1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS

$\square 2003$ International Building Code
\square American Concrete Institute (ACI) 318-02
\square Embedment Properties for Headed Studs, TRW Nelson, Design Data Catalog
\square Steel Construction Manual, AISC, LRFD (1999
\square ASCE 7-02
1.2 DESIGN CRITERIA USED IN CALCULATIONS
\square Reinforcing Steel Yield Strength $=\mathrm{fy}=60 \mathrm{ksi}$
\square Structural Steel is ASTM A 36/A 36M-00
\square Unconfined Compressive Strength of Concrete $=\mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi}$
\square Unit weight of Concrete $=110$ pcf
\square Stud Yield Strength = 50 ksi

1.3 INTERNATIONAL BUILDING CODE REQUIREMENTS

The following is a summary of the Code requirements applicable to CellXion precast concrete equipment shelters.

1.3.1 Occupancy Classification

Occupancy may be Group S-2 per sec 311, Group B per sec 304 or Group U per sec 312.

1.3.2 Construction Type

Type V-B per section 602.5 and Table 601.

1.3.3 Building Limitations

Occupancy S-2 or B or U

Relative to the location of the nearest structure or property line:
Walls must be rated one hour if less than 10 feet. (Table 602)
Maximum size of S-2 building (Table 503) is 13,500 SF, 2 story. (Table 503)
Maximum size of B building (Table 503) is 9,000 SF, 2 story. (Table 503)
Maximum size of U building (Table 503) is 5,500 SF, 1 story. (Table 503)
NOTE: STANDARD SHELTERS MAY BE RATED UP TO 2-HOURS.
REF: Table 720.1(2), Item number 4-1.1, Sand-lightweight concrete 4 inches thick.

IF PROTECTED OPENINGS ARE REQUIRED:

3/4 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES.
1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES.

Unprotected Openings Allowed Protected Openings Allowed Table 704.8
Not permitted up to 5 feet. Not permitted up to 3 feet.
10% permitted >5 feet to 10 feet. $\quad 15 \%$ permitted >3 feet to 5 feet.
15% permitted >10 feet to 15 feet. $\quad 25 \%$ permitted >5 feet to 10 feet.
25% permitted >15 feet to 20 feet. 45% permitted >10 feet to 15 feet.
45% permitted >20 feet to 25 feet. 75% permitted >15 feet to 20 feet.
70% permitted >25 feet to 30 feet. No restriction >20 feet.
No restriction >30 feet.
1.4 FLOOR LOADS

Floor live load required (Table 1607.1) for light storage is; 125 psf The summary loading chart in Section 2.0.1 indicates allowable load of: 310 psf $\quad 11.667 \mathrm{ft}$ wide OK
For some equipment, such as batteries, a concentrated load is realized (2.5 SF in size).

Section 2.3.6 shows that concentrated loads of If the concentrated load is next to the wall,

1680 lbs can be placed anywhere. 6614 lbs can be used.
1.5 ROOF LOADS Minimum roof live load required (2006 IBC 1607.11.2.1) is:

$$
\begin{aligned}
& L_{r}=L_{o} R_{1} R_{2} \\
& \text { [sec 1607.11.2.1, Eq 16-27] } \\
& L_{o}=20 \quad \text { psf (worst case) } \\
& \text { [sec 1607.11.2.1] } \\
& \mathrm{R}_{1}=1 \text { (worst case for smaller shelters) [sec 1607.11.2.1, Eq 16-28] } \\
& F=.167 \text { in per ft slope } \quad R_{2}=1 \quad \text { (for } F<4 \text {) [sec 1607.11.2.1, Eq 16-31] } \\
& L_{r}=20 \mathrm{psf}
\end{aligned}
$$

The summary loading chart in Section 2.0.1 indicates allowable loads of:

$$
154 \text { psf } \quad 11.67 \mathrm{ft} \text { wide shelter } \quad \text { OK }
$$

Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-05
$\mathrm{p}_{\mathrm{f}}=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I} \mathrm{p}_{\mathrm{g}} \quad$ [ASCE 7-05, Equation 7-1, Sec 7.3]
$\mathrm{p}_{\mathrm{f}}=\quad$ (Min. design live load for roofs from section 2 of these calcs)
$=154 \mathrm{psf} \quad 11.67 \mathrm{ft}$ wide shelter
$C_{e}=1.2$ (worst case-ASCE 7-05,Table 7-2, lesser factors may be used as appropriate)
$C_{t}=1.0$ (From ASCE 7-05, Table 7-3, heated structure)
$\mathrm{I}=1.0$ (Category II, ASCE 7-05 Table 7-4)
Using the design load from section 2 for p_{f} and solving for p_{g} :

$$
\left.\begin{array}{rl}
\mathrm{p}_{\mathrm{g}} & =\mathrm{p}_{\mathrm{f}} /\left(0.7 \quad \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}\right) \\
& =(\text { Allowable ground snow load }) \\
& =184 \mathrm{psf} \quad 11.67 \mathrm{ft} \text { wide shelter }
\end{array}\right\}
$$

Sect. 1609.1.1 allows ASCE 7-05, Chapter 6; use sec 6.4, Method 1 - Simplified Procedure:
$\mathrm{V}=150 \mathrm{mph}$
$\mathrm{I}=1.0$
I 1.0
Exposure Classification: C [ASCE 7-05, section 6.5.6.3]
Exposure C multiplier: $\quad \lambda=1.21 \quad$ [ASCE 7-07, section 6.4.2 \& Figure 6-2]
Enclosure Classification: enclosed [ASCE 7-05, section 6.5.9]
Roof angle: 0 to 5 degrees $\quad \mathrm{K}_{\mathrm{zt}}=1.0 \quad$ [ASCE 7-05, sec 6.5.7.2]
MWFRS Design Wind Pressures: [From ASCE 7-05, Figure 6-2]

$$
p_{s}=\lambda \mathrm{K}_{\mathrm{zt}} \mathrm{I} p_{\mathrm{s} 30}
$$

WALLS: $\quad 43.2$ psf [zone A]
-22.4 psf [zone B, negligible--> only 1 inch tall]
28.7 psf [zone C]
-13.3 psf [zone D, negligible--> only 1 inch tall]
Zone A controls, use it for analysis
ROOF: -51.9 psf [zone E]
-29.5 psf [zone F]
-36.1 psf [zone G] -22.9 psf [zone H]

Zone E controls, use it for analysis
1.6.1 Check structural connections for carrying wind loads to the foundation.

The worst case for the windward forces are when they are projected onto the long walls. Half of the load is carried to the floor connections and half is carried to the roof connections.
The walls are 9.250 ft tall
The connections which connect the long walls to the end walls are neglected for the purposes of this particular analysis. Analysis with Calculations from section 3
1.6.1.1 Check connections for transfer of windward loads from wall to the floor and roof.

The connections along the top and bottom of the walls are at a standard spacing of 56 inches. This will be the tributary width of wind load for each connection at the floor and roof. The load for this tributary area on the windward wall is then:
$P^{\prime}(w)=P($ windward wall $) x$ tributary area
Where tributary area $=(\quad 9.250 \mathrm{ft} / 2) \times 4 \mathrm{ft} 8 \mathrm{in}=21.583 \mathrm{sq} . \mathrm{ft}$.
$=43.2 \mathrm{psf} \times 21.583 \mathrm{sq} . \mathrm{ft}$.
$P^{\prime}(w)=\quad 932 \mathrm{lbs}$
This load is resisted by three main components of the connection at the floor:
5.95 kips \quad Capacity of P/N 223100 in tension per Clacs Section 3.3.1
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8

The capacity of all 3 components exceed the wind load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in shear per Clacs Section 3.4.3
5.95 kips Capacity of P/N 222000 in tension per Clacs Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8

The capacity of all 3 components exceed the wind load
OK
1.6.1.2 Check connections for transfer of leeward loads from wall to the floor and roof.

