SECTION 04810 - UNIT MASONRY ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Brick unit masonry, cavity wall construction on metal studs.
 - 2. Brick unit masonry composite wall construction where indicated
 - 3. Brick unit masonry at site walls, indicated on landscape and architectural drawings.
 - 4. Cast stone caps at site wall where indicated.
 - 5. Salvage and reinstallation of historic brick masonry at walkways and paths. See landscape drawings.
 - 6. Repointing of historic masonry.
 - 7. Mortar and grout.
 - 8. Reinforcing steel.
 - 9. Masonry joint reinforcement.
 - 10. Ties and anchors.
 - 11. Miscellaneous masonry accessories.
- B. Products installed but not furnished under this Section include the following:
 - 1. Anchors for the work of other trades required to be built into masonry.
 - 2. Steel lintels for unit masonry specified in Division 5 Section "Metal Fabrications."
 - 3. Foam board insulation specified in Division 7 Section "Building Insulation".
 - 4. Embedded metal flashing, pan flashing and reglets in masonry joints specified in Division 7 Section "Sheet Metal Flashing and Trim."
 - 5. Hollow metal frames in unit masonry openings specified in Division 8 Section "Steel Doors and Frames."
- C. Products furnished, but not installed, under this Section include the following:
 - 1. Anchor sections of adjustable masonry anchors for connecting to structural frame, installed under Division 5 Section "Structural Steel."
- D. Related Sections include the following:
 - 1. Division 7 Section "Bituminous Dampproofing" for dampproofing applied to masonry where indicated.
 - 2. Division 7 Section "Sheet Metal Flashing and Trim" for sheet metal flashing.
 - 3. Division 7 Section "Through-Penetration Firestop Systems" for firestopping at openings in masonry walls.

4. Division 7 Section "Joint Sealants" for sealing control and expansion joints in unit masonry.

1.3 DEFINITIONS

A. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 PERFORMANCE REQUIREMENTS

- A. Provide structural unit masonry that develops indicated net-area compressive strengths (f'_m) at 28 days.
- B. Determine net-area compressive strength (f'_m) of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For the following:
 - 1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 - 2. Reinforcing Steel: Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, "Details and Detailing of Concrete Reinforcement." Show elevations of reinforced walls.
- C. Samples for Initial Selection: For the following:
 - 1. Face brick, in the form of straps of five or more bricks.
 - 2. Colored mortar.
- D. Samples for Verification: For each type and color of the following:
 - 1. Special brick shapes.
 - 2. Pigmented and colored-aggregate mortar. Make Samples using same sand and mortar ingredients to be used on Project. Label Samples to indicate types and amounts of pigments used.
 - 3. Accessories embedded in masonry.
- E. List of Materials Used in Constructing Mockups: List generic product names together with manufacturers, manufacturers' product names, model numbers, lot numbers, batch numbers, source of supply, and other information as required to identify materials used. Include mix proportions for mortar and grout and source of aggregates.
 - 1. Submittal is for information only. Neither receipt of list nor approval of mockup constitutes approval of deviations from the Contract Documents unless such deviations are specifically brought to the attention of Architect and approved in writing.

- F. Qualification Data: For testing agency.
- G. Material Certificates: Include statements of material properties indicating compliance with requirements including compliance with standards and type designations within standards. Provide for each type and size of the following:
 - 1. Masonry units.
 - a. Include material test reports substantiating compliance with requirements.
 - b. For bricks, include size-variation data verifying that actual range of sizes falls within specified tolerances.
 - For exposed brick, include material test report for efflorescence according to ASTM C 67.
 - d. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.
 - 2. Cementitious materials. Include brand, type, and name of manufacturer.
 - 3. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
 - 4. Grout mixes. Include description of type and proportions of ingredients.
 - 5. Reinforcing bars.
 - 6. Joint reinforcement.
 - 7. Anchors, ties, and metal accessories.
- H. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports, per ASTM C 780, for mortar mixes required to comply with property specification.
 - 2. Include test reports, per ASTM C 1019, for grout mixes required to comply with compressive strength requirement.
- I. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.
- J. Cold-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with cold-weather requirements.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1093 for testing indicated, as documented according to ASTM E 548.
- B. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, through one source from a single manufacturer for each product required.

- C. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from a single manufacturer for each cementitious component and from one source or producer for each aggregate.
- D. Preconstruction Testing Service: Owner will engage a qualified independent testing agency to perform preconstruction testing indicated below. Payment for these services will be made by Owner. Retesting of materials that fail to meet specified requirements shall be done at Contractor's expense.
 - 1. Clay Masonry Unit Test: For each type of unit required, per ASTM C 67.
 - 2. Concrete Masonry Unit Test: For each type of unit required, per ASTM C 140.
 - 3. Mortar Test (Property Specification): For each mix required, per ASTM C 780.
 - 4. Grout Test (Compressive Strength): For each mix required, per ASTM C 1019.
- E. Fire-Resistance Ratings: Where indicated, provide materials and construction identical to those of assemblies with fire-resistance ratings determined per ASTM E 119 by a testing and inspecting agency, by equivalent concrete masonry thickness, or by other means, as acceptable to authorities having jurisdiction.
- F. Sample Panels: Build sample panels to verify material selections of brick, color, range, mortar and sealant color, and joint tooling. Comply with requirements in Division 1 Section "Quality Requirements" for mockups. If sample panels are disapproved, provide additional panels as necessary to obtain approval by Architect.
 - 1. Build sample panels for each type of exposed brick masonry construction in sizes approximately 48 inches long by 48 inches high.
 - 2. Clean exposed faces of panels with masonry cleaner indicated.
 - 3. Include a sealant-filled joint at least 16 inches long.
 - 4. Protect approved sample panels from the elements with weather-resistant membrane.
 - 5. Approval of sample panels is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; aesthetic qualities of workmanship; and other material and construction qualities specifically approved by Architect in writing.
 - a. Approval of sample panels does not constitute approval of deviations from the Contract Documents contained in sample panels unless such deviations are specifically approved by Architect in writing.
- G. Mockups: Build mockup to set quality standards for execution.
 - 1. Build mockup in place for typical exterior wall in sizes approximately 96 inches long by 96 inches high by full thickness, including face and backup construction and accessories.
 - a. Include metal studs, sheathing, veneer anchors, flashing, and weep holes in exterior masonry-veneer wall mockup.
 - 2. Clean exposed faces of mockups with masonry cleaner as indicated.
 - 3. Protect accepted mockups from the elements with weather-resistant membrane.
 - 4. Approval of mockups is for technical and aesthetic qualities of workmanship. Approval of mockups does not constitute approval of deviations from the Contract Documents

