24: Water Quality, Stormwater Management and Erosion Control (14-526(b) 3 a)

The proposed site development has been designed in accordance with the City and Maine DEP Chapter 500 Stormwater standards. Please refer to the Stormwater Management Plan, this section. Erosion control features, details and the written plan are shown on the site plans.

CIVIL ENGINEERING • SURVEYING • LANDSCAPE ARCHITECTURE

Pine State Family Mart 1884 Forest Avenue Portland ME, 04103

Prepared for

John Chau 75 Arcadia Street Portland, ME 04103

September 2018

Table of Contents

Contents

I. Introdu	uction1	l
Basic Sta	andard - Chapter 500, Section 4(B)	l
General S	Standard - Chapter 500, Section 4(C) 1	l
Flooding	g Standard - Chapter 500, Section 4(F)2	2
Urban In	npaired Stream Standard – Chapter 500, Section 4(E)2	2
II. Existin	ng Conditions	2
III. Propos	sed Conditions	3
IV. Metho	odology	3
V. Pre-De	evelopment Watershed Model	1
VI. Post-D	Development Watershed Model	1
VII. Water	Quality	5
I. Water	Quantity	5
Flooding	g Standard - Chapter 500, Section 4(F)	5
II. Conclu	usion	5

Appendices

Appendix A:	Regulatory Standards Calculations
Appendix B:	Subsurface Investigations/FIRM Map
Appendix C:	Pre-Development Calculations
Appendix D:	Post-Development Calculations
Appendix E:	Inspection, Maintenance and Housekeeping Plan
Appendix F:	Easements/Deed Restrictions

Appendix G: Stormwater Management Plans

STORMWATER MANAGEMENT PLAN Pine State Family Mart Portland, Maine

I. Introduction

This Stormwater Management Plan has been prepared to address the potential impacts associated with this project due to the proposed modification in stormwater runoff characteristics and land cover changes. The stormwater management controls that are outlined in this plan have been designed to suit the proposed development and to comply with applicable regulatory requirements.

Project Scope

The proposed development will consist of an 8-bay gas station and related convenience store with a 5,000 square-foot footprint, and a mixed used retail building with a total footprint of 7,800 square-feet. Additionally, the site will include 48 parking spaces, 4 of which are handicap accessible. The project will result in the creation of 1.1 acres of impervious area and 1.6 acres of developed area.

Project Watershed

The proposed development is tributary to the Penobscot River watershed, ultimately draining to the Atlantic Ocean.

Regulatory Requirements

Regulatory requirements for this project consist of the basic, general and flooring standards, each described individually below.

Basic Standard - Chapter 500, Section 4(B)

Since the project will disturb more than one (1) acre of land area, MDEP Basic Standards apply, requiring that grading or other construction activities on the site do not impede or otherwise alter drainage ways to have an unreasonable adverse impact. We have avoided adverse impacts by providing an Erosion & Sedimentation Control Plan, and an Inspection, Maintenance and Housekeeping Plan (Appendix E) to be implemented during construction and post-construction stabilization of the site. These construction requirements have been developed following Best Management Practice guidelines.

General Standard - Chapter 500, Section 4(C)

Since the project will create more than one (1) acre of impervious surface, MDEP General Standards apply, which require a project's stormwater management system to include treatment measures that will mitigate for the increased frequency and duration of channel erosive flows due to runoff from smaller storms, provide for effective treatment of pollutants in stormwater, and mitigate potential temperature impacts. The General Standards require treatment of no less than 95% of the site's created impervious area and no less than 80% of the site's created developed area (landscaped area and impervious area

combined). To mitigate the changes in hydrologic patterns due to the development of this project, a subsurface underdrained soil filter has been implemented into the stormwater management infrastructure. Filtration BMPs are very effective at removing a wide range of pollutants through the use of organic soil filter media.

Flooding Standard - Chapter 500, Section 4(F)

Since the planned project will not create more than three (3) acres of impervious surface, MDEP Flooding Standards are not required to be met. However, through the City of Portland delegated review there are flooding standards that need to be met. The Flooding Standard requires a project's stormwater management system detain, retain, or result in the infiltration of stormwater from 24-hour storms of the 2, 10, and 25-year frequencies such that the peak flows of stormwater from the project site do not exceed the peak flows of stormwater prior to undertaking the project.

Urban Impaired Stream Standard – Chapter 500, Section 4(E)

The proposed development is not tributary to an Urban Impaired Stream as defined by the Maine Department of Environmental Protection in Chapter 502. Therefore, the project will not be required to meet or exceed the requirements of the Urban Impaired Stream Standard as listed in Section 4(E) of Chapter 500. The Urban Impaired Stream Standard typically requires a project to either pay a compensation fee or mitigate project impacts by reducing or eliminating an off-site or on-site pre-development impervious stormwater source.

II. Existing Conditions

The project site is located in the City of Portland's Riverton section and is bounded by Forest Avenue to the north, Riverton Drive to the west and residential developments to the south and east. The project frontage is on Forest Avenue (Route 302) and will be accessed by drives on Forest Avenue and Riverton Drive. The project site is approximately 1.61 acres in size and has access to Forest Avenue and Riverton Drive. The site is partially wooded, flat and does not contain wetland or other waterbodies.

<u>Soils</u>

Soil characteristics were obtained from the USDA National Resources Conservation Service -Web Soil Survey. The Hydrologic Groups (HSG) of the soils is classified as follows:

Soil Map Symbol	Soil Name	Slope (%)	HSG
WmB	Windsor Loamy Sand	0-8	А

A copy of the hydrologic soil group designation is included in Appendix B.

Flood Zone

The proposed development area of the site is not located in an identified flood zone per the FEMA Flood Insurance Rate Map for the City of Portland, Community Panel 230051 0006 C. A flood insurance rate map is included in Appendix B.

III. <u>Proposed Conditions</u>

Project Scope

The proposed development will consist of an 8-bay gas station and related convenience store with a 5,000 square-foot footprint, and a mixed used retail building with a total footprint of 7,800 square-feet. Additionally, the site will include 48 parking spaces, 4 of which are handicap accessible. The project will result in the creation of 1.1 acres of impervious area and 1.6 acres of developed area.

Surface Cover

The project development will require removal of all of the vegetation on the site. The site will be revegetated in accordance with the City regulations. Neighboring residential uses are buffered and all landscaping plant locations, types and sizes are shown on the enclosed Landscape Plan.

Best Management Practices

The project will utilize a Subsurface Underdrained Soil Filter for stormwater treatment and detention.