The leeward wall has similar construction, but the loads are less and are outward.
$P^{\prime}(I)=P(l e e w a r d$ wall $) \times$ tributary area
Where tributary area $=(\quad 9.250 \mathrm{ft} / 2) \times 4 \mathrm{ft} 8 \mathrm{in}=21.583 \mathrm{sq} . \mathrm{ft}$.
$=\quad 43.2 \mathrm{psf} \quad \mathrm{x} \quad 21.583 \mathrm{sq} . \mathrm{ft}$.
$\mathrm{P}^{\prime}(\mathrm{I})=932 \mathrm{lbs} \quad$ (negative indicating an outward direction)
This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the wind load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in Y-shear per Section 3.4.3
5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the wind load OK

1.6.1.3 Windward and leeward loading transfer to endwalls:

The loads on the top half of the shelter must be transferred to the ground through the connections on the endwalls. There are three connections from the roof to the endwall and three connections from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter is resisted by these connections and is assumed to distribute half of the load to each endwall.
A shelter which is 16.000 feet long has a tributary area of:
Area $=(9.250$ feet $/ 2) \times \quad(16.000$ feet $/ 2)=37.000$ sq. ft.
$P($ proj. $)=37.00$ sq. ft. $x \quad 43.2$ psf

$$
=1,598 \mathrm{lbs} .
$$

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
7.04 kips \quad Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips \quad Capacity of the Wall Corner Insert per Section 3.6.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 21.12 kips OK
1.6.1.4 Windward and Leeward loading transfer to floor:

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall.
The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
$\begin{aligned} 14.54 \text { kips } & \text { Capacity of P/N } 223100 \text { in X-shear per Section } 3.3 .2 \\ 22.87 \text { kips } & \text { Capacity of the Floor Lifting Insert in shear per Clacs Section } 3.7 \\ 8.35 \text { kips } & \text { Capacity of the weld which connects the plates per Section } 3.8\end{aligned}$
Since there are three of these connections, the total capacity is: 25.05 kips OK

1.6.1.5 Find horizontal forces and overturning moments.

This is used in the tie-down anchor analysis in 1.8 below.

Shelter Dims (feet)			Shelter Weight lbs	Hor.Wind (PxA-hor) lbs	Vert. Wind (PxA-vert.) lbs	Overturn Moment ft-lbs
Width	Length	Height		9,690	91,662	
11.67	16.00	10.083	34,084	6,969	9,0	

1.6.1.6 Components and Cladding:

$p_{\text {net }}=\lambda \mathrm{K}_{\mathrm{zt}} \mathrm{I} p_{\text {net } 30}$			
	POS	NEG	[From ASCE 7-05, Figure 6-3]
ROOF ZONE 1:	15.7	-44.8 psf	(100 sf effective wind area)
ROOF ZONE 2:	18.6	-73.4 psf	(20 sf effective wind area)
ROOF ZONE 3:	20.0	-123.7 psf	(10 sf effective wind area)
Allowable positive load on roof: (From section 2)			
		154 psf	11.67 ft wide
Allowable negative load on roof: (From section 2, neglecting DL)			
		-61.0 psf	11.67 ft wide
Allowable negative load on roof: (From section 2, including . $6 \times \mathrm{DL}$)			
Roof Dea	Load:	43.9 psf X . $6=$	26.32 psf
		-87.4 psf	11.67 ft wide OK
WALL ZONE 4:	39.6	-43.4 psf	(200 sf effective wind area)
WALL ZONE 5:	45.9	-59.2 psf	(30 sf effective wind area)
Allowable load on walls: (From section 2)			
		87 psf	9.25 ft tall OK

The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones.

Determine E for use in load combinations on individual panel design.

$E=E_{h}+E_{V}$	[ASCE 7-05, sec 12.4.2, Eq. 12.4-1]				
$\mathrm{E}_{\mathrm{h}}=\rho \mathrm{Q}_{\mathrm{E}}$	[ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3]				
$\mathrm{E}_{\mathrm{v}}=0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D}$	[ASCE 7-05, sec 12.4.2.2, Eq. 12.4-4]				
$E=\rho \mathrm{Q}_{\mathrm{E}}+0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D}$					
$\mathrm{Q}_{\mathrm{E}}=\mathrm{V} \quad$ [ASCE 7	[ASCE 7-05, sec 12.4.2.1]		$\rho=1.0$	E 7-05, sec	4.2]
$\mathrm{E}=\rho \mathrm{V}+0.2 \mathrm{~S}_{\text {DS }} \mathrm{D}$	$=$	0.900 D	[Use in load	b 4 \& 6]	
$\mathrm{E}_{m}=\mathrm{E}_{m h}-\mathrm{E}_{v}$			[ASCE 7-0	12.4.3, E	
$\mathrm{E}_{m h}=\Omega_{0} \mathrm{Q}_{\mathrm{E}}$			[ASCE 7-0	12.4.3.1	4-7]
$\mathrm{E}_{m}=\Omega_{0} \mathrm{Q}_{\mathrm{E}}-0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D}$		$\Omega_{0}=2.5$	[ASCE 7-05	able 12.2	
$\mathrm{E}_{m}=0.850 \mathrm{D}$			load comb 7]		
$\mathrm{D}_{\text {wall }}=34.7 \mathrm{psf}$	$\mathrm{D}_{\text {roof }}=$	43.9 psf	$\mathrm{D}_{\text {floor }}=$	42.5 psf	(calc

Load combinations: Section 1605.3.1 \& 1605.4
Comb 1 D [Notes 1, 2, 3]
Comb 2 D + L [Notes 1, 2, 3]
Comb 3 D + L + (Lr or S or R)
Comb $4 \quad \mathrm{D}+(\mathrm{W}$ or 0.7E) + L + (Lr or S or R) [Notes 1, 2, 3, 4]
Comb $50.6 \mathrm{D}+\mathrm{W}$
[Notes 1, 2, 3]
Comb 6 0.6D + 0.7E [Notes 1, 2, 3, 4]
Comb 7 0.9D $+\mathrm{E}_{m} \quad$ See analysis below:
Note 1: Roof and floor panels are designed using 1.4D and 1.7L, exceeds req'd factors.
Note 2: Wall panels are designed using 1.4D and 1.7W, exceeds req'd factors.
Note 3: S, R, and Lr are used as L in panel calculations, see section 2 of these calcs.
Note 4: Wind loads control over Seismic.

Comb 7 check	psf Min. Design Loads			
Walls: $0.9 \mathrm{D}+\mathrm{E}_{m}=$	$1.750 \mathrm{D}_{\text {wall }}=$	61	87 psf	OK
Roof: $0.9 \mathrm{D}+\mathrm{E}_{m}=$	$1.750 \mathrm{D}_{\text {roof }}=$	77	154 psf	OK
Floor: $0.9 \mathrm{D}+\mathrm{E}_{m}=$	$1.750 \mathrm{D}_{\text {floor }}=$	74	310 psf	OK

1.7.1 Seismic loads from top half of the wall panel are transferred to the roof.

Equipment permanently installed in the building is estimated at 20,000 pounds. For a 16.00 ft long shelter, this is an average of 1250 pounds per linear foot. If this equipment is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the walls. Analysis uses sec 3 of these calculations. The weight of a wall section transferred to the connections at 56 " on center is:
$=(56 / 12 \mathrm{ft}$ wide $) \times(\quad 9.250 \mathrm{ft}$ high $) \times(\quad 4 / 12 \mathrm{ft}$ thick $) \times 110 \mathrm{pcf})$
$W($ wall $)=791 \mathrm{lbs}$
W (equipment $)=(56 / 12 \mathrm{ft}$ width $) \times(625 \mathrm{plf})=2917 \mathrm{lbs}$
$W($ top of wall $)=W($ wall $)+W($ equipment $)=3,708 \mathrm{lbs}$
For the wall panel, the seismic shear is:
$V=1,854 \mathrm{lbs} \quad$ Seismic shear per connection plate at top of walls
This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in shear per Section 3.4.3
5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
1.7.2 Seismic loads from roof are transferred to the top of the endwall.

