles for air inlet and outlet.
 - 4. Recessed, wall-mounting front grilles for air inlet and outlet.
- C. Chassis: Galvanized steel, with flanged edges and unit-leveling bolts.
- D. Coil Section Insulation: 1-inch duct liner complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916. Fire-Hazard

Classification: Duct liner and adhesive shall have a maximum flame-spread rating of 25 and smoke-developed rating of 50 when tested according to ASTM E 84.

- E. Cabinet: Galvanized steel, with removable panels.
- F. Cabinet Finish: Cabinet parts and exposed recessed panels shall be cleaned, bonderized, phosphatized, and painted with a baked powder finish available in six colors. Finish shall meet ASTM B117 specifications (salt spray test).
- G. Steam Coil: Copper distributing tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 75 psig.
- H. Filters: 1-inch- thick, pleated glass-fiber media in fiberboard frame, Farr 30/30 Pleated Panel Air Filter or equivalent.
- I. Fan: Centrifugal, with forward-curved, double-width wheels and fan scrolls made of galvanized steel or thermoplastic material; directly connected to motor.
- J. Motors shall be brushless DC (BLDC)/electronically commutated motors (ECM) factory-programmed and run-tested in assembled units. The motor controller shall be mounted in a touch-safe control box with a built-in integrated user interface and LED tachometer. If adjustments are needed, motor parameters can be adjusted through momentary contact switches accessible without factory service personnel on the motor control board. Motors shall soft-ramp between speeds to lessen the acoustics due to sudden speed changes. Motors shall be operated at three speeds. The motor will choose the highest speed if there are simultaneous/conflicting speed requests. Motors shall have integral thermal overload protection with a maximum ambient operating temperature of 104°F and shall be permanently lubricated. Motors shall be capable of starting at 50 percent of rated voltage and operating at 90 percent of rated voltage on all speed settings. Motors shall operate up to 10 percent over voltage.

K. Accessories

- Steel recessing flanges for recessing cabinet unit heaters into ceiling or wall.
- 2. Tamperproof locks.
- 3. Leveling feet for vertical floor mounted cabinet unit heaters.
- 4. Control Devices: Unit-mounted fan-speed switch and line voltage wall-mounting thermostat.
- 5. Provide a unit-mounted disconnect switch.

2.3 SOURCE QUALITY CONTROL

A. Test unit heater coils according to ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before cabinet unit heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install unit heaters level and plumb.
- B. Install unit heaters to comply with NFPA 90A.
- C. Hung unit heaters shall be suspended from structure with rubber-inshear vibration isolators (rubber hangers).

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Unless otherwise indicated, install shutoff valve and union or flange at each connection.
- C. Install piping adjacent to machine to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing and report results in writing:
 - 1. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safeties.
- B. Repair or replace malfunctioning units. Retest as specified above after repairs or replacements are made.

3.5 CLEANING

A. After installing units, inspect unit cabinet for damage to finish. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

- B. After installing units, clean unit heaters internally according to manufacturers written instructions.
- C. Install new filters in each cabinet unit heater within two weeks after Substantial Completion.

- - - E N D - - -

SECTION 26 10 00

BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Alternates: Refer to Division 01 to determine extent of, if any, work of this section that will be affected by any alternates if accepted.
- B. Furnish all materials, equipment, labor, and supplies and perform all operations necessary to complete the electrical work in accordance with the intent of the drawings and these specifications.
- C. Temporary Power and Lighting:
 - 1. Power Distribution: Provide weatherproof, grounded circuits with ground-fault interruption features, with proper power characteristics and either permanently wired or plug-in connections as appropriate for intended use. Provide overload-protected disconnect switch for each circuit at distribution panel. Space 4-gang convenience outlets (20 amp circuit) so that every portion of work can be reached with 100' extension cord.
 - 2. Temporary Lighting: Provide lighting of intensity and quality sufficient for proper and safe performance of the work and for access thereto and security thereof. (Consult OSHA requirements.)

1.3 QUALITY ASSURANCE

- A. All wiring shall be in accordance with the latest issue of the National Electrical Code.
- B. The Contractor shall show evidence, upon request, of having successfully completed at least five similar projects. Installation of each system shall be under the supervision of a factory-authorized organization.
- C. The Contractor shall show evidence, upon request, that he maintains a fully equipped service organization capable of furnishing adequate inspection and service to the system. The Contractor must have a service contract program for the maintenance of the system after the guarantee period.

- D. All electrical equipment shall be listed by Underwriters Laboratories, Inc. Each system shall be products of a single manufacturer of established reputation and experience. The Contractor shall have supplied similar apparatus to comparable installations rendering satisfactory service for at least three years.
- E. For each system, the manufacturer shall furnish "gratis" to the Owner a one-year contract effective from the date of installation for maintenance and inspection services of the manufacturer's equipment with a minimum of two inspections during the contract year.
- F. Prior to submission for review of any item of equipment, determine whether or not it will fit in the space provided. Any changes in the size or location of the material or equipment supplied, which may be necessary in order to meet field conditions or in order to avoid conflicts between trades, shall be brought to the immediate attention of the Architect/Engineer and approval received before such alterations are made.

1.4 EFFICIENCY MAINE

A. This project intends to pursue Efficient Maine prescriptive and/or custom incentives. The contractor shall be an Efficiency Maine Qualified Partner and shall participate in the activities associated with Efficiency Maine incentive pre-approval and approval process including but not limited to; preparation and submission of required incentive application(s) and the tracking and submission of measure specific invoices to Efficiency Maine within 60 days of the completion of the work.

