SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section specifies cast-in place concrete, including formwork, reinforcement, concrete materials, mix design, placement procedures, and finishes, and under slab vapor barrier system.
- B. Related Sections include the following:
 - 1. Division 2 Section "Earthwork" for structural fill under slabs-on-grade.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume.

1.4 REFERENCES

A. American Concrete Institute (ACI):

	1.	117	-	Specifications for Tolerances for Concrete Construction and Materials
2	2.	301	-	Specifications for Structural Concrete for Buildings
2	3.	305R	-	Hot Weather Concreting
4	1.	306R	-	Cold Weather Concreting
4	5.	309R	-	Guide for Consolidation of Concrete
6	5.	315	-	Manual of Standard Practice for Detailing Reinforced Concrete
Ĩ.	7.	347	-	Recommended Practice for Concrete Formwork
8	3.	318	-	Building Code Requirements for Reinforced Concrete
9	Э.	544.1R	-	State-of-the-Art Report of Fiber Reinforced Concrete
-	10.	554.2R	-	Measurement of Properties of Fiber Reinforced Concrete

B. American Society for Testing and Materials (ASTM):

1.	A 185	-	Welded Steel Wire Fabric for Concrete Reinforcement
2.	A 615	-	Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
3.	C 33	-	Concrete Aggregate
4.	C 39	-	Compressive Strength of Cylindrical Concrete Specimens
5.	C 94	-	Ready-Mixed Cement
6.	C 150	-	Portland Cement
7.	C 260	-	Air-Entraining Admixtures for Concrete
8.	C 309	-	Liquid Membrane-Forming Compounds for Curing Concrete
9.	C 494	-	Chemical Admixtures for Concrete

- 10. C 1018 Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)
- 11. C 1116 Type III, Sections 4.1.3 and 4.2, and Performance Level I, Toughness Index I5 outlined in Section 21, Note 17, Standard Specification for Fiber-Reinforced Concrete and Shotcrete
- C. Federal Specifications (FS):
 - 1. TT-C-800 Curing Compound, Concrete, for New and Existing Surfaces
- D. Concrete Reinforcing Steel Institute (CRSI):
 - 1. CRSI Manual of Standard Practice and Recommended Practice for Placing Reinforcing Bars (MSP-latest edition)
- E. American Welding Society (AWS)
- F. Scaffolding and Shoring Institute (SSI):
 - 1. Scaffolding and Shoring Safety Rules

1.5 SUBMITTALS

- A. Product Data: For each type of manufactured material and product indicated.
- B. Design Mixes: For each concrete mix. Include alternate mix designs when characteristics of materials, project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Provide cement manufacturer's letter of certification and chemical content test results stating that the Portland cement is in compliance with ASTM designation C 150.
 - 2. Indicate amounts of mix water to be withheld for later addition at Project site.
- C. Steel Reinforcement Shop Drawings: Details of fabrication, bending, and placement, prepared according to ACI 315, "Details and Detailing of Concrete Reinforcement." Include material, grade, bar schedules, stirrup spacing, bent bar diagrams, arrangement, and supports of concrete reinforcement. Include special reinforcement required for openings through concrete structures.
 - 1. include Danton Superior treaded and mechanical splices if used (see 2.3, C of this section)
- D. Welding Certificates: Copies of certificates for welding procedures and personnel.
- E. Flatwork Certificates: Copies of supervisors "ACI Concrete Flatwork Technician" certificate.
- F. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated, based on comprehensive testing of current materials:
- G. Material Certificates: Signed by manufacturers certifying that each of the following items complies with requirements:
 - 1. Cementitious materials and aggregates.
 - 2. Steel reinforcement and reinforcement accessories.
 - 3. Admixtures.
 - 4. Curing materials.
 - 5. Bonding agents.

- 6. Adhesives.
- 7. Vapor retarders.
- 8. Epoxy joint filler.
- 9. Joint-filler strips.
- 10. Repair materials.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who has completed concrete Work similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.
 - 1. Manufacturer must be certified according to the Department of Transportation's "Certificate of Ready Mixed Concrete Production Facilities".
 - 2. Owner shall provide all concrete material testing and concrete cylinder samples for this project. Contractor shall coordinate schedule of installations with the Owner to allow ample time for the owner to schedule appropriate testing.
- C. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, each aggregate from one source, and each admixture from the same manufacturer.
- D. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code--Reinforcing Steel."
- E. ACI Publications: Comply with the following, unless more stringent provisions are indicated:
 - 1. ACI 301, "Specification for Structural Concrete."
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle steel reinforcement to prevent bending and damage.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. High-density overlay, Class 1, or better.
 - b. Medium-density overlay, Class 1, or better, mill-release agent treated and edge sealed.
 - c. Structural 1, B-B, or better, mill oiled and edge sealed.
 - d. B-B (Concrete Form), Class 1, or better, mill oiled and edge sealed.