The seismic load at the top connection plates of the endwalls includes the seismic loads from the top quarter of two sidewalls, one half of the roof, and one half of the total equipment. Use a 9.25 ft tall wall $\mathrm{x} \quad 15.33 \mathrm{ft}$ long, and use a $\quad 11.997 \mathrm{ft}$ wide $\mathrm{x} \quad 16.33 \mathrm{ft}$ long roof.

W (quarter wall) $=35.451 \mathrm{ft}^{2} \mathrm{x} \quad 4 / 12 \mathrm{ft} \mathrm{x} \quad 110 \mathrm{pcf}=1,300 \mathrm{lbs}$. W (half roof) $=97.956 \mathrm{ft}^{2} \mathrm{x} \quad 4.25 / 12 \mathrm{ft} \mathrm{x} \quad 110 \mathrm{pcf}=3,816 \mathrm{lbs}$.
 The seismic load is then: $\quad \mathrm{V}$ (top of endwall) $=5,708 \mathrm{lbs}$.
The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips \quad Capacity of the Wall Corner Insert per Section 3.6.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is:
21.12 kips This capacity exceeds the seismic load OK

1.7.3 Seismic loads from endwall are transferred to the floor.

The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself is added.

The same loads that are transferred to the endwalls from the roof need to be transferred to the
floor panel. This is accomplished through the three connections at the base of the endwall.
The floor connections consist of the same three components as were indicated in the sidewalls,
except that they are loaded in a different direction. Their capacities are shown below.
14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is:
25.05 kips This capacity exceeds the seismic load

Check shelter tie-downs to foundation
For tie-down anchor capacity see Sec 3.9 of calcs:

Horizontal:	10472 lbs	Per connection
Vertical:	6615 lbs	Per connection

Horizontal forces due to seismic/wind loads:

Shelter Dims (feet)			Shelter Weight	Contents Weight	$\begin{gathered} \text { Seis.Load } \\ (\mathrm{W} \times \mathrm{Cs}) \\ \hline \end{gathered}$	Wind load 1.6.1.5	Control'g Load	Tie-down Capacity	CHECK	Safety Factor
Width	Length	Height								
11.67	16.00	10.083	34,084	11,248	22,666	6,969	SEISMIC	41,887	OK	1.85

Friction against sliding is ignored.
lengths under 24 ft have 4 tie-downs, lengths 24 ft and over have 8 tie-downs
Overturning forces due to seismic/wind loads:

			Seis.load $(\mathrm{W} \times \mathrm{Cs})$ lbs.	Overturn Force lbs.	Wind over. See1.6.1.5 ft-lbs.	Control'g Load	Overturn Resist. ft-lbs.	Tie-down Capacity lbs	CHECK	Safety Factor 1.5 req'd
Shelter Dims (feet)										
Width	Length	Height								
11.67	16.00	10.083	22,666	114274	91,662	SEISMIC	178946	41,887	OK	3.70

Overturning resistance uses $0.9 \times$ DL of shelter (no contents)
Weight of shelter and contents are the same as in the horizontal force chart above.

2.0 DESIGN CRITERIA

NOTE: These calculations represent the panels of a 11.667 ft wide $\mathrm{x} \quad 16.000 \mathrm{ft}$ long $\mathrm{x} \quad 9.250 \mathrm{ft}$ tall shelter.

STRUCTURAL PROPERTY	UNITS	LABEL
Concrete Compressive Strength	5000 psi	$\mathrm{f}_{\mathrm{c}}^{\prime} \quad$ (sand-lightweight)
Reinforcing bar Yield Stress	60000 psi	fy[REBAR]
Concrete Density	110 pcf	DENSITY
Maximum Building Width	11.667 feet	BLDGW
Maximum Building Length	16 feet	BLDGL
Maximum Wall Panel Height	9.25 feet	WALLH
Max. Est. weight of Shelter	34,084 LBS.	BLDGWT
Concrete volume req'd.	10.68 YDS.	CONCYDS
Roof thickness at peak	5 inches	H[ROOF]
Roof thickness at edge	4 inches	
Rebar size used in roof \#	4 REBAR	REBARROOF
Rebar lateral spacing: roof	7 inches	ROOFSPACING
Longitudinal rebar spacing-roof:	18 inches	
Steel mesh used in roof:	W4 WIRE	
Steel spacing in roof (12"max.)	4 inches	
Steel mesh used in wall:	W4 WIRE	REBARWALL
Rebar size used in wall \#	4 REBAR	REBARWALL2
Steel spacing in wall (12"max.)	4 inches	WALLSPACING
Vertical rebar spacing in wall	36 inches	WALLSPACING2
Horizontal rebar spacing in wall	48 inches	
Wall panel thickness	4 inches	WALLTHICKNESS
Rebar size used in floor \#	6 REBAR	REBARFLR
Number of rebar per floor rib	2 each	REBARFLRQTY
Spacing of ribs in floor	19 inches	FLOORSPACING
Floor thickness	5.75 inches	H[FLOOR]
Floor deck thickness	2.75 inches	H[DECK]
Floor rib width	4 inches	B[RIB]
Floor deck steel size	W4 WIRE	
Floor deck steel spacing	4 inches	
Area per roof rebar	0.200 sq. in.	A[REBARROOF]
Diameter of roof rebar	0.500 inches	DIA[REBARROOF]
Area per roof wire	0.040 sq. in.	
Area per wall wire	0.040 sq. in.	A[REBARWALL]
Area per extra vert wall rebar	0.200 sq. in.	A[REBARWALL2]
Diameter of wall wire	0.225 inches	DIA[REBARWALL]
Diameter of wall rebar	0.500 inches	
Area of floor rebar	0.880 sq. in.	A[REBARFLR]
Diameter of floor rebar	0.750 inches	DIA[REBARFLR]
Area of deck rebar/wire	0.040 sq. in.	A[REBARDECK]
Diameter of deck rebar/wire	0.225 inches	DIA[REBARDECK]
Area of deck steel per foot	0.120 sq.in./ft.	A[DECKSTEEL]
Minimum req'd deck steel/foot	0.059 sq.in./ft.	A[DECKSTEEL-MIN]

2.0.1	STRUCTURAL LOADING SUMMARY FOR PANELS, AS DESIGNED.					
	PANEL	ALLOWABLE LOAD		TYPE		
	roof		$\mathbf{1 5 4}$	psf	11.667	ft wide

2.0.2 CHECK STEEL RATIOS (ACl 318-05, sect. 21.7.2.3) $\rho_{\mathrm{t}} \quad \rho_{\mathrm{v}}$

$\mathrm{B}_{1}=$			ROOF:	0.0114	0.0069	OK
ρ_{b}	$\rho_{\text {max }}$	$\rho_{\text {min }}$	FLOOR:	0.0100		OK
0.0335	0.0252	0.0033	WALL:	0.0066	0.0062	OK

Min reqd. per ACI 318-05, sec 21.7.2.1 0.0025
2.0.3 CHECK DEVELOPMENT LENGTH

	Wall		Roof	Floor
Largest of: $\quad 10 \mathrm{db}=$	2.3 in	5.0 in		7.5 in
	7.5 in	7.5 in		7.5 in
$1.25 \mathrm{f}_{\mathrm{y}} \mathrm{d}_{\mathrm{b}} /\left(65 \mathrm{ff}_{\mathrm{c}}{ }^{1 / 2}\right)$	3.7 in	8.2 in		12.2 in
All rebar development lengths are		18 in	OK	

