1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS

- □ 2009 International Building Code
- □ American Concrete Institute (ACI) 318-08
- □ Embedment Properties for Headed Studs, TRW Nelson, Design Data Catalog
- □ Steel Construction Manual, AISC 360-05
- □ ASCE 7-05

1.2 DESIGN CRITERIA USED IN CALCULATIONS

- \Box Reinforcing Steel Yield Strength = fy = 60 ksi
- □ Structural Steel is ASTM A 36/A 36M-05
- □ Unconfined Compressive Strength of Concrete = f'c = 5000 psi
- □ Weight of Concrete = 115 pcf
- □ Stud Yield Strength = 50 ksi

INTERNATIONAL BUILDING CODE REQUIREMENTS

The following is a summary of the Code requirements applicable to CellXion precast concrete equipment shelters.

1.3.1 Occupancy Classification

Occupancy may be Group S-2 per sec 311.3, Group B per sec 304.1 or Group U per sec 312.1.

(Table 602)

1.3.2 Construction Type

1.3

1.4

Type V-B per section 602.5 and Table 601.

1.3.3 Building Limitations

Occupancy S-2 or B or U

Relative to the location of the nearest structure or property line:

Walls must be rated one hour if less than 10 feet.

Maximum size of S-2 building	(Table 503) is 13,500 SF,	2 story. (Table 503
------------------------------	---------------------------	---------------------

- Maximum size of B building (Table 503) is 9,000 SF, 2 story. (Table 503)
- Maximum size of U building (Table 503) is 5,500 SF, 1 story. (Table 503)

NOTE: STANDARD SHELTERS MAY BE RATED UP TO 2-HOURS.

REF: Table 720.1(2), Item number 4-1.1, Sand-lightweight concrete 4 inches thick. *IF PROTECTED OPENINGS ARE REQUIRED:*

3/4 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES. 1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES.

Unprotected Openings Allowed	Protected	Openings Allowed	Table 705.8	
Not permitted up to 5 feet.		Not permitted up to 3	3 feet.	
10% permitted > 5 feet to 10 feet	ət.	15% permitted > 3 fe	et to 5 feet.	
15% permitted > 10 feet to 15 fee	eet.	25% permitted > 5 fe	et to 10 feet.	
25% permitted > 15 feet to 20 fe	eet.	45% permitted > 10	feet to 15 feet.	
45% permitted > 20 feet to 25 fee	eet.	75% permitted > 15	feet to 20 feet.	
70% permitted > 25 feet to 30 fe	eet.	No restriction > 20 fe	et.	
No restriction > 30 feet.				
FLOOR LOADS Floor liv	e load requir	ed (Table 1607.1) for	 light storage is; 	125 psf
The summary loading chart in S	Section 2.0.1	indicates allowable lo	bads of:	
251 psf 10.00	00 ft wide	OK		
For a 2 sq ft area per sec 2.3.6, a c	concentrated	load of 2020	0 lbs can be placed any	/where.
If the concentrated load is next	to the wall,	4522 lbs can be	e used.	
For a 3 sq ft area per sec 2.3.6, a c	concentrated	load of 404	1 lbs can be placed any	/where.

1.5 ROOF LOADS Minimum roof live load required (2009 IBC 1607.11.2.1) is: $L_r = L_0 R_1 R_2$ [sec 1607.11.2.1, Eq 16-25] $L_0 = 20$ [sec 1607.11.2.1] $R_1 = 1.0$ (worst case for smaller shelters) [sec 1607.11.2.1. Eq 16-26] $R_2 = 1.0$ (for F< 4) [sec 1607.11.2.1, Eq 16-29] F = .167 in per ft slope $L_r =$ 20 psf The summary loading chart in Section 2.0.1 indicates allowable loads of: 135 psf 10.00 ft wide OK Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-05 $p_f = 0.7 C_e C_t I p_a$ [ASCE 7-05, Equation 7-1, Sec 7.3] (Min. design load for roofs from section 2 of these calcs) $p_f =$ 10.00 ft wide = 135 psf C_e = 1.2 (worst case-ASCE 7-05, Table 7-2, lesser factors may be used as appropriate) C_t = 1.0 (From ASCE 7-05, Table 7-3, heated structure) Ι = 1.0 (Category II, ASCE 7-05 Table 7-4) Using the design load from section 2 for p_f and solving for p_a : $p_{a} = p_{f} / (0.7 C_{e} C_{t} I)$ = (Allowable ground snow load) 161 psf 10.00 ft wide WIND LOADS 1.6 Sect. 1609.1.1 allows ASCE 7-05, Chapter 6; use sec 6.4, Method 1 - Simplified Procedure: V = 160 mph [ASCE 7-05, Section 6.5.4 and Figure 6-1] I = 1.0 [ASCE 7-05, Category II, Table 6-1 >> Table 1-1] Exposure Classification: С [ASCE 7-05, section 6.5.6.3] Exposure C category: $\lambda = 1.21$ [ASCE 7-07, section 6.4.2 & Figure 6-2] enclosed [ASCE 7-05, section 6.2] Enclosure Classification: $K_{zt} = 1.0$ [ASCE 7-05, sec 6.5.7.2] Roof angle: 0 to 5 degrees MWFRS Design Wind Pressures: [from ASCE 7-05, Figure 6-2] $p_s = \lambda K_{zt} I p_{s30}$ [ASCE 7-05, sec 6.4.2.1, Eq 6-1] WALLS: 48.4 psf [zone A] -25.4 psf [zone B, negligible--> only 1 inch tall] 32.5 psf [zone C] [zone D, negligible--> only 1 inch tall] -15.1 psf Zone A controls, use it for analysis Allowable load on walls: 87.3 psf(Calcs sec 2.0.1) 9.25 ft tall OK ROOF: -59.0 psf [zone E] -33.6 psf [zone F] -40.9 psf [zone G] [zone H] -25.9 psf Zone E controls, use it for analysis Allowable negative load on roof: -53.1 psf (Calcs, sec 2) 10.00 ft wide Plus .6 x DL (45.7 psf = 27.4 psf + Allow Neg Ld = OK -80.6 psf

1.6.1	Check structural connections for carrying wind loads to the foundation. The worst case for the windward forces are when they are projected onto the long walls. Half
	of the load is carried to the floor connections and half is carried to the roof connections.
	The walls are assumed to be 9.25 ft tall the worst case scenario.
	The connections which connect the long walls to the end walls are neglected for
	the purposes of this particular analysis. Analysis with Calculations from section 3
1.6.1.1	Check connections for transfer of windward loads from wall to the floor and roof.
	The connections along the top and bottom of the walls are at a standard spacing of 56 inches.
	I his will be the tributary width of wind load for each connection at the floor and roof. The load
	For this inductory area on the windward wall is then: P'(w) = P(w) and $P(w) = P(w)$ area (for $Q(25)$ ft tall wall)
	Where tributary area = $(925 \text{ ft}/2) \times 4 \text{ ft 8 in} = 21.58 \text{ sg ft}$
	$= 48.4 \text{ psf} \times 21.58 \text{ sq. ft.}$
	P'(w) = 1,045 lbs
	This load is resisted by three main components of the connection at the floor:
	5.95 kips Capacity of P/N 223100 in tension per Clacs Section 3.3.1
	22.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
	8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8
	The capacity of all 3 components exceed the wind load OK
	This load is resisted by three main components of the connection at the roof:
	3.52 Kips Capacity of P/N 223000 in Y-shear per Clacs Section 3.4.3
	5.95 Kips Capacity of the wold which connects the plates per Clacs Section 3.5.1
	The capacity of all 3 components exceed the wind load OK
4 6 4 9	Check connections for transfer of loowerd loods from well to the floor and roof
1.0.1.2	The leeward wall has similar construction, but the loads are less and are outward
	P'(I) = P(I) =
	Where tributary area = $(9.25 \text{ ft}/2) \times 4 \text{ ft 8 in} = 21.58 \text{ sq. ft.}$
	= 48.4 psf x 21.58 sq. ft.
	P'(I)= 1,045 lbs (negative indicating an outward direction)
	This load is resisted by three main components of the connection at the floor:
	5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
	22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
	8.35 kips Capacity of the weld which connects the plates per Section 3.8
	The capacity of all 3 components exceed the wind load OK
	a nis load is resisted by three main components of the connection at the root:
	5.52 Kips Capacity of P/N 223000 in tension per Section 3.5.1
	8.35 kips Capacity of the weld which connects the plates per Section 3.8
	The capacity of all 3 components exceed the wind load OK
1.6.1.3	Windward and leeward loading transfer to endwalls:

The loads on the top half of the shelter must be transferred to the ground through the connections

on the endwalls. There are three connections from the roof to the endwall and three connec-

tions from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter is resisted by these connections and is assumed to distribute half of the load to each endwall.

A shelter which is 18.00 feet long has a tributary area of:

Area = (9.667 feet / 2) x (18.0 feet / 2) 43.502 sq. ft. P(proj.)= 43.502 sq ft x 48.4 psf = 2,105 lbs.

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.

7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2

22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1

8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 21.12 kips OK

1.6.1.4 Windward and Leeward loading transfer to floor:

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.

14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2

22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7

8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 25.05 kips **OK**

1.6.1.5 Find horizontal forces and overturning moments.

This is used in the tie-down anchor analysis in 1.8 below.

Shelter Dims (feet)			Shelter	Hor.Wind	Vert. Wind	Overturn
		Weight	(PxA-hor)	(PxA-vert.)	Moment	
Width	Length	Height	lbs	lbs	lbs	ft-lbs
10.00	18.00	10.083	35,103	8,785	10,629	97,432

1.6.1.6 Components and Cladding:

$p_{net} = \lambda$	K _{zt} I <i>p</i> _{net}	30		[AS	CE 7-05, sec 6.4.2.2, I	Eq 6-2]
	POS N	IEG		[froi	n ASCE 7-05, Figure 6	-3]
ROOF ZONE 1:	18.0	-51.1	(100 st	f effectiv	e wind area) use for an	alysis
ROOF ZONE 2:	21.5	-84.1	(20 sf	effective	wind area)	
ROOF ZONE 3:	22.7	-141.3	(10 sf	effective	wind area)	
Allowable posi	tive load o	n roof:	(From	section	2)	
		135	psf		10.00 ft wide shelter	
Allowable nega	tive load o	n roof:	(From	section	2, neglecting DL)	
		-53.1	psf		10.00 ft wide shelter	
Allowable nega	tive load o	n roof:	(From	section	2, including .6 x DL)	
Roof Dead Load:	45.7 psf		X .6	=	27.4 psf	
		-80.6	psf		10.00 ft wide shelter	OK
WALL ZONE 4:	45.0	-49.6	(200 st	f effectiv	e wind area) use for an	alysis
WALL ZONE 5:	52.4	-67.8	(30 sf	effective	wind area)	-

1.7

Allowable load on walls: (From section 2)

87 psf

9.25 ft tall wall

OK

The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones.

```
SEISMIC LOADS
                              Section 1613.1, requires ASCE 7-05 for analysis.
   Site Class is E
                             [Section 1613.5.2]
   Occupancy Category:
                                         Π
                                                     [Table 1604.5]
   Seismic Design Category:
                                         D
                                                     [sec 1613.5.6]
   Seismic Importance Factor, I is: 1.50
                                                     [ASCE 7-05, sec 11.5, Table 11.5-1]
      V = C_s W
                                         [ASCE 7-05, sec 12.8.1, Eq. 12.8-1]
      W = D
                                         [ASCE 7-05, sec 12.7.2]
      C_{s} = S_{DS} / (R / I)
                                         [ASCE 7-05, sec 12.8.1.1, Eq. 12.8-2]
      V = (S_{DS} / (R / I)) D
               R =
                         4
                                         [ASCE 7-05, Table 12.2-1, A.2]
             S_{DS} = 2/3 S_{MS}
                                         [Per 1613.5.4, Eq. 16-39]
                                         [Per 1613.5.3, Eq. 16-37]
                       S_{MS} = F_a S_S
                                    F_a =
                                                1.0 [Table 1613.5.3(1)]
                                    S<sub>S</sub> =
                                               3.00 [Fig 1613.5(1), meets all US areas ]
                                    3.00
              S_{DS} =
                        2.00
      V =
              0.750 D
                                                     [Use for base shear]
   Determine E for use in load combinations on individual panel design.
                                         [ASCE 7-05, sec 12.4.2, Eq. 12.4-1]
      E = E_h + E_v
      E_h = \rho Q_F
                                         [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3]
      E_v = 0.2 S_{DS} D
                                         [ASCE 7-05, sec 12.4.2.2, Eq. 12.4-4]
      E = \rho Q_{E} + 0.2 S_{DS} D
                                         [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3 plus sec 12.4.2.2, Eq. 12.4-4]
      Q_F = V
                    [ASCE 7-05, sec 12.4.2.1]
                                                             \rho = 1.0
                                                                             [ASCE 7-05, sec 12.3.4.2]
       E = \rho V + 0.2 S<sub>DS</sub> D
                                              1.150 D
                                                                 [Use in load comb 4 & 6]
                                      =
     E_m = E_{mh} - E_v
                                                                 [ASCE 7-05, sec 12.4.3, Eq. 12.4-6]
    E_{mh} = \Omega_0 Q_E
                                                                 [ASCE 7-05, sec 12.4.3.1 Eq. 12.4-7]
     E_m = \Omega_0 Q_E - 0.2 S_{DS} D
                                              \Omega_0 = 2.5
                                                                 [ASCE 7-05, Table 12.2-1, A.2]
     E_m = 1.475 D
                                                    [Use in load comb 7]
    D<sub>wall</sub> =
               36.3 psf
                                  D_{roof} =
                                               45.7 psf
                                                                                  43.8 psf
                                                                                                   (calcs sec 4)
                                                                      D_{floor} =
Load combinations:
                              Section 1605.3.1 & ASCE 7-05 12.4.3.2
Comb 1
          D
                                                     [Notes 1, 2, 3]
Comb 2
           D + L
                                                     [Notes 1, 2, 3]
Comb 3
           D + L + (Lr \text{ or } S \text{ or } R)
                                                    [Notes 1, 2, 3]
           D + (W \text{ or } 0.7E) + L + (Lr \text{ or } S \text{ or } R)
Comb 4
                                                    [Notes 1, 2, 3, 4]
Comb 5
           0.6 D + W
                                                     [Notes 1, 2, 3]
Comb 6
           0.6D + 0.7E
                                                     [Notes 1, 2, 3, 4]
           (0.9-.2S_{DS})D + \Omega_0 Q_E
Comb 7
                                                     See analysis below:
```

Note 1: Roof and floor panels are designed using 1.4D and 1.7L, exceeds req'd factors. Note 2: Wall panels are designed using 1.4D and 1.7W, exceeds reg'd factors. Note 3: S, R, and Lr are used as L in panel calculations, see section 2 of these calcs. Note 4: Wind loads control over Seismic. Comb 7 check psf Min. Design Loads Walls: $(0.9-.2S_{DS})D + \Omega_0 Q_E =$ 2.375 D_{wall} = 87 psf 86 OK $(0.9-.2S_{DS})D + \Omega_0 Q_E =$ Roof: 2.375 D_{roof} = 109 135 psf οк $(0.9-.2S_{DS})D + \Omega_0 Q_E =$ 2.375 D_{floor} = Floor: 104 251 psf OK 1.7.1 Seismic loads from top half of the wall panel are transferred to the roof. Equipment permanently installed in the building is estimated at 10,000 pounds. For a 18.00 ft long shelter, this is an average of 556 pounds per linear foot. If this equipment is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the walls. Analysis uses sec 3 of these calculations. The weight of a wall section transferred to the connections at 56" on center is: W(wall) = (56/12 ft width) x(9.25 ft high) x (4 /12 ft thick) x (115 pcf) 827 lbs = W(equipment) = (56/12 ft width) x(277.778 plf) 1296 lbs = W(top of wall) = W(wall) + W(equipment) =2,124 lbs For the wall panel, the seismic shear is: V = 1,593 lbs Seismic shear per connection plate at top of walls This load is resisted by three main components of the connection at the floor: 5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK This load is resisted by three main components of the connection at the roof: Capacity of P/N 223000 in Y-shear per Section 3.4.3 3.52 kips 5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK 1.7.2 Seismic loads from roof are transferred to the top of the endwall. The seismic load at the top connection plates of the endwalls includes the seismic loads from the top guarter of two sidewalls, one half of the roof, and one half of the total equipment. Use a 9.25 ft tall x 17.33 ft long wall & use a 10.33 ft wide x 18.33 ft long roof. W(quarter wall)= 9.25 ft / 2 x 17.33 ft / 2 x 4.00 /12 ft x $115 \, \text{pcf} =$ 1,537 lbs. x 2 = 3.073 lbs. W(half roof)= 10.33 ft 18.33 ft / 2 x Х 4.50 /12 ft x 115 pcf 4,085 lbs. = 277.7778 plf 2,500 lbs W(equipment) =9 ft Х TOTAL: W(top of endwall) = 9.658 lbs. The seismic load is then: V(top of endwall) = 7,243 lbs.