- 2. Manufactured forming system: metal or other panel system with prior review and approval.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum.
- D. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- E. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of the exposed concrete surface.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
 - 1. Bars shall be clean and free from rust, scale or coatings that will reduce bond. Reinforcing steel shall be capable of bending 180 degrees and rebending to original shape without fracture.
- B. Plain-Steel Wire: ASTM A 82, as drawn.

2.3 REINFORCEMENT ACCESSORIES

- A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or fiber-reinforced concrete of greater compressive strength than concrete.
- B. Joint Dowel Bars: Plain-steel bars, ASTM A 615/A 615M, Grade 60 (Grade 420). Cut bars true to length with ends square and free of burrs.
- C. Rebar couplers, male and female threaded splices connectors for hairpin reinforcing:
 - 1. If the contractor elects not to drill forms for placement of hairpins threaded splice connections shall be use equal to Dayton Superior concrete accessories.

2.4 CONCRETE MATERIALS

- A. Portland Cement: ASTM C 150, Type II.
- B. Normal-Weight Aggregate: ASTM C 33, uniformly graded, and as follows:
 - 1. Nominal Maximum Aggregate Size: 3/4 inch (19 mm).
- C. Water: Potable and complying with ASTM C 94.

2.5 ADMIXTURES

- A. General: Admixtures certified by manufacturer to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material and to be compatible with other admixtures and cementitious materials. Do not use admixtures containing calcium chloride.
- B. Air-Entraining Admixture: ASTM C 260. Sika AER by the Sika Chemical Corp. or approved equal.
- C. Water-Reducing Admixture: ASTM C 494, Type A. Eucon W12-75 by the Euclid Chemical Corp. "Pozzolith 200N by Master Builders "Plastocrete 161" by the Sika Chemical Corp. or approved equal.
- D. Non-Corrosive Accelerator: ASTM C 494, Type C or E, Accelguard 80 by the Euclid Chemical Co. or "Polar Set" by W. R. Grace and Co. or approved equal.
 - 1. Non –corrosive accelerator shall have long-term test data proving its non-corrosive effect on reinforcing steel.

2.6 VAPOR RETARDERS

- A. Vapor Retarder: Provide water-resistant barrier consisting of high density, polyethylene meeting the following specifications:
 - 1. Water Vapor Transmission: 0.006 gr./sq.ft./hr per ASTM E96.
 - 2. Vapor Permeance Rating: 0.0084 Perms per ASTM F 1249.
 - 3. Puncture Resistance: 2326 grams Per ASTM D 1704.
 - 4. Tensile Strength: 79.6 lbf./in.per ASTM D 882.
 - 5. Meets to ASTM E 1745, Class A standards for underslab vapor retarders.
 - 6. Product: Subject to compliance with requirements, provide Stego Wrap by Stego Industries, LLC, 10 mil thick vapor retarder. (877) 464-7834.

2.9 CURING MATERIALS

A. Curing materials shall be in accordance with State of Maine Department of Transportation, "Standard Specifications," Revision 2002 section 701.06

2.7 RELATED MATERIALS

- A. Perimeter Isolation Joint: 2 lb. density, cross linked polyethylene with removable strip-off equal to ISO-STRIP as manufactured for Century Floors, Topsham, Maine.
- B. Epoxy Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Shore A hardness of 80 per ASTM D 2240.
- C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy-Bonding Adhesive: A two-component, solvent-free, moisture-insensitive structural epoxy adhesive in compliance with ASTM C 881, Type I and Type II, Grade 2, Class B and C, and shall be Sikadur 32, Hi-Mod by Sika Corp. or approved equal.
- E. Doweling Adhesive: A two-component, vinylester blend resin equal to HI HY150 adhesive as manufactured by Hilti Fastening Systems, Tulsa, Oklahoma or approved equal.

