DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK CITY OF PORTLAND BUILDING PERMIT

zernomerss

Located At 220 RIVERSIDE IND PKWY
CBL: $330-\mathrm{H}-005-001 \ldots$
has permission to Construct a 12 'x 16 ' equipment shelter, add appurtenances to existing communication tower \& generator provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise closed-in. 48 HOUR NOTICE IS REQUIRED.

Fire Prevention Officer Bl.

A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY PENALTY FOR REMOVING THIS CARD

City of Portland, Maine - Building or Use Permit Application
389 Congress Street, 04101 Tel: (207) 874-8703, FAX: (207) 8716

CERTIFICATION

[^0]63.11
$11^{\prime \prime} 8^{\prime \prime} \times 16^{\prime}$
\#4 15"c.c.
\#4 Baskets

5000 pi from Auburs

summitl enginering is dang spand Inspation
olcay to pare NeA

Conditions of Approval:

Zoning

1. This permit is being approved on the basis of plans submitted. Any deviations shall require a separate approval before starting that work.

Building

1. Application approval based upon information provided by applicant. Any deviation from approved plans requires separate review and approval prior to work.
2. At the completion of the work, a licensed engineer is required to sign off that the installation is in compliance with the approved design.

BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 or 874-8693 (ONLY) or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in $\mathbf{6}$ months. If the project is not started or ceases for $\mathbf{6}$ months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

1. Electrical - Commercial
2. Foundation/Rebar
3. Final at completion including letter of compliance from engineer

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUOPIED.

General Building Permit Application

Please submit all of the information outlined on the applicable Checklist. Failure to do so will result in the automatic denial of your permit.

In order to be sure the City fill t understands the fill scope of the project, the Planning and Development Department mary request additional information prior to the issuance of a permit. For further information or to download copies of this form and other applications visit the Inspections Division on-line at swww:portlandmaine.gor, or stop br the Inspections Division office, room 315 Cit Hall or call $8^{\top}+8^{7} 03$.
1 hereby certify that 1 am the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized br the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued. I certify that the Code Official's authorized representative shall have the authority to enter all areas covered br this permit at ant reasonable hour to enforce the provisions of the codes applicable to this permit

Job Summary Report
Job ID: 2011-04-736-ALTCOMM

4/21/11 I have completed my review and sent the following comments via email to Steve Portnoy:

1. Please provide stamped construction drawings, details of the building construction (it appears only the foundation is supplied),
2. Tower mounting kit specs and details,
3. Engineers assessment that the tower is structurally designed to accept the loads of the proposed additional equipment,
4. A condition of the permit will require confirmation by a licensed professional that the installation of the equipment is in compliance with the design standards.

I have not received the approved Administrative Authorization documents for approval of the structure on this site. I can only issue the permit when this has been approved.

4/26/11 Received approved Admn. Auth
4/29/11 Received revisions and details via email

Certificate of Design Application

Job Name: US Customs and Border Protection Public Safety Facility

2003 International Building Code

Construction project was designed to the building code criteria listed below:

Structural Design Catculations

Submitted for all structural members (106.1-106.11)
Design Loads on Constuction Documents ((603)
Uniformly distributed floor live loads (7603.11, 1807)
Floor Area Use Loads Shown

Wind loads (166314,1609)
. Design option utilized (1609.1.1, 1609.6)
Basic wind speed (1809.3)
Building category and wind importance Factor, lw
Wind exposure category (1609.4)
Internal pressure coefficient (ASCE 7)
Component and cladding pressures (1609.1.1, 1609.6.2.2)
Main force wind pressures (7603.1.1, 1609.6.2.1)
Earth design data ($1603.15,16441623$)
Desigh option utilized (1614.1)
Seismic use group ("Category")
Spectral response coefficients, SDs \& SD1 (1615.1)
Site class (1615.1.5)

Live load reduction
Roof live loads (1603.1.2, 1607.11)
___ Roof snow loads (1603.7.3, 1608)
___Ground snow load, $\operatorname{Pg}(1608.2)$
___If $\mathrm{Pg}>10 \mathrm{psf}$, flat-roof snow load Pf
___If $\mathrm{Pg}>10 \mathrm{psf}$, snow exposure factor, C_{8}
If $\mathrm{Pg}>10 \mathrm{psf}$, snow load importance factor, $I s$
\ldots Roof thermal factor, Ct (1608.4)
_Sloped toof snowload, $\operatorname{Ps}(1608.4)$
_ Seismic design category (1616.3)
\ldots ___ Basic seismic force resisting system (1617.6.2)
___ Response modification coefficient, R1 and deflection amplification factor $C d(1617.6 .2)$
Analysis procedure $(1616.6,1617.5)$
Design base shear ($1617.4,16175.5 .1$)
Thod laads (1803 (6.61012)
\ldots Flood Hazard area (1612.3)
___Elevation of structure
OHhem load
\ldots Concentrated loads (1607.4)
__ Partition loads (1607.5)
__Misc. loads (Tab le 1607.8, 1607.6.1, 1607.7, 1607.12,
$1607.13,1610,1611,2404$ table $1604.5,1609.5$)

City of Portland E-911 Addressing Officer
Leslie Kaynor
Department of Public Services
55 Portland St., Portland, ME 04101
(207) 756-8346
lmk@PortlandMaine.gov

May 2, 2011

To whom it may concern:
This is to inform you that the official E911 address for the structure on Assessor parcel 330 H 005 is

222 Riverside Industrial Parkway 04103

This information will be sent to the City Departments, Portland Post Office, Verizon and the State E-911 Office.

Identifying Your Building/House

For Fire and Rescue purposes it is very important that you place your street number on your building in a location visible from the street or driveway at all times of year. The height of each number in your address should be a minimum of 4 inches. The color of the number should contrast with the background color.

In addition, if your house or building is located further than 75 feet back from the road or otherwise not visible from the road, your street number is required to be placed at the beginning of your driveway. The numbers should be a minimum height of 4 inches, contrast with the background color and be made of reflective materials. Acceptable methods of display include the use of your mailbox, placement of a plaque on a post, etc.
In addition, you are requested to prominently post your assigned number and street name near your telephone for emergency reference.

Please feel free to contact me if you have any questions regarding this notice. Sincerely,

Leslie Kaynor
cc: Michael J. Bobinsky, Director of Public Services

Jeanie Bourke - RE: FW: US Customs \& Border Protection tower site building permit - 225 Riverside Industrial Parkway

From:	"Portnoy, Steve" sportnoy@ccc411.com
To:	"Jeanie Bourke" <JMB@ ,portlandmaine.gov>
Date:	4/29/2011 1:30 PM
Subject:	RE: FW: US Customs \& Border Protection tower site building permit - 225 Riverside
	Industrial Parkway
CC:	"Neville, Michael T." mneville@ccc411.com
Attachments:	FW: CBP Houlton Maine; STAMPED PDF.US CBP_ATC_10047 Portland
	ME_Structural Analysis (94\%)_20110214.pdf; Portland Antenna Mount info.pdf

Hi Jeanie,

Please see the attached E-mail that contains attachments with additional building construction information. The telecommunications equipment shelter is pre-cast concrete delivered to the site on flat bed truck and unloaded on the slab with a crane.

I have also attached a copy of the PE sealed tower structural analysis that shows the tower passes with the proposed additional loading as well as the mounting kit details you requested.

I assume that Item 4 below related to an engineer issued post-construction compliance letter. Let me know if you need anything else in order to issue this permit. I appreciate it.

Sture Potray

CFE Telecom DESK (512) 6749484 MBL (512) 4155890

From: Jeanie Bourke [mailto:]MB@portlandmaine.gov]
Sent: Thursday, April 21, 2011 3:00 PM
To: Portnoy, Steve
Subject: Re: FW: US Customs \& Border Protection tower site building permit - 225 Riverside Industrial Parkway
Hi Steve,
I have completed my review and have the following comments:

1. Please provide stamped construction drawings, details of the building construction (it appears only the foundation is supplied),
2. Tower mounting kit specs and details,
3. Engineers assessment that the tower is structurally designed to accept the loads of the proposed additional equipment,
4. A condition of the permit will require confirmation by a licensed professional that the installation of the equipment is in compliance with the design standards.

I have not received the approved Administrative Authorization documents for approval of the structure on this site. I can only issue the permit when this has been approved.

Let me know if you have further questions. I am out of the office tomorrow. Thanks, Jeanie

Jeanie Bourke

CEO/Plan Reviewer

City of Portland

Planning \& Urban Development Dept./ Inspections Division
389 Congress St. Rm 315
Portland, ME 04101
jmb@portlandmaine.gov
Direct: (207) 874-8715
Office: (207) 874-8703
>>> "Portnoy, Steve" sportnoy@ccc411.com 4/21/2011 10:38 AM >>> Hi Jeanie,

Can you please update me on the approval status for this requested building permit for this federal telecommunications project? Also, please let me know if you need any additional information from our office. Once approved, if it's not too much trouble, could you please e-mail me a scanned copy and snail mail me the hard copy to the address below? I appreciate it.

CFE Telecom
DESK (512) 6749484
MBL (512) 4155890

From: Ann Machado [mailto:AMACHADO@portlandmaine.gov]
Sent: Thursday, April 21, 2011 9:38 AM
To: Portnoy, Steve
Subject: Re: US Customs \& Border Protection tower site building permit - 225 Riverside Industrial Parkway
Steve -

The permit has been reviewed and signed off by zoning and fire. The final review is with a plan reviewer/building inspector. It will probably be Jeanie Bourke doing the review. Her email is jmb@portlandmaine.gov Her phone number is 207.874.8715.

Ann
>>> "Portnoy, Steve" sportnoy@ccc411.com 4/20/2011 10:55 AM >>>
Hi Ann,

Do you know who I can follow up with to determine the status of issuance of this requested building permit? I appreciate the feedback.

Project Manager/Site Acquisition

CFE Telecom

From:	"Kehl, Nicholas" nkehl@ccc411.com
To:	"Portnoy, Steve" <sportnoy@ $@$ ccc411.com>
Date:	$4 / 26 / 201112: 49$ PM
Subject:	FW: CBP Houlton Maine
Attachments:	concrete 2003 IBC SCBP11 Houlton, ME 11-8x16 4-25-11jti.pdf; 108-036.pdf;
	SCBP11 2-0 (03-30-11).pdf; Houlton Maine Code Compliance Calcs.pdf

Steve,
Documentation for the shelter construction is attached from Cellxion for the Portland Permit. I have not had a chance to print and/or review the information yet.

Nicholas G. Kehl, P.E.
CFE Telecom
4544 South Lamar Boulevard
Building G-300
Austin, TX 78745
Desk: (512) 674-9463
Mobile: (414) 526-8408

From: Keith Underhill [mailto:kunderhill@cellxion.com]
Sent: Monday, April 25, 2011 4:15 PM
To: Kehl, Nicholas
Cc: Doug Henry; Jeff Hood
Subject: CBP Houlton Maine

Nick,
Please find the attachments for the Houlton Maine project floor plan, wall construction detail, structural calculations, and energy code compliance. Let me know if you need anything else to proceed with permits.
Thanks,
Keith Underhill
Technical Project Manager
Cellion
603-488-1261 Office
603-860-0548 Mobile

Administrative Authorization Application
 Portland, Maine
 Planning and Urban Deveiopment Department, Planning Division

PROJECT NAMME: \qquad US Customs and Border Protection Communications Project. \qquad $-$ PROJECT ADDRESS: Riverside industriai Parkwav CHART/BLOCK/LOT: $330 /-15$ HoC 330 Ho APPLICATION FEE: $\$ 50.00$ ($\$ 50.00$)

PROJECT DESCRIPTION: (Please Attach \$ketch/Pian of the ProposailDevelopmene)

Addition of appurtenances to existing tower and construction of 12×16 equipment shelter - see attached plans
CONTACT INFORMATION:

OWNER/APPLICANT

Name: US Customs and Border Protection
Attontion: BarryK. Bracken US CBP TACCOM Program Manager
Āddress: 7501 Boston Bivd, B-216-1 Beauregard Address: 4544 South Lamar Bivd. G-300 Springfieid, VA 20229 Austin, TX 78745

Work \#: 703-921-7393
Cell \#: 571-241-1604
Fax \#: N/A
Home \#: not published
E-mail: barryk.bracken(ocibn dins.gov

CONSULTANT/AGENT

Name: Steve Pornoy, CFE Telecom

Work \#: 512-674-9484
Cell \#: 512-415-5890 - APR 122011
Fax 妆: 512-495-9473
Home \#: 512-892-2949
Dept. of Building Inspections E-mail: sonrtnoy@ofeamerica com of Portland Maine

Griteria for an Administrative Authorization: (see section 14-523(4) on pg . 2 of tinis appi.)
a) Is the proposal within existing structures?
b) Are there any new buildings, additions, or demolitions?
c) is the footprint increasese less than 500 sq . f.t?

Y APR 26 2011-
d) Ars there any naw curb cuts, driveways or parking arege?
-) Are the curbs and sidevaliks in sound condition?
f) Do the curbs and sidewalks comply with ADA?
g) Is there any additional parking?
h) is there an increase in traffic?
i) Are there any known stormwater problems?
i) Does sufficient property screening exist?
k) Are there adequate utilities?

1) Are there any zoning violations?
in) Is an emergency generator located to minimize noise?
n) Are there any noise, vibration, glare, fumes or other impacts?

 from the Inspection Diviston (Room 315. City Hall ($874-8703$) prior to the start of any construction.

IMPORTANT MOTICE TO APPLICANT: The granting of an Administrative Axthorization to swempt a davelopment from site ptan review does not exemot this proposal fro other approvais or permits, nor is it an authorization for construction. You should first check with the Buitding mispections Office, Room 310. City Hall (207)童4-87e3, to determine what ofher City permits, such as a building permit, witil be raquirad.

PROVISION OF PORTLAND CITY CODE 14-623 (SITE PLAN ORDINANCE)
RE: Administrative Authorlzation

Sec. 14-523 (b). Applicability
No person shail undertake any develupment identifed in Section $14-523$ withou obtaming a site plan improvement permit under this articte. (c) Administrative Authorization. Administrative Authorization means the Planning Authonity may grant administrative authorization to exempt a development proposal from complete of patial site plan review that meets the standards beiow, as dernumbtrated by the applicant.

1 The proposed development win be located within existing structutes, and there wiil be no new buldings demolions, or bribling additions other than thase permited by subsection b of this section,
2 Any building addition shati have a new buldmg footprint expansion of less than the hundred (500) square feet;
3. The proposed site phan dues not add any new curb cuts, driveways, or parking areas; the existing site has no more than one (1) curb cut and wit not disupt the circulation fluws and parking on-site; and there will be no drive-through servises provided;
4 The curbs and sidewaks adiacent to the lot are complete and in soumd condition, as detcrmined by the public works authority, with granite curb with all least four (4) inch reveal, and sidewalks are in good repair with uniform material and level surface and mect accersibility requirements of tue Anericans with Disabilities Act
5. The use thes, mot require additional or reduce existing parking, either on or aft the sitr, and the profect does not significanty increase traffic generation:
6. Thero are no known stormwaterimpacts from the proposed use of any exising deficient conditone of stormwater management on the sitc:
7. There are no evident deficiencies in existing screening from adioining properties; and
6. Exising ubility connections are adequate to serve the proposed development and there with be no distublance to or improvements within the pulsic right-of-way.
9. There are no current zoning votations;
10. Any emergency generators are to be located to minimiza noise impacts to adjoining properies and documentation that roubre testing of the generators occur on whekdays between the hours of $9 \mathrm{am} .105 \mathrm{p} . \mathrm{m}$. Documentation peliaing to the noise impacts of the emergency generator shail be submitted; and
11. There is no anticipated noise vibution, glare, fumes or other foreseeable impacts associatect wh the propect.

 accompanted by diz uptrication fee of $\$ 30$.
 approval with condrions or decuial, with all associsted fadanss.

 fulf traiem by the Planming Board or Planaing Aititority acconding to the soandards of Section $14-526$

Criteria for an Adminstrative Authorizations:
(See Section 14-523 (4) on page 2 of this application)

Applicant's Assessment
$\mathrm{Y}($ yes $), \mathrm{N}(\mathrm{no}), \mathrm{N} / \mathrm{A}$

Planning Division Use Only

a) Is the proposal within existing structures?	Yes	Yes
b) Are there any new buildings, additions, or demolitions?	Yes	Yes
c) Is the footprint increase less than 500 sq. ft.?	Yes	Yes
d) Are there any new curb cuts, driveways or parking areas?	No	No
e) Are the curbs and sidewalks in sound condition?	n / a	None
f) Do the curbs and sidewalks comply with ADA?	n / a	n / a
g) Is there any additional parking?	No	No
h) Is there an increase in traffic?	No	No
i) Are there any known stormwater problems?	No	No
j) Does sufficient property screening exist?	Yes	Yes
k) Are there adequate utilities?	Yes	Yes
l) Are there any zoning violations?	No	No
m)Is an emergency generator located to minimize noise?	Yes	Yes
n) Are there any noise, vibration, glare, fumes or other impacts?	No	No

The Administrative Authorization for Riverside Industrial Parkway was granted by Barbara Barbarhydt, Development Review Coordinator on 4-22-11 with conditions:

1. The applicant shall obtain all required City Permits, including building permits from the Inspection Division (Room 315, City Hall (874-8703) prior to the start of any construction.

U.S. Customs and Border Protection Public Safety Communications Facility

ADMINISTRATIVE AUTHORIZATION APPLICATION
 ATTACHMENT 1

Noise Impacts from Generator

U.S. Customs \& Border Protection ("CBP"), a division of the Department of Homeland Security, plans a statewide upgrade to their public safety communications network. The proposed Portland antenna facility is an integral part of that improved network plan.

The Portland project involves the placement of two antennas and two microwave dishes on an existing 275 guyed tower owned by American Tower Corp. located at 225 Riverside Industrial Parkway. A small precast concrete $12^{\prime} \times 16^{\prime}$ equipment shelter with an adjacent emergency generator and propane tank will also be constructed on the site.

The proposed project is located in a heavily developed light industrial area adjacent to Interstate 295. The tower site compound is buffered by a wooded boundary but otherwise backs directly to the highway. It is anticipated that any noise created by the periodic testing and emergency operation of the on site generator will be negligible when compared to ambient noise in the vicinity of the site.

This project is federally funded through the Department of Homeland Security. U.S. Customs and Border Protection has contracted with Motorola, Inc./CFE Telecom to design and construct these proposed telecommunications facilities in Maine. CFE Telecom has developed over five hundred telecommunications tower sites around the country and has experience in all facets of tower design, construction, remediation and maintenance.

Antenna Mounting Systems

Parabolic Antenna Ice Shield

Protects parabolic dish antennas up to $10^{\prime}(3.05 \mathrm{~m})$ in diameter from falling ice. Mounts to the provided $4^{1} / 2^{\prime \prime} \mathrm{OD}(114.3 \mathrm{~mm})$ mounting pipe or $4^{1} / 2^{\prime \prime}$ OD (114.3 mm) tower leg and fits leg sizes of $1^{1} / 2^{\prime \prime}$ to $5^{\prime \prime}$ OD (38.1 mm to 127 mm). Each kit comes with all hardware required for attachment to the tower.
(Mounting hardware for leg sizes larger than $5^{\prime \prime} \mathrm{OD}(127 \mathrm{~mm})$ is available by special order.)

Item \#	Description	Wt. lb.	Wt. kg.
C30-085-001	For $4^{\prime}(1.22 \mathrm{~m})$ Parabolic Antenna	401.00	181.89
C30-085-002	For $6^{\prime}-8^{\prime}(1.83 \mathrm{~m}-2.44 \mathrm{~m})$ Parabolic Antenna	701.00	317.97
C30-085-003	For $10^{\prime}(3.05 \mathrm{~m})$ Parabolic Antenna	745.00	337.93

Universal Microwave Mounting Kit

Mounts microwave dishes to either round or angle legs. Kits also adapt to straight or tapered towers.
Kits include $4^{1} / 2^{\prime \prime} \mathrm{OD} \times 7^{\prime}(114.3 \mathrm{~mm} \times 2.13 \mathrm{~m})$ pipe.

Universal Pipe Mounting Kit

Accommodates pipe sizes from $2^{3 / 8^{\prime \prime}}$ up to $4^{1 / 21} 2^{\prime \prime} O D(60.33 \mathrm{~mm}$ up to 114.3 mm$)$. Mount can be used on both tapered straight leg towers. (Pipe purchased separately on page 67)

3^{1} Standoff for Round and Angle Leg Towers				
Item \#	Description	Wt. lb.	Wt. kg.	
C10-148-003	3^{\prime} (914.4 mm) Standoff Assembly for $2^{3} / 8^{\prime \prime}(60.33 \mathrm{~mm}$) mounting pipes. Fits $1^{1} / 2^{\prime \prime}$ to $5^{9} / 16^{\prime \prime}$ OD (38.1 mm to 141.29 mm) legs and $2^{1 / 22^{\prime \prime}} \times 2^{1 / 22^{\prime \prime}}$ $(63.5 \mathrm{~mm} \times 63.5 \mathrm{~mm})$ up to $4^{\prime \prime} \times 4^{\prime \prime}(101.6 \mathrm{~mm} \times 101.6 \mathrm{~mm})$ angle legs	44.10	20.00	

Antenna Mounting Systems
 Antenna Mounting Systems
 -100

 Pipe to Pipe Mounting Kit
 Allows attachment of a pipe $1^{1 / 2^{\prime \prime}}$ to $5^{\prime \prime}$ OD (38.1 mm to 127 mm) to a tower leg $1^{1} / 2^{\prime \prime}$ to $5^{\prime \prime}$ OD (38.1 mm to 127 mm). Mounting hardware included. (Pipe sold separately on page 67.)

6" Pipe to Pipe Standoff

Used to standoff anything away from a tower leg. Fits $1^{1 / 1 / 4^{11}}$ to $3^{1 / 12^{11}} \mathrm{OD}(31.75 \mathrm{~mm}$ to 88.9 mm$)$ round legs. Two can be used for a simple pipe mount. Mounting hardware included.

Item \#	Description	Wt. lb.	Wt. kg.
C10-180-001	Pipe to Pipe 6" $(152.4 \mathrm{~mm})$ Standoff	7.00	3.18
C10-180-101	90° Pipe to Pipe $6^{\prime \prime}(152.4 \mathrm{~mm})$ Standoff	7.00	3.18

Universal Sidearm
Mounts to straight leg towers from $1^{1 / 1 / 2^{\prime \prime}}$ to $5^{\prime \prime} \mathrm{OD}(38.1 \mathrm{~mm}$ to 127 mm$)$ round legs and $2^{\prime \prime} \times 2^{\prime \prime}(50.8 \mathrm{~mm} \times 50.8 \mathrm{~mm})$ to $3^{1} / 2^{\prime \prime} \times 3^{1} / 2^{\prime \prime}(88.9 \mathrm{~mm} \times 88.9 \mathrm{~mm})$ angle legs. $1.9^{\prime \prime}$ OD $\times 3^{1}(48.26 \mathrm{~mm} \times 914.4 \mathrm{~mm})$ wetded mounting pipe and all attachment hardware included. All sidearms include $1.9^{\prime \prime} \mathrm{OD} \times 10^{\prime}(48.26 \mathrm{~mm} \times 3.05 \mathrm{~m})$ tieback assembly.

Item \#	Description	Wt. lb.	Wt. kg.
C10-151-902	$2^{\prime}(609.6 \mathrm{~mm})$ Universal Sidearm	96.10	43.59
C10-151-903	$3^{\prime}(914.4 \mathrm{~mm})$ Universal Sidearm	113.00	51.26
C10-151-904	$4^{\prime}(1.22 \mathrm{~m})$ Universal Sidearm	123.50	56.02

90.1 (2007) Standard

Section 1: Project Information

Project Type: New Construction
Project Title: Concrete Shelter
Construction Site: Owner/Agent:
TN

Designer/Contractor:
Corey Mitchel
CellXion, LLC
5031 Hazel Jones Road
Bossier City, TN 71111
318-213-2900

Section 2: General Information

Building Location (for weather data):	Houlton, Maine
Climate Zone:	7

Building Type for Envelope Requirements: Non-Residential
Activity Type(s)
Floor Area
Common Space Types:Electrical/Mechanical

Section 3: Requirements Checklist

Envelope PASSES: Design 1\% better than code.

Climate-Specific Requirements:

Component Name/Description	Gross Area or Perimeter	Cavity R-Value	Cont. R-Value	Proposed U-Factor	Budget U-Factor(a)
Roof 1 Other Roof (b)	192	---	---	0.045	0.027
Exterior Wall 1 - Other Mass Wall, Heat capacity 1.0 (b)	532	---	---	0.045	0.051
Door $1 \cdot$ Insulated Metal, Swinging	21	---	---	0.240	0.500
Floor 1- Slab-On-Grade:Unheated, Vertical 2 ft .	56	---	10.0	---	---

(a) Budget U-factors are used for software baseline calculations ONLY, and are not code requirements.
(b) 'Other' components require supporting documentation for proposed U-factors.

Insulation:

1 Open-blown or poured loose-fill insulation has not been used in attic roof spaces with ceiling slope greater than 3 in 122. Wherever vents occur, they are baffled to deflect incoming air above the insulation.
\square 3. Recessed lights, equipment and ducts are not affecting insulation thickness
\square 4. No roof insulation is installed on a suspended ceiling with removable ceiling panels.
3. All exterior insulation is covered with protective material.6. Cargo and loading dock doors are equipped with weather seals.

Fenestration and Doors:

7 Windows and skylights are labeled and certified by the manufacturer for U-factor and SHGC.8. Fixed windows and skylights unlabeled by the manufacturer have been site labeled using the default U-factor and SHGC.9. Other unlabeled vertical fenestration, operable and fixed, that are unlabeled by the manufacturer have been site labeled using the default U-factor and SHGC. No credit has been given for metal frames with thermal breaks, low-emissivity coatings, gas fillings, or insulating spacers.
Air Leakage and Component Certification:

10.All joints and penetrations are caulked, gasketed, weather-stripped, or otherwise sealed.

11 Windows, doors, and skylights certified as meeting leakage requirements.
\square 12. Component R-values \& U-factors labeled as certified.
13. 'Other' components have supporting documentation for proposed U-Factors.

Section 4: Compliance Statement

Compliance Statement: The proposed envelope design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed envelope system has been designed to meet the 90.1 (2007) Standard requirements in COMcheck Version 3.8.1 and to comply with the mandatory requirements in the Requirements Checklist.

Corey Mitchel - Code Compliance Engineer
Name - Title Signature Date

COMcheck Software Version 3.8.1

Interior Lighting and Power Compliance Certificate

90.1 (2007) Standard

Section 1: Project Information

Project Type: New Construction
Project Title : Concrete Shelter

Construction Site:	Owner/Agent:
MAINE	TN

Designer/Contractor:
Corey Mitchel
CellXion, LLC
5031 Hazel Jones Road
Bossier City, TN 71111
318-213-2900

Section 2: Interior Lighting and Power Calculation

Section 3: Interior Lighting Fixture Schedule

Section 4: Requirements Checklist

Lighting Wattage:1 Total proposed watts must be less than or equal to total allowed watts

Allowed Watts
288

Proposed Watts
204

Complies YES
2. Exit signs 5 Watts or less per sign

Controls, Switching, and Wiring:

3. Independent manual or occupancy sensing controls for each space (remote switch with indicator allowed for safety or security).4 Occupant sensing control in class rooms, conference/meeting rooms, and employee lunch and break rooms.
Exceptions:

\square Spaces with multi-scene control; shop classrooms, laboratory classrooms, and preschool through 12th grade classrooms.5. Automatic shutoff control for lighting in >5000 sq.ft buildings by time-of-day device, occupant sensor, or other automatic control.

Exceptions:

- 24 hour operation lighting; patient care areas; where auto shutoff would endanger safety or security.

6. Master switch at entry to hotel/motel guest room.7 Separate control device for display/accent lighting, case lighting, task lighting, nonvisual lighting, lighting for sale, and demonstration lighting.
7. Tandem wired one-lamp and three-lamp ballasted luminaires (No single-lamp ballasts).

Exceptions:

\square Electronic high-frequency ballasts.Luminaires not on same switch.Recessed luminaires 10 ft . apart or surface/pendant not continuous.
\square Luminaires on emergency circuits.

Voltage Drop:

9. Feeder conductors have been designed for a maximum voltage drop of 2 percent.10. Branch circuit conductors have been designed for a maximum voltage drop of 3 percentInterior Lighting PASSES: Design 29\% better than code.

Section 5: Compliance Statement

Compliance Statement: The proposed lighting design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed lighting system has been designed to meet the 90.1 (2007) Standard requirements in COMcheck Version 3.8.1 and to comply with the mandatory requirements in the Requirements Checklist.