1.8

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2 22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1 Capacity of the weld which connects the plates per Section 3.8 8.35 kips Since there are three of these connections, the total capacity is: 21.12 kips This capacity exceeds the seismic load OK 1.7.3 Seismic loads from endwall are transferred to the floor. The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself is added. The weight of the endwall is: W(endwall)= 10.00 ft 9.25 ft x Х 4.00 /12 ft x 115 pcf 3546 lbs = V(endwall)= 2,659 lbs V(bottom)= V(top of endwall) + V(endwall) = 9.903 lbs The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity is: 25.05 kips This capacity exceeds the seismic load OK Check shelter tie-downs to foundation For tie-down anchor capacity see Section 3.9 of these calcs: Horizontal: 10472 lbs Per connection Vertical: 6615 lbs Per connection

Horizontal forces due to seismic/wind loads:

Width Length Height Weight (W x Cs) 1.6.1.5 Load Capacity Facto 10.00 18.00 10.083 35,103 10,000 33,827 8,785 SEISMIQ 41,887 OK 1.24	Shel	ter Dims	(feet)	Shelter	Contents	Seis.Load	Wind load	Control'g	Tie-down	CHECK	Safety
10.00 18.00 10.083 35,103 10,000 33,827 8,785 SEISMIQ 41,887 OK 1.24	Width	Length	Height	Weight	Weight	(W x Cs)	1.6.1.5	Load	Capacity		Factor
	10.00	18.00	10.083	35,103	10,000	33,827	8,785	SEISMIC	41,887	OK	1.24

Friction against sliding is ignored.

shelters under 24 ft in length have 4 tie-downs; lengths 24 ft and over have 8 tie-downs Overturning forces due to seismic/wind loads:

			Seis.load	Overturn	Wind Over.	Control'g	Overturn	Tie-down	CHECK	Safety
Shel	ter Dims	(feet)	(W x Cs)	Force	See 1.6.1.5	Load	Resist.	Capacity		Factor
Width	Length	Height	lbs.	lbs.	ft-lbs.		ft-lbs.	lbs		1.5 req'd
10.00	18.00	10.083	33,827	170546	97,432	SEISMIC	157963	41,887	OK	2.15

Overturning resistance uses 0.9 x DL of shelter (no contents)

Weight of shelter and contents are the same as in the horizontal force chart above.

2.0 DESIGN CRITERIA

NOTE: These calculations repres	sent the p	anels of a	a
10.000 ft wide x	18.000	ft long x	9.250 ft tall shelter.
STRUCTURAL PROPERTY		<u>UNITS</u>	LABEL
Concrete Compressive Strength	5000	psi	f' _c (sand-lightweight)
Reinforcing bar Yield Stress	60000	psi	fv[RFBAR]
Concrete Density	115	pcf	DENSITY
Maximum Building Width	10	feet	BLDGW
Maximum Building Length	18	feet	BLDGL
Maximum Wall Panel Height	9.25	feet	WALLH
Max. Est. weight of Shelter	35,103	LBS.	BLDGWT
Concrete volume req'd.	10.55	YDS.	CONCYDS
Roof thickness at peak	5	inches	H[ROOF]
Roof thickness at edge	4	inches	
Rebar size used in roof #	4	Rebar	REBARROOF
Steel mesh used in roof:	W4	Wire	
Steel spacing in roof (12"max.)	4	inches	
Lateral rebar spacing: roof	12	inches	ROOFSPACING12
Longitudinal rebar spacing-roof:	18	inches	
Steel mesh used in wall:	W4	Wire	REBARWALL
Add vert steel used in wall #	4	Rebar	REBARWALL2
Steel spacing in wall (12"max.)	4	inches	WALLSPACING
Vertical Rebar spacing in wall	36	inches	WALLSPACING2
Horizontal rebar spacing in wall	48	inches	
Wall panel thickness	4	inches	WALLTHICKNESS
Rebar size used in floor #	6	Rebar	REBARFLR
Number of rebar per floor rib	2	each	REBARFLRQTY
Spacing of ribs in floor	28	inches	FLOORSPACING
Floor thickness	5.75	inches	HIFLOOR
Floor deck thickness	2.75	inches	H[DECK]
	4	Inches	B[KIB]
Floor deck steel size	۷۷4	inchoo	
Area por roof robar	4		
Diameter of roof rebar	0.200	inches	
Area per roof wire	0.300	ea in	DIA[ICEBAICCOOL]
Area per wall wire	0.040	sq. in. sa in	
Area per extra vert wall rebar	0.040	sq. in.	
Diameter of wall wire	0.200	inches	
Diameter of wall rebar	0.500	inches	
Area of floor rib rebar	0.880	sa. in.	AIREBARFLR1
Diameter of floor rebar	0.750	inches	DIAIREBARFLRI
Area of deck rebar/wire	0.040	sq. in.	AIREBARDECKI
Diameter of deck rebar/wire	0.225	inches	DIA[REBARDECK]
Area of deck steel per foot	0.120	sq.in./ft.	A[DECKSTEEL]
Minimum req'd deck steel/foot	0.059	sq.in./ft.	A[DECKSTEEL-MIN]
		-	

2.0.1	STRUCTURA Panel	L LOADING SUMM ALLOWABLE LO	IARY FOR PA	NELS, AS D <u>TYPE</u>	ESIGNE	D .		
	roof floor	135 251	psf ft tall	LIVE LIVE				
	wall	87.3	psf	WIND				
2.0.2	CHECK STEE	L RATIOS (ACI 3	18-08, sec. 21.	9.2.3)	ρ_{t}	$\rho_{\mathbf{v}}$		
	B ₁ =	0.80		ROOF:	0.0083	0.0069	ок	
		ρ _b ρ _{max}	ρ_{min}	FLOOR:	0.0068		ок	
		0.0335 0.0252	0.0033	WALL:	0.0066	0.0062	ок	
	Min reqd. per /	ACI 318-08, sec 21	.9.2.1	0.0025				
2.0.3	CHECK DEVE	LOPMENT LENG	TH (ACI	318-08, sec	. 21.7.5.1)		
			Wall	Roof		Floor		
	Largest of:	$10 d_{b} =$	2.3 in	5.0 i	n	7.5	in	
		() () = (1/2)	7.5 in	7.5 i	n	7.5	in	
	ℓ _{dh} = 1.25	$f_y d_b / (65 x f'_c)^2$	3.7 in	8.2 i	n	12.2	in	
2.1	All rebar devel ROOF PANEL T	opment lengths are CALCULATIONS emperature steel re	equired: Ats	18 in		ОК		
	P N	anels are	4 In this	ск, minimum. s i	nches at	center neak		
	10	Ats = Aconc x	0.0018	5 01	nones at	center peak.		
		= 5	in. x	12 in. x	0.0018			
		= 0.1080	sq. in. per foot	of width of ro	of panel.			
	Use #4	rebar at 18	inches, longitu	dinal: Ats(actual) =	0.2533	sq. in.	OK
2.1.1	Determine sh	ear strength: Vu[F	ROOF]					
		(OOF] = 12.0			1/2			
	UKOOF3	1 2 75	in DIA[r inches	CEDARROOF	-]/2			
	Vull	ROOF1= .85 x .85	x 2 x (fc)^.5	x b[ROOF]	x dIRO	OFSHEAR1		
		= 3372	lbs.					
2.1.2	Determine all ROOFSPANS	owable live load d HEAR= bldgw - (= 8.875	l ue to shear: (d[ROOFSHE feet 10	w[ROOFSHE AR + 4) x 2 .00 ft wide sl	EARLL] 2 / 12) helter			
	w[RO	OFDL]= density x	thickness	(4.5 i	n avg) =	43.1	psf (cond	crete only)
	w[ROOFSHE	ARLL]= (Vu[ROOF	F] / ROOFSPA	NSHEAR -	1.4 x w[ROOFDL]) / 1.7	,	
		= 188	psf allowable r	oof live load o	due to she	ear strength	10.00	ft wide

```
2.1.3
        Determine allowable live load due to moment: w[ROOFMOMENTLL]
         A[ROOFSTEEL12]= A[REBARROOF] x 12 inches / ROOFSPACING )
                          = 0.20 sq. inches per foot of roof panel
                                                                    10.00 ft wide shelter
         d[ROOFMOMENT]= (H[ROOF]) - (1+DIA[REBARROOF]/2)
                               3.75 inches
                a[ROOF12]= (A[ROOFSTEEL12] x fy[REBAR])/(.85 x fc x b[ROOF])
                          = 0.235 inches
              Mu[ROOF12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] x (d[ROOFMOMENT] - a[ROOF12] / 2)
                          = 3269 ft-lbs
              [ROOFSPAN]= BLDGW - .5
                                                 = 9.50 feet
                                                                              10.00 ft wide shelter
       w[ROOFMOMENTLL]= [ ( 8 x Mu[ROOF] / I[ROOFSPAN]^2 ) - (1.4 x w[ROOFDL] ) ] / 1.7
                               135 psf allowable roof live load due to bending strength. 10.00 ft wide
       Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL]
2.1.4
        d[RFNEGMOMENT]= 1 +DIA[REBARROOF] / 2 )
                          = 1.25 inches
               a[RFNEG12]= (A[ROOFSTEEL12] x fy[REBAR])/(.85 x fc x b[ROOF])
                              0.235 inches
             Mu[RFNEG12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] x (d[RFNEGMOMENT] - a[RFNEG12] / 2)
                               1019 ft-lbs
             I[ROOFSPAN]= BLDGW - .5
                                                  = 9.50 feet
                                                                              10.00 ft wide shelter
      w[ROOFNEGMOMLL]= [(8 x Mu[ROOF])/(I[ROOFSPAN]^2)]/1.7
                          = Allowable negative roof live load due to bending strength (neglecting dead load)
                          = -53.1 psf
                                               10.00 ft wide shelter
2.1.5
        CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF
2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}. (ACI 318-08, 21.9.2.2)
            2 A_{CV} x \land x f_c^{1/2} = 23080 \text{ lbs} [CONTROLS]
2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION
                                                    (per ACI 318-08, sec. 21.9.4.1, eq. 21-7)
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}.
               V_n = A_{CV} \left( \alpha_c x \wedge x f'_c^{1/2} + \rho_t x f_v \right) \qquad \alpha_c = 2.0 \left( \text{for } h_w / I_w > 2 \right)
                               A_{cv} = 192 in<sup>2</sup> \lambda = 0.85 (per ACI 318-08 sec. 8.6.1)
                                \rho_t = A_s / A_{CV} =
                                                              0.0083
                 = 118708 lbs
                                   [DOES NOT CONTROL]
2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM
                                                     (per ACI 318-08, sec 21.11.9.1, eq. 21-10)
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}.
               V_n = A_{CV} (2 x \lambda x {f'_c}^{1/2} + \rho_t x f_y)
                 = 118708 lbs [DOES NOT CONTROL]
```


2.2.2.1	CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT					
	Use a 4 inch panel, 4 foot length, for minimur (ACI 318-08, 21.9.2.2)					
	$2 A_{CV} x \land x f_c^{1/2} = 23080 \text{ lbs}$ [CONTROLS]					
2.2.2.2	NOMINAL SHEAR FOR WALL SECTION (per ACI 318-08, sec. 21.9.4.1, eq. 21-7)					
	Use a 4 inch panel, 4 foot length, for minimum A _{CV} .					
	$V_n = A_{CV} \left(\alpha_c \mathbf{x} \wedge \mathbf{x} \mathbf{f'_c}^{1/2} + \rho_t \mathbf{x} \mathbf{f_y} \right) \qquad \qquad A_{CV} = \qquad 192 \ln^2$					
	$\alpha_{ m c}$ = 2.0 (for h _w / l _w > 2) λ = 0.85 (per ACI sec. 8.6.1)					
	$\rho_{\rm t} = A_{\rm s} / A_{\rm CV} = 0.0066$					
	= 99264 lbs [DOES NOT CONTROL]					
2.2.2.3	NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACI 318-08, sec. 21.11.9.1, eq. 21-10))				
	Use a 4 inch panel, 4 foot length, for minimum A _{CV} .					
	V_n = A _{CV} (2 x \land x f' _c ^{1/2} + ρ_t x f _y)					
	= 99264 lbs [DOES NOT CONTROL]					
2.3	FLOOR PANEL CALCULATIONS					
2.3.1	Determine temperature steel required for the deck:					
	Deck temperature steel required is:					
	ATS[DECK]= H[DECK] X 12 in. X .0018					
	$= 2.75 \text{ in.} \times 12 \text{ in.} \times 0.0018$					
	= 0.0594 sq. in. per foot of whith of hoor partiel.					
2.3.2	Determine floor deck strength:					
	DECKSPAN= FLOORSPACING - BIRIBI					
	= 24.0 inches					
	d[DECK]= H[DECK] -1 (Assumes mesh is 1" clear from bottom of deck)					
	= 1.75 inches					
	a[DECK]= (A[DECKSTEEL] x FY[REBAR]) / (.85 x fc x 12 in.)					
	= 0.1412 inches					
	$MU[DECK] = 0.9/12 \times A[DECKSTEEL] \times TY[REBAR] \times (d[DECK] - (a[DECK] / 2))$					
	v[DECKTOTALMOM]= (Mu[DECK] x 8) / (DECKSPAN x 12 in per ft)^2					
	= 1814 psf					
	w[DECKDL]= (H[DECK] / 12 in. per ft. x 1 ft.^2 x DENSITY)					
	= 26.4 psf					
	w[DECKLLMOM]= (w[DECKTOTAL - 1.4 x w[DECKDL]) / 1.7					
	= 1045 pst V/UDECK1- 85 x 85 x 2 x (for 5) x dIDECK1 x 12 in					
	= 2146 lbs					
	wIDECKTOTSHEAR]= 2 x (VuIDECK1 / L					
	= 2146 psf					
	w[DECKLLSHEAR]= (w[DECKTOTSHEAR] - 1.4 x w[DECKDL]) / 1.7					
	= 1240 psf					
	Allowable live load for the floor deck is: 1045 psf (FLOOR DECK MOMENT CONTROLS)					

2.3.3	Determine floor rib strength:
	Effective width of flange: ACI 318-08, sec. 8.12.2 flange width
	1/4 span: = 28.5 inches
	Effective width of overhang: ACI 318-08, sec. 8.12.2 (a) & (b)
	(a) 8 times $H[DECK] = 22$ inches 48.0 inches
	OR (b) 1/2 clear dist. = 12.0 inches 28.0 inches <controls></controls>
	bf= 28.0 inches
	d[FLOOR]= H[FLOOR] - (.75" + DIA[REBARFLR] / 2)
	a[FLOOR]= (A[REBARFLR] x fy[REBAR]) / (.85 x fc x bf)
	$= 0.444 \text{ Incnes}$ $M_{U}[OOP]_{(0/2)} \times A[DEPAPELP] \times f_{U}[DEPAP] \times (d[ELOOP]_{(0/2)} \times A[DEPAPELP] \times f_{U}[DEPAP] \times (d[ELOOP]_{(0/2)} \times A[DEPAPELP] \times f_{U}[DEPAPELP] \times (d[ELOOP]_{(0/2)} \times A[DEPAPELP] \times A[DEPAPELP] $
	INIU[FLOOK]= (.9/12) X A[REBARFLK] X IY[REBAK] X (U[FLOOK] - A[FLOOK] / 2)
	= 17430 (FIDS $= 950 feet = 10.00 ft wide shelter$
	w[ELOORMOMTOT]= 8 x Mu[ELOOR] / (ELOORSPANMOM)^2
	$= 1546 \text{ plf} \qquad 10.00 \text{ ft wide shelter}$
	w[FLOORDL]= ((H[DECK] x bf / 144) + b[RIB] x (H[FLOOR] - H[DECK]) / 144) x 1 ft.x DENSITY
	= 71.1 plf (PER RIB) = 30.5 psf
	w[FLOORMOMLL]= [W[FLOORMOMTOT] - (1.4 x w[FLOORDL])] / (1.7 x trib)
	= 365 psf 10.00 ft wide shelter
2.3.4	Determine rib shear strength: Vu[FLOOR]
	b[RIB] = 4.00 inches
	A[RIBSHEAR]= (H[FLOOR] - (.75" + DIA[REBARFLR]/2)) x B[RIB]
	18.50 sq. in.
	ACI 318-08, sec. 11.2.2.1 Eq. 11-5 \land = 0.85
	Vc[FLOOR]= (1.9 x λ x (fc)^.5 + (2500 x ρ_w x A[REBARFLR] / (b[RIB] x d[FLOOR])) x b[RIB] x d[FLOOR]
	= 4313 lbs.
	But not greater than: 3.5 x λ x f'c^.5 x b[RIB] x d[FLOOR]
	= 3892 lbs.
	USE 3892 lbs.
	ACI 318-08, 8.13.8 Vc[FLOORALLOW]= 1.1xVc[FLOOR]= 4281 lbs.

```
2.3.5
        Determine allowable live load due to shear: w[FLOORSHEARLL]
       FLOORSPANSHEAR= bldgw - ((d[FLOOR + 8.5) x 2 / 12)
                                7.81 feet
                                            10.00 ft wide shelter
                           =
        w[FLOORSHEARLL]= (Vc[FLOORALLOW] / (.5xFLOORSPANSHEAR)-1.4 x w[FLOORDL]) / (1.7xFLOORSPACING/12)
                           = Allowable floor live load due to shear strength
                                251 psf 10.00 ft wide shelter
                           =
                                10.00 ft wide floor rib is: 251 psf
          Allowable LL for the
                                                                       (FLOOR RIB SHEAR CONTROLS)
                 Gross allowable floor load; LL +
                                                   44 psf DL=
                                                                  295 psf
                                                                                        10.00 ft wide
2.3.6
        Determine allowable concentrated load over 2 sg ft and 3 sg ft.
        2 square foot area is equivalent to approximately 17 inch x 17 inch, or 1.41 feet x 1.41 feet.
        Assume one rib takes the entire concentrated load.
        Allowable load based on shear is:
                                                  251 psf
              For a
                     10.00 foot wide shelter with a
                                                         9.00 ft span, the equivalent concentrated load is:
                  P[shear) =
                                 9.00 ft x 251 lbs. x
                                                                     2
                                4522 lbs
                                              Maximum concentrated load (shear).
        Maximum live load for bending on one rib is:
            w[FLOORRIBLL] = w[FLOORMOMLL] x BF / 12 =
                                                                   851 plf
        Make uniform load moment equal to concentrated load moment and solve for P.
        w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM) / 4
                                              Max concentrated load in center of floor (bending).
                          =
                                2020 LBS
        If the load is next to the wall (as is usually the case with batteries) :
        w[FLOORRIBLL]x (FLOORSPANMOM^2) / 8 = P x 1.5
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM<sup>2</sup>) * (2 x 8)
                          _
                                6398 LBS
                                              Max concentrated load next to wall (bending).
                                              Shear controls
              Shear controls when load is next to wall.
        For a 3 square foot area the concentrated load will be supported by two ribs.
        Maximum live load for bending on two ribs is:
            w[FLOORRIBLL]= w[FLOORMOMLL] x BF / 12 =
                                                                  1701 plf
        Make uniform load moment equal to concentrated load moment and solve for P.
        w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM) / 4
                                4041 LBS
                                            Max concentrated load in center of floor (bending).
                          =
```