- contained in mockups unless such deviations are specifically approved by Architect in writing.
- 5. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- H. Pre-installation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.
- B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
- D. Deliver pre-blended, dry mortar mix in moisture-resistant containers designed for lifting and emptying into dispensing silo. Store pre-blended, dry mortar mix in delivery containers on elevated platforms, under cover, and in a dry location or in a metal dispensing silo with weatherproof cover.
- E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.8 PROJECT CONDITIONS

- A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 - 1. Extend cover a minimum of 24 inches down both sides and hold cover securely in place.
 - 2. Where 1 wythe of multi-wythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches down face next to unconstructed wythe and hold cover in place.
- B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least 3 days after building masonry walls or columns.
- C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 - 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 - 2. Protect sills, ledges, and projections from mortar droppings.

- 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
- 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
- D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
 - 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and above and will remain so until masonry has dried, but not less than 7 days after completing cleaning.
- E. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include the listed manufacturers, or an approved equal.

2.2 MASONRY UNITS, GENERAL

A. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to exceed tolerances and to contain chips, cracks, or other defects exceeding limits stated in the standard. Do not uses units where such defects, including dimensions that vary from specified dimensions by more than stated tolerances, will be exposed in the completed Work or will impair the quality of completed masonry.

2.3 CONCRETE MASONRY UNITS (CMUs)

- A. Shapes: Provide shapes indicated and as follows:
 - 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 - 2. Provide square-edged units for outside corners, unless otherwise indicated.
- B. Concrete Masonry Units: ASTM C 90.
 - 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi unless otherwise indicated. See structural drawings.

- 2. Weight Classification: Normal weight, unless otherwise indicated.
- 3. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
- 4. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

2.4 CONCRETE AND MASONRY LINTELS

- A. General: Provide either concrete or masonry lintels, at Contractor's option, complying with requirements below.
- B. Concrete Lintels: Pre-cast units made from concrete matching concrete masonry units in color, texture, and compressive strength and with reinforcing bars indicated or required to support loads indicated. Cure pre-cast lintels by same method used for concrete masonry units.
- C. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam concrete masonry units with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.5 BRICK

- A. General: Provide shapes indicated and as follows:
 - 1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
 - 2. Provide special shapes for applications where stretcher units cannot accommodate special conditions, including those at corners, movement joints, bond beams, and sashes. At lintels and relieving angles, provide units with lips that allow steel angles to be concealed.
 - 3. Provide special shapes for applications requiring brick of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.
 - 4. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.
- B. Reuse of salvaged brick: In general, at existing building where indicated, use salvaged brick, including special shapes, when application is within a wall surface of existing brick. Review with the Architect the areas where salvaged brick will be reused.
- C. Manufacturer for New Brick:
 - 1. The Stiles and Hart Brick Company Bridgewater, MA 02324
- D. Face Brick: ASTM C 216 UBC Standard 21-1, Grade SW, Type FBS.
 - 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 4400 psi.
 - 2. Initial Rate of Absorption: Less than 30 g/30 sq. in. per minute when tested per ASTM C 67.

- 3. Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."
- 4. Size: Provide bricks matching the size of the existing building bricks. Vertical coursing is approximately 12" to 12-1/2" for five bricks and five joints. Match joint size of new construction with joint size of existing historic building.
- 5. Application: Use where brick is exposed, at new building construction and at restoration of garden wall, unless otherwise indicated. Align coursing with existing building.
- 6. Color: Matching existing building in color and range. Color and range of brick is believed to match Styles and Hart, "Light Full Range Waterstruck." Verify color and range as indicated in sample panel and mock-up requirements. If "Light Full Range Waterstruck" does not provide a sufficiently close match to existing, adjust color and range as required for a match acceptable to the Architect.
- 7. Texture: Matching the existing building.
- E. Rabbeted Lintel Brick: Whether or not it is explicitly shown on the drawings, at horizontal control joints, relieving angles, window heads and similar conditions, brick shall be specially molded with a rabbet. Provide stretcher, soldier, corner stretcher and corner soldier rabbetted brick as required. Do not saw cut brick to form rabbets. Joints at relieving angles and horizontal control joints shall have the same dimension as typical mortar joints.

2.6 CAST STONE CAPS

- A. Manufacturers: Subject to compliance with requirements, provide cast stone caps at the garden wall where indicated. Provide products by one of the following or approved equal:
 - 1. Architectural Art Stone, Inc.
 - 2. Continental Cast Stone East; Russell, Inc.
 - 3. Dura Art Stone.
 - 4. Edwards Cast Stone Company.
- B. Provide cast stone units complying with ASTM C 1364 using the vibrant dry tamp or wet-cast method.
 - 1. Provide units that are resistant to freezing and thawing.
 - 2. Slope exposed horizontal surfaces 1:12, unless otherwise indicated.
 - 3. Provide raised fillets at backs of sills and at ends indicated to be built into jambs.
 - 4. Provide drips on projecting elements, unless otherwise indicated.
- C. Cure units by one of the following methods:
 - 1. Cure units with steam in enclosed curing room at temperature of 105 deg F (41 deg C) or above and 95 to 100 percent relative humidity for 6 hours.
 - 2. Cure units with dense fog and water spray in enclosed warm curing room at 95 to 100 percent relative humidity for 24 hours.
 - 3. Cure units to comply with one of the following:
 - a. Not less than 5 days at mean daily temperature of 70 deg F (21 deg C) or above.
 - b. Not less than 6 days at mean daily temperature of 60 deg F (16 deg C) or above.
 - c. Not less than 7 days at mean daily temperature of 50 deg F (10 deg C) or above.
 - d. Not less than 8 days at mean daily temperature of 45 deg F (7 deg C) or above.

- D. Acid etch units after curing to remove cement film from surfaces to be exposed to view.
- E. Colors and Textures: As selected by Architect from manufacturer's full range.