IV. <u>Methodology</u>

In order to evaluate drainage characteristics as a result of the proposed development, a quantitative analysis was performed to determine peak runoff rates in the pre-development and post-development conditions. The evaluation was performed using the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds - Technical Release #55 (TR-55)". HydroCAD computer software was utilized to perform the calculations.

The peak runoff rates were calculated using a 24-hour duration storm event with a Type-III rainfall distribution. The rainfall amounts for Cumberland County (SE) were obtained from Appendix H of MDEP's Chapter 500: Stormwater Management (effective date August 2015). Rainfall values for Cumberland County SE are listed in the table below.

Storm Frequency Pre Cumberland	ecipitation (in./24 hr) d County SE
2-year	3.1
10-year	4.6
25-year	5.8

Runoff curve numbers were determined for each of the watersheds by measuring the area of each hydrologic soil group within each type of land cover. The type of land cover was determined based on survey data, field reconnaissance and aerial photography. Times of concentration were determined from site topographic maps in accordance with SCS procedures.

The hydrologic model incorporates the following design assumptions:

- The minimum time of concentration (Tc) is six minutes, based upon limitations of the TR-55 model.
- A soil infiltration velocity of 6 inches per hour was used based on the designated soil type. The Windsor loamy sand is classified as a soil with an infiltration rate ranging from 6-20 inches per hour. We have used the lowest value in this range to be conservative. Supporting documents for this infiltration rate can be found in Appendix B of this report.

V. <u>Pre-Development Watershed Model</u>

The pre-development watershed plan consists of two subcatchments labeled 1S and 2S in the HydroCAD model. Two locations were identified as Study Points (SP's) for comparing peak runoff rates, and are described below:

SP-1 is located in the south-westerly corner of the lot where runoff leaves the site via closed drainage system located in Riverton Drive. Watershed 1S contributes runoff to this study point with an overall runoff area of approximately 0.93 acres. SP-1 and the associated drainage area are tributary to the Penobscot River Watershed.

SP-2 is located in the south-easterly corner of the lot where runoff leaves the site via overland flow to the adjacent residential property complex. Watershed 2S contributes runoff to this study point with an overall runoff area of approximately 0.07 acres. SP-2 and the associated drainage area are also tributary to Penobscot River Watershed.

VI. <u>Post-Development Watershed Model</u>

The post-development watershed area consists of the same overall area as the predevelopment plan.

SP1: Post-development subcatchments 10S and 20S represent the area tributary to SP-1 and SP-2, respectively. The majority of the proposed development area is included within 10S. Watershed 10S includes the buildings, access drives, parking areas, landscaped areas, and the subsurface underdrained soil filter (10P). The overall tributary area associated with SP-1 is 1.5 acres. Watershed 20S includes a small portion of proposed sidewalk, and landscaped areas. The overall tributary area associated with SP-2 is 0.14 acres.

The Best Management Practices have been designed and sized in accordance with DEP BMP standards contained within Chapter 500 and the BMP Manual. Sizing calculations can be found in Appendix A.

VII. <u>Water Quality</u>

A subsurface geotechnical investigation to determine the seasonal high-water table will be performed and test pits will be done in the proposed building areas and stormwater treatment filtration area. Upon completion, the geotechnical investigation report can be provided upon request.

The General Standards are met through the utilization of a subsurface underdrained soil filter that has been implemented into the stormwater management infrastructure. Filtration BMPs are very effective at removing a wide range of pollutants through the use of organic soil filter media. BMP sizing and treatment calculations of this system are provided in Appendix A.

Through the use of the aforementioned BMP 99.69% of new impervious area and 95.70% of new developed area will be receiving treatment. This meets the requirements for the Maine DEP General Standards.

I. Water Quantity

Flooding Standard - Chapter 500, Section 4(F)

Since the planned project will not create more than three (3) acres of impervious surface, MDEP Flooding Standards are not required to be met. However, through the City of Portland delegated review there are flooding standards that need to be met. The Flooding Standard requires a project's stormwater management system detain, retain, or result in the infiltration of stormwater from 24-hour storms of the 2, 10, and 25-year frequencies such that the peak flows of stormwater from the project site do not exceed the peak flows of stormwater prior to undertaking the project. As such, a runoff evaluation was performed using the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds - Technical Release #55 (TR-55)". HydroCAD computer software was utilized to perform the calculations.

	Stormwater Peak Runoff Summary Table									
Study Point	Storm Event	Pre-Development (cfs)	Post-Development (cfs)							
	2-year	0.00	0.00							
SP-1	10-year	0.00	0.00							
	25-year	0.02	0.00							
	2-year	0.00	0.00							
SP-2	10-year	0.00	0.00							
	25-year	0.01	0.00							

The following table presents the results of the stormwater runoff calculations at the study points for the pre-development and post-developed conditions.

The HydroCAD data output sheets from pre-development (Appendix C) and postdevelopment (Appendix D) models are appended to this report along with stormwater management plans (Appendix F). The models represent the peak runoff rates in the postdevelopment condition at all points of analysis are at or below pre-development runoff rates for the 2, 10, and 25-year storm events with implementation of the proposed stormwater management practices.

II. <u>Conclusion</u>

The proposed development has been designed to manage stormwater runoff through Best Management Practices approved by MDEP. Stormwater BMP's provide treatment to 99.69% (95% required) of impervious areas, and 95.70% (80% required) of the total developed area. Runoff discharging from the site will be at or below pre-development conditions for the 2, 10 and 25-year storm events at all study points. Additionally, erosion and sedimentation controls along with associated maintenance and housekeeping procedures have been outlined to prevent unreasonable impacts on the site and to the surrounding environment.

Prepared by:

SEBAGO TECHNICS, INC.

ichan L. Mark

Richard L. Meek, P.E Senior Project Engineer SAH

Appendix A

Regulatory Standards Calculations

Table 1: MDEP GENERAL STANDARD CALCULATIONS

ly Mart
Fami
State
Pine
.1142
1
dol

	66,349	17,799	48,550		0	69,331	20,628	2,576	48,703	443	73,849	TOTAL (S.F.)
	0	0	0	NO		5,230	4,930	475	300	296	7,500	20
SSF1	66,349	17,799	48,550	YES		64,101	15,698	2,101	48,403	147	66,349	10
	(S.F.)	(S.F.)	(S.F.)		(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)	
BMP	TREATED	TREATED*	TREATED	PROVIDED?	AREAS	AREA	AREA	TO REMAIN	IMPERVIOUS AREA	TO REMAIN	WATERSHED SIZE	AREA ID
TREATMENT	AREA	AREA	AREA	TREATMENT	DEVELOPED	DEVELOPED	LANDSCAPED	LANDSCAPED AREA	NEW ONSITE	IMPERVIOUS AREA		
	DEVELOPED	LANDSCAPED	IMPERVIOUS		NET EXISTING	NET NEW	NEW ONSITE	EXISTING ONSITE		EXISTING ONSITE		

	% OF DEV. ANEA NECEIVING INEALIVENT		% OF HIVE AND US ANEA RECEIVING I REALIVENT
95.70%	% OF DEV. AREA RECEIVING TREATMENT	99.69%	% OF IMPERVIOUS AREA RECEIVING TREATMENT
66,349	TOTAL DEV. AREA RECEIVING TREATMENT (S.F.)	48,550	TOTAL IMPERVIOUS AREA RECEIVING TREATMENT (S.F.)
69,331	TOTAL DEVELOPED AREA (S.F.)	48,703	TOTAL NEW IMPERVIOUS AREA (S.F.)