INSERT PLATE ANALYSIS 3.0 (Analysis per ACI 318-08, Appendix D) 1" 3.1 **Material Properties** f'_c= 5000 psi (sand-lightweight) 61 ksi $f_{uta} =$ 2" 0.196 in² $A_{se} =$ 0.589 in² $A_{brg} =$ STUD $h_{ef} =$ 2 in $d_a =$ 0.5 in 1/2" 3.2 Stud Analysis 3.2.1 Per D.5.3.4, Eq D-15, Pullout strength in tension shall not exceed: 23,562 lbs/stud $N_p = 8 A_{brg} f'_c$ = (due to crushing strength of concrete at the head of the stud. Basic tension breakout strength of stud shall not exceed: 3.2.2 $N_{b} = k_{c} \lambda (f'_{c})^{1/2} h_{ef}^{1.5}$ [Eq D-7] Sec D.5.2.2 $\lambda~$ = 0.85 Sec 8.6.1 (sand-lightweight) $k_c = 24$ (for cast-in anchors) $N_b =$ 4080 lbs/stud 3.2.3 Check ductile strength of stud. $N_{sa} = A_{se}f_{uta}$ 11.98 kips/stud [See D.4.4 a) i)] Φ= 0.75 $\Phi N_{sa} =$ 8.98 kips/stud 3.2.3 Check shear strength of stud. $V_{sa} = A_{se}f_{uta}$ 11.98 kips/stud = Φ= 0.65 [See D.4.4 a) ii)] $\oplus N_{sa} =$ 7.79 kips/stud **INSERT PLATE "P/N 223100" ANALYSIS** 3.3 Υ 1' Х 1" \bigcirc 6" 8" 3"

1/4" PLATE, 6"x8"

1/2" x 2" STUD (TYP 3 PLCS)

6"

Page 15 of 24: CONNECTIONS

3.3.1 Tension Capacity of "P/N 223100" plate: $N_{cbg} = (A_{nc}/A_{nco}) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$ [Eq D-5] Sec D.5.2.1 $A_{\rm Nco} = 9h_{\rm ef}^2$ 36 in² A_{Nc} = 4" Find A_{Nc} for just the two upper studs. 60 in² $A_{Nc} = A_{Nco} + 4(3)(h_{ef}) =$ റ $\Psi_{ec,N} =$ 1.0 assume no eccentricity Ó 1.0 (c_a min > 1.5 h_{ef} for 2 studs) $\Psi_{ed,N} =$ $\Psi_{c,N} =$ 1.25 (for cast-in anchors) 1.0 (for cast-in anchors) $\Psi_{cp,N} =$ $N_{cbg} =$ Φ= 0.70 [Sec D.4.4 (c) condition B] 8500 lbs $\Phi N_{cbg} =$ 5950 lbs TENSION CAPACITY OF "P/N 223100" PLATE 3.3.2 Shear Capacity of "P/N 223100" plate in the X-direction: This shear force is parallel to the edge of the panel. (equels two times perpendicular) $V_{cbg} = 2(A_{vc}/A_{vco})\psi_{ec,V}\psi_{ed,V}\psi_{c,V}\psi_{h,V}V_{b}$ [Eq D-22 x 2] Sec D.6.2.1 (c) $V_{b} = 7(I_{e}/d_{a})^{0.2} (d_{a})^{1/2} \lambda (f'_{c})^{1/2} (c_{a1})^{1.5}$ [Eq D-24] Sec D.6.2.2 $I_e = h_{ef} =$ 2 inches λ = 0.85 Sec 8.6.1 d_a = 0.5 inches $C_{a1} =$ 7 inches $V_{b} =$ 7270 lbs/stud 1.0 [D.6.2.8] $\psi_{h,V} =$ Ψ_{ec},_V = 1.0 assume no eccentricity $\psi_{\mathrm{ed},\mathrm{V}}$ = 1.0 $\Psi_{c,V} =$ 1.2 (for #4 bar between anchor and edge) h₂ = 4 inches 4 inches $S_1 =$ 84 in² $A_{vco} = 2(1.5 c_{a1}) h_{a=}$ 100 in² $A_{vc} = (2 (1.5 c_{a1}) + s_1) h_a =$ $V_{cbg} =$ 20772 lbs Φ= 0.70 [D.4.4 (c) condition B] $\Phi V_{cbg} =$ 14540 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION Shear Capacity of "P/N 223100" plate in the (negative) Y-direction: 3.3.3 This shear force is perpendicular to the edge of the panel. NOTE: The lower stud is ignored since it is close to the free edge. $V_{cbg} = (A_{vc}/A_{vco}) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V}V_{b}$ [Eq D-22] Sec D.6.2.1 (b) $V_{\rm h} =$ 7270 lbs/stud from 3.3.2 above $\Psi_{ec,V} =$ 1.0 assume no eccentricity 1.0 C_{a2}>1.5C_{a1} $= v_{ed} \psi$ $\psi_{h,V} =$ 1.0 [D.6.2.8] $\Psi_{c,V} =$ 1.2 (for #4 bar between anchor and edge) 4 inches $h_a =$ $S_1 =$ 4 inches 84 in² 100 in² $A_{vco} =$ $A_{vc} =$ from 3.3.2 above $V_{cbq} =$ Φ= 10386 lbs 0.70 [D.4.4 (c) condition B] ⇔V_{cbg} = 7270 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN Y-DIRECTION

3.4 INSERT PLATE "P/N 223000" ANALYSIS

Find A_{Nc} for just the two studs.

Page 18 of 24: CONNECTIONS

3.6 WALL CORNER INSERT ANALYSIS

This insert is used on the vertical sides of the endwalls. The 4" leg forms the outside edge of the endwalls, and the 6" leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor.

The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls.

The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, (+X or -X direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction.

3.6.1 Capacity of Wall Corner Inserts in X-direction

Check capacity of individual studs on the 6" leg of the angle. These studs would be in shear toward the free edge.

$V_{cb} = (A_{vc}/A_{vco}) \psi_e$	ed,v $\Psi_{c,V} \Psi_{h,V} V_b$		[Eq D-21 Sec I	D.6.2.1 (a	a)]
where:					
$V_{b} = 7$	7(l _e /d _a) $^{0.2}$ (d _a) $^{1/2}$ λ (f' _c) ^{1/2} (c _{a1}) ^{1.5}	[Eq D-24] Sec	D.6.2.2	
	$I_e = h_{ef} =$	2 inches	λ =	0.85	Sec 8.6.1
	d _a =	0.5 inches	c _{a1} =	5	inches
$V_{b} =$	4389 lbs/stu	d			
$\psi_{ed,V}$ =	1.0	$\psi_{h,V} =$	1.0 [D.	6.2.8]	
$\psi_{\mathbf{c},\mathbf{V}} =$	1.2 (for #4	bar between ar	nchor and edge)		
h _a =	4 inches	[at step-joi	nt]	s ₁ =	24 inches
$A_{vco} = A_{vco}$	4.5 c _{a1} ² =	112.5	; in ²		
$A_{vc} = 2$	2(1.5 c _{a1}) h _{a =}	60) in ²		

Page 20 of 24: CONNECTIONS

3.7 FLOOR LIFTING INSERT ANALYSIS

The floor lifting inserts are made from 5"x5"x5/16" angle with a 5"x5/16" plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, 1/2"x4" long, on 12" centers and two studs, 1/2"x2" long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5"x5"x5/16" angle with one side up and one side out, and extend the entire length of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, 1/2"x4" long, on 12" centers and four # 6 x 30" rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (sec 3.6.1).

3.8 CAPACITY OF WELDS AT CONNECTION PLATES

Welds to be made with SMAW, E70XX electrodes. All standard connection plates will have a 3/16" weld, 3 inches long. E70XX welds are good for .928 kips per inch per sixteenth inch of weld. Weld capacity is then: $Pw = (0.928 \text{ k/inch/sixteenth}) \times (3 \text{ inches}) \times (3 \text{ sixteenths})$

3.9 CAPACITY OF TIE-DOWN CONNECTION PLATES

Three failure modes are noted:

- A: Failure of the connection plate.
- B: Failure of the bolts connecting the plate to the shelter.
- C: Failure of the expansion anchor connecting the plate to the foundation.

HoleArea(bolt)= D(top) x t = 0.3125 in^2 HoleArea(anchor)= D(bot) x t = 0.21875 in^2 PL-Area = t x (2" - (.5 x 1.25")) = 0.34375 in^2 cannot exceed t x 4t = 0.25 in^2 CONTROLS OK [exceeds 2/3 hole area, AISC, LRFD (1999), D3.2]

Bearing on hole area: Transient load fact Capacity of connection plate B: 1" bolt capacity: Use A3 Fv = 1	$\begin{array}{c} \text{Apl(bolt)} = \\ \text{Apl(anchor)} = \\ \text{Fp(hole)} = \\ \text{PL-bearing} = \\ \text{PL-bearing} = \\ \text{tor:} 1.333 \\ \text{is:} 19.33 \\ 19333 \\ 07 \text{ bolts or bett} \\ 0.0 \text{ ksi} \end{array}$	0.25 0.1875 1.0 Fu 14.50 10.88 kips lbs per con	in ² in ² = kips/ bolt hole kips/ anchor hole (using 1 bolt and 2 inection	58 ksi 2 anchors)			
A(bolt) = 0.7	785 in ²						
P(bolt) = 10	.47 kips / bolt	=	10472 lbs per	connection			
C: Expansion anchor capacity f Reference ICC report #ESR-1 Anchor is Hilti Stainless Steel H Shear in horizontal direction (d See Table 5, 3000 Embedment dep Allowable lo	rom Hilti char 385 & Tables (wik Bolt 3, 3/4 ue to sliding of psi normal weig th: 4.75 ad: 4225	ts: 2 & 5 " x 6.5" shelter): ght concrete in OK lbs per and	e, in ICC report.				
See Table 2, 3000 Edge distance for max lo	psi normal wei ad: 9.75	ght concrete in OK	e, in ICC report. (in direction of load	d)			
Spacing req'd for full lo	ad: 10.75	in	(
Min. spacing allowed:4.75 in (10% reduction per note 4, table 2) Actual spacing:Actual spacing:8 inInterpolated reduction for spacing:4.6 %Transient load factor:1.333Modified allowable horizontal shear load:5375 lbs per anchortimes 2 =10750 lbs per connectionShear in vertical direction (due to uplift of shelter):Hilti Kwik Bolt 3 requirements4.75" embedment4.875" min. edge dist. allowed => use 50% of chart loads (note 6, table 2) 9.75" required for full load strength6" edge distance =>38.46% Interpolated reductionAllowable vertical load in 3000 psi concrete:61.54%x4225 lbs61.54%x4225 lbs4.6 % Transient load factor:1.333Modified allowable vertical shear load:3308 lbs per anchor							
Controlling loads for tie-down connecti	ons:	times 2 =	6615 lbs per	· connection			
Horizontal (sliding): 104 Vertical (uplift): 66	472 lbs 615 lbs						

STRUCTURAL CALCULATIONS: 2009 IBC; CONCRETE

4 CONCRETE BUILDING WEIGHT CALCULATOR

		Concrete Density =	115 pcf		
		Concrete Required =	10.5 yards		
4.1	Shelter D	Dimensions:	shelter dimensions		
		Width:	10.000 ft		
		Length:	18.000 ft		
		Height:	9.250 ft,(wall height)		
			Weight, Ibs		
		Material			
4.2	ROOF	CONCRETE	8377		
		2.25" INSULATION	63		
		7/16" OSB PANELING	238		
		3/8" OSB W/FINISH	202		
		Total Roof Wt.	8880		
		Avg. Dead Load, psf	45.7		
12	WALLS	CONCRETE	17001		
4.3	WALLS		140		
			466		
		3/8" OSB W/FINISH	400		
				:	
		Total Wall Wt.	18337		
		Avg. Dead Load, psf	36.3		
4.4	FLOOR	CONCRETE	7044		
		L5x5x5/16 PERIMETER BEAM	577		
		STYROFOAM (2 PCF DENSITY)	50		
		TILE, 1/8"	215		
		Total Floor Wt.	7886		
		Avg. Dead Load, psf	43.8		
4.5	WEIGHT	SUMMARY:		Building	
			Width x	Length x	Height
		Total Overall : Ibs	35103 10.000	18.000	9.250