- F. Floor Control: Control joints shall be saw cut or 1/4" wide soft-cut.
- G. Construction Joints: See Drawing Details.
- H. Non-Shrink Grout: Premixed compound with non-metallic aggregate, cement, water-reducing and plasticizing agents capable of minimum compression strength of 2,400 lbs. Non-shrink grout shall be "Eucon N-S" (non-metallic) by the Euclid Chemical Co., "Masterflow 713" (non-metallic) by Master Builders, Five Star Grout by U.S. Grout Corp., or approved equal.

2.8 REPAIR MATERIALS

- A. Slurry: Slurry shall consist of the same proportions of cement to fine aggregates used in the regular concrete mix (coarse aggregate only omitted) and shall be well mixed with such amount of water as will produce a thick consistency.
- B. Dry Pack: Dry pack for cosmetic concrete repairs only shall consist of one part cement to 2-1/2 parts fine aggregate (screen out all materials retained on No. 4 sieve), mixed with a minimum amount of water, in small amounts. The consistency shall be such that when a ball of the mixture is compressed in the hand it will maintain its shape, showing finger marks, but without showing any surface water.
- C. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3 to 6 mm) or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi (29 MPa) at 28 days when tested according to ASTM C 109/C 109M.
- D. Repair Topping: Traffic-bearing, cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch (6 mm).
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3 to 6 mm) or coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than 5700 psi (39 MPa) at 28 days when tested according to ASTM C 109/C 109M.

2.9 CONCRETE MIXES

- A. Prepare design mixes for each type and strength of concrete determined by either laboratory trial mix or field test data bases, as follows:
 - 1. Proportion normal-weight concrete according to ACI 211.1 and ACI 301.
- B. Use a qualified independent testing agency for preparing and reporting proposed mix designs for the laboratory trial mix basis.

C. Table for Working Stress Concrete:

USE	STRENGT H 28 DAYS	MAXIMUM SIZE COARSE AGGREGATE	CEMENT MAXIMUM SLUMP AT PLACEMENT	WEIGHT OF CEMENT	TYPE OF CEMENT	WATER- CEMENT RATIO
Interior Slabs on Grade	4000#/sq. in.	3/4"	2"-4"	517#	Π	0.53

- D. All concrete shall contain the specified water-reducing admixture. All slabs placed below 50 degrees F shall contain the specified non-corrosive accelerator. All exterior concrete shall contain an approved air-entraining admixture.
- E. All mix design, batching, placing, finishing, curing, joint sealing and patching of color conditioned concrete shall be in strict accordance with the manufacturers recommendations
- F. Cementitious Materials: For concrete exposed to deicers, limit percentage, by weight, of cementitious materials other than portland cement according to ACI 301 requirements.
- G. Air Content: Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content as follows within a tolerance of plus 1 or minus 1.5 percent, unless otherwise indicated:
 - 1. Air Content: 6 percent for 3/4-inch- (19-mm-) nominal maximum aggregate size.
- H. Do not air entrain concrete to trowel-finished interior floors. Do not allow entrapped air content to exceed 3 percent.
- I. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.
- J. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

2.10 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.11 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94, and furnish batch ticket information.
- B. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information (floor slabs only).

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until concrete structure can support such loads.
 - 1. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117. Excessive deflection of forms after concrete is poured shall be sufficient cause for rejection of that portion of concrete and formwork. Excessive deflection will be considered to be that which will produce visible and noticeable waves in the finished concrete.
 - 2. Construct forms so that walls will key into each other at ends unless poured monolithically.
- B. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch (3 mm). (Exposed concrete)
 - 2. Class B, 1/4 inch (6 mm). (Non-exposed concrete)
- C. Construct forms tight enough to prevent loss of concrete mortar.
- D. All possible care shall be taken in the formwork to produce surfaces free from honeycomb or other defects.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. Kerf wood inserts for forming keyways, reglets, recesses, and the like, for easy removal.
 - 1. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Schedule the work and notify other trades in time so that provisions for their work in the formwork can be made without delaying progress of the project. Verify that all sleeves, pipes, etc., for electrical, plumbing, heating and ventilation, or other work are installed.
- H. Chamfer exterior corners and edges of permanently exposed concrete, where indicated on drawings.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Bolts, rods or other approved devices shall be used for internal ties. They shall be so arranged that when the forms are removed, no metal shall be within 1" of any surface.
- L. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

M. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Secure information about and provide for all openings, offsets, recessed nailing blocks, channel chases, anchors, ties, inserts, etc., in the formwork before concrete is poured.
 - 2. Install anchor bolts, accurately located, to elevations required.
 - a. The setting of all anchor bolts and the grouting for all structural steel base plates shall be included as part of this contract. Bolts and base plates will be furnished under Section 05500 Metal Fabrications, and Section 13125 Metal Building Systems.
 - b. All column base plates, equipment bases, and other locations noted in the structural drawings shall be grouted with the specified non-shrink grout. All exposed grout shall be the specified non-metallic type.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete provided concrete is hard enough to not be damaged by form-removal operations and provided curing and protection operations are maintained.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Engineer.

3.4 SHORES AND RESHORES

- A. Comply with ACI 318 (ACI 318M), ACI 301, and recommendations in ACI 347R for design, installation, and removal of shoring and reshoring.
- B. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 MOISTURE VAPOR RETARDER SYSTEM (UNDER FLOOR SLABS)

- A. Moisture vapor retarder system shall be installed at all interior floor slabs and as otherwise indicated in the drawings in strict accordance with the manufacturer's printed instructions and as follows.
 - 1. Snap chalk line along inside perimeter of foundation walls at top of slab elevation.

- 2. Without wetting, clean a 3" wide band on the surface of the concrete below the chalk line at approximately mid-slab height. Remove dirt, residual form release, or other bond inhibiting surface contaminates. Grind smooth any surface projections within the band.
- 3. While removing the contact paper on the backside, firmly press 2" wide manufacturer's approved perimeter and penetration strip onto wall, parallel to the chalk line on the cleaned band at mid-slab elevation.
- 4. Remove contact paper on the face side.
- 5. Apply 12" wide manufacturer's approved edge roll covering only the bottom 1" of contact surface on the perimeter strip. Cut, fit, and seal corner details with manufacturer's approved seaming tape.
- 6. Align top edge of isolation joint material to chalk line, and press material onto remaining 1" of exposed perimeter strip adhesive.
- 7. Roll out Vapor Barrier material, overlapping edge rolls and all seams by 3". Tape all seams with manufacturer's approved seaming tape.
- 8. All tears, punctures, etc. to be repaired and taped as required to maintain the watertight integrity of the vapor barrier system.

3.6 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. All steel bars and wire shall be of size, gauge and length indicated, accurately bent or formed to shapes detailed or scheduled by experienced shops using methods that will not injure the materials.
 - 2. Steel reinforcing shall not be bent in a manner that will injure the material or the embedding concrete. Bars with kinks or bends not shown on the plans shall not be used. Heating of reinforcement for bending will not be permitted. Bars shall be bent once only (no rebending or straightening allowed) unless shown as such on the drawings.
 - 3. All details of reinforcement not shown or indicated on the drawings or specifically called for in the specifications shall conform to ACI 315.
 - 4. Lap all bars at splices, corners and intersections a minimum of 36 bar diameters unless otherwise indicated.
 - 5. All intersecting concrete walls shall be tied with #4L bars 3'-0" long, bent 18" x 18" spaced 12" on center, outside face only unless otherwise indicated.
 - 6. Splices of reinforcement shall not be made at points of maximum stress. Splice lengths shall be a minimum of 36 bar diameters unless otherwise indicated and shall provide sufficient lap to transfer the stress between bars by bond and shear. Stagger splices of adjacent bars where possible. All splices and laps at corners and intersections shall be tied with wire at each end.
 - 7. Where obstructions (pipes, conduit, ducts, etc.) prevent the intended placement of reinforcing, provide additional reinforcing as directed by the Engineer or his Representative around the obstruction to match that reinforcing interrupted.
 - 8. Provide additional stirrups, ties, trim bars, etc., as directed around all openings, sleeves, pipes, and conduits, which pass through structural elements.
 - 9. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

1.	Coverage of bars (including s	tirrups and column ties) shall, unless otherwise shown, be as follows:
	Footings:	3" soil face, 2" top
	Slabs (on grade):	2" soil face, $1-1/2$ " top face
	Slabs (elevated):	1" top and bottom
	Beam and Column (piers)	1-1/2"
	Walls:	2" clear to form at exterior