2.1 ROOF PANEL CALCULATIONS

Temperature steel required: Ats
Panels are $\quad 4.00$ in thick, minimum.
Maximum thickness of roof panel is 5.00 inches at center peak.
Ats= Aconc x 0.0018
$=5.00$ in. $x \quad 12$ in. $x \quad 0.0018$
$=0.1080 \mathrm{sq}$. in. per foot of width of roof panel.
Use \#4 rebar at $\quad 18$ inches, longitudinal: Ats(actual)= 0.2533 sq. in. OK
2.1.1 Determine shear strength: Vu[ROOF]
$\mathrm{b}[\mathrm{ROOF}]=12.0$ inches
$\mathrm{d}[$ ROOFSHEAR $]=\quad 3 \mathrm{in} . \quad-\operatorname{DIA}[R E B A R R O O F] / 2$
2.75 inches
$\mathrm{Vu}[$ ROOF $]=.85 \times .85 \times 2 \times(\mathrm{fc})^{\wedge} .5 \times \mathrm{b}[$ ROOF $] \times \mathrm{d}[$ ROOFSHEAR $]$
$=3372 \mathrm{lbs}$.
2.1.2 Determine allowable live load due to shear: w[ROOFSHEARLL]

ROOFSPANSHEAR= bldgw - ((d[ROOFSHEAR + 4) x $2 / 12$)
$=10.542$ feet $\quad 11.67 \mathrm{ft}$ wide shelter
w[ROOFDL] $=$ density x thickness $\quad(\quad 4.5$ in avg) $=\quad 41.3 \mathrm{psf}$ (concrete only)
w[ROOFSHEARLL] $=($ Vu[ROOF] / ROOFSPANSHEAR - $1.4 \times \mathrm{w}[$ ROOFDL] $) / 1.7$
$=154$ psf allowable roof live load due to shear strength $\quad 11.67 \mathrm{ft}$ wide
2.1.3 Determine allowable live load due to moment: w[ROOFMOMENTLL]

A[ROOFSTEEL] $=$ A[REBARROOF] \times (12 inches / ROOFSPACING)
$=0.34$ sq. inches per foot of roof panel
d[ROOFMOMENT] $=(\mathrm{H}[\mathrm{ROOF}])-(1+$ DIA[REBARROOF] / 2)
$=3.75$ inches
$a[R O O F]=($ A R ROOFSTEEL $] \times$ fy[REBAR] $) /(.85 \times f c \times b[R O O F])$
$=0.403$ inches (for 8 to 11.5 wide shelters)
$\mathrm{Mu}[$ ROOF $]=(.9 / 12) \times$ A[ROOFSTEEL $] \times$ fy[REBAR] $\times(\mathrm{d}[$ ROOFMOMENT] $-\mathrm{a}[$ ROOF] $/ 2$)
$=5475 \mathrm{ft}$-lbs

2.1.4 Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL] $\mathrm{d}[$ RFNEGMOMENT] $=1$ +DIA[REBARROOF] / 2)
$=1.25$ inches
a [RFNEG] $=($ A $[$ ROOFSTEEL $] \times \mathrm{fy}[$ REBAR $]) /(.85 \times \mathrm{fc} \times \mathrm{b}[\mathrm{ROOF}])$
$=0.403$ inches
Mu[RFNEG] $=(.9 / 12) \times$ A[ROOFSTEEL] \times fy[REBAR] $\times(d[R F N E G M O M E N T]-a[R F N E G] / 2)$
$=1617 \mathrm{ft}$-lbs
I[ROOFSPAN]= BLDGW -. $5 \quad=11.17$ feet $\quad 11.67 \mathrm{ft}$ wide
w[ROOFNEGMOMLL] $=\left[(8 \times\right.$ Mu[ROOF] $\left.) /\left(1[R O O F S P A N]^{\wedge} 2\right)\right] / 1.7$
= Allowable negative roof live load due to bending strength (neglecting dead load)
$=\quad-61.0 \mathrm{psf} \quad 11.67 \mathrm{ft}$ wide
2.1.5 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF

2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V} . \quad(A C I ~ 318-05, ~ 21.7 .2 .2) ~$
$2 \mathrm{~A}_{\mathrm{CV}} \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}=27153 \mathrm{lbs} \quad$ [CONTROLS]
2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION (per ACI 318-05, eq. 21-7)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V}$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}=\mathrm{A}_{\mathrm{CV}}\left(\alpha_{\mathrm{c}} \times \mathrm{f}_{\mathrm{c}}^{\left.\mathrm{c}^{1 / 2}+\rho_{\mathrm{t}} \times \mathrm{f}_{\mathrm{y}}\right)} \quad \rho_{\mathrm{t}}=\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{CV}}=\right. \\
& \mathrm{A}_{\mathrm{CV}}=192 \mathrm{in}^{2} \quad \alpha_{\mathrm{c}}=10.0114 \\
&=158173 \mathrm{lbs} \quad[\text { fOES NOT CONTROL] }
\end{aligned}
$$

2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM (per ACI 318, eq. 21-10)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V}$.
$V_{n}=A_{C V}\left(2 \times f_{c}^{\prime 1 / 2}+\rho_{t} \times f_{y}\right)$
$=158173 \mathrm{lbs} \quad$ [DOES NOT CONTROL]
2.2 WALL PANEL CALCULATIONS

Temperature steel required: Ats
Panel thickness is: 4 inches Ats= Aconc $\times 0.0018$
$=\quad 4$ in. $x \quad 12$ in. $\quad 0.0018$
$=0.0864 \mathrm{sq}$. in. per foot of width of wall panel.
(ACI 318-05, 14.3.5; 18" MAX) use 4x4-W4xW4 mesh:
Use \#4 rebar at $\quad 48$ inches, longitudinal: Ats(actual)= 0.1700 sq. in. per foot OK
2.2.1 Determine allowable loads perpendicular to plane of wall
2.2.1.1 Determine shear strength perpendicular to plane of wall: (Vu)

```
    b[WALL] = 12 inches
    d[WALL] = 2 inches (Distance from outside face of panel to center of rebar)
    Vu[WALL]= . 85 x . 85 x 2 x (fc)^. 5 x b[WALL] x d[WALL]
                        = 2452 lbs.
```

2.2.1.2 Determine allowable live load due to shear: w[WALLSHEARLL]

WALLSPANSHEAR= WALLH $-(\mathrm{d}[W A L L] \times 2 / 12)$
$=8.92$ feet $\quad 9.25 \mathrm{ft}$ tall wall
$w[W A L L D L]=36.67$ psf (does not add to horizontal force)
NOTE: WALL DEAD LOAD DOES NOT ACT PERPENDICULAR TO PLANE OF PANEL.
w[WALLSHEARLL] $=$ Vu[WALL] / (WALLSPANSHEAR] $\times 1.7$)
= Allowable wall load due to shear strength
$=162 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.3 Determine allowable live load due to WINDWARD moment: w(WALLMOMENTLL)