CODE SUMMARY 2000 INTERNATIONAL BUILDING CODE	INDEX OF SHEETS	DESIGN PARAMETERS
2000 STANDARD BUILDING CODE	LAYOUT DRAWINGS	USE GROUP: B (BOCA, MASBC) S-2 (FBC IBC SBC LIBC)
2003 INTERNATIONAL BUILDING CODE	0-0 COVER SHEET	U (OBC)
2009 INTERNATIONAL BUILDING CODE	0-2 PART CONT./CUT LIST/OPTIONAL COMPONENTS	CONSTRUCTION TYPE: 5B (BOCA, MASBO
2012 INTERNATIONAL BUILDING CODE	*1-0 EXTERIOR ELEVATION "A"	IV-UNP (SBC
1994 DIVIFORM MECHANICAL CODE	*1-1 EXTERIOR ELEVATION "C"	V-B (IBC, F V-N (UBC)
1997 STANDARD MECHANICAL CODE	*1-2 EXTERIOR ELEVATION "B" (PRE-HEMP) *1-24 EXTERIOR ELEVATION "B" (POST-HEMP)	ROOF LIVE LOAD: 136 PSF
1997 UNIFORM MECHANICAL CODE 2000 INTERNATIONAL MECHANICAL CODE	*1-3 EXTERIOR ELEVATION "D"	FLOOP LIVE LOAD 251 PSF
2000 STANDARD MECHANICAL CODE	2-0 FLOOR PLAN	
2003 INTERNATIONAL MECHANICAL CODE 2006 INTERNATIONAL MECHANICAL CODE	3-0 REFLECTED CEILING VIEW - ELECTRICAL	GROUND SNOW LOAD: 161 PSF (N/A FC
2009 INTERNATIONAL MECHANICAL CODE	3-1 REFLECTED CEILING VIEW - MECHANICAL	
2012 INTERNATIONAL MECHANICAL CODE 2000 MINNESOTA STATE ENERGY CODE (CH. 1323)	4-0 INTERIOR ELEVATION "A" 4-1 INTERIOR ELEVATION "C"	WIND SPEED: 156 MPH/EXPOSURE C
2004 CHICAGO BUILDING CODE	4-1A INTERIOR ELEVATION "C" ("A" SIDE)	SEISMIC ZONE FOR SBC & UBC: 4
2007 KENTUCKY BUILDING CODE	4-1B INTERIOR ELEVATION "C" ("B" SIDE)	SEISMIC DESIGN CATEGORY FOR IBC: E
2007 MINNESOTA STATE MECHANICAL CODE (CH. 1346-2000 IMC & 2000 IFGC W/ AMEND.) 2007 MINNESOTA STATE BUILDING CODE	A-2 INTERIOR ELEVATION "B" (PRE-HEMP)	
2009 NEW MEXICO COMMERCIAL BUILDING CODE	4–3 INTERIOR ELEVATION "D"	
2008 NEW MEXICO ELECTRICAL CODE 2009 NEW MEXICO MECHANICAL CODE	4-4 TERMINATION DETAILS	
2009 MICHIGAN BUILDING CODE	5-1 LOW VOLTAGE WIRING SCHEMATIC	
2009 MICHIGAN MECHANICAL CODE 2010 CALIFORNIA BUILDING CODE	5-2 HVAC/FIKE SYSTEM SCHEMATIC	CONCRETE f'c: 5000 PSI AT 28 DAYS
2010 CALIFORNIA GREEN BUILDING STANDARDS	5–3 AUTODIALER SCHEMATIC	CONCRETE UNIT WEIGHT: 115 PCF
2010 CALIFORNIA ENERGY CODE 2010 BUILDING CODE OF NEW YORK STATE	5–5 HVAC/FIKE SYSTEM SCHEMATIC DETAIL	OPENINGS AND PROXIMITY ON SITE)
ELECTRICAL CODE OF NEW YORK STATE	5-6 ELECTRICAL PANEL CALC (PRE HEMP)	FIRE SEPARATION DISTANCE: 10'-0" MINIM
2010 MECHANICAL CODE OF NEW YORK STATE	5-7 ELECTRICAL PANEL CALC (POST HEMP)	
2010 FLORIDA BUILDING CODE	P6-1 GROUND BAR DETAILS	PHYSICAL PROPERTIES
2010 FLORIDA BUILDING CODE ENERGY CONSERVATION	6-2 INTERIOR INTAKE PLATE ASSEMBLY (LOWER)	SHELTER DIMENSIONS: 10'-0"W X 18'-0"L
8TH MASSACHUSETTS ELECTRICAL CODE	6-4 EXTERIOR EXHAUST PLATE ASSEMBLY (UPPER)	SHIPPING DIMENSIONS: 10°-8"W X 19°-9 1 SHELTER WEIGHT: 39 400 # (SHELTER ONL)
2011 OHIO BUILDING CODE	6-4 EXTERIOR INTAKE PLATE ASSEMBLY (LOWER)	SHEELEN WEIGHT. 33,400 # (SHEELEN ONE)
CALIFORNIA TITLE 25	7-0 INTERIOR PANELING R/U CALCULATIONS	
2010 OREGON STRUCTURAL SPECIALITY CODE	7–1 INTERIOR PANELING R/U CALCULATIONS	
2010 OREGON MECHANICAL SPECIALITY CODE 2010 OREGON ENERGY EFFICIENCY SPECIALITY CODE	7–2 CONCRETE SHELTER PANEL CONNECTION DETAILS	GENERAL NOTE:
2012 NORTH CAROLINA BUILDING CODE	7-4 DETAILS DRAWINGS	1. DIMENSIONS MARKED WITH A "D" ARE [
2008 NORTH CAROLINA ELECTRICAL CODE 2012 NORTH CAROLINA MECHANICAL CODE	7-5 GENERAL ELECTRICAL NOTES & LEGEND	TO BE CHECKED. THEY TYPICALLY DICTATE
2012 NORTH CAROLINA ENERGY CONSERVATION CODE	* = DENOTES SHEETS WHICH MAY CONTAIN FIELDWORK	DIMENSION AT THE INSTALLATION SITE.
2012 TEXAS ACCESSIBILITY STANDARDS 1996–2011 NATIONAL ELECTRICAL CODE	REFERENCE DRAWINGS	2. PAINT UNGALVANIZED OR UNPAINTED CAP
1989,1999,2001,2004,2007 ASHRAE 90.1	108-007 ABBREVIATIONS AND SYMBOLS	A. TWO (2) COATS OF 201H UNIVERSA COATS OF DEVOF BAR-RUST 235 N
2000,2003,2006,2009, 2012 INTERNATIONAL ENERGY CONSERVATION CODE 2000,2003,2005,2006,2009 NEPA 101 LIFE SAFETY CODE	108-016 GENERAL CASTING SPECIFICATIONS (4 SHEETS) 108-088 SHELTER LIFTING DETAILS (3 SHEFTS)	THEN
2002 ARKANSAS FIRE PREVENTION CODE		B. THEN ONE(1) COAT OF DEVTHANE
2009 NORTH CAROLINA FIRE PREVENTION CODE	STRUCTURAL DRAWINGS (MANUFACTURE ONLY)	3. ALL EXTERNAL FASTENERS TO BE OF ST
	1 OF 6 STRUCTURAL SPECIFICATIONS	
	2 OF 6 STRUCTURAL LAYOUT WALL "A"	
NOTES	4 OF 6 STRUCTURAL LAYOUT WALL "C"	1-1
1. LISTED CODES INCLUDE LATEST STATE ADOPTED AMENDMENTS.	5 OF 6 STRUCTURAL LAYOUT WALL "D"	
3. APPROVED MODEL MAY BE MIRROR IMAGE.	6 OF 6 STRUCTURAL LAYOUT ROOF	
4. OCCUPANT LOAD = 0, OHIO = 2	221-1000X1800-02 CONCRETE FLOOR ASSEMBLY	
6. SHELTER HAS NO COUNTY PLACEMENT RESTRICTION IN THE STATE OF MARYLAND.	222-1000X0903-008 CONCRETE END WALL ASSEMBLY	
7. STATE INSIGNIA LABEL/DECAL IS LOCATED NEAR MAIN ELECTRICAL SERVICE PANEL.	223-1800X0903-002 CONCRETE SIDE WALL ASSEMBLY	1-2 $4-1$
 DOOR MUST BE MINIMUM 90 MINUTE FIRE RATED IF USED IN 2 HOUR FIRE RATED SHELTER AND MINIMU 45 MINIUTE FIRE RATED IF USED IN 1 HOUR FIRE RATED SHELTER 	M 226-1000X1800X4-00 CONCRETE ROOF ASSEMBLY	
9. ENERGY CODE EVALUATION BASED ON COMCHECK-EZ AND ENERGY GAUGE FLACOM SOFTWARE.		<u>ELEVATION KET</u>
10. NOT SUBJECT TO FLORIDA FIRE SAFETY CODE, COMPLIANCE IS THE RESPONSIBILITY OF THE LOCAL JURIS	DICTION CODE OFFICIAL.	4-2 (A)
12. ALL WELDS SHALL BE VERIFIED BY SPECIAL INSPECTION SHOWING CONFORMANCE TO THE DESIGN DRAWIN	IGS AND SPECIFICATIONS.	
13. APPLICABLE INTERNAL PRESSURE COEFFICIENT (N/A) - THESE SHELTERS CONFORM TO THE REQUIREMEN	TS OF (2000,03,06,09 IBC),	4-0
ASUE 7-05, METHOD I SIMPLIFIED PROCEDURE; (2012 IBC, 2010 FBC) ASCE 7-10 SIMPLIFIED DIAPHRA 14. WIND IMPORTANCE FACTOR - IW = 1.000	M LUW-KISE BUILDINGS.	
15. THESE PLANS ARE DESIGNED TO BE USED FOR THE CONSTRUCTION OF COMMERCIAL MODULAR UNITS, IN	ACCORDANCE WITH CA	
HEALIH AND SAFELY CODE SECTION 18028, 1991 UBC, 1993 NEC, ANSI A117.1-1986. 16. THE 2005 NEC IS MORE STRINGENT THAN THE 2002 NEC. 2012 NFC.		
17. HVAC UNITS ARE SIZED PER CUSTOMER REQUIREMENTS.		
18. EXTERNAL GROUNDING BY OTHERS. 19. SHELTER CONSTRUCTED IN ACCORDANCE WITH 9N-3 FAC.		\1−0/
20. THIS BUILDING DOES NOT CONTAIN PLUMBING FACILITIES.		\smile

EXTERIOR COMPONENTS AND CLADDING POSITIVE AND NEGATIVE PRESSURES IN TERMS OF PSF 2003 IBC, 2006 IBC, 120 MPH WIND SPEED +10.0/-28.7 2000 IBC, 2000,2003,2006,2009,2012 IBC, 2010 FBC. 180 MPH WIND SPEED **ZONE** 120 MPH WIND SPEED <u>150 MPH WIND SPEED</u> +15.7/-44.8 ROOF ZONE 1 (100 SF EFFECTIVE WIND AREA) +22.7/-64.5 +12.1/-28.7 ROOF ZONE 2 (20 SF EFFECTIVE WIND AREA) +18.6/-73.4 +12.1/-46.9 +12.0/-46.9 +26.9/-105.8 +12.7/-79.1 ROOF ZONE 3 (10 SF EFFECTIVE WIND AREA) +12.7/-79.1 +20.0/-123.7 +28.7/-178.1 WALL ZONE 4 (200 SF EFFECTIVE WIND AREA) +25.8/-28.4 +25.8/-28.4 +39.6/-43.4 +58.2/-64.1 WALL ZONE 5 (30 SF EFFECTIVE WIND AREA) +29.3/-38.0 +29.3/-38.0 +45.9/-59.2 +65.9/-92.3

\bigcirc	

5B (BOCA, MASBC)

Ρ	RRG	10/31/12	ADDED SHEETS	
Ν	JWR	6/29/12	CORRECTED NOTES	
REV	BY	DATE		DESCRIP

				PART	S LIST				
ITEM	QTY	U/M	P/N	DESCRIPTION	ITEM	QTY	U/M	P/N	DESCRIF
1	4.0000	EA.	168177	BOLT,1/2"X2" UNC,STAINLESS STEEL (INSTALL DEPT.)	77	10.0000	FT.	400846	WIRE,#22,4 PAIR,SOLID,NO SHLD,8757
2	4.0000	EA.	168186	WASHER,1/2" FLAT,STAINLESS (INSTALL DEPT.)	78	4.0000	EA.	400893	CORD, POWERSUPPLY, 12/3, PIGTAIL, 8FT
3	4.0000	EA.	168188	WASHER,1/2" LOCK,STAINLESS (INSTALL DEPT.)	79	2.0000	EA.	410000	CONDULET, BODY COVER, 1" ALUM
4	4.0000	EA.	168488	ANCHOR, DROP IN, 1/2"X2", SS (INSTALL DEPT.)	80	2.0000	EA.	410041	CONDULET,GASKET 1",GASK035N
5	2 0000	EA. FA	440093		82	7.0000		410112	CONDUIT, LFMC, 1/2", SEALITIE
7	1.0000	EA.	480175	SHELF RISER 96", WORK BENCH R-1096 (INSTALL DEPT.)	83	2.0000	EA.	410118	CONNECTOR LEMC, 1/2", STRAIGHT, ST
8	1.0000	EA.	480176	WORK BENCH,96"X30",WB-1-3096P (INSTALL DEPT.)	84	1.0000	EA.	410120	CONNECTOR, LFMC, 3/4", 90D, SEALTITE
9	1.0000	EA.	900102	HEMP CABINET (INSTALL DEPT.) (PROVIDED BY OTHERS)	85	1.0000	EA.	410129	CONNECTOR, LFMC, 3/4", STRAIGHT, ST
10	1.0000	EA.	168283	BUSHING,PLASTIC,1/2",SNAP-IN,HEYCO	86	1.0000	EA.	410446	CONNECTOR, CORD GRIP, 1", CG1003A
11	1.0000	EA.	170112	PIPE CAP,PLASTIC,NPT,NIAGARA #249	87	1.0000	EA.	420006	LABEL, BLK, ELECT, "GFCI"
12	5.0000	EA. FA	170113	PIPE CAP, PLASTIC, NPT, NIAGARA #205	89	1.0000	FA	420009	
14	1.0000	EA.	170125	PIPE CAP, PLASTIC, NPT, NIAGARA #1991 PIPE CAP, PLASTIC, NPT, NIAGARA #257	90	80.0000	EA.	420033	LABEL, SELF TRANSFER. PANDUIT TTSL2
15	1.0000	EA.	390003	ALARM,F/C,PANEL,FIKE,051	91	1.0000	EA.	420036	LABEL, BLK, ELECT, "HVAC DISCONNECT"
16	1.0000	EA.	390006	ALARM,F/C,MANUAL PULL,FIKE,3710	92	1.0000	EA.	420041	LABEL,"ARC FLASH AND SHOCK WARNING"
17	1.0000	EA.	390036	ALARM, RED WP BACK BOX, FIKE	93	7.0000	EA.	420047	LABEL,BLK,ELECT,"120V RECEPT"
18	1.0000	EA.	400666	CARD HOUSING W/AC DC 48V ADAPT	94	1.0000	EA.	420079	LABEL,BLK,ELECT,"CKT 8"
20	2 0000	EA. FA	410004	CONDULET, BODY COVER, 1/2 ALUM (OR EQUAL)	95	1.0000	FA	420080	LABEL, BLK, ELECT, CKT 10
20	1.0000	EA.	410025	CONDULET, BODY AL LL, 1/2", LL50D (OR FOUAL)	97	1.0000	EA.	420111	LABEL, BLK, ELECT, CKT TT
22	1.0000	EA.	410039	CONDULET, GASKET 1/2", GASK015N (OR EQUAL)	98	1.0000	EA.	420143	LABEL, RED, ELECT, BONDING TAG
23	1.0000	EA.	410045	LOCKNUT,EMT,1/2"	99	2.0000	EA.	420155	LABEL,BLK,ELECT,"CKT 9"
24	12.0000	EA.	410047	LOCKNUT,EMT,1"	100	1.0000	EA.	420167	LABEL, BLK, ELECT, "CKT 23 & 25"
25	1.0000	EA.	410075	BUSHING,1/2",PLASTIC	101	1.0000	EA.	420168	LABEL, BLK, ELECT, "CKT 27 & 29"
26	5 0000	EA.	410077		102	2.0000	FA	420169	LABEL, BLK ELECT, "208V RECEPT"
28	2.0000	FA.	410080		103	2.0000	FA.	420192	LABEL, BLK, ELECT, CKT 18
29	1.5000	EA.	410111	CONDUIT.LFMC.3/4".SEALTITE	105	1.0000	EA.	420194	LABEL, BLK, ELECT, "CKT 22"
30	4.5000	FT.	410112	CONDUIT,LFMC,1/2",SEALTITE	106	2.0000	EA.	420196	LABEL, BLK, ELECT, "CKT 24"
31	2.0000	EA.	410182	NIPPLE,RIGID,3/4"X8 1/2"	107	1.0000	EA.	420197	LABEL,BLK,ELECT,"CKT 12&14&16"
32	2.0000	EA.	410184	NIPPLE,RIGID,1/2"X7 1/2"	108	1.0000	EA.	420201	LABEL, BLK, ELECT, "OPTICAL CONNECTOR"
33	1.0000	EA.	410205	NIPPLE,RIGID,2"X8"	109	1.0000	EA.	420202	LABEL, BLK, ELECT, "208V 3-PHASE"
35	4 0000	FA	410224		111	1.0000	FA	420205	LABEL, BLK, ELECT, CIRCUIT BREAKER BUX
36	1.0000	EA.	410281	NIPPLE.RIGID.1 1/2"X8 1/2"	112	1.0000	EA.	420245	LABEL, BLK, ELECT, "HUMIDISTAT"
37	1.0000	EA.	410289	NIPPLE,RIGID,1/2"X3 1/2"LONG	113	1.0000	EA.	420321	LABEL, BLK, ELECT, "NORMAL"
38	3.0000	EA.	410347	NIPPLE,RIGID,1"X4 1/2"	114	1.0000	EA.	420322	LABEL,BLK,ELECT,"BYPASS"
39	2.0000	EA.	410352	NIPPLE, RIGID, 1"X9"	115	1.0000	EA.	420325	LABEL, BLK, ELEC, "FEMA PHONE JACK #1"
40	1.0000	EA.	410357		116	1.0000	EA.	420326	LABEL, BLK, ELEC, "PHONE JACK #2"
42	5.0000	FA.	430003	BOX WINCT A OCT X1 1/2 3/4&1/2KO	118	1.0000	FA	420327	LABEL, BLK, ELEC, PHONE JACK #3
43	21.0000	EA.	430005	BOX.JUNCT.4"X4".2–1/8D.1/2"–3/4KO	119	6.0000	EA.	430001	COVER.BLANK PLATE.4X2.HANDY (OR EQUAL)
44	6.0000	EA.	430029	BOX,JUNCT,4-11/16"X4-11/16"D-2 1/8"	120	1.0000	EA.	430006	COVER, SWITCH PLATE, 4X4, 1 SWITCH
45	1.0000	EA.	430030	BOX,JUNCT,2X4,WP,(3) 1/2"HOLES	121	2.0000	EA.	430007	COVER,RECPT PLATE,4X4,1 REC,IND
46	4.0000	EA.	430034	RECEPTACLE, DUPLEX, 125V, 20A, IVORY	122	11.0000	EA.	430012	COVER,BLANK PLATE,4X4
4/	5.0000	EA.	430054	BOX,JUNCT,2"X4",1 7/8" (OR EQUAL) BOX 6X6X4 SCREW COVER NEMA 3D A6D64	123	1.0000	EA.	430013	COVER, PLAST RING, 4X4, 1/4" RISE
49	1.0000	FA.	430148	BOX.10X8X6.SCREW_COVER.NEMA 3R,Adro4	124	6.0000	FA.	430025	COVER, BLANK PLATE, 4 11/16 COVER, RECPT PLATE, 4X4, 2R
50	1.0000	EA.	430208	DISCONNECT,SQD,60A,NONFUSED,DU322RB	126	1.0000	EA.	430033	RECEPTACLE, GFCI, 120V, 20A, IVORY
51	1.0000	EA.	430240	BOX,BACK,GEN RECPT 60A,MELTRIC	127	6.0000	EA.	430034	RECEPTACLE, DUPLEX, 125V, 20A, IVORY
52	1.0000	EA.	430367	COVER,BLANK PLATE,4X4 WP	128	2.0000	EA.	430052	HUB,3/4",SS,MYERS,SSTG-2
53	1.0000	EA.	430568	BOX,6X6X6,SCREW_COVER,NEMA6P	129	1.0000	EA.	430084	SWITCH,SPST,20A,120V,IVORY
55	1.0000	EA.	430/20		130	1.0000	EA.	4301/6	RECEPTIOECONTACTOR MALE MELTRIC
56	1.0000	EA.	431328	BOX,001001,WF,DEEF,(3)172 HOLES, COMPLETE WITH (2) THREADED HOLE PLUGS	132	1.0000	EA.	430181	GEN RECEPT, HANDLE.METAL.MFI TRIC
57	20.0000	EA.	440074	SURGE PROTECT. MODULE,CIRCA,4B3S-75	133	3.0000	EA.	430286	BOX,ENCLOSURE,16X16X6,HINGED,NEMA3
58	1.0000	EA.	440079	AUTO DIALER, DUAL IN, VIKING K-202-DVA	134	1.0000	EA.	430384	COVER, GFCI, 2 REC, HORZ, WTSG15A-C
59	5.0000	EA.	440098	SURGE PROTECT, MODULE, CIRCA, 3B1E	135	0.3500	EA.	430521	RAIL,DIN,AS,35MM X 7.5MM X 17.5IN
60	1.0000	EA.	460116	CONTROLLER, COMSTAT 3, MARVAR, S/04581	_				
61	1.0000		900154	MONITOR, FUEL, INCON, TS-550 (PROVIDED BY OTHERS)	-				
6.3	1.0000	EA. EA	390004	ALARM, F/C, UET, PHOTOELECTIC, FIKE	-				
64	1.0000	EA.	390008	ALARM,F/C,BATTERY ASSEMBLY	-				
65	2.0000	EA.	390033	ALARM,F/C,DET,BASE,FIKE]				
66	1.0000	EA.	390034	ALARM,F/C,MODULE OPTIONAL,FIKE,RM4					
67	1.0000		390035	ALARM,F/C,EXTERIOR WP,STROBE	-				
68	12.0000		400072	WIRE,#6/5,TYPE W MULTICONDUCTOR CAB	-				
09	4.0000	FA	400272	BREAKER.SOD.1P 15A.BOLT ON OOB115	-				
72	1.0000	EA.	400303	BREAKER, SQD, 3P 100A, BOLT ON, QOB3100	1				
73	1.0000	EA.	400315	BREAKER, SQD, 3P 30A, BOLT ON, QOB330	1			P RRG 10	0/31/12 UPDATED PARTS LIST
74	1.0000	EA.	400316	BREAKER,SQD,3P 35A,BOLT ON,QOB335				N JWR 6	/29/12 UPDATED PARTS LIST
75	1.0000	EA.	400359	BREAKER, SQD, 3P 40A, BOLT ON, QOB340	-			N RRG 6	13/12 UPDATED PARTS LIST
76	1.0000	EA.	400665	CUNTACT,RX_CARD,RLH,8C4-M2STR-01				KFAL BA	DATE DESCRIPTION