B. The contractor shall also:

- 1. Become familiar with the Efficiency Maine Business Program including available incentives and the application and review process.
- 2. Review plans and specifications for any and all incentive opportunities, prescriptive and custom.
- C. The project schedule shall reflect and accommodate the time required to achieve application preapproval from Efficiency Maine. No equipment shall be purchased until preapproval is received from Efficiency Maine.
- D. All invoices shall be forwarded to Efficiency Maine in accordance with Efficiency Maine requirements. This deliverable shall be shown on the project schedule as a milestone date and coordinated with all contractors to assure compliance with this requirement.

1.5 FIRE ALARM SYSTEM

A. Modify and add to the existing fire alarm system to provide a complete and code compliant system including but not limited to: new smoke detectors, heat detectors and notification appliances in all areas required. Fire alarm systems shall generally comply with requirements of NFPA 72 for local building systems except as modified and supplemented

by this specification. All units of equipment shall be listed by Underwriters Laboratories and shall consist of a battery-backed fire alarm control station, with audio/visual and visual alarm indicating devices, heat detectors, smoke detectors, and pull stations. All equipment shall be located as shown on the plans and wired in accordance with the manufacturer's instructions to form a complete and workable emergency evacuation life safety system as hereinafter described.

1.6 TELECOMMUNICATIONS

A. Telecommunications work shall be in accordance with Building Industry Consulting Service International (BICSI) standards. Installation shall be under the direct supervision of a BICSI Registered Technician, who shall be present at all times when Work of this Section is performed at Project site. Testing Supervisor shall be currently certified by BICSI as a Registered Communications Distribution Designer (RCDD).

1.7 SUBMITTALS

- A. In accordance with Division 01, furnish the following:
 - Manufacturer's descriptive literature: For each type of product indicated.
 - Submit shop drawings which include engineering drawings of the system with specification sheets covering all component parts of the system and interconnection diagrams.
 - 3. Submit fire alarm battery calculations.
 - 4. Certification:
 - a. Prior to final inspection, deliver to the Owner's Representative certification that the material is in accordance with the drawings and specifications and has been properly installed.
 - b. Submit certification of system operating test.
 - 5. Manuals: Submit copies of complete set of operating instructions including circuit diagrams and other information of system components.

1.8 PROJECT CONDITIONS

- A. Regulatory Requirements:
 - 1. Conform to the requirements of all laws and regulations applicable to the work.
 - 2. Cooperate with all authorities having jurisdiction.

- 3. Compliance with laws and regulations governing the work on this project does not relieve the Contractor from compliance with more restrictive requirements contained in these specifications.
- 4. If the Contract Documents are found to be at variance with any law or regulation, the Contractor shall notify the Architect/Engineer promptly in writing. The Contractor shall assume full responsibility for any work contrary to law or regulation, and shall bear all costs for the corrections thereof.
- 5. Minimum Requirements: The National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), the National Fire Codes, and National Fire Protection Association (NFPA) are a minimum requirement for work under this section. Design drawings and other specification sections shall govern in those instances where requirements are greater than those required by code.

B. Permits, Fees, and Inspections:

- Secure and pay for all permits, fees, licenses, inspections, etc., required for the work under Division 26.
- 2. Schedule and pay for all legally required inspections and cooperate with inspecting officers.
- 3. Provide Certificates of Inspection and Approval from all regulatory authorities having jurisdiction over the work in Division 26.

C. Drawings:

- 1. Do not scale the drawings. The general location of the apparatus and the details of the work are shown on the drawings, which form a part of this specification. Exact locations are to be determined at the building as the work progresses, and shall be subject to the Architect/Engineer's approval. Actual field conditions shall govern all dimensions.
- 2. Anything shown on the drawings and not mentioned in the specifications or vice versa shall be provided as if it were both shown and specified.
- 3. It is not intended that the drawings shall show every wire, device, fitting, conduit or appliance, but it shall be a requirement to furnish without additional expense, all material and labor necessary to complete the systems in accordance with applicable codes and the best practice of the trade.

1.9 WARRANTY

A. The Contractor shall guarantee all equipment and wiring free from inherent mechanical or electrical defects for one year from date of acceptance.

1.10 RELATED WORK

A. Division 23 - Mechanical

PART 2 - PRODUCTS

2.1 MATERIALS

A. Switches

- Toggle Switches: 20A, 277V, 1-pole, ivory specification grade, mount 4'-0" above finished floor at door entrance.
- B. Switchbox type occupancy sensors: Adaptive-technology type, 120/277 V, adjustable time delay up to 30 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft. Configure for manual-on/automatic-off operation. Finish shall match wiring devices.
- C. Indoor Occupancy Sensors
 - General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.
 - a. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - b. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - c. Relay Unit: Dry contacts rated for 20-A ballast load at 120-and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.

d. Mounting:

- Sensor: Suitable for mounting in any position on a standard outlet box.
- 2) Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
- 3) Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- e. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- f. Bypass Switch: Override the on function in case of sensor failure.