2.7 MORTAR AND GROUT MATERIALS

- A. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color matching existing mortar on the side of the historic library.
- B. Hydrated Lime: ASTM C 207, Type S.
- C. Mortar Pigments: Mortar pigments may be authorized by the Architect only if mortar color matching historic masonry cannot be achieved using natural sands. Pigments shall be natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes. Use only pigments with a record of satisfactory performance in masonry mortar.
 - 1. Provide one of the following or an approved equal:
 - a. Bayer Corporation, Industrial Chemicals Div.; Bayferrox Iron Oxide Pigments.
 - b. Davis Colors; True Tone Mortar Colors.
 - c. Solomon Grind-Chem Services, Inc.; SGS Mortar Colors.
- D. Aggregate for Mortar: ASTM C 144.
 - 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
- E. Aggregate for Grout: ASTM C 404.
- F. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C 494/C 494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated. For new masonry work only; cold weather admixtures are not to be used at restoration or repair of existing masonry.
 - 1. Provide one of the following or an approved equal:
 - a. Addiment Incorporated; Mortar Kick.
 - b. Euclid Chemical Company (The); Accelguard 80.
 - c. Grace Construction Products, a unit of W. R. Grace & Co. Conn.; Morset.
 - d. Sonneborn, Div. of ChemRex; Trimix-NCA.
- G. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with concrete masonry units, containing integral water repellent by same manufacturer.
 - 1. Provide one of the following or an approved equal:
 - a. Addiment Incorporated; Mortar Tite.
 - b. Grace Construction Products, a unit of W. R. Grace & Co. Conn.; Dry-Block Mortar Admixture.

- c. Master Builders, Inc.; Color Cure Mortar Admix.
- H. Water: Potable.

2.8 REINFORCEMENT

- A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
- B. Masonry Joint Reinforcement, General: ASTM A 951.
 - 1. Interior Walls: Hot-dip galvanized, carbon steel.
 - 2. Exterior Walls: Stainless steel.
 - 3. Wire Size for Side Rods: W2.8 or 0.188-inch diameter.
 - 4. Wire Size for Cross Rods: W2.8 or 0.188-inch diameter.
 - 5. Wire Size for Veneer Ties: W2.8 or 0.188-inch diameter.
 - 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c.
 - 7. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.
- C. Masonry Joint Reinforcement for Single-Wythe Masonry: Either ladder or truss type with single pair of side rods.
- D. Masonry Joint Reinforcement for Veneers Anchored with Seismic Masonry-Veneer Anchors: Single 0.188-inch- diameter, stainless-steel continuous wire.

2.9 TIES AND ANCHORS

- A. Materials: Provide ties and anchors from stainless steel at all exterior walls and cavity wall construction. Provide ties and anchors from galvanized steel for all masonry interior partition walls.
 - 1. Mill-Galvanized, Carbon-Steel Wire: ASTM A 82; with ASTM A 641/A 641M, Class 1 coating.
 - 2. Stainless-Steel Wire: ASTM A 580/A 580M, Type 304.
 - 3. Galvanized Steel Sheet: ASTM A 653/A 653M, Commercial Steel, G60 zinc coating.
 - 4. Stainless-Steel Sheet: ASTM A 666, Type 304.
 - 5. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 - 6. Stainless Steel bars: ASTM A 276 or ASTM a 666, Type 304.
- B. Corrugated Metal Ties for use within Solid Masonry Construction: Metal strips not less than 7/8 inch wide with corrugations having a wavelength of 0.3 to 0.5 inch and an amplitude of 0.06 to 0.10 inch made from not less than 0.053 inch thick.
- C. Wire Ties, General: Unless otherwise indicated, size wire ties to extend at least halfway through veneer but with at least 5/8-inch cover on outside face. Outer ends of wires are bent 90 degrees and extend 2 inches parallel to face of veneer.
- D. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches wide.

- 1. Where wythes are of different materials, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches.
- 2. Wire: Fabricate from 1/4-inch-diameter, stainless-steel wire. Mill-galvanized wire ties may be used in interior walls, unless otherwise indicated.
- E. Adjustable Anchors for Connecting to Structure: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch- diameter, stainless-steel wire.
 - 2. Tie Section for Steel Frame: Triangular-shaped wire tie, sized to extend within 1 inch of masonry face, made from 0.25-inch- diameter, stainless-steel wire.
 - 3. Connector Section for Concrete: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 0.109-inch- thick, stainless-steel sheet. 0.108-inch- thick, galvanized sheet may be used at interior walls, unless otherwise indicated.
 - 4. Tie Section for Concrete: Corrugated metal ties with dovetail tabs for inserting into dovetail slots in concrete and sized to extend to within 1 inch of masonry face.
- F. Partition Top anchors: 0.097-inch- thick metal plate with 3/8-inch- diameter metal rod 6 inches long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication at interior partitions, stainless steel at exterior and cavity walls.
- G. Adjustable Masonry-Veneer Anchors
 - 1. General: Provide anchors that allow vertical adjustment but resist tension and compression forces perpendicular to plane of wall, for attachment over sheathing to wood or metal studs, and as follows:
 - a. Structural Performance Characteristics: Capable of withstanding a 100-lbf load in both tension and compression without deforming or developing play in excess of 0.05 inch.
 - 2. Seismic Masonry-Veneer Anchors for Use at Exterior Cavity Walls: Units consisting of a metal anchor section and a connector section designed to engage a continuous wire embedded in the veneer mortar joint.
 - a. Anchor Section: Gasketed sheet metal plate, 1-1/4 inches wide by 6 inches long, with screw holes top and bottom; top and bottom ends bent to form pronged legs to bridge insulation or sheathing and contact studs; and raised rib-stiffened strap, 5/8 inch wide by 6 inches long, stamped into center to provide a slot between strap and plate for inserting wire tie. Provide anchor manufacturer's standard, self-adhering, modified bituminous gaskets manufactured to fit behind anchor plate and extend beyond pronged legs.
 - b. Connector Section: Rectangular wire tie with snap-in grooves for inserting continuous wire. Size wire tie to extend at least halfway through veneer but with at least 5/8-inch cover on outside face.
 - c. Fabricate sheet metal anchor sections and other sheet metal parts from 0.097-inch- thick, steel sheet, galvanized after fabrication.
 - d. Fabricate wire connector sections from 0.25-inch- diameter, stainless-steel wire.
 - e. Provide the following by H & B or the equivalent by the listed manufacturers.