Corey Mitchel - Code Compliance Engineer
Name - Title Signature Date

Section 6: Post Construction Compliance Statement

Record Drawings and Operating and Maintenance Manuals:

$\square 1$ Construction documents with record drawings and operating and maintenance manuals provided to the owner

90.1 (2007) Standard

Section 1: Project Information

Project Type: New Construction
Project Title : Concrete Shelter
Construction Site:
MAINE
Owner/Agent:
TN
Designer/Contractor: Corey Mitchel CellXion, LLC 5031 Hazel Jones Road Bossier City, TN 71111 318-213-2900

Section 2: General Information

Building Location (for weather data): Climate Zone:

```
Houlton, Maine
7
```


Section 3: Mechanical Systems List

Quantity System Type \& Description

2 HVAC System 1 (Single Zone) Heating: 1 each - Other, Electric, Capacity $=17 \mathrm{kBtu} / \mathrm{h}$ Cooling: 1 each - Other, Capacity $=42 \mathrm{kBtu} / \mathrm{h}$, Air-Cooled Condenser

Section 4: Requirements Checklist

Requirements Specific To: HVAC System 1 :

$\square 1$ Hot gas bypass limited to 50% of total cooling capacity
Generic Requirements: Must be met by all systems to which the requirement is applicable:1 Load calculations per ASHRAE Fundamentalswoter pipe insulation: 1 in . for pipes $<=1.5 \mathrm{in}$. and 2 in . for pipes $>1.5 \mathrm{in}$ Chilled water/refrigerant/brine pipe insulation: 1 in . for pipes $<=1.5 \mathrm{in}$. and 1.5 in . for pipes $>1.5 \mathrm{in}$. Steam pipe insulation: 1.5 in . for pipes $<=1.5 \mathrm{in}$. and 3 in . for pipes $>1.5 \mathrm{in}$.
\square Exception: Piping within HVAC equipment.
\square Exception: Fiuid temperatures between 60 and $105^{\circ} \mathrm{F}$
\square Exception: Fluid not heated or cooled.
\square Exception: Runouts $<4 \mathrm{ft}$ in length.
\square Exception: Pipe unions in heating systems.3. Thermostatic controls have $5^{\circ} \mathrm{F}$ deadbandException. Thermostats requiring manual changeover between heating and coolingException: Special occupancy or special applications where wide temperature ranges are not acceptable and are approved by the authority having jurisdiction.
\square 4. Demand control ventilation (DCV) present for high design occupancy areas (>40 person $/ 1000 \mathrm{ft} 2$ in spaces $>500 \mathrm{ft} 2$) and served by systems with any one of 1) an air-side economizer, 2) automatic modulating control of the outdoor air damper, or 3) a design outdoor airflow greater than 3000 cfm .Exception: Systems with heat recovery.Exception. Multiple-zone systems without DDC of individual zones communicating with a central control panel.Exception: Systems with a design outdoor airflow less than 1200 cfm .
[] Exception: Spaces where the supply airflow rate minus any makeup or outgoing transfer air requirement is less than 1200 cfm .
5. Where separate thermostats are used for heating and cooling, acceptable measures are used to prevent simultaneous heating and cooling6. Stair and elevator shaft vents are equipped with motorized dampers
\square Exception: Ventilation systems serving unconditioned spaces.
\square Exception: Gravity (non-motorized) dampers are acceptable in buildings less than three stories in height above grade.7 Acceptable measures used to prevent simultaneous humidification and dehumidification
\square Exception: Desiccant systems and systems for uses requiring specific humidity levels (approval required)8. Automatic controls for freeze protection systems present9. Duct, plenum, and piping insulation surfaces suitably protected from weather, moisture, or likely damage10.Duct Sealing:
a) Pressure sensitive tape used as the primary sealant is certified to comply with UL-181A or UL-181B,
b) longitudinal and transverse seams for ducts in unconditioned spaces,
c) longitudinal and transverse seams and duct wall penetrations for ducts outside the building,
d) transverse seams on buried ducts
11. $R-8$ for supply air ducts located outside the building,

R-6 for supply air ducts in ventilated attics and in unvented attic above insulated ceiling,
$R-1.9$ for supply air ducts in unvented attic with roof insulation,
R-3.5 for supply air ducts in unconditioned and underground spaces
R-3.5 for return air ducts located outside the building, in ventilated attics and in unvented attic above insulated ceiling

- 12. Humidistat controls prevent reheating, recooling, and mixing of mechanically heated air with mechanically cooled air
\square Exception: Capability to first reduce flow rate.
\square Exception Cooling capacity $<80 \mathrm{kBtu} / \mathrm{h}$ and capability to unload cooling equipment.Exception: Cooling capacity $<40 \mathrm{kBtu} / \mathrm{h}$.Exception: Rigid humidity requirements.
\square Exception: Site-recovered or site-solar energy sources or
\square Exception: Use of a desiccant systems.

13. Exhaust air heat recovery included for systems $5,000 \mathrm{cfm}$ or greater with more than 70% outside air fraction or specifically exempted
\square Exception: Laboratory fume hood systems with a total exhaust rate of $15,000 \mathrm{cfm}$ or less.
\square Exception: Systems serving spaces that are not cooled and heated to $<60^{\circ} \mathrm{F}$
\square Exception: Systems with more than 60% of the outdoor heating energy is provided from site-recovered or site solar energy.
\square Exception: Cooling systems in climates with a 1% cooling design wet-bulb temperature less than $64^{\circ} \mathrm{F}$14. Kitchen hoods $>5,000 \mathrm{cfm}$ provided with 50% makeup air that is uncooled and heated to no more than $60^{\circ} \mathrm{F}$ unless specifically exempted
\square Exception: Where hoods are used to exhaust ventilation air that would otherwise exfiltrate or be exhausted by other fan systems.
\square Exception: Certified grease extractor hoods that require a face velocity no $>60 \mathrm{fpm}$.
\square 15. Buildings with fume hood systems having an exhaust rate $>15,000 \mathrm{cfm}$ has at least one of the following features:
a) VAV hood exhaust and room supply systems capable of reducing exhaust and makeup air volume to 50% or less of design values.
b) Direct makeup air supply equal to at least 75% of the exhaust rate, heated no warmer than $2^{\circ} \mathrm{F}$ below room setpoint, cooled to no cooler than $3^{\circ} \mathrm{F}$ above room setpoint, no humidification added, and no simultaneous heating and cooling used for dehumidification control.
c) Heat recovery systems to precondition makeup air from fume hood exhaust.

Section 5: Compliance Statement

Compliance Statement: The proposed mechanical design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed mechanical systems have been designed to meet the 90.1 (2007) Standard requirements in COMcheck Version 3.8.1 and to comply with the mandatory requirements in the Requirements Checklist.

Corey Mitchel - Code Compliance Engineer

| Name - Title | $\overline{\text { Signature }} \overline{\text { Date }}$ |
| :--- | :--- | :--- |

Section 6: Post Construction Compliance Statement

HVAC record drawings of the actual installation and performance data for each equipment provided to the owner within 90 days after system acceptance.\square HVAC O\&M documents for all mechanical equipment and system provided to the owner within 90 days after system acceptance.
\square Written HVAC balancing report provided to the owner
The above post construction requirements have been completed.

1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS

$\square 2003$ International Building Code

- American Concrete Institute (ACI) 318-02

Embedment Properties for Headed Studs, TRW Nelson, Design Data Catalog
Steel Construction Manual, AISC, LRFD (1999
ASCE 7-02
1.2 DESIGN CRITERIA USED IN CALCULATIONS
\square Reinforcing Steel Yield Strength $=$ fy $=60 \mathrm{ksi}$

- Structural Steel is ASTM A 36/A 36M-00
\square Unconfined Compressive Strength of Concrete $=\mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi}$
- Unit weight of Concrete $=110$ pcf
\square Stud Yield Strength $=50 \mathrm{ksi}$
1.3 INTERNATIONAL BUILDING CODE REQUIREMENTS

The following is a summary of the Code requirements applicable to CellXion precast concrete equipment shelters.
1.3.1 Occupancy Classification

Occupancy may be Group S-2 per sec 311, Group B per sec 304 or Group U per sec 312 .
1.3.2 Construction Type

Type V-B per section 602.5 and Table 601.
1.3.3 Building Limitations

Occupancy S-2 or B or U
Relative to the location of the nearest structure or property line:
Walls must be rated one hour if less than 10 feet.
Maximum size of S-2 building (Table 503) is 13,500 SF, 2 story.
Maximum size of B building (Table 503) is 9,000 SF, 2 story.
Maximum size of U building (Table 503) is 5,500 SF, 1 story.
(Table 602)
(Table 503)
(Table 503)
(Table 503)

NOTE: STANDARD SHELTERS MAY BE RATED UP TO 2-HOURS.

REF: Table 720.1(2), Item number 4-1.1, Sand-lightweight concrete 4 inches thick. IF PROTECTED OPENINGS ARE REQUIRED: 3/4 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES. 1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES.

Unprotected Openings Allowed \quad Protected Openings Allowed Table 704.8 Not permitted up to 5 feet. 10% permitted >5 feet to 10 feet. 15% permitted >10 feet to 15 feet. 25% permitted >15 feet to 20 feet. 45% permitted >20 feet to 25 feet. 70% permitted >25 feet to 30 feet. No restriction > 30 feet.

1.4 FLOOR LOADS

Floor live load required (Table 1607.1) for light storage is;
125 psf
The summary loading chart in Section 2.0.1 indicates allowable load of: $310 \mathrm{psf} \quad 11.667 \mathrm{ft}$ wide OK
For some equipment, such as batteries, a concentrated load is realized (2.5 SF in size).
Section 2.3.6 shows that concentrated loads of
1680 lbs can be placed anywhere.
If the concentrated load is next to the wall, 6614 lbs can be used
1.5 ROOF LOADS Minimum roof live load required (2006 IBC 1607.11.2.1) is:

$$
\begin{aligned}
& L_{r}=L_{o} R_{1} R_{2} \quad[\sec 1607.11 .2 .1, \mathrm{Eq} 16-27] \\
& \mathrm{L}_{\mathrm{o}}=20 \quad \mathrm{psf} \quad \text { (worst case) } \quad[\sec \text { 1607.11.2.1] } \\
& R_{1}=1 \quad \text { (worst case for smaller shelters) } \quad[\sec \text { 1607.11.2.1, Eq 16-28] } \\
& F=.167 \text { in per ft slope } \quad R_{2}=1 \quad \text { (for } F<4 \text {) [sec 1607.11.2.1, Eq 16-31] } \\
& \mathrm{L}_{\mathrm{r}}=20 \mathrm{psf}
\end{aligned}
$$

The summary loading chart in Section 2.0 . 1 indicates allowable loads of:
$154 \mathrm{psf} \quad 11.67 \mathrm{ft}$ wide shelter OK
Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-05
$\mathrm{p}_{\mathrm{f}}=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I} \mathrm{p}_{\mathrm{g}} \quad$ [ASCE 7-05, Equation 7-1, Sec 7.3]
$\mathrm{p}_{\mathrm{f}}=\quad$ (Min. design live load for roofs from section 2 of these calcs)
$=154 \mathrm{psf} \quad 11.67 \mathrm{ft}$ wide shelter
$C_{e}=1.2$ (worst case-ASCE 7-05,Table 7-2, lesser factors may be used as appropriate)
$C_{t}=1.0$ (From ASCE 7-05, Table 7-3, heated structure)
$I=1.0$ (Category II, ASCE 7-05 Table 7-4)
Using the design load from section 2 for p_{f} and solving for p_{g} :

$$
\begin{aligned}
\mathrm{p}_{\mathrm{g}} & =\mathrm{p}_{\mathrm{f}} /\left(0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}\right) \\
& =(\text { Allowable ground snow load) } \\
& =184 \mathrm{psf}
\end{aligned}
$$

1.6 WIND LOADS

Sect. 1609.1.1 allows ASCE 7-05, Chapter 6; use sec 6.4, Method 1 - Simplified Procedure:

ROOF: $\quad-51.9 \mathrm{psf} \quad$ [zone E] -29.5 psf [zone F] -36.1 psf [zone G] -22.9 psf [zone H]

Zone E controls, use it for analysis
1.6.1 Check structural connections for carrying wind loads to the foundation.

The worst case for the windward forces are when they are projected onto the long walls. Half of the load is carried to the floor connections and half is carried to the roof connections.
The walls are 9.250 ft tall
The connections which connect the long walls to the end walls are neglected for the purposes of this particular analysis. Analysis with Calculations from section 3

1.6.1.1 Check connections for transfer of windward loads from wall to the floor and roof.

The connections along the top and bottom of the walls are at a standard spacing of 56 inches.
This will be the tributary width of wind load for each connection at the floor and roof. The load for this tributary area on the windward wall is then:
$P^{\prime}(w)=P($ windward wall $) x$ tributary area Where tributary area $=(\quad 9.250 \mathrm{ft} / 2) \times 4 \mathrm{ft} 8 \mathrm{in}=21.583 \mathrm{sq} . \mathrm{ft}$. $=43.2 \mathrm{psf} \times 21.583 \mathrm{sq} . \mathrm{ft}$.
$\mathrm{P}^{\prime}(\mathrm{w})=932 \mathrm{lbs}$
This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Clacs Section 3.3.1
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8

The capacity of all 3 components exceed the wind load OK
This load is resisted by three main components of the connection at the roof:

3.52 kips	Capacity of P/N 223000 in shear per Clacs Section 3.4 .3
5.95 kips	Capacity of P/N 222000 in tension per Clacs Section 3.5 .1
8.35 kips	Capacity of the weld which connects the plates per Clacs Section 3.8
The capacity of all 3 components exceed the wind load	

1.6.1.2 Check connections for transfer of leeward loads from wall to the floor and roof.

The leeward wall has similar construction, but the loads are less and are outward.
$P^{\prime}(I)=P($ leeward wall $) x$ tributary area Where tributary area $=(\quad 9.250 \mathrm{ft} / 2) \times 4 \mathrm{ft} 8 \mathrm{in}=21.583 \mathrm{sq} . \mathrm{ft}$. $=43.2 \mathrm{psf} \times 21.583 \mathrm{sq} . \mathrm{ft}$.
$P^{\prime}(\mathrm{l})=932 \mathrm{lbs} \quad$ (negative indicating an outward direction)
This load is resisted by three main components of the connection at the floor:

5.95 kips	Capacity of P/N 223100 in tension per Section 3.3 .1
22.87 kips	Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips	Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the wind load OK
This load is resisted by three main components of the connection at the roof:

3.52 kips	Capacity of P/N 223000 in Y-shear per Section 3.4 .3
5.95 kips	Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips	Capacity of the weld which connects the plates per Section 3.8
The capacity of all $\mathbf{3}$ components exceed the wind load	

1.6.1.3 Windward and leeward loading transfer to endwalls:

The loads on the top half of the shelter must be transferred to the ground through the connections on the endwalls. There are three connections from the roof to the endwall and three connections from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter is resisted by these connections and is assumed to distribute half of the load to each endwall.
A shelter which is 16.000 feet long has a tributary area of:

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips \quad Capacity of the Wall Corner Insert per Section 3.6.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 21.12 kips OK
1.6.1.4 Windward and Leeward loading transfer to floor:

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall.
The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 25.05 kips OK
1.6.1.5 Find horizontal forces and overturning moments.

This is used in the tie-down anchor analysis in 1.8 below.

Shelter Dims (feet)		Shelter Weight lbs	Hor.Wind (PxA-hor) lbs	Vert. Wind (PxA-vert.) lbs	Overturn Moment ft-lbs	
Width	Length	Height	Ibs			
11.67	16.00	10.083	34,084	6,969	9,690	91,662

1.6.1.6 Components and Cladding:

$p_{\text {net }}=\lambda \mathrm{K}_{\mathrm{zt}}$ I $p_{\text {net30 }} \quad[$ ASCE $7-05, \mathrm{sec} 6.4 .2 .2, \mathrm{Eq}$			
	POS	NEG	[From ASCE 7-05, Figure 6-3]
ROOF ZONE 1:	15.7	-44.8 psf	(100 sf effective wind area)
ROOF ZONE 2:	18.6	-73.4 psf	(20 sf effective wind area)
ROOF ZONE 3:	20.0	-123.7 psf	(10 sf effective wind area)
Allowable positive load on roof: (From section 2)			
		154 psf	11.67 ft wide
Allowable negative load on roof: (From section 2, neglecting DL)			
		-61.0 psf	11.67 ft wide
Allowable negative load on roof: (From section 2, including . $6 \times \mathrm{DL}$)			
Roof Dea	Load:	$43.9 \mathrm{psf} \times .6=$	26.32 psf
		-87.4 psf	11.67 ft wide OK
WALL ZONE 4:	39.6	-43.4 psf	(200 sf effective wind area)
WALL ZONE 5:	45.9	-59.2 psf	(30 sf effective wind area)
Allowable load on walls: (From section 2)			
		87 psf	9.25 ft tall OK

The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones.

1.7 SEISMIC LOADS

Site Class is D
Section 1613.1, requires ASCE 7-05 for analysis.
Occupancy Category:
[Section 1613.5.2, assumed due to unknown soil properties]

Seismic Design Category:

Il [Table 1604.5]
Seismic Importance Factor I is:
E [Table 1613.5.6]
$V=C_{s} W$
1.00
[ASCE 7-05, sec 11.5, Table 11.5-1]
$W=D$
[ASCE 7-05, sec 12.8.1, Eq. 12.8-1]
[ASCE 7-05, sec 12.7.2]
$\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / 1)$
[ASCE 7-05, sec 12.8.1.1, Eq. 12.8-2]

[ASCE 7-05, Table 12.2-1, A. 2]
[Per 1613.5.4, Eq. 16-39]
[Per 1613.5.3, Eq. 16-37]
1.0 [Table 1613.5.3(1)]
3.00 [Fig 1613.5(1), meets all US areas]
$V=0.500 \mathrm{D} \quad$ [Use for base shear]
Determine E for use in load combinations on individual panel design.

$$
\begin{aligned}
& E=E_{h}+E_{v} \quad[\text { ASCE 7-05, sec 12.4.2, Eq. 12.4-1] } \\
& E_{\mathrm{h}}=\mathrm{Q}_{\mathrm{E}} \quad \text { [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3] } \\
& E_{v}=0.2 S_{D S} D \quad \text { [ASCE 7-05, sec 12.4.2.2, Eq. 12.4-4] } \\
& E=Q_{E}+0.2 S_{D S} D \\
& \mathrm{Q}_{\mathrm{E}}=\mathrm{V} \quad \text { [ASCE 7-05, } \sec \text { 12.4.2.1] } \quad \rho=1.0 \quad \text { [ASCE 7-05, } \sec \text { 12.3.4.2] } \\
& E=V+0.2 S_{D S} D \quad=\quad 0.900 \mathrm{D} \quad \text { [Use in load comb 4 \& 6] } \\
& \mathrm{E}_{m}=\mathrm{E}_{m h}-\mathrm{E}_{\mathrm{v}} \quad \text { [ASCE 7-05, sec 12.4.3. Eq. 12.4-6] } \\
& \mathrm{E}_{m h}=\Omega_{0} \mathrm{Q}_{\mathrm{E}} \quad \text { [ASCE 7-05, sec 12.4.3.1 Eq. 12.4-7] } \\
& \mathrm{E}_{m}=\Omega_{0} \mathrm{Q}_{\mathrm{E}}-0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} \quad \Omega_{0}=2.5 \quad \text { [ASCE 7-05, Table 12.2-1, A.2] } \\
& \mathrm{E}_{m}=0.850 \mathrm{D} \\
& \mathrm{D}_{\text {roof }}=\quad 43.9 \mathrm{psf} \quad \mathrm{D}_{\text {floor }}= \\
& 42.5 \mathrm{psf} \\
& \text { (calcs sec 4) }
\end{aligned}
$$

Load combinations:
Section 1605.3 .1 \& 1605.4

Comb 1	D	$[$ Notes 1, 2, 3]
Comb 2	$\mathrm{D}+\mathrm{L}$	$[$ Notes 1, 2, 3]
Comb 3	$\mathrm{D}+\mathrm{L}+($ Lr or S or R $)$	$[$ Notes 1, 2, 3]
Comb 4	$\mathrm{D}+(\mathrm{W}$ or 0.7E $)+\mathrm{L}+($ Lr or S or R)	$[$ Notes 1, 2, 3, 4]
Comb 5	$0.6 \mathrm{D}+\mathrm{W}$	$[$ Notes 1, 2, 3]
Comb 6	$0.6 \mathrm{D}+0.7 \mathrm{E}$	$[$ Notes 1, 2, 3, 4]
Comb 7	$0.9 \mathrm{D}+\mathrm{E}_{m}$	See analysis below

Note 1 Roof and floor panels are designed using 1.4D and 1.7L, exceeds req'd factors.
Note 2. Wall panels are designed using 1.4 D and 1.7 W , exceeds req'd factors.
Note 3: S, R, and Lr are used as L in panel calculations, see section 2 of these calcs.
Note 4: Wind loads control over Seismic.
Comb 7 check

Walls. $0.9 \mathrm{D}+\mathrm{E}_{m}=$	$1.750 \mathrm{D}_{\text {wall }}=$	61	87 psf	OK
Roof $0.9 \mathrm{D}+\mathrm{E}_{m}=1.750 \mathrm{D}_{\text {roof }}=$	77	154 psf	OK	
Floor: $0.9 \mathrm{D}+\mathrm{E}_{m}=1.750 \mathrm{D}_{\text {floor }}=$	74	310 psf	OK	

1.7.1 Seismic loads from top half of the wall panel are transferred to the roof.

Equipment permanently installed in the building is estimated at 20,000 pounds. For a 16.00 ft long shelter, this is an average of 1250 pounds per linear foot. If this equipment is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the walls. Analysis uses sec 3 of these calculations.
The weight of a wall section transferred to the connections at $56^{\prime \prime}$ on center is:

$$
=(56 / 12 \mathrm{ft} \text { wide }) \times(\quad 9.250 \mathrm{ft} \text { high }) \times(\quad 4 / 12 \mathrm{ft} \mathrm{thick}) \times \quad 110 \mathrm{pcf})
$$

$W($ wall $)=791 \mathrm{lbs}$
W (equipment) $=(56 / 12 \mathrm{ft}$ width $) \times(625 \mathrm{plf})=2917 \mathrm{lbs}$
$W($ top of wall $)=W($ wall $)+W($ equipment $)=3,708 \mathrm{lbs}$
For the wall panel, the seismic shear is:
$V=1,854 \mathrm{lbs} \quad$ Seismic shear per connection plate at top of walls
This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in shear per Section 3.4.3
5.95 kips \quad Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
1.7.2 Seismic loads from roof are transferred to the top of the endwall.

The seismic load at the top connection plates of the endwalls includes the seismic loads from the top quarter of two sidewalls, one half of the roof, and one half of the total equipment. Use a
9.25 ft tall wall $\mathrm{x} \quad 15.33 \mathrm{ft}$ long, and use a $\quad 11.997 \mathrm{ft}$ wide $\mathrm{x} \quad 16.33 \mathrm{ft}$ long roof.

W (quarter wall) $=35.451 \mathrm{ft}^{2} \quad \mathrm{x} \quad 4 / 12 \mathrm{ft} \mathrm{x} \quad 110 \mathrm{pcf}=1,300 \mathrm{lbs}$.
W (half roof $)=97.956 \mathrm{ft}^{2} \quad \mathrm{x} \quad 4.25 / 12 \mathrm{ft} x \quad 110 \mathrm{pcf}=3,816 \mathrm{lbs}$.

TOTALW(top of endwall) $=1,300 \mathrm{lbs} \times 2+3,816 \mathrm{lbs}+5,000 \overline{\mathrm{lbs}=11,416} \mathrm{lbs}$.
The seismic load is then: $\quad V$ (top of endwall) $=5,708 \mathrm{lbs}$.
The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips \quad Capacity of the Wall Corner Insert per Section 3.6.1
$8.35 \mathrm{kips} \quad$ Capacity of the weld which connects the plates per Section 3.8
Since there are three of these connections, the total capacity is:
21.12 kips This capacity exceeds the seismic load OK

1.7.3 Seismic loads from endwall are transferred to the floor.

The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself is added.

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2
22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is:
25.05 kips This capacity exceeds the seismic load OK
1.8 Check shelter tie-downs to foundation For tie-down anchor capacity see Sec 3.9 of calcs:

Horizontal:	10472 lbs	Per connection
Vertical:	6615 lbs	Per connection

Horizontal forces due to seismic/wind loads:

Shelter Dims (feet)			Shelter Weight	Contents Weight	$\begin{array}{\|c\|} \hline \text { Seis.Load } \\ (\mathrm{W} \times \mathrm{Cs}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Wind load } \\ \text { 1.6.1.5 } \end{array}$	$\begin{array}{\|c\|} \hline \text { Control'g } \\ \text { Load } \\ \hline \end{array}$	Tie-down Capacity	CHECK	Safety Factor
Width	Length	Height								
11.67	16.00	10.083	34,084	11,248	22,666	6,969	SEISMIC	41,887	OK	1.85

Friction against sliding is ignored.
lengths under 24 ft have 4 tie-downs, lengths 24 ft and over have 8 tie-downs
Overturning forces due to seismic/wind loads:

Shelter Dims (feet)			$\left\{\begin{array}{c} \text { Seis.load } \\ (W \times C s) \\ \text { lbs. } \end{array}\right.$	Overturn Force lbs.	Wind over See1.6.1.5 ft -lbs	Control'g Load	Overturn Resist. ft-lbs	$\begin{array}{\|c\|} \hline \text { Tie-down } \\ \text { Capacity } \\ \text { lbs } \\ \hline \end{array}$	CHECK	$\begin{array}{\|c} \hline \text { Safety } \\ \text { Factor } \\ 1.5 \text { req'd } \end{array}$
Width	Length	Height								
11.67	16.00	10.083	22,666	114274	91,662	SEISMIC	178946	41,887	OK	3.70

Overturning resistance uses $0.9 \times$ DL of shelter (no contents)
Weight of shelter and contents are the same as in the horizontal force chart above.
2.0 DESIGN CRITERIA

NOTE: These calculations represent the panels of a

$$
11.667 \mathrm{ft} \text { wide } \mathrm{x} \quad 16.000 \mathrm{ft} \text { long } \mathrm{x} \quad 9.250 \mathrm{ft} \text { tall shelter. }
$$

STRUCTURAL PROPERTY	UNITS	LABEL
Concrete Compressive Strength	5000 psi	$\mathrm{f}_{\mathrm{c}} \quad$ (sand-lightweight)
Reinforcing bar Yield Stress	60000 psi	fy[REBAR]
Concrete Density	110 pcf	DENSITY
Maximum Building Width	11.667 feet	BLDGW
Maximum Building Length	16 feet	BLDGL
Maximum Wall Panel Height	9.25 feet	WALLH
Max. Est. weight of Shelter	34,084 LBS.	BLDGWT
Concrete volume req'd.	10.68 YDS.	CONCYDS
Roof thickness at peak	5 inches	H[ROOF]
Roof thickness at edge	4 inches	
Rebar size used in roof \#	4 REBAR	REBARROOF
Rebar lateral spacing: roof	7 inches	ROOFSPACING
Longitudinal rebar spacing-roof:	18 inches	
Steel mesh used in roof:	W4 WIRE	
Steel spacing in roof (12"max.)	4 inches	
Steel mesh used in wall:	W4 Wire	REBARWALL
Rebar size used in wall	4 REBAR	REBARWALL2
Steel spacing in wall (12"max.)	4 inches	WALLSPACING
Vertical rebar spacing in wall	36 inches	WALLSPACING2
Horizontal rebar spacing in wall	48 inches	
Wall panel thickness	4 inches	WALLTHICKNESS
Rebar size used in floor \#	6 REBAR	REBARFLR
Number of rebar per floor rib	2 each	REBARFLRQTY
Spacing of ribs in floor	19 inches	FLOORSPACING
Floor thickness	5.75 inches	H[FLOOR]
Floor deck thickness	2.75 inches	H[DECK]
Floor rib width	4 inches	$B[$ RIB]
Floor deck steel size	W4 WIRE	
Floor deck steel spacing	4 inches	
Area per roof rebar	0.200 sq. in.	A[REBARROOF]
Diameter of roof rebar	0.500 inches	DIA[REBARROOF]
Area per roof wire	0.040 sq. in.	
Area per wall wire	0.040 sq. in.	A[REBARWALL]
Area per extra vert wall rebar	0.200 sq. in.	A[REBARWALL2]
Diameter of wall wire	0.225 inches	DIA[REBARWALL]
Diameter of wall rebar	0.500 inches	
Area of floor rebar	0.880 sq. in.	A[REBARFLR]
Diameter of floor rebar	0.750 inches	DIA[REBARFLR]
Area of deck rebar/wire	0.040 sq. in.	A[REBARDECK]
Diameter of deck rebar/wire	0.225 inches	DIA[REBARDECK]
Area of deck steel per foot	0.120 sq.in./ft.	A[DECKSTEEL]
Minimum req'd deck steel/foot	0.059 sq.in./ft.	A[DECKSTEEL-MIN]

2.0.1 STRUCTURAL LOADING SUMMARY FOR PANELS, AS DESIGNED

PANEL ALLOWABLE LOAD

TYPE
roof $\quad 154 \mathrm{psf} \quad 11.667 \mathrm{ft}$ wide \quad LIVE

floor	310	psf	11.667 ft wide	LIVE
		87.3	psf	9.250 ft tall

2.0.2 CHECK STEEL RATIOS ($\mathbf{A C l}$ 318-05, sect. 21.7.2.3) $\rho_{\mathrm{t}} \quad \rho_{\mathrm{v}}$

$\mathrm{H}_{1}=$	0.80			ROOF:	0.0114	0.0069
ρ_{b}	$\rho_{\text {max }}$	$\rho_{\text {min }}$	FLOOR:	0.0100		OK
0.0335	0.0252	0.0033	WALL:	0.0066	0.0062	OK

