1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS

- □ 2009 International Building Code
- □ American Concrete Institute (ACI) 318-08
- □ Embedment Properties for Headed Studs, TRW Nelson, Design Data Catalog
- □ Steel Construction Manual, AISC 360-05
- □ ASCE 7-05

1.2 DESIGN CRITERIA USED IN CALCULATIONS

- \Box Reinforcing Steel Yield Strength = fy = 60 ksi
- □ Structural Steel is ASTM A 36/A 36M-05
- \Box Unconfined Compressive Strength of Concrete = f'c = 5000 psi
- □ Weight of Concrete = 115 pcf
- □ Stud Yield Strength = 50 ksi

INTERNATIONAL BUILDING CODE REQUIREMENTS

The following is a summary of the Code requirements applicable to CellXion precast concrete equipment shelters.

1.3.1 Occupancy Classification

Occupancy is Group H-2 per section 307.1 and Table 307.1(1).

1.3.2 Construction Type

1.3

1.4

Type V-B per section 602.5 and Table 601.

1.3.3 Building Limitations

Occupancy H-2

Relative to the location of the nearest structure or property line:

Walls must be rated one hour if less than 10 feet. (Table 602)

Maximum size of H-2 building (Table 503) is 21,000 SF, UL stories. (Table 503)

NOTE: STANDARD SHELTERS MAY BE RATED UP TO 2-HOURS.

REF: Table 720.1(2), Item number 4-1.1, Sand-lightweight concrete 4 inches thick. *IF PROTECTED OPENINGS ARE REQUIRED:*

3/4 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES. 1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES.

Unprotected Openings Allowed	Protected Openings Allowed Table 705.8
Not permitted up to 5 feet.	Not permitted up to 3 feet.
10% permitted > 5 feet to 10 feet.	15% permitted > 3 feet to 5 feet.
15% permitted > 10 feet to 15 fee	et. 25% permitted > 5 feet to 10 feet.
25% permitted > 15 feet to 20 fee	t. 45% permitted > 10 feet to 15 feet.
45% permitted > 20 feet to 25 fee	t. 75% permitted > 15 feet to 20 feet.
70% permitted > 25 feet to 30 fee	et. No restriction > 20 feet.
No restriction > 30 feet.	
FLOOR LOADS Floor live	load required (Table 1607.1) for light storage is; 125 psf
The summary loading chart in Se	ction 2.0.1 indicates allowable loads of:
251 psf 10.000	ft wide OK

For a 2 sq ft area per sec 2.3.6, a concentrated load of
If the concentrated load is next to the wall,2020 lbs can be placed anywhere.4522 lbs can be used.

For a 3 sq ft area per sec 2.3.6, a concentrated load of 4041 lbs can be placed anywhere.

1.5 ROOF LOADS Minimum roof live load required (2009 IBC 1607.11.2.1) is: $L_r = L_0 R_1 R_2$ [sec 1607.11.2.1, Eq 16-25] $L_0 = 20$ [sec 1607.11.2.1] $R_1 = 1.0$ (worst case for smaller shelters) [sec 1607.11.2.1. Eq 16-26] $R_2 = 1.0$ (for F< 4) [sec 1607.11.2.1, Eq 16-29] F = .167 in per ft slope $L_r =$ 20 psf The summary loading chart in Section 2.0.1 indicates allowable loads of: 135 psf 10.00 ft wide OK Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-05 $p_f = 0.7 C_e C_t I p_a$ [ASCE 7-05, Equation 7-1, Sec 7.3] (Min. design load for roofs from section 2 of these calcs) $p_f =$ 10.00 ft wide = 135 psf C_e = 1.2 (worst case-ASCE 7-05, Table 7-2, lesser factors may be used as appropriate) C_t = 1.0 (From ASCE 7-05, Table 7-3, heated structure) Ι = 1.0 (Category II, ASCE 7-05 Table 7-4) Using the design load from section 2 for p_f and solving for p_a : $p_{a} = p_{f} / (0.7 C_{e} C_{t} I)$ = (Allowable ground snow load) 161 psf 10.00 ft wide WIND LOADS 1.6 Sect. 1609.1.1 allows ASCE 7-05, Chapter 6; use sec 6.4, Method 1 - Simplified Procedure: V = 160 mph [ASCE 7-05, Section 6.5.4 and Figure 6-1] I = 1.0 [ASCE 7-05, Category II, Table 6-1 >> Table 1-1] Exposure Classification: С [ASCE 7-05, section 6.5.6.3] Exposure C category: $\lambda = 1.21$ [ASCE 7-07, section 6.4.2 & Figure 6-2] enclosed [ASCE 7-05, section 6.2] Enclosure Classification: $K_{zt} = 1.0$ [ASCE 7-05, sec 6.5.7.2] Roof angle: 0 to 5 degrees MWFRS Design Wind Pressures: [from ASCE 7-05, Figure 6-2] $p_s = \lambda K_{zt} I p_{s30}$ [ASCE 7-05, sec 6.4.2.1, Eq 6-1] WALLS: 48.4 psf [zone A] -25.4 psf [zone B, negligible--> only 1 inch tall] 32.5 psf [zone C] [zone D, negligible--> only 1 inch tall] -15.1 psf Zone A controls, use it for analysis Allowable load on walls: 87.3 psf(Calcs sec 2.0.1) 9.25 ft tall OK ROOF: -59.0 psf [zone E] -33.6 psf [zone F] -40.9 psf [zone G] [zone H] -25.9 psf Zone E controls, use it for analysis Allowable negative load on roof: -53.1 psf (Calcs, sec 2) 10.00 ft wide Plus .6 x DL (45.7 psf = 27.4 psf + Allow Neg Ld = OK -80.5 psf