> A[WALLSTEEL]= A[REBARWALL]x(12"/WALLSPACING)+A[REBARWALL2]×12"/WALLSPACING2
$=0.19$ sq. inches per foot of wall panel
$a[W A L L]=(A[W A L L S T E E L] \times$ fy[REBAR] $) /(.85 \times \mathrm{fc} \times \mathrm{b}[W A L L])$
$=0.220$ inches
Mu[WALL] $=(.9 / 12) \times$ A[WALLSTEEL] \times fy[REBAR] $\times(d[W A L L]-a[W A L L] / 2)$
$=1588 \mathrm{ft}$-lbs
$w[W A L L M O M E N T L L]=\left[\left(8 \times M u[W A L L] / I[W A L L H]^{\wedge} 2\right)-(1.4 \times w[W A L L D L])\right] / 1.7$
= Allowable wall live load due to bending strength.
$=\quad 87.3 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.4 Determine allowable live load due to LEEWARD moment: w(WALLMOMENTLL)
$d[L E E W A L L]=2$ inches (Distance from inside face of panel to center of rebar) $\mathrm{a}[$ LEEWALL $]=($ A[WALLSTEEL] \times fy[REBAR] $) /(.85 \times \mathrm{fc} \times \mathrm{b}[W A L L])$
$=0.220$ inches
$M u[L E E W A L L]=(.9 / 12) \times$ A[WALLSTEEL] \times fy[REBAR] $\times(d[W A L L]-a[W A L L] / 2)$
$=1588 \mathrm{ft}-\mathrm{lbs}$
$w[L E E W A L L M O M E N T L L]=\left[\left(8 \times M u[W A L L] / I[W A L L H]^{\wedge} 2\right)-(1.4 \times w[W A L L D L])\right] / 1.7$
$=$ Allowable wall live load due to bending strength.
$=87.3 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.2 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF WALL
2.2.2.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V} . \quad(\mathrm{ACl} 318-05,21.7 .2 .2)$
$2 \mathrm{~A}_{\mathrm{CV}} \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}=27153 \mathrm{lbs} \quad$ [CONTROLS]
2.2.2.2 NOMINAL SHEAR FOR WALL SECTION
(per ACl 318-05, eq. 21-7)
Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{c v}$.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =\mathrm{A}_{\mathrm{CV}}\left(\alpha_{\mathrm{c}} \times \mathrm{f}_{\mathrm{c}}^{\prime}{ }^{1 / 2}+\rho_{\mathrm{t}} \times \mathrm{f}_{\mathrm{y}}\right) \quad \rho_{\mathrm{t}}=\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{CV}}=10.0066 \\
& =103716 \mathrm{lbs} \quad \text { An } \quad 192 \mathrm{in}^{2} \quad \alpha_{\mathrm{cV}}=2.0 \quad\left(\text { for } \mathrm{h}_{\mathrm{w}} / \mathrm{I}_{\mathrm{w}}>2\right)
\end{aligned}
$$

2.2.2.3 NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACI 318-05, eq. 21-10)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{c v}$.
$V_{n}=A_{C V}\left(2 \times f_{c}{ }_{c}^{1 / 2}+\rho_{t} \times f_{y}\right)$
$=103716 \mathrm{lbs} \quad$ [DOES NOT CONTROL]

2.3 FLOOR PANEL CALCULATIONS

2.3.1 Determine temperature steel required for the deck:

Deck temperature steel required is:
ATS[DECK] $=\mathrm{H}[\mathrm{DECK}] \times 12$ in. X .0018
$=\quad 2.75 \mathrm{in} . \mathrm{x} \quad 12 \mathrm{in} . \mathrm{x} 0.0018$
$=0.0594 \mathrm{sq}$. in. per foot of width of floor panel.
A[DECKSTEEL]= 0.120 sq. in per foot of panel. OK
2.3.2 Determine floor deck strength:

DECKSPAN= FLOORSPACING $-\mathrm{B}[\mathrm{RIB}]$
$=15.0$ inches
$\mathrm{d}[\mathrm{DECK}]=\mathrm{H}[\mathrm{DECK}]-1 \quad$ (Assumes mesh is 1 " clear from bottom of deck)
$=\quad 1.75$ inches
$\mathrm{a}[\mathrm{DECK}]=(\mathrm{A}[\mathrm{DECKSTEEL}] \times \mathrm{FY}[R E B A R]) /(.85 \mathrm{fc} \times 12 \mathrm{in}$.
$=0.1412$ inches
$M u[D E C K]=0.9 / 12 \times$ A[DECKSTEEL $] \times$ fy[REBAR] $\times(d[D E C K]-(a[D E C K] / 2))$
$=907 \mathrm{ft}-\mathrm{lbs}$
$w[D E C K T O T A L M O M]=(M u[D E C K] \times 8) /(D E C K S P A N \times 12 \text { in. per ft. })^{\wedge} 2$
$=4643 \mathrm{psf}$
$\mathrm{w}[\mathrm{DECKDL}]=(\mathrm{H}[\mathrm{DECK}] / 12 \mathrm{in}$. per ft. $\times 1 \mathrm{ft} . \wedge 2 \times$ DENSITY $)$
$=25.2 \mathrm{psf}$
$w[D E C K L L M O M]=(w[D E C K T O T A L-1.4 \times w[D E C K D L]) / 1.7$
$=2711 \mathrm{psf}$
$\mathrm{Vu}[\mathrm{DECK}]=.85 \times .85 \times 2 \times\left(\mathrm{fc}^{\wedge} .5\right) \times \mathrm{d}[\mathrm{DECK}] \times 12 \mathrm{in}$.
$=2146 \mathrm{lbs}$.
$w[D E C K T O T S H E A R]=2 \times(V u[D E C K] / L$
$=3433 \mathrm{psf}$
$w[D E C K L L S H E A R]=(w[D E C K T O T S H E A R]-1.4 \times w[D E C K D L]) / 1.7$
$=1999 \mathrm{psf}$
Allowable live load for the floor deck is: 1999 psf (FLOOR DECK SHEAR CONTROLS)
2.3.3 Determine floor rib strength:

Effective width of flange: ACI 318-05, 8.10 flange width
1/4 span: $=\quad 33.5$ inches
Effective width of overhang: $\mathrm{ACl} 318-05,8.10$
OR $1 / 2$ clear dist. $\quad 7.5$ inches 19.0 inches <controls>
bf= 19.0 inches
d[FLOOR]= H[FLOOR] - (.75" + DIA[REBARFLR] / 2)
4.625 inches
$a[F L O O R]=(A[R E B A R F L R] \times f y[R E B A R]) /(.85 x f c \times b f)$
$=0.654$ inches
$\mathrm{Mu}[F L O O R]=(.9 / 12) \times$ A[REBARFLR] \times fy[REBAR] $\times(\mathrm{d}[F L O O R]-\mathrm{a}[F L O O R] / 2)$ $=17020 \mathrm{ft}$-lbs
FLOORSPANMOM= BLDGW $-.5 \mathrm{ft} . \quad=11.17$ feet $\quad 11.67 \mathrm{ft}$ wide $\mathrm{w}\left[\right.$ FLOORMOMTOT] $=8 \times \mathrm{Mu}[F L O O R] /(\text { FLOORSPANMOM })^{\wedge} 2$
$=1092$ plf $\quad 11.67 \mathrm{ft}$ wide shelter

```
    w[FLOORDL]= ((H[DECK] x bf / 144) + b[RIB] x (H[FLOOR] - H[DECK] ) / 144 ) x 1 ft.x DENSITY
    = 49.1 plf (PER RIB) = 31.0 psf
w[FLOORMOMLL]= [W[FLOORMOMTOT] - (1.4 x w[FLOORDL] )] / (1.7 x trib)
    = 380 psf 11.67 ft wide shelter
2.3.4 Determine rib shear strength: Vu[FLOOR]
    b[RIB] = 4.00 inches
    A[RIBSHEAR]= (H[FLOOR] - (.75" + DIA[REBARFLR]/2 ) ) x B[RIB]
        18.50 sq. in.
ACI 318-05, 11.3.2.1
Vc[FLOOR]= . 85 x (1.9 x (fc)^. 5 + ( 2500 x A[REBARFLR] / (b[RIB] xd[FLOOR] ) x 1 ) xb[RIB] xd[FLOOR]
    = 3983 lbs.
    But not greater than: . }85\times3.5\times\mp@subsup{\textrm{f}}{}{\prime}\mp@subsup{\textrm{c}}{}{\wedge}.5\times\textrm{b}[\textrm{RIB}]\times\textrm{d}[FLOOR
        = 3892 lbs.
    USE 3892 lbs.
ACl 318-05, 8.11.8 Vc[FLOORALLOW]= 1.1xVc[FLOOR]= 4281 lbs.
```

2.3.5 Determine allowable live load due to shear: w[FLOORSHEARLL]

2.3.6 Determine allowable concentrated load over 2.5 sf .
2.5 square foot area is equivalent to approximately 19 inch $\times 19$ inch, or 1.58 feet $\times 1.58$ feet.