Min reqd. per ACI 318-05, sec 21.7.2.1 0.0025
2.0.3 CHECK DEVELOPMENT LENGTH

Largest of:	Wall		Roof	Floor	
	$10 \mathrm{db}=$	2.3 in	5.0 in		7.5 in
		75 in	7.5 in		7.5 in
	$5 \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}$)	3.7 in	8.2 in	OK	12.2 in
All rebar dev	lengths ar	18 in			

2.1 ROOF PANEL CALCULATIONS

Temperature steel required. Ats
Panels are $\quad 4.00$ in thick, minimum.
Maximum thickness of roof panel is 5.00 inches at center peak. Ats $=$ Aconc $\times 0.0018$
$=5.00$ in. $x \quad 12$ in. $x \quad 0.0018$
$=0.1080 \mathrm{sq}$. in. per foot of width of roof panel.
Use \#4 rebar at $\quad 18$ inches, longitudinal: Ats(actual)= $\quad 0.2533 \mathrm{sq} . \mathrm{in}$ OK
2.1.1 Determine shear strength: Vu[ROOF]

b[ROOF]	$=$
12.0 inches	
3 in - -	

$$
\mathrm{Vu}[\text { ROOF }]=85 \times .85 \times 2 \times(\mathrm{fc})^{\wedge} 5 \times \mathrm{b}[\text { ROOF }] \times \mathrm{d}[\text { ROOFSHEAR }]
$$

$=3372 \mathrm{lbs}$.
2.1.2 Determine allowable live load due to shear: w[ROOFSHEARLL]

ROOFSPANSHEAR $=$ bldgw $-((d$ ROOFSHEAR +4$) \times 2 / 12)$

$$
=10.542 \text { feet } \quad 11.67 \mathrm{ft} \text { wide shelter }
$$

$\mathrm{w}[$ ROOFDL $]=$ density x thickness (4.5 in avg $)=\quad 41.3 \mathrm{psf}$ (concrete only)
$w[$ ROOFSHEARLL $]=(V u[R O O F] /$ ROOFSPANSHEAR - $1.4 \times w[$ ROOFDL $]) / 1.7$
$=154$ psf allowable roof live load due to shear strength $\quad 11.67 \mathrm{ft}$ wide
2.1.3 Determine allowable live load due to moment: w[ROOFMOMENTLL]

A[ROOFSTEEL] $=$ A[REBARROOF $] \times(12$ inches / ROOFSPACING)
$=0.34 \mathrm{sq}$ inches per foot of roof panel
$d[$ ROOFMOMENT $]=($ H[ROOF $])-(1+$ DIA[REBARROOF $] / 2)$
$=3.75$ inches
$a[$ ROOF $]=($ A $[$ ROOFSTEEL $] \times f y[R E B A R]) /(.85 \times f c \times b[R O O F])$ $=0.403$ inches (for 8 to 11.5 wide shelters)
Mu[ROOF] $=(.9 / 12) \times$ A[ROOFSTEEL $] \times$ fy[REBAR] $\times(d[$ ROOFMOMENT $]-$ a[ROOF] $/ 2)$

$$
=5475 \mathrm{ft}-\mathrm{Ibs}
$$

I[ROOFSPAN]= BLDGW-. $5 \quad=11.17$ feet 11.67 ft wide
w[ROOFMOMENTLL] $=\left[\left(8 \times\right.\right.$ Mu[ROOF] $\left./[\text { ROOFSPAN }]^{\wedge} 2\right)-(1.4 \times$ w[ROOFDL $\left.\left.]\right)\right] / 1.7$
$=173 \mathrm{psf}$ allowable roof live load due to bending strength 11.67 fi wide
2.1.4 Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL] d[RFNEGMOMENT]= 1 +DIA[REBARROOF]/2)
$=1.25$ inches
a[RFNEG]=(A[ROOFSTEEL] $\times f y[R E B A R]) /(.85 \times f c \times b[R O O F])$
$=0.403$ inches
Mu[RFNEG] $=(.9 / 12) \times$ A[ROOFSTEEL] \times fy[REBAR] $\times(d[R F N E G M O M E N T]-$ a[RFNEG] $/ 2)$
$=1617 \mathrm{ft}-\mathrm{bs}$
[RROOFSPAN]= BLDGW -. $5 \quad=11.17$ feet 11.67 ft wide
$w[$ ROOFNEGMOMLL $]=\left[(8 \times \mathrm{Mu}[\right.$ ROOF $\left.]) /\left(1[\text { ROOFSPAN }]^{\wedge} 2\right)\right] / 1.7$
= Allowable negative roof live load due to bending strength (neglecting dead load)
$=\quad-61.0 \mathrm{psf} \quad 11.67 \mathrm{ft}$ wide
2.1.5 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF
2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V}$. ($\mathrm{ACl} 318-05,21.7 .2 .2$)
$2 \mathrm{~A}_{\mathrm{CV}} \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}=27153 \mathrm{lbs} \quad$ [CONTROLS]
2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION (per ACI 318-05, eq. 21-7)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{c V}$.

$$
\begin{array}{rll}
V_{n}=A_{C V}\left(\alpha_{c} \times f_{c}^{1 / 2}+\rho_{t} \times f_{y}\right) & \rho_{t}=A_{s} / A_{C V}= & 0.0114 \\
A_{C V}=192 \mathrm{in}^{2} & \alpha_{c}=02.0\left(\text { for } h_{w} / I_{w}>2\right)
\end{array}
$$

$=158173 \mathrm{lbs}$ [DOES NOT CONTROL]
2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM (per ACI 318, eq. 21-10)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{c V}$.

$$
V_{n}=A_{c v}\left(2 x f_{c}^{1 / 2}+\rho_{t} x f_{y}\right)
$$

$=158173 \mathrm{lbs}$ [DOES NOT CONTROL]
2.2 WALL PANEL CALCULATIONS

Temperature steel required: Ats
Panel thickness is: $\quad 4$ inches Ats=Aconc $\times 0.0018$
$=\quad 4 \mathrm{in} . x \quad 12 \mathrm{in} . x \quad 0.0018$
$=0.0864 \mathrm{sq}$. in. per foot of width of wall panel.
(ACl 318-05, 14.3.5; 18" MAX) use 4x4-W4xW4 mesh:
Use \#4 rebar at $\quad 48$ inches, longitudinal: Ats(actual)= 0.1700 sq . in. per foot OK
2.2.1 Determine allowable loads perpendicular to plane of wall
2.2.1.1 Determine shear strength perpendicular to plane of wall: (Vu)

```
    b[WALL] = 12 inches
    d[WALL] = 2 inches (Distance from outside face of panel to center of rebar)
Vu[WALL]= . }85\times.85\times2\times(fc)^.5\timesb[WALL] x d[WALL]
    = 2452 lbs.
```

2.2.1.2 Determine allowable live load due to shear: w[WALLSHEARLL] WALLSPANSHEAR $=$ WALLH $-(d[W A L L] \times 2 / 12)$
$=8.92$ feet $\quad 9.25 \mathrm{ft}$ tall wall
w[WALLDL] $=36.67$ psf (does not add to horizontal force)
NOTE: WALL DEAD LOAD DOES NOT ACT PERPENDICULAR TO PLANE OF PANEL.
$w[W A L L S H E A R L L]=\operatorname{Vu}[W A L L] /(W A L L S P A N S H E A R] \times 1.7)$
$=$ Allowable wall load due to shear strength
$=162 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.3 Determine allowable live load due to WINDWARD moment: w(WALLMOMENTLL)

A[WALLSTEEL] $=$ A[REBARWALL] $]$ (12"WALLSPACING)+A[REBARWALL2]×12"WALLSPACING2
$=0.19$ sq. inches per foot of wall panel
$a[$ WALL] $=($ A[WALLSTEEL $] \times f y[R E B A R]) /(.85 \times f c \times b[W A L L])$ $=0.220$ inches
Mu[WALL] $=(.9 / 12) \times$ A[WALLSTEEL] \times fy[REBAR] $\times(d[W A L L]-a[W A L L] / 2)$
$=1588 \mathrm{ft}-\mathrm{lbs}$
$w[$ WALLMOMENTLL $]=\left[\left(8 \times M u[W A L L] / /[W A L L H]^{\wedge} 2\right)-(1.4 \times w[W A L L D L])\right] / 17$
$=$ Allowable wall live load due to bending strength.
$=87.3 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.4 Determine allowable live load due to LEEWARD moment: w(WALLMOMENTLL)

$$
\begin{aligned}
\mathrm{d}[\text { [EEWALL] } & =2 \text { inches (Distance from inside face of panel to center of rebar) } \\
\mathrm{a}[\text { [LEEWALL] } & =(\text { A[WALLSTEEL] } \times \text { fy[REBAR] }) /(.85 \times \mathrm{fc} \times \mathrm{b}[W A L L]) \\
& =0.220 \text { inches } \\
\text { Mu[LEEWALL] } & =(.9 / 12) \times \text { A[WALLSTEEL }] \times \text { fy[REBAR] } \times(\mathrm{d}[\text { [WALL] }-\mathrm{a}[\text { WALL] } / 2) \\
& =1588 \mathrm{ft}-\mathrm{lbs}
\end{aligned}
$$

w[LEEWALLMOMENTLL]= [($8 \times$ Mu[WALL] $\left.\left./ /[W A L L H]^{\wedge} 2\right)-(1.4 \times w[W A L L D L])\right] / 17$
= Allowable wall live load due to bending strength.
$=87.3 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.2 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF WALL
2.2.2.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V} . \quad(A C I ~ 318-05,21.7 .2 .2)$
$2 \mathrm{~A}_{\mathrm{CV}} \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}=27153 \mathrm{lbs} \quad$ [CONTROLS]
2.2.2.2 NOMINAL SHEAR FOR WALL SECTION (per ACl 318-05, eq. 21-7)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V}$.
$V_{n}=A_{C V}\left(. x_{c} \times f_{c}^{1 / 2}+f_{t} \times f_{y}\right) \quad 0.0066$
$A_{\mathrm{CV}}=192 \mathrm{in}^{2} \quad \alpha_{\mathrm{c}}=2.0 \quad\left(\right.$ for $\left.h_{w} / I_{w}>2\right)$
$=103716 \mathrm{lbs}$ [DOES NOT CONTROL]
2.2.2.3 NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACl 318-05, eq. 21-10)

Use $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V}$.
$V_{n}=A_{C V}\left(2 \times f_{c}^{1 / 2}+\ldots x f_{y}\right)$
$=103716 \mathrm{lbs}$ [DOES NOT CONTROL]

2.3 FLOOR PANEL CALCULATIONS

2.3.1 Determine temperature steel required for the deck:

Deck temperature steel required is:
ATS[DECK] $=\mathrm{H}[D E C K] \times 12 \mathrm{in} . \mathrm{X} .0018$
$=2.75 \mathrm{in} \times \quad 12 \mathrm{in} \times 0.0018$
$=0.0594$ sq. in. per foot of width of floor panel.
A[DECKSTEEL] $=0.120$ sq. in per foot of panel. OK
2.3.2 Determine floor deck strength:

DECKSPAN = FLOORSPACING - B[RIB]
$=15.0$ inches
$d[D E C K]=H[D E C K]-1 \quad$ (Assumes mesh is 1" clear from bottom of deck)
$=1.75$ inches
$a[D E C K]=(A[D E C K S T E E L] \times F Y[R E B A R]) /(.85 \times f c \times 12 i n$.
$=0.1412$ inches
Mu[DECK] $=0.9 / 12 \times$ A[DECKSTEEL $] \times$ fy $[R E B A R] \times(d[D E C K]-(a[D E C K] / 2))$
$=907 \mathrm{ft}-\mathrm{lbs}$
$w[D E C K T O T A L M O M]=(M u[D E C K] \times 8) /(\text { DECKSPAN } \times 12 \text { in. per ft. })^{\wedge} 2$
$=4643 \mathrm{psf}$
$w[D E C K D L]=\left(H[D E C K] / 12\right.$ in. per ft. $\times 1 \mathrm{ft} .^{\wedge} 2 \times$ DENSITY $)$
$=25.2 \mathrm{psf}$
$w[D E C K L L M O M]=(w[D E C K T O T A L-1.4 x w[D E C K D L]) / 1.7$
$=2711 \mathrm{psf}$
$\mathrm{Vu}[\mathrm{DECK}]=.85 \times .85 \times 2 \times\left(\mathrm{fc}^{\wedge} .5\right) \times \mathrm{d}[\mathrm{DECK}] \times 12 \mathrm{in}$.
$=2146 \mathrm{lbs}$.
$w[$ DECKTOTSHEAR $]=2 \times(\mathrm{Vu}[\mathrm{DECK}] / \mathrm{L}$
$=3433 \mathrm{psf}$
$w[D E C K L L S H E A R]=(w[D E C K T O T S H E A R]-1.4 \times w[D E C K D L]) / 1.7$
1999 psf
Allowable live load for the floor deck is: 1999 psf (FLOOR DECK SHEAR CONTROLS)
2.3.3 Determine floor rib strength:

Effective width of flange: $\mathrm{ACl} 318-05,8.10 \quad$ flange width $1 / 4$ span: $\quad=\quad 33.5$ inches
Effective width of overhang: ACI 318-05, 8.10 8 times $\mathrm{H}[\mathrm{DECK}]=22$ inches 48.0 inches
OR $1 / 2$ clear dist. $\quad 7.5$ inches 19.0 inches <controls> $b f=19.0$ inches
$\mathrm{d}[\mathrm{FLOOR}]=\mathrm{H}[F L O O R]-\left(.75^{\prime \prime}+\mathrm{DIA}[R E B A R F L R] / 2\right)$
4.625 inches
$a[F L O O R]=($ A $[R E B A R F L R] \times f y[R E B A R]) /(.85 \times f c \times b f)$
$=0.654$ inches
Mu[FLOOR] $=(.9 / 12) \times$ A[REBARFLR] \times fy $[R E B A R] \times(d[F L O O R]-a[F L O O R] / 2)$
$=17020 \mathrm{ft}-\mathrm{lbs}$
FLOORSPANMOM $=$ BLDGW $-.5 \mathrm{ft} . \quad=11.17$ feet $\quad 11.67 \mathrm{ft}$ wide $w[F L O O R M O M T O T]=8 \times M u[F L O O R] /(F L O O R S P A N M O M) \wedge 2$
$=1092 \mathrm{plf} \quad 11.67 \mathrm{ft}$ wide shelter

Shear controls when load is next to wall.

3.0 INSERT PLATE ANALYSIS

(Analysis per ACl 318-05, Appendix D)
3.1 Material Properties

$$
\begin{aligned}
f_{c}^{\prime} & = & 5000 \mathrm{psi} \text { (sand-lightweight) } \\
f_{\text {uta }} & = & 61 \mathrm{ksi} \\
\mathrm{~A}_{\text {se }} & = & 0.196 \mathrm{in}^{2} \\
\mathrm{~A}_{\text {brg }} & = & 0.589 \mathrm{in}^{2} \\
\mathrm{~h}_{\text {ef }} & = & 2 \mathrm{in} \\
\mathrm{~d}_{0} & = & 0.5 \mathrm{in}
\end{aligned}
$$

3.2 Stud Analysis
3.2.1 Per D.5.3.4, Pullout strength in tension shall not exceed:

$$
N_{p}=8 A_{b r g} f_{c}=\quad 23,562 \mathrm{lbs} / \mathrm{stud}
$$

(due to crushing strength of concrete at the head of the stud.
3.2.2 Basic tension breakout strength of stud shall not exceed:

$$
\begin{array}{rlrl}
\mathrm{N}_{\mathrm{b}} & =\mathrm{k}_{\mathrm{c}} .85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2} \mathrm{~h}_{\mathrm{ef}}^{1.5} & \mathrm{k}_{\mathrm{c}}=24 \text { (for cast-in anchors) } \\
& =4080 \mathrm{lbs} / \text { stud } & & \text { [Eq D-7] Sec D.5.2.2 }
\end{array}
$$

3.2.3 Check ductile strength of stud.

$$
\begin{array}{rlr}
\mathrm{N}_{\mathrm{sa}} & =\mathrm{A}_{\text {se }} \mathrm{f}_{\mathrm{uta}} & = \\
\phi & 0.75 & 11.98 \mathrm{kips} / \mathrm{stud} \\
\phi \mathrm{~N}_{\mathrm{sa}} & = & 8.98 \mathrm{kips} / \mathrm{stud}
\end{array} \quad[\text { See D.4.4 a) i)] }
$$

3.2.3 Check shear strength of stud.

$$
\begin{array}{rlr}
\mathrm{V}_{\text {sa }} & =\mathrm{A}_{\text {se }} \mathrm{f}_{\text {uta }} & =\quad 11.98 \mathrm{kips} / \mathrm{stud} \\
\phi & =0.65 & \text { [See D.4.4 a) ii)] } \\
\phi \mathrm{N}_{\mathrm{sa}} & = & 7.79 \mathrm{kips} / \mathrm{stud}
\end{array}
$$

3.3 INSERT PLATE "P/N 223100" ANALYSIS

3.3.1 Tension Capacity of "P/N 223100" plate:

$$
\begin{gathered}
N_{c b g}=\left(A_{\text {Id }}\left(A_{\text {nco }}\right) \psi_{e c}, N \psi_{e d}, N v_{c}, N \psi_{c p}, N N_{b}\right. \\
A_{N c o}=9 h_{e f}^{2}
\end{gathered}
$$

Find $A_{N c}$ for just the two upper studs.

$$
A_{N C}=A_{N c o}+4(3)\left(h_{e f}\right)=
$$

$60 \mathrm{in}^{2}$

$$
{ }^{\mathrm{ec}}, \mathrm{~N}=\quad 1.0 \text { assume no eccentricity }
$$

$$
1.0 \text { (for cast-in anchors) }
$$

$\phi \mathrm{N}_{\mathrm{cbg}}=\quad 5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 223100" PLATE
[Eq D-5] Sec D.5.2.1
$36 \mathrm{in}^{2}$

$$
{ }_{\text {ed }} \mathrm{N}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \min >1.5 \mathrm{hef}_{\text {ef }} \text { for } 2 \text { studs }\right)
$$

$$
{ }_{c}, \mathrm{~N}=\quad 1.25 \text { (for cast-in anchors) }
$$

$$
\mathrm{N}_{\mathrm{cbg}}=8500 \mathrm{lbs} \quad=0.70 \text { [Use condition B, D.4.4] }
$$

TENSION CAPACITY OF "P/N 223100" PLATE
3.3.2 Shear Capacity of "P/N 223100" plate in the X-direction:

This shear force is parallel to the edge of the panel

$$
V_{c b g}=2\left(A_{v c} / A_{v c o}\right)_{e c}, V{ }_{e d}, V{ }_{c}, V V_{b} \quad[E q D-22] \operatorname{Sec} \text { D.6.2.1 (b) }
$$

where: $\quad V_{b}=7\left(l_{e} / d_{o}\right)^{02}\left(d_{o}\right)^{1 / 2} .85\left(f_{c}\right)^{1 / 2}\left(c_{a 1}\right)^{15}$
$l_{e}=h_{\text {ef }}=2$ inches
$\mathrm{d}_{0}=\quad 0.5$ inches $\quad \mathrm{C}_{\mathrm{a} 1}=\quad 7$ inches
$V_{b}=7270 \mathrm{lbs} /$ stud $\quad[E q$ D-24] Sec D.6.2.2
${ }^{\prime}{ }_{\text {ec, }}, \mathrm{V}=\quad 1.0$ assume no eccentricity $\quad{ }^{\text {ed }}, \mathrm{V}=\quad 1.0$
${ }^{*} \mathrm{c}, \mathrm{V}=1.2$ (for \#4 bar between anchor and edge)
$\mathrm{h}_{\mathrm{a}}=\quad 4$ inches $\quad \mathrm{s}_{1}=\quad 4$ inches
$A_{v c o}=2\left(1.5 c_{a 1}\right) h_{a}=$
$84 \mathrm{in}^{2}$
$A_{v c}=\left(2\left(1.5 c_{a 1}\right)+s_{1}\right) h_{a}=100 i^{2}$
$\mathrm{V}_{\mathrm{cbg}}=20772 \mathrm{lbs} \quad \phi=0.70$ [Use condition B, D.4.4]
$\mathrm{V}_{\mathrm{cbg}}=14540 \mathrm{lbs}$
SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION
3.3.3 Shear Capacity of "P/N 223100" plate in the (negative) Y-direction:

This shear force is perpendicular to the edge of the panel.
NOTE: The lower stud is ignored since it is close to the free edge.

$$
\mathrm{V}_{\mathrm{cbg}}=\quad 7270 \mathrm{lbs}
$$

SHEAR CAPACITY OF "P/N 223100" PLATE IN Y-DIRECTION

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}}, \mathrm{~V} \psi_{\text {ed }}, \mathrm{V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} \quad \text { [Eq D-22] Sec D.6.2.1 (b) } \\
& V_{\mathrm{b}}=7270 \mathrm{lbs} / \mathrm{stud} \quad \text { from 3.3.2 above } \\
& \psi_{\text {ec }}, V=\quad 1.0 \text { assume no eccentricity } \\
& { }^{\text {ed }} \mathrm{V}=\quad 1.0 \mathrm{C}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} \\
& \psi_{\mathrm{c}}, \mathrm{~V}=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& \begin{array}{rcrrr}
h_{\mathrm{a}} & = & 4 \text { inches } & \mathrm{s}_{1} & = \\
\mathrm{A}_{\text {vco }} & = & 84 \mathrm{in}^{2} & \mathrm{~A}_{\mathrm{vc}} & =
\end{array} \\
& \mathrm{V}_{\mathrm{cbg}}=\quad 10386 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
\end{aligned}
$$

3.4 INSERT PLATE "P/N 223000" ANALYSIS

3.4.1 Tension Capacity of "P/N 223000" plate:

$$
N_{c b g}=\left(A_{n c} d A_{n c o}\right) \psi_{e c}, N \psi_{e d}, N \psi_{c}, N \psi_{c p}, N N_{b}
$$

[Eq D-5] Sec D.5.2.1 (b)

$$
A_{N c o}=9 h_{e f}^{2} \quad=
$$

$36 \mathrm{in}^{2}$
Find $A_{N c}$ for just the two upper studs.

$$
\psi_{e c}, \mathrm{~N}=\quad 1.0 \text { assume no eccentricity }
$$

$$
\psi_{\mathrm{ed}}, \mathrm{~N}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \min >1.5 \mathrm{hef}_{\mathrm{ef}} \text { for } 2 \text { studs considered }\right)
$$

$\psi_{c}, \mathrm{~N}=1.25$ (for cast-in anchors)
$\psi_{\text {cp }}, \mathrm{N}=1.0$ (for cast-in anchors)
$\mathrm{N}_{\mathrm{cbg}}=8500 \mathrm{lbs}$
$\phi=\quad 0.70 \quad$ [Use condition B, D.4.4]
$\phi \mathrm{N}_{\mathrm{cbg}}=5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 223000" PLATE
3.4.2 Shear Capacity of "P/N 223000" plate in the X-direction:

This shear force is parallel to the edge of the panel.
$V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c}, V \psi_{e d}, V \psi_{c}, V V_{b}$
[Eq D-22] Sec D.6.2.1 (b)
where:

$$
\begin{array}{rlrl}
V_{b}=7\left(l_{e} / d_{0}\right)^{0.2}\left(d_{o}\right)^{1 / 2} .85\left(f_{c}\right)^{1 / 2}\left(c_{a 1}\right)^{1.5} \\
l_{e} & =h_{e f}= & 2 \text { inches } \\
d_{o} & = & 0.5 \text { inches } & c_{a 1}=
\end{array}
$$

3.4.3 Shear Capacity "P/N 223000" in the neg Y-direction (toward free edge): This shear force is perpendicular to the edge of the panel.
3.5 INSERT ANGLE "P/N 222000" ANALYSIS

3.5.1 Tension Capacity of "P/N 222000" Insert Angle: (negative Z)

$$
\begin{gathered}
N_{c b g}=\left(A_{n d} / A_{\text {nco }}\right)+{ }_{e c}, N \psi_{e d}, N \psi_{c}, N \neq c p, N N_{b} \\
A_{N c o}=9 h_{e f}{ }^{2}=
\end{gathered}
$$

[Eq D-5] Sec D.5.2.1 (b)
$36 \mathrm{in}^{2}$
Find $A_{N C}$ for just the two studs.

$$
\begin{aligned}
& V_{c b g}=\left(A_{v c} / A_{v c o}\right){ }_{\text {ec }}, V \text { ed }, V V_{c} \\
& V_{b}=3140 \mathrm{lbs} / \text { stud from 3.4.2 above } \\
& { }^{4}{ }_{\text {ec }}, V=1.0 \text { assume no eccentricity } \\
& { }^{1} \text { ed, } V=\quad 1.0 \mathrm{C}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} \\
& { }_{\mathrm{c}}, \mathrm{~V}=1.2 \text { (for \#4 bar between anchor and edge) } \\
& \mathrm{A}_{\mathrm{vco}}=\quad 42 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{vc}}=\quad 56 \mathrm{in}^{2} \quad \text { from 3.4.2 above } \\
& \mathrm{V}_{\mathrm{cbg}}=\quad 5025 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] } \\
& \phi \mathrm{V}_{\mathrm{cbg}}=3517 \mathrm{lbs} \\
& \text { SHEAR CAPACITY OF "P/N 223000" PLATE IN Y-DIRECTION }
\end{aligned}
$$

$\phi \mathrm{N}_{\mathrm{cbg}}=5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 222000" INSERT
3.5.2 Shear Capacity of "P/N 222000" Insert Angle in X direction:

This shear force is parallel to the edge of the panel.

$$
V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c}, V \psi_{e d}, V \psi_{c}, V V_{b}
$$

[Eq D-22] Sec D.6.2.1 (b)
where:

$$
\begin{gathered}
V_{b}=7\left(l_{\mathrm{e}} / \mathrm{d}_{\mathrm{o}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} .85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} \\
\mathrm{l}_{\mathrm{e}}=\quad \mathrm{h}_{\mathrm{ef}}=\quad 2 \text { inches }
\end{gathered}
$$

$d_{0}=\quad 0.5$ inches $\quad c_{a 1}=\quad 3$ inches
$V_{b}=2040 \mathrm{lbs} /$ stud $\quad[E q$ D-24] Sec D.6.2.2
$\psi_{\text {ec }}, V=1.0$ assume no eccentricity $\quad \psi_{\text {ed }} \mathrm{V}=$
1.0 $\psi_{c}, V=\quad 1.2$ (for \#4 bar between anchor and edge)
$h_{a}=\quad 4$ inches \quad [at step-joint]
$\mathrm{s}_{1}=\quad 4.5$ inches
$A_{v c o}=2\left(1.5 c_{a 1}\right) h_{a=} \quad 36$ in 2 $A_{v c}=\left(2\left(1.5 c_{a 1}\right)+s_{1}\right) h_{a}=\quad 54 \mathrm{in}^{2}$
$\mathrm{V}_{\mathrm{cbg}}=\quad 7343 \mathrm{lbs} \quad \phi=\quad 0.70$ [Use condition B, D.4.4]
$\phi \mathrm{V}_{\mathrm{cbg}}=5140 \mathrm{lbs}$
SHEAR CAPACITY OF "P/N 222000" INSERT, X-DIRECTION

3.5.3 Shear Capacity of "P/N 222000" Insert Angle in Y direction:

This is for uplift forces from the roof panel.

$$
\begin{array}{ccc}
\mathrm{V}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}}, \mathrm{~V} \psi_{\mathrm{ed}}, \mathrm{~V} \psi_{\mathrm{c}}, \mathrm{~V} \mathrm{~V}_{\mathrm{b}} & \text { [Eq D-22] Sec D.6.2.1 (b) } \\
\mathrm{V}_{\mathrm{b}} & 2040 \mathrm{lbs} / \text { stud } & \text { from 3.5.2 above } \\
\psi_{\mathrm{ec}}, \mathrm{~V}= & 1.0 \text { assume no eccentricity } & \\
\psi_{\mathrm{ed}}, \mathrm{~V}= & 1.0 \mathrm{c}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} &
\end{array}
$$

$\mathrm{V}_{\mathrm{cbg}}=$	$\psi_{c}, \mathrm{~V}=$	1.2 (for \#4 bar between anchor and edge)	
	$\mathrm{A}_{\text {vco }}=$	$36 \mathrm{in}^{2}$	from 3.5.2 abo
	$\mathrm{A}_{\mathrm{vc}}=$	$54 \mathrm{in}^{2}$	from 3.5.2
	3672 lbs	[Use condition B, D.4.4]	
	0.70		
$\mathrm{V}_{\text {cbg }}=2570 \mathrm{lbs}$			
SHEAR CAPACITY OF "P/N 222000" INSERT, Y-DIRECTION			

3.6 WALL CORNER INSERT ANALYSIS

This insert is used on the vertical sides of the endwalls. The 4" leg forms the outside edge of the endwalls, and the 6 " leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor.
The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls.
The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, (+X or -X direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction.
3.6.1 Capacity of Wall Corner Inserts in X-direction

Check capacity of individual studs on the 6 " leg of the angle.
These studs would be in shear toward the free edge.

$$
V_{c b}=\left(A_{\mathrm{vc}} / A_{\mathrm{vco}}\right) \psi_{e d}, V \psi_{c}, V V_{b}
$$

[Eq D-21 Sec D.6.2.1 (a0]
where:

$$
\begin{aligned}
& V_{b}=7\left(l_{\mathrm{e}} / \mathrm{d}_{0}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{o}}\right)^{1 / 2} \cdot 85\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} \\
& l_{e}=h_{\text {ef }}=\quad 2 \text { inches } \\
& \mathrm{d}_{\mathrm{o}}=\quad 0.5 \text { inches } \quad \mathrm{c}_{\mathrm{a} 1}=\quad 5 \text { inches } \\
& V_{b}=4389 \mathrm{lbs} / \text { stud } \quad[E q \text { D-24] Sec D.6.2.2 } \\
& { }^{\prime} \text { ed }, V=1.0 \\
& { }_{\mathrm{c}}, \mathrm{~V}=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& h_{a}=4 \text { inches } \quad \text { [at step-joint] } s_{1}=\quad 24 \text { inches } \\
& \mathrm{A}_{\mathrm{vco}}=4.5 \mathrm{c}_{\mathrm{a} 1}{ }^{2}=\quad 112.5 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{vc}}=2\left(1.5 \mathrm{c}_{\mathrm{a} 1}\right) \mathrm{h}_{\mathrm{a}}=\quad 60 \mathrm{in}^{2}
\end{aligned}
$$

These two were analyzed as individual studs since they are spaced 12 inches apart, far enough to act alone, not as a group.
In this direction, there would be a minimum of 4 studs in shear, and three studs in tension. The total allowable load is:

$$
P_{\mathrm{x}}=4\left(\phi \mathrm{~V}_{\mathrm{cb}}\right)+3\left(\phi \mathrm{~N}_{\mathrm{cb}}\right)=22870 \mathrm{lbs}
$$

SHEAR CAPACITY OF WALL INSERT, +/- X-direction

3.7

FLOOR LIFTING INSERT ANALYSIS

The floor lifting inserts are made from 5 " $x 5$ " $\times 5 / 16$ " angle with a 5 " $x 5 / 16$ " plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, $1 / 2^{\prime \prime} \times 4$ " long, on 12" centers and two studs, $1 / 2^{\prime \prime} \times 2^{\prime \prime}$ long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5 " $\times 5$ " $\times 5 / 16$ " angle with one side up and one side out, and extend the entire length of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, $1 / 2^{\prime \prime} \times 4^{\prime \prime}$ long, on 12 " centers and four \# 6×30 " rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (sec 3.6.1).