		SEBAG	O TECHNIC	S, INC.			JOB	11142					
		75 John	Roberts Road	Suite 4A			SHEET NO.	1			OF	1	
		South P	ortland, Maine	04106			CALCULATED BY		SAH		DATE	9/4/2	2018
		Tel.	(207) 200-21	00			FILE NAME	11142WQC	xls		PRNT DATE	9/10/	/2018
					UNDERDRAIN	ED SUBSUR	FACE SAN	D FILTER					
Task:		Calculate	water qual	ity volume pe	r MDEP chapte	er 500 regula	ations						
Refere	ences	1. Maine	DEP Chapt	er 500, Sectio	n 4.C.(3)(b)								
			"must deta	ain a runoff vo	olume equal to	1.0 inch tim	les						
			the subcat	chment's imn	ervious area n	lus 0 4 inch	times the s	subcatchme	nt's landscane	ed area"			
			the subcat	ennene simp									
		2 Maine		lanagement D	Practices Storm	water Man	ual Section	n 7 3 2					
		2. Widifie	"dotain ru		aual to 1 0 in	sh timos tho	cubcatcha	nont's impo	rvious area				
		a.					subcatchin	lient simpe	i vious ai ea				
		6	plus 0.4 in	ch times the s	ubcatchment :	s landscaped	area						
		D.	surface al	rea of the san	a filter bed and	d chamber s	ystem mus	st be at leas	t				
			equal to 5	% of the impe	rvious area dra	aining to it a	nd 2% of t	he landscap	ed area."				
		с.	"treatmen	t flow rate for	the Stormtec	h Isolator Ro	w is the p	rojected on	e year peak flo	ow rate			
			tor the dra	iinage area fee	eding the Isola	tor Row"							
			Flow rates	•								-	
			SC-310	0.10	cfs/chamber								
L			SC-740	0.20	cfs/chamber								
ļ			DC-780	0.20	cfs/chamber								
ļ			MC-3500	0.30	cfs/chamber								
Tribut	ary to Subsu	urface San	<u>d Filter</u>	SSSF1									
	Landscaped	d Area		17,799.00	SF								
	Impervious	Area		48,550.00	SF								
Minim	num Surface	Area for s	and filter a	nd chamber s	vstem								
	Required		(2% X Land	lscaped + 5%"	X Impervious)							
	Total Lands	caped Are	20	17,799,00	SF	Area	356	SE					
	Total Impe	rvious Are	а	48,550,00	SF	Area	2428	SE					
	rotar impe	110007110		10,000100	5.		2.20	0.					
			Pequ	ired Minimum	Surface Area		2782	CE.					
			nequ		Junace Area		2705	51					
-				Drovidod	Curface Area		4090	C.C.					
				Provided	Surface Area		4080	55					
Tract	nont Value	0											
rreath		e										-	
	Doguine -		(0 A!! X ! -		1. V	c)							
	кециігеа		U.4" X Lan	iuscaped + 1.0	x imperviou	5)						+	
	ا مماد	1 0		17 700 00	с г	Values	F02					-	
	Landscaped	a Area		17,799.00	51	volume	593						
	Impervious	Area		48,550.00	SF	Volume	4046					-	
ļ													
			Т	reatment Volu	ume Required		4639	CF	0.106	AF			
			P	rovided Treat	ment Volume		4680	CF	At Elev = 74.8	36			
Sedim	ent Pre-Tre	atment											
	Per Referer	nce 2.c abo	ove										
		One	year flow r	ate out put fro	om Hydrocad:	1.60	cfs						
			ISO R	ow sizing for:	SC-740	0.2	cfs						
	Тс	otal numbe	er of Isolato	or Row Chamb	ers required:	8		Provided o	ne row of 14				

Appendix B

Subsurface Investigations

Hydrologic Soil Group—Cumberland County and Part of Oxford County, Maine

7/25/2018 Page 2 of 4

Conservation Service

Natural Resources

NSDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
WmB	Windsor loamy sand, 0 to 8 percent slopes	A	4.0	100.0%
Totals for Area of Intere	st		4.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

AdA: Adams and Windsor loamy sands, 0 to 5 percent slopes

The Adams component makes up 43 percent of the map unit. The natural drainage class is somewhat excessively drained. Water movement in the most restrictive layer is high. This component is on terraces on river valleys. The parent material consists of sandy glaciofluvial deposits. Depth to a root restrictive layer is greater than 60 inches.

The Windsor component makes up 43 percent of the map unit. The natural drainage class is excessively drained. Water movement in the most restrictive layer is high. This component is on terraces on river valleys. The parent material consists of sandy glaciofluvial deposits. Depth to a root restrictive layer is greater than 60 inches.

Important farmland classification: Statewid	<u>Land capability:</u> 3 s	Vermont Agricultural Value Group: 6

Vermont Residential Onsite Waste Disposal Group and Subgroup: Ia

This unit is well suited as a site for soil-based residential wastewater disposal systems, based on a review by the Natural Resources Conservation Service of criteria set forth in the Vermont 2007 Environmental Protection Rules. The rapid permeability in the substratum is a concern. Backfilling absorption trenches with at least one foot of finer textured material or other site modifications may be necessary to slow the percolation rate enough to allow for thorough filtering of effluent.