- g. Automatic Light-Level Sensor: Adjustable from $\frac{2}{5}$ to $\frac{200}{5}$ fc (21.5 to 2152 lx); keep lighting off when selected lighting level is present.
- 2. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.
 - a. Sensitivity Adjustment: Separate for each sensing technology.
 - b. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - c. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
- D. Receptacles shall be ivory specification grade, mounted 18" above finished floor unless otherwise noted.
 - 1. Provide type TR tamper-resistant where required by code.
 - 2. Provide type WR weather-resistant where required by code.
- E. Duplex Receptacles With Ground-Fault Interrupter shall be an integral unit suitable for mounting in a standard outlet box.
 - 1. Ground-Fault Interrupter shall consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. It shall be rated for operation on a 60 Hz, 120-volt, 20-ampere branch circuit. Device shall have nominal sensitivity to ground leakage current of five milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes on the load side of the device. Device shall have a minimum nominal tripping time of 1/30th of a second.
 - 2. Receptacle shall be rated 20 amperes, 125 volts for indoor use and shall be the standard duplex, three-wire, grounding type.
 - Provide type WR weather-resistant where required by code.
- F. Weatherproof Receptacles shall consist of a duplex GFI receptacle, as specified, mounted in a weatherproof box with a gasketed, weatherproof, cast metal cover plate. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- G. Plates shall be high-abuse nylon in color to match wiring devices.

- H. Boxes shall be steel minimum 2-1/2" deep.
- I. Light Fixtures: The light fixtures shall be as described on the drawings or approved equal.
- J. Disconnect Switches shall be heavy-duty type, horsepower rated.

K. Motor Starters:

- 1. Manual motor starters shall be toggle-switch type with melting alloy thermal overload relay. Thermal units shall be one-piece construction and interchangeable. Starter shall be inoperative with thermal unit removed. Contacts shall be double break, silver alloy. Starters in finished areas shall be flush mounted over the light switch at 60" above finished floor. Starters shall be mounted behind stainless steel device plate and shall have adjacent pilot lights. Square D Class 2510 Type FS-1P-FL1 or approved equal. Starters in unfinished areas shall be surface mounted 60" above finished floor. Square D Class 2510 Type FG-5P or approved equal.
- 2. Magnetic motor starters shall be combination circuit breaker or fused disconnect switch type, mounted in a common enclosure. Starters shall be three-pole with three melting alloy overload relays. Overload heaters shall be coordinated with Division 23. Thermal units shall be of one-piece construction and interchangeable. Starter shall be inoperative with any thermal unit removed. The disconnect operating handle shall be position indicating.
 - a. Provide a control device and pilot light on the cover of each combination starter. Control devices for motors with remote manual or automatic control shall be "hand-off-auto" switches. Control devices for locally controlled motors shall be "start-stop" pushbuttons.
 - b. 120-volt magnetic motor starters may consist of a circuit breaker or fused disconnect switch and a magnetic starter in separate enclosures mounted next to each other.
 - c. Control circuits shall operate at a maximum of 120 volts.

 Provide control transformers as required.
- Starters shall be mounted within NEMA-1 enclosures unless specified otherwise.
- 4. All starters shall be lockable in the "off" position.
- 5. Overload heaters shall be sized for the motor nameplate full-load amperes per the manufacturer's recommendations.

L. Wiring Materials:

1. Wiring shall be enclosed in electrical rigid galvanized steel, intermediate metal conduit, or electrical metallic tubing sized in accordance with code requirements for the conductors. Type MC cable

may be used where concealed in walls or ceilings and allowed by code .

- a. Conduit fittings shall be steel compression type.
- b. Terminations for all conduit shall have insulated bushings or insulated throat connectors in accordance with code requirements.
- c. All conduits shall be substantially supported with approved clips or hangers spaced not to exceed ten feet on center. Minimum conduit size shall be 1/2".
- 2. Surface Metal Raceway: UL 5 listed.
 - a. Boxes and fittings for surface metal raceways shall be as recommended by the manufacturer.
 - b. Support clips for surface metal raceways shall be the concealed type, with attachment screws concealed behind the raceway.
- 3. Flexible Metal Conduit shall be used for all connections to motors and vibrating equipment and shall comply with Fed. Spec. WW-C-566.
- 4. Liquid-Tight Flexible Metal Conduit shall consist of flexible steel conduit with a liquid-tight PVC jacket over the conduit.
 - a. Fittings shall incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - b. Liquid-tight flexible metal conduit shall be used in damp or wet locations when flexible metal conduit would otherwise be used.
 - c. Liquid-tight flexible metal conduit shall not penetrate the roof or exterior walls, and shall not be installed in lengths exceeding 72" except where necessary for flexibility.
- 5. All Wiring shall be type THW, XHHW, or THWN, UL labeled, copper conductors with 600-volt insulation, except as otherwise noted. Minimum size wire shall be No. 12 AWG.
- 6. Type MC Cable shall have minimum No. 12 AWG type THWN or XHHW insulated copper conductors with an internal bare or insulated copper ground wire.

M. Fire-Stop Material:

1. Fire-stopping material shall maintain its dimension and integrity while preventing the passage of flame, smoke, and gases under conditions of installation and use when exposed to the ASTM E 119 time-temperature curve for a time period equivalent to the rating of the assembly penetrated. Cotton waste shall not ignite when placed in contact with the non-fire side during the test. Fire-stopping material shall be noncombustible as defined by ASTM E 136; and in addition for insulation materials, melt point shall

be a minimum of 1700°F for one-hour protection and 1850°F for two-hour protection.