- 2. Misplaced Reinforcing: If any reinforcing bars are found to be misplaced after concrete has been placed, the Engineer shall be notified immediately and no correction or cutting shall be made without his direction. Misplaced bars shall not be bent or kinked. Any redesign and/or reinforcing required because of misplaced bars shall be at the Contractor's expense.
- 3. All reinforcing shall be kept separate from soil, pipe, conduit ducts, etc., by approved non-metallic separators.
- 4. Reinforcement shall not have welded joints unless indicated on the drawings or unless prior approval has been given by the Engineer. Welding shall conform to the requirements of the American Welding Society Structural Welding Code for reinforcing steel D1.4. Field welding shall be performed by AWS certified welders.
- 5. Shop- or field-weld reinforcement according to AWS D1.4, where indicated.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire fabric in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.7 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Engineer.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated.
 - 2. Space vertical joints in walls as indicated.
 - a. Wall control "V" joints shall have a depth of 1/8 times the thickness of the wall and be 1/2" wide at surface. "V" joints shall be placed as shown or as directed by the Engineer.
 - 3. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 4. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness, or 3/4" minimum for soff-cut as follows:
 - 1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/4" (maximum) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
 - a. Floor slab control joints shall be placed as shown on the foundation plan. Unless otherwise noted, control joints shall be spaced at intervals not to exceed 18'-0" on center in both directions.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, and other locations, as indicated.

- 1. Terminate full-width joint-filler strips not less than 1/2 inch (12 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Division 7 Section "Joint Sealants," are indicated.
- 2. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Dowel Joints: Install dowel sleeves and dowels or dowel bar and support assemblies at joints where indicated.
 - 1. All intersecting slab construction joints acting as control joints shall be doweled according to the following schedule unless otherwise indicated. Dowels shall be smooth, steel grade 60 with saw cut ends. Grease, wrap or cap one end.

Dowel Schedule					
	Dowel Dia.	Length	Spacing		
5" Slab	5/8"	14"	12"		
6" Slab	3/4"	14"	12"		
8" Slab	1"	14"	12"		

3.8 MIXING CONCRETE

- A. General: The concrete shall be mixed in the quantities required for immediate use, and any which has developed initial set or exceed the time limit of ASTM C 94 shall not be used. No re-tempering of mortar or concrete shall be allowed under any circumstances. Concrete shall be proportioned, mixed and placed only in the presence of the Engineer or his Authorized Representative. The Contractor shall give ample notice to the Engineer before mixing is commenced. Aggregate size will be adjusted to suit conditions of work. Pumping of concrete shall be permitted only after approval by the Engineer of the Pumping Contractor and the pumping equipment and method to be employed. The Engineer shall be notified of dates when pumping of concrete shall be performed to permit his on-the-job inspection of the operations.
- B. Final proportions shall be in accordance with approved mix designs. Adjustments to approved proportions, for whatever reason, shall be approved by the Engineer.
- C. Add fibrous concrete reinforcing to all concrete used at slabs interior and exterior on grade.

3.9 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Remove loose dirt, mud, standing water, and foreign matter from excavations or from cavities.
- C. Thoroughly clean reinforcement and other embedded items free from loose rust and other matter. Assure reinforcing is held securely in place.
- D. Thoroughly wet wood forms (except coated plywood), bottom and sides of trenches, base underslab, and adjacent concrete or masonry at least one hour in advance of placing concrete; securely close cleanout and inspection ports; repeat wetting as necessary to keep forms damp.
- E. Equipment shall be maintained clean and of sufficient quantity and capacity to efficiently execute the work required.