PHYSICAL and CHEMICAL PROPERTIES									EDOSION EACTORS			
Cellarama	Depth	Typical	Clav	Soil	Permeability	Organic	ERUS		CIUKS			
Soil name	(In)	texture	(Pct)	(pH)	(IN/Hr)	(Pct)	Kw	Kf	Т			
Adams	0-7	LS	0-5	3.6 - 6.0	6-20	2.0-5.0	.10	.10	5			
	7-30	LFS	0-5	4.5 - 6.0	6-20	1.0-3.0	.20	.20				
	30-65	LFS	0-5	4.5 - 6.5	20-100	0.0-0.5	.20	.20				
Windsor	0-6	LS	1-3	4.5 - 6.0	6-20	2.0-4.0	.15	.15	5)			
	6-23	LS	0-3	4.5 - 6.0	6-20	0.5-2.0	.15	.15				
	23-65	COS	0-2	4.5 - 6.5	6-20	0.0-0.5	.02	.02				

WATER FEATURES							SOIL FEATURES	
	Hydrologic	Depth to seasonal	Flooding		Ponding		Hydric	
Soil name	group	high water table (Feet)	Frequency	Duration	Frequency	Duration	soil?	Depth to bedrock (range in inches
Adams	А		None		None		No	
Windsor	А		None		None		No	

LAND USE LIMITATIONS					AGRICULTURAL YIELD DATA		
Soil name	Land use	Rating	Reason **		Crop name	Yield / acre	
Adams	Dwellings with basements:	Not limited			Alfalfa hay	3 Tons	
Windsor	Dwellings with basements:	Not limited			Grass-legume hay	2.5 Tons	
Adame	Dand recomunit or and	Von limitod	Soonaga		Grass-clover	5.5 AUM	
Audins	Pond reservoir areas:	Very limited	Seepage		Grass hay	2 Tons	
WINDSOF	Pond reservoir areas: Very limited Seepage		Corn silage	14 Tons			
					Corn silage	16 Tons	
					Pasture	4.5 AUM	
					Grass-legume hay	4 Tons	

	Management		WOODLAND MANA	GEMENT
Soil name	concern	Rating	Reason	Vermont natural communities
Adams	Harvest equip operability:	Well suited		Hemlock-Northern Hardwood Forest,
Windsor	Harvest equip operability:	Well suited		Hemlock-White Pine-Northern Hardwood Forest
Adams	Road suitability:	Well suited		White Pine-Northern Hardwood Forest Variant,
Windsor	Road suitability:	Well suited		Hemlock Forest
Adams	Erosion hazard (off-road):	Slight		
Windsor	Erosion hazard (off-road):	Slight		

Appendix C

Pre-Development Calculations

Printed 9/10/2018 Page 2

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
20,032	39	>75% Grass cover, Good, HSG A (1S, 2S)
443	98	Impervious (1S, 2S)
49,918	30	Woods, Good, HSG A (1S, 2S)

Pre-Develoopment Prepared by Sebago Technics, Inc HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD Software Solutions LLC

Printed 9/10/2018 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
69,950	HSG A	1S, 2S
0	HSG B	
0	HSG C	
0	HSG D	
443	Other	1S, 2S

Summary for Subcatchment 1S: Watershed 1S

Runoff =	= (0.02 cfs @	15.04 hrs,	Volume=	462 cf,	Depth= 0.14"
----------	-----	------------	------------	---------	---------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description					
	29,205	30	Woods, Go	od, HSG A				
	11,058	39	>75% Gras	s cover, Go	bod, HSG A			
*	147	98	Impervious					
	40,410	33	Weighted A	verage				
	40,263 99.64% Pervious Area							
	147 0.36% Impervious Area							
	Tc Length	Slope	e Velocity	Capacity	Description			
(mi	n) (feet)	(ft/ft) (ft/sec)	(cfs)				
16	.4 75	0.0230	0.08		Sheet Flow, A to B			
					Woods: Light underbrush n= 0.400 P2= 3.10"			
7	.4 222	0.0100	0.50		Shallow Concentrated Flow, B to C			
					Woodland Kv= 5.0 fps			
C	.5 37	0.0540) 1.16		Shallow Concentrated Flow, C to D			
					Woodland Kv= 5.0 fps			
2/	3 334	Total						

24.3 334 Total

Summary for Subcatchment 2S: Watershed 2S

Runoff = 0.01 cfs @ 15.15 hrs, Volume= 343 cf, Depth= 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=5.80"

A	vrea (sf)	CN	Description		
	20,713	30	Woods, Go	od, HSG A	
	8,974	39	>75% Gras	s cover, Go	bod, HSG A
*	296	98	Impervious		
	29,983	33	Weighted A	verage	
	29,687		99.01% Per	vious Area	
	296		0.99% Impe	ervious Area	а
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
15.4	75	0.027	0.08		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
18.6	394	0.005	0.35		Shallow Concentrated Flow, B to C
					Woodland Kv= 5.0 fps
34.0	469	Total			

Summary for Link SP1: SP-1

Inflow Area =40,410 sf, 0.36% Impervious, Inflow Depth =0.14" for 25-year eventInflow =0.02 cfs @15.04 hrs, Volume=462 cfPrimary =0.02 cfs @15.04 hrs, Volume=462 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link SP2: SP-2

Inflow <i>J</i>	Area	ı =	29,983 sf,	0.99% Ir	mpervious,	Inflow Depth = 0).14" for	25-year event
Inflow		=	0.01 cfs @	15.15 hrs,	Volume=	343 cf		
Primar	y	=	0.01 cfs @	15.15 hrs,	Volume=	343 cf,	Atten= 0%	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

	Pine State Family Mart
Pre-Develoopment	Type III 24-hr 2-year Rainfall=3.10"
Prepared by Sebago Technics, Inc	Printed 9/10/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD Software Solutions I	LLC Page 6

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Watershed1S	Runoff Area=40,410 sf 0.36% Impervious Runoff Depth=0.00" Flow Length=334' Tc=24.3 min CN=33 Runoff=0.00 cfs 0 cf
Subcatchment2S: Watershed2S	Runoff Area=29,983 sf 0.99% Impervious Runoff Depth=0.00" Flow Length=469' Tc=34.0 min CN=33 Runoff=0.00 cfs 0 cf
Link SP1: SP-1	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf
Link SP2: SP-2	Inflow=0.00 cfs 0 cf Primary=0.00 cfs 0 cf

Total Runoff Area = 70,393 sf Runoff Volume = 0 cf Average Runoff Depth = 0.00" 99.37% Pervious = 69,950 sf 0.63% Impervious = 443 sf

		Pine State F	amily Mart
Pre-Develoopment	Type III 24-hr	10-year Raii	nfall=4.60"
Prepared by Sebago Technics, Inc		Printed	9/10/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD Software Solutions	s LLC		Page 7