2. Seals for floor, exterior wall, and roof shall also be watertight.

N. Panelboards:

- 1. Provide standard manufacturer products. All components of panelboards shall be the product and assembly of the same manufacturer. All similar units of all panelboards shall be of the same manufacturer.
- 2. All panels shall be dead front safety type.
- 3. All panelboards shall be completely factory assembled with molded case circuit breakers.
- 4. Panels shall have main breaker or main lugs, bus size, voltage, phase, and flush or surface mounting all as scheduled on the drawings. Panelboards to be used as service equipment shall be listed for such use.
- 5. Panelboards shall have the following features:
 - a. Non-reduced size copper or aluminum bus bars and connection straps bolted together and rigidly supported on molded insulators. Bus bar taps shall be arranged for sequence phasing of branch circuit devices.
 - b. Full size neutral bar mounted on insulated supports.
 - c. Ground bar with sufficient terminals for all grounding wires. The ground bar shall be insulated and isolated where called for on the drawings.
 - d. Buses braced for the available short-circuit current, but not less than scheduled and never less than 10,000 amperes symmetrical. All panelboards shall be fully rated. Series rated assemblies are not acceptable.
 - e. All breakers arranged so that it will be possible to substitute a two-pole breaker for two single pole breakers or a three-pole breaker for three single pole breakers when frame size is 100 amperes or less.
 - f. Design interior so that protective devices can be replaced without removing adjacent units, main bus connectors and without drilling or tapping.
 - g. Where designated, on panel schedule as "space", include all necessary bussing, device supports and connections. Provide blank cover for each space.
 - h. Provide galvanized steel cabinets to house panelboards. Cabinets for panelboards may be factory primed and suitably

treated with a corrosion-resisting paint finish meeting UL standard for outdoor applications.

- i. Back and sides shall be of one-piece formed steel. Cabinets for panelboards may be of formed sheet steel with end and side panels welded, riveted or bolted as required.
- j. Provide minimum of four interior mounted studs and necessary hardware for in and out adjustment of panel interior.
- k. Fabricate trim of sheet steel consisting of frame with door attached by concealed hinges. Provide flush or surface trim as shown on the drawings.
- 1. Surface trim shall have the same width and height as the box.
- m. Provide doors with flush type latch and manufacturer's standard lock.
- n. In making switching devices accessible, doors shall not uncover any live parts.
- o. Provide concealed butt hinges welded to the doors and trims.
- p. Provide keyed alike system for all panelboards.
- q. Provide a directory card, metal holder, and transparent cover. Permanently mount holders on inside of doors.
- r. Circuit breakers in panelboards shall be bolt on type on phase bus bar or branch circuit bar. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips.
- O. Circuit Breakers: Circuit breakers to be added to existing panelboards shall match existing circuit breakers.

P. Grounding Conductors:

- 1. Grounding conductors shall be soft-drawn bare copper.
- Insulated grounding wires shall be UL and NEC approved types, copper, with THWN or XHHW insulation color identified green, except where otherwise shown on the drawings or specified.
- Wire shall not be less than shown on the drawings and not less than required by the NEC.

Q. Ground Clamps:

- 1. Ground clamps shall be cast bronze or cast copper and shall be UL listed for grounding connections.
- 2. Ground clamps shall be sized for the specific conductor and electrode to be clamped.

- R. Equipment Grounding Connections: Connections shall be of the compression type solderless connectors.
- S. Fire Alarm System Components:
 - Fire alarm system components shall be compatible and listed for use with the existing fire alarm system, and shall match existing similar devices or be the system manufacturer's current recommended replacement for existing similar devices.
 - 2. Fire Alarm Control Panel: Provide all necessary common components, power supply, battery charger, batteries, programming, etc. as required to support the addition of components provided under this section for completion of a totally operational fire alarm panel.
 - 3. Remote Annunciator
 - a. Description: Duplicate annunciator functions of the FACP for alarm, supervisory, and trouble indications. Also duplicate manual switching functions of the FACP, including acknowledging, silencing, resetting, and testing.
 - 1) Mounting: Surface cabinet, NEMA 250, Type 1.
 - b. Display Type and Functional Performance: Alphanumeric display same as the FACP. Controls with associated LEDs permit acknowledging, silencing, resetting, and testing functions for alarm, supervisory, and trouble signals identical to those in the FACP.
 - 4. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn.
 - 5. Strobe lights shall meet the requirements of the ADA, UL Standard 1971 and shall meet the following criteria:
 - a. Strobes shall be multi-candela rated and intensity shall be field selectable.
 - b. The maximum pulse duration shall be 2/10 of one second. Clear Lexan lens in housing.
 - c. Strobe intensity shall meet the requirements of UL 1971.
 - d. The flash rate shall meet the requirements of UL 1971.
 - e. Strobes in the same area shall be synchronized.
 - f. Outdoor units shall be weatherproof as well as any indicated on plans to be weatherproof that are inside the building.