3.8 CAPACITY OF WELDS AT CONNECTION PLATES

Welds to be made with SMAW, E70XX electrodes.
All standard connection plates will have a $3 / 16^{\prime \prime}$ weld, 3 inches long. E70XX welds are good for .928 kips per inch per sixteenth inch of weld.
Weld capacity is then:
$\mathrm{Pw}=(0.928 \mathrm{k}$ /inch $/$ sixteenth $) \times(3$ inches $) \times(3$ sixteenths $)$
$\mathrm{Pw}=8.352 \mathrm{kips}$
CAPACITY OF ALL STANDARD CONNECTION PLATE WELDS

3.9
 CAPACITY OF TIE-DOWN CONNECTION PLATES

Three failure modes are noted:
A: Failure of the connection plate.
B: Failure of the bolts connecting the plate to the shelter.
C: Failure of the expansion anchor connecting the plate to the foundation.

A: Shear through edge of plate at one hole is:

| HoleArea(bolt $)=D($ top $) \times t$ | | $0.3125 \mathrm{in}^{2}$ |
| ---: | :--- | ---: | :--- |
| HoleArea(anchor) $=\mathrm{D}($ bot $) \times \mathrm{t}$ | $=$ | $0.21875 \mathrm{in}^{2}$ |
| PL-Area $=t \times\left(2^{\prime \prime}-\left(.5 \times 1.25^{\prime \prime}\right)\right)$ | $=$ | $0.34375 \mathrm{in}^{2}$ |
| cannot exceed $\mathrm{t} \times 4 \mathrm{t}$ | | $0.25 \mathrm{in}^{2} \quad$ CONTROLS |
| OK [exceeds $2 / 3$ hole area, AISC, 360-05, D3.2] | | |


```
STRUCTURAL CALCULATIONS:

4 CONCRETE BUILDING WEIGHT CALCULATOR


\section*{AMIERICAMTOMER \({ }^{\circ}\)}

CORPORATION

\section*{Structural Analysis Report}
\begin{tabular}{ll} 
Structure & \(: 275 \mathrm{ft}\). Guyed Tower \\
ATC Site Name & \(:\) Portland ME, ME \\
ATC Site Number & \(: 10047\) \\
Proposed Carrier & \(:\) U.S. Customs and Border Protection \\
Carrier Site Name & \(:\) N/A \\
Carrier Site Number & \(:\) N/A \\
County & \(:\) Cumberland \\
Eng. Number & \(: 45668921\) \\
Date & \(:\) August 20, 2010 \\
Usage & \(: 90 \%\) Legs, \(94 \%\) Diagonals, \\
& \(72 \%\) Horizontals, and \(82 \%\) Guys
\end{tabular}

Submitted by:
Robert Keith
Project Engineer

American Tower Engineering Services
8505 Freeport Parkway
Suite 135
Irving, TX 75063
Phone: 972-999-8900


\section*{Introduction}

The purpose of this report is to summarize results of the structural analysis performed on the 275 ft . guyed tower located at Portland ME, ME, Cumberland County (ATC site \#10047). The tower was originally designed and manufactured by Pirod (Drawing \#87-07-131 dated July 18, 1987).

\section*{Analysis}

The existing tower was analyzed using Semaan Engineering Solutions, Inc., Software. The analysis assumes that the tower is in good, undamaged, and non-corroded condition. A \(5 \%\) overstress is allowed in the existing structural members to account for program variances.

Basic wind speed: \(\quad 80 \mathrm{mph}\) (Fastest Mile)
Radial Ice: 69 mph (Fastest Mile) with \(1 / 2\) ' radial ice concurrent
Standard/Code: ANSI/TIA-222-F / 2003 IBC Section 1609.1.1, Exception (5) and Section 3108.4

\section*{Antenna Loads}

The following antenna loads were used in the tower analysis.

\section*{Existing Antennas}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Elev. \\
(ft)
\end{tabular} & Qty & a \({ }^{2}\) Antennas & Mount & Coax & Carrier \\
\hline \multirow[b]{2}{*}{\[
271.0
\]} & 6 & Antel LPA-185080/8CF & \multirow[b]{2}{*}{(3) Sector Frames} & \multirow[b]{2}{*}{(12) 1-5/8"} & \multirow[b]{2}{*}{Verizon Wireless} \\
\hline & 6 & Antel WPA -80080/4CF & & & \\
\hline \multirow{4}{*}{258.0} & 1 & Radio Waves G3-2.4 & \multirow{4}{*}{(3) Sector Frames} & \multirow{4}{*}{\begin{tabular}{l}
(12) \(1-5 / 8^{\prime \prime}\) \\
(1) \(1 / 2^{\prime \prime}\)
\end{tabular}} & \multirow{4}{*}{T-Mobile} \\
\hline & 6 & RFS APX16DWV-16DWV-S-E & & & \\
\hline & 3 & Ericsson KRY 112 144/1 & & & \\
\hline & 3 & RFS ATMAA1412D-1A20 & & & \\
\hline 255.0 & 1 & 8' HP MW Dish & Dish Mount & (2) EW52 & \multirow{3}{*}{Verizon Wireless} \\
\hline 241.0 & 1 & 8' HP MW Dish & Dish Mount & (3) \(1 / 2{ }^{\prime \prime}\) & \\
\hline 220.0 & 1 & 8' HP MW Dish & Dish Mount & (2) EW52 & \\
\hline \multirow[t]{2}{*}{193.0} & 3 & KMW HB-X-WM-17-65-00T & \multirow[t]{2}{*}{Clearwire Mount (Side Arms)} & \multirow[b]{2}{*}{(6) \(1-5 / 8\) "} & \multirow[t]{2}{*}{Clearwire Corporation} \\
\hline & 3 & KMW HB-X-WM-17-65-00T-TLNA & & & \\
\hline 190.0 & 1 & \(10^{\prime}\) Omni & Standoff Mount & (1) 1-1/4" & City of Portland \\
\hline 180.0 & 6 & Antel BSA-185065/10CF & (3) Sector Frames & (6) \(1-5 / 8^{\prime \prime}\) & US Cellular \\
\hline \multirow[t]{2}{*}{170.0} & 1 & \(10^{\prime} \mathrm{Omni}\) & \multirow[t]{2}{*}{Standoff Mount} & (1) \(7 / 8\) " & \multirow[b]{2}{*}{City of Portland} \\
\hline & 1 & TTA & & (1) \(1 / 2\) " & \\
\hline 155.0 & 1 & 4' HP MW Dish & Dish Mount & (2) EW90 & Verizon Wireless \\
\hline 120.0 & 2 & \(2{ }^{\prime}\) Omni & (2) Standoff Mounts & (1) \(7 / 8\), (1) \(1 / 2^{\prime \prime}\) & City of Portland \\
\hline 96.0 & 1 & \(10^{\prime}\) Omni & Standoff Mount & (1) \(1-5 / 8^{\prime \prime}\) & \multirow[t]{2}{*}{Ron Dorler (landlord)} \\
\hline 36.0 & 1 & GPS & Standoff Mount & (1) \(1 / 2^{\prime \prime}\) & \\
\hline
\end{tabular}

\section*{Antemna Loads (Continued)}

Proposed Antennas
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Elev. \\
(f)
\end{tabular} & Qty & Antennas & Mount & Coax & Carrier \\
\hline 250.0 & 1 & Bird BA40-41-DIN & \multirow{4}{*}{Leg Mount} & (1) \(7 / 8^{\prime \prime}\) & \multirow{4}{*}{U.S. Customs and Border Protection} \\
\hline \multirow[t]{2}{*}{225.0} & 1 & Bird BA40-41-DIN & & (1) \(7 / 8^{\prime \prime}\) & \\
\hline & 1 & Radio Waves HPD6-4.7NS & & (1) \(7 / 8^{\prime \prime}\) & \\
\hline 75.0 & 1 & Radio Waves HPD4-4.7 & & (1) \(7 / 8^{\prime \prime}\) & \\
\hline
\end{tabular}

The proposed coax is to be installed on the tower face with the least number of existing exposed lines.

\section*{Results}

The existing 275 ft . Pirod guyed ower with the existing and the proposed antennas is structurally acceptable per TIA/EIA-222-F and the 2003 IBC. The maximum structure usage is: \(90 \%\) legs, \(94 \%\) diagonals, \(72 \%\) horizontals, and \(82 \%\) guys.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Foundation \\
(Location)
\end{tabular} & \begin{tabular}{c} 
Reactions \\
(kips)
\end{tabular} & \begin{tabular}{c} 
Original Design \\
Reaction (kips)
\end{tabular} & \begin{tabular}{c} 
Current Analysis \\
Reactions (kips)
\end{tabular} & \begin{tabular}{c} 
\% Of Original \\
Design
\end{tabular} \\
\hline \multirow{2}{*}{ Tower Base } & Compression & 256.4 & 259.4 & 101.2 \\
\cline { 2 - 5 } & Horizontal & 4.8 & 0.7 & 14.6 \\
\hline \begin{tabular}{c} 
Inner Anchor \\
(115 ft. Radius)
\end{tabular} & Hplift & 122.7 & 108.2 & 88.2 \\
\cline { 2 - 5 } & Horizontal & 83.3 & 71.4 & 85.7 \\
\hline
\end{tabular}

The structure foundation reactions resulting from the current analysis do not exceed the ones shown on the original structural drawings. No modification to the existing foundations will be required.

\section*{Conclusion}

The existing tower and its foundations were found to be adequate to support the existing and proposed antennas with the transmission lines distributed as described above while meeting the requirements of the code or standard as specified in this report.

If you have any questions or require additional information, please call (972) 999-8900.

\section*{Standard Conditions}

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:
-- Information supplied by the client regarding the structure itself, the antenna and feed line loading on the structure and its components, or other relevant information.
--- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to ATC Engineering Services and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated; and we, therefore, assume that their capacity has not significantly changed from the "as new" condition.

All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/EIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Engineering Services is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.



\begin{tabular}{rl} 
Site Number: \\
Location: & 10047 \\
Cortland ME, ME & \\
Copyright Semaan Engineering Solutions, Inc
\end{tabular}

\section*{Section Forces}

\author{
LoadCase Normal No Ice
}
80.00 mph Wind Normal To Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sect Seq & Wind Height (ft) & qz & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & \begin{tabular}{l}
Sol \\
Ratio
\end{tabular} & Cf & Df & Dr & R & Eff Area (sqft) & \begin{tabular}{l}
Linear \\
Area (sqft)
\end{tabular} & \begin{tabular}{l}
Ice \\
Linear \\
Area \\
(sqft)
\end{tabular} & Total Welght (lb) & Weight Ice (lb) & Struct Force (lb) & Linear Force (lb) & \begin{tabular}{l}
Total Force \\
(lb)
\end{tabular} & Eff Face \\
\hline 16 & 270.0 & 29.87 & 0.00 & 11.13 & 0.00 & 0.32 & 2.25 & 1.00 & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 508.24 & 0.00 & 508.24 & 3 \\
\hline 15 & 255.0 & 29.39 & 0.00 & 30.73 & 0.00 & 0.44 & 1.99 & 1.00 & 1.00 & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 1,314.21 & 0.00 & 1,314.21 & 3 \\
\hline 14 & 235.0 & 28.71 & 0.00 & 32.09 & 0.00 & 0.46 & 1.96 & 1.00 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1,313.1 & 0.0 & 1,336.81 & 0.00 & 1,336.81 & 3 \\
\hline 13 & 222.5 & 28.26 & 0.00 & 9.45 & 0.00 & 0.54 & 1.85 & 1.00 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 388.76 & 0.00 & 388.76 & 3 \\
\hline 12 & 210.0 & 27.80 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 1.00 & 1.00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 1,475.57 & 0.00 & 1,475.57 & 3 \\
\hline 11 & 190.0 & 27.02 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 1.00 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 1,433.97 & 45.78 & 1,479.74 & 3 \\
\hline 10 & 170.0 & 26.17 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 1,508.91 & 591.10 & 2,100.01 & 1 \\
\hline 9 & 150.0 & 25.25 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 1,446.46 & 727.13 & 2,173.59 & 1 \\
\hline 8 & 130.0 & 24.24 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 1,388.51 & 732.98 & 2,121.50 & 1 \\
\hline 7 & 110.0 & 23.11 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1,956.5 & 0.0 & 1.332.44 & 785.72 & 2,118.16 & 1 \\
\hline 6 & 90.00 & 21.82 & 0.00 & 40.03 & 0.00 & 0.57 & 1.82 & 1.00 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 1,283.67 & 741.94 & 2,025.60 & 3 \\
\hline 5 & 70.00 & 20.31 & 0.00 & 42.06 & 0.00 & 0.60 & 1.80 & 1.00 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 1,270.02 & 690.53 & 1,960.55 & 3 \\
\hline 4 & 50.00 & 18.45 & 0.00 & 42.73 & 0.00 & 0.61 & 1.80 & 1.00 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 1,177.64 & 627.24 & 1,804.87 & \\
\hline 3 & 30.00 & 16.38 & 0.00 & 43.35 & 0.00 & 0.62 & 1.79 & 1.00 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,966.2 & 0.0 & 1,066.04 & 557.02 & 1.623.07 & 3 \\
\hline 2 & 12.50 & 16.38 & 0.00 & 26.77 & 0.00 & 0.51 & 1.89 & 1.00 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1,288.7 & 0.0 & 635.74 & 293.91 & 929.66 & 3 \\
\hline 1 & 2.50 & 16.38 & 0.00 & 5.00 & 0.00 & 0.57 & 1.82 & 1.00 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 120.45 & 15.40 & 135.85 & 3 \\
\hline & & & & & & & & & & & & & & 23,710.3 & 0.0 & & & 23,496.20 & \\
\hline
\end{tabular}

LoadCase 60 deg No Ice
80.00 mph Wind at 60 deg From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sect } \\
& \text { Seq }
\end{aligned}
\] & Wind Height (ft) & qz & \begin{tabular}{l}
Total \\
Flat \\
Area \\
(sqft)
\end{tabular} & Total Round Area (sqft) & Ice Round Area (sqft) & \begin{tabular}{l}
Sol \\
Ratio
\end{tabular} & Cf Df & Dr & Rr & Eff Area (sqft) & Linear Area (sqft) & Ice Linear Area (sqft) & Total Woight (lb) & Weight Ice (lb) & Struct Force (lb) & \begin{tabular}{l}
Linear Force \\
(Ib)
\end{tabular} & \begin{tabular}{l}
Total Force \\
(Ib)
\end{tabular} & Eff
Face \\
\hline 16 & 270.0 & 29.87 & 0.00 & 11.13 & 0.00 & 0.32 & 2.250 .80 & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 508.24 & 0.00 & 508.24 & 3 \\
\hline 15 & 255.0 & 29.39 & 0.00 & 30.73 & 0.00 & 0.44 & 1.990 .80 & 1.00 & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 1,314.21 & 0.00 & 1,314.21 & 3 \\
\hline 14 & 235.0 & 28.71 & 0.00 & 32.09 & 0.00 & 0.46 & 1.960 .80 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1.313.1 & 0.0 & 1.336.81 & 0.00 & 1,336.81 & 3 \\
\hline 13 & 222.5 & 28.26 & 0.00 & 9.45 & 0.00 & 0.54 & 1.850 .80 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 388.76 & 0.00 & 388.76 & 3 \\
\hline 12 & 210.0 & 27.80 & 0.00 & 36.56 & 0.00 & 0.52 & 1.870 .80 & 1.00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 1,475.57 & 0.00 & 1,475.57 & 3 \\
\hline 11 & 190.0 & 27.02 & 0.00 & 36.56 & 0.00 & 0.52 & 1.870 .80 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 1,433.97 & 45.78 & 1,479.74 & 3 \\
\hline 10 & 170.0 & 26.17 & 0.00 & 39.36 & 0.00 & 0.56 & 1.830 .80 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 1,508.91 & 591.10 & 2,100.01 & 1 \\
\hline 9 & 150.0 & 25.25 & 0.00 & 39.14 & 0.00 & 0.56 & 1.830 .80 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 1,446.46 & 727.13 & 2,173.59 & 1 \\
\hline 8 & 130.0 & 24.24 & 0.00 & 39.14 & 0.00 & 0.56 & 1.830 .80 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 1,388.51 & 732.98 & 2,121.50 & 1 \\
\hline 7 & 110.0 & 23.11 & 0.00 & 39.36 & 0.00 & 0.56 & 1.830 .80 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1.956 .5 & 0.0 & 1,332.44 & 785.72 & 2,118.16 & 1 \\
\hline 6 & 90.00 & 21.82 & 0.00 & 40.03 & 0.00 & 0.57 & 1.820 .80 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 1,283.67 & 741.94 & 2,025.60 & 3 \\
\hline 5 & 70.00 & 20.31 & 0.00 & 42.06 & 0.00 & 0.60 & 1.800 .80 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 1,270.02 & 690.53 & 1,960.55 & 3 \\
\hline 4 & 50.00 & 18.45 & 0.00 & 42.73 & 0.00 & 0.61 & 1.800 .80 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 1,177.64 & 627.24 & 1,804.87 & 3 \\
\hline 3 & 30.00 & 16.38 & 0.00 & 43.35 & 0.00 & 0.62 & 1.790 .80 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,966.2 & 0.0 & 1,066.04 & 557.02 & 1,623.07 & 3 \\
\hline 2 & 12.50 & 16.38 & 0.00 & 26.77 & 0.00 & 0.51 & 1.890 .80 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1,288.7 & 0.0 & 635.74 & 293.91 & 929.66 & 3 \\
\hline 1 & 2.50 & 16.38 & 0.00 & 5.00 & 0.00 & 0.57 & 1.820 .80 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 120.45 & 15.40 & 135.85 & 3 \\
\hline & & & & & & & & & & & & & 23,710.3 & 0.0 & & & 23,496.20 & \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Site Number: 10047 \\
Location: Portand ME, ME & Copyright Semaan Engineering Solutions, Inc \\
Code: TIARIA-222 RevE
\end{tabular}

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sect \\
Seq
\end{tabular} & Wind Height (ft) & q2 & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & Sol Ratio & Cf & Df & Dr & Rr & \begin{tabular}{l}
Eff \\
Area \\
(sqft)
\end{tabular} &  & \begin{tabular}{l}
Ice \\
Linear \\
Area \\
(sqft)
\end{tabular} & \begin{tabular}{l}
Total Weight \\
(lb)
\end{tabular} & Weight Ice (lb) & Struct Force (lb) & Linear Force (lb) & \begin{tabular}{l}
Total Force \\
(Ib)
\end{tabular} & Eff Face \\
\hline 16 & 270.0 & 29.87 & 0.00 & 11.13 & 0.00 & 0.32 & 2.25 & & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 508.24 & 0.00 & 508.24 & 3 \\
\hline 15 & 255.0 & 29.39 & 0.00 & 30.73 & 0.00 & 0.44 & 1.99 & 0.85 & \(1: 00\) & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 1,314.21 & 0.00 & 1,314.21 & 3 \\
\hline 14 & 235.0 & 28.71 & 0.00 & 32.09 & 0.00 & 0.46 & 1.96 & 0.85 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1,313.1 & 0.0 & 1,336.81 & 0.00 & 1,336.81 & 3 \\
\hline 13 & 222.5 & 28.26 & 0.00 & 9.45 & 0.00 & 0.54 & 1.85 & 0.85 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 388.76 & 0.00 & 388.76 & 3 \\
\hline 12 & 210.0 & 27.80 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 0.85 & 1.00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 1,475.57 & 0.00 & 1,475.57 & 3 \\
\hline 11 & 190.0 & 27.02 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 0.85 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 1,433.97 & 45.78 & 1,479.74 & 3 \\
\hline 10 & 170.0 & 26.17 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 0.85 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 1,508.91 & 591.10 & 2,100.01 & 1 \\
\hline 9 & 150.0 & 25.25 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 0.85 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 1,446.46 & 727.13 & 2,173.59 & 1 \\
\hline 8 & 130.0 & 24.24 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 0.85 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 1,388.51 & 732.98 & 2,121.50 & 1 \\
\hline 7 & 110.0 & 23.11 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 0.85 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1,956.5 & 0.0 & 1,332.44 & 785.72 & 2,118.16 & 1 \\
\hline 6 & 90.00 & 21.82 & 0.00 & 40.03 & 0.00 & 0.57 & 1.82 & 0.85 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 1,283.67 & 741.94 & 2,025.60 & 3 \\
\hline 5 & 70.00 & 20.31 & 0.00 & 42.06 & 0.00 & 0.60 & 1.80 & 0.85 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 1,270.02 & 690.53 & 1,960.55 & 3 \\
\hline 4 & 50.00 & 18.45 & 0.00 & 42.73 & 0.00 & 0.61 & 1.80 & 0.85 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 1,177.64 & 627.24 & 1,804.87 & 3 \\
\hline 3 & 30.00 & 16.38 & 0.00 & 43.35 & 0.00 & 0.62 & 1.79 & 0.85 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,966.2 & 0.0 & 1,066.04 & 557.02 & 1,623.07 & 3 \\
\hline 2 & 12.50 & 16.38 & 0.00 & 26.77 & 0.00 & 0.51 & 1.89 & 0.85 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1,288.7 & 0.0 & 635.74 & 293.91 & 929.66 & 3 \\
\hline 1 & 2.50 & 16.38 & 0.00 & 5.00 & 0.00 & 0.57 & 1.82 & 0.85 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 120.45 & 15.40 & 135.85 & 3 \\
\hline & & & & & & & & & & & & & & 23,710.3 & 0.0 & & & 23,496.20 & \\
\hline
\end{tabular}

\section*{LoadCase Normal Ice}
69.28 mph Wind Normal To Face with Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sect Seq & Wind Heigh (ft) & qz & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & \begin{tabular}{l}
Sol \\
Ratio
\end{tabular} & Cf Df & Dr & Rr & \begin{tabular}{l}
Eff \\
Area \\
(sqft)
\end{tabular} & Linear Area (sqit) & Ice Linear Area (sqft) & Total Weight (lb) & Weight Ice (lb) & Struct Force (Ib) & Linear Force (ib) & Total Force (Ib) & Eff Face \\
\hline 16 & 270.0 & 22.40 & 0.00 & 18.84 & 7.70 & 0.54 & 1.861 .00 & . 00 & 0.72 & 13.52 & 0.00 & 0.00 & 718.5 & 233.8 & 614.24 & 0.00 & 614.24 & 3 \\
\hline 15 & 255.0 & 22.04 & 0.00 & 50.67 & 19.94 & 0.72 & 1.781 .00 & 1.00 & 0.84 & 42.43 & 0.00 & 0.00 & 1,948.7 & 709.5 & 1,818.85 & 0.00 & 1,818.85 & 3 \\
\hline 14 & 235.0 & 21.53 & 0.00 & 54.15 & 26.09 & 0.77 & 1.801 .00 & 1.00 & 0.88 & 47.40 & 0.00 & 0.00 & 2,122.2 & 809.1 & 2,006.70 & 0.00 & 2,006.70 & 2 \\
\hline 13 & 222.5 & 21.20 & 0.00 & 15.98 & 6.54 & 0.91 & 1.941 .00 & 1.00 & 1.00 & 15.91 & 0.00 & 0.00 & 619.2 & 227.6 & 716.71 & 0.00 & 716.71 & 3 \\
\hline 12 & 210.0 & 20.85 & 0.00 & 61.09 & 24.53 & 0.87 & 1.891 .00 & 1.00 & 0.96 & 58.54 & 0.00 & 0.00 & 2,434.6 & 932.6 & 2,518.95 & 0.00 & 2,518.95 & 3 \\
\hline 11 & 190.0 & 20.26 & 0.00 & 61.09 & 24.53 & 0.87 & 1.891 .00 & 1.00 & 0.96 & 58.54 & 1.29 & 0.83 & 2,635.8 & 1,063.3 & 2,447.94 & 56.48 & 2,504.42 & 3 \\
\hline 10 & 170.0 & 19.63 & 0.00 & 64.18 & 24.82 & 0.92 & 1.951 .00 & 1.00 & 1.00 & 64.10 & 17.22 & 10.00 & 3,284.4 & 1,355.0 & 2,680.49 & 700.78 & 3,003.89 & 1 \\
\hline 9 & 150.0 & 18.94 & 0.00 & 63.67 & 24.53 & 0.91 & 1.941 .00 & 1.00 & 0.99 & 63.16 & 21.95 & 14.17 & 3,324.9 & 1,397.0 & 2,533.92 & 897.27 & 2,898.36 & \(1 *\) \\
\hline 8 & 130.0 & 18.18 & 0.00 & 63.67 & 24.53 & 0.91 & 1.941 .00 & 1.00 & 0.99 & 63.16 & 23.05 & 15.00 & 3,339.2 & 1,408.1 & 2,432.40 & 907.43 & 2,782.25 & 1 ** \\
\hline 7 & 110.0 & 17.33 & 0.00 & 64.18 & 24.82 & 0.92 & 1.951 .00 & 1.00 & 1.00 & 64.10 & 25.92 & 18.33 & 3,405.9 & 1,449.3 & 2,367.00 & 1,006.1 & 2,652.57 & 1 *n \\
\hline 6 & 90.00 & 16.37 & 0.00 & 65.89 & 25.86 & 0.94 & 1.991 .00 & 1.00 & 1.00 & 65.89 & 25.92 & 18.33 & 3,419.4 & 1,465.6 & 2,344.34 & 950.04 & 2,504.77 & 3 * \\
\hline 5 & 70.00 & 15.23 & 0.00 & 69.50 & 27.44 & 0.99 & 2.091 .00 & 1.00 & 1.00 & 69.50 & 25.92 & 18.33 & 3,448.3 & 1,486.2 & 2,413.16 & 884.21 & 2,331.22 & \(3 *\) \\
\hline 4 & 50.00 & 13.84 & 0.00 & 70.88 & 28.15 & 1.00 & 2.101 .00 & 1.00 & 1.00 & 70.88 & 25.92 & 18.33 & 3,478.6 & 1,499.1 & 2,251.42 & 803.17 & 2,117.54 & 3 * \\
\hline 3 & 30.00 & 12.29 & 0.00 & 72.54 & 29.19 & 1.00 & 2.101 .00 & 1.00 & 1.00 & 72.54 & 25.92 & 18.33 & 3,468.2 & 1,502.1 & 2,046.30 & 713.26 & 1,880.50 & 3 * \\
\hline 2 & 12.50 & 12.29 & 0.00 & 45.75 & 18.99 & 0.87 & 1.891 .00 & 1.00 & 0.96 & 43.80 & 13.67 & 10.00 & 2,141.4 & 852.8 & 1,109.86 & 381.61 & 1,410.38 & \(3 *\) \\
\hline 1 & 2.50 & 12.29 & 0.00 & 9.12 & 4.12 & 1.00 & 2.101 .00 & 1.00 & 1.00 & 9.12 & 0.72 & 0.83 & 409.5 & 97.6 & 257.31 & 24.98 & 235.07 & 3 * \\
\hline & zG & C & & & & & & & & & & & \multicolumn{2}{|l|}{40,198.8 16,488.4} & & & \multicolumn{2}{|l|}{31,996.41} \\
\hline
\end{tabular}
\begin{tabular}{rlrl} 
Site Number: \\
Location: & 10047 \\
Cortland ME, ME
\end{tabular}\(\quad\)\begin{tabular}{l} 
Copyright Semaan Engineering Solutions, Inc
\end{tabular}

\section*{Section Forces}

LoadCase 60 deg lce

\subsection*{69.28 mph Wind at 60 deg From Face with Ice}

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sect } \\
& \text { Seq } \\
& \hline
\end{aligned}
\] & Wind Helght (ft) & qz & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & \begin{tabular}{l}
Sol \\
Ratlo
\end{tabular} & Cf & Df & Dr & Rr & Eff Area (sqft) & \begin{tabular}{l}
Linear \\
Area \\
(sqft)
\end{tabular} & Ice Linear Area (sqft) & \begin{tabular}{l}
Total Weight \\
(lb)
\end{tabular} & Weight ice (lb) & Struct Force (lb) & Linear Force (lb) & \begin{tabular}{l}
Totai Force \\
(lb)
\end{tabular} & Eff Face \\
\hline 16 & 270.0 & 22.40 & 0.00 & 18.84 & 7.70 & 0.54 & 1.86 & 0.80 & 1.00 & 0.72 & 13.52 & 0.00 & 0.00 & 718.5 & 233.8 & 614.24 & 0.00 & 614.24 & 3 \\
\hline 15 & 255.0 & 22.04 & 0.00 & 50.67 & 19.94 & 0.72 & 1.78 & 0.80 & 1.00 & 0.84 & 42.43 & 0.00 & 0.00 & 1,948.7 & 709.5 & 1,818.85 & 0.00 & 1,818.85 & 3 \\
\hline 14 & 235.0 & 21.53 & 0.00 & 54.15 & 26.09 & 0.77 & 1.80 & 0.80 & 1.00 & 0.88 & 47.40 & 0.00 & 0.00 & 2,122.2 & 809.1 & 2,006.70 & 0.00 & 2,006.70 & 2 \\
\hline 13 & 222.5 & 21.20 & 0.00 & 15.98 & 6.54 & 0.91 & 1.94 & 0.80 & 1.00 & 1.00 & 15.91 & 0.00 & 0.00 & 619.2 & 227.6 & 716.71 & 0.00 & 716.71 & 3 \\
\hline 12 & 210.0 & 20.85 & 0.00 & 61.09 & 24.53 & 0.87 & 1.89 & 0.80 & 1.00 & 0.96 & 58.54 & 0.00 & 0.00 & 2,434.6 & 932.6 & 2,518.95 & 0.00 & 2,518.95 & 3 \\
\hline 11 & 190.0 & 20.26 & 0.00 & 61.09 & 24.53 & 0.87 & 1.89 & 0.80 & 1.00 & 0.96 & 58.54 & 1.29 & 0.83 & 2,635.8 & 1,063.3 & 2,447.94 & 56.48 & 2,504.42 & \\
\hline 10 & 170.0 & 19.63 & 0.00 & 64.18 & 24.82 & 0.92 & 1.95 & 0.80 & 1.00 & 1.00 & 64.10 & 17.22 & 10.00 & 3,284.4 & 1,355.0 & 2,680.49 & 700.78 & 3,003.89 & 1 \\
\hline 9 & 150.0 & 18.94 & 0.00 & 63.67 & 24.53 & 0.91 & 1.94 & 0.80 & 1.00 & 0.99 & 63.16 & 21.95 & 14.17 & 3,324.9 & 1,397.0 & 2,533.92 & 897.27 & 2,898.36 & 1 \\
\hline 8 & 130.0 & 18.18 & 0.00 & 63.67 & 24.53 & 0.91 & 1.94 & 0.80 & 1.00 & 0.99 & 63.16 & 23.05 & 15.00 & 3,339.2 & 1,408.1 & 2,432.40 & 907.43 & 2,782.25 & 1 \\
\hline 7 & 110.0 & 17.33 & 0.00 & 64.18 & 24.82 & 0.92 & 1.95 & 0.80 & 1.00 & 1.00 & 64.10 & 25.92 & 18.33 & 3,405.9 & 1,449.3 & 2,367.00 & 1,006.1 & 2,652.57 & 1 \\
\hline 6 & 90.00 & 16.37 & 0.00 & 65.89 & 25.86 & 0.94 & 1.99 & 0.80 & 1.00 & 1.00 & 65.89 & 25.92 & 18.33 & 3,419.4 & 1,465.6 & 2,344.34 & 950.04 & 2,504.77 & 3 \\
\hline 5 & 70.00 & 15.23 & 0.00 & 69.50 & 27.44 & 0.99 & 2.09 & 0.80 & 1.00 & 1.00 & 69.50 & 25.92 & 18.33 & 3,448.3 & 1,486.2 & 2,413.16 & 884.21 & 2,331.22 & 3 \\
\hline 4 & 50.00 & 13.84 & 0.00 & 70.88 & 28.15 & 1.00 & 2.10 & 0.80 & 1.00 & 1.00 & 70.88 & 25.92 & 18.33 & 3,478.6 & 1,499.1 & 2,251.42 & 803.17 & 2,117.54 & 3 \\
\hline 3 & 30.00 & 12.29 & 0.00 & 72.54 & 29.19 & 1.00 & 2.10 & 0.80 & 1.00 & 1.00 & 72.54 & 25.92 & 18.33 & 3,468.2 & 1,502.1 & 2,046.30 & 713.26 & 1,880.50 & 3 \\
\hline 2 & 12.50 & 12.29 & 0.00 & 45.75 & 18.99 & 0.87 & 1.89 & 0.80 & 1.00 & 0.96 & 43.80 & 13.67 & 10.00 & 2,141.4 & 852.8 & 1.109.86 & 381.61 & 1,410.38 & 3 \\
\hline 1 & 2.50 & 12.29 & 0.00 & 9.12 & 4.12 & 1.00 & 2.10 & 0.80 & 1.00 & 1.00 & 9.12 & 0.72 & 0.83 & 409.5 & 97.6 & 257.31 & 24.98 & 235.07 & 3 \\
\hline & QzGh & C & & & & & & & & & & & & \multicolumn{2}{|l|}{40,198.8 16,488.4} & \multicolumn{4}{|c|}{31,996.41} \\
\hline
\end{tabular}

LoadCase 90 deg ice
69.28 mph Wind at 90 deg From Face with Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

\begin{tabular}{rl} 
Site Number: 10047 \\
Location: Portland ME, ME & Copyright Sernaan Engineering Solutions, inc \\
Code: TIAREIA-222 Rev &
\end{tabular}

\section*{Section Forces}

LoadCase Normal
Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sect \\
Seq
\end{tabular} & Wind Height (ft) & qz & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & Sol Ratio & Cf & Df & Dr & Rr & Eff Area (sqft) & \begin{tabular}{l}
Linear \\
Area (sqit)
\end{tabular} & Ice Linear Area (sqft) & \begin{tabular}{l}
Total Weight \\
(ib)
\end{tabular} & Weight Ice (Ib) & Struct Force (lb) & \begin{tabular}{l}
Linear Force \\
(lb)
\end{tabular} & Total Force (lb) & \begin{tabular}{l}
Eff \\
Face
\end{tabular} \\
\hline 16 & 270.0 & 11.67 & 0.00 & 11.13 & 0.00 & 0.32 & 2.25 & 1.00 & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 198.53 & 0.00 & 198.53 & , \\
\hline 15 & 255.0 & 11.48 & 0.00 & 30.73 & 0.00 & 0.44 & 1.99 & 1.00 & 1.00 & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 513.37 & 0.00 & 513.37 & 3 \\
\hline 14 & 235.0 & 11.21 & 0.00 & 32.09 & 0.00 & 0.46 & 1.96 & 1.00 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1,313.1 & 0.0 & 522.19 & 0.00 & 522.19 & 3 \\
\hline 13 & 222.5 & 11.04 & 0.00 & 9.45 & 0.00 & 0.54 & 1.85 & 1.00 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 151.86 & 0.00 & 151.86 & 3 \\
\hline 12 & 210.0 & 10.86 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 1.00 & 1.00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 576.39 & 0.00 & 576.39 & 3 \\
\hline 11 & 190.0 & 10.55 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 1.00 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 560.14 & 17.88 & 578.03 & 3 \\
\hline 10 & 170.0 & 10.22 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 589.42 & 230.90 & 820.32 & 1 \\
\hline 9 & 150.0 & 9.86 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 565.02 & 284.04 & 849.06 & 1 \\
\hline 8 & 130.0 & 9.47 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 542.39 & 286.32 & 828.71 & 1 \\
\hline 7 & 110.0 & 9.03 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 1.00 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1,956.5 & 0.0 & 520.48 & 306.92 & 827.41 & 1 \\
\hline 6 & 90.00 & 8.52 & 0.00 & 40.03 & 0.00 & 0.57 & 1.82 & 1.00 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 501.43 & 289.82 & 791.25 & 3 \\
\hline 5 & 70.00 & 7.93 & 0.00 & 42.06 & 0.00 & 0.60 & 1.80 & 1.00 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 496.10 & 269.74 & 765.84 & 3 \\
\hline 4 & 50.00 & 7.21 & 0.00 & 42.73 & 0.00 & 0.61 & 1.80 & 1.00 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 460.01 & 245.02 & 705.03 & 3 \\
\hline 3 & 30.00 & 6.40 & 0.00 & 43.35 & 0.00 & 0.62 & 1.79 & 1.00 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,966.2 & 0.0 & 416.42 & 217.59 & 634.01 & 3 \\
\hline 2 & 12.50 & 6.40 & 0.00 & 26.77 & 0.00 & 0.51 & 1.89 & 1.00 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1,288.7 & 0.0 & 248.34 & 114.81 & 363.15 & 3 \\
\hline 1 & 2.50 & 6.40 & 0.00 & 5.00 & 0.00 & 0.57 & 1.82 & 1.00 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 47.05 & 6.02 & 53.07 & 3 \\
\hline ** \(=\) & 2QzGhA & Ag Con & & & & & & & & & & & & 23,710.3 & 0.0 & & & 9,178.20 & \\
\hline
\end{tabular}

LoadCase 60 deg
50.00 mph Wind at \(\mathbf{6 0} \mathrm{deg}\) From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sect
Seq & Wind Height (ft) & qz & Total Flat Area (sqift) & Total Round Area (sqft) & \begin{tabular}{l}
Ice \\
Round Area \\
(sqft)
\end{tabular} & \begin{tabular}{l}
Sol \\
Ratio
\end{tabular} & Cf & Df & Dr & Rr & Eff Area (sqft) & Linear Area (sqft) & \begin{tabular}{l}
Ice \\
Linear Area (sqft)
\end{tabular} & \begin{tabular}{l}
Total Weight \\
(lb)
\end{tabular} & Weight Ice (lb) & Struct Force (lb) & Linear Force (lb) & Total Force (lb) & \begin{tabular}{l}
Eff \\
Face
\end{tabular} \\
\hline 16 & 270.0 & 11.67 & 0.00 & 11.13 & 0.00 & 0.32 & 2.250 & 0.80 & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 198.53 & 0.00 & 198.53 & 3 \\
\hline 15 & 255.0 & 11.48 & 0.00 & 30.73 & 0.00 & 0.44 & 1.99 & 0.80 & 1.00 & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 513.37 & 0.00 & 513.37 & 3 \\
\hline 14 & 235.0 & 11.21 & 0.00 & 32.09 & 0.00 & 0.46 & 1.96 & 0.80 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1,313.1 & 0.0 & 522.19 & 0.00 & 522.19 & 3 \\
\hline 13 & 222.5 & 11.04 & 0.00 & 9.45 & 0.00 & 0.54 & 1.85 & 0.80 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 151.86 & 0.00 & 151.86 & 3 \\
\hline 12 & 210.0 & 10.86 & 0.00 & 36.56 & 0.00 & 0.52 & 1.870 & 0.80 & 1,00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 576.39 & 0.00 & 576.39 & 3 \\
\hline 11 & 190.0 & 10.55 & 0.00 & 36.56 & 0.00 & 0.52 & 1.87 & 0.80 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 560.14 & 17.88 & 578.03 & 3 \\
\hline 10 & 170.0 & 10.22 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 0.80 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 589.42 & 230.90 & 820.32 & 1 \\
\hline 9 & 150.0 & 9.86 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 0.80 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 565.02 & 284.04 & 849.06 & 1 \\
\hline 8 & 130.0 & 9.47 & 0.00 & 39.14 & 0.00 & 0.56 & 1.83 & 0.80 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 542.39 & 286.32 & 828.71 & 1 \\
\hline 7 & 110.0 & 9.03 & 0.00 & 39.36 & 0.00 & 0.56 & 1.83 & 0.80 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1,956.5 & 0.0 & 520.48 & 306.92 & 827.41 & 1 \\