1.6	5.1	Check structural connections for carrying wind loads to the foundation. The worst case for the windward forces are when they are projected onto the long walls. Half of the load is carried to the floor connections and half is carried to the roof connections. The walls are assumed to be 9.25 ft tall the worst case scenario.
		The connections which connect the long walls to the end walls are neglected for the purposes of this particular analysis. Analysis with Calculations from section 3
1.6	5.1.1	Check connections for transfer of windward loads from wall to the floor and roof. The connections along the top and bottom of the walls are at a standard spacing of 56 inches. This will be the tributary width of wind load for each connection at the floor and roof. The load for this tributary area on the windward wall is then: P'(w)= P(windward wall) x tributary area (for 9.25 ft tall wall) Where tributary area = (9.25 ft / 2) x 4 ft 8 in = 21.58 sq. ft. P'(w)= 1,045 lbs This load is resisted by three main components of the connection at the floor:
		5.95 kips Capacity of P/N 223100 in tension per Clacs Section 3.3.122.87 kips Capacity of the Floor Lifting Insert in shear per Clacs Section 3.7
		8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.7
		The capacity of all 3 components exceed the wind load OK
		This load is resisted by three main components of the connection at the roof:
		3.52 kips Capacity of P/N 223000 in Y-shear per Clacs Section 3.4.3
		5.95 kips Capacity of P/N 222000 in tension per Clacs Section 3.5.1
		8.35 kips Capacity of the weld which connects the plates per Clacs Section 3.8 The capacity of all 3 components exceed the wind load OK
1.6	5.1.2	Check connections for transfer of leeward loads from wall to the floor and roof. The leeward wall has similar construction, but the loads are less and are outward. P'(I)= P(leeward wall) x tributary area
		Where tributary area = $(9.25 \text{ ft}/2) \times 4 \text{ ft 8 in} = 21.58 \text{ sq. ft.}$ = 48.4 psf x 21.58 sq. ft.
		P'(I)= 1,045 lbs (negative indicating an outward direction) This load is resisted by three main components of the connection at the floor:
		5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
		22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
		8.35 kips Capacity of the weld which connects the plates per Section 3.8
		The capacity of all 3 components exceed the wind load OK
		This load is resisted by three main components of the connection at the roof:
		3.52 kips Capacity of P/N 223000 in Y-shear per Section 3.4.3
		5.95 kips Capacity of P/N 222000 in tension per Section 3.5.18.35 kips Capacity of the weld which connects the plates per Section 3.8
		8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the wind load OK
1 6	12	Windward and leeward loading transfer to endwalls:
1.0		אווועשמוע מווע וכבשמוע וטמעוווץ נומווזוכו נט כוועשמווז.

The loads on the top half of the shelter must be transferred to the ground through the connections

on the endwalls. There are three connections from the roof to the endwall and three connec-

tions from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter is resisted by these connections and is assumed to distribute half of the load to each endwall.

A shelter which is 14.00 feet long has a tributary area of:

Area = (9.667 feet / 2) x (14.0 feet / 2) 33.835 sq. ft. P(proj.)= 33.835 sq ft x 48.4 psf = 1,638 lbs.