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Watershed1S	Runoff Area=40,410 sf 0.36% Impervious Runoff Depth=0.01" Flow Length=334' Tc=24.3 min CN=33 Runoff=0.00 cfs 47 cf
Subcatchment2S: Watershed2S	Runoff Area=29,983 sf 0.99% Impervious Runoff Depth=0.01" Flow Length=469' Tc=34.0 min CN=33 Runoff=0.00 cfs 35 cf
Link SP1: SP-1	Inflow=0.00 cfs 47 cf Primary=0.00 cfs 47 cf
Link SP2: SP-2	Inflow=0.00 cfs 35 cf Primary=0.00 cfs 35 cf
	200 of Dup off Melume = 00 of Automatic Dup off Double = 0.04

Total Runoff Area = 70,393 sf Runoff Volume = 82 cf Average Runoff Depth = 0.01" 99.37% Pervious = 69,950 sf 0.63% Impervious = 443 sf

		Pine State Family	/ Mart
Pre-Develoopment	Type III 24-hr	25-year Rainfall=	5.80"
Prepared by Sebago Technics, Inc		Printed 9/10	/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD Software Solutions	s LLC	Pa	<u>age 8</u>

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Watershed1S	Runoff Area=40,410 sf 0.36% Impervious Runoff Depth=0.14" Flow Length=334' Tc=24.3 min CN=33 Runoff=0.02 cfs 462 cf
Subcatchment2S: Watershed2S	Runoff Area=29,983 sf 0.99% Impervious Runoff Depth=0.14"
	Flow Length=469' Tc=34.0 min CN=33 Runoff=0.01 cfs 343 cf
Link SP1: SP-1	Inflow=0.02 cfs 462 cf
	Primary=0.02 cfs 462 cf
Link SP2: SP-2	Inflow=0.01 cfs 343 cf
	Primary=0.01 cfs 343 cf

Total Runoff Area = 70,393 sf Runoff Volume = 805 cf Average Runoff Depth = 0.14" 99.37% Pervious = 69,950 sf 0.63% Impervious = 443 sf

Appendix D

Post-Development Calculations

Printed 9/10/2018 Page 2

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
20,628	39	>75% Grass cover, Good, HSG A (10S, 20S)
49,146	98	Impervious (10S, 20S)
2,576	30	Woods, Good, HSG A (10S, 20S)

Post-Develoopment Prepared by Sebago Technics, Inc HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD Software Solutions LLC

Printed 9/10/2018 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
23,204	HSG A	10S, 20S
0	HSG B	
0	HSG C	
0	HSG D	
49,146	Other	10S, 20S

Summary for Subcatchment 10S: Watershed 10S

Runoff = 5.7 cfs @ 12.15 hrs, Volume= 21,030 cf, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=5.80"

	A	rea (sf)	CN	Description					
		2,101	30	30 Woods, Good, HSG A					
		15,698	39	9 >75% Grass cover, Good, HSG A					
*		48,550	98	98 Impervious					
		66,349	82	Weighted A	verage				
		17,799		26.83% Pe	rvious Area				
		48,550		73.17% Imp	pervious Ar	ea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	9.4	55	0.0180	0.10		Sheet Flow, A to B			
						Grass: Dense n= 0.240 P2= 3.10"			
	1.8	347	0.0050) 3.21	2.52	Pipe Channel, B to C			
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
						n= 0.013 Corrugated PE, smooth interior			
	11.2	402	Total						

Summary for Subcatchment 20S: Watershed 20S

Runoff = 0.0 cfs @ 12.27 hrs, Volume=

331 cf, Depth= 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description					
	475	30	Woods, Go	od, HSG A				
	4,930	39	>75% Grass cover, Good, HSG A					
*	596	98	Impervious	Impervious				
	6,001	44	Weighted A	verage				
	5,405		90.07% Pervious Area					
	596		9.93% Impe	ervious Are	a			
Тс	Length	Slope	e Velocity	Capacity	Description			
(min) (feet)	(ft/ft	(ft/sec)	(cfs)				
11.1	75	0.0220	0.11		Sheet Flow, A to B			
					Grass: Dense n= 0.240 P2= 3.10"			

Summary for Pond 7P: ICS1

Inflow Are	ea =	66,349 sf,	73.17% Impervious,	Inflow Depth = 3.80	for 25-year event
Inflow	=	5.7 cfs @	12.15 hrs, Volume=	21,030 cf	-
Outflow	=	5.7 cfs @	12.15 hrs, Volume=	21,030 cf, At	ten= 0%, Lag= 0.0 min
Primary	=	5.7 cfs @	12.15 hrs, Volume=	21,030 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 76.15' @ 13.10 hrs Flood Elev= 83.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	73.68'	24.0" Round Culvert
	-		L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 73.68' / 73.68' S= 0.0000 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	74.68'	6.0' long Sharp-Crested Vee/Trap Weir Cv= 2.62 (C= 3.28)
#3	Device 1	71.60'	12.0" Round Culvert
			L= 15.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 71.60' / 71.50' S= 0.0067 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=5.7 cfs @ 12.15 hrs HW=75.08' TW=74.42' (Dynamic Tailwater)

-1=Culvert (Barrel Controls 5.7 cfs @ 3.39 fps)

2=Sharp-Crested Vee/Trap Weir (Passes < 5.0 cfs potential flow)

—3=Culvert (Passes < 3.1 cfs potential flow)

Summary for Pond 10P: Subsurface UDSF1

Inflow Area	a =	66,349 sf,	73.17% Impervious,	Inflow Depth = 3.8	0" for 25-year event
Inflow	=	5.7 cfs @	12.15 hrs, Volume=	21,030 cf	
Outflow	=	0.6 cfs @	13.11 hrs, Volume=	21,036 cf, A	Atten= 89%, Lag= 57.3 min
Discarded	=	0.6 cfs @	11.74 hrs, Volume=	19,748 cf	-
Primary	=	0.0 cfs @	13.11 hrs, Volume=	1,288 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 76.15' @ 13.11 hrs Surf.Area= 4,080 sf Storage= 7,930 cf Flood Elev= 78.24' Surf.Area= 4,080 sf Storage= 8,799 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 105.2 min (920.3 - 815.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	73.18'	3,654 cf	39.50'W x 103.30'L x 3.50'H Field A
			14,281 cf Overall - 5,145 cf Embedded = 9,135 cf x 40.0% Voids
#2A	73.68'	5,145 cf	ADS_StormTech SC-740 +Cap x 112 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			8 Rows of 14 Chambers
		0 700 of	Total Available Starage

8,799 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	69.80'	12.0" Round Culvert
	-		L= 61.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 69.80' / 69.20' S= 0.0098 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	70.10'	0.8" Vert. Orifice/Grate C= 0.600
#3	Device 1	75.18'	0.5" Vert. Orifice/Grate C= 0.600
#4	Device 1	76.65'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#5	Discarded	73.18'	6.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.6 cfs @ 11.74 hrs HW=73.24' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.6 cfs)