\hline 6 & 90.00 & 8.52 & 0.00 & 40.03 & 0.00 & 0.57 & 1.820 & 0.80 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 501.43 & 289.82 & 791.25 & 3 \\
\hline 5 & 70.00 & 7.93 & 0.00 & 42.06 & 0.00 & 0.60 & 1.80 & 0.80 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 496.10 & 269.74 & 765.84 & 3 \\
\hline 4 & 50.00 & 7.21 & 0.00 & 42.73 & 0.00 & 0.61 & 1.80 & 0.80 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 460.01 & 245.02 & 705.03 & 3 \\
\hline 3 & 30.00 & 6.40 & 0.00 & 43.35 & 0.00 & 0.62 & 1.79 & 0.80 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,966.2 & 0.0 & 416.42 & 217.59 & 634.01 & 3 \\
\hline 2 & 12.50 & 6.40 & 0.00 & 26.77 & 0.00 & 0.51 & 1.89 & 0.80 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1,288.7 & 0.0 & 248.34 & 114.81 & 363.15 & 3 \\
\hline 1 & 2.50 & 6.40 & 0.00 & 5.00 & 0.00 & 0.57 & 1.820 & 80 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 47.05 & 6.02 & 53.07 & 3 \\
\hline & 2QzGhA & Ag Co & & & & & & & & & & & & 23,710.3 & 0.0 & & & 9,178.20 & \\
\hline
\end{tabular}


\section*{Section Forces}

LoadCase 90 deg
Allow Stress Inc: 1.333
Dead LF: 1.000
WInd LF: 1.000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sect \\
Seq
\end{tabular} & Wind Helght (ft) & qz & Total Flat Area (sqft) & Total Round Area (sqft) & Ice Round Area (sqft) & Sol Ratio & Cf Df & Dr & Rr & Eff Area (sqft) & \begin{tabular}{l}
LInear \\
Area (sqft)
\end{tabular} & Ice LInear Area (sqft) & Total Welght (lb) & Weight Ice (lb) & Struct Force (lb) & Linear Force (lb) & Total Force (Ib) & Eff Face \\
\hline 16 & 270.0 & 11.67 & 0.00 & 11.13 & 0.00 & 0.32 & 2.250 .85 & 1.00 & 0.62 & 6.92 & 0.00 & 0.00 & 484.7 & 0.0 & 198.53 & 0.00 & 198.53 & 3 \\
\hline 15 & 255.0 & 11.48 & 0.00 & 30.73 & 0.00 & 0.44 & 1.990 .85 & 1.00 & 0.67 & 20.54 & 0.00 & 0.00 & 1,239.1 & 0.0 & 513.37 & 0.00 & 513.37 & 3 \\
\hline 14 & 235.0 & 11.21 & 0.00 & 32.09 & 0.00 & 0.46 & 1.960 .85 & 1.00 & 0.68 & 21.73 & 0.00 & 0.00 & 1.313.1 & 0.0 & 522.19 & 0.00 & 522.19 & 3 \\
\hline 13 & 222.5 & 11.04 & 0.00 & 9.45 & 0.00 & 0.54 & 1.850 .85 & 1.00 & 0.72 & 6.79 & 0.00 & 0.00 & 391.6 & 0.0 & 151.86 & 0.00 & 151.86 & 3 \\
\hline 12 & 210.0 & 10.86 & 0.00 & 36.56 & 0.00 & 0.52 & 1.870 .85 & 1.00 & 0.71 & 25.93 & 0.00 & 0.00 & 1,502.0 & 0.0 & 576.39 & 0.00 & 576.39 & 3 \\
\hline 11 & 190.0 & 10.55 & 0.00 & 36.56 & 0.00 & 0.52 & 1.870 .85 & 1.00 & 0.71 & 25.93 & 1.29 & 0.00 & 1,572.5 & 0.0 & 560.14 & 17.88 & 578.03 & 3 \\
\hline 10 & 170.0 & 10.22 & 0.00 & 39.36 & 0.00 & 0.56 & 1.830 .85 & 1.00 & 0.73 & 28.78 & 17.22 & 0.00 & 1,929.3 & 0.0 & 589.42 & 230.90 & 820.32 & 1 \\
\hline 9 & 150.0 & 9.86 & 0.00 & 39.14 & 0.00 & 0.56 & 1.830 .85 & 1.00 & 0.73 & 28.56 & 21.95 & 0.00 & 1,928.0 & 0.0 & 565.02 & 284.04 & 849.06 & , \\
\hline 8 & 130.0 & 9.47 & 0.00 & 39.14 & 0.00 & 0.56 & 1.830 .85 & 1.00 & 0.73 & 28.56 & 23.05 & 0.00 & 1,931.2 & 0.0 & 542.39 & 286.32 & 828.71 & 1 \\
\hline 7 & 110.0 & 9.03 & 0.00 & 39.36 & 0.00 & 0.56 & 1.830 .85 & 1.00 & 0.73 & 28.78 & 25.92 & 0.00 & 1,956.5 & 0.0 & 520.48 & 306.92 & 827.41 & 1 \\
\hline 6 & 90.00 & 8.52 & 0.00 & 40.03 & 0.00 & 0.57 & 1.820 .85 & 1.00 & 0.74 & 29.50 & 25.92 & 0.00 & 1,953.9 & 0.0 & 501.43 & 289.82 & 791.25 & \\
\hline 5 & 70.00 & 7.93 & 0.00 & 42.06 & 0.00 & 0.60 & 1.800 .85 & 1.00 & 0.75 & 31.71 & 25.92 & 0.00 & 1,962.1 & 0.0 & 496.10 & 269.74 & 765.84 & 3 \\
\hline 4 & 50.00 & 7.21 & 0.00 & 42.73 & 0.00 & 0.61 & 1.800 .85 & 1.00 & 0.76 & 32.48 & 25.92 & 0.00 & 1,979.5 & 0.0 & 460.01 & 245.02 & 705.03 & \\
\hline 3 & 30.00 & 6.40 & 0.00 & 43.35 & 0.00 & 0.62 & 1.790 .85 & 1.00 & 0.77 & 33.19 & 25.92 & 0.00 & 1,968.2 & 0.0 & 416.42 & 217.59 & 634.01 & 3 \\
\hline 2 & 12.50 & 6.40 & 0.00 & 26.77 & 0.00 & 0.51 & 1.890 .85 & 1.00 & 0.70 & 18.80 & 13.67 & 0.00 & 1.288.7 & 0.0 & 248.34 & 114.81 & 363.15 & 3 \\
\hline 1 & 2.50 & 6.40 & 0.00 & 5.00 & 0.00 & 0.57 & 1.820 .85 & 1.00 & 0.74 & 3.69 & 0.72 & 0.00 & 311.9 & 0.0 & 47.05 & 6.02 & 53.07 & 3 \\
\hline * & 2QzGh & Ag Con & & & & & & & & & & & 23,710.3 & 0.0 & & & 9,178.20 & \\
\hline
\end{tabular}


Tower Loading
Discrete Appurtenance Properties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Attach \\
Elev \\
(ft)
\end{tabular} & Description & Qty & Weight (lb) & No Ice CaAa (sf) & CaAa Factor & Weight (lib) & \[
\begin{aligned}
& \text { Ice } \\
& \text { CaAa }
\end{aligned}
\]
(sf) & CaAa Factor & Distance From Face (fit) & \(X\) Angle (deg) & \begin{tabular}{l}
Vert Ecc \\
(ft)
\end{tabular} \\
\hline 271.0 & Antel WPA-80080/4CF & 6 & 10.00 & 5.160 & 0.71 & 25.00 & 5.570 & 0.71 & 0.000 & 0.00 & 0.000 \\
\hline 271.0 & Antel LPA-185080/8CF & 6 & 7.00 & 2.790 & 1.00 & 25.00 & 3.250 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 271.0 & Flat Light Sector Frame & 3 & 400.00 & 17.900 & 0.75 & 510.00 & 22.200 & 0.75 & 0.000 & 0.00 & 0.000 \\
\hline 260.0 & Ice Shield & 1 & 150.00 & 6.000 & 1.00 & 350.00 & 7.500 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 258.0 & Round Sector Frame & 3 & 300.00 & 14.400 & 0.75 & 415.00 & 19.200 & 0.75 & 0.000 & 0.00 & 0.000 \\
\hline 258.0 & Radio Waves G3-2.4 & 1 & 40.00 & 4.200 & 1.00 & 80.00 & 11:760 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 258.0 & RFS APX16DWV-16DWV-S-E- & 6 & 39.60 & 6.700 & 0.67 & 69.38 & 7.350 & 0.67 & 0.000 & 0.00 & 0.000 \\
\hline 258.0 & Ericsson KRY 112 144/1 & 3 & 11.00 & 0.410 & 0.67 & 14.10 & 0.550 & 0.67 & 0.000 & 0.00 & 0.000 \\
\hline 258.0 & RFS ATMAA1412D-1A20 & 3 & 13.00 & 1.170 & 0.67 & 20.60 & 1.390 & 0.67 & 0.000 & 0.00 & 0.000 \\
\hline 255.0 & 8' HP MW Dish & 1 & 470.00 & 63.420 & 1.00 & 1010.00 & 64.750 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 250.0 & Bird BA40-41-DIN & 1 & 32.00 & 5.050 & 1.00 & 108.00 & 7.870 & 1.00 & 0.000 & 0.00 & 5.750 \\
\hline 244.0 & Ice Shield & 1 & 150.00 & 6.000 & 1.00 & 350.00 & 7.500 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 241.0 & 8' HP MW Dish & 1 & 470.00 & 63.420 & 1.00 & 1010.00 & 64.750 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 225.0 & Radio Waves HPD6-4.7NS & 1 & 281.00 & 35.670 & 1.00 & 484.50 & 36.670 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 225.0 & Bird BA40-41-DIN & 1 & 32.00 & 5.050 & 1.00 & 108.00 & 7.870 & 1.00 & 0.000 & 0.00 & 5.750 \\
\hline 225.0 & Ice Shield & 1 & 150.00 & 6.000 & 1.00 & 350.00 & 7.500 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 220.0 & 8' HP MW Dish & 1 & 470.00 & 63.420 & 1.00 & 1010.00 & 64.750 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 193.0 & KMW HB-X-WM-17-65-00T. & 3 & 15.90 & 1.140 & 0.76 & 23.30 & 1.370 & 0.76 & 0.000 & 0.00 & 0.000 \\
\hline 193.0 & KMW HB-X-WM-17-65-00T & 3 & 30.00 & 1.950 & 1.00 & 50.90 & 2.260 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 193.0 & Clearwire Mount & 1 & 350.00 & 8.500 & 1.00 & 450.00 & 10.500 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 190.0 & 10' Omni & 1 & 25.00 & 3.000 & 1.00 & 40.00 & 4.000 & 1.00 & 0.000 & 0.00 & 5.000 \\
\hline 190.0 & Standoff Mount & 1 & 150.00 & 4.000 & 1.00 & 250.00 & 6.000 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 180.0 & Antel BSA-185065/10CF & 6 & 9.10 & 3.910 & 0.67 & 27.95 & 4.490 & 0.67 & 0.000 & 0.00 & 0.000 \\
\hline 180.0 & Round Sector Frame & 3 & 300.00 & 14.400 & 0.75 & 415.00 & 19.200 & 0.75 & 0.000 & 0.00 & 0.000 \\
\hline 170.0 & TTA & 1 & 10.00 & 1.400 & 1.00 & 20.34 & 1.640 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 170.0 & 10' Omni & 1 & 25.00 & 3.000 & 1.00 & 40.00 & 4.000 & 1.00 & 0.000 & 0.00 & 5.000 \\
\hline 170.0 & Standoff Mount & 1 & 150.00 & 4.000 & 1.00 & 250.00 & 6.000 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 155.0 & 4' HP MW Dish & 1 & 170.00 & 15.860 & 1.00 & 280.00 & 16.520 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 120.0 & \(2{ }^{2} \mathrm{Omni}\) & 2 & 10.00 & 0.680 & 1.00 & 19.00 & 0.940 & 1.00 & 0.000 & 0.00 & 1.500 \\
\hline 120.0 & Standoff Mount & 2 & 150.00 & 4.000 & 1.00 & 250.00 & 6.000 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 96.00 & 10' Omni & 1 & 25.00 & 3.000 & 1.00 & 40.00 & 4.000 & 1.00 & 0.000 & 0.00 & 5.000 \\
\hline 96.00 & Standoff Mount & 1 & 150.00 & 4.000 & 1.00 & 250.00 & 6.000 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 75.00 & Radio Waves HPD4-4.7 & 1 & 170.00 & 15.860 & 1.00 & 261.70 & 16.520 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline 36.00 & GPS & 1 & 10.00 & 1.000 & 1.00 & 18.24 & 1.210 & 1.00 & 0.000 & 0.00 & 0.500 \\
\hline 36.00 & Standoff Mount & 1 & 150.00 & 4.000 & 1.00 & 250.00 & 6.000 & 1.00 & 0.000 & 0.00 & 0.000 \\
\hline & Totals & 71 & 7553.90 & & & 12779.46 & & Num & of Appurt & nance & 5 \\
\hline
\end{tabular}

Linear Appurtenance Properties
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Elev From (ft) & Elev
To
(ft) & Description & Qty & Width (in) & Weight ( \(\mathrm{lb} / \mathrm{ft}\) ) & \[
\begin{aligned}
& \text { Pct } \\
& \text { In Wind }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spread On } \\
& \text { Faces }
\end{aligned}
\] & Bundling Arrangement \\
\hline 10.00 & 271.0 & 15/8" Coax & 10 & 1.98 & 1.04 & 60.00 & & Separate \\
\hline 10.00 & 271.0 & 15/8" Coax & 2 & 1.98 & 1.04 & 100.00 & 2 & Separate \\
\hline 10.00 & 260.0 & 15/8" Coax & 12 & 1.98 & 0.82 & 66.60 & 2 & Bundled \\
\hline 10.00 & 260.0 & 1/2" Coax & 1 & 0.65 & 0.16 & 100.00 & 2 & Separate \\
\hline 10.00 & 255.0 & EW52 & 2 & 2.25 & 0.59 & 100.00 & 1 & Separate \\
\hline 0.00 & 250.0 & 7/8" Coax & 1 & 1.09 & 0.33 & 100.00 & , & Separate \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Site Number: & 10047 \\
Location: & Portland ME, ME \\
& \\
Code: & TIA/EIA-222 Rev F
\end{tabular}
Copyright Semaan Engineering Solutions, Inc
\[\)\begin{tabular}{l}
Y \\
\(8 / 20 / 2010\) \\
\text { 2:09:37 PM } \\
\(X\)
\end{tabular}
\]

\section*{Tower Loading}
\begin{tabular}{lllllllll} 
\\
10.00 & 241.0 & 1/2" Coax & 3 & 0.63 & 0.15 & 66.60 & 1 & Separate \\
0.00 & 225.0 & \(7 / 8^{\prime \prime}\) Coax & 2 & 1.09 & 0.33 & 100.00 & 3 & Separate \\
10.00 & 220.0 & EW52 & 2 & 2.25 & 0.69 & 100.00 & 1 & Separate \\
10.00 & 193.0 & \(15 / 8^{\prime \prime}\) Coax & 6 & 1.98 & 0.82 & 50.00 & 1 & Separate \\
10.00 & 190.0 & \(11 / 4^{\prime \prime}\) Coax & 1 & 1.55 & 0.66 & 100.00 & Lin App & Separate \\
10.00 & 180.0 & \(15 / 8^{\prime \prime}\) Coax & 6 & 1.98 & 1.04 & 66.60 & Lin App & Separate \\
0.00 & 170.0 & \(7 / 8^{\prime \prime}\) Coax & 1 & 1.09 & 0.33 & 100.00 & Lin App & Separate \\
10.00 & 170.0 & \(1 / 2^{\prime \prime}\) Coax & 1 & 0.63 & 0.15 & 100.00 & Lin App & Separate \\
10.00 & 155.0 & EW90 & 2 & 1.32 & 0.32 & 100.00 & Lin App & Separate \\
0.00 & 120.0 & \(1 / 2^{\prime \prime}\) Coax & 1 & 0.63 & 0.16 & 100.00 & Lin App & Separate \\
10.00 & 120.0 & \(7 / 8^{\prime \prime}\) Coax & 1 & 1.09 & 0.33 & 100.00 & Lin App & Separate \\
10.00 & 96.00 & \(15 / 8^{\prime \prime}\) Coax & 1 & 1.98 & 0.82 & 100.00 & 3 & Separate \\
0.00 & 75.00 & \(7 / 8^{\prime \prime}\) Coax & 1 & 1.09 & 0.33 & 100.00 & 3 & Separate \\
10.00 & 36.00 & \(1 / 2^{\prime \prime}\) Coax & 1 & 0.63 & 0.15 & 100.00 & 3 & Separate
\end{tabular}
\begin{tabular}{rl} 
Site Number: \\
Location: Portland ME, ME & Copyright Seman Engineering Solutions, inc \\
Code: TIA/EA-222 Rev F & \(8 / 2012010\) 2:09:37 PM
\end{tabular}

\section*{Force/Stress Summary}



\section*{Force/Stress Summary}

\begin{tabular}{rl} 
Sito Number: 10047 \\
Location: Portand ME, ME & Copyrigh Semaan Engineering Solutions, Inc \\
Code: TIAEIA-222 RevF & \(8 / 20 / 2010\) 2:09:37 PMI
\end{tabular}

\section*{Force/Stress Summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section: 71 & \multicolumn{5}{|c|}{Bot Elev (ft): 100.0} & \multicolumn{7}{|l|}{Height (ft): 20.000} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\begin{array}{cc}\text { Shear } & \text { Bear } \\ \text { Cap } & \text { Cap } \\ \text { (kip) } & \text { (kip) }\end{array}\)}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Use } \\
\%
\end{gathered}
\]} & \multirow[b]{2}{*}{Controls} \\
\hline Max Compression Member & Force (kip) & Load Case & \begin{tabular}{l}
Len \\
(ft)
\end{tabular} & \multicolumn{4}{|l|}{Bracing \%} & Fa (ksi) & \multicolumn{3}{|l|}{Member Cap Num (kip) Bolts} & \begin{tabular}{l}
Num \\
Holes
\end{tabular} & & & & \\
\hline LEG SOL-2 1/4" SOLID & -102.74 & Normal Ice & 2.33 & 100 & 0100 & 100 & 49.8 & 32.5 & 129 & 27 & 0 & 0 & 0.00 & 0.00 & & Member X \\
\hline HORIZ SOL - 3/4" SOLID & -0.62 & 60 deg Ice & 3.500 & 100 & 0100 & 100 & 224.0 & 4.0 & & & 0 & 0 & 0.00 & 0.00 & 35 & Member \(X\) \\
\hline DIAG SOL.3/4" SOLID & -3.17 & 90 deg Ice & 4.206 & 50 & 050 & 50 & 134.6 & 11.0 & & 85 & 0 & 0 & 0.00 & 0.00 & 65 & Member X \\
\hline Max Tension Member & Force (kip) & Load Case & \[
\begin{gathered}
\text { Fy } \\
(\mathbf{k s i})
\end{gathered}
\] & & \[
\begin{aligned}
& \text { Cap } N \\
& \text { (klp) } B
\end{aligned}
\] & \[
\begin{aligned}
& \text { Num } \\
& \text { Bolts }
\end{aligned}
\] & Num Holes & \[
\begin{aligned}
& \text { She } \\
& \text { Cap (1 }
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { Use } \\
& \%
\end{aligned}
\] & Con & trols & & \\
\hline LEG & 0.00 & & & 0 & 0.00 & 0 & 0 & & 0.00 & & 0.00 & 0 & & & & \\
\hline HORIZ SOL - 3/4" SOLID & 1.47 & Normal Ice & 50 & & 17.67 & 0 & 0 & & 0.00 & & 0.00 & 8 & 8 Mem & & & \\
\hline DIAG SOL - 3/4" SOLID & 2.35 & 90 deg ice & 50 & & 17.67 & 0 & 0 & & 0.00 & & 0.00 & 13 & 3 Me & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section: 81 & \multicolumn{6}{|r|}{Bot Elev (ft): 120.0 Hei} & \multicolumn{5}{|l|}{eight (ft): 20.000} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Shear Bear Cap Cap (kip) (kip)}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Use } \\
\%
\end{gathered}
\]} & \multirow[b]{2}{*}{Controls} \\
\hline Max Compression Member & Force (kip) & Load Case & \begin{tabular}{l}
Len \\
(ft)
\end{tabular} & & racing Y & & KL/R & Fa (ksi) & & \begin{tabular}{l}
ber \\
p Num \\
) Bolts
\end{tabular} & Num Holes & & & & \\
\hline LEG SOL-2 1/4" SOLID & -81.10 & Normal lce & 2.33 & 100 & 100 & 100 & 49.8 & 32.5 & 129. & 270 & 0 & 0.00 & 0.00 & 62 & Member \(X\) \\
\hline HORIZ SOL - 3/4" SOLID & -0.71 & Normal lce & 3.500 & 100 & 0100 & 100 & 224.0 & 4.0 & & 750 & 0 & 0.00 & 0.00 & 40 & Member \(X\) \\
\hline DIAG SOL - 3/4" SOLID & -2.84 & 90 deg Ice & 4.206 & 50 & 050 & 50 & 134.6 & 11.0 & & 850 & 0 & 0.00 & 0.00 & 58 & Member \(X\) \\
\hline Max Tension Member & Force (kip) & Load Case & \[
\begin{aligned}
& \text { Fv } \\
& \text { (ksi) }
\end{aligned}
\] & & Cap \(N\) kip) B & \begin{tabular}{l}
Num \\
Bolts
\end{tabular} & Num Holes & Shea Cap & & \[
\begin{gathered}
\text { Bear } \\
\text { Cap(kip) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Use } \\
\hline \% \\
\hline
\end{gathered}
\] & Con & trols & & \\
\hline LEG & 0.00 & & & 0 & 0.00 & 0 & 0 & & 0.00 & 0.00 & 0 & 0 & & & \\
\hline HORIZ SOL - \(3 / 4{ }^{\prime \prime}\) SOLID & 1.15 & 60 deg lce & 50 & 0 & 17.67 & 0 & 0 & & 0.00 & 0.00 & 00 & Mem & & & \\
\hline DIAG SOL-3/4" SOLID & 2.11 & 90 deg lce & 50 & 0 & 17.67 & 0 & 0 & & 0.00 & 0.00 & O 11 & Mem & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section: 91 & \multicolumn{5}{|c|}{Bot Elev (ft): 140.0} & \multicolumn{7}{|l|}{Height (ft): 20.000} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{cc} 
Shear & Bear \\
Cap & Cap \\
(kip) & (kip)
\end{tabular}}} & \multirow[b]{2}{*}{Use \%} & \multirow[b]{2}{*}{Controls} \\
\hline Max Compression Member & Force
(kip) & Load Case & \begin{tabular}{l}
Len \\
(ft)
\end{tabular} & \multicolumn{3}{|l|}{Bracing \%} & & Fa (ksi) & \multicolumn{2}{|l|}{Member Cap Num (kip) Bolt} &  & \begin{tabular}{l}
Num \\
Holes
\end{tabular} & & & & \\
\hline LEG SOL-2 1/4" SOLID & -74.26 & Normal lce & 2.33 & 100 & 100 & 100 & 49.8 & 32.5 & 129. & 27 & 0 & 0 & 0.00 & 0.00 & 57 & Member \(X\) \\
\hline HORIZ SOL - 3/4" SOLID & -0.01 & Normal No lce & 3.500 & 100 & 100 & 100 & 224.0 & 4.0 & & 75 & 0 & 0 & 0.00 & 0.00 & & Member \(X\) \\
\hline DIAG SOL-3/4" SOLID & -1.62 & 60 deg Ice & 4.206 & 50 & 50 & - 50 & 134.6 & 11.0 & & 85 & 0 & 0 & 0.00 & 0.00 & 33 & Member X \\
\hline Max Tension Member & Force (kip) & Load Case & \[
\begin{gathered}
\text { Fy } \\
\text { (ksi) }
\end{gathered}
\] & & ap kip) & Num Bolts & \begin{tabular}{l}
Num \\
Holes
\end{tabular} & \begin{tabular}{l}
 \\
Cap
\end{tabular} & & Be
Cap & Bear
\[
p \text { (kip) }
\] & \[
\begin{gathered}
\text { Use } \\
\hline \\
\hline
\end{gathered}
\] & Con & trols & & \\
\hline LEG & 0.00 & & 0 & 0 & 0.00 & 0 & 0 & & 0.00 & & 0.00 & 0 & & & & \\
\hline HORIZ SOL - 3/4" SOLID & 0.72 & 60 deg Ice & 50 & & 17.67 & 0 & 0 & & 0.00 & & 0.00 & 0 & Mem & ber & & \\
\hline DIAG SOL - 3/4" SOLID & 1.00 & 60 deg No lce & 50 & & 17.67 & 0 & 0 & & 0.00 & & 0.00 & 05 & Mem & ber & & \\
\hline
\end{tabular}

Copyright Semaan Engineering Solutions, Inc


\section*{Force/Stress Summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section: 101 & \multicolumn{5}{|c|}{Bot Elev (ft): 160.0} & \multicolumn{6}{|l|}{Height (ft): 20.000} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{cc} 
Shear Bear \\
Cap & Cap \\
(klp) & (klp)
\end{tabular}}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Use } \\
\% \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Controls} \\
\hline Max Compression Member & \begin{tabular}{l}
Force \\
(kip)
\end{tabular} & Load Case & \begin{tabular}{l}
Len \\
(ft)
\end{tabular} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Bracing \% } \\
& \text { X Y Z }
\end{aligned}
\]} & KL/R & Fa (ksi) & \multicolumn{2}{|l|}{Member Cap Num (klp) Bolts} & \begin{tabular}{l}
Num \\
Holes
\end{tabular} & & & & \\
\hline LEG SOL-2 1/4" SOLID & -71.15 & Normal Ice & 2.33 & 100 & 0100 & 100 & 49.8 & 32.5 & 129.27 & 70 & 0 & 0.00 & 0.00 & & Member X \\
\hline HORIZ SOL - 3/4" SOLID & -0.63 & 60 deg lce & 3.500 & 100 & 0100 & 100 & 224.0 & 4.0 & - 1.75 & 50 & 0 & 0.00 & 0.00 & 36 & Member \(X\) \\
\hline DIAG SOL-314" SOLID & -2.76 & 90 deg lce & 4.206 & 50 & 050 & 50 & 134.6 & 11.0 & - 4.85 & 50 & 0 & 0.00 & 0.00 & 56 & Member X \\
\hline Max Tension Member & Force (kip) & Load Case & \[
\begin{gathered}
\text { Fy } \\
\text { (ksi) }
\end{gathered}
\] & & \[
\begin{gathered}
\text { Cap } \\
\text { (kip) } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Num \\
Bolts
\end{tabular} & Num Holes & She Cap & өar
\[
\ldots
\]
(kip) & \[
\begin{aligned}
& \text { Bear } \\
& \text { ap (klp) }
\end{aligned}
\] &  & Con & trols & & \\
\hline LEG & 0.00 & & 0 & 0 & 0.00 & 0 & 0 & & 0.00 & 0.00 & 0 & 0 & & & \\
\hline HORIZ SOL - 3/4" SOLID & 1.23 & Normal lce & 50 & 01 & 17.67 & 0 & 0 & & 0.00 & 0.00 & O & 6 Mem & ber & & \\
\hline DIAG SOL - 3/4" SOLID & 2.50 & 90 deg lce & 50 & 01 & 17.67 & 0 & 0 & & 0.00 & 0.00 & O 14 & 4 Mem & ber & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section: 122 & \multicolumn{5}{|c|}{Bot Elev (ft): 200.0} & \multicolumn{6}{|l|}{Height (ft): 20.000} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Shear Bear } \\
& \text { Cap Cap } \\
& \text { (kip) (kip) }
\end{aligned}
\]}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Use } \\
\%
\end{gathered}
\]} & \multirow[b]{2}{*}{Controls} \\
\hline Max Compression Member & \begin{tabular}{l}
Force \\
(kip)
\end{tabular} & Load Case & \begin{tabular}{l}
Len \\
(ft)
\end{tabular} & & & & & Fa (ksi) & & \begin{tabular}{l}
ber \\
Num \\
Bolts
\end{tabular} & \begin{tabular}{l}
Num \\
Holes
\end{tabular} & & & & \\
\hline LEG SOL-2" SOLID & -65.07 & Normal Ice & 2.33 & 100 & 100 & 100 & 56.0 & 31.2 & 97. & 96 & 0 & 0.00 & 0.00 & 66 & Member X \\
\hline HORIZ SOL - 3/4" SOLID & -1.86 & 60 deg lce & 3.500 & 80 & 80 & 80 & 179.2 & 6.2 & & 74 & 0 & 0.00 & 0.00 & 68 & Member \(X\) \\
\hline DIAG SOL - 3/4" SOLID & -5.19 & 60 deg lce & 4.206 & 47 & 47 & 47 & 126.5 & 12.4 & & 49 & 0 & 0.00 & 0.00 & 94 & Member X \\
\hline Max Tension Member & \begin{tabular}{l}
Force \\
(kip)
\end{tabular} & Load Case & \[
\begin{gathered}
\mathrm{Fy} \\
(\mathbf{k s i})
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { Vum } \\
& \text { 3olts }
\end{aligned}
\] & Num Holes & \[
\begin{aligned}
& \text { Shea } \\
& \text { Cap (k }
\end{aligned}
\] & & Bear
Cap(kip) &  & Con & trols & & \\
\hline LEG SOL-2"SOLID & 6.39 & 60 deg No lce & 50 & & 5.65 & 0 & 0 & & . 00 & 0.00 & 0 & Mem & ber & & \\
\hline HORIZ SOL - 3/4" SOLID & 2.00 & Normal Ice & 50 & & 7.67 & 0 & 0 & & . 00 & 0.00 & - 11 & Mem & & & \\
\hline DIAG SOL-3/4" SOLID & 5.08 & 60 deg No lce & 50 & & 7.67 & 0 & 0 & & 0.00 & 0.00 & - 28 & Mem & & & \\
\hline
\end{tabular}



\section*{Force/Stress Summary}

\begin{tabular}{|c|c|c|}
\hline & & Copyright Semaan Engineering Solutions, Inc \\
\hline Site Number: & 10047 & Y 8/20/2010 2:09:37 PM \\
\hline Location: & Portland ME, ME & \\
\hline Code: & TIARIA-222 RevF & \(x\) \\
\hline
\end{tabular}

\section*{Support Forces Summary}

\begin{tabular}{rrr} 
Max Reactions (kip) & & \\
\hline Vertical & \(\underline{259.37}\) & \multicolumn{1}{c}{ Anch1 } \\
Horizonal & 0.69 & 71.36
\end{tabular}
\begin{tabular}{rl} 
Site Number: & 10047 \\
Location: & Portland ME, ME
\end{tabular}

\section*{Cable Forces Summary}



Site Number: 10047
Location: Portland ME, ME

Code: TIAEIA-222 Rev F
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 60 deg Ice & 54.67 & 9/16 EHS & A1 & 29 & 17.50 & 2.41 & 13 \\
\hline & & 9166 EHS & A1b & 29a & 17.50 & 2.32 & 13 \\
\hline & & 9/16 EHS & A1a & 29b & 17.50 & 10.01 & 57 \\
\hline & 110.00 & 5/8 EHS & A1 & 57 & 21.20 & 2.35 & 11 \\
\hline & & 5/8 EHS & A1b & 57a & 21.20 & 2.25 & 10 \\
\hline & & \(5 / 8\) EHS & A1a & 57b & 21.20 & 15.42 & 72 \\
\hline & 165.33 & \(11 / 16\) EHS & A1 & 85 & 25.00 & 3.05 & 12 \\
\hline & & 11/16 EHS & A1b & 85a & 25.00 & 2.97 & 11 \\
\hline & & 11/16 EHS & A1a & 85b & 25.00 & 20.14 & 80 \\
\hline & 214.67 & \(5 / 8\) EHS & A1 & 109 & 21.20 & 3.71 & 17 \\
\hline & & \(5 / 8\) EHS & A1b & 109a & 21.20 & 3.70 & 17 \\
\hline & & \(5 / 8\) EHS & A1a & 109b & 21.20 & 15.59 & 73 \\
\hline & & \(5 / 8\) EHS & A1 & T5 & 21.20 & 3.89 & 18 \\
\hline & & 5/8 EHS & A1a & T5b & 21.20 & 15.94 & 75 \\
\hline & & \(5 / 8\) EHS & A1b & T5a & 21.20 & 3.70 & 17 \\
\hline & & \(5 / 8\) EHS & A1b & T5 & 21.20 & 3.70 & 17 \\
\hline & & 588 EHS & A1a & T5a & 21.20 & 15.16 & 71 \\
\hline & & 5/8 EHS & A1 & T5b & 21.20 & 3.53 & 16 \\
\hline & 270.00 & 11/16 EHS & A1 & 139 & 25.00 & 5.23 & 20 \\
\hline & & 11/16 EHS & A1b & 139a & 25.00 & 5.35 & 21 \\
\hline & & 11/16 EHS & A1a & 139b & 25.00 & 15.88 & 63 \\
\hline & & \(5 / 8\) EHS & A1 & T7 & 21.20 & 5.24 & 24 \\
\hline & & \(5 / 8\) EHS & A1a & T7b & 21.20 & 13.49 & 63 \\
\hline & & \(5 / 8 \mathrm{EHS}\) & A1b & T7a & 21.20 & 4.88 & 23 \\
\hline & & \(5 / 8\) EHS & A1b & T7 & 21.20 & 5.19 & 24 \\
\hline & & \(5 / 8\) EHS & A1a & T7a & 21.20 & 13.06 & 61 \\
\hline & & \(5 / 8\) EHS & A1 & T7b & 21.20 & 4.62 & 21 \\
\hline 90 deg lce & 54.67 & 9/16 EHS & A1 & 29 & 17.50 & 5.86 & 33 \\
\hline & & 9/16 EHS & A1b & 29a & 17.50 & 0.76 & 4 \\
\hline & & 9/16 EHS & A1a & 29b & 17.50 & 10.12 & 57 \\
\hline & 110.00 & \(5 / 8\) EHS & A1 & 57 & 21.20 & 8.56 & 40 \\
\hline & & 5/8 EHS & A1b & 57a & 21.20 & 0.71 & 3 \\
\hline & & \(5 / 8\) EHS & A1a & 57b & 21.20 & 15.96 & 75 \\
\hline & 165.33 & 11/16 EHS & A1 & 85 & 25.00 & 10.55 & 42 \\
\hline & & 11/16 EHS & A1b & 85a & 25.00 & 1.27 & 5 \\
\hline & & 11/16 EHS & A1a & 85b & 25.00 & 20.51 & 82 \\
\hline & 214.67 & \(5 / 8\) EHS & A1 & 109 & 21.20 & 8.59 & 40 \\
\hline & & \(5 / 8\) EHS & A1b & 109a & 21.20 & 1.99 & 9 \\
\hline & & 5/8 EHS & A1a & 109b & 21.20 & 15.55 & 73 \\
\hline & & \(5 / 8\) EHS & A1 & T5 & 21.20 & 9.15 & 43 \\
\hline & & \(5 / 8\) EHS & A1a & T5b & 21.20 & 15.73 & 74 \\
\hline & & \(5 / 8 \mathrm{EHS}\) & A1b & T5a & 21.20 & 1.97 & 9 \\
\hline & & \(5 / 8\) EHS & A1b & T5 & 21.20 & 2.02 & 9 \\
\hline & & \(5 / 8\) EHS & A1a & T5a & 21.20 & 15.28 & 72 \\
\hline & & \(5 / 8\) EHS & A1 & T5b & 21.20 & 7.99 & 37 \\
\hline & 270.00 & 11/16 EHS & A1 & 139 & 25.00 & 9.40 & 37 \\
\hline & & 11/16 EHS & A1b & 139a & 25.00 & 3.28 & 13 \\
\hline & & 11/16 EHS & A1a & 139b & 25.00 & 15.60 & 62 \\
\hline & & \(5 / 8\) EHS & A1 & T7 & 21.20 & 9.15 & 43 \\
\hline & & \(5 / 8\) EHS & A1a & T7b & 21.20 & 12.74 & 60 \\
\hline & & \(5 / 8\) EHS & A1b & T7a & 21.20 & 3.14 & 14 \\
\hline & & \(5 / 8\) EHS & A1b & T7 & 21.20 & 3.23 & 15 \\
\hline & & \(5 / 8 \mathrm{EHS}\) & A1a & T7a & 21.20 & 13.40 & 63 \\
\hline & & \(5 / 8\) EHS & A1 & T7b & 21.20 & 7.56 & 35 \\
\hline Normal & 54.67 & 9/16 EHS & A1 & 29 & 17.50 & 1.61 & 9 \\
\hline & & 9/16 EHS & A1b & 29a & 17.50 & 4.13 & 23 \\
\hline & & & & & & & \\
\hline
\end{tabular}


Site Number: 10047
Location: Portland ME, ME

Code: TIANEIA-222 Rev F
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 5/8 EHS & A1a & 57b & 21.20 & 5.90 & 27 \\
\hline \multirow[t]{3}{*}{165.33} & 11/16 EHS & A1 & 85 & 25.00 & 4.06 & 16 \\
\hline & 11/16 EHS & A1b & 85a & 25.00 & 1.17 & 4 \\
\hline & 11/16 EHS & A1a & 85b & 25.00 & 6.98 & 27 \\
\hline \multirow[t]{9}{*}{214.67} & \(5 / 8\) EHS & A1 & 109 & 21.20 & 3.49 & 16 \\
\hline & \(5 / 8\) EHS & A1b & 109a & 21.20 & 1.30 & 6 \\
\hline & \(5 / 8\) EHS & A1a & 109b & 21.20 & 5.69 & 26 \\
\hline & \(5 / 8\) EHS & A1 & T5 & 21.20 & 3.69 & 17 \\
\hline & \(5 / 8\) EHS & A1a & T5b & 21.20 & 5.83 & 27 \\
\hline & \(5 / 8\) EHS & A1b & T5a & 21.20 & 1.35 & 6 \\
\hline & \(5 / 8\) EHS & A1b & T5 & 21.20 & 1.27 & 5 \\
\hline & \(5 / 8\) EHS & A1a & T5a & 21.20 & 5.51 & 25 \\
\hline & \(5 / 8\) EHS & A1 & T5b & 21.20 & 3.27 & 15 \\
\hline \multirow[t]{9}{*}{270.00} & 11/16 EHS & A1 & 139 & 25.00 & 4.22 & 16 \\
\hline & 11/16 EHS & A1b & 139a & 25.00 & 2.19 & 8 \\
\hline & 11/16 EHS & A1a & 139b & 25.00 & 6.31 & 25 \\
\hline & \(5 / 8\) EHS & A1 & T7 & 21.20 & 3.95 & 18 \\
\hline & 5/8 EHS & A1a & T7b & 21.20 & 5.26 & 24 \\
\hline & 5/8 EHS & A1b & T7a & 21.20 & 1.98 & 9 \\
\hline & \(5 / 8\) EHS & A1b & T7 & 21.20 & 2.06 & 9 \\
\hline & \(5 / 8\) EHS & A1a & T7a & 21.20 & 5.32 & 25 \\
\hline & 5/8 EHS & A1 & T7b & 21.20 & 3.33 & 15 \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Site Number: 10047 \\
Location: Portland ME, ME & Copyright Semaan Engineering Solutions, Inc \\
Code: TIAEIA-222 Rev F &
\end{tabular}

\section*{Deflections and Rotations}
\begin{tabular}{llllll} 
Load Case & \begin{tabular}{c} 
Elevation \\
(ft)
\end{tabular} & \begin{tabular}{c} 
Deflection \\
(ft)
\end{tabular} & \begin{tabular}{l} 
Twist \\
(deg)
\end{tabular} & \begin{tabular}{l} 
Sway \\
(deg)
\end{tabular} \\
\hline 50.00 mph Wind Normal To Face with No Ice & 37.00 & 0.0377 & -0.0027 & 0.0520 \\
\hline
\end{tabular}


Page 21

\begin{tabular}{|c|c|c|c|c|}
\hline & & & ht Sema & maan Engineering Solutions, \\
\hline Site Number: & 10047 & & Y 81 & 8/20/2010 2:09:38 PM \\
\hline Location: & Portland ME, ME & & & \\
\hline Code: & TIA/EIA-222 Rev F & & & \(x\) \\
\hline 255.00 & 1.4368 & 0.7190 & 0.0625 & \\
\hline 257.33 & 1.4379 & 0.7184 & 0.0309 & \\
\hline 259.67 & 1.4367 & 0.5520 & 0.0691 & \\
\hline 270.00 & 1.4014 & 0.7163 & 0.1483 & \\
\hline & 0.0000 & 0.0000 & 0.0000 & \\
\hline
\end{tabular}

\section*{Accessibility Building Code Certificate}

Designer:


Nature of Project:
Address of Project:
\(\qquad\) equipment building
(precast concrete on slab)

The technical submissions covering the proposed construction work as described above have been designed in compliance with applicable referenced standards found in the Maine Human Rights Law and Federal Americans with Disability Act. Residential Buildings with 4 units or more must conform to the Federal Fair Housing Accessibility Standards. Please provide proof of compliance if applicable.

Signature:

(SEAL)
Title:


Address:


For more information or to download this form and other permit applications visit the Inspections Division on our website at www.portlandmaine.gov

\section*{Certificate of Design}

Date:


These plans and / or specifications covering construction work on:
U.S. Customs and Border Protect Public Safety Communications Facility

Have been designed and drawn up by the undersigned, a Maine registered Architect / Engineer according to the 2003 International Building Code and local amendments.
(SEAL)


For more information or to download this form and other permit applications visit the Inspections Division on our website at www.portlandmaine.gov

\section*{AT'I'ACHMENT X. FIRE DEPARTMENT REQUIREMENTS}

PROJECT NAME: \(\qquad\) US Customs and Border Protection Communications Project

PROJECT ADDRESS: Riverside Industrial Parkway CHART/BLOCK/LOT: 330/-/5

\section*{CONTACT INFORMATION:}

OWNER/APPLICANT
Name: US Customs and Border Protection
Address: 7501 Boston Blud Sprivgeield, VA 20229
Work\#: (703)921-7393
Cell \#: (571) 241-1604
Fax \#:
Home \#:
E-mail:

CONSULTANT/AGENT
Name: Steve Portnoy, CFE Telecom
Address: 4544 South Lamar Blvd. G-300
Austin, TX 78745
Work \#: 512-674-9484
Cell \#: \(\quad\) 512-415-5890
Fax \#:
Home \#:
E-mail: sportnoy@cfeamerica.com

This building permit application is for the addition of antenna and microwave dishes to an existing tower, a \(16 \times 12\left(192 \mathrm{ft}^{2}\right)\) equipment shelter, and the installation of a 500 gallon propane tank. The NPPA classification IS. Uk wh and the IBC classification is unknown

On-site fire detection and suppression consists of extinquither inside the chelter.
The applicant respectfully requests an exemption from the Life Safety Plan requirements.

Maine Collaborative Planning

April 8, 2011
Gail Guertin
Inspections Services Program
City of Portland
389 Congress St. Rm. 315
Portland, ME 04101

Dear Gail:
As discussed, please find enclosed completed administrative authorization and building permit application forms for the U.S. Customs and Border Protection project on Riverside Industrial Parkway provided by CFE Telecoms. Each set of forms is attached to a set of plans for the project.

Please let me know if you need additional information to process the permits.

Best regards,
Saiyburnan
Stacy Benjamin