- F. Do not add water to concrete during delivery, at Project site, or during placement, unless approved by Engineer.
- G. Before placing concrete, water may be added at Project site, subject to limitations of ACI 301.
- H. Deposit concrete continuously or in layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as specified. Deposit concrete to avoid segregation.
- I. Deposit concrete in forms in horizontal layers no deeper than 24 inches (600 mm) and in a manner to avoid inclined construction joints. Place each layer while preceding layer is still plastic, to avoid cold joints.
 - 1. Consolidate placed concrete with mechanical vibrating equipment. Use equipment and procedures for consolidating concrete recommended by ACI 309R.
 - a. Concrete shall be vibrated into final position in forms with an internal type vibrating machine. The vibration shall have a frequency of not less than 8,000 vibrations per minute. The mechanical vibrating equipment shall be satisfactory to the Engineer.
 - b. The vibration shall be of sufficient intensity and duration to cause flow or settlement of the concrete and complete consolidation. Over vibration, especially of mixtures that are too wet, may cause segregation and will be avoided. A sufficient number of vibrators shall be provided to permit consolidation of each batch before the next batch is delivered and without delaying the delivery.
 - c. The vibrations shall be applied directly to the concrete, and vibration through the forms shall not be permitted. Vibration shall be applied at the point of deposit and in the area of freshly deposited concrete. The concrete shall be placed in layers of uniform thickness
 - d. Dropping of concrete a distance of more than 6 feet unless confined by closed chutes or pipes will not be permitted. The concrete shall be deposited at or as near as possible to its final position.
 - 2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations no farther than the visible effectiveness of the vibrator. Place vibrators to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mix constituents to segregate.
 - 3. When conditions make puddling difficult, or where the reinforcement is congested, batches of mortar containing the same proportions of cement to sand used in the concrete shall be deposited in the forms. The operation of filling with the regularly specified mix shall be carried on at such a rate that the mix is at all times plastic and flows readily into the spaces between the bars.
 - 4. In thin walls or inaccessible portions of the forms where rodding is impractical, the concrete shall be worked into place by tapping or hammering forms adjacent to the freshly deposited concrete.
 - 5. The Contractor's attention is called to the importance of making the concrete dense, and he shall provide sufficient labor to the entire satisfaction of the Engineer to thoroughly consolidate the concrete, avoid air pockets and voids in exposed sections, and leave smooth, uniform surfaces after forms are removed.
 - 6. Should any honeycombed concrete be disclosed upon removal of forms, the Contractor shall immediately cut out the said honeycombed portions back to solid concrete and shall fill the opening thus formed with a concrete of the same proportions as that specified for the section of work in which the fault occurs.
 - 7. When placing fresh concrete upon hardened concrete, the latter shall be thoroughly roughened and cleaned of all loose material, scum or latency. The bonding compound shall be applied and the new concrete placed while the bonding compound is still tacky.
 - 8. Joints in the concrete work shall be made only in places and the manner specified by the Engineer.

- 9. The Contractor's attention is called to the importance of properly and carefully placing concrete around reinforcement, as the reinforcing metal must not be exposed; and in cases where reinforcing metal becomes exposed on the surface, that portion of work must be removed and relaid as the covering of same by plastering with cement mortar will not be allowed. All reinforcing rods or other reinforcing material shall be lightly tapped so that they will retain their original position.
- 10. No concrete shall be retempered except as allowed in ASTM C 94 nor shall set concrete be used as aggregate.
- J. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - a. Reinforcement, unless otherwise indicated, shall be placed one-half the thickness of the slab.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, free of humps or hollows, before excess moisture or bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
 - 6. In addition to steel bar reinforcement, slabs shall be reinforced with fibrous concrete reinforcement which is to be added when the concrete is being batched in strict accordance with the manufacturer's recommendations.
 - 7. Slabs shall be monolithically placed with control joints. Sawed control joints will be located as indicated on the drawings and/or as directed by the Engineer. Floors shall be cleaned of objects before saw cutting begins. A true, continuous saw cut is what is expected as a finish result.
- K. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators, unless otherwise specified and approved in mix designs.
 - 4. Contractor shall have on the job, ready to install, adequate equipment for heating the materials and the freshly placed concrete and for enclosing the work in accordance with the requirements specified herein.
- L. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R and as follows, when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

M. Protection:

- 1. Concrete just placed shall be protected from rain in an approved manner until the concrete has set, or if a slab, the curing compound has dried.
- 2. Concrete, when placed in the forms, shall have a temperature of not less than 50 degrees F nor more than 90 degrees F. Freshly placed concrete and the surrounding air shall be maintained at a temperature of 50 degrees F or greater for a period of seven days after placing. If high early strength concrete is used, the aforementioned time period may be reduced to three days. The methods of protection and curing shall be such as to prevent evaporation of moisture from the concrete and injury to the surface.
- 3. Should it later develop that any concrete work has become injured in any way by freezing or otherwise, the defective concrete shall be repaired or replaced as directed by the Engineer at no added expense to the Owner. Repair materials shall include all reinforcement grouts, dry pack, admixtures, epoxy and aggregates as may be necessary
- N. Deicer Protection:
 - 1. Apply deicer protection to all exterior slabs on grade, and related work 30 days after concrete placement in strict accordance with manufacturer=s written recommendations.