TION	
TION	February 27. 201
	JOHN T.
	No. 12078
	Els. y
	CENSKIN
	MINISSIONAL ENGININ
	THIS DRAWING IS THE CONFIDENTIAL
	SECRETS OF CELLXION, LLC. ANY
	INFORMATION CONTAINED HEREIN
	INDUSTRIES, INC. IS STRICTLY
	BEEN DISTRIBUTED WITH THE
	RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE
	EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
	a 50 53 a ≌
	axie di sicie di sicie di
	vo vo ()
	B B B B B B B B B B B B B B B B B B B
	CUSTOMER:
	KELLOGG BROWN & ROOT
	FEMA (PEP)
	PROJECT:
	CONCRETE SHELTER
	PARTS LIST
	FILENAME:
	KBR/SKBR02 SCALE: TOLERANCE:
	N.T.S. DRWN. BY: DATE:
	M. FOWLER 03/24/2010
	V. HASSELL 03/24/2010
	LING. DT: DAIL:
	APP. BY: DATE: A. DUMAS 03/24/2010
	SHEET NO. $O-1$
LJL 10/31/12	DRAWING NO.:
LJL 6/29/12 LJL 6/13/12	SKBR02 P
APP.BY DATE	

				PARTS LIS	T (CONT	INUED))							
	OTY	11/M	P/N	DESCRIPTION	T ITFM	ΤÓ	TY	П ГГ/М	P/N		DESCR	IPTION		
136	1.0000	EA.	430721	PANELBOARD.SQD.COVER.NC32S	213	1.0	000	EA.	520005	HVAC.2T.6	KW.3PHASE.MARVAIR.FCON.RE	HT.DEHUM		
137	1.0000	EA.	430792	PANELBOARD.SQD.100A.30P.3PH.NQ430L1	214	2.0	000	EA.	520343	HVAC.POF	TABLE FREIDRICH P12B(REMO)	/F FOR SHIPPING)		
138	1.0000	EA.	430923	ALARM BLOCK, CIRCA, 1880ECA1-25 (TELCO CONNECTION BOX)	215	1.0	000	EA.	420048	LABEL,DA	A, STANDARD SHELTER	· - · · · · · · · · · · · · · · · · · ·		
139	10.0000	EA.	430925	TERMINAL BLOCK,40A,35 SECTIONS	216	1.0	000	EA.	480001	PLATE,DA	A,ALUM,8"X12",GRAY			
140	2.0000	EA.	430994	TERMINAL BLOCK,END,BARRIER,9080GK6	217	3.5	6000	EA.	504201	DOOR,SW	EP WEATHERSTRIPPING,42"			
141	2.0000	EA.	431361	RECEPTACLE, SINGLE, 125V, 15A, STRAIGHT	218	1.0	000	EA.	504222	DOOR,WE/	THERSTRIPPING, 303-TF-367	0		
142	1.0000	EA.	440071	SURGE ARRESTOR,SQ-D,3PHASE,SDSA3650	219	1.0	000	EA.	146546-006	BRACKET,	HANGING,18 GA,GALV,3"X8"X2	" (PACKING LIST ITEM)		
143	1.0000	EA.	440114	UPS,SYSTEM,5130 SERIES,EATON	220	8.0	0000	FT.	400036	WIRE,#8	THHN, STRAND, GRN (PACKING	LIST ITEM)		(
144	1.0000	EA.	440115	UPS,STSTEM,STUDE SERIES,EATON	221	32.0	0000		400567	WIRE,#2	THHN, STRAND, BLK (PACKING	LIST ITEM)		
145	5.0000	EA.	470085	LIGHT FIXTURE,60W/250V,PORCELAIN	222	2.0	000	EA.	430134		CI,100A,4P,DOUBLE THROW,V	VK (PACKING LIST TIEM)		
140	5.0000	FA.	470217	LIGHT, STELL GOARD FOR INCANDESCENT 120V	223	1.0	000	FA	480000		FILE PLASTIC I R-SMOKE (PHOTOCELL (PACKING LIST		
148	1.0000	EA.	490000	ALARM.MAGNETIC DOOR CONTACT	225	1.0	000	EA.	480087-01	PACKING	KIT TYPICAL EVERY SHELTER	(PACKING LIST ITEM)		
149	1.0000	EA.	490104	DETECTOR, HUMIDITY, DG115EZIAQ, HONEYWELL	226	2.0	0000	EA.	480227	CHAIR.RU	VIA MID-BACK.BLACK.676710	(PACKING LIST ITEM)		
150	1.0000	EA.	504678	SWITCH,KEYED,SECURITY,SDC702U	227	8.0	000	EA.	168540	BOLT,CAR	RIAGE,GALV.3/8"X9"			
151	1.0000	EA.	540211	G-BAR KIT,SQUARE D,PK23GTAL					•	•	· ·			
152	1.0000	EA.	900114	INTERCONNECT CENTER, WALL, WIC-012							CUT LIST			7
153	2.0000	EA.	146011-007	PLATE,COVER,BLOCKOUT,22"X30",GALV.		ITEM		p/N		DESC	RIPTION	CUT	PCS	1
154	2.0000	EA.	146011-008	PLATE,COVER,BLOCKOUT,22"X30",GALV.		20		1 / 11		Z /A" SEALTIT		19"	1 1	-
155	1.0000	EA.	146556-003	GROUND STRIP,SS,1"X4" 18 GA		30		10112		<u>3/4 ,SEALTITE</u> 1/2" SEALTITE	-	18"	3	-
150	8.0000	EA.	168031	WASHER, 3/8" FLAT, STAINLESS STEEL	_	68		00072	WIRE #6/5 TYP	F W MULTICC	- NDUCTOR CAB	144"	1	-
157	8.0000	EA. FA	168118	NUI, 3/8 - UNU, HEX, STAINLESS STEEL	_	77	4	00846	WIRE.#22.4 PA	IR.SOLID.NO	SHLD.8757	120"	1	-
159	82 0000	FA	168215	DULI, CARRIAGE, GALV. J/O XO	_	78	4	00893	CORD, POWERSL	JPPLY.12/3.P	IGTAIL.8FT	48"	1	1
160	82.0000	FA.	168216	WASHER #14 FLANCE SS	_	81	4	10112	CONDUIT, LFMC,	1/2",SEALTITE		72"	1	1
161	8.0000	EA.	168280	NUT 3/8" ACORN STAINI ESS_STEFI		166	4	00073	WIRE,#4 THHN,	STRAND, GRN		54"	1	1
162	12.0000	EA.	168536	SCREW.WOOD.#8X1/2IN.PH.ROUND.SS	_	181	5	510000	CABLE LADDER	,12"X9'8 1/2	?",YELLOW ZI	72"	1	
163	16.0000	EA.	168553	SCREW,WOOD,#10X3/4IN,ST.ROUND,SS		196	5	540009	GROUND STRAF	P FLAT COPP	ER 4"WX100'L	108"	2	
164	2.0000	EA.	350054	PLATE, MOUNT, HVAC, EXT, 3/4"X22"X29"		197	5	540009	GROUND STRAF	P FLAT COPP	ER 4"WX100'L	360"	1	_
165	2.0000	EA.	350055	PLATE, MOUNT, HVAC, INT, 3/4"X22"X29"		198	-	540009	GROUND STRAF	P FLAT COPP	ER 4"WX100'L	516"	1	4
166	4.5000	FT.	400073	WIRE,#4 THHN,STRAND,GRN		205		504400	DOOR,DRIP CA	P,NGF16A-48		46"	1	4
167	12.0000	EA.	400371	LUG,2H,#6,BLU,1/4"BOLT,3/4"C/C,LBFW		217		004201	DOOR,SWEEP W	VEATHERSTRIP	PING,42"	42"		4
168	1.0000	EA.	400377	LUG,2H,#4,GRY,1/4"BOLT,3/4"C/C,LBFW		220		00030	WIRE,#8 THHN,	STRAND,GRN	(PACKING LIST ITEM)	90		-
169	7.0000	EA.	400390	LUG,2H,#2,BRN,1/4"BOLT,3/4"C/C,LBFW				100307		STRAND, BLK	(PACKING LIST TIEM)	504		1
170	4.0000	EA.	410396	BUSHING,INSULATING,CEILING BRACKET	_									
172	2.0000	EA.	410397	LAREL RUK "INTAKE ONLY LWR ORENING"	_					OPTIC	NAL COMPONE	NTS		
173	1.0000		420445	LADEL, BLK "EYHALIST LIDDED ODENING"	_									
174	1.0000	EA.	420447	LABEL BLK "INTAKE ONLY CAP VACANT"			OPT	. TAG						
175	1.0000	EA.	420448	LABEL, BLK, "EXHAUST ONLY, CAP VACANT	-		l no.	NO.		PART NU	DESCR	APTION		PUS
176	1.0000	EA.	470423	LOUVER.8"X9 1/2".HOFFMAN.AVK86					4 54	500000		180		
177	4.0000	EA.	470468	SCREEN MESH,SS,1/8"WIRE,6"DIA					1 EA.	500000	DOOR WEATHERSTRIP SPONC		40	- 1
178	2.0000	EA.	470646	VENT,INTAKE,6" FIXED W/BUG SCREEN			Δ1	2	3.5 FI.	504210	DOOR WEATHERSTRIPPING 30	3-TE-3670	42	
179	2.0000	EA.	470647	VENT,EXHAUST,6" GRAVITY OPERATED			^'	4	1 FA.	504503	LOCKSET.DEAD BOLT.CYLIND	RICAL.BEST		
180	1.0000	EA.	480005	CELLXION BRASS GREEN SERIAL NO.PLAT				5	1 EA.	504555	DOOR.STRIKER PLATE.STAND	ARD		
181	1.0000	EA.	510000	CABLE LADDER,12"X9'8 1/2",YELLOW ZI				1	1 EA.	500083	DOOR,3670,CURRIES,RH,160	A,REINFO		
182	1.0000	EA.	510006	CABLE LADDER, 12", CLOSING BAR, Y/Z			A2	2	3.5 FT.	504432	DOOR,THRESHOLD,42",#813	5	42	1
184	2.0000	EA.	510074	CABLE LADDER,FLOUR BRKI,3.5 X1.5	_				1 EA.	504220	DOOR,WEATHERSTRIP,P&S,S8	38BK-204		
185	4 0000		510155	CADIE LADDER TRAY HANCER 17"				" 4	1 EA.	504626	LOCKSET, LATCH/DEADBOLT, L	H,RUSSWIN		
186	1.0000	EA.	521001	HVAC GRILL SUPPLY 8"X20"	-		B1	1		-	NOT REQUIRED			
187	1.0000	EA.	521101	HVAC.GRILL.RETURN.12"X20"	_	В	B2	1	1 EA.	226116	ICE SHIELD SHELTER CVR,2	21'6"X11'10"		
188	1.0000	EA.	522001-00014	HVAC,SLEEVE,8"X20"X6"		L								
189	1.0000	EA.	522001-00015	HVAC,SLEEVE,11 3/4"X20"X6"		NOTE:								
190	1.0000	EA.	530031	WAVEGUIDE ENTRY,1 PORT,4"		1. A2	OPTIO	NS: FLO	ORIDA ONLY					
191	1.0000	EA.	530075	COAX ADAPTER PLATE,15"X17",SAT										
192	4.0000	EA.	530077	ADAPTER,AMPHENOL,CO82-66-RFX	_						FR			
193	4.0000	EA.	530078	ADAPTER, AMPHENOL, CO83-1F							_1X			
194	4.0000	EA.	530079	ADAPTER,L-COM,WPRJ-FICAISE	_	FROM	EACH	OFIION	LISTED.					
195	4.0000	EA.	530080	ADAPIER,AMPHENUL,USSI-40084-1	_									
100	1 0000	F1.	P540299_01	GROUND STRAP FLAT CUPPER 4 WXTOUL		NOTE	THAT S	SOME C	OPTION NUM	BERS AR	E A KIT			
200	3.0000	FA.	504000	DOOR HINGES STAINLESS STEEL 32D	_	W/ ML	JLTIPL	E PART	S.					
201	1.0000	EA.	504100	DOOR.CLOSER.SARGENT 1104.ALUM		'								
202	1.0000	EA.	504102	DOOR,BUMPER,SS RUBBER STOP,BLACK	-						ING BY THE			
203	1.0000	EA.	504113	DOOR,HOLD OPEN,T-LATCH.6" SS										
204	1.0000	EA.	504300	DOOR,LOCKGUARD,10" 32D			I LEII				<u>^</u> ∧_],			
205	1.0000	EA.	504400	DOOR,DRIP CAP,NGF16A-48"		OK BA	THF	OFTION	TAG NO.	XX-X				
206	1.0000	EA.	504409	DOOR,THRESHOLD 42"X4.75",.090 ALUM										
207	1.0000	EA.	504437	DOOR,THRESHOLD 42"X6.25",.090 ALUM										
208	1.0000	EA.	504501	CORE,LOCKSET,BEST,CONSTRUCT,GREEN	_				—					u 46/54/5
209	2.0000	EA.	504504	DUUK, PULL HANDLE KASUN, CAST, 382	_						1/12 UPDATED PARTS LIST	0 D/N 400907	L	JL 10/31/1
210	1.0000	EA.	540129	UKUUND BAR, COPPER, 1/8" X 1" X 4"					H		12 ADDED GUI LENGIH	IU F/N 400083		
	1.0000	FA	146514-005	DRUUNU SIKAP ASST, 1/2 BKAIDED, 10							TE	DESCRIPTION		
		1	1 1001-1-000		1				1.1		·		144	

LJL	10/31/12
LJL	6/29/12
LJL	6/13/12
APP.BY	DATE

EXTERIOR ELEVATION "D"

L	RRG	04/21/11	ADDED MISSING PROFILES	LJL	04/21/11
Н	MST	01/21/11	PER CUSTOMER MARKUPS	WAR	01/21/11
G	MST	12/21/10	DASHED EXTERIOR LIGHTS TO MATCH VIEWS	WAR	12/21/10
REV	BY	DATE	DESCRIPTION	APP.BY	DATE

THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER EXTERIOR, ELEVATION D" FILENAME: KBR/SKBR02 SCALE: TOLERANCE: 1/2"=1'-0" DRWN. BY: DATE: M. FOWLER 03/24/2010 CHK. BY: DATE: V. HASSELL 03/24/2010 ENG. BY: DATE: APP. BY: DATE: 03/24/2010 A. DUMAS SHEET NO. 1–3 DRAWING NO .: REV.: SKBR02 Ρ

1. FLOORING PROTECTIVE COVERING TO BE IN PLACE DURING INSTALL ACTIVITIES. TO BE REMOVED BY KBR FIELD PERSONEL

NOTES:

Ρ	RRG	10/31/12	UPDATED HVAC BLOCKOUT
N	RRG	6/13/12	CORRECTED OVERLAYS & ADDED UPS
М	JJ	11/09/11	CHANGE VIEW OF INCON BOXES
L	RRG	04/21/11	ADDED NOTES TO DIMENSIONS
К	JJ	4/7/11	PER CUSTOMER MARKUPS
REV	BY	DATE	DESCRIPTION

 20"	33"	49"	41"	41"
				
	14	5 146 147 42 TYPICAL (X5)		
S1-	CKT S1-	CKT S1-	CKT S1-	
		rs — rs — rs — (s -	FS FS FS FS FS FS	
	52 (65) 			
36"				
-	/ _0 [04] 8'_9" [105"] _			

LEGEND:

1. IF = INTERIOR FINISH START PANEL

REFLECTED CEILING VIEW ELECTRICAL

Ρ	RRG	10/31/12	UPDATED HVAC BLOCKOUT		
N	RRG	6/13/12	ADDED UPS		
L	RRG	04/21/11	ADDED NOTE		
H	MST	01/21/11	PER CUSTOMER MARKUPS		
G	MST	12/21/10	PER CUSTOMER MARKUPS		
F	MST	12/17/10	PER CUSTOMER MARKUPS		
REV	BY	DATE	DESCRIPTION		

	CENTRAL STATES OF CALL OF THE
	5031 Hazel Jones Road 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2919 www.cellxion.com
	CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0'' X 18'-0'' CONCRETE SHELTER REFLECTED CEILING VIEW - ELECTRICAL FILENAME: KBR/SKBR02 SCALE: 1/2''=1'-0'' DRWN. BY: DATE: M. FOWLER 03/24/2010 ENG. BY: DATE: APP. BY: A. DUMAS 03/24/2010
LJL 6/13/12 LJL 6/13/12 LJL 04/21/11 WAR 01/21/11 WAR 12/21/10 WAR 12/17/10 APP.BY DATE	SHEET NO. 3-0 DRAWING NO.: REV.: SKBR02 P

53¾"

4

7'-6 1/2" (90 1/2") A.F.F.