Primary OutFlow Max=0.0 cfs @ 13.11 hrs HW=76.15' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 0.0 cfs of 8.3 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.0 cfs @ 11.81 fps)

-3=Orifice/Grate (Orifice Controls 0.0 cfs @ 4.68 fps)

-4=Sharp-Crested Rectangular Weir(Controls 0.0 cfs)

Summary for Link SP1: SP-1

Inflow A	Area	=	66,349 sf,	73.17% Impervious,	Inflow Depth = 0.	23" for 25-year event
Inflow		=	0.0 cfs @	13.11 hrs, Volume=	1,288 cf	
Primar	У	=	0.0 cfs @	13.11 hrs, Volume=	1,288 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link SP2: SP-2

Inflow A	Area	=	6,001 sf,	9.93% Impervious,	Inflow Depth = 0.66'	for 25-year event
Inflow	=	=	0.0 cfs @	12.27 hrs, Volume=	331 cf	-
Primary	/ =	=	0.0 cfs @	12.27 hrs, Volume=	331 cf, Att	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Post-Develoonment	Pine State Family Mart Type III 24-br_2-year Rainfall=3 10'
Prenared by Sebago Technics Inc.	Printed 9/10/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCAD	Software Solutions LLC Page 7
Time span=0.00-48.00 h	rs, dt=0.01 hrs, 4801 points x 3
Runoff by SCS TR-20 m Reach routing by Dyn-Stor-Ind meth	od - Pond routing by Dyn-Stor-Ind method
Subcatchment 10S: Watershed 10S Runc	ff Area=66 349 sf 73 17% Impervious Runoff Denth=1 46"
Flow L	ength=402' Tc=11.2 min CN=82 Runoff=2.2 cfs $8,062$ cf
Subcatchment 20S: Watershed 20S	noff Area=6 001 sf 9 93% Impervious Runoff Depth=0 02"
Flow Length=75' S	ope=0.0220 '/' Tc=11.1 min CN=44 Runoff=0.0 cfs 12 cf
Pond 7P: ICS1	Peak Elev=74.51' Inflow=2.2 cfs 8.062 cf
	Outflow=2.2 cfs 8,062 cf
Pond 10P: Subsurface UDSF1	Peak Elev=73.96' Storage=1,751 cf Inflow=2.2 cfs 8,062 cf
Discarded=0.6 cfs	7,654 cf Primary=0.0 cfs 414 cf Outflow=0.6 cfs 8,068 cf
Link SP1: SP-1	Inflow=0.0 cfs 414 cf
	Primary=0.0 cfs 414 cf
Link SP2: SP-2	Inflow=0.0 cfs 12 cf
	Primary=0.0 cfs 12 cf
Total Runoff Area = 72 350 sf R	unoff Volume = 8.074 cf Average Runoff Depth = 1.3

Total Runoff Area = 72,350 sf Runoff Volume = 8,074 cf Average Runoff Depth = 1.34" 32.07% Pervious = 23,204 sf 67.93% Impervious = 49,146 sf

			Pine State Family Mart
Post-Develoopment	T_{y}	pe III 24-hr	10-year Rainfall=4.60"
Prepared by Sebago Technics, Inc			Printed 9/10/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroC	CAD Software Solutions LL	.C	Page 8
Time span=0.00-48 Runoff by SCS TR-	.00 hrs, dt=0.01 hrs, 480 20 method, UH=SCS, W	1 points x 3 eighted-CN	
Reach routing by Dyn-Stor-Ind	method - Pond routing I	by Dyn-Stor-I	Ind method
Subcatchment10S: Watershed10S	Runoff Area=66,349 sf 73 ow Length=402' Tc=11.2 r	3.17% Impervi min CN=82	ous Runoff Depth=2.72" Runoff=4.1 cfs 15,061 cf
Subcatchment20S: Watershed20S Flow Length=75	Runoff Area=6,001 sf S Slope=0.0220 '/' Tc=11	9.93% Impervi .1 min CN=4	ous Runoff Depth=0.29" 4 Runoff=0.0 cfs 143 cf
Pond 7P: ICS1	Peal	k Elev=74.95' (Inflow=4.1 cfs 15,061 cf Outflow=4.1 cfs 15,061 cf
Pond 10P: Subsurface UDSF1 Discarded=0.6 c	Peak Elev=74.94' Stor fs 14,239 cf Primary=0.0	age=4,937 cf cfs 828 cf C	Inflow=4.1 cfs 15,061 cf Dutflow=0.6 cfs 15,067 cf
Link SP1: SP-1			Inflow=0.0 cfs 828 cf
			Primary=0.0 cfs 828 cf
Link SP2: SP-2			Inflow=0.0 cfs 143 cf
			Primary=0.0 cfs 143 cf
Total Dupoff Area = 72 250 at	Bunoff Volumo - 15 (204 of Avor	ago Bunoff Donth - 2 5

Total Runoff Area = 72,350 sf Runoff Volume = 15,204 cf Average Runoff Depth = 2.52" 32.07% Pervious = 23,204 sf 67.93% Impervious = 49,146 sf

	Pine State Fa	mily Mart
Post-Develoopment	Type III 24-hr 25-year Raint	fall=5.80"
Prepared by Sebago Technics, Inc	Printed 9)/10/2018
HydroCAD® 10.00-18 s/n 01856 © 2016 HydroCA	D Software Solutions LLC	Page 9
Time span=0.00-48.00 Runoff by SCS TR-20) hrs, dt=0.01 hrs, 4801 points x 3 method, UH=SCS, Weighted-CN	
Reach routing by Dyn-Stor-Ind me	ethod - Pond routing by Dyn-Stor-Ind method	
Subcatchment10S: Watershed10S Ru Flow	unoff Area=66,349 sf 73.17% Impervious Runoff Dep Length=402' Tc=11.2 min CN=82 Runoff=5.7 cfs	oth=3.80" 21,030 cf
Subcatchment20S: Watershed20S Flow Length=75'	Runoff Area=6,001 sf 9.93% Impervious Runoff Dep Slope=0.0220 '/' Tc=11.1 min CN=44 Runoff=0.0 c	oth=0.66" fs 331 cf
Pond 7P: ICS1	Peak Elev=76.15' Inflow=5.7 cfs Outflow=5.7 cfs	21,030 cf 21,030 cf
Pond 10P: Subsurface UDSF1 Discarded=0.6 cfs 1	Peak Elev=76.15' Storage=7,930 cf Inflow=5.7 cfs 9,748 cf Primary=0.0 cfs 1,288 cf Outflow=0.6 cfs 2	21,030 cf 21,036 cf
Link SP1: SP-1	Inflow=0.0 cfs	3 1,288 cf
	Primary=0.0 cfs	1,288 cf
Link SP2: SP-2	Inflow=0.0 c Primary=0.0 c	ofs 331 cf ofs 331 cf
Total Pupoff Aroa - 72 350 sf	Punoff Volumo - 21 362 of Avorago Punoff D	onth - 3 5

Total Runoff Area = 72,350 sf Runoff Volume = 21,362 cf Average Runoff Depth = 3.54" 32.07% Pervious = 23,204 sf 67.93% Impervious = 49,146 sf

Appendix E

Inspection, Maintenance and Housekeeping Plan

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN Pine State Family Mart 1883 Forest Avenue Portland, Maine 04103

Introduction

The responsible party for maintenance of the stormwater management facility following construction will be the City of Portland.