- 1) Hohmann & Barnard, Inc.; X-SEAL™ / Byna-Lok™ used in conjunction with X-Seal Tape.
- 2) Dayton Superior Corporation.
- 3) Wire-Bond.
- 3. Polymer-Coated, Steel Drill Screws for Steel Studs: ASTM C 954 except manufactured with hex washer head and neoprene washer, No. 10 diameter by length required to penetrate steel stud flange with not less than 3 exposed threads, and with organic polymer coating with salt-spray resistance to red rust of more than 800 hours per ASTM B 117.
 - a. Provide one of the following or an approved equal:
 - 1) ITW Buildex; Teks Maxiseal with Climaseal finish.
 - 2) Textron Inc., Textron Fastening Systems; Elco Dril-Flex with Stalgard finish.
 - 3) Hohman & Barnard

2.10 MISCELLANEOUS ANCHORS

- A. Dovetail Slots in Concrete: Furnish dovetail slots with filler strips, of slot size indicated, fabricated from 0.034-inch, galvanized steel sheet.
- B. Anchor Bolts: L-shaped steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.
- C. Post-installed Anchors: Provide torque-controlled expansion anchors, with capability to sustain, without failure, a load equal to six times the load imposed when installed in solid or grouted unit masonry and equal to four times the load imposed when installed in concrete, as determined by testing per ASTM E 488 conducted by a qualified independent testing agency.
 - 1. Corrosion Protection: Stainless-steel components complying with ASTM F 593 and ASTM F 594, Alloy Group 1 or 2 for bolts and nuts; ASTM A 666 or ASTM A 276, Type 304 or 316, for anchors.

2.11 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Install metal flashing, where flashing is exposed or partly exposed and where indicated, complying with SMACNA's "Architectural Sheet Metal Manual and Division 7 Section "Sheet Metal Flashing and Trim."

2.12 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Pre-molded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.
- B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or PVC, complying with ASTM D 2287, Type PVC-

- 65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).
- D. Weep/Vent Products: Use the following, unless otherwise indicated:
 - 1. Round Plastic Weep/Vent Tubing: Medium-density polyethylene, 3/8-inch OD by 4 inches long. Cut flush at exterior.
- E. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.
 - 1. Provide the following configurations:
 - a. Strips, full-depth of cavity and 10 inches wide, with dovetail shaped notches 7 inches deep that prevent mesh from being clogged with mortar droppings.
 - 2. Provide one of the following or an approved equal:
 - a. Advanced Building Products Inc.; Mortar Break II.
 - b. Archovations, Inc.; CavClear Masonry Mat.
 - c. Dayton Superior Corporation, Dur-O-Wal Division; Polytite MortarStop.
 - d. Mortar Net USA, Ltd.; Mortar Net.
- F. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells with loops for holding reinforcing bars in center of cells. Units are formed from 0.142-inch steel wire, hot-dip galvanized after fabrication. Provide units with either two loops or four loops as needed for number of bars indicated.
 - 1. Provide one of the following or an approved equal:
 - a. Dayton Superior Corporation, Dur-O-Wal Division; D/A 810, D/A 812 or D/A 817.
 - b. Heckmann Building Products Inc.; No. 376 Rebar Positioner.
 - c. Hohmann & Barnard, Inc.; #RB or #RB-Twin Rebar Positioner.
 - d. Wire-Bond; O-Ring or Double O-Ring Rebar Positioner.

2.13 CAVITY-WALL INSULATION

A. Install cavity-wall insulation complying with Division 7 Section "Building Insulation."

2.14 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.

- B. Mortar for Concrete Unit Masonry and Brick Below Grade: Comply with ASTM C 270, Proportion Specification.
 - 1. For masonry below grade, in contact with earth, and where indicated, use Type S.
 - 2. For reinforced masonry and where indicated, use Type S.
- C. Mortar for Brick Masonry in restoration work, or where brick matching historic brick is used: Comply with ASTM C 270, Proportion Specification.
 - 1. Measurement and Mixing: Measure cementitious and aggregate material in a dry condition by volume or equivalent weight. Do not measure by shovel; use known measure. Mix materials in a clean, mechanical batch mixer.
 - 2. Mixing Mortar: Thoroughly mix cementitious and aggregate materials together before adding any water. Then mix again adding only enough water to produce a damp, unworkable mix that will retain its form when pressed into a ball. Maintain mortar in this dampened condition for 1 to 2 hours. Add remaining water in small portions until reaching mortar of the desired consistency. Use mortar within 30 minutes of final mixing; do not retemper or use partially hardened material.
 - a. Do not use admixtures of any kind in mortar, unless otherwise indicated.
 - 3. Within the historic brickwork, the predominant mortar is believed to be a weak portland cement mortar. New masonry is intended to match historic masonry, so mortar mix shall be the same for both new construction, reinstallation of salvaged brick, and repointing of historic masonry. Mix mortar materials in the following proportions:
 - a. 1 part portland cement, 6 parts lime, and 12 parts colored- or natural-mortar aggregate.
- D. Colored Mortar: Select and proportion colored sands to produce color required to match existing. In order to match historic mortar colors, buff or brown sands, or brick dust may be required.
- E. Grout for Unit Masonry: Comply with ASTM C 476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 5 of ACI 530.1/ASCE 6/TMS 602 for dimensions of grout spaces and pour height.
 - 2. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143.

2.15 SOURCE QUALITY CONTROL

- A. Owner will engage a qualified independent testing agency to perform source quality-control testing indicated below:
 - 1. Payment for these services will be made by Owner.
 - 2. Retesting of materials failing to comply with specified requirements shall be done at Contractor's expense.
- B. Clay Masonry Unit Test: For each type of unit furnished, per ASTM C 67.

C. Concrete Masonry Unit Test: For each type of unit furnished, per ASTM C 140.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of work.
 - 2. Verify that foundations are within tolerances specified.
 - 3. Verify that reinforcing dowels are properly placed.
- B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.
- B. Build chases and recesses to accommodate items specified in this and other Sections.
- C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match the construction immediately adjacent to opening.
- D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.
- E. Select and arrange units for exposed unit masonry to produce a uniform color range and texture.
 - 1. Mix units from several pallets or cubes as they are placed.
- F. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. per minute when tested per ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.
- G. Comply with construction tolerances in ACI 530.1/ASCE 6/TMS 602 and with the following:
 - 1. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2 inch maximum.

- 2. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet, or 1/2 inch maximum.
- 3. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2 inch maximum.
- 4. For exposed bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch. Do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.
- 5. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch. Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch.
- 6. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch except due to warpage of masonry units within tolerances specified for warpage of units.
- 7. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch from one masonry unit to the next.