February 27. No. 12078 IS THE COM THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier C voice: fax: CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER REFLECTED CEILING VIEW - MECHANICAL FILENAME: KBR/SKBR02 SCALE: TOLERANCE: <u>1/2"=1</u>'-0" DRWN. BY: DATE: M. FOWLER 03/24/2010 CHK. BY: DATE: V. HASSELL 03/24/2010 ENG. BY: DATE: APP. BY: DATE: A. DUMAS 03/24/2010 SHEET NO. 3-1 DRAWING NO .: REV.: SKBR02 Ρ

LJL	10/31/12
LJL	6/13/12
LJL	04/21/11
WAR	01/21/11
WAR	12/21/10
WAR	12/17/10
APP.BY	DATE

DESCRIPTION

REV BY DATE

HINGE SIDE	THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
<u>L</u> NOT SHOWN IN ATION VIEW FOR CLARITY.	5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2900 fax: (318) 213–2919 www.cellxion.com
	CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAMPROJECT: $10'-0" X 18'-0"$ CONCRETE SHELTER INTERIOR ELEVATION AFILENAME: KBR/SKBR02SCALE: $1/2"=1'-0"$ DATE: $M.$ FOWLER03/24/2010CHK. BY: $M.$ FOWLERDATE: $M.$ FOWLER03/24/2010CHK. BY: $DATE:V. HASSELL03/24/2010ENG. BY:DATE:M. FOWLER03/24/2010SHEET NO.$
LJL 6/29/12 /REMOVED LJL 6/13/12 CLES LJL 04/21/11 J BOX ITEM 10.3 APP.BY DATE DATE	4-0 DRAWING NO.: REV.: SKBR02 P

		SUB-PARTS LIST	
ITEM	P/N	DESCRIPTION	CUT
68	400072	WIRE,#6/5,TYPE W MULTICONDUCTOR CAB	144"
166	400073	WIRE,#4 THHN,STRAND,GRN	54"
198	540009	GROUND STRAP FLAT COPPER 4"WX100'L	516"

REV BY DATE

DESCRIPTION

OTHERS & INSTALLED BY CELLXION

THIN T. NG February 27. 11111111111 SSIONAL ENGINIT THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER, INTERIOR, ELEVATION "C ("A" SIDE) FILENAME: KBR/SKBR02 SCALE: TOLERANCE: <u>1/2"=1'-0</u>" DRWN. BY: DATE: M. FOWLER 03/24/2010 CHK. BY: DATE: V. HASSELL 03/24/2010 ENG. BY: DATE: APP. BY: DATE: A. DUMAS 03/24/2010 10/31/1 SHEET NO. LJL 4 - 1ALJL 6/29/12 LJL 6/13/12 DRAWING NO .: REV .: LJL 11/09/11 LJL 04/21/11 SKBR02 Ρ APP.BY DATE

FUEL MONITOR CKT 24 (4) (4) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
WER CORD (410519) TO IRE TO #12 THHN WIRE R.	5031 Hazel Joi Sold Warel Joi Ferrity, Louis voice: (318) 2 fax: (318) 2 fax: (318) 2
	FLIMA (FEF)PROJECT: $10'-0''$ $18'-0''$ $CONCRETE$ $SHELTER$ INTERIOR $ELEVATION$ "C""SIDE)FILENAME: $KBR/SKBR02$ SCALE:TOLERANCE: $1/2''=1'-0''$ DATE:DRWN. BY:DATE:M. FOWLER $03/24/2010$ CHK. BY:DATE:V. HASSELL $03/24/2010$ ENC. BY:DATE:
ORD & DETAIL LJL 6/13/12 ORD & DETAIL LJL 6/13/12 VIRE & CONDUIT SIZE LJL 11/09/11 LJL 04/21/11 DN APP.BY DATE	ENG. BY: DATE: APP. BY: DATE: A. DUMAS 03/24/2010 SHEET NO. 4-1B DRAWING NO.: REV.: SKBR02 P

1.	LUG 3" OF WIRE TO STRAP.						
2		PR	RG	10/31/12	ADDED SHEET,	CHANGED HVAC RECEPTAC	LE
۷.	LABEL CIRCOTT NO. ON ALL OUTLETS.	REV E	BY	DATE		DESCRIPTION	

NOTE:

ebeuary 27.420 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER INTERIOR ELEVATION "B" POST-HEMP FILENAME: KBR/SKBR02 SCALE: TOLERANCE: 1/2"=1'-0" DRWN. BY: DATE: M. FOWLER 03/24/2010 CHK. BY: DATE: V. HASSELL 03/24/2010 ENG. BY: DATE: APP. BY: DATE: 03/24/2010 A. DUMAS SHEET NO. 4–2A DRAWING NO .: REV.: SKBR02 Ρ LJL 10/31/12 APP.BY DATE

Ν	JWR	6/29/12	CORRECTED DETAIL "B"
Ν	RRG	6/13/12	CORRECTED NOTES AND DETAILS
М	JJ	11/09/11	SHEET WAS ADDED
REV	BY	DATE	DESCRIPTION

Ρ	RRG	10/31/12	REMOVED WIRE FROM WINDOW UNIT C BREAKERS & POSITION, ADDED NOTE
N	RRG	6/13/12	ADDED UPS/CHANGED BREAKER/ADDE GENERATOR RECEPTACLE WIRING NOW
М	LJL	1/3/12	ADDED NOTE 5
L	RRG	04/21/11	ADDED BUBBLES & NOTES
REV	BY	DATE	DESCRIPTION

 K
 JJ
 4/7/11
 PER
 CUSTOMER
 MARKUPS

 H
 MST
 01/21/11
 PER
 CUSTOMER
 MARKUPS

 F
 MST
 12/16/10
 REVISED
 PER
 CUSTOMER
 MARKUPS

 C
 DJC
 04/30/10
 UPDATED
 AUTODIALER
 SCHEMATIC

 REV
 BY
 DATE
 DESCRIPTION

COFURTY 27. IS THE CON THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 :: (318) 213-2919 5031 Hazel v Bossier City, Lo voice: (318) fax: CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER AUTODIALER SCHEMATIC FILENAME: KBR/SKBR02 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: 03/24/2010 M. FOWLER CHK. BY: DATE: V. HASSELL 03/24/2010 ENG. BY: DATE: APP. BY: DATE: A. DUMAS 03/24/2010 SHEET NO. 5-3 DRAWING NO .: REV .: Ρ SKBR02

LJL	6/13/12
LJL	1/3/12
LJL	4/7/11
WAR	01/21/11
WAR	12/16/10
GAB	04/30/10
APP.BY	DATE
	LJL LJL WAR WAR GAB APP.BY

February 27, 2013 JOHN T. IRVING No. 12078 CENSIONAL ENGINE SSIONAL ENGINIT THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'–0" X 18'–0" CONCRETE SHELTER HVAC/FIKE SYSTEM SCHEMATIC DETAIL FILENAME: KBR/SKBR02 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: 03/24/2010 M. FOWLER CHK. BY: DATE: V. HASSELL ENG. BY: DATE: APP. BY: DATE: A. DUMAS 03/24/2010 SHEET NO. 5-5 LJL 10/31/12 LJL 1/3/12 DRAWING NO .: REV .: SKBR02 Ρ LJL 4/21/11 APP.BY DATE

	PANEL NAME:						P/	ANEL "	C"						
				V	OLTAGE:	208	1	120				MAIN BE	REAKER:	Y	
	PRE HEMP LOADING				PHASE:	3						LUC	SS ONLY:		
	FED FROM PANEL "A"				WIRE:	4						SL	JRFACE:	Y	
				BU	SAMPS:	100		100	:MAI	N CB A	MPS		FLUSH:		
				SUPPL	YAMPS:	50						GROU	ND BUS:	Y	
		Μ	IN. SHO	RTCIRCUIT	RATING:	10000				15	SOLATE	D GROU	ND BUS:		
ŝ	INCLUDE SPARE CAP Y/N:	N										NEUTF	RAL BUS:	Y	
Ë															
N	SERVES	LTG	RCPT	PWR	MOT	CB*	CKT	PH	CKT	CB*	LTG	RCPT	PWR	MOT	
	MAIN BREAKER					100	1	A	2	40					TRANSMITTE
	MAIN BREAKER					1	3	В	4	1					TRANSMITTE
	MAIN BREAKER	*****				1	5	C	6	l l					TRANSMITTE
	RECEPT (DESK)		720			20	7	A	8	20					RACK POWE
	RECEPT (W/AUTO DIALER)		600			20	9	В	10	20		180			GFCI
	TRANSMITTER RM LIGHTING	300				15	11	C	12	35			3360		HVAC
	SPARE					20	13	A	14	1			3360		HVAC
	SPARE					20	15	B	16	r r			3360		HVAC
	TVSS	*****		60	•••••••••••••••••••••••••••••••••••••••	30	17	C C	18	15			300		FIKE PANEL
	TVSS			60		1	19	A	20	20					SPARE
	TVSS			60		ſ	21	B	22	20					RACK POWE
2						15	23	C	24	20			300		FUEL SYSTE
2	PORTABLE AC					15	25	A	26		*****				
							27	В	28						
							29	С	30						
	CO	NNECT	EDVA	A:	4,14	10	B:	4,20	00	C:	4,	320			
													AMPS	KVA	
	CONNECTE	D KVA	:				D.F.	DEMA	ND K	A:			50.0	18.0	DESIGN (BAS
	LIGHTING LOAD:	0.3					1.25	0.4					35.1	12.7	CONNECTED
	RECEPT. LOAD - FIRST 10 KVA:	1.5	i.				1.00	1.5					35.3	12.7	DEMAND
	RECEPT. LOAD - REMAINDER:	0.0)i				0.50	0.0					14.7	5.3	SPARE
	POWER LOAD:	10.9	1				1.00	10.9			AVG				
	MOTOR LOAD EXCEPT LARGEST:	0.0)				1.00	0.0			KVA		AMPS	KVA	CONNECTED
	LARGEST MOTOR:	0.0)				1.25	0.0			4.2		35	4.1	PHASE A
	20% SPARE CAPACITY:	0.0).				1.00	0.0					35	4.2	PHASE B
	TOTAL CONNECTED LOAD:	12.7	4	TC	TAL DEN	IAND L	OAD:	12.7					36	4.3	PHASE C
	INSTRUCTIONS:											PHASE			
	* - ALL BRANCH CIRCUIT BREAKE	RS ARE	E 1P20 L	UNLESS OT	HERWISE	E SHOV	VN					LOAD			PHASE BALA
	[- DENOTES ADDITIONAL POLES	of Mul	TI-POL	E CIRCUIT E	BREAKER	S						69%		98%	PHASE A
	NOTES:											70%		100%	PHASE B
1	Transmitter only operational when fed	from ge	nerator p	oower.								72%		102%	PHASE C
2	These circuits will not be connected in	the "PR	E-HEM	P" stage and	are show	n for inf	ormat	ion purp	oses.						
2	The circuit breaker shall have red iden	tificatio	n and lab	peled as "FIF	REALARN		UIT"								

Р	RRG	10/31/12	UPDATED	SCHEMATIC,	ADDED	NOTE
Ν	JWR	6/29/12	UPDATED	SCHEMATIC		
Ν	RRG	6/13/12	UPDATED	SCHEMATIC		
REV	BY	DATE			DESCR	IPTIO

	PANEL NAME:						P/	ANEL "O	C"						
				V	OLTAGE:	208	1	120				MAIN BI	REAKER:	Y	
	POST HEMP LOADING				PHASE:	3						LUC	GS ONLY:		
	FED FROM PANEL "B"				WIRE:	4						SI	JRFACE:	Y	
	VIA GENERATOR			BU	S AMPS:	100		100	:MAI	NCBA	AMPS		FLUSH:		
				SUPPL	YAMPS:	90	-					GROU	IND BUS:	Y	
		M	IN SHO	RTCIRCUI	RATING	10000	-			15		D GROU	IND BUS		
S S	INCLUDE SPARE CAP - Y/N	N					-					NEUTE	RAL BUS	Y	
Ш			-									HEOH	VIL DOO.		
9	SERVES	LTG	RCPT	PWR	MOT	CB *	СКТ	PH	СКТ	CB*	LTG	RCPT	PWR	MOT	S
_		210				100	1	Δ	2	10	1 10		38/2	mor	
		*****				100	2	R	<u> </u>	40 [38/2	****	TRANSMITTER
						L	5	ь С	4				2042		TDANGMITTER
			720		•••••••••••••••••••••••••••••••••••••••	20	7	<u>ر</u>	0	20		1500	3042		
			120			20	6	A	0	20		1000			
		200				20	9	В	10	20		180			GFUI
		300	<u>)</u>			15	11		12	35					HVAC
	SPARE					20	13	A	14	ĻĻ					HVAC
-	SPARE					20	15	В	16	L					HVAC
2	IVSS					30	17	C	18	15					FIKE PANEL
2	TVSS						19	Α	20	20					SPARE
2	TVSS]	21	B	22	20		1500			RACK POWER
				1440		15	23	C	24	20					FUEL SYSTEM
	PORTABLE AC			1440		15	25	Α	26						
				<u> </u>		A	27	В	28						
							29	C	30						
	CO	NNECT	ED VA	A:	7,50)2	B:	5,52	22	C:	5,	582			
									*****				AMPS	KVA	
	CONNECTE	D KVA	:				D.F.	DEMAN	ND K	A:			90.0	32.4	DESIGN (BAS
	LIGHTING LOAD:	0.3	5				1.25	0.4					51.6	18.6	CONNECTED
	RECEPT. LOAD - FIRST 10 KVA:	3.9)				1.00	3.9					51.9	18.7	DEMAND
	RECEPT, LOAD - REMAINDER:	0.0)				0.50	0.0					38.1	13.7	SPARE
	POWER LOAD:	14.4					1.00	14.4			AVG				
	MOTOR LOAD EXCEPT LARGEST	0.0					1.00	0.0			KVA		AMPS	KVA	CONNECTED
	LARGEST MOTOR	0.0)				1.25	0.0			62		63	7.5	PHASE A
	20% SPARE CAPACITY	0.0)				1.00	0.0			0.2		46	5.5	PHASE B
		18.6		т				18.7	A				47	5.6	PHASE C
	INSTRUCTIONS:	10.0	· 7P3				UND.	10.7	<u>7P</u>			PHASE		0.0	THROLO
			10201			SHON	VNI								
						2 3 H U V	VIN					EOAD 60%		1010/	
	[-DENOTES ADDITIONAL FOLES					3						09% 510/		12170	PHASEA
4												51%		89%	PHASEB
1	Device a complete strange of the second stra	from ge	nerator p	ower.)	- 4	52%		90%	PHASEC
2	Devices are considered non-operation	aldue	OHEME	event. OCH	S must b	e opene	a bet	ore ener	gizing	pane	atterev	ent or on	generator p	bower.	
3	I ne circuit breaker shall have red iden	uficatio	n and lab	beled as "FIF			JII".	A							

Ρ	RRG	10/31/12	UPDATED SCHEMATIC, ADDED NOT
Ν	RRG	6/13/12	UPDATED SCHEMATIC
REV	BY	DATE	DESCRIPTIO

NOTES:

1. ELBOW NOT SHOWN IN PLAN VIEW FOR CLARITY

NOTES:

1. ELBOW NOT SHOWN IN PLAN VIEW FOR CLARITY

P RRG	10/31/12	ADDED SHEET	
REV BY	DATE		DESCRIPTION

B SIDE 172 REMOVE & DISCARD FACTORY METAL SLEEVE	THIS DRAWING WAYTHE CONFIDENTIAL PROPERTY AND I ON THE CONFIDENTIAL PROPERTY AND I ON THE CONFIDENTIAL PROPERTY AND I ON THAT ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
5%" ROUND %" SQ Alvanized screen Sut to fit)	5031 Hazel Jones Road 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2919 fax: (318) 213–2919 www.cellxion.com
—Q	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
LJL 10/31/12 APP.BY DATE	SKBR02 P

	THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE
	5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2900 fax: (318) 213–2919 www.cellxion.com
, , AREA RATIO	CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER INT. PANELING INSTALL R/U CALCULATIONS FILENAME: KBR/SKBR02
OR E	Scale: TOLERANCE: N.T.S. DRWN. BY: DRWN. BY: DATE: M. FOWLER $03/24/2010$ CHK. BY: DATE: V. HASSELL $03/24/2010$ ENG. BY: DATE: APP. BY: DATE: A. DUMAS $03/24/2010$ SHEET NO. $7-1$
	DRAWING NO.: REV.: SKBRO2 P

NOTES:

- 1. ALL REQUIRED TIE DOWN PLATES, SHIMS, BOLTS AND ANCHORS SHALL BE PLACED INSIDE SHELTER PRIOR TO SHIPMENT FROM MANUFACTURER
- 2. USE SHIMS AS REQUIRED TO ASSURE SHELTER IS BEARING AT PERIMETER. SEAL PERIMETER W/ CAULK OR GROUT AS DESIRED.