- 6. Audible/Visual Combination Devices:
 - a. Shall meet the audibility requirements specified herein for horns.
 - b. Shall meet the visibility requirements specified for strobes.
- 7. Addressable Devices General:
 - a. Addressable devices shall provide an address-setting means using rotary decimal switches.
 - b. Addressable devices shall use simple to install and maintain decade (numbered 0 to 9) type address switches. Devices which use a binary address or special tools for setting the device address, such as a dip switch are not an allowable substitute.
 - c. Detectors shall be analog and addressable, and shall be capable of sensitivity adjustment through field programming of the system and automatically adjusted by the panel on a time-of-day basis.
 - d. Addressable smoke and thermal detectors shall provide dual (2) status LEDs. Both LEDs shall flash under normal conditions, indicating that the detector is operational and in regular communication with the control panel, and both LEDs shall be placed into steady illumination by the control panel, indicating that an alarm condition has been detected.
 - e. Using software in the FACP, detectors shall automatically compensate for dust accumulation and other slow environmental changes that may affect their performance. The detectors shall be listed by UL as meeting the calibrated sensitivity test requirements of NFPA Standard 72, Chapter 7.
 - f. The detectors shall be ceiling-mount and shall include a separate twist-lock base which includes a tamper proof feature.
 - g. The following auxiliary functions shall be provided where indicated on the drawings, and where required by code:
 - 1) Form-C Relay base rated 30VDC, 2.0A
 - 2) Auxiliary relay for HVAC shutdown.
 - h. The detectors shall provide a test means whereby they will simulate an alarm condition and report that condition to the control panel. Such a test may be initiated at the detector itself (by activating a magnetic switch) or initiated remotely on command from the control panel.
 - i. Detectors shall also store an internal identifying type code that the control panel shall use to identify the type of device (ION, PHOTO, THERMAL).

- 8. Addressable Pull Box (manual station):
 - a. Addressable pull boxes shall, on command from the control panel, send data to the panel representing the state of the manual switch and the addressable communication module status. They shall use a key operated test-reset lock, and shall be designed so that after actual emergency operation, they cannot be restored to normal use except by the use of a key. Units shall be supplied with plastic tamper covers that produce an audible alarm when lifted.
 - b. All operated stations shall have a positive, visual indication of operation.
 - c. Manual stations shall be constructed of metal with clearly visible operating instructions provided on the cover. The word FIRE shall appear on the front of the stations in raised letters.
- 9. Intelligent Photoelectric Smoke Detector:
 - a. The detectors shall use the photoelectric (light-scattering) principal to measure smoke density and shall, on command from the control panel, send data to the panel representing the analog level of smoke density.
- 10. Intelligent Thermal Detectors:
 - a. Thermal detectors shall be intelligent addressable devices rated at 190 degrees Fahrenheit (except as otherwise indicated) and have a rate-of-rise element rated at 15 degrees F (9.4 degrees C) per minute. It shall connect via two wires to the fire alarm control panel signaling line circuit.
- 11. Provide addressable modules as required to monitor and control non-addressable devices such as solenoid valves, water flow switches, etc. indicated on the drawings and where required to provide a complete and operational system in accordance with the intent of the drawings and specifications. All shall be monitored separately.
- 12. Sprinkler and Standpipe Valve Supervisory Switches:
 - a. Valve supervisory switches shall be furnished and installed under Div. 21 and wired and connected under this section.
- 13. Knox Rapid Entry System:
 - a. Provide Knox Box as specified by the local fire department. Coordinate all required keying, options, etc., with the local fire department.
- 14. Conduit and Wire:
 - a. Wiring shall be in accordance with NEC Article 760, as shown on the drawings, and as recommended by the manufacturer of the fire alarm system. All wires shall be color-coded. Exposed

wiring in unfinished areas shall be installed in metal conduit. Conduit fill shall not exceed 40 percent of interior cross sectional area. Number and size of conductors shall be as recommended by the fire alarm system manufacturer. Conduit shall be 1/2" minimum. Type MC cable listed for fire alarm use shall be permitted where concealed and acceptable to the Authority Having Jurisdiction.

- b. Wires in junction boxes and cabinets shall be permanently tagged and identified with tags.
- 15. Terminal Boxes, Junction Boxes and Cabinets:
 - a. Shall be galvanized steel in accordance with UL.
 - b. Paint red and identify with white markings as "Fire".
- 16. Junction boxes shall have a volume 40 percent greater than required by the NEC. Minimum sized wire shall be considered as 14 AWG for calculation purposes.

T. Dry Type Transformers:

- 1. Transformers shall have 150, 185 and 220° C insulation and be designed not to exceed 80, 115 and 150° C rise above 40° C ambient under full load conditions. Insulation systems shall be UL listed. Cores shall be manufactured from high-grade, non-aging, silicon steel with high magnetic permeabilities, low hysteresis and eddy current losses, and shall be clamped with structural angles and bolted to the enclosure to prevent damage during shipment or rough handling (remove clamping after installation). Coils shall be vacuum impregnated with non-hydroscopic thermosetting varnish and shall have a final wrap of electrical insulating material designed to prevent injury to the magnet wire. Transformers having coils with magnet wire visible will not be acceptable. Transformer shall have two 2-1/2% taps above and below normal voltage. Provide lugs to receive primary and secondary conductors.
- 2. Ratings shall be as indicated on the drawings.

U. Telecommunications

- 1. Performance Requirements
 - a. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.
 - b. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1) Flame-Spread Index: 25 or less.
 - 2) Smoke-Developed Index: 50 or less.
 - c. Grounding: Comply with J-STD-607-A.

- 2. UTP Cable: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 - a. Comply with ICEA S-90-661 for mechanical properties.
 - b. Comply with TIA/EIA-568-B.1 for performance specifications.
 - c. Comply with TIA/EIA-568-B.2, Category 6.
 - d. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - Communications, Plenum Rated: Type CMP, complying with NFPA 262.