```

DIvSION STAANOARD PRonSIONS
1.1 intent
THESE SPECIFIIATONS AND THE CONSTRUCTION ORAWINS
M,
B. THE DRAWNGS AND SPECIFICATONS ARE INTENDED TO BE FULLY
TXPLANATORY AND SUPPLEMENTARY. HOWEVER, SHOULD ANYTHMG
M,
MECFIED IN BOTH
THE INTENTION OF THESE DOCUMENTS IS TO INCLUDE ALL LABOR
INEINENTON OF THESE DOCUMENSSSS IO NCLUOE ALL LABOR
Cl
MNENT,
OMPLETE THE WORK.
MINOR DEVATIONS FROM THE DESISN LAYOUT ARE ANTIIPATED
*)
conflucts
A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFICATION O
MAL MEASUREMENSSAT THE STTE BEFORE ORDERING ANY
COMPENSATON SHALL BE ALOWED OUE TO DIFEGENRER BETWEEN
Cl
\#, (\$)
work IN THE AFFECTED AREAS.
. 3 Storage
A. AL MATEIALS MUST BE STORED IN A LVEL AND ORY FASHION
AND IN A MANER TAT DOES NONT NECESSARLY OSSTTUCT THE
RECOMMENDATIONS OF THE ASSOCIATED MANUFACTURER.