3.3 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Bond Pattern for Exposed Masonry:
 - 1. At new building and wall construction: Unless otherwise indicated lay exposed masonry in one-half running bond; do not use units with less than nominal 4-inch horizontal face dimensions at corners or jambs. Lay masonry so vertical joints in alternate courses align.
 - 2. At replacement of historic garden wall: Match existing coursing.
- C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4 inches. Bond and interlock each course of each wythe at corners. Do not use units with less than nominal 4-inch horizontal face dimensions at corners or jambs.
- D. Stopping and Resuming Work: Stop work by racking back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.
- E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- F. Fill space between steel frames and masonry solidly with mortar, unless otherwise indicated.
- G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below and rod mortar or grout into core.
- H. Fill cores in hollow concrete masonry units with grout 24 inches under bearing plates, beams, lintels, posts, and similar items, unless otherwise indicated.

- I. Build non-load-bearing interior partitions full height of story to underside of solid floor or roof structure above, unless otherwise indicated.
 - 1. Install compressible filler in joint between top of partition and underside of structure above.
 - 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch clearance between end of anchor rod and end of tube. Space anchors 48 inches o.c., unless otherwise indicated.
 - 3. Wedge non-load-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.
 - 4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Division 7 Section "Fire-Resistive Joint Systems."

3.4 BRICK REMOVAL, SALVAGE AND REINSTALLATION

- A. At locations indicated, where required by building operations, as required by the finished work, or at locations where existing bricks are damaged, spalled, or deteriorated, install salvaged historic brick in good condition. At salvage and reinstallation areas, carefully demolish or remove entire units from joint to joint, without damaging surrounding masonry, in a manner that permits replacement with full-size units.
 - 1. When removing damaged single bricks, remove material from center of brick and work toward outside edges.
- B. Support and protect remaining masonry that surrounds removal area. Maintain flashing, reinforcement, lintels, and adjoining construction in an undamaged condition.
- C. Notify Architect of unforeseen detrimental conditions including voids, cracks, bulges, and loose masonry units in existing masonry backup, rotted wood, rusted metal, and other deteriorated items.
- D. At large salvage areas, remove in an undamaged condition as many whole bricks as possible.
 - 1. Remove mortar, loose particles, and soil from brick by cleaning with hand chisels, brushes, and water.
 - 2. Store brick for reuse, as indicated.
 - 3. Deliver cleaned brick not required for reuse to Owner, unless otherwise directed.
- E. Clean bricks surrounding removal areas by removing mortar, dust, and loose particles in preparation for replacement.
- F. Install replacement brick into bonding and coursing pattern of existing brick. Tooth in brickwork to continue bonding patterns. If cutting is required, use a motor-driven saw designed to cut masonry with clean, sharp, unchipped edges.
- G. Lay replacement brick with completely filled bed, head, and collar joints. Butter ends with sufficient mortar to fill head joints and shove into place. Wet both replacement and surrounding bricks that have ASTM C 67 initial rates of absorption (suction) of more than 30 g/30 sq. in. per

min. Use wetting methods that ensure that units are nearly saturated but surface is dry when laid. Maintain joint width for replacement units to match existing joints.

1. Rake out mortar used for laying brick before mortar sets and point new mortar joints in repaired area to match existing masonry. Follow the requirements for repointing of historic masonry.

3.5 REPOINTING OF HISTORIC MASONRY

- A. In general, on the front façade of the historic library, repointing is required where mortar has eroded due to water discharging at the rain leader, or where previous repointing does not match the historic mortar. At these locations, repoint to match historic mortar. If a match between new and historic mortar color, texture or tooling cannot be achieved, repoint 100% of the front façade. Also repoint at the East façade as required, at locations of brick replacement, and at locations where repairs of existing masonry is indicated or required. Where repointing of historic masonry, or reinstallation of salvaged masonry, is called for in the documents, or is otherwise required, remove old mortar to a minimum depth of 3/4" or hold back in the rebuilding process. Any loose or disintegrated mortar beyond this minimum depth also should be removed.
- B. If joints are cut back, a single blade power operated rotary saw providing a single cut down the middle of the joint may be used upon written acceptance of the Architect of satisfactory completion of a mock-up installation of joint cutting technique by each mechanic who will be cutting joints. Unsuccessful performance of the test is grounds for rejection of the technician for this work. Power cutting will not be permitted at ends of head joints, inside corners and at other locations where it is determined that power cutting is likely to result in damage to the brick due to overcutting.
- C. Where power cutting is permitted, remove mortar by cutting the center of the joint using a 4 1/2 inch (maximum) angle grinder, such as the Type 100 Black and Decker Industrial Heavy Duty slow speed Grinder or equal with a 4 inch maximum, 1/8 inch thick, diamond blade circular head. Alternatively, the Barre Short Stroke Pneumatic Carving Tool (Type S or D with a Splitter or Cape Chisel), as manufactured by Trow and Holden Co., 45 South Main Street, Barre, Vermont 05641 1-807-476-7121/1-800-451-4349, may be used.
- D. Hand rake out the mortar after a single pass has been made with the circular saw. Use chisels with 1 1/2 inch maximum heads for cutting out the mortar. Sharpen chisels hourly to minimize chipping. One quarter inch chip per linear yard of cutting is the minimum standard of acceptable skill. Additional damage may be grounds for removal of a technician from the work.
- E. Use power tools only on horizontal joints thicker than 1/8 inch. Hand rake head joints and any joints less than or equal to 1/8 inch in thickness. The width of the chisel must not exceed three-quarters of the width of the mortar joint. The pneumatic carving tool is preferable for raking narrow joints.
- F. Mortar should be removed cleanly from the masonry units, leaving square corners at the back of the cut. Take special care not to chip brick edges. Before filling, the joints should be rinsed with a jet of water to remove all loose particles and dust. At the time of filling, the joints should be damp, but with no standing water present. For masonry walls that are extremely absorbent, provide a continual mist of water for a few hours before repointing begins.

