2009 IECC

Section 1: Project Information

Project Type: Addition
Project Title : Allagash Brewing Company

Construction Site:	Owner/Agent:
Portland, ME	Designer/Contractor:
	Bennett Engineering, Inc.
	Freeport, ME 04032
	$865-9475$

Section 2: General Information

Building Location (for weather data):
Climate Zone:

Portland, Maine 6a

Section 3: Mechanical Systems List

Quantity System Type \& Description

1 HVAC System 1 (Single Zone) :
Heating: 1 each - Central Furnace, Gas, Capacity $=405$ kBtu/h Proposed Efficiency $=80.00 \%$ Ec, Required Efficiency $=80.00 \%$ Ec
Cooling: 1 each - Single Package DX Unit, Capacity $=240 \mathrm{kBtu} / \mathrm{h}$, Air-Cooled Condenser, Air Economizer Proposed Efficiency $=11.00$ EER, Required Efficiency $=9.80$ EER
Fan System: FAN SYSTEM 1 | AC1 -- Compliance (Motor nameplate HP method) : Passes
Fans:
FAN 1 Supply, Constant Volume, 8000 CFM, 5.0 motor nameplate hp
1 HVAC System 2 (Single Zone) :
Heating: 1 each -Central Furnace, Gas, Capacity $=80 \mathrm{kBtu} / \mathrm{h}$
Proposed Efficiency $=80.00 \%$ Et, Required Efficiency $=80.00 \% \mathrm{Et}$
Cooling: 1 each - Single Package DX Unit, Capacity $=60 \mathrm{kBtu} / \mathrm{h}$, Air-Cooled Condenser, Air Economizer Proposed Efficiency $=17.20$ SEER, Required Efficiency $=13.00$ SEER
Fan System: FAN SYSTEM 2 |AC2 -- Compliance (Motor nameplate HP method) : Passes
Fans:
FAN 2 Supply, Constant Volume, 1800 CFM, 0.8 motor nameplate hp
1 HVAC System 3 (Single Zone) :
Heating: 1 each - Central Furnace, Gas, Capacity $=200 \mathrm{kBtu} / \mathrm{h}$
Proposed Efficiency $=80.00 \%$ Et, Required Efficiency $=80.00 \% \mathrm{Et}$
Cooling: 1 each - Single Package DX Unit, Capacity $=120 \mathrm{kBtu} / \mathrm{h}$, Air-Cooled Condenser, Air Economizer Proposed Efficiency = 12.50 EER, Required Efficiency $=11.00$ EER
Fan System: FAN SYSTEM 3|AC3 -- Compliance (Motor nameplate HP method) : Passes
Fans:
FAN 3 Supply, Constant Volume, 3700 CFM, 2.0 motor nameplate hp
1 Water Heater 1:
Electric Storage Water Heater, Capacity: 80 gallons
Proposed Efficiency: 100.00 EF , Required Efficiency: 0.82 EF

Section 4: Requirements Checklist

Requirements Specific To: HVAC System 1 :

Equipment minimum efficiency: Central Furnace (Gas): 80.00% Ec
Equipment minimum efficiency: Single Package Unit: 9.80 EER (9.5 IPLV)
Integrated economizer is required for this location and system.
Cooling system provides a means to relieve excess outdoor air during economizer operation.
Hot gas bypass prohibited unless system has multiple steps of unloading or continuous capacity modulation
6. Hot gas bypass limited to 25% of total cooling capacity

Requirements Specific To: HVAC System 2 :

1. Equipment minimum efficiency: Central Furnace (Gas): $80.00 \% \mathrm{Et}$ (or 78% AFUE)\square 2. Equipment minimum efficiency: Single Package Unit: 13.00 SEER
\square 3. Integrated economizer is required for this location and system.4. Cooling system provides a means to relieve excess outdoor air during economizer operation.

Requirements Specific To: HVAC System 3 :

\square 1. Equipment minimum efficiency: Central Furnace (Gas): $80.00 \% \mathrm{Et}$ (or 78% AFUE)
\square 2. Equipment minimum efficiency: Single Package Unit: 11.00 EER
\square 3. Integrated economizer is required for this location and system.4. Cooling system provides a means to relieve excess outdoor air during economizer operation.5. Hot gas bypass prohibited unless system has multiple steps of unloading or continuous capacity modulation6. Hot gas bypass limited to 50% of total cooling capacity

Requirements Specific To: Water Heater 1 :

1. Water heating equipment meets minimum efficiency requirements: Electric Water Heater efficiency: $0.82 \mathrm{EF}(333 \mathrm{SL}, \mathrm{Btu} / \mathrm{h}$ (if >12 kW))2. First 8 ft of outlet piping is insulated3. Hot water storage temperature controls that allow setpoint of $90^{\circ} \mathrm{F}$ for non-dwelling units and $110^{\circ} \mathrm{F}$ for dwelling units.4. Heat traps provided on inlet and outlet of storage tanks
Generic Requirements: Must be met by all systems to which the requirement is applicable:

\square 1. Plant equipment and system capacity no greater than needed to meet loads Exception(s):
\square Standby equipment automatically off when primary system is operating
Multiple units controlled to sequence operation as a function of load2. Minimum one temperature control device per system3. Minimum one humidity control device per installed humidification/dehumidification system4. Load calculations per ASHRAE/ACCA Standard 183.5. Automatic Controls: Setback to $55^{\circ} \mathrm{F}$ (heat) and $85^{\circ} \mathrm{F}$ (cool); 7-day clock, 2-hour occupant override, 10-hour backup Exception(s):
$\square \quad$ Continuously operating zones6. Outside-air source for ventilation; system capable of reducing OSA to required minimum7. R-5 supply and return air duct insulation in unconditioned spaces

R-8 supply and return air duct insulation outside the building
R-8 insulation between ducts and the building exterior when ducts are part of a building assembly Exception(s):
\square Ducts located within equipment
Ducts with interior and exterior temperature difference not exceeding $15^{\circ} \mathrm{F}$.
8. Mechanical fasteners and sealants used to connect ducts and air distribution equipment9. Ducts sealed - longitudinal seams on rigid ducts; transverse seams on all ducts; UL 181A or 181B tapes and mastics10. Hot water pipe insulation: 1.5 in . for pipes $<=1.5 \mathrm{in}$. and 2 in . for pipes $>1.5 \mathrm{in}$.

Chilled water/refrigerant/brine pipe insulation: 1.5 in . for pipes $<=1.5 \mathrm{in}$. and 1.5 in . for pipes $>1.5 \mathrm{in}$.
Steam pipe insulation: 1.5 in . for pipes $<=1.5 \mathrm{in}$. and 3 in . for pipes $>1.5 \mathrm{in}$.
Exception(s):
\square Piping within HVAC equipment.
$\square \quad$ Fluid temperatures between 55 and $105^{\circ} \mathrm{F}$.
\square Fluid not heated or cooled with renewable energy.
\square Piping within room fan-coil (with AHRI440 rating) and unit ventilators (with AHRI840 rating).
\square Runouts $<4 \mathrm{ft}$ in length.
\square 11. Operation and maintenance manual provided to building owner
\square 12. Thermostatic controls have $5^{\circ} \mathrm{F}$ deadband
Exception(s):

Thermostats requiring manual changeover between heating and cooling
\square Special occupancy or special applications where wide temperature ranges are not acceptable and are approved by the authority having jurisdiction.
3. Balancing devices provided in accordance with IMC 603.17
4. Demand control ventilation (DCV) present for high design occupancy areas (>40 person /1000 ft in spaces $>500 \mathrm{ft} 2$) and served by systems with any one of 1) an air-side economizer, 2) automatic modulating control of the outdoor air damper, or 3) a design outdoor airflow greater than 3000 cfm .
Exceptions):
\square Systems with heat recovery.
\square Multiple-zone systems without DDC of individual zones communicating with a central control panel.

- Systems with a design outdoor airflow less than 1200 cfm .
\square Spaces where the supply airflow rate minus any makeup or outgoing transfer air requirement is less than 1200 cfm .15. Motorized, automatic shutoff dampers required on exhaust and outdoor air supply openings

Exceptions):
\square Gravity dampers acceptable in buildings <3 stories16. Automatic controls for freeze protection systems present17. Exhaust air heat recovery included for systems $5,000 \mathrm{cfm}$ or greater with more than 70% outside air fraction or specifically exempted Exceptions):
\square Hazardous exhaust systems, commercial kitchen and clothes dryer exhaust systems that the International Mechanical Code prohibits the use of energy recovery systems.
\square Systems serving spaces that are heated and not cooled to less than $60^{\circ} \mathrm{F}$.
\square Where more than 60 percent of the outdoor heating energy is provided from site-recovered or site solar energy.
\square Heating systems in climates with less than 3600 HDD.
C Cooling systems in climates with a 1 percent cooling design wet-bulb temperature less than $64^{\circ} \mathrm{F}$.
\square Systems requiring dehumidification that employ energy recovery in series with the cooling coil.
\square Laboratory fume hood exhaust systems that have either a variable air volume system capable of reducing exhaust and makeup air volume to 50 percent or less of design values or, a separate make up air supply meeting the following makeup air requirements: a) at least 75 percent of exhaust flow rate, b) heated to no more than $2^{\circ} \mathrm{F}$ below room setpoint temperature, c) cooled to no lower than $3^{\circ} \mathrm{F}$ above room setpoint temperature, d) no humidification added, e) no simultaneous heating and cooling.

Section 5: Compliance Statement

Compliance Statement: The proposed mechanical design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed mechanical systems have been designed to meet the 2009 IFC requirements in COMcheck Version 3.9.3 and to comply with the mandatory requirements in the Requirements Checklist.

Section 6: Post Construction Compliance Statement

\square HVAC record drawings of the actual installation, system capacities, calibration information, and performance data for each equipment provided to the owner.
\square HVAC O\&M documents for all mechanical equipment and system provided to the owner by the mechanical contractor.
\square Written HVAC balancing and operations report provided to the owner.
The above post construction requirements have been completed.

[^0]
Signature

Date

[^0]: Principal Mechanical Designer-Name