The Contract Documents will require the contractor to designate of person responsible for maintenance of the sedimentation control features during construction as required by the Erosion & Sedimentation Control Report.

The following plan outlines the anticipated inspection and maintenance procedures for the erosion and sedimentation control measures as well as stormwater management facilities for the project. This plan also outlines several housekeeping requirements that shall be followed during and after construction. These procedures shall be followed in order to ensure the intended function of the designed measures and to prevent unreasonably adverse impacts to the surrounding environment.

The procedures outlined in this Inspection, Maintenance and Housekeeping Plan are provided as an overview of the anticipated practices to be used on this site. In some instances, additional measures may be required due to unexpected conditions. For additional detail on any of the erosion and sedimentation control measures or stormwater management devices to be utilized on this project, refer to the most recently revised edition of the "Maine Erosion and Sedimentation Control BMP" manual and/or the "Stormwater Management for Maine: Best Management Practices" manual as published by the Maine Department of Environmental Protection (MDEP).

During Construction

- 1. **Inspection:** During the construction process, it is the Contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section and the erosion and sedimentation control plan for the project. These responsibilities include inspecting disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as before and after a storm event, and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in any applicable permits, shall conduct the inspections.
- 2. **Maintenance:** All measures shall be maintained in an effective operating condition until areas are permanently stabilized. If Best Management Practices (BMPs) need to be maintained or modified, additional BMPs are necessary, or other corrective action is needed, implementation must be completed within 7 calendar days and prior to any storm event (rainfall).
- 3. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained on-site. Correction action shall be performed in general conformance with the Maine Construction General Permit and Maine DEP Chapter 500 Stormwater standards. The log must

include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, material storage areas, and vehicle access points to the site. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. The permittee shall retain a copy of the log for a period of at least three years from the completion of permanent stabilization.

- 4. **Specific Inspection and Maintenance Tasks:** The following is a list of erosion control and stormwater management measures and the specific inspection and maintenance tasks to be performed during construction.
 - A. Filter Berms:
 - Hay bale barriers, silt fences, and filter berms shall be inspected immediately after each rainfall and at least daily during prolonged rainfall.
 - If the fabric on a silt fence or filter barrier should decompose or become ineffective prior to the end of the expected usable life and the barrier is still necessary, it shall be replaced.
 - Sediment deposits should be removed after each storm event. They must be removed before deposits reach approximately one-half the height of the barrier.
 - Filter berms shall be reshaped as needed.
 - Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared, and seeded.

B. <u>Stone Check Dams:</u>

- Inspect the center of the dam to make sure it is lower than the edges. Erosion caused by high flows around the edges of the dam must be corrected.
- Sediment accumulation shall be removed prior to reaching half of the original design height.
- Areas beneath stone check dams must be seeded and mulched upon removal.
- C. <u>Riprap Materials:</u>
 - Once a riprap installation has been completed, it should require very little maintenance. It shall, however, be inspected periodically to determine if high flows have caused scour beneath the riprap or dislodged any of the stone.
- D. <u>Erosion Control Blankets:</u>
 - Inspect these reinforced areas semi-annually and after significant rainfall events for slumping, sliding, seepage, and scour. Pay close attention to unreinforced areas adjacent to the erosion control blankets, which may experience accelerated erosion.
 - Review all applicable inspection and maintenance procedures recommended by the

specific blanket manufacturer. These tasks shall be included in addition to the requirements of this plan.

- E. <u>Stabilized Construction Entrances/Exits:</u>
 - The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way.
 - When the control pad becomes ineffective, the stone shall be removed along with the collected soil material. The entrance should then be reconstructed.
 - Areas that have received mud-tracking or sediment deposits shall be swept or washed. Washing shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device (not into storm drains, ditches, or waterways).
- F. <u>Temporary Seed and Mulch:</u>
 - Mulched areas should be inspected after rain events to check for rill erosion.
 - If less than 90% of the soil surface is covered by mulch, additional mulch shall be applied in bare areas.
 - In applications where seeding and mulch have been applied in conjunction with erosion control blankets, the blankets must be inspected after rain events for dislocation or undercutting.
 - Mulch shall continue to be reapplied until 95% of the soil surface has established temporary vegetative cover.
- G. <u>Stabilized Temporary Drainage Swales:</u>
 - Sediment accumulation in the swale shall be removed once the cross section of the swale is reduced by 25%.
 - The swales shall be inspected after rainfall events. Any evidence of sloughing of the side slopes or channel erosion shall be repaired and corrective action should be taken to prevent reoccurrence of the problem.
 - In addition to the stabilized lining of the channel (i.e. erosion control blankets), stone check dams may be needed to further reduce channel velocity.
- 5. **Housekeeping:** The following general performance standards apply to the proposed project.
 - A. <u>Spill prevention</u>: Controls must be used to prevent pollutants from being discharged from materials on-site, including storage practices to minimize exposure of the materials to stormwater, and appropriate spill prevention, containment, and response planning and implementation. A Spill, Prevention, Control and Countermeasures Plan is created for the project and is to be kept onsite at all times.
 - B. <u>Groundwater protection</u>: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors, accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to

isolate portions of the site for the purposes of storage and handling of these materials.

- C. <u>Fugitive sediment and dust</u>: Actions must be taken to ensure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control.
- D. <u>Debris and other materials</u>: Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.
- E. <u>Trench or foundation dewatering</u>: Trench dewatering is the removal of water from trenches, foundations, cofferdams, ponds, and other areas within the construction area that retain water after excavation. In most cases, the collected water is heavily silted and hinders correct and safe construction practices. The collected water must be removed from the ponded area, either through gravity or pumping, and must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over disturbed areas of the site. Equivalent measures may be taken if approved.