NOTES:	LEGEND
 CONDUCTOR COLORS ARE AS FOLLOWING: 120/240 SINGLE PHASE 	= CONDUIT (THICKNESS VARIES WITH SIZ
PHASE "A" = BLACK PHASE "B" = RED	GND GND GROUND WIRE
NEUTRAL = WHITE <u>120/208 THREE PHASE</u> RHASE "A" - RLACK	(GROUND TERMINAL ON TOP)
PHASE "B" = RED PHASE "C" = BLUE	\bullet = 4 X 4 BOX WITH PENETRATION
NEUTRAL = WHITE 277/480 THREE PHASE DHAGE "A"	\Box = 4 X 4 BOX BLANK
PHASE A = YELLOW PHASE "B" = BROWN PHASE "C" = ORANGE	= 4 X 4 BOX WITH 2 SWITCHES
NEUTRAL = GRAY	$I = 4 \times 4 \text{ BOX WITH SINGLE SWITCH}$
ALL ELECTRICAL GROUND = GREEN ALL ISOLATED GROUND = GREEN/YELLOW ST ALL SWITCHED = PURPLE	RIPE \bigcirc = 4" OCTAGON BOX WITH SMOKE DETEC
2. ALL CONDUCTORS (UNLESS OTHERWISE NOTE	D) TO BE STRANDED THHN OR $$ = 4" OCTAGON BOX WITH HEAT DETECTOR
THWN COPPER WIRE. 3. ALL CONDUIT TO BE 1/2" RIGID UNLESS OTH 4. ALL LOW VOLTAGE CONDUIT TO BE 1/2" EMI	IERWISE NOTED.
5. ALL CONDUCTOR AMPACITIES ARE BASED ON ELECTRICAL CODE.	TABLE 310.15(B)(16) NATIONAL $\Im = 4 \times 4$ BOX WITH TIMER SWITCH
 CONDUIT FILL BASED ON CHAPTER 9 – NATION PLACEMENT OF ELECTRICAL AND CONDUIT CO TO ALIGN WITH COMPONENTS MANUEACTURE'S 	DNAL ELECTRICAL CODE. MPONENTS OR BOXES MAY VARY E PRE-MADE BOX KNOCKOUTS
THIS MAY INCLUDE ALIGNMENT WITH SHELTER INTERFERENCE WITH OTHER COMPONENTS.	PENETRATIONS AND/OR $=$ SYSTEM GROUND FOR AC CIRCUITS
8. CONDUIT, ELECTRICAL AND MECHANICAL DIMEN ±1/4".	NSION TOLERANCE SHALL BE
10. ALL CIRCUITS ON 25 AMP THROUGH 60 AMP GROUND CONDUCTOR.	BREAKER MUST USE #10 $()$ = VENT FAN
11. CONDUCTORS SMALLER THAN 4 AWG MUST H CONDUCTORS 4 AWG AND LARGER MAY BE R BLACK INSULATED CONDUCTOR SHALL BE THE RE-IDENTIFIED. IF CONDUCTORS ARE RE-IDEN APPLIED IN THREE INCH (3") WRAPS, MINIMU RE-IDENTIFICATION SHALL BE VISIBLE BY OPE GRAY AND GREEN CONDUCTORS SHALL NOT I	AVE CORRECT COLOR INSULATION. E-IDENTIFIED BY COLORED TAPE. E ONLY COLOR TO BE NTIFIED, IDENTIFICATION MUST BE M EVERY THREE FEET (3'-0"). ENING ANY ENCLOSURE. WHITE, BE RE-IDENTIFIED.
12. ALL METALLIC ELECTRICAL BOXES (SWITCH BO JUNCTION BOXES, ETC) SHALL BE CONNECTE OF THE ACG DISTRIBUTION PANEL WITH A #1 CONDUCTOR WHICH SHALL BE RUN INTERNAL	DXES, DUPLEX BOXES, LIGHTS, D TO THE PROTECTED GROUND 2 GREEN INSULATED STRANDED TO THE CONDUIT.

" OCTAGON BOX WITH SMOKE DETECTOR " OCTAGON BOX WITH HEAT DETECTOR " OCTAGON BOX WITH HEAT DETECTOR \times X 4 BOX WITH TWIST-LOCK RECEPTACLE \times X 4 BOX WITH TIMER SWITCH PHOTOCELL SWITCH SYSTEM GROUND FOR AC CIRCUITS SOLATED GROUND FOR AC CIRCUITS YENT FAN IO' -O' X I B' -O'' CONCETE SHELTER GENERAL ELECTRICAL NETS: DATE: DRN: DATE: N FOMLER OJ/24/2010 ENG. BY: DATE: DATE: DATE: DATE: DATE: DATE: DATE: CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: DATE: DATE: DATE: DATE: CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: DATE: DATE: DATE: DATE: CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: DATE: DATE: CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: CONCETER CONCETE SHELTER OJ/24/2010 ENG. BY: DATE: CONCETER CON	CONDUIT (THICKNESS VARIES WITH SIZE OF CONDUIT) ROUND WIRE X 4 BOX WITH DUPLEX RECEPTACLE DUND TERMINAL ON TOP) X 4 BOX WITH PENETRATION X 4 BOX BLANK X 4 BOX WITH 2 SWITCHES X 4 BOX WITH SINGLE SWITCH	THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
SYSTEM GROUND FOR AC CIRCUITS SOLATED GROUND FOR AC CIRCUITS Z'ENT FAN VENT FAN	" OCTAGON BOX WITH SMOKE DETECTOR " OCTAGON BOX WITH HEAT DETECTOR - X 4 BOX WITH TWIST-LOCK RECEPTACLE - X 4 BOX WITH TIMER SWITCH PHOTOCELL SWITCH	5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2919 www.cellxion.com
APP. BY: DATE: A. DUMAS 03/24/2010 SHEET NO. 7-5 DRAWING NO.: REV.: SKBR02 P	IN RECLATIZING CHANGES FEE 12/08/02-002-2	CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAMPROJECT: 10'-0" X 18'-0" CONCRETE SHELTER GENERAL ELECTRICAL NOTES & LEGENDFILENAME: KBR/SKBR02SCALE: N.T.S.DRWN. BY: DATE: M. FOWLER O3/24/2010CHK. BY: DATE: M. FOWLER O3/24/2010CHK. BY: DATE: M. FOWLER O3/24/2010CHK. BY: DATE: DATE: A DUMAS O3/24/2010APP. BY: DATE: A DUMAS O3/24/2010DATE: DATE: A DUMAS O3/24/2010SHEET NO. 7-5DRAWING NO.: SKBR02

LJL	6/1/09
VGH	8/15/08
VGH	06/02/08
VGH	7/27/04
APP.BY	DATE

GENERAL NOTES

1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH
	THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC LRFD(1999) AND
	AWS D1.1 SPECIFICATIONS.
2.	ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
	WIRE SIZE 0.35
	WIRE FEED SPEED (in/min) 5
	VOLTAGE, DC (+) 18.5
	AMPERAGE, DC 140
	TRAVEL SPEED (in/min) 10–12
	SHIELDING GAS 75/25
3.	STRUCTURAL STEEL SPECIFICATIONS:
	STRUCTURAL SHAPES ASTM A36M—97a
	HIGH STRENGTH BOLTS, ASTM A 307–97
	OTHER BOLTS, SAE J429 GRADE 5
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I.
	318-99 BUILDING CODES 311 & 211, AND ASIM STANDARDS C-1/2-97,
_	C-31/31M96, $C-39-96$, AND PROVISIONS OF $C-94-98$.
э.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM
6	ALL REINFORCING STEEL RARS SHALL RE DOMESTIC NEW RILLET STEEL
0.	CONFORMING TO ASTM A-615m-96a SPECIFICATIONS
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF
	3/4".
8.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9.	ALL REBAR WIRE TIES TO BE 16 GAUGE.
10.	FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND
	FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28
	DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF DESIRED IN
4 4	URDER TU MAKE BATCHING OPERATION MURE EFFICIENT.
11.	MAXIMUM JUINI SPACE BEIWEEN PANELS SHALL BE J/O MEASURED BI REFUSAL
	OF ABILITY TO PASS A 3/8 ROD ALL THE WAY THROUGH THE JUINT AT ANT
10	VELD DIATE CONNECTIONS SHALL DE SDACED AT 1' 9" MAYIMUM ON THE ELOOD
12.	AND POOF DANELS THIS DIMENSION SHALL BE MAINTAINED EVOEDT IN CASES
	WHERE OPENINGS PROHIBIT
1.3	TOLERANCES SHALL BE AS FOLLOWS
	PANEL THICKNESS: ±1/8"
	PANEL SIZE: $\pm 1/16$ "
	PANEL SQUARENESS: $\pm 1/8$ " AGREEMENT ON DIAGONALS
	LOCATION OF BLOCKOUTS & PVC'S: $\pm 1/4$ "
	BLOCKOUT DIMENSIONS: $+1/4$ ". -0 "
	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18" FOR
	#4 REBAR AND 30" FOR #6 REBAR.
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND A

- MAXIMUM AGGREGATE SIZE OF 3/8 INCH.
- 16. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.

- THESE REBAR SIZES AND SPACING REPRESENT THE MINIMUM AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWINGS MAY REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.
- #4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6" ROOF PANEL: AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND #4 (LONG AXIS) AT 18" O.C.
- WALL PANEL: #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH THROUGHOUT.
- FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

GENERAL:

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 & 2000 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

<u>GE</u>	NERAL NOTES	GENE
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC	
2.	LRFD(1999) AND AWS D1.1 SPECIFICATIONS. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:	ROOF
	WIRE SIZE 0.35	
	WIRE FEED SPEED (in/min) 5	WALL
	VOLIAGE, DC (+) 18.5 AMPERAGE DC 140	**ALL
	TRAVEL SPEED (in/min) 10-12	
	SHIELDING GAS 75/25	FLOO
3.	STRUCTURAL STEEL SPECIFICATIONS:	
	STRUCTURAL SHAPES ASTM A36/A 36M-00	
	OTHER BOLTS, SAE J429 GRADE 5	<u>SEA</u>
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE	
	A.C.I. 318-02 BUILDING CODES 311 & 211, AND ASTM STANDARDS	STEP
	C-94/C94M-00	
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A	STEP
	MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.	
6.	ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL	STEP
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM	01E
	OF 3/4".	
8. a	ALL REBAR SHALL BE HED 100% AT THE PERIMETER, AND 50% ELSEWHERE	•
10.	FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF	STEP
	AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000	1
	PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF	STEP
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY	
	REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE	
	JOINT AT ANY POINT ALONG THE JOINT.	
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4 -8 MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT	
	IN CASES WHERE OPENINGS PROHIBIT.	
13.	TOLERANCES SHALL BE AS FOLLOWS:	
	PANEL THICKNESS: $\pm 1/8''$	
	PANEL SIZE: ITTO PANEL SOLIARENESS: +1/8" AGREEMENT ON DIAGONALS	
	LOCATION OF BLOCKOUTS & PVC'S: $\pm 1/4$ "	
	BLOCKOUT DIMENSIONS: $+1/4$ ", -0 "	
14	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS	,
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18 FOR #4 REBAR AND 30" FOR #6 REBAR	
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND)
	A MAXIMUM AGGREGATE SIZE OF 3/8 INCH.	
16.	CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.	

ERAL:	THESE REBAR SIZES AND SPACING REPRESENT TH
	AMOUNT FOR ALL CASTING PLANS. PROJECT DRAV
	REQUIRE REINFORCEMENT IN ADDITION TO CELLXIC STANDARDS.

- OOF PANEL: #4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6" AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND #4 (LONG AXIS) AT 18" O.C.
- ALL PANEL: #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH THROUGHOUT.
- LOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083–97A, OBC 1507.15.2 & 2003 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

HE MINIMUM WINGS MAY ON

<u>GE</u>	NERAL NOTES
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC
2.	ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
	WIRE SIZE 0.35
	WIRE FEED SPEED (in/min) 5
	VOLTAGE, DC $(+)$ 18.5 AMPERAGE DC 140
	TRAVEL SPEED (in/min) 10-12
	SHIELDING GAS 75/25
3.	STRUCTURAL STEEL SPECIFICATIONS:
	STRUCTURAL SHAPES ASTM A36/A 36M-04a
	OTHER BOLTS, SAE J429 GRADE 5
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE
	A.C.I. 318-05 BUILDING CODES 311 & 211, AND ASTM STANDARDS
	C = 1/2 = 04, $C = 31/C31M98$, $C = 39 = 0561$, and Provisions of $C = 94/C94M = 04$
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A
	MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.
6.	ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM
	OF 3/4".
8.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9. 10.	FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF
	AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000
	PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF
11	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY
	REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE
	JOINT AT ANY POINT ALONG THE JOINT.
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE
	IN CASES WHERE OPENINGS PROHIBIT.
13.	TOLERANCES SHALL BE AS FOLLOWS:
	PANEL THICKNESS: ±1/8"
	PANEL SIZE: $\pm 1/16''$
	PANEL SQUARENESS: IT/8 AGREEMENT ON DIAGONALS
	BLOCKOUT DIMENSIONS: $+1/4$ ", -0 "
	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18"
15	FOR #4 REBAR AND 30" FOR #6 REBAR.
13.	A MAXIMUM AGGREGATE SIZE OF 3/8 INCH.
16.	CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.

GENERAL:	THESE REBAR SIZES AND SPACING REPRESENT TH AMOUNT FOR ALL CASTING PLANS. PROJECT DRAW REQUIRE REINFORCEMENT IN ADDITION TO CELLXIO STANDARDS.
ROOF PANEL:	#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF

- 11'-6" AND #4 (LONG AXIS) AT 18" O.C. #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH WALL PANEL:
- FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

THROUGHOUT.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 & 2006 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

E MINIMUM VINGS MAY Ν F 11'-6" AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN

<u>GE</u>	NERAL NOTES	
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE D WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION	ONE IN ACCORDANCE N MANUAL AISC
2.	ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING SETTINGS:	G OPERATING
	WIRE SIZE	0.35
	WIRE FEED SPEED (in/min)	5
	AMPERAGE, DC (+) ===================================	140
	TRAVEL SPEED (in/min)	10-12
-	SHIELDING GAS	75/25
3.	STRUCTURAL STEEL SPECIFICATIONS:	
	HIGH STRENGTH BOLTS, ASTM A 307-03	
	OTHER BOLTS, SAE J429 GRADE 5	
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN C	ONCRETE INSTITUTE
	C-172-04, $C-31/C31-06$, $C-39-05e1$, AND PROVISION	ONS OF
	C-94/C94M-07.	
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRE	TE SHALL HAVE A
6.	ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NE	EW BILLET STEEL
	CONFORMING TO ASTM A 615M-04a SPECIFICATIONS.	
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SH	HALL BE A MINIMUM
8.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER.	AND 50% ELSEWHERE.
9.	ALL REBAR WIRE TIES TO BE 16 GAUGE.	
10.	AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE	USED IN THE ROOF STRENGTH OF 5000
	PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USE	D IN THE FLOOR IF
	DESIRED IN ORDER TO MAKE BATCHING OPERATION MOI	RE EFFICIENT.
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/	8" MEASURED BY
	JOINT AT ANY POINT ALONG THE JOINT.	
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8	" MAXIMUM ON THE
	FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE	MAINTAINED EXCEPT
13.	TOLERANCES SHALL BE AS FOLLOWS:	
	PANEL THICKNESS: $\pm 1/8"$	
	PANEL SIZE: $\pm 1/16"$	
	PANEL SQUARENESS: ±1/8 AGREEMENT ON DIAGO	JNALS
	BLOCKOUT DIMENSIONS: $+1/4^{\circ}$. -0°	
	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJEC	CT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS.	MINIMUM LAP IS 18"
15.	CONCRETE SHALL HAVE AIR FNTRAINMENT OF 6% MODI	ERATE EXPOSURF AND
	A MAXIMUM AGGREGATE SIZE OF 3/8 INCH.	
16.	CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERI	AL RATIO OF 0.50.