Assume one rib takes the entire concentrated load.
Allowable load based on shear is: 310 ps
For a 11.67 foot wide shelter with an 10.67 foot span the equivalent concentrated load is:
P [shear) $=10.67 \mathrm{ft} \times 310 \mathrm{psf} \times 2.00$
$=6614$ lbs Maximum concentrated load (shear).
Maximum live load for bending on one rib is:
$w[F L O O R R I B L L]=w[F L O O R M O M L L] \times B F / 12=$
602 plf
Make uniform load moment equal to concentrated load moment and solve for P.
w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
$P($ moment $)=w[$ FLOORRIBLL $] \times($ FLOORSPANMOM $) / 4$
$=1680$ LBS Maximum load in center of floor (bending).
If the load is next to the wall (as is usually the case with batteries) :

```
w[FLOORRIBLL]x (FLOORSPANMOM^2 ) / 8 = P x 1.5
    P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM^2 )* (2 x 8)
        = 6255 LBS Maximum load next to wall (bending).
        Shear controls.
```

Shear controls when load is next to wall.

3.0 INSERT PLATE ANALYSIS

(Analysis per ACI 318-05, Appendix D)

3.1 Material Properties

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}}^{\prime} & = & 5000 \mathrm{psi} \text { (sand-lightweight) } \\
\mathrm{f}_{\mathrm{uta}} & = & 61 \mathrm{ksi} \\
\mathrm{~A}_{\mathrm{se}} & = & 0.196 \mathrm{in}^{2} \\
\mathrm{~A}_{\text {brg }} & = & 0.589 \mathrm{in}^{2} \\
\mathrm{~h}_{\mathrm{ef}} & = & 2 \mathrm{in} \\
\mathrm{~d}_{\mathrm{o}} & = & 0.5 \mathrm{in}
\end{aligned}
$$

3.2 Stud Analysis

3.2.1 Per D.5.3.4, Pullout strength in tension shall not exceed:

$$
\mathrm{N}_{\mathrm{p}}=8 \mathrm{~A}_{\mathrm{brg}} \mathrm{f}_{\mathrm{c}} \quad=\quad 23,562 \mathrm{lbs} / \text { stud }
$$

(due to crushing strength of concrete at the head of the stud.
3.2.2 Basic tension breakout strength of stud shall not exceed:

$$
\begin{array}{rlrl}
\mathrm{N}_{\mathrm{b}} & =\mathrm{k}_{\mathrm{c}} .85\left(\mathrm{f}_{\mathrm{c}}^{\mathrm{c}}\right)^{1 / 2} \mathrm{~h}_{\mathrm{ef}}^{1.5} & \mathrm{k}_{\mathrm{c}}=24 \text { (for cast-in anchors) } \\
& 4080 \mathrm{lbs} / \text { stud } & & {[\text { Eq D-7] Sec D.5.2.2 }}
\end{array}
$$

3.2.3 Check ductile strength of stud.

$$
\begin{array}{rlrl}
\mathrm{N}_{\mathrm{sa}} & =\mathrm{A}_{\mathrm{se}} \mathrm{f}_{\mathrm{uta}} \\
\phi & = \\
\phi \mathrm{N}_{\mathrm{sa}} & = & 0.75 \\
& 8.98 \mathrm{kips} / \mathrm{stud}
\end{array}
$$

3.2.3 Check shear strength of stud.

$$
\begin{array}{rlrl}
\mathrm{V}_{\mathrm{sa}} & = & \mathrm{A}_{\mathrm{se}} \mathrm{f}_{\mathrm{uta}} & \\
\phi & = & 0.65 & \\
\phi \mathrm{~N}_{\mathrm{sa}} & = & 7.79 \mathrm{kips} / \mathrm{stud} & \\
\text { [See D.4.4 a) ii)] }
\end{array}
$$

3.3 INSERT PLATE "P/N 223100" ANALYSIS

3.3.1 Tension Capacity of "P/N 223100" plate:

$$
N_{c b g}=\left(A_{n c} / A_{\text {nco }}\right) \psi_{e c}, N \psi_{e d}, N \psi_{c}, N \psi_{c p}, N N_{b} \quad[E q ~ D-5] \text { Sec D.5.2.1 }
$$

$$
\mathrm{A}_{\text {Nco }}=9 \mathrm{~h}_{\mathrm{ef}}{ }^{2} \quad=\quad 36 \mathrm{in}^{2}
$$

Find $A_{N c}$ for just the two upper studs.

$$
\mathrm{A}_{\mathrm{Nc}}=\mathrm{A}_{\mathrm{Nco}}+4(3)\left(\mathrm{h}_{\mathrm{ef}}\right)=
$$

$60 \mathrm{in}^{2}$

$$
\begin{aligned}
\psi_{\text {ec }}, \mathrm{N}= & 1.0 \text { assume no eccentricity } \\
\psi_{\text {ed }}, \mathrm{N}= & 1.0\left(\mathrm{c}_{\mathrm{a}} \text { min }>1.5 \mathrm{~h}_{\text {ef }} \text { for } 2\right. \text { studs) } \\
\psi_{\mathrm{c}}, \mathrm{~N}= & 1.25 \text { (for cast-in anchors) } \\
\psi_{\mathrm{cp}}, \mathrm{~N}= & 1.0 \text { (for cast-in anchors) }
\end{aligned}
$$

$\phi \mathrm{N}_{\mathrm{cbg}}=$
TENSION CAPACITY OF "P/N 223100" PLATE

$$
\mathrm{N}_{\mathrm{cbg}}=\quad 8500 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
$$

Shear Capacity of "P/N 223100" plate in the X-direction:
This shear force is parallel to the edge of the panel.

$$
\phi \mathrm{V}_{\mathrm{cbg}}=\quad 14540 \mathrm{lbs}
$$

SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION
3.3.3 Shear Capacity of "P/N 223100" plate in the (negative) Y-direction:

This shear force is perpendicular to the edge of the panel.
NOTE: The lower stud is ignored since it is close to the free edge.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cbg}}=2\left(\mathrm{~A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}}, \mathrm{~V} \psi_{\text {ed }}, \mathrm{V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} \quad \text { [Eq D-22] Sec D.6.2.1 (b) } \\
& \text { where: } \\
& \mathrm{V}_{\mathrm{b}}=7\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{o}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} .85\left(\mathrm{f}_{\mathrm{c}} \mathrm{c}^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5}\right. \\
& \mathrm{l}_{\mathrm{e}}=\quad \mathrm{h}_{\mathrm{ef}}= \\
& 2 \text { inches } \\
& \mathrm{d}_{\mathrm{o}}=\quad 0.5 \text { inches } \quad \mathrm{c}_{\mathrm{a} 1}=\quad 7 \text { inches } \\
& V_{b}=7270 \mathrm{lbs} / \text { stud } \quad[E q \text { D-24] Sec D.6.2.2 } \\
& \psi_{\text {ec }}, V=\quad 1.0 \text { assume no eccentricity } \quad \psi_{\text {ed }}, V=\quad 1.0 \\
& \psi_{c}, V=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& h_{\mathrm{a}}=\quad 4 \text { inches } \quad \mathrm{s}_{1}=\quad 4 \text { inches } \\
& \mathrm{A}_{\mathrm{vco}}=2\left(1.5 \mathrm{c}_{\mathrm{a} 1}\right) \mathrm{h}_{\mathrm{a}}=\quad 84 \mathrm{in}^{2} \\
& A_{v c}=\left(2\left(1.5 c_{a 1}\right)+s_{1}\right) h_{a}=\quad 100 \mathrm{in}^{2} \\
& \mathrm{~V}_{\mathrm{cbg}}=20772 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
\end{aligned}
$$