Post-Construction

- 1. **Inspection:** After construction, it is the responsibility of the City of Portland to comply with the inspection and maintenance procedures outlined in this section. All measures must be maintained in effective operating condition. A person with knowledge of erosion and stormwater control, including the standards and conditions in all applicable permits, shall conduct the inspections.
- 2. **Specific Inspection and Maintenance Tasks:** The following is a list of permanent erosion control and stormwater management measures and the inspection and maintenance tasks to be performed after construction.
 - A. <u>Vegetated Areas:</u>
 - Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains to identify active or potential erosion problems.
 - Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
 - B. <u>Ditches, Swales and Other Open Channels:</u>
 - Inspect ditches, swales, level spreaders and other open stormwater channels in the spring, in the late fall, and after heavy rains to remove any obstructions to flow. Remove accumulated sediments and debris, remove woody vegetative growth that could obstruct flow, and repair any erosion of the ditch lining.
 - Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity.
 - Any woody vegetation growing through riprap linings must also be removed.

Repair any slumping side slopes as soon as practicable.

- If the ditch has a riprap lining, replace riprap in areas where any underlying filter fabric or underdrain gravel is showing through the stone or where stones have dislodged.
- C. <u>Winter Sanding:</u>
 - Clear accumulations of winter sand along access road at least once a year, preferably in the spring.
 - Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader or other acceptable method.
- D. <u>Culverts:</u>
 - Inspect culverts in the spring, in the late fall, and after heavy rains to remove any obstructions to flow.
 - Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit.
 - Inspect and repair any erosion damage at the culvert's inlet and outlet.
- E. <u>Subsurface Sand Filter</u>
 - Inspect the site monthly for the first few months after construction. Then inspections can occur on an annual basis, preferably after rain events when clogging will be obvious.
 - Make any repairs necessary to ensure the measure is operating properly.
 - Regular maintenance is necessary to remove surface sediment, trash, debris, and leaf litter.
 - Outlets and chambers need to be cleaned/repaired when drawdown times in the filter exceeds 36 hours.
 - In certain cases, layers of sand may need to be replaced every 3 to 5 years.
- J. <u>Level Spreader:</u>
 - The level spreader pool should be inspected after rainfall events for sediment accumulation and debris that may reduce its capacity. Sediment and debris buildup should be removed once the volume of the pool has been reduced by 25%. The level berm must be constructed so that flows slowly seep across the berm as sheet flow to the receiving downstream drainage way. Repair or reconstruction of the berm is required when flow from the spreader becomes channelized.

3. **Documentation:**

A. The owner or operator of a BMP or a qualified post-construction stormwater inspector hired by that person, shall, on or by June 30 of each year, provide a completed and signed certification to DPS in a form provided by DPS, certifying that the person has inspected the BMP(s) and that they are adequately maintained and functioning as intended by the approved post-construction stormwater management plan, or that they required

maintenance or repair, including the record of the deficiency and corrective action(s) taken.

- B. A log summarizing the inspections and any corrective action taken must be maintained. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of controls. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken. The log must be made accessible to the appropriate regulatory agency upon request. A sample "Stormwater Inspection and Maintenance Form" has been included as Attachment 2 of this Inspection, Maintenance, and Housekeeping Plan.
- **4. Maine DEP Recertification:** A certification of the following shall be submitted to the MDEP within three months of the expiration of each five-year interval from the date of issuance of MDEP permits.
 - A. Identification and repair of erosion problems. All areas of the project site have been inspected for areas of erosion, and appropriate steps have been taken to permanently stabilize these areas.
 - B. Inspection and repair of stormwater control system. All aspects of the stormwater control system have been inspected for damage, wear, and malfunction, and appropriate steps have been taken to repair or replace the system, or portions of the system.
 - C. The Inspection, Maintenance, and Housekeeping Plan for the site is being implemented as written, or modifications to the plan have been submitted to and approved by the MDEP, and the maintenance log is being maintained.
- 5. Duration of Maintenance: Perform maintenance as described and required for any associated permits unless and until the system is formally accepted by a municipality or quasi-municipal district or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the MDEP stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with MDEP standards. Upon such assumption of responsibility, and approval by the MDEP, the municipality, quasi-municipal district, or association becomes a copermittee for this purpose only and must comply with all terms and conditions of the permit.

Attachments

Attachment 1 – Stormwater Inspection and Maintenance Log Form

ATTACHMENT 1 – STORMWATER INSPECTION AND MAINTENANCE LOG

Pine State Family Mart 1883 Forest Avenue Portland, Maine 04103

This log is intended to accompany the Inspection, Maintenance and Housekeeping Plan for the proposed Pine State Family Mart in Portland, Maine. The following items shall be checked, cleaned and maintained on a regular basis as specified in the Maintenance Plan and as described in the table below. This log shall be kept on file for a minimum of five (5) years and shall be available for review by the municipality. Qualified personnel familiar with drainage systems and soils shall perform all inspections. Attached is a copy of the construction and post-construction maintenance logs.

		DATE	SUGGESTED
	INSPECTOR NAME	PERFORMED	INTERVAL
Vegetated Areas			
Inspect all slopes and embankments			Annually
Replant bare areas or areas with sparse			
growth			Annually
Paved Surfaces			
Clear accumulated winter sand			Annually
Remove sediment along edges and in			
pockets			Annually
Ditches & Swales			
Remove any obstructions and accumulated			
sediments and debris			Monthly
Repair any erosion of ditch lining			Annually
Mow vegetated ditches			Annually
Remove woody vegetation growing			
through riprap			Annually
Repair any slumping side slopes			Annually
Replace riprap where stones have			
dislodged			Annually
Catch Basins			
Remove accumulated sediments and debris			
in the sump and at grate			Annually
Culverts			
Remove accumulated sediments and debris			
at the inlet, outlet, within conduit			Annually
Repair any erosion at inlet and outlet			Annually
Sump Depth			Annually

Le	evel Spreader	
	Remove sediment	Monthly
	Check for evidence of channelized flow	
	over berm	Monthly
	Erosion (side slopes, embankment)	Monthly
	Mowed	Semi-Annually
Sı	ubsurface Sand Filter	
		Semi-Annually
	Inspection of subsurface structure	(during first
	following major storm events	year)
	Inspection after major storm to ensure	
	proper function	Bi-Annually
	Remove sediment and debris	Annually
		When
		drawdown
		times in filter
	Clean/repair outlets and chambers	exceed 36 hrs

Appendix F

Easements/Deed Restrictions

Appendix G

Stormwater Management Plans