GENERAL:	THESE REBAR SIZES AND SPACING REPRESENT THE MAMOUNT FOR ALL CASTING PLANS. PROJECT DRAWING REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.
ROOF PANEL:	#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 1 AND LESS, 10" O.C. ON SHELTER WIDTH GREATER T⊢ 11'−6" AND #4 (LONG AXIS) AT 18" O.C.
WALL PANEL:	#4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH

FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

THROUGHOUT.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-05e01, OBC 1507.15.2 & 2009 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

E MINIMUM INGS MAY - 11'-6" THAN

	PARTS LIST										
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	DEPTH	PCS			
500	1.500	FT	170000	PIPE, PVC, SCH 40, 1"	6.000 in			3			
501	4.000	FT	170000	PIPE, PVC, SCH 40, 1"	12.000 in			4			
502	0.14583 ft	FT	170000	PIPE, PVC, SCH 40, 1"	1.750 in			1			
503	0.666	FT	170001	PIPE, PVC, SCH 40, 1/2"	2.000 in			8			
504	1.500	FT	170003	PIPE, PVC, SCH 40, 1 1/2"	6.000 in			3			
505	3.000	FT	170010	PIPE, PVC, SCH 40, 2"	6.000 in			5			
506	0.50000 ft	FT	170011	PIPE, PVC, SCH 40, 2 1/2"	6.000 in			1			
507	0.500	FT	350228	LUMBER,#2 PINE,1X6,RAW MATL	6.000 in			1			
508	1	EA.	221-1000X1800-02	CONCRETE FLOOR ASSY KIT, 10'0"X18'0"				1			
509	2	EA.	222-1000X0903-008	WALL KIT, CON, END, AC, STD				2			
510	1	EA.	223-1800X0903-001	WALL KIT,CON,SIDE,DR,STD				1			
511	1	EA.	223-1800X0903-002	WALL KIT, CON, SIDE, BO, STD				1			
512	36	EA.	223102	INSERT, WELD PLATE 1/4"X3"X4", F/B				1			
513	1	EA.	226-1000X1800X4-00	ROOF ASSY.KIT,CONCRETE,10'0"X 18'0"				1			
514	5.043	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	8.750 in	4.000 in	1			
515	7.349	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	12.750 in	4.000 in	1			
516	1.111	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	10.000 in	4.000 in	4.000 in	1			
517	.694	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	5.000 in	5.000 in	4.000 in	1			
518	3.807	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	10.750 in	12.750 in	4.000 in	1			
519	.247	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	4.750 in	3.000 in	2.500 in	1			
520	26.868	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	18.250 in	26.500 in	4.000 in	2			
521	1	EA.	501001	DOOR FRM,3670,LH,CURRIES,16G,GALV				1			
522	5	EA.	540237	GROUND STRAP ASSEMBLY, STRUCTURE, 12" SOLID				5			
523	14	EA.	300032	INSULATION, 1.75"RMAX, POLY, 48"X110"				1			
524	5	EA.	300033	INSULATION, 2.25"RMAX, POLY, 48"X132"				1			

	CUT LIST									
ITEM	P/N	DESCRIPTION	LENGTH	WIDTH	DEPTH	PCS				
500	170000	PIPE, PVC, SCH 40, 1"	6.000 in			3				
501	170000	PIPE, PVC, SCH 40, 1"	12.000 in			4				
502	170000	PIPE, PVC, SCH 40, 1"	1.750 in			1				
503	170001	PIPE, PVC, SCH 40, 1/2"	2.000 in			8				
504	170003	PIPE, PVC, SCH 40, 1 1/2"	6.000 in			3				
505	170010	PIPE, PVC, SCH 40, 2"	6.000 in			5				
506	170011	PIPE, PVC, SCH 40, 2 1/2"	6.000 in			1				
507	350228	LUMBER,#2 PINE,1X6,RAW MATL	6.000 in			1				
514	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	8.750 in	4.000 in	1				
515	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	12.750 in	4.000 in	1				
516	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	10.000 in	4.000 in	4.000 in	1				
517	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	5.000 in	5.000 in	4.000 in	1				
518	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	10.750 in	12.750 in	4.000 in	1				
519	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	4.750 in	3.000 in	2.500 in	1				
520	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	18.250 in	26.500 in	4.000 in	2				

	SHOP DETAILS
DWG. NO.	DESCRIPTION
10-001	GENERAL INFORMATION SPECIFICATIONS
10-002	WALL TO ROOF CONNECTION
10-003	WALL TO FLOOR CONNECTION
10-004	WALL TO WALL CONNECTION
10-005	WELD PLATE DETAIL
10-007	CORNER BAR DETAIL
12-001	CONCRETE SHELTER FLOOR STEP JOINT
12-002	CONCRETE SHELTER FLOOR RIB SECTION
13-001	CONCRETE SHELTER ROOF RIDGE SECTION
13-002	CONCRETE SHELTER ROOF EAVE SECTION
14-001	CONCRETE SHELTER WALL BOTTOM SECTION
14-002	CONCRETE SHELTER WALL TOP SECTION
14-003	CONCRETE SHELTER END PANEL EDGE SECTION
14-004	CONCRETE SHELTER WALL BLOCKOUT SECTION
20-005	WALL/ROOF COVE INSTALLATION
20-006	CORNER COVE INSTALLATION
20-008	BATTEN TRIM INSTALLATION
20-020	1 LAYER CEILING DETAIL
20-021	1 LAYER WALL DETAIL
20-023	1 LAYER 2 PC TRIM
50-037	ALLTEL BUILDING STEEL GROUND

Ν	RRG	6/13/12	CHANGES PER CHANGE ORDER
REV	BY	DATE	DESCRIPTION

	SUB - PARTS LIST											
IT	EM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	DEPTH	PCS			
5	:03	0.666	FT	170001	PIPE, PVC, SCH 40, 1/2"	2.000 in			8			
5	09	2	EA.	222-1000X0903-008	WALL KIT, CON, END, AC, STD				2			
5	14	5.043	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	8.750 in	4.000 in	1			
5	15	7.349	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	20.750 in	12.750 in	4.000 in	1			
5	16	1.111	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	10.000 in	4.000 in	4.000 in	1			
5.	20	26.868	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	18.250 in	26.500 in	4.000 in	2			

Р	LJL	11/5/12	MOVED PENETRATIONS, REMOVED AC V
REV	BY	DATE	DESCRIPTION

	SUB - PARTS LIST										
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	DEPTH	PCS			
509	2	EA.	222-1000X0903-008	WALL KIT, CON, END, AC, STD				2			
522	5	EA.	540237	GROUND STRAP ASSEMBLY, STRUCTURE, 12" SOLID				5			

NOTES:

1. CUT WIRE MESH AROUND ALL BLOCKOUTS.

	SUB - PARTS LIST										
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	DEPTH	PCS			
513	1	EA.	226-1000X1800X4-00	ROOF ASSY.KIT,CONCRETE,10'0"X 18'0"				1			
522	5	EA.	540237	GROUND STRAP ASSEMBLY, STRUCTURE, 12" SOLID				5			

STRUCTURAL LAYOUT ROOF SCALE 1:32

ebruary 27. JOHN T No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY CELLXION, LLC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. A Division of Sabre Industries, 5031 Hazel Jones Road Bossier City, LA 71111 voice: 318-213-2919 fax: 318-213-2919 \mathbf{A} CUSTOMER: PROJECT: 10'-0" X 18'-0" CONCRETE SHELTER STRUCTRUAL LAYOUT ROOF FILENAME: SKBR02S.dwg DESIGN BY: DATE: M. TREKELL 11/4/2010 DRAWN BY: DATE: M. TREKELL 11/4/2010 CHECKED BY: DATE: W. RODRIGUEZ 11/4/2010 ENGINEERED BY: DATE: APPROVED BY: DATE: S. LEGGETT 11/8/2010 SHEET NO .: 6 OF 6 DRAWING NO .: REV: Ρ SKBR02S

COEVERY 27. ENGINEER FEATURE 11 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY CELLXION, LLC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, LA 71111 voice: 318-213-2900 fax: 318-213-2919 Industries Sabr of Division A CUSTOMER: PROJECT: CONCRETE FLOOR ASSEMBLY KIT 10'-0"X18'-0" FILENAME: 221-1000X1800-02.dwg DESIGN BY: DATE: D. CHRISTOPHE 5/4/2010 DRAWN BY: DATE: D. CHRISTOPHE 5/4/2010 CHECKED BY: DATE: G. BRINKMAN 5/4/2010 ENGINEERED BY: DATE: APPROVED BY: DATE: SHEET NO .: 2 OF 2 DRAWING NO .: REV: *221-1000X1800-02* С

SHOP DETAILS						
DWG NO.	DESCRIPTION					
14-001	WALL/FLOOR EMBED DETAIL					
14-002	WALL/ROOF EMBED DETAIL					
14-004	WALL DETAIL BLOCKOUT SECTION					

WALL ASSEMBLY WEIGHT: 4250.698 lbmass KEY WORDS: STD;AC2,L15,T12;AC1.5,R21,T39,AC1.5,R21,75.1875

SCALE 1:32

- 1. SEE PROJECT SPECIFIC PLANS FOR ALL REQUIRED PVC PENETRATION AND
- BLOCKOUT SPECIFICAITONS.
- 2. CUT WIRE MESH AROUND ALL BLOCKOUTS.

TAILS	
DESCRIPTION	
OR EMBED DETAIL	
F EMBED DETAIL	
AIL BLOCKOUT SECTION	

	•	
ſ	IN THE PROPERTY	FR FFAL
ŀ	ebruary	27,1201
	JOH	IN T.
-		
1	CHAR OCE	Short &
/	"IIIESSION	AL ENGINITITY
	THIS DRAWING IS	THE CONFIDENTIAL
	OF CELLXION, LLC.	ANY USE OF THESE
	CONTAINED HEREI	N FOR ANY REASON
	BY CELLXION, L	LC. IS STRICTLY
	DISTRIBUTED WITH T	THE UNDERSTANDING
	OBTAINING POSSES EXPRESSLY NO	SION OF IT WILL BE
	CONFIDENT	IAL NATURE.
		Inc.
		ies, 1
		ustr Roz 7111 2900 919 :0m
		Ind Dnes LA 7 LA 7 13-2 13-2 00.c
		<i>ibre</i> tel Jo ity, 18-2 8-2
		<i>of Sa</i> Haz ier C ier C e: 3 c: 31 vw.c
	ŲŲ	on c 5031 Boss voic fay wv
		ivisi
		4 D
	CUST	OMER:
	PRO.	JECT:
	CONCRETE ASSEM 18'0'	SIDE WALL BLY KIT "X9'3"
	FILENAME: 223-1800X0903-001 (dwa
	DESIGN BY:	DATE: 11/1/2010
	DRAWN BY: M. TREKELL	DATE: 11/2/2010
	CHECKED BY: W. RODRIGUEZ	DATE: 11/2/2010
	ENGINEERED BY:	DATE:
	APPROVED BY: S. LEGGETT	DATE: <i>11/8/2010</i>
	SHEET NO.:	·
	DRAWING NO.:	REV:
	223-1800X09	03-001
-		

	PARTS LIST										
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	PCS				
5	.45	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	108.000 in	96.000 in	1				
6	.416	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	108.000 in	88.750 in	1				
7	.131	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	108.000 in	28.000 in	1				

MESH LAYOUT SCALE 1:32

February 27, 20 No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY CELLXION, LLC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. ľn sion of Sabre Industries, 5031 Hazel Jones Road Bossier City, LA 71111 voice: 318-213-2910 fax: 318-213-2919 Industries, Division \mathbf{A} CUSTOMER: PROJECT: CONCRETE SIDE WALL ASSEMBLY KIT 18'0"X9'3" FILENAME: 223-1800X0903-001.dwg DESIGN BY: DATE: M. TREKELL 11/1/2010 DRAWN BY: DATE: M. TREKELL 11/2/2010 CHECKED BY: DATE: W. RODRIGUEZ 11/2/2010 ENGINEERED BY: DATE: APPROVED BY: DATE: S. LEGGETT 11/8/2010 SHEET NO .: 2 OF 2 DRAWING NO .: REV: 223-1800X0903-001

				PARTS LIST					SHOP DET
ITEM	QTY	U/M	P/N	DESCRIPTION	H WIDTH	PCS		DWG NO.	WALLELOO
1	1.977	CU.YD.	100052-001	CONCRETE, 1 CUBIC YARD BATCH, WALLS	207.750 in	1		14-002	WALL/ROOF
2 3	1 1	Each Each	10RH2000-01 10RH2000-02	SIDE WALL RAIL ANGLE, 20'-0" (PRODUCTION TOOL) SIDE WALL RAIL ANGLE, 20'-0" (PRODUCTION TOOL)		1		14-004	WALL DETA
4	2	Each	10RV0903-01	SIDE WALL RAIL ANGLE, 9'-3" (PRODUCTION TOOL)	in 00.000 in	2			
<u> </u>	.45 .416	EA. EA.	110001	MESH, WIRE, 4X4, W4XW4, 8X20' 108.000 MESH, WIRE, 4X4, W4XW4, 8X20' 108.000	in 96.000 in in 88.750 in	1			Y WEIGHT
7	.131	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20' 108.000	in 28.000 in	1		KET WORDS. 3)TD,DO10.7
8 9	12	FT.	112502	REBAR, #4 (1/2') #15 METRIC, GRADE 60 108.000 REBAR, #4 (1/2'') #13 METRIC, GRADE 60 36.000	in l	0 4			
10	51.188 24	FT.	112502	REBAR, #4 (1/2") #13 METRIC, GRADE 60 204.750 DEBAR CHAID DIASTIC #4 1 1/2" 204.750	in	3			
12	6	Each	222000	INSERT ANGLE, WALL TO ROOF, 3.5" X 3.5" X 6"		6			
13 21	.347	EA. FBM	223100 360151	INSERT PLATE, WALL TO FLOOR/WALL INSULATION FPS FOAM RAW MATL B-FOOT 5.000 /	n 5.000 in	8			
					2 1/2" CLEAR 48	8"	17'-3 3/4" [207 3/4]" 18/2 62] 18/2 121 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2 1 18/2	19 ⁻⁷ 9 ¹¹⁶ 1 1/2" CLEAR 8	235 91161
					<u> </u>	<u></u>		EXTERIOR SID	E
NOTES						<u>.</u>		INTERIOR SID	E
1. SEE BLC	BLOCKOUT SPECIFIC PLANS FOR ALL REQUIRED PVC PENETRATION AND BOTTOM VIEW SCALE 1:32								

ΓAILS						
DESCRIPTION						
OR EMBED DETAIL						
F EMBED DETAIL						
AIL BLOCKOUT SECTION						

IGHT: N/A O10.75X12.75,L65.25,B30

·							
PARTS LIST							
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	PCS
5	.45	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	108.000 in	96.000 in	1
6	.416	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	108.000 in	88.750 in	1
7	.131	EA.	110001	MESH,WIRE,4X4,W4XW4,8'X20'	108.000 in	28.000 in	1

MESH LAYOUT SCALE 1:32

ENGINEER FEATURE February 27. No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY CELLXION, LLC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, LA 71111 voice: 318-213-2900 fax: 318-213-2919 Sabı of Division A CUSTOMER: PROJECT: CONCRETE SIDE WALL ASSEMBLY KIT 18'0"X9'3" FILENAME: 223-1800X0903-002.dwg DESIGN BY: DATE: M. TREKELL *11/1/2010* DRAWN BY: DATE: M. TREKELL 11/2/2010 CHECKED BY: DATE: W. RODRIGUEZ 11/2/2010 ENGINEERED BY: DATE: APPROVED BY: DATE: SHEET NO .: 2 OF 2 DRAWING NO .: REV: 223-1800X0903-002

PART LIST							
ITEM	QTY	U/M	P/N	DESCRIPTION	WIDTH	PCS	
1	2.765	CU.YD.	100052-003	CONCRETE, 1 CUBIC YARD BATCH, ROOF			1
2	2	Each	10RP1008-01	ROOF RAIL END PLATE , 10'-8",4/5 (PRODUCTION TOOL)			2
3	2	Each	10RR1000-01	ROOF END RAIL ANGLE, 10'-0" (PRODUCTION TOOL)			2
4	2	Each	10RR2100-01	SIDE ROOF RAIL ANGLE, 21'-0" (PRODUCTION TOOL)			2
5	197.917	FT.	112502	REBAR, #4 (1/2") #13 METRIC, GRADE 60	125.000 in		19
6	147.333	FT.	112502	REBAR, #4 (1/2") #13 METRIC, GRADE 60	221.000 in		8
7	21	Each	119010	REBAR CHAIR, PLASTIC, #4 W/ BASE 1"			21
8	8	EA.	220211-01	ANCHOR,SWIFT LIFT,ASSEMBLY			8
9	16	EA.	223000	INSERT PLATE, ROOF TO WALL, 4" X 6" X 1/4"			16

	SHOP DETAILS					
	DWG NO.	DESCRIPTION				
	10-002	WALL TO ROOF CONNECTION				
	13-002	CONCRETE SHELTER ROOF EAVE SECTION				
	13-003	ROOF ANCHOR LIFTING INSERT DETAIL				

ROOF ASSEMBLY WEIGHT: N/A KEY WORDS: S31.875,48,48,48;E48,24

> DETAIL B SCALE 1:4