3.4 INSERT PLATE "PIN 223000" ANALYSIS

3.4.1 Tension Capacity of "P/N 223000" plate:

$$
\mathrm{N}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{nc}} / \mathrm{A}_{\mathrm{nco}}\right) \psi_{\mathrm{ec}}, \mathrm{~N} \psi_{\mathrm{ed}}, \mathrm{~N} \psi_{\mathrm{c}}, \mathrm{~N} \psi_{\mathrm{cp}}, \mathrm{~N} \mathrm{~N}_{\mathrm{b}}
$$

$$
A_{\text {Nco }}=9 h_{e f}^{2}=36 \mathrm{in}^{2}
$$

Find $A_{N c}$ for just the two upper studs.

$$
\mathrm{A}_{\mathrm{Nc}}=\mathrm{A}_{\mathrm{Nco}}+4(3)\left(\mathrm{h}_{\mathrm{ef}}\right)=\quad 60 \mathrm{in}^{2}
$$

$\psi_{\text {ec }}, \mathrm{N}=\quad 1.0$ assume no eccentricity
$\psi_{\text {ed }}, \mathrm{N}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \mathrm{min}>1.5 \mathrm{~h}_{\text {ef }}\right.$ for 2 studs considered)
$\psi_{c}, N=\quad 1.25$ (for cast-in anchors)
$\psi_{\mathrm{cp}}, \mathrm{N}=\quad 1.0$ (for cast-in anchors)
$\mathrm{N}_{\mathrm{cbg}}=\quad 8500 \mathrm{lbs}$
$\phi=0.70 \quad$ [Use condition B, D.4.4]
$\phi \mathrm{N}_{\mathrm{cbg}}=\quad 5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 223000" PLATE
3.4.2 Shear Capacity of "P/N 223000" plate in the X-direction:

This shear force is parallel to the edge of the panel.

$$
V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c}, V \psi_{e d}, V \psi_{c}, V V_{b}
$$

[Eq D-22] Sec D.6.2.1 (b)
where:

$$
\begin{array}{rcc}
\mathrm{V}_{\mathrm{b}}=7\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{o}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} .85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} & \\
\mathrm{l}_{\mathrm{e}}= & \mathrm{h}_{\mathrm{ef}}= & 2 \text { inches } \\
\mathrm{d}_{\mathrm{o}}= & 0.5 \text { inches } & \mathrm{c}_{\mathrm{a} 1}=
\end{array}
$$

3.4.3 Shear Capacity "P/N 223000" in the neg Y-direction (toward free edge):

This shear force is perpendicular to the edge of the panel.

$$
\begin{array}{ccc}
\mathrm{V}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{e c}, \mathrm{~V} \psi_{e d}, \mathrm{~V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} & \text { [Eq D-22] Sec D.6.2.1 (b) } \\
\mathrm{V}_{\mathrm{b}}= & 3140 \mathrm{lbs} / \text { stud } & \text { from 3.4.2 above } \\
\psi_{e c}, \mathrm{~V}= & 1.0 \text { assume no eccentricity } \\
\psi_{e d}, \mathrm{~V}= & 1.0 \mathrm{c}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} & \\
\psi_{\mathrm{c},}, \mathrm{~V}= & 1.2 \text { (for \#4 bar between anchor and edge) }
\end{array}
$$

$$
A_{v c o}=\quad 42 \text { in }^{2} \quad A_{v c}=\quad 56 \text { in }^{2} \quad \text { from 3.4.2 above }
$$

$$
\mathrm{V}_{\mathrm{cbg}}=\quad 5025 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
$$

$\phi \mathrm{V}_{\mathrm{cbg}}=$	3517 lbs
SHEAR CAPACITY OF "P/N 223000" PLATE IN Y-DIRECTION	

3.5

INSERT ANGLE "P/N 222000" ANALYSIS

3.5.1 Tension Capacity of "P/N 222000" Insert Angle: (negative Z)

$$
\begin{gathered}
\mathrm{N}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{nc}} / \mathrm{A}_{\mathrm{nco}}\right) \psi_{\mathrm{ec}}, \mathrm{~N} \psi_{\text {ed }}, \mathrm{N} \psi_{\mathrm{c}}, \mathrm{~N} \psi_{\mathrm{cp}}, \mathrm{~N} \mathrm{~N} \mathrm{~N}_{\mathrm{b}} \\
\mathrm{~A}_{\mathrm{Nco}}=9 \mathrm{~h}_{\mathrm{ef}}^{2}
\end{gathered}
$$

[Eq D-5] Sec D.5.2.1 (b) $36 \mathrm{in}^{2}$
Find $A_{N c}$ for just the two studs.

$\phi \mathrm{N}_{\mathrm{cbg}}=\quad 5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 222000" INSERT

3.5.2 Shear Capacity of "P/N 222000" Insert Angle in X direction:

This shear force is parallel to the edge of the panel.

$$
\mathrm{V}_{\mathrm{cbg}}=2\left(\mathrm{~A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}}, \mathrm{~V} \psi_{\mathrm{ed}}, \mathrm{~V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} \quad[\text { Eq D-22] Sec D.6.2.1 (b) }
$$

where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=7\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{o}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} .85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} \\
& \mathrm{l}_{\mathrm{e}}=\mathrm{h}_{\mathrm{ef}}=\quad 2 \text { inches } \\
& \mathrm{d}_{\mathrm{o}}=\quad 0.5 \text { inches } \quad \mathrm{c}_{\mathrm{a} 1}=\quad 3 \text { inches } \\
& V_{b}=2040 \mathrm{lbs} / \text { stud } \quad[E q \text { D-24] Sec D.6.2.2 } \\
& \psi_{\text {ec }}, V=1.0 \text { assume no eccentricity } \quad \psi_{\text {ed }}, V=\quad 1.0 \\
& \psi_{\mathrm{c}}, \mathrm{~V}=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& h_{a}=4 \text { inches [at step-joint] } \\
& \mathrm{s}_{1}=\quad 4.5 \text { inches } \\
& \mathrm{A}_{\text {vco }}=2\left(1.5 \mathrm{c}_{\mathrm{a} 1}\right) \mathrm{h}_{\mathrm{a}=} \quad 36 \mathrm{in}^{2} \\
& A_{v c}=\left(2\left(1.5 c_{a 1}\right)+s_{1}\right) h_{a}=\quad 54 \mathrm{in}^{2} \\
& \mathrm{~V}_{\mathrm{cbg}}=\quad 7343 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
\end{aligned}
$$

$\phi \mathrm{V}_{\mathrm{cbg}}=\quad 5140 \mathrm{lbs}$
SHEAR CAPACITY OF "P/N 222000" INSERT, X-DIRECTION

3.5.3 Shear Capacity of "P/N 222000" Insert Angle in Y direction:

This is for uplift forces from the roof panel.