3.10 PROTECTIVE COATING FOR STRUCTURAL STEEL

A. All structural steel columns and their bases which extend into or through concrete floors shall be thoroughly brush painted with two coats of foundation coating as specified in Section 07150 - Dampproofing, and applied in accordance with the manufacturer's directions, neatly cut off one inch below finish floor.

3.11 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defective areas repaired and patched. Remove fins and other projections exceeding ACI 347R limits for class of surface specified.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defective areas. Remove fins and other projections exceeding 1/8 inch (3 mm) in height.
 - 1. Apply to concrete surfaces exposed to public view.
- C. Rubbed Finish: Apply the following to smooth-formed finished concrete:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

3.12 FINISHING FLOORS AND SLABS

- A. General: Comply with recommendations in ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
 - 1. All interior concrete floor slabs shall be finished true and smooth by steel troweling or finishing machine. All exterior slabs shall be broom finished.
 - 2. When a section of the concrete floor is completed, it shall be left entirely undisturbed until the concrete is thoroughly hardened.
 - 3. Adequate provisions will be made to eliminate the possibility of accidental encroachment upon the newly concreted area.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces indicated, to surfaces to receive trowel finish.
- C. Trowel Finish: After applying float finish, apply first trowel finish and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces indicated and to floor and slab surfaces exposed to view.
 - 2. Finish surfaces to the following tolerances, measured within 24 hours according to ASTM E 1155/E 1155M for a randomly trafficked floor surface:
 - a. Tolerances will be in accordance with ACI Publication #117 <u>Class AX</u>. Depression in floor between high spots shall not be greater than 3/16" in $10'-0" \pm 1/16"$, and the measurement will be taken by the straight edge method no later than the day after the concrete floor has been poured.

3.13 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete Work.
- B. Mechanical Equipment Pads: Provide 4" concrete pads reinforced with #3 Bars at 12" O.C. each way under all mechanical equipment supported on concrete floor slab unless otherwise indicated.

3.14 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with State of Maine Department of Transportation, "Standard Specifications," Revision 2002 section 502.10.

3.15 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

- 1. Defer joint filling until the completion of the project. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid epoxy joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.
- D. Install isolation joints around columns in accordance with the drawings and manufacturer's recommendations.
- E. Install perimeter isolation joints in accordance with the drawings and manufacturer's recommendations.

3.16 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Engineer. Remove and replace concrete that cannot be repaired and patched to Engineer approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and onehalf parts fine aggregate passing a No. 16 (1.2-mm) sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension in solid concrete but not less than 1 inch (25 mm) in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Engineer.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations.

Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

- 5. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least 3/4 inch (19 mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mix as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 6. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Repair materials and installation not specified above may be used, subject to Engineer's approval.

3.17 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to sample materials, perform tests, and submit test reports during concrete placement. Sampling and testing for quality control may include those specified in this Article.
 - 1. The contractor shall be responsible to notify MDOT a minimum of 48 Hours prior to all required quality control testing.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. A set of four (4) test cylinders shall be made for each 100 cubic yards, or fraction thereof, of each class of concrete placed each day. Cylinders shall be made and cured by the Testing Agency in accordance with ASTM C 31. The properly marked cylinders shall be picked up by the approved testing agency and tested in accordance with ASTM C 39. The test results will be sent directly to the Engineer with location and date marked. In addition to the date cast, the date and time the cylinders are picked up for transportation to the lab shall be shown.
 - 2. Description of the manner in which cylinders were stored for the first 24 hours and the succeeding 27 days shall also be indicated.
 - 3. Air temperature, as well as the concrete temperature, shall be shown so that there is adequate data to evaluate varying and possibly low test results.
 - 4. On-site slump tests will be made as directed:
 - a. Type II Cement: At placement maximum slump 4", minimum slump 2"
 - 5. Air content shall be checked at least twice each day on air-entrained concrete in accordance with ASTM C 173 or ASTM C 231.
 - 6. The owner shall perform or pay for all tests.
- C. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- D. Strength of each concrete mix will be satisfactory if every average of any three consecutive compressivestrength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).

- E. Test results shall be reported in writing to Engineer, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mix proportions and materials, compressive breaking strength, and type of break for both 7-and 28-day tests.
- F. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Engineer but will not be used as sole basis for approval or rejection of concrete.
- G. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Engineer. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Engineer.

END OF SECTION 033000