3. UTP Cable Hardware:

- a. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- b. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - Number of Jacks per Field: One for each four-pair UTP cable indicated, plus spares and blank positions adequate to suit specified expansion criteria.
- c. Jacks and Jack Assemblies: Modular, color-coded, eightposition modular receptacle units with integral IDC-type terminals.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- 1. All work shall be in accordance with the National Electrical Code's requirements as amended to date, with the local electric utility company's rules, the Fire Underwriter's requirements, and all local, state and federal laws and regulations.
- 2. In general, all wiring in finished areas shall be concealed in walls or above ceilings. Where wiring cannot be concealed due to existing construction, exposed wiring shall be installed in conduit or surface metal raceway as indicated on the drawings. Exposed wiring shall not be installed in finished areas without prior written authorization from the Engineer.
- 3. Conduits shall be of sizes required by the National Electrical Code. Exposed conduits shall be installed with runs parallel or perpendicular to walls and ceiling, with right-angle turns consisting of bends, fittings, or outlet boxes. No wire shall be installed until work that might cause damage to wires or conduits

has been completed. Conduits shall be thoroughly cleaned of water or other foreign matter before wire is installed.

- 4. Where conduits, wireways and other electrical raceways pass through fire partitions, fire walls, or floor, install a fire-stop that provides an effective barrier against the spread of fire, smoke and gases. Fire-stop material shall be packed tight and completely fill clearances between raceways and openings. Floor, exterior wall, and roof seals shall also be made watertight.
- 5. Where raceways puncture roof, coordinate with Division 07.
- 6. Raceway penetrations through roof and exterior walls shall be made with rigid metal conduit, intermediate metal conduit, or EMT with compression fittings.
- 7. Surface metal raceways shall be sized as required by the National Electrical code and as recommended by the manufacturer. Surface metal raceways shall be installed with runs parallel or perpendicular to walls and ceiling. Changes in direction shall only be made at device box locations or with fittings designed for the particular application. Installation shall be as visually unobtrusive as possible:
 - a. Surface metal raceways shall be painted to match wall finishes.
- 8. All splices shall be mechanically and electrically perfect, using crimp type wire connectors.
- 9. Provide all disconnect switches required by the N.E.C.
- 10. Locate motor starters as shown on drawings.
- 11. Mount disconnect switches and starters at a height of 60" above finished floor unless otherwise noted.
- 12. Provide all necessary hardware for mounting motor starters.
- 13. Locate panelboards so that the present and future conduits can be conveniently connected.
- 14. A typewritten schedule of circuits, approved by the Owner's Representative shall be on the panel directory cards. Type the room numbers and items served on the cards. Three-complete separate copies of all directories, neatly bound, shall be delivered to the Owner's Representative.
- 15. Revise existing panelboard directories. Furnish new cards as needed. Directories shall be typewritten or printed using a computer.
- 16. Mount the panelboard so that maximum height of circuit breakers above finished floor shall not exceed 78".

- 17. Circuit numbers indicated on the drawings are the actual numbers assigned to the circuit in the panelboard and shall not be varied without the consent of the Architect/Engineer.
- 18. Provide all necessary hardware for mounting panelboards.
- 19. Feeder circuit wiring shall be in conduit or EMT.
- 20. In general, conductors shall be the same size from the last protective device to the load and shall have an ampacity the same as or greater than the ampacity of the protective device where the wire size is not shown on the drawings. Use the 60°C ampacity rating for wire sizes No. 12 through No. 1. For 120V circuits, home runs longer than 100 feet shall be minimum No. 10 AWG, longer than 200 feet shall be minimum No. 8 AWG.

B. Grounding:

- 1. The entire electrical system shall be permanently and effectively grounded in accordance with Code requirements.
- Connections to the water service shall be made with an approved ground clamp.
- Connections to junction boxes, equipment frames, etc., shall be bolted.

4. Conduit Systems:

- a. Ground all metallic conduit systems.
- b. Conduit systems shall contain a grounding conductor sized per NEC Table 250-122 or as shown on the drawings. Increase conduit size where necessary to accommodate the grounding conductor.
- 5. Feeders and Branch Circuits: Install green grounding conductors with all feeders and branch circuits.
- 6. Lighting Fixtures: Conduits shall not be used for grounding fixtures. Green equipment grounding conductor must be bonded to all fixtures.

C. Alterations:

- 1. The Contractor shall study all drawings and specifications, visit the site, and acquaint himself with the existing conditions and the requirements of the plans and specifications. No claim will be recognized for extra compensation due to the failure of the Contractor to familiarize himself with the conditions and extent of the proposed work.
- 2. The Contractor shall execute all alterations, additions, removals, relocations or new work, etc., as indicated or required to provide a complete installation in accordance with the intent of the drawing and specifications.

- 3. Reconnect existing circuits to remain. Remove existing equipment to be discontinued.
- 4. Any existing work disturbed or damaged by the alterations or new work shall be repaired or replaced to the Engineer's satisfaction.
- 5. Equipment relocated or removed and reinstalled shall be cleaned and repaired to a first-class condition before reinstallation.