$$
\begin{array}{ccl}
\mathrm{V}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}}, \mathrm{~V} \psi_{\mathrm{ed}}, \mathrm{~V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} & \text { [Eq D-22] Sec D.6.2.1 (b) } \\
\mathrm{V}_{\mathrm{b}} & 2040 \mathrm{lbs} / \text { stud } & \text { from 3.5.2 above } \\
\psi_{\mathrm{ec}}, \mathrm{~V}= & 1.0 \text { assume no eccentricity } & \\
\psi_{\mathrm{ed}}, \mathrm{~V}= & 1.0 \mathrm{c}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} &
\end{array}
$$

| | $\psi_{\mathrm{c}}, \mathrm{V}=$ | 1.2 (for \#4 bar between anchor and edge) |
| :---: | :---: | :---: | :---: |
| $\mathrm{A}_{\mathrm{vco}}=$ | $36 \mathrm{in}^{2}$ | from 3.5.2 above |
| $\mathrm{A}_{\mathrm{vc}}=$ | $54 \mathrm{in}^{2}$ | from 3.5.2 above |
| $\mathrm{V}_{\mathrm{cbg}}=$ | 3672 lbs | |
| $\phi=$ | 0.70 | [Use condition B, D.4.4] |
| $\phi \mathrm{V}_{\mathrm{cbg}}=$ | 2570 lbs | |
| SHEAR CAPACITY OF "P/N 222000" INSERT, Y-DIRECTION | | |

This insert is used on the vertical sides of the endwalls. The 4" leg forms the outside edge of the endwalls, and the 6 " leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor.
The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls.
The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, ($+X$ or $-X$ direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction.

3.6.1 Capacity of Wall Corner Inserts in X-direction

Check capacity of individual studs on the 6" leg of the angle.
These studs would be in shear toward the free edge.

$$
V_{c b}=\left(A_{v c} / A_{v c o}\right) \psi_{e d}, V \psi_{c}, V V_{b}
$$

[Eq D-21 Sec D.6.2.1 (a0] where:

$$
\begin{aligned}
& \begin{array}{c}
V_{b}=7\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{o}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} .85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} \\
\mathrm{l}_{\mathrm{e}}=\quad \mathrm{h}_{\mathrm{ef}}=\quad 2 \text { inches }
\end{array} \\
& \mathrm{d}_{\mathrm{o}}=\quad 0.5 \text { inches } \quad \mathrm{c}_{\mathrm{a} 1}=\quad 5 \text { inches } \\
& \mathrm{V}_{\mathrm{b}}=\quad 4389 \mathrm{lbs} / \text { stud } \quad[\mathrm{Eq} \mathrm{D}-24] \text { Sec D.6.2.2 } \\
& \psi_{\text {ed }}, V=1.0 \\
& \psi_{c}, V=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& \mathrm{h}_{\mathrm{a}}=\quad 4 \text { inches } \quad \text { [at step-joint] } \quad \mathrm{s}_{1}=\quad 24 \text { inches } \\
& \mathrm{A}_{\mathrm{vco}}=4.5 \mathrm{c}_{\mathrm{a} 1}{ }^{2}=\quad 112.5 \mathrm{in}^{2} \\
& A_{v c}=2\left(1.5 c_{a 1}\right) h_{a}=\quad 60 \mathrm{in}^{2}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{cb}}=\quad 5618 \mathrm{lbs} \quad \phi=\quad 0.70$ [Use condition B, D.4.4]

$$
\phi \mathrm{V}_{\mathrm{cb}}=\quad 3932 \mathrm{lbs}
$$

Shear capacity of studs on 6 " leg, X direction.
To this, add the tension load from the studs on the 4" leg.

$$
\begin{gathered}
\mathrm{N}_{\mathrm{cb}}=\left(\mathrm{A}_{\mathrm{nc}} / \mathrm{A}_{\mathrm{nco}}\right) \psi_{\mathrm{ed}}, \mathrm{~N} \psi_{\mathrm{c}}, \mathrm{~N} \psi_{\mathrm{cp}}, \mathrm{~N} \mathrm{~N}_{\mathrm{b}} \\
\mathrm{~A}_{\mathrm{Nco}}=9 \mathrm{~h}_{\mathrm{ef}}{ }^{2}
\end{gathered}
$$

[Eq D-4] Sec D.5.2.1 (a)

$$
36 \mathrm{in}^{2}
$$

$$
\text { Find } A_{N c} \quad c_{a 1}=\quad 2 \text { inches }
$$

$$
\mathrm{A}_{\mathrm{Nc}}=2\left(\mathrm{c}_{\mathrm{a} 1}\right) \times 2\left(1.5 \mathrm{~h}_{\mathrm{ef}}\right)=
$$

$$
24 \mathrm{in}^{2}
$$

These two were analyzed as individual studs since they are spaced 12 inches apart, far enough to act alone, not as a group.
In this direction, there would be a minimum of 4 studs in shear, and three studs in tension. The total allowable load is:

$$
\begin{array}{|cc}
\mathrm{P}_{\mathrm{x}}=4\left(\phi \mathrm{~V}_{\mathrm{cb}}\right)+3\left(\phi \mathrm{~N}_{\mathrm{cb}}\right)= & 22870 \mathrm{lbs} \\
\text { SHEAR CAPACITY OF WALL INSERT, }+/ \text { - X-direction }
\end{array}
$$

3.7 FLOOR LIFTING INSERT ANALYSIS

The floor lifting inserts are made from 5 "x5"x5/16" angle with a 5 " $x 5 / 16$ " plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, $1 / 2^{\prime \prime} \times 4$ " long, on 12" centers and two studs, $1 / 2^{\prime \prime} \times 2$ " long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5 " $\times 5$ " $\times 5 / 16$ " angle with one side up and one side out, and extend the entire length of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, $1 / 2^{\prime \prime} \times 4$ " long, on 12 " centers and four \# 6×30 " rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (sec 3.6.1).

3.8 CAPACITY OF WELDS AT CONNECTION PLATES

Welds to be made with SMAW, E70XX electrodes.
All standard connection plates will have a $3 / 16^{\prime \prime}$ weld, 3 inches long.
E70XX welds are good for . 928 kips per inch per sixteenth inch of weld.
Weld capacity is then:
$\mathrm{Pw}=(0.928 \mathrm{k} /$ inch $/$ sixteenth $) \times$ (3 inches) $\times(3$ sixteenths $)$
$\mathrm{Pw}=\quad 8.352 \mathrm{kips}$
CAPACITY OF ALL STANDARD CONNECTION PLATE WELDS

3.9
 CAPACITY OF TIE-DOWN CONNECTION PLATES

Three failure modes are noted:
A: Failure of the connection plate.
B: Failure of the bolts connecting the plate to the shelter.
C: Failure of the expansion anchor connecting the plate to the foundation.
$\mathrm{t}=$
$\quad 36 \mathrm{ksi}$
$\mathrm{Fu}=\quad 58 \mathrm{ksi}$

A: Shear through edge of plate at one hole is:

$$
\begin{array}{rlrl}
\text { HoleArea(bolt) } & =\mathrm{D}(\mathrm{top}) \times \mathrm{t} & = & 0.3125 \mathrm{in}^{2} \\
\text { HoleArea(anchor) } & =\mathrm{D}(\mathrm{bot}) \times \mathrm{t} & & 0.21875 \mathrm{in}^{2} \\
\text { PL-Area }=\mathrm{t} \times\left(2^{\prime \prime}-(.5 \times 1.25 ")\right) & & =0.34375 \mathrm{in}^{2} \\
\text { cannot exceed } \mathrm{t} \times 4 \mathrm{t} & & 0.25 \mathrm{in}^{2} \quad \text { CONTROLS } \\
\text { OK [exceeds } 2 / 3 \text { hole area, AISC, 360-05, D3.2] }
\end{array}
$$

4 CONCRETE BUILDING WEIGHT CALCULATOR

