	CHING CHINA STREET
Date:	Reviewed for Code Compliance Inspections Division Approved with Conditions 09/15/14

Certificate of Design Application

ASSOCIATED DESIGN PARTNERS, INC – er: 7-25-14 Date: ALLAGASH FERMENTATION TANK STRUCTURE EXPANSION Job Name: **50 INDUSTRIAL WAY, PORTLAND MAINE** Address of Construction: **2009** International Building Code Construction project was designed to the building code criteria listed below: 2009 IBC Use Group Classification (s) Industrial Building Code & Year ____ Type of Construction ____ Will the Structure have a Fire suppression system in Accordance with Section 903.3.1 of the 2009 IBC Is the Structure mixed use? Y If yes, separated or non separated or non separated (section 302.3) Separated Supervisory alarm System? <u>Y</u> Geotechnical/Soils report required? (See Section 1802.2) <u>Y</u>

Structural Design Calculations

Submitted for all structural members (106.1 – 106.11)

Design Loads on Construction Documents (1603)

Uniformly distributed floor live loads (7603.11, 1807)

Floor Area Use Production	Loads Shown 125 PSF
Mezzanine and Stairs	100 PSF

Wind loads (1603.1.4, 1609)

ANALYTICAL	Design option utilized (1609.1.1, 1609.6)	
98	Basic wind speed (1809.3)	
1.0	_ Building category and wind importance Factor, <i>bu</i>	
В	table 1604.5, 1609.5) " Wind exposure category (1609.4)	
+/- 0.18	_ Internal pressure coefficient (ASCE 7)	
PER ASCE BASED	OnFormation and cladding pressures (1609.1.1, 1609.6.2.2)	
15PSF	_ Main force wind pressures (7603.1.1, 1609.6.2.1)	
Farth design data (1603 1 5 1614 1623)		

Earth design data (1603.1.5, 1614-1623)

ASCE 12.8.1	_ Design option utilized (1614.1)	
l	Seismic use group ("Category")	
0.245 / .125	Spectral response coefficients, SDs & SD1 (1615.1)	
D	Site class (1615.1.5)	

NO	Live load reduction	
20	Roof <i>live</i> loads (1603.1.2, 1607.11)	
42+drift	Roof snow loads (1603.7.3, 1608)	
60	Ground snow load, Pg (1608.2)	
42	If $Pg > 10$ psf, flat-roof snow load pf	
1	If $Pg > 10$ psf, snow exposure factor, C_{g}	
1	If $Pg > 10$ psf, snow load importance factor, k	
1.0	Roof thermal factor, $_{G}(1608.4)$	
NA	_Sloped roof snowload, Ps(1608.4)	
В	Seismic design category (1616.3)	
OSMF	Basic seismic force resisting system (1617.6.2)	
(3.5/3)	_ Response modification coefficient, _{RJ} and	
	deflection amplification factor _{Cd} (1617.6.2)	
ASCE 12.8.1	_ Analysis procedure (1616.6, 1617.5)	
60.5K / 35.3K	Design base shear (1617.4, 16175.5.1)	
Flood loads (1803.1.6, 1612)		
NA	Flood Hazard area (1612.3)	
NA	_Elevation of structure	
Other loads		
NA	Concentrated loads (1607.4)	
NA	_ Partition loads (1607.5)	
NA	_ Misc. loads (Table 1607.8, 1607.6.1, 1607.7, 1607.12, 1607.13, 1610, 1611, 2404	