D. Fire Alarm System Installation:

- 1. Installation shall be in accordance with the NEC Article 760, and the Americans with Disabilities Act and as shown on the drawings.
- 2. Installation shall be as shown on the drawings and on the manufacturer's wiring diagrams, and shall be performed under the supervision of a factory-trained representative.
- 3. All wiring shall be one wire per terminal to insure supervision. Crimp-on connectors shall not be used.
- 4. All wiring shall be color-coded and tagged and shall be checked for continuity, short circuiting, and resistance to ground.
- 5. All fire alarm wiring shall be installed in raceways.
- 6. A factory-trained technician shall be present during testing and final inspection and shall instruct the Owner in system operation.
- 7. Splices and taps: Use numbered terminal strips in junction, pull, and outlet boxes; cabinets; or equipment enclosures where circuit connections are made.

8. Mounting Heights:

- a. Manual Stations: 48" AFF
- b. Wall mounted visual Units: 80" above the highest floor level within the space or 6 in (152 mm) below the ceiling, whichever is lower.

9. Tests:

- a. Provide the service of a competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the Owner's Representative.
- b. When the systems have been completed and prior to the final inspection, furnish testing equipment and perform the following tests in the presence of the Owner's Representative.

- 1) Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
- 2) Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- Open fire alarm detector circuits to see if trouble signal actuates.
- 4) Check installation, supervision, operation and sensitivity of smoke detectors as recommended by the manufacturer to ascertain that they will avoid false alarm signals and will function as specified.
- 5) Perform any other tests recommended by the equipment manufacturer.
- 10. Final Inspection: At the final inspection a factory-trained representative of the manufacturer of the existing equipment shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of the Architect/Engineer.
- E. Continuity of Services: Arrange to execute work at such times and in such locations to provide uninterrupted service to the building or any of its sections. If necessary, temporary power shall be installed to provide for this condition. Authorization for interrupting service shall be obtained in writing from the Owner. Any interruption of normal supply shall be performed during an overtime period to be scheduled with the Owner. Cost for overtime work shall be included in the bid.

F. Identification:

- Provide tags on each end of all pulled wires giving location of other end.
- 2. Provide phenolic nameplates for all panelboards, motor starters, disconnect switches (except switches located at motors), and duct smoke detector remote test/alarm-indicating stations.
- 3. Label each receptacle faceplate using machine-printed thermal adhesive labels to indicate source panel and branch circuit. For receptacles connected to normal power, labels shall be white with black letters. For receptacles connected to circuits from operational standby (OS) panels, labels shall be red with white letters.
- G. Record Drawings: The Contractor shall keep on the job a set of prints showing any changes to the installation. These shall be given to the Engineer at the completion of the work.

H. Testing and Adjusting:

- 1. The entire installation shall be free from short-circuits and improper grounds. Tests shall be made in the presence of the Engineer or his representatives.
- 2. Each individual lighting circuit shall be tested at the panel; and in testing for insulation resistance to ground, the lighting equipment shall be connected for proper operation. In no case shall the insulation resistance be less than that required by the National Electrical Code. Failures shall be corrected in a manner satisfactory to the Architect/Engineer.
- 3. Each system shall be completely tested and shall be adjusted for proper operation as required by the Engineer.

- - - E N D - - -

SECTION 31 2316 EXCAVATION

PART 1 GENERAL

1.01 SECTION INCLUDES

 Excavating for building volume below grade, footings, slabs-on-grade, paving, and site structures.

1.02 RELATED REQUIREMENTS

A. Section 31 2323 - Fill: Fill materials, filling, and compacting.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that survey bench mark and intended elevations for the work are as indicated.

3.02 PREPARATION

- A. Identify required lines, levels, contours, and datum locations.
- B. Locate, identify, and protect utilities that remain and protect from damage.
- C. Protect bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.
- D. Grade top perimeter of excavation to prevent surface water from draining into excavation. Provide temporary means and methods, as required, to maintain surface water diversion until no longer needed, or as directed by the Architect.

3.03 EXCAVATING

- A. Excavate to accommodate new structures and construction operations.
- B. Notify Architect of unexpected subsurface conditions and discontinue affected Work in area until notified to resume work.
- Slope banks of excavations deeper than 4 feet (1.2 meters) to angle of repose or less until shored.
- D. Hand trim excavations. Remove loose matter.
- E. Correct areas that are over-excavated and load-bearing surfaces that are disturbed; see Section 31 2323.
- F. Provide temporary means and methods, as required, to remove all water from excavations until directed by the Architect. Remove and replace soils deemed suitable by classification and which are excessively moist due to lack of dewatering or surface water control.
- G. Determine the prevailing groundwater level prior to excavation. If the proposed excavation extends less than 1 foot (305 mm) into the prevailing groundwater, control groundwater intrusion with perimeter drains routed to sump pumps, or as directed by the Architect. If the proposed excavation extends more than 1 foot (305 mm) into the excavation, control groundwater intrusion with a comprehensive dewatering procedures, or as directed by the Geotechnical Engineer.
- H. Remove excavated material that is unsuitable for re-use from site.
- I. Remove excess excavated material from site.

3.04 FIELD QUALITY CONTROL

 Provide for visual inspection of load-bearing excavated surfaces before placement of foundations.

END OF SECTION

SECTION 31 2323

FILL

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Filling, backfilling, and compacting for building volume below grade.