1. 4 CLEAN UP
THE CONTRACTOR SHALL AT ALL TMES KEEP THE SITE FREE FROM EMPLOULEE AT WORK AND AT THE COMPLETION OF THE WORK, HE
SHALL REMOVE ALL RUBIISH FROM AND ABOUT THE BUILONG
```

``` MATER.
EXTERIOR: VSUALLY INSPECT EXTERROR SURFACES AND REMOVE
ALL TRACES OF SOIL, WASTE MATERIALS, SMUOGES AND OTHER FOREIIN MATTER.
REmOVE ALL TRACES OF SPLASHED MATERIALS FROM ADJACENT
SURFACES.
IF NECESSARY TO ACHIEVE A UNFORM DEGREE OF CLEANLINESS,
HOSE DOWN THE EXIERIOR OF THE STRUCTURE.
. 5 QUALITY ASSURANC
```



```
TA/EIA - \(222-\mathrm{G}-2006\)
INTERNATONAL BUILIING COOE (IBC) 2009
BULLDING OFFICIILS ANO COOE ADMIISTRATORS (BOCA) 1990 NATIONAL ELECTRLAL COEE (NECP WVE LOCAL AMENDMENTS 200
UNDERWRITER LABORATORIES APROVED ELECTRICAL PROOUCTS ECIFications (ANS)
ALL WORK SHALL BE DONE IN ACCORDANCE WTH MOTOROLA'S R56
STANDARDS AND GUDELINES FOR COMMUNCATONS SIFS.
1.6 administration
PROPERLY SEOUENCED AND COOROINATED WTH OTHER ELEMENTS
```



```
PRIOR TO COMMENCING CONSTRUCTION, MOTOROLA SHALL SCHEDULE AN "ON-SITE" MEETNG MTH ALL MAJOR PARTIES. THIS SHALL INCLUDE (THOUGH NOT LMMITED TO) THE PROPERTY O
POWER COMPANY, MOTOROLA AND THE CONTRACTOR.
CONTRACTOR SHALL BE EQUIPPED WTH SOME MEANS OF
```



``` BEEPER THIS EOUPMENT WIL NOT BE SUPP
NOR WLL CELULAR SERYCE BE ARRANGED.
OURING CONSTRUCTION, CONTRACTOR MUST ENSURE THAT
```