- G. Mortar Preparation. Measure mortar components carefully to assure the uniformity of visual and physical characteristics. Measure dry ingredients by volume and thoroughly mix before the addition of any water. Add sand in a damp, loose condition to avoid over sanding. Half the water should be added, followed by mixing for approximately 5 minutes. The remaining water should then be added in small portions until a mortar of the desired consistency is reached. The total volume of water necessary may vary from batch to batch, depending on weather conditions. It is important to keep the water to a minimum since, a drier mortar is cleaner to work with, and it can be compacted tightly into the joints; and without excess water to evaporate, the mortar cures without shrinkage cracks. Use mortar within approximately 30 minutes of final mixing, and do not "re-temper," or add more water after initial mixing.
- H. Filling the Joint. Where existing mortar has been removed to a depth of greater than 1 inch, fill these deeper areas first, compacting the new mortar in several layers. The back of the entire joint should be filled successively by applying layers of approximately 1/4 inch of mortar, packing it well into the back corners. This application may extend along the wall for several feet. As soon as the mortar has reached thumb-print hardness, another 1/4 inch layer of mortar -- approximately the same thickness -- may be applied. Several layers will be needed to fill the joint flush with the outer surface of the masonry. It is important to allow each layer time to harden before the next layer is applied; most of the mortar shrinkage occurs during the hardening process and layering thus minimizes overall shrinkage.
- I. When the final layer of mortar is thumb-print hard, the joint should be tooled to match the historic joint. Take care for the timing of mortar tooling. Tooling mortar too early or soft will result in hairline cracks in the dry mortar; tooling when too hard will result in "tool burning," and good closure of the mortar against the masonry units will not be achieved.
- J. If the old bricks have worn, rounded edges, recess the final mortar slightly from the face of the masonry, in order to avoid a joint which is visually wider than the actual joint; it also will avoid creation of a large, thin featheredge which is easily damaged, thus admitting water. After tooling, remove excess mortar from the edge of the joint by brushing with a natural bristle or nylon brush. Metal bristle brushes should never be used on historic masonry.
- K. Curing Conditions. The preliminary hardening of high-lime content mortars takes place fairly rapidly as water in the mix is lost to the porous surface of the masonry and through evaporation. A high lime mortar left to dry out too rapidly can result in chalking, poor adhesion, and poor durability. Mist repointed masonry using a hand sprayer with a fine nozzle for two days after repointing. Local conditions will dictate the frequency of wetting, but initially it should be as often as every hour and may gradually be reduced to every three or four hours. Cover walls with burlap for the first three days after repointing.

3.6 MORTAR BEDDING AND JOINTING

- A. Lay hollow concrete masonry units as follows:
 - 1. With face shells fully bedded in mortar and with head joints of depth equal to bed joints.
 - 2. With webs fully bedded in mortar in all courses of piers, columns, and pilasters.
 - 3. With webs fully bedded in mortar in grouted masonry, including starting course on footings.
 - 4. With entire units, including areas under cells, fully bedded in mortar at starting course on footings where cells are not grouted.

- B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint), unless otherwise indicated.

3.7 COMPOSITE MASONRY AT HISTORIC CONSTRUCTION

- A. Where reworking of historic composite masonry is required, bond wythes together using one of the following methods:
 - 1. Individual Metal Ties: Provide ties installed in horizontal joints, but not less than one metal tie for 2 sq. ft. of wall area spaced not to exceed 24 inches o.c. horizontally and 16 inches o.c. vertically. Stagger ties in alternate courses. Provide additional ties within 12 inches of openings and space not more than 36 inches apart around perimeter of openings. At intersecting and abutting walls, provide ties at no more than 24 inches o.c. vertically.
 - a. Where bed joints of wythes do not align, use adjustable (two-piece) type ties.
 - 2. Masonry Joint Reinforcement: Installed in horizontal mortar joints.
 - a. Where bed joints of both wythes align, use ladder-type reinforcement extending across both wythes.
 - b. Where bed joints of wythes do not align, use adjustable (two-piece) type reinforcement with continuous horizontal wire in facing wythe attached to ties.
- B. Corners: Provide interlocking masonry unit bond in each wythe and course at corners, unless otherwise indicated.
 - 1. Provide continuity with masonry joint reinforcement at corners by using prefabricated L-shaped units as well as masonry bonding.
- C. Intersecting and Abutting Walls: Unless vertical expansion or control joints are shown at juncture, bond walls together as follows:
 - 1. Provide individual metal ties not more than 8 inches o.c.
 - 2. Provide continuity with masonry joint reinforcement by using prefabricated T-shaped units
 - 3. Provide rigid metal anchors not more than 24 inches o.c. If used with hollow masonry units, embed ends in mortar-filled cores.

3.8 MASONRY JOINT REINFORCEMENT

- A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 - 1. Space reinforcement not more than 16 inches o.c.

- 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
- 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings.
 - a. Reinforcement above is in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints, unless otherwise indicated.
- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.

3.9 ANCHORING MASONRY TO STRUCTURAL MEMBERS

- A. Anchor masonry to structural members where masonry abuts or faces structural members to comply with the following:
 - 1. Provide an open space not less than 1 inch in width between masonry and structural member, unless otherwise indicated. Keep open space free of mortar and other rigid materials
 - 2. Anchor masonry to structural members with anchors embedded in masonry joints and attached to structure.
 - 3. Space anchors as indicated, but not more than 24 inches o.c. vertically and 36 inches o.c. horizontally.

3.10 ANCHORING MASONRY VENEERS

- A. Anchor masonry veneers to wall framing or concrete and masonry backup with seismic masonry-veneer anchors to comply with the following requirements:
 - 1. Fasten screw-attached and seismic anchors through sheathing to wall framing and to concrete and masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
 - 2. Embed tie sections and continuous wire in masonry joints.
 - 3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.
 - 4. Space anchors as indicated, but not more than 16 inches o.c. vertically and 24 inches o.c. horizontally, with not less than 1 anchor for each 2 sq. ft. of wall area. Install additional anchors within 12 inches of openings and at intervals, not exceeding 8 inches, around perimeter.

3.11 CONTROL AND EXPANSION JOINTS

A. General: Install control and expansion joint materials in unit masonry as masonry progresses.

Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

- B. Color Matching to Mortar: It is the intention to match the color and texture of masonry mortar and sealants used at control and expansion joints. Cooperate with installer of sealant in obtaining an appropriate match.
- C. Form control joints in concrete masonry as follows:
 - 1. Install preformed control-joint gaskets designed to fit standard sash block.
- D. Form expansion joints in brick made from clay or shale as follows:
 - 1. Form open joint full depth of brick wythe and of width indicated, but not less than 3/8 inch for installation of sealant and backer rod specified in Division 7 Section "Joint Sealants."
- E. Provide horizontal, pressure-relieving joints by either leaving an air space or inserting a compressible filler of width required for installing sealant and backer rod specified in Division 7 Section "Joint Sealants," but not less than 3/8 inch.
 - 1. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry.