1.02 RELATED REQUIREMENTS

A. Section 31 2316 - Excavation: Removal and handling of soil to be re-used.

1.03 DEFINITIONS

A. Finish Grade Elevations: Indicated on drawings.

1.04 REFERENCE STANDARDS

- A. AASHTO T 180 Standard Specification for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18 in.) Drop; 2017.
- B. ASTM C136/C136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; 2014.
- C. ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)); 2012, with Editorial Revision (2015).
- D. ASTM D1556/D1556M Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method; 2015, with Editorial Revision (2016).
- E. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN m/m3)); 2012, with Editorial Revision (2015).
- F. ASTM D2167 Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method; 2015.
- G. ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); 2011.
- H. ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils: 2017.
- ASTM D6938 Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth); 2017.

1.05 SUBMITTALS

- A. Materials Sources: Submit name of imported materials source.
- B. Fill Composition Test Reports: Results of laboratory tests on proposed and actual materials used, including manufactured fill.
- C. Compaction Density Test Reports.

PART 2 PRODUCTS

2.01 FILL MATERIALS

- A. General Fill Fill Type: Subsoil excavated on-site.
 - 1. Reused meeting the requirements of Common Borrow.
- B. Common Borrow: MDOT 703.18; Earth suitable for embankment construction, free from frozen material, perishable rubbish, peat, organics and other unsuitable material, with sufficient moisture content to provide the required compaction and stable embankment, moisture content
 - 1. shall not exceed 4 percent above optimum. Determine optimum moisture content in accordance with ASTM 0698 (cohesive soils) or D1557 (granular soils).
- C. Aggregate Base: MDOT 703.06 Type 'A' crushed gravel, of hard durable particles free from vegetable matter, lumps or balls of clay and other deleterious substances. The gradation of that part that passes a 3 inch sieve shall meet the following requirements:
 - 1. 1/2 inch sieve: 45 to 70 percent passing by weight

- 2. 1/4 inch sieve: 30 to 55 percent passing by weight
- 3. No. 40 sieve: 0 to 20 percent passing by weight
- 4. No. 200 sieve: 0 to 5 percent passing by weight
- 5. Type A aggregate shall not contain particles of rock which will not pass the 2" square mesh sieve.
- D. Structural Fill: Structural Fill shall meet the following requirements:
 - 1. 6 inch sieve: 100 percent passing by weight
 - 2. 3 inch sieve: 70-100 percent passing by weight
 - 3. No. 4 sieve: 35-70 percent passing by weight
 - 4. No. 40 sieve: 5-35 percent passing by weight
 - 5. No. 200 sieve: 0-5 percent passing by weight
 - a. Note: Maximum particle size should be limited to 3 inches within 2 feet of foundation walls, footing, and floor slabs.
- E. Aggregate Subbase: MDOT 703.06 Type 'D' gravel, of hard durable particles free from vegetable matter, lumps or balls of clay and other deleterious substances. The gradation of that part that passes a 3 inch sieve shall meet the following requirements:
 - 1. 1/4 inch sieve: 25 to 70 percent passing by weight
 - 2. No. 40 sieve: 0 to 30 percent passing by weight
 - 3. No. 200 sieve: 0 to 7 percent passing by weight
 - 4. Type D aggregate shall not contain particles of rock which will not pass the 6" square mesh sieve.

2.02 SOURCE QUALITY CONTROL

- A. Where fill materials are specified by reference to a specific standard, test and analyze samples for compliance before delivery to site.
- B. If tests indicate materials do not meet specified requirements, change material and retest.
- C. Provide materials of each type from same source throughout the Work.

PART 3 EXECUTION

3.01 EXAMINATION

- A. Verify that survey bench marks and intended elevations for the Work are as indicated.
- B. Identify required lines, levels, contours, and datum locations.
- C. Verify areas to be filled are not compromised with surface or ground water.

3.02 PREPARATION

- A. Scarify and proof roll subgrade surface to a depth of 6 inches (150 mm) to identify soft spots.
- Cut out soft areas of subgrade not capable of compaction in place. Backfill with common borrow.
- C. Compact subgrade to density equal to or greater than requirements for subsequent fill material.
- D. Until ready to fill, maintain excavations and prevent loose soil from falling into excavation.

3.03 FILLING

- A. Fill to contours and elevations indicated using unfrozen materials.
- B. Employ a placement method that does not disturb or damage other work.
- C. Systematically fill to allow maximum time for natural settlement. Do not fill over porous, wet, frozen or spongy subgrade surfaces.
- D. Place and compact fill materials in continuous layers not exceeding 12 inches loose depth upon compacted material.
- E. Maintain optimum moisture content of fill materials to attain required compaction density.
- F. Slope grade away from building minimum 2 inches in 10 feet (50 mm in 3 m), unless noted otherwise. Make gradual grade changes. Blend slope into level areas.

- G. Correct areas that are over-excavated.
 - 1. Other areas: Use common borrow, flush to required elevation, compacted to minimum 97 percent of maximum dry density.
- H. Reshape and re-compact fills subjected to vehicular traffic.
- I. Maintain temporary means and methods, as required, to remove all water while fill is being placed as required, or until directed by the Architect. Remove and replace soils deemed unsuitable by classification and which are excessively moist due to lack of dewatering or surface water control.
- J. Use Aggregate Subbase: Type D to extend foundation material beyond building limits in a zone defined by a 1H:1V line sloping up and away from the outside edges of perimeter footings to the subgrade elevation.

3.04 TOLERANCES

A. Top Surface of General Filling: Plus or minus 3/8 inch from required elevations.

3.05 CLEANING

- A. Leave unused materials in a neat, compact stockpile.
- B. Leave borrow areas in a clean and neat condition. Grade to prevent standing surface water.

END OF SECTION