``` GLASSES AT ALL TMES. THE CON
APPLCABLE OSHA REQUREMENTS.
PROVIDE DALLY UPDATES ON SITE PROGRESS, EITHER VERBAL OR
WRITEN.
COMPLETE INVENTORY OF CONSTRUCTION MATERIALS AND
EOUPMENT IS REQURED PRIOR TO START OF CONSTRUCTON MOTOROLA SHALL BE NOTFED NO LESS THAN 48 HOURS IN
ADANE OF CONCRETE POURS, TOWER ERECTONS, ANO SHELTER
```




## DIVSIOM A ANTENNA SYSTEM

4.1 WOfk included

INSMLI WAVEGUIDE BRIDGE AS INIICATED ON DRAWNGS. INSTALL
NE WCOAX, ANIENMAS, ANO MOUNTS AS INOICATED ON DRAWINGS NE W COAX ANTENNAS, AND MO
AFS VERFIFIED BY RF ENGINEER.
B. Su Pily and instal ground bars and grounding supples as
INDICATED IN THE DRAWNGS.
c. Labll cables.
d. michowave installation will be performed by others,
4.2 RELAED WORK
A. FURIISH THE FOLLOWNG WORK AS SPEGIFIED UNDER
COONTRUCTON DOCUMENTS, BUT COORDINATE WITH OTHER TRADES
PRIOQTO ROM PRIOR TO BID.

1. FLASIING OPENING INTO OUTSIE WALLS.
2. 

SEALHG AND CAULKING ALL OPENINGS.

CUTINGG AND PATCHING
4. CUTTHG AND PATCHING.
5.
ENTR POTR/PORT HIE EUSHIN
6. ANTEMNA/CABLE GROUNOING.
4.3 REQUREMENTS OF REGULATORY AGENCIES

AURNSH U.L. LISTED EQUIPMENT WHERE SUCH LABEL IS AVALABLE
AND MSTALL IN CONFORMANCE WTH U.L. STANDARDS WHERE AND NSTAL
APPLCABLE
B. INSTALL ANTENA CABLES ANO GROUNOING SYSTEM ${ }^{\text {IN }}$

 THE FOLOOWIN
EIA-ELIECTRICAL INDUSTRIES ASSOCIATION RS-222, STRUCTURAL
STANDRROS FOR STEEL ANTENA TOWERS ANO ANTERNA SUPPORTING STRUCTURES.
2. FAA-FEDERAL AVATION ADMIIITRTATION ADVISORY CIRCULAR AC
$70 / 7460-H$, OBSTRUCTION MARKING AND LIGTING.

FCC-FEDERAL COMMUNICATINS COMMISSION RULES AND
REGULATONS FORM 715, OBSTRUCTION MARKING ANO LIGHTING
 INTENSITHES.
AISC-MMERICAN INSTITUTE OF STEEL CONSTRUCTION SPECLIICATION
FOR SIRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS.
NEC-NATIONAL ELECTRICAL CODE-ON TOWER LIGHTING KITS.
6. UL-UNOERWRITERS' LABORATORIES APPROVED.

IN ALL CASES, PART 77 OF THE FAA RULES AND PARTS 17 AND
22 OF THE FCC RULES ARE APPLICABLE AND N THE EVENT OF CONFLCT, SUPERSEDE ANY OTHER STANDARDS OF SPECIFCATIONS.
8. 2000 LIFE SAFETY CODE NFPA-10
4.4 materills

ALL MATERIALS/HARDWARE SHALL BE HOT-DIPPED GALVANIZED OR
STAINLESS STEEL UNLESS OTHERWISE INDICATED ON THE STANLESS
DRAWINGS.
4.5 LABELING

- ANTENNA AND LINE CONTRACTOR SHALL MARK CABLES WTH 1" MARKED AT THE END OF THE TRANSMISSION LINE NEAREST EACH

B. CABLES SHALL BE TAGGED MMMEDATELY INIIE THE SHELTER WTH
ANTENNA MODEL, HEIGHT, OWNER, AND USE.
motorola antenna installation and identicicaton matrix

grounding





2. CONSTRUCTIN AT THE SITE WLL BEGIN WTH THE INSTALLATION OF EROSION
3. ERosion control devices shall be instaled before ground disturbance OCCURS. IT IS THE CONTRACTOR'S RESPONSIBLITY TO ACCOMPLSH EROSION
CONTROL FOR ALL DRAINGGE PATERNS CREATED AT VARIOUS STAGES DURIN CONSTRUCTION. ANY DIFFICLITY IN CONTROLLNG EROSION DURING ANY PHASE OF
CONSTRUCTION SHALL EE REPORTEO TO THE CONSTRUCTION MANGGER IMMEDAELY.

4. CONTRACTOR SHALL MAINTAN ALL EROSION CONTROL MEASURES UNTL PERMANENT MEASURES AT THE END OF EACH WORKING DAY TO ENSURE MEASURES ARE
5. THE CONTR ACTOR SHALL REMOVE ACCU
6. FALLURE TO INSTALL. OPERATE OR MAINTAN ALL EROSION CONTROL MEASURES MAY RESULT IN ALL CONSTRUCTIO
MEASURES ARE CORRECTED.
7. A Copy of the approved land disturbance plan and permit if reaured
SHALL be present on the job site whenever land disurbance activi is in PROGRESS.
8. ANY AREA OF IISTURBANCE LEFT EXPOSED OR THAT IS ANTICIPATED TO BE EXPOSED QEYOND THE EXPOSURE PERIOD REOURR
STABILIZED WTH TEMPORARY SEEDING.
9. ADOITONAL EROSION AND SEDMENT CONTROL MEASURES SHALL EE PROYIEED IF
REQURED UPON INPECTION BY AND DRECTON FROM LOCAL AUTHORTIES.
10. UPON COMPEETION OF WORK, OR AS DRECTED BY EROSION CONTROL AUTHORTITS, ALERMANENT SEEEING MATERAL SUITABLE FOR THE LOCAL GROWING AREA.



SILT FENCE


struc TVral notes
1.1 Cod
A. 2 ne international bulloing code
1.2 GENEMLL
A. THE DETALLS DESIGNATED AS "TTPICAL DETALL" APPLY
SHEERALYY TO THE DRAMNGS IN ALL AREAS WHERE CMorilis
B. Al Dimensions And conotions of Existing construction
 THE OWNER AND THE ENGINEER
C. THE DESIGN AND PROVSION OF ALL TMMPORARY SUPPORTS


 DAMAGE OO THE EEEMENT TOT TO BE BRACED OR ANY OLEMENTS
USED AS BRACE SUPPORTS.
D. THE CONTRACT STRUCTURAL DRAWNGS AND SPECIFICATION

 RESPONSIBEE FOR ALL CONSTRUCTINN MEANS, METHO
PROCEDURE, TECHNOUES, SEOUENCE, AND SAFETY.
E. THE ENGINEER SHAL NOT HAVE CONTROL OF, AND SHALL
NOT BE RESPONSBELE FOR, CONSTRUCTION MEANS, METHOOS, TECHNOUES, SEQUENCES, OR PROCEDURSS FORS SAFETY
PRECAUTIONS ANO PROGRAMS IN CONNECTON WTH THE WORK,
 CARRY OUT
DOCUMENTS.
F. CONTRACTOR SHALL VERIFY EOUPMENT SIZE AND LOCATION.
NOIFY OWNER'S REPRESENTATIVE OF ANY DISCREPANCIES FROM PLANE.
G. THE CONTRACTOR SHALL NOTIFY THE OWNER'S
REPRESENATATVE 48 HOURS IN ADVANCE OF THE TME WHEN
 SITE INSPECTION
H. POSITVE DRANAGE SHALL BE PROMDED ADJACENT TO ALL
foOUDAOONS SOONOLG OFRANFALL NEAR THE
FOUNDATONS DOES NOT OCCUR.

J. DRANAGE PATIERNS APproved AT THE TIME OF FINSH
GRANING SHALL EE MANTAINED THROUGHOUT THE LIFE OF THE TOWER.

## ondation backelul

rost-resistant structural Fll
PRIOR TO PLACING REQURED FLL MATERIAL, REMOVE FROM THE
SITE ALL COBBIES, BOULDRRS, ANO VEGETATION, AS WELL AS



THE EXPOSED SUBGRADE SHOULD NOT BE ALLOWED TO DRY OU
PRIOR TO PLACING SELECT STRUCTURAL FILL.
ALL FILL UNOER THE SLAA SHALL BE COMPACTED
FROST-RESITSTANT STRUCTURAL FILL MATERALL. $24^{4}$ MINMUM
THICKNESSS.
SELECT STRUCtURAL FILL MATERIAL SHALL MEET THE FOLLOWN
GRADATON
no particles greater than 6 inches

PRERNT PASSNG $1 / 4$ " SIEVE $25 \%-70 \%$
PRERCNT PASSING NO
PERCENT PASSING NO. 200 SIVEV SIEVE $0 \%-50 \%$
$0 \%-5 \%$
FROST-RESISTANT STRUCTURAL FILL SHALL BE PLACED IN LFTS
BETWEE 9 INCHES AND 12 INCHES THICK, WATERED AS

REOURED AND COMPACTED TO A MIMMUM OF 95 PERCENT OF
HE MAXIMUM DRY DENSTYY AS DEFNED IN ASTM TEST METHO HE MAXIMUM DRY OPTMUM MOISTURE CONTENT.
6. COMPACTION AND MOISTURE CONTENT OF SUBGRADE AND EACH


### 1.4 MOISTURE MANAGEMENT

A. EVERY EFFORT SHALL BE MADE TO KEEP
B. SEEPAEE CAN BE EFFFCCTVELY HANLLED BY SIMPLE DEWAIERIING MEEHODS, SUCH AS PERRHERE OTHCHES AN
SUMPS. A SUITABLE SUMP COUD CONSIST OF A ARGE DIAMETER PIPE SET VERTICALY WITH A COARSE SAND AND
CRAVEL MIXURE PLACED IN THE BOTTOM TO ACT AS A GRAVEL
FILTER.
C. CARE SHALL BE EXERCISED IN PUMPING DIRECTLY FROM THE
D. THE TRAFFIC OF HEAVY EQUPMENT (INCLUDING HEAVY
COMPACTON EQUPMENT) MAY CREATE PUMPING ANO GENERAL COMPACTION EOUPMENT) MAY CREATE PUMPING AND GENERAL
DETERIORATION OF THE SHALLOWER SOILS.
1.5 SLAB-on-GRADE
A. SLAB-ON-GRADE FOUNDATIONS SHALL BE CONSTRUCTED IN ACCORDANCE WTH THE ENGINEERING DESIIGN
PREPRRATIN, ORAINGEE, ANO MAINTENANCE.
B. WTHIN THE AREA OF THE PROPOSED SLAB-ON-GROUND,



 BARRIER OVER COMP
FOUNDATON SLAB.
D. REFER TO PLANS FOR STIFENED SLAB-ON-GRADE
DIMENSIONS, THICKNESS, AND REIFORCING.
 PROFLLE SHALL COMPLY WTH THE FOLLOWNG FLATNES
LEVELESSS VALUES AS DEFNED IN THE ASTM E 1I5: SPECFFIED MINMUM
OVERAL
LOCAL $\begin{array}{lll}\text { FLATNESS (FF) } & 25 & 17 \\ \text { LEVELNESS (FL) } & 20 & 15\end{array}$
 FROST PROTECTION OF SHALOW FOUNDATIONS." U.S.
DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT , DEPARTMENT OF HOUSING
1994. REF. SITE DETALS.
1.6 Concrete
A. CONCRETE DESISN AND REIFFORCEMENT SHALL BE IN
ACCORDANCE WTH "BUIDING COOE REQUREMENTS FOR

B. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTH 301-05."
C. ALL CONCRETE SHALL HAVE SAND FINE AGGREGATE, NORMAL CEMENT. SLABS ON GRADE' AND ALL OTHER CONCRETE SHALL HAVE A COMPRESSIVE STRENGTH (F'C) OF 4000 PSI IN 28
DAYS. SEE CIVIL FOR SIDEWALKS. PAVING, AND SITE WORK

D. NO PIPE SLEEVES SHALL PASS THROUGH STRUCTURAL
CONCRETE WIHOUT PROR APPROAL OFTHE THE STRUTURAL CONCREEE WTHOUT PRIIR APSPROVLL OF THE STRUCTUR
ENGINEERE CAST CAN SEEVES SHALL BE CAST IRON OR
SCHEOULE 40 STEEL PIPE.

reinforcing steel
A. REINFORCIING STEEL SHALL BE DEFORMED BILET-STEEL BARS
CONORTMIN TO THE REQUIREMENTS OF ASTM A6I5, GRADE
B. DETALLING OF CONCRETE REINFORCEMENT AND ACCESSORIES
SHALL BE IN ACCORDANCE WITH ACI PUBLICATON SP-66(04) SHALL BE IN ACCORDANCE WITH
ACI DETALING MANUAL- 2004 .
C. ALL Hooks shall be Ac.I. stand ird 9o-degree hooks,
D. PROVIDE CORNER BARS FOR ALL HORIZONTAL BARS AT THE
INSIDE ANO OUTSIDE FACES AND TOP ANO BOTTOM OF

REOUII
$2^{\prime}-0$.

the weloing of reinforcing steel will not be permitted f. HEAT SHAL NOT RE USED IN THE FABRICATION OR
INSTALIAION OF REINFORCEMENT.
G. MINMUM CONCRETE PROTECTIN FOR REINFORCEMENT (SEE ACI GRADE BEAMS.
SLAB ON GRADE $\qquad$ AS DETALIED
$11 / 2^{4}$ TOP
BARS IN SLABS ON GRADE SHALL EE SUPPORTED ON SMALL
PIECES OF MASONRY OR ACCESSORIES WTH "SAND" PLAEAES WHICH PROVDE $11 / 2^{\prime \prime}$ AT THE TOP.

## 18 miscellaneous

A. ALL GROUT FOR STEEL BEARING AND LEVELING SHALL BE
NON-SHRINK AND SHALL HAVE A MINIUMM COMPRSSIIVE NON-SHR
STRENGTH




## ELECTR MML SPECIFICATION

general






electrical requirements
ALL WORK SHALL BE DONE $\ln$ accordance with all local and
NA TONAL ELECTRICAL CoDES.
B. ALL Mork Shall be completed by a certifed master

ALL MORK SHALL CONFORM TO THE LATEST VERSION OF
MO TOROLA R56 STANOAROS.
AFTER INSTALLATION TEST ALL
GRONNDS BEFORE ENERGIZIG.
guarantel:


#### Abstract

   THATIF ANY DEFETS GUAANEED PERROD. COST TO THE OWNER.


EEDDERS, Switches, METERING EQuipment


panelgoard construction:
PANEIBOARDS SHALL CONSIST OF A CAN, FRONT, INTERIOR AND
CIICUT PRTCCTIV DEVCES AN OHAL




WRING:


conductors shall be type "thhn/thwn" insulation.

$$
\begin{aligned}
& \text { USE THE FOLLOWING CLOLOR CODES: }
\end{aligned}
$$

INSTALL CONDUCTORS IN CLEAN, DRY CONDUTS. USE UL
APRROVED PULLING LUBRICANT WHERE REQUIRED.
USN \#12 AS MINMUM CONDUCTOR SIZE FOR POWER SYSTEMS. ALL
CCNTRL WRES SHALL BE STRANOED AND TERMINATED WITH
CRIMPED-ON LUGS. MAKE CONNECTION, SPLCES AND TAPS ONLY IN APPROVED BOXES
AND FTTINGS FOR SMLL BRANH CIICUIT CONOCTORS, FRSS
TWIST CNOUTOS TWST CONDUCTORS TOGETHER, THEN INSTALL A "SCOTCHLOK" OR
EOUAL SRRNG CONNETOR F PROPER SIZE. FOR LARGE
COODUSES


PROMIE A COMPLETE ASSEMBLY OF CONDUT, TUBING OR DUCT
WTH FTTNGS. NCLUDING BUT NOT LMMTED TO CONNECTORS,


B. FITINGS SHALL EE DESIINED AND APPROVED FOR THE SPECIIC USE INTENDED. PROODE INSULATED THROATS OR BUSHINGS FG
AL CONODTS. GROUNING BUSHINGS SHALL ALSO HAVE
INSULATED THROATS.
 SPRCLIFED
RRAWNSS.
D. RIGID STEEL CONDUIT SHALL BE HEAVY-WALL STEEL TUBE WTT EXTERIOR, HOT-DIPPED GALVANIZED. RREE RROM DEEEKTS,
MANUFACTURED IN ACCORDANCE TO ANSI STAND ARDC AND
 UNDERRROUND CONDUUT SHALL BE SCHEDULE 40 PVC (UNLESS
NOTED OTHRRWSE) AS A MIINUM, CONDUT SIIES SHAL BE IN AACORDANCE MTH
NEC CONDUTT FLLL REQUIIEMENTS, REGARDLESS OF OIZE SCHEDUL
 installation:
ANCHOR CONDUT WITH HANGERS, CONDUIT STRAPS OR OTHER
DEVCES SPECIFICALY OESIGNED FOR THE PURPOSE. WIRE TIIES

 SHALL BE BRIME COATED.
 CAP CONDUUT ENOS UNTL CONDUCTOR IS INSTALLED TO PREVENT
FOREIGN OBUECTS FROM ENTERING CONOUTT.


6. ${ }^{\text {INSTALL }}$ (2) 200 POUND NYLON PULL CORDS IN ROUGH-IN 7. INSTALL OfFSETS, PULL BoXES AND ELBOWS AS REQUIRED To
 MESISANT RATED CONSTRUCTION SHAL BE FIRE-STOPPED USING
APPOVVE METHODS TO MAINTAIN THE FIRE RESISTANT RATING unction and pull boxes:

## A. USE GALVANIZED PULL AND JUNCTION boxes that comply with NEC AS To SIZe AND CONSTRUCTION.

B. FOR JUNCTION AND PULL BOXES, USE BOXES NOT LESS THAN $4^{\prime \prime}$

IN WET AREAS OR OUTOOORS, USE CAST ALUMINUM OR CAST IRON
BOXES WTH THREADED HUBS AND GASKE TED COVERS.
D. INSTALL JUNCTIN AND PULL BOXES IN ACCESSILLE LOCATONS.
POSITION BOXES SO COVERS CAN BE REMOVED.

Install boxes on concealeo conouits with covers flush
WTH Finsh.

## -gas contalners

ALL ELLECTRICAL EQUIPMENT AND WRING WITHIN (5) FIVE FEET
SHALL BE CLASS 1 DIVIION 1 .


## GROUNDING

general
grounding shall be installed per motorola r56 standard

## and guidulies for communications sites

2 connections
ALL EXTERNAL GROUNONG CONNECTIONS SHALL BE MADE BY THE
EXOTHERMIC PROCESS. BY RREVERSBLE HIGH COMPRESSION,

 MATERALLS SEED MODLS. WELDING METALL TOLLS. ETC.) SH
INTIALEO PER MANLFACTURER'S RECOMMENOATONS AND
PROCEDURES.
ALL INTERIOR GROUNDING AND BONDING CONOUCTORS SHALL BE
CONNECTED BY TWO HOLE-TYPE (COMPRESSION) CONNECHONS

ground roos
ALL GROUND RODS SHALL BE COPPER-CLAD STEEL $5 / 8^{\prime \prime}$
DIAMETER $\times 8^{\prime}-0^{\prime \prime}$ LONG AND OF THE NUMBER AND AT LO
 VERTICALLY IN UNOISTUREED EARTH.
b. Ground roos shall be located so as to avoid the tower
foundaton.
c. If rock Is encountered, ground roos may be piven at an ERTICAL OR MAY BE BURIED HORRZONTALLY AND SERPENDICULAR
 NCCHES BELOW FRIISHED GRAEE, WHERE POSSIBLE, OR BUR
BELOW THE RREZZ LIE, WHICHEVER DEPTH IS GEATER.
E. GROUND RODS SHALL NOT BE INSTALED MORE THAN 16 FEET
APART ( (OR TWCE HEL LENGTH OF THE ROO) ANO NOT LESS THAN FEEET (PER NFPA 70, ARTICLE 250-56).

ALL GROUND BARS SHALL BE $1 / 4^{\prime \prime}$ THICK BARE COPPER PLATES
AN OO SUFFIEITN SIIE TO GROUN AATACHENTS INOICAIED IN THE DRAWNGS (MIN. $2^{\prime \prime} \times 12^{\prime \prime}$ ). HOLES SHALL BE $7 / 16^{\prime \prime}$ DIAMETER
ON $3 / 4^{\text {C }}$ CENTERS TO PERMIT THE CONVENENT USE OF TWO-HOLE
b. THE METHOD OF ATTACHMENT OF THE GROUNDING ELECTRODE
 1.5 cables
A. ALL EXTERIOR GROUNDING CABLES SHALL BE STANARD \#2 AWG
TNNED SOIO
ON DRAWNGS.
 ${ }_{8}{ }_{8}{ }^{\text {THE }}$.
ALL CONDUTTS Shall be metallicall supported.
D. ALL CONOUTS USED AS RACEWAYS FOR GROUNING CONDUCTORS
SHALL BE BONDED AT BOTH ENOS IN ACCORDANCE WITH THE SHALL BE BONDED AT BOTH ENDS
NATONAL EIECTRICAL CODE (NEC).
PRovide wre protection pipes at all ground mres at
Grade level per detall 7 /E4.
. 6 GRounding Ring
A. ThE ground ring encircling the bulloing shall be a minimum


1.7 FENCE/GATE
A. GROUND ALL SECTIONS OF FENCE AND GATE AS INDICATED ON
DRAWINS. GROUND EACH GATE POST AND CORNER
 EXOTHERMIC WELD AND INSTALED PER
RECOMMENDATIONS AND PROCEDURES.
. 8 DISSIMLAR METALS
BONDING OF TWO IISSIMLLAR METALS MAY RESULT IN GALVANIC
CORROSION AREACTION THAT OCCURS AT THE JUNCTON OF


the same metal shall be used throughout the system when EXOTHERMICALLY WELD CONNECTIONS OF DIFFRERT METALS WHEN
WELD MAIERIAL IS AVALILABEE FOR THE METALS BEING BONDED. Copper conouctors shall not be installed on aluminum
Roofing or siding. ROOFING OR SIDING.
ALUMINUM AND COPPER SHALL NOT BE DRECTLY CONNECTED TO
EACH OTHER UNLESS USING EXOTHERMIC WELONG MATERIALS

 STANLESS STEEL THESE CONNECTORS SHAL LEE LSETED FOR THE
SIEE AND NMBR OF CONUCTOS AND MARED WMH AL/CU. THESE CONNECTIONS SHALL BE LBERALYY COATED wITH A
CONUCTIE ANTOXIDNT AT THE POINT OF INSERTON INTO THE
CONEETOR.
Copper shall not come in contact wih galvanized steel.
TINNED COPPER SHALL BE USED WHEN CONNECTNG TO A
GALVANIZED STEEL STRUCTURE.
anti-oxidant
ANT-OXIDANT COMPOUND SHAL BE USED BETWEEN ALL
EXTERNAL MECHANICAL CONNECTIONS. CARE SHALL BE TAKEN To XTERNAL MECHANCAL CONNECTIONS. CARE SHALL BE TAKEN TO
SE THE APPOPRIATE ANTI-OXIDANT TYPE. ZINC ANTIOXDANT
 AND ALUMINM OBJECTS AND COPPER ANT-OXIDANT (COPPER
COLOR) SHALL EE USED WHEN CONNECTING TO COPPER OBUECTS. . 10 TEST Procedure
THE GROUND SYSTEM RESISTANCE SHAL NOT EXCEED 10 OHMS. A
DESIGN GOAL OF 5 OHMS IS RECOMMENDEO. TESTNG SHAL BE UESGGN GOAL OF 5 OHMS IS REOMMENDED. TESTING SHAL BE
PERRORMED IN ACCOROANCE WTH SECTON 6.6 IN MOTOROLA R56 SPECIFICATIONS (DATED 9-1-05).
GROUND TEST MUST BE PERRORMED PRIOR TO UTUTY CONNECTION AND GROUND CONNEC
ELECTRODE SYSTEM.



ELEC/TELCO
GENERAL NOTES









PRIOR TO COMMENCING CONSTRUCTIN, MOTOROLA SHALL
SCHEDULE AN ON-SITE" MEETNG WTH ALL MAJOR PARTIES.
 contractor shall be eouppen with sone mans CONTRACTOR SHALL BE EOUIPPED WTH SOME MEANS OF
CONSTANT COMMUNICATONS, SUCH AS A MOBLE PHONE OR A

DURING CONSTRUCTION, CONTRACTOR MUST ENSURE THAT EMIOYEES AND SUBCONTRACTORS WEAR HARD HATS AND SAFETY
GLASESS AT ALL TMES. THE CONTRACTOR MUST COMPLY WTHE ALL GLASSES AT ALL TMESS. THE CON
APLICABLE OSHA REOUREMENTS.
Provide dally updates on site procress, either verbal or
WRITTEN.
COMPLETE INENTORY OF CONSTRUCTION MATERIALS AND
EQUPMENT IS REQUIRED PRIOR TO START OF CONSTRUCTION
MOTTROLA SHAL EE NOTIFIED NO LESS THAN 48 HOURS IN
ADVANCE OF CONCRETE POURS, TOWER ERECTIONS, AND SHELTER PLACEMENTS.


GENERAL NOTES
1.6 Aominstration

GN1

2.1 WORK INCLUDED

Do not remove teens, brush, or debris from the property
SITE WORK AND DRAINAGE DETALIS ARE WRITTEN TO COVER A
VARIETY OF POSSIBLE SITE CONFIGURATIONS, SPECIFIC SERVICE

B. REFER TO COMPLETE DRAWING SET AND REFERENCED
SPECIFCCATIONS / STANDOAROS FOR WORK INCLUOED.
relateo work
CONSTRUCTION FOR BUIDING FOUNDATION
PLACEMENT OF SHELTER

2.3 DESCRIPTIONS


. 4 ouality assurance
APPLY SOLL STERLIZER IN ACCORDANCE WTH MANUFACTURER'S
RCOMMENDATON (USE AS NEEDED).

5 seauencing
CONFIRM SURVEY STAKES AND SET ELEVATION STAKES PRIOR TO
ANY CONSTRUCTION. PLACE SLIT FENCE OR OTHER REQURED ANY CONSTRUCTION. PLACE SITT FENCE OR OHER REQUIRED
EROSION CONTROLS DOWN GRADENT OF CONSTRUCTION AREA.
THE COMPLETED ROAD AND SITE AREA MLL BE CLEARED OF


CONSTRUCT TEMPORARY CONSTRUCTION ZONE ALONG ACCESS
D. THE SITE AREA MLL BE BROUGHT TO SUB-BASE COURSE ELEVAION AND THE ACCESS ROA
RRIOR TO FORMING FOUNDATONS.
E. APPLY SOIL HERBICIDE PRIOR TO PLACING BASE MATERIALS.

ono cravel fron temprapy constructon zore.
AF TER APPILCATIONS OF FINAL SURFACES, APPLY SOILL HERBIIIIE
TO THE STONE SURFACE.
part 2 products
2.8 Materials

8. SOIL HERBICIIEE SHALL RE EPA REGISTERED OF LIOUID COMPOSITION
AND OF PRE-EMERGENCE DESIGN.
soll stabilizer fabric shall be mirafi - 500x.
2.9 EQUIPMENT
A. COMPACTON SHALL BE ACCOMPLISHED BY MECHANICAL MEANS.
 TONS.
SMALLER areas shall be compacted by power- driver, hand
helid tampers. PART 3 EXECUTION
PART 3 EXECUTIO
A. LOCAL BULDING INSPECTION SHALL RECEIVE ADEQUATE
NOTFICATON IN ADVANCE OF CONCRETE POURS WHEN REOURED,
2.11 preparation
. Prior to placement of fill or base materials, proof roll
E. WHERE UNSTABLE SOLL CONOITINS ARE ENCOUNTERED. COVER CIEARED AREAS MTHIST.
2.12 INStallation
A. THE COMPOUND AND TURNAROUND AREAS SHALL EE AT THE
 ORRER HAT HERE IS EVEN DISTRESUTION OF SPOILS RESULTING
FROM FOUNDATION EXCAVATIONS. THE RESULING GRADE WIL
 BE CALCUL
INOICATED.
B. If ANY, EXCESS SPOLLS WLL BE CLEARED FROM JOB SIE AND
NOT SPREAD BEYOND THE LMITS OF OWNER LEASED PROPERTY Not Spena derond TH LMiTs Of OWNER
UNLESS AUTHORIZD BY PROUECT MANAGER.
 COMPACTION SHALL BE DONE DURING CONSTRUCTION OF TH
D. AVOID CREATING DEPRESSIONS WHERE WATER MAY POND.
 ROAD TO REMOVE ANY ORGANC MATTER AA,
SURFACE BEFORE PLACING FILL OR STONE.
F. THE FINSH GRADE, INCLUDING TOP SURFACE COURSE, SHALL

G. RIPRAP SHALL BE APPLED To THE SIDES OF DITCHES OR
H. RIPRAP SHALL BE APPLIED TO THE SIIEE SLOPES OF ALL FENCED SITEAR ARAS. PARKRING
GREATER THAN 2:1.

1. RIPRAP ENTIRE DITCH FOR SIX FEET IN ALL DIRECTIONS
COLVERT OPENINGS OR AS INDICATED IN THE ORAWNGS.

SEED, FERTIIZER AND STRAW COVER SHALL BE APPLIED TO ALL
OTHER DISTURED AREAS AND DITCHES, DRAINAGE, SWALES NOT OTHER DISTUREED AREAS AND DITCHES, DRAINAGE,
OTHERWISE RIPRAPEED. UNDER NO CIRCUMSTANCES WLL DITCHES, SWALES NOR
CULVERTS BE PLACED SO THEY DRECT WATER TOWARSS, OR CERMT STANDING WATER IMMEDIATELY ADAACENT TO STITE IF DESIGN OR ELEVATIONS CONFLCT
HHOULD BE ADUSED MMEDATELY
IF DITCH LIES WITH SLOPES GREATER THAN TEN PERCENT, MOUND
OVVRSIONARY HEADWALLS IN THE DITCH AT CULVERT ENTRANCES IVERSONASY HEA SOLSS IN IHE DITCH AT CULVERT ENTRANCES
D DEGRES OFF THE DITCH LINE. RIPRAP THE UPSTREAM SIDE SDEGRES OFF THE DITCH LINE. RIPRAP THE UPSTREM SIIE O
HE HEDOWLA AS WEL AS THE DITCH FOR SIX FEET ABOVE THE ulvert entrance.
 WHICH WILL ENCOURAGE ROOTING. RAKE ARE
EVEN THE SURFACE ANO LOOSEN THE SOLL

 OF RELEASE FROM THE CONTRACG. CONTINE TO
AREAS UNTIL COMPLETE COVERAGE IS OBTANED.
2.13 FIELD QUALITY CONTROL

COMPACTION SHALL EE AT LEAST 955 OF MAXIMUM OENIIY AND
WTHN $2 \%$ of OPIMUM MOISTURE CONTENT IN ACCORDANCE WTH
ASTM D-157.
ALL TREES PLACED IN CONJUNCTION WTH A LANDSCAPE
CONRAT WLL BE WRAPPED, TIED WITH HOSE-PROTECTED WRE COOTRACT WLC
AND SECURED.
ALL EXPOSED AREAS SHALL BE PROTECTED AGANST WASHOUTS
AND SOLL EROSION. STRAW BALES WLL BE PLACED AT THE INLET AND SOIL EROSION. STRAW BALES WLL BE PLAC
APPROACH TO ALL NEW OR EXISTNG CULVERTS.


## MISION 4 antenna system PART 1 GENERAL

4.1 work included

NEW COAX, ANTENNAS, AND MOUNTS AS INDICARED ON ORAWNAGS NEE COAX ANTENAS AND M M M
AND VERI ITEO BY RF ENGINEER.
SUPPLY AND INSTALL GROUND BARS AND GROUNOING SUPPLLES AS
INDICATED IN THE DRANIIGS.
label cables.
d. microwave installation wll be performed by others
4.2 related work

FURNSH THE FOLLOWNG WORK AS SPECFIFED UNDER
CONSTRUCTION DOCUMENTS, BUT COOROINATE WITH OTHER TRADES
flasing opening into outside walls
SEALING AND CAULKING All OPENINGS.
PAINTING ANO PATCHING.
ENTRY PORT/PORT HOLE CUSHON
43. REQUIREMENTS OF REGULATORY AGENGIES

FURNISH ULL. LISTED EQUPMENT WHERE SUCH LABEL IS AVALLABLE
AND INSTALL IN CONFORMANCE WITH U.L. STANDARDS WHERE APPLICABLE.
B. INSTALL ANTENNA CABLES AND GROUNDING SYSTEM IN ACCORDANCE WIH DRAMNGS ANO SPECIFCAITON IN EFFECT AT
PROUECT LOCATIN AND RECOMMENDATINS OF STATE AND LOCAL SUIDDING CODEES, SPECIAA CODES HAVING JURISOICTION OVER SPECIFIC PORTIONS
EIA-ELECTRICAL INDUSTRES ASSOCIATION RS-222, STRUCTURAL STANDAROS FOR STEEL AS
SUPPoRTING STRUCTURES.
FAA-FEDERAL AVIATION ADMIIISTRATION ADVISORY CIRCULAR AC FAA-FEDERAL AVATION ADMIIISTRATION ADVISORY
$70 / 7460-H$ H. OBSTRUCTION MARKING ANO LIGHTING
FCC-FEDERAL COMMUNICATIONS COMMIISIION RULES AND


AIISC-AMERCAN INSTIUTE OF STEEL CONSTRUCTION SPECLIICATIO
FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS. NEC-National EEECTICAL COOE-ON TOWER HGHTNG KITS
UL-UNDERWRITERS' LABoratories APPRoved.
ALL CASES, PART 77 OF THE FAA RULES AND PARTS 17 AN
22 OF THE FCC RULES ARE APPLICABLE AND IN THE EVENT OF 22 OF THE FCC RULES ARE APPLLCABE AND IN THE EVENT OF
CONFLICT, SUPERSEDE ANY OTHER STANDARDS OF SPECIFICATIONS.
8. 2000 LFE SAFETY CODE NFPA-101.
4.4 MAterials
all materials/hardware shall be hot-oipped galvanized or STAIMLESS
DRAWNGS.
4.5 Labeling
 MDE UV-RESISTANT COLORED TAPE, THE CABLES SHALL ANTENNA, AT THE THE BASE OF THE TOWER/STRUCTURE CLOSES
TO THE ENTRY PORT ANO IMMEOUATEY INSIDE THE ENTRY PORT.
B. CABLES SHALL BE TAGGED IMMEDATELY INSIE THE SHELTER wTH yotorola antenna installation and iden MOTOROLA ANTENNA ISTALLATIN AND IDENTFICATION MATRIX
(REF. MOTOROLA R56 APPENIX B-7) SALL BE FILED OUT AND (REF. MOTOROLA R56 APPENOIX B-7) SHALL
SUBMITED TO MOTOROLA PROUECT MANAGER
4.6 grounding
A. ANTENNA AND CABE GROUNING SHALL BE INSTALLED
CONTEMPORANEOULY WTH INSTALLAIION NO WNGRO SHALL BE ROUTED INTO THE SHELTER OR CONNECTED TO COA SHALL BE
B. REFERENCE SEPARATE GROUNDING NOTES SHEET E1 FOR






## SOIL AND EROSION CONTROL

1. THE CONTRACTOR SHALL COMPLY MTH THE REQUREMENTS FOR SOLL EROSIIN AND
SEDIMENT CONTROL. AND OTHER REOUREMENIS OF COVERNMENTAL AUTHORTIES SEDDMENT CRNTROL. AL
HAVING JURISOICTIN.

2. Erosion control devces shall be installed before ground disturbance OCCURS IT IS THE CONTRACTOR'S RESPONSIBLITY TO ACCOMPLISH EROSION
CONROL FOR ALL DRAINAGE PATERNS CREATEO AT VARIOUS STAGES DURING

3. ALL SIIT BARRIERS MUST BE PLACED AS ACCESS IS OBTAINED DURING CLEARING. No
GRADING SHALL BE DONE UNTIL SIIT BARRIER IS INSTALLED.

- outtactor sum muiten an erosion contro meas
 MEASURES AT THE END OF FACH WORKING DAY TO ENSURE MEASURES ARE

6. THE CONTRACTOR SHALL REMOVE ACCUMM
7. FAILURE TO INSTALL, OPERATE OR MAINTAIN ALL EROSION CONTROL MEASURES MAY
RESULT TN ALL CONSTRCTION BEING STOPPED ON THE JOB SIIE UNTL SUCH RESULT IN ALL CNSTRUCTIO
MEASURES ARE CORRECTED.
8. A copy of the approved land disturbance plan and permit if reaured PROGRESS
9. AAY AREA OF OISTURBANCE LEFT EXPOSED OR THAT IS ANTICIPATED TO BE EXPOSED BEYOND THE EXPOSURE PERIOD REOUIR
STABLIZED WTH TEMPORARY SEEOING.
10. ADOITIONAL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE PROVIED II
REOURED UPON INSPECTION BY AND DIRECTON FROM LOCAL AUTHORTIES.
11. UPON COMPLETION OF WORK, OR AS DIRECTED BY EROSION CONTROL AUTHORTIES,
ALL DISTUREED AREAS NOT IMPROVED WTH GRAVEL SHALL BE SEEDED WITH ALL DISUREED AREAS NOT IMPROVED WTH GRAVEL SHALL BE SEEDED WIH
PERMANENT SEEDING MATERIAL SUTTABLE FOR THE LOCAL GROWNG ARE


TRENCH CROSS SECTION


SILT fENCE
 THIS SPACE HAS BEEN
INTENTIONALLY LEFT BLANK


A. 2009 International bulloing code

## gen Eral

A. THE DETALLS DESIGATED AS "TYPICAL DETALLS"APPLY
GENERALLY TO THE DRAWINGS IN ALL AREAS WHERE CENERALY TO THE DRAMNGS NN ALL AREAS WHERE
COODTIONS ARE SIMLAR TO THOSE DESCRBED IN THE detall.
B. ALL DIMENSIONS AND CONDITIONS OF EXISTING CONSTRUCTION PRIOR TO BEGINNING WORK. DIFFERENCES BETWEEN EXISTING
CONSTRUCTION ANO THE DRAWMGS SHALL BE REERRED TO CONSTRUCTION AND THE DRAWN.
THE OWNER AND THE ENGINEER.




D. THE CONTRACT STRUCTURAL DRAMNGS AND SPECIFIGATINS SPECIFICALLY SHOWN, DO NOT INOICATE THE METHOD OR


E. THE ENGINEER SHALL NOT HAVE CONTROL OF, AND SHALL ECHNOUES, SEOUENCES, RR PROCEOURES, FOR SAFETY
PRECAUTINS $A N D$ PROGRAMS IN CONNECTOON WTH THE WORK,

 CARRY OUT T
DOCUMENTS.
F. CONTRACTOR SHALL VERIF EOUIPMENT SIZE AND LOCATON NotIFY OWNER
FROM PLANS.
6. THE CONTRACTOR SHALL NOTIFY THE OWNER'S
RERRESENTATVE 48 HOURS II ADVANCE OF THE TMME WHEN A SIGNFICANT PORTION OF THE RENFORCING HAS BEEN TIED AND WHEN THE CON
SITE INSPECTIONS.
H. POSIITVE DRAINAGE SHALL BE PROVIED ADJACENT TO ALL
FOUNDATIONS SO PONNING OF RAINFALL NEAR THE OUNDATIONS DOES NOT OCCUR.

J. DRANAGE PATTERNS APRROVED AT THE TIME OF FINSH
GRADING SHALL BE MAINTANED THROUGHOUT THE LIFE OF THE TOWER.
3 Foundation backfil
rost-resistant structural fill


 INCHES AND REMOVED RROM THE SITE. ALE EXPOSED
SHALL THEN BE INSPECTED BY PROBING, AND TESTING.
THE EXPOSED SUBGRADE SHOLLD NOT BE ALLOWED TO DRY OUT
PRIOR TO PLACING SELECT STRUCTURAL FILL.
ALL FILL UNOER THE SLAB SHALL BE COMPACTED
FROST-RESISTANT STRUCTURAL FILL MATERILL. 24 MIIMUM
RROST-RESSTATAN STRUC
THIKNESSS.
SELECT STH
GRADATION:
No PARTILES GREATER THAN 6 INCHES
PERCENT PASSING ${ }^{\prime \prime}$ SIEVE $100 \%$
PERCENT PASSING 3 SIEVE $100 \%$
PEREEN PASSIG $1 / 4^{4}$ SIEVE $25 \%-70 \%$
PERCENT PASSING NO 40 SIEVEV $0 \%-30 \%$
PRRCENT PASSING NO. 200 SIEVE $0 \%-5 \%$
FROST-RESISTANT STRUCTURAL FILL SHALL BE PLACED IN LIFTS
BETWEEN 9 INCHES ANO 12 INCHES THICK, WATERED AS


6. COMPACTIN AND MOISTURE CONTENT OF SUBGRADE AND EACH


## a moisture management

A. EVERY EFFORT SHAL QE MADE TO KEEP EXCAVATONS DRY
SHOULD GROUNOWATER BE ENCOUNTERED.
B. SEEPAGE CAN BE EFFECTVELY HANDLED BY SIMPLE
 DIAAETER PIPE SET VERTICALL WTH A COARSE SAND AND
GRAVEL MIXURE PLACED IN THE BOTTOM TO ACT AS A FILTER.
C. CARE SHALL BE EXERCISED IN PUMPING DIRECTY FROM THE
EXAAATTN SIICE THIS MAY CAUSE DETERIORATION OF THE
EXCAVATINN BAEE EXCAVATION BASE.
D. THE TRAFFIC OF HEAVY EOUPMENT (INCLUDING HEAVY
COMPACTON EQUPMNNT MAY CEEAE PUUPING ANO GENERAL

## 5 slab-on-grade

A. SLAB-ON-GRADE FOUNDATIONS SHALL BE CONSTRUCTED IN ACCOROANCE WITH THE ENGINEERING DESIGN
PREPARATION, DRAINGEE, ANO MAITENANCE.
B. WIHIN THE AREA OF THE PROPOSED SLAB-ON-GROUNO, DELE EERIOUS MATERIALS WHICH MAY BE PRESENT, AND ALL
SOI REOURED TO PROYDE FOUNDATION BACKFILL BELOW AND



C. PLACE A 10 MIL POLYOLEFIN, ASTM E 1745 (CLASS A), VAPOR
BARRIER OVR COMPACTED SOIL PRIOR TO PLACIING
D. REFER TO PLANS FOR STFFENED SLAB-ON-GRADE
DIMENSIONS, THICKNESS, AND REINORCING.
E. THE TROWELED FINSHED CONCRETE SLAB-ON-GRADE FLOOR PROFLLE SHAL COMPLY WTH THE FOLLOWNG FLATNES
LEVELNESS VALUES AS DEFNED IN THE ASTM E 1155:

	SPECCFFED   OVERALL	MINMUM   LOCAL
FLATNESS (FF)	25	17
LEVELNESS (FL)	20	15

F. Horizontal wig and vertical insulation shal be used
TO protect shallow foundations per "Disign giin for


1.6 COMCRETE
A. CONCRETE DESIIN AND REINFORCEMENT SHALL BE IN
ACCORANACE WITH "BUILOING COOE REQUIREMENTS FOR

B. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTH 301-05."
C. ALL CONCRETE SHALL HAVE SAND FINE AGGREGATE, NORMAL
WEIGT COARSE AGGREGATE, AND TYPE IOR II PORTLANO NEIGTT COARSE AGGREGAEE AND TYPE IOR III PORTLAND
CEMENT. SLABS ON GRADE ANO ALL OTHER CONCRTE SHALL HAVE A COMPRESSIVE STRENGTH (F'C) OF 4000 PSI IN 28
DAYS. SEE CIILL FOR SIDEWALKS. PAVING, ANO SITE WORK
S.
TE STRENGTH REOUIREMENTS.
D. NO PIPE SLEEVES SHAL PASS THROUGH STRUCTVRAL
CONCRETE WWTHOUT PRIOR APPROVAL OF THE STRUCTURAL ENGINERER CAST IN SLEE
SCHEDULE 40 STEEL PIPE.
E. Contractor shal be responsible for the adeouacy of
THE RORMS ANO SHORING AND For SAFE PRACTCE IN THEIR THE FORMS ANO SH

B. DETALING OF CONCRETE REINFORCEMENT AND ACCESSORES SHALL BE IN ACCORDANCE WTTH
ACI DETALING MANUAL - 2004.
C. ALL Hooks SHALL BE A.C. STANDARD 90-DEGREE Hooks,
UNLESS DETALLEO OTHERWISE.
D. PROVDE CORNE BARS FOR ALL HORRZNTAL BARS AT THE
INSIDE ANO OUSIOE FACES AND TOP AND BOTTOM OF


. the weling of reineorcing steel wil not be permitteo. F. heat shall not be used in the fabrication or
G. MINMUM CONCRETE PROTECTION FOR REINFORCEMEN,

H. bars in slabs on grad shall be supported on smal PIECES OF MASONRY OR ACCESSORI
WHHCH PROVIDE $11 / 2^{\prime \prime}$ AT THE TOP.
miscelaneous

## A. ALL Grout for steel bearing and leveling shall be NON Shrink and shal have a MimuM compresive

 NON-SHRINK AND SHALSTRENGTH OF 5000 PS

$\frac{\text { PLAN NOTES: }}{\text { 1. REFFR TO }}$
. REFER TO CIVIL DRAWINGS For plan north.
REFER TO EOUIP. BULLDING MANUFACTURER'S DRAMNGS FOR
INFORMATION ON HOW TO ATTACH SHELTER TO FOUNDATION.



TYPICAL CORNER BAR AT DOWN TURN SCALE: N.T.S

	TYPICAL CORNER BAR
	AT DOWN TURN




CONTRACTOR SHAL PROMDE ALL ITEMS OF LABOR AND
MATERILLS TO MAKE A COMPLETE INSTALLATION OF ELECTRICAL NECESSARY FOR COMPLETE SYSTEMS, INCLUODNG, BUT NOT LMMTED NECTHE TOLLOWNG:
MAN POMER BRANCH/FEEDERS AS REOURED.
BRANCH EEEDR FOR POMER ANO LIGHTING

ALL LIGHTNG FIXTURES AND LAMPS
ALL COMMUNICATON EMPTY CONOUTT SYSTEMS.
C. LIGHINNG SURGE PROTECTION DEVCE:
electrical requirements
A. AL work shall be done In accordance with all local and
B. ALL work shall be completed by a certified master

C. ALL WORK SHALL CONFORM
MOTOROLA R56 STANDARSS.
D.

othe latest version of
D. AFTER INTAALATION TEST ALL CONDUCTORS FOR SHORTS ANO
guarantee
THE CONTRACTOR SHAL FURNSH A WRITTEN CERTIFCATE.
GUARANTEEING ALL MATERILLS EOUUPMENT AND LABOR FUR


 GUARANTEED PERIOD,
COST TO THE OWNER.
feeders, swiches, metering eauipmen
MAKE ARRANGEMENTS WTH OWNERS AS NEEDED TO BRING IN
BRANCH FEEDERS FOR ELECTRICAL SERYCE AS SHOWN ON

MELER AS SHOWN ON DRAMS
A. PANELBOAROS SHALL CONSIST OF A CAN, FRONT, INTERIOR AND
CIRCUIT PROTECTIVE DEVCES AND SHALL EE MANUFACTURED IN ACCORDANCE WTH UNDERWRTTER'S LABORATORIES. THE GAUGE OF
METAL USED AND THE GUTTER SPACE SHAU EE IN ACORANE




WRING:
ALL CONDUCTORS SHALL BE MADE OF SOFT-DRAWN ANNEALED
COPER WTH A CONDUTIVTY NOT LESS THAN THAT OF GOF
PUPE

conductors shall be type "Then/thwn" insulation.

INSTALL CONDUCTORS IN CLEAN, DRY CONDUITS. USE UU
APPROVEO PULLING LUBRICANT WHERE REQUIRED.
USE \#12 AS MINMUM CONDUCTOR SIZE FOR POWER SYSTENS. AL
CORTROL MRES SHALL BE STRANDED AND TERMIIATED WTH MAKE CONNECTION, SPLCES AND TAPS ONLY IN APPROVED BOXES
AND FITTNGS. FOR SMALL BRANCH CIRCUIT CONOUCTORS, FIRST

 CONNECTIONS,
TAPE TO EOUA
INSULATION.
here factory color cooed conductors are not ave
nd guioeunes for communications sites
INSTALL Bands of colored vinyl plastic tape at each end
Of Each conductor. condut:
A. PROVID A COMPLETE ASSEMBEY OF CONOUT, TUBING OR DUCT
 OTHERCOMPONENTS $A N D$ ACCESSORIES AS MEDED. CONNECTONS
ANO COUPLIMG MUST BE COMPRESION TYPE TO MEET R56 FOR AND COUPLING MUST BE
BONDING REOUREMENTS.




RIIID STEEL CONOUT SHALL BE HEAVY-WAL STEEL TUBE WTH
METALLIC CORROSION-RESISTANT COATNG ON INTERIOR AND


unoergroung condut shall be scheoule 40 pvc (unless
NOTED OTHERWISE).

 installaton:
ANCHOR CONDUT WTH HANGES, CONDUTT STRAPS OR OTHER
DEMCES SPECFICALLY OESIGNED FOR THE PURPOSE. WIRE TIES

ALL CONCRETE INSERTS SHALL BE GALVANZED OR CADMUM
PLATED INDIVIUCL HANGERS, TRAPEZE HANGERS AND ROOS LAATED INDIVIUAL LAANG.
SHALL BE PRIME COATEO.
Instal horizontal runs of condut to provioe a natural
DRAN TO PREVENT MOISTURE COLLECTING IN THE POCKETS OR
CAP CONDUUT ENDS UNTLL CONDUCTOR II INSTALLED TO PREVENT
FOREIIN OBUECTS FROM ENTERING CONOUIT.
Fitting and conduits Shall be approved for grounoing
 JUMPERS EXPOSED.
6. INSTALL (2) 200 POUNO NYLON PULL CORDS IN ROUGH-11
7. InSTAL OfFSETS. PuL Boxes And Elbows As REQuRED To
8. OPENINGS AROUND ELECTTICAL PENETRATIONS THROUGH FIRE
 ction and pull boxes:
A. USE GALVANIED PULL AND JUNCTION BOXES THAT COMPLY MTH
NEC AS TO IIZE ANO CONSTRUCTON.
B. for met bexes not less than $4^{\prime \prime}$
b. FOR JUNCTION AND PULL BOXES, USE BOXES NOT LESS
SQUARE AND $11 / 2^{"}$ DEEP WTHTHEMOVABLE COVERS.
c. IN WET AREAS OR OUTDOORS, USE CAST ALUMIUM OR CAST IRON
D. INSTALL JUNCTION AND PULL BOXES IN ACCESSIBLE LOCATIONS.
E. Instal boxes on concealed conduits wit covers flush

## LP-GAS containers

ALL ELECTRICAL EQUIPMENT AND WRING WITHIN (5) FIVE FEET
SHALL BE CCASS 1 DIVSION 1 ELECTIICAL MRING AND EQUPMEN (5) FIVE FEET To (10) TEN
FEET SHALL BE CLASS 1 DUVSION 2 (
$\qquad$
1.1 General

## onnections

ALL EXERNAL GROUNDING CONNECTIONS SHALL BE MADE BY THE
EXOHERMMC PROCESS, BY IRREVERSIBLE HIGH COMPRESSION,


 MASTALLED PER
PROCEDURES.
ALL INTERIOR GROUNING AND BoNOING CONDUCTORS SHALL BE CONNECTED BY TWO HOLE-TTPE (COMPRESSION) CONNECTIONS MECHANLCAL CONNECTIONS, FTTINGS OR CONNEETIONS
OEPEND SOLELY ON SOLDER SHALL NOT BE USED. ground rods
A. ALL GROUND ROOS SHALL BE COPPER-CLAD STEEL $5 / 8^{" \prime}$

ground roos shall be located so as to avoid the tower
ground roos
foundation.
IF ROCK IS ENCOUNTERED, GROUND ROOS MAY BE DRIVEN AT AN
OBLIOUE ANGLE OF NOT GREATER THAN 45 DEGREES FROM OBLOUE ANGLE OF NOT GREATER THAN 45 D EGREES FROM
VERTICAL OR MAY BE BURED HORIONTALY AN PERPENOICULAR VERTICAL OR MAY EE BURED HORTZONALY
TO THE BULDING, IN A TRENCH AT LEAST $36 "$ DEEP.

ELLOW THE FREEZE LINE, WHICHEVER DEPTH IS GREATER.
Ground roos shall not be installed more than 16 feet
APART (OR TWCE THE LENGTH OF THE ROD) AND NOT LESS THAN APART (OR TWCE THE LENGTH OF THE ROD
6 FEET (PER NFPA 70, ARTICLE $250-56$ ).

## ground bars

ALL GROUND BARS SHALL BE $1 / 4$ " THICK BARE COPPER PLATES
ANO OF SUFFICIENT SIZE TO GROUNO ATTACHMENTS INDCATED IN THE DRAWNGS (MIN. $2^{\prime \prime} \times 12^{\prime \prime}$ ). HOLES SHAL BE $7 / 16^{\prime \prime}$ DTAMEDETER

B. THE METHOD OF ATTACHMENT OF THE GROUNING ELECTRODE CONOUCTOR TO EXTERIOR AND TOWER GROUND I
1.5 cables

ALL EXTERIOR GROUNOING CABLES SHALL BE STANDARO \#2 AWG
TINED SOLO BARE COPPER WRE UNLESS INDICATED OTHERWSE
WHEN THE DRECTION OF THE CONOUCTOR MUST CHANGE, IT
SHAL BE DONE GRADUALYY. ALL BENOS SHALL BE MADE MTH

all conduts shall be metallically supported.
ALL conduls used as raceways for grouning conductors SHALL BE BONDED AT BOTH EADS
NATONAL EIECTRICAL CODE (NEC).
provide mre protection pipes at all ground mres at
Grade level per
THE GROUND RING ENCIRCLING THE BULDING SHALL RE A MINIMM
SIZE OF NO. 2 AWG BARE TINNED SOID COPPER CONOUCTOR IN

 7 FENCE/GATE
A. GROUND ALL SECTIONS OF FENCE AND GATE AS INDICATED ON
DRAWINGS. GROUND EACH GATE POST AND CORNER POST. ALL ORAMNGS. GROUND EACH GAE POST AND CORNER POS
CONNETOOS FOR THE FENCE GROUND SYTEM SHALL BE
CNO EONOHERMMC WED ANO NSTALLED PER
RECOMMENOATONS AND PROCEDUES.
8 dissimlar metals
BONDING OF TWO DISSIMLAR METALS MAY RESULT IN GALVANC
CORROSIIN AREACTIN THAT OCCURS AT THE JUNCTION OF

 The SAME Metal Shall be used throughout the system when
possible
 copper conductors shall not be installed on aluminum
ALUMINUM AND COPPER SSALL NOT BE DRECTLY CONNECTED TO


 THESE CONNECTIONS SHAL BE LBERALY COATED WTH A
CONDCTIE ANTOXIDANT AT THE POINT OF INSERTION INTO THE ONNECTOR.


## anti-oxidant

 ETERNAL MECHANLCAL CONTIOXIDANT TYPE. ZINC ANTI-OXIDANT (GRA COLOR) SHALL BE USED WHEN CONNECTNG TO GALVANIZED
ND ALUMINUM OBJECTS ANO COPPER ANTI-OXIDANT (COPPER AND ALUMNUM OBUECTS AN COPPER ANIT-OXIONT (COPPER
COLOR) SHALL BE USED WHEN CONNECTIN TO COPPER OBUECTS. test procedure
 PEERORMED $\mathbb{N}$ ACCORDANCE WTT)
SPECFICATIONS (DATED $9-1-05$ ).
GROUND TEST MUST 日E PERFORMED PRIOR TO UTLITY CONNECTION
ANO AND GROUNO CONNEG
ELECTRODE SYSTEM.


ELEC/TELCO GENERAL NOTES








[^0]:    I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the appication is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