3.12 LINTELS

- A. Install steel lintels where indicated.
- B. Provide concrete or masonry lintels where shown and where openings of more than 12 inches for brick-size units and 24 inches for block-size units are shown without structural steel or other supporting lintels.
- C. Provide minimum bearing of 8 inches at each jamb, unless otherwise indicated.

3.13 FLASHING, WEEP HOLES, CAVITY DRAINAGE, AND VENTS

- A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated.
- B. Install flashing as follows, unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 - 2. At multi-wythe masonry walls, including cavity walls, extend flashing through outer wythe, turned up a minimum of 8 inches, and through inner wythe to within 1/2 inch of the interior face of wall in exposed masonry. Where interior face of wall is to receive furring or framing, carry flashing completely through inner wythe and turn flashing up approximately 2 inches on interior face.

- 3. At masonry-veneer walls, extend flashing through veneer, across air space behind veneer, and up face of sheathing at least 8 inches; with upper edge tucked under building felts, lapping at least 4 inches.
- 4. At lintels and shelf angles, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
- 5. Interlock end joints of ribbed sheet metal flashing by overlapping ribs not less than 1-1/2 inches or as recommended by flashing manufacturer, and seal lap with elastomeric sealant complying with requirements in Division 7 Section "Joint Sealants" for application indicated.
- 6. install flashing flush with exterior face of wall.
- C. Install reglets and nailers for flashing and other related construction where they are shown to be built into masonry.
- D. Install weep holes in head joints in exterior wythes of first course of masonry immediately above embedded flashing and as follows:
 - 1. Space weep holes formed from plastic tubing 16 inches o.c.
- E. Place cavity drainage material in cavities to comply with configuration requirements for cavity drainage material in Part 2 "Miscellaneous Masonry Accessories" Article.

3.14 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other temporary loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in ACI 530.1/ASCE 6/TMS 602.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in ACI 530.1/ASCE 6/TMS 602 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches.

3.15 FIELD QUALITY CONTROL

- A. Inspectors: Owner will engage qualified independent inspectors to perform inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform inspections.
 - 1. Place grout only after inspectors have verified compliance of grout spaces and grades, sizes, and locations of reinforcement.
- B. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections indicated below and prepare test reports:
 - 1. Payment for these services will be made by Owner.
 - 2. Retesting of materials failing to comply with specified requirements shall be done at Contractor's expense.
- C. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
- D. Clay Masonry Unit Test: For each type of unit provided, per ASTM C 67.
- E. Concrete Masonry Unit Test: For each type of unit provided, per ASTM C 140.
- F. Mortar Test (Property Specification): For each mix provided, per ASTM C 780. Test mortar for mortar air content and compressive strength.
- G. Grout Test (Compressive Strength): For each mix provided, per ASTM C 1019.
- H. Prism Test: For each type of construction provided, per ASTM C 1314 at 28 days.

3.16 PARGING OF EXISTING FOUNDATION WALLS

- A. Where existing foundation walls are indicated to receive waterproofing or damproofing, mechanically attach galvanized metal lath to existing foundations and parge exterior faces of below-grade masonry walls, in 3 uniform coats to a total thickness of no less than 1 inch. Dampen wall before applying first coat and scarify first coat to ensure full bond to subsequent coats.
- B. Use a steel-trowel finish to produce a smooth, flat, dense surface with a maximum surface variation of 1/8 inch per foot. Form a wash at top of parging and a cove at bottom.
- C. Damp-cure parging for at least 24 hours and protect parging until cured.
- D. At the contractor's option, one-sided formwork can be erected and concrete may be poured against foundation walls in order to create a smooth surface for waterproofing or damproofing.

3.17 REPAIRING, POINTING, AND CLEANING

- A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
- B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
- C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 - 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 - 3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 - 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
 - 5. Clean brick by bucket-and-brush hand-cleaning method described in BIA Technical Notes 20. Do not use acidic cleaners without prior approval by Architect.
 - 6. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.

3.18 MASONRY WASTE DISPOSAL

A. Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site and legally dispose of off Owner's property.

END OF SECTION

SECTION 04901 - MASONRY CLEANING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplemental General Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes restoration and cleaning of brick as follows:
 - 1. Cleaning exposed masonry surfaces.
- B. This section includes work indicated on the architectural drawings, which graphically indicate specific work at all existing exposed exterior clay masonry surfaces:
 - 1. B-1: Remove Plant Growth and Clean Existing Masonry to Remain.
 - 2. B-2: Remove Plant Growth, Clean and Repoint Existing Masonry to Remain.
 - 3. B-3: Clean Reinstalled Salvaged Brick Masonry.
- C. Related Sections include the following:
 - 1. Division 4 Section "Unit Masonry Assemblies" for new clay masonry construction and for reinstallation of salvaged clay masonry, for specification of mortar materials, and for repointing requirements.

1.3 DEFINITIONS

- A. Low-Pressure Spray: 100 to 400 psi; 4 to 6 gpm.
- B. Medium-Pressure Spray: 400 to 800 psi; 4 to 6 gpm.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include recommendations for application and use. Include test data substantiating that products comply with requirements.
- B. Qualification Data: For masonry cleaning subcontractor.
- C. Cleaning Program: Describe cleaning process in detail, including materials, methods, and equipment to be used and protection of surrounding materials on building and Project site, and control of runoff during operations.

1.5 QUALITY ASSURANCE

- A. Restoration Specialist Qualifications: Engage an experienced masonry restoration and cleaning firm to perform work of this Section. Firm shall have completed work similar in material, design, and extent to that indicated for this Project with a record of successful in-service performance.
- B. Chemical Manufacturer Qualifications: A firm regularly engaged in producing masonry cleaners that have been used for similar applications with successful results, and with factory-trained representatives who are available for consultation and Project-site inspection and assistance at no additional cost.
- C. Mockups: Prepare mockups of restoration and cleaning as follows to demonstrate aesthetic effects and qualities of materials and execution. Prepare mockups on existing walls under same weather conditions to be expected during remainder of the Work.
 - 1. Clean an area approximately 25 sq. ft. in area for each type of masonry and surface condition.
 - a. Test cleaners and methods on samples of adjacent materials for possible adverse reactions unless cleaners and methods are known to have deleterious effect.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver other materials to Project site in manufacturer's original and unopened containers, labeled with manufacturer's name and type of products.

1.7 PROJECT CONDITIONS

A. Clean masonry surfaces only when air temperature is 40 deg F and above and is predicted to remain so for at least 7 days after completion of cleaning.