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.

7.04 kips Capacity of P/N 223000 in X-shear per Section	13.4.2
---	--------

22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1

8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 21.12 kips OK

1.6.1.4 Windward and Leeward loading transfer to floor:

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.

14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2

22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7

8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 25.05 kips **OK**

1.6.1.5 Find horizontal forces and overturning moments.

This is used in the tie-down anchor analysis in 1.8 below.

Shelter Dims (feet)			Shelter	Hor.Wind	Vert. Wind	Overturn
		Weight	(PxA-hor)	(PxA-vert.)	Moment	
Width	Length	Height	lbs	lbs	lbs	ft-lbs
10.00	14.00	10.083	28,791	6,832	8,267	75,781

1.6.1.6 Components and Cladding:

$p_{net} =$	$\lambda \; K_{zt} \; \mathtt{I} \; \boldsymbol{p}_{\mathit{net}}$	30		[ASCE 7-05, sec 6.4.2.2, Eq 6-2]	
	POS N	IEG		[from ASCE 7-05, Figure 6-3]	
ROOF ZONE 1:	18.0	-51.1	(100 sf eff	ffective wind area) use for analysis	
ROOF ZONE 2:	21.5	-84.1	(20 sf effe	ective wind area)	
ROOF ZONE 3:	22.7	-141.3	(10 sf effe	ective wind area)	
Allowable pos	sitive load o	n roof:	(From sec	ction 2)	
		135	psf	10.00 ft wide shelter	
Allowable neg	ative load o	n roof:	(From sec	ction 2, neglecting DL)	
		-53.1	psf	10.00 ft wide shelter	
Allowable neg	ative load o	n roof:	(From sec	ction 2, including .6 x DL)	
Roof Dead Load:	45.7 psf			•	
		-80.5	psf	10.00 ft wide shelter OK	
WALL ZONE 4:	45.0	-49.6	(200 sf eff	ffective wind area) use for analysis	
WALL ZONE 5:	52.4	-67.8	(30 sf effe	ective wind area)	

1.7

Allowable load on walls: (From section 2)

87 psf

9.25 ft tall wall

OK

The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones.

SEISMIC LOADS Section 1613.1, requires ASCE 7-05 for analysis. Site Class is E [Section 1613.5.2] Occupancy Category: Π [Table 1604.5] Seismic Design Category: D [sec 1613.5.6] Seismic Importance Factor, I is: 1.50 [ASCE 7-05, sec 11.5, Table 11.5-1] $V = C_s W$ [ASCE 7-05, sec 12.8.1, Eq. 12.8-1] W = D[ASCE 7-05, sec 12.7.2] $C_s = S_{DS} / (R / I)$ [ASCE 7-05, sec 12.8.1.1, Eq. 12.8-2] $V = (S_{DS} / (R / I)) D$ R = 4 [ASCE 7-05, Table 12.2-1, A.2] $S_{DS} = 2/3 S_{MS}$ [Per 1613.5.4, Eq. 16-39] [Per 1613.5.3, Eq. 16-37] $S_{MS} = F_a S_S$ $F_a =$ 1.0 [Table 1613.5.3(1)] S_S = 3.00 [Fig 1613.5(1), meets all US areas] 3.00 $S_{DS} =$ 2.00 V = 0.750 D [Use for base shear] Determine E for use in load combinations on individual panel design. [ASCE 7-05, sec 12.4.2, Eq. 12.4-1] $E = E_h + E_v$ $E_h = \rho Q_F$ [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3] $E_v = 0.2 S_{DS} D$ [ASCE 7-05, sec 12.4.2.2, Eq. 12.4-4] $E = \rho Q_{E} + 0.2 S_{DS} D$ [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3 plus sec 12.4.2.2, Eq. 12.4-4] $Q_F = V$ [ASCE 7-05, sec 12.4.2.1] $\rho = 1.0$ [ASCE 7-05, sec 12.3.4.2] E = ρ V + 0.2 S_{DS} D 1.150 D [Use in load comb 4 & 6] = $E_m = E_{mh} - E_v$ [ASCE 7-05, sec 12.4.3, Eq. 12.4-6] $E_{mh} = \Omega_0 Q_E$ [ASCE 7-05, sec 12.4.3.1 Eq. 12.4-7] $E_m = \Omega_0 Q_E - 0.2 S_{DS} D$ $\Omega_0 = 2.5$ [ASCE 7-05, Table 12.2-1, A.2] $E_m = 1.475 D$ [Use in load comb 7] D_{wall} = 35.6 psf $D_{roof} =$ 45.7 psf 46.4 psf (calcs sec 4) $D_{floor} =$ Load combinations: Section 1605.3.1 & ASCE 7-05 12.4.3.2 Comb 1 D [Notes 1, 2, 3] Comb 2 D + L [Notes 1, 2, 3] Comb 3 D + L + (Lr or S or R)[Notes 1, 2, 3] D + (W or 0.7E) + L + (Lr or S or R)Comb 4 [Notes 1, 2, 3, 4] Comb 5 0.6 D + W [Notes 1, 2, 3] Comb 6 0.6D + 0.7E [Notes 1, 2, 3, 4] $(0.9-.2S_{DS})D + \Omega_0 Q_E$ Comb 7 See analysis below:

Note 1: Roof and floor panels are designed using 1.4D and 1.7L, exceeds req'd factors. Note 2: Wall panels are designed using 1.4D and 1.7W, exceeds reg'd factors. Note 3: S, R, and Lr are used as L in panel calculations, see section 2 of these calcs. Note 4: Wind loads control over Seismic. Comb 7 check psf Min. Design Loads Walls: $(0.9-.2S_{DS})D + \Omega_0 Q_E = 2.375 D_{wall} =$ 87 psf 84 OK $(0.9-.2S_{DS})D + \Omega_0 Q_E =$ Roof: 2.375 D_{roof} = 108 135 psf οк $(0.9-.2S_{DS})D + \Omega_0 Q_E =$ 2.375 D_{floor} = Floor: 110 251 psf OK 1.7.1 Seismic loads from top half of the wall panel are transferred to the roof. Equipment permanently installed in the building is estimated at 12,000 pounds. For a 14.00 ft long shelter, this is an average of 857 pounds per linear foot. If this equipment is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the walls. Analysis uses sec 3 of these calculations. The weight of a wall section transferred to the connections at 56" on center is: W(wall) = (56/12 ft width) x(9.25 ft high) x (4 /12 ft thick) x (115 pcf) 827 lbs = W(equipment) = (56/12 ft width) x(429 plf) 2000 lbs = W(top of wall) = W(wall) + W(equipment) =2,827 lbs For the wall panel, the seismic shear is: V = 2,121 lbs Seismic shear per connection plate at top of walls This load is resisted by three main components of the connection at the floor: 5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK This load is resisted by three main components of the connection at the roof: Capacity of P/N 223000 in Y-shear per Section 3.4.3 3.52 kips 5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1 8.35 kips Capacity of the weld which connects the plates per Section 3.8 The capacity of all 3 components exceed the seismic load OK 1.7.2 Seismic loads from roof are transferred to the top of the endwall. The seismic load at the top connection plates of the endwalls includes the seismic loads from the top guarter of two sidewalls, one half of the roof, and one half of the total equipment. Use a 9.25 ft tall x 13.33 ft long wall & use a 10.33 ft wide x 14.33 ft long roof. W(quarter wall)= 9.25 ft / 2 x 13.33 ft / 2 x 4.00 /12 ft x $115 \, \text{pcf} =$ 1,182 lbs. x 2 = 2,364 lbs. W(half roof)= 10.33 ft 14.33 ft / 2 x Х 4.50 /12 ft x 115 pcf 3,193 lbs. = 7 ft 3,000 lbs W(equipment) =429 plf Х TOTAL: W(top of endwall) = 8.557 lbs. The seismic load is then: V(top of endwall) = 6,418 lbs.

1.8

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2 22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1 Capacity of the weld which connects the plates per Section 3.8 8.35 kips Since there are three of these connections, the total capacity is: 21.12 kips This capacity exceeds the seismic load OK 1.7.3 Seismic loads from endwall are transferred to the floor. The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself is added. The weight of the endwall is: W(endwall)= 10.00 ft 9.25 ft x Х 4.00 /12 ft x 115 pcf 3546 lbs = V(endwall)= 2,659 lbs V(bottom)= V(top of endwall) + V(endwall) = 9.077 lbs The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall. The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below. 14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2 22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7 8.35 kips Capacity of the weld which connects the plates per Section 3.8 Since there are three of these connections, the total capacity is: 25.05 kips This capacity exceeds the seismic load OK Check shelter