1.8 SEQUENCING AND SCHEDULING

- A. Perform masonry restoration work in the following sequence:
 - 1. Remove plant growth. (Specified in this Section of the Specifications.)
 - 2. Clean existing masonry and masonry intended for salvage. (Specified in this Section of the Specifications.)
 - 3. Repair existing masonry, and install new and salvaged masonry. (Specified in Section "Unit Masonry Assemblies.")
 - 4. Rake out joints that are to be repointed. (Specified in Section "Unit Masonry Assemblies.")
 - 5. Point mortar joints. (Specified in Section "Unit Masonry Assemblies.")
 - 6. Undertake final cleaning. (Specified in Section "Unit Masonry Assemblies.")

PART 2 - PRODUCTS

2.1 PAINT REMOVERS

- A. Low-Odor, Solvent-Type Paint Remover: Manufacturer's standard low-odor, water-rinsable solvent-type gel formulation, containing no methanol or methylene chloride, for removing paint coatings from masonry.
 - 1. Available Products:
 - a. American Building Restoration Products, Inc.; 800 No Lye Grip 'N Strip, Super Bio Strip Gel or Super Bio Strip Paste.
 - b. Dumond Chemicals, Inc.; Peel Away 6.
 - c. ProSoCo; Enviro Klean NMC or Enviro Strip #3.

2.2 CLEANING MATERIALS

- A. Water for Cleaning: Potable.
- B. Acidic Cleaner: Manufacturer's standard acidic masonry restoration cleaner composed of hydrofluoric acid blended with other acids, detergents, wetting agents, and inhibitors.
 - 1. Available Products:
 - a. Diedrich Technologies Inc.; 101G Granite, Terra Cotta, and Brick Cleaner.
 - b. Hydrochemical Techniques, Inc.; Hydroclean Brick, Granite, Sandstone and Terra Cotta Cleaner (HT-626).
 - c. ProSoCo; Sure Klean Restoration Cleaner.

2.3 ACCESSORY MATERIALS

- A. Liquid Strippable Masking Agent: Manufacturer's standard liquid, film-forming, strippable masking material for protecting glass, metal, and polished stone surfaces from damaging effects of acidic and alkaline masonry cleaners.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABR Products, Inc.; Rubber Mask.
 - b. Price Research, Ltd.; Price Mask.
 - c. PROSOCO; Sure Klean Strippable Masking.

PART 3 - EXECUTION

3.1 PROTECTION

- A. Protect persons, motor vehicles, surrounding surfaces of building being restored, building site, plants, and surrounding buildings from harm resulting from masonry restoration work.
 - 1. Erect temporary protective covers over walkways and at points of pedestrian and vehicular entrance and exit that must remain in service during course of restoration and cleaning work.
- B. Comply with chemical-cleaner manufacturer's written instructions for protecting building and other surfaces against damage from exposure to its products. Prevent chemical-cleaning solutions from coming into contact with people, motor vehicles, landscaping, buildings, and other surfaces that could be harmed by such contact.
 - Cover adjacent surfaces with materials that are proven to resist chemical cleaners used unless chemical cleaners being used will not damage adjacent surfaces. Use materials that contain only waterproof, UV-resistant adhesives. Apply masking agents to comply with manufacturer's written instructions. Do not apply liquid masking agent to painted or porous surfaces. When no longer needed, promptly remove masking to prevent adhesive staining.
 - 2. Keep wall wet below area being cleaned to prevent streaking from runoff.
 - 3. Do not clean masonry during winds of sufficient force to spread cleaning solutions to unprotected surfaces.
 - 4. Neutralize and collect alkaline and acid wastes for disposal off Owner's property.
 - 5. Dispose of runoff from cleaning operations by legal means and in a manner that prevents soil erosion, undermining of paving and foundations, damage to landscaping, and water penetration into building interiors.

3.2 CLEANING MASONRY, GENERAL

- A. Proceed with cleaning in an orderly manner; work from top to bottom of each scaffold width and from one end of each elevation to the other.
- B. Use only those cleaning methods indicated for each masonry material and location.
 - 1. Use spray equipment that provides controlled application at volume and pressure indicated, measured at spray tip. Adjust pressure and volume to ensure that cleaning methods do not damage masonry.
 - 2. For water spray application, use fan-shaped spray tip that disperses water at an angle of 25 to 50 degrees.
- C. Perform each cleaning method indicated in a manner that results in uniform coverage of all surfaces, including corners, moldings, and interstices, and that produces an even effect without streaking or damaging masonry surfaces.
- D. Preliminary Cleaning: Before beginning general cleaning, remove extraneous substances that are resistant to cleaning methods being used. Extraneous substances include paint, calking, asphalt, and tar.

- 1. Remove paint and calking with alkaline paint remover.
 - a. Comply with requirements for paint removal.
 - b. Repeat application up to two times if needed.
- E. Water Spray Applications: Unless otherwise indicated, hold spray nozzle at least 6 inches from surface of masonry and apply water in horizontal back and forth sweeping motion, overlapping previous strokes to produce uniform coverage.

3.3 PAINT REMOVAL

- A. General: Paint removal is not indicated on drawings; typical paint on masonry is overspray or drips from painted wood elements.
- B. Paint Removal with Solvent-Type Paint Remover:
 - 1. Apply thick coating of paint remover to painted masonry with natural-fiber cleaning brush, deep-nap roller, or large paint brush.
 - 2. Allow paint remover to remain on surface for period recommended by manufacturer. Agitate periodically with stiff-fiber brush.
 - 3. Rinse with cold water applied by low-pressure spray to remove chemicals and paint residue.

3.4 CLEANING MASONRY

- A. Acidic Chemical Cleaning:
 - 1. Wet masonry with cold water applied by low-pressure spray.
 - 2. Apply cleaner to masonry by brush or low-pressure spray. Let cleaner remain on surface for period indicated below:
 - a. As recommended by chemical cleaner manufacturer.
 - 3. Rinse with cold water applied by medium-pressure spray to remove chemicals and soil.
 - 4. Repeat cleaning procedure above where required to produce cleaning effect established by sample panel or mockup. Do not repeat more than once. If additional cleaning is required, use steam wash.

3.5 FIELD QUALITY CONTROL

A. Notify Architect in advance of times when lift devices and scaffolding will be relocated. Do not relocate lift devices and scaffolding until Architect has had reasonable opportunity to make observations of work areas at lift device or scaffold location.

END OF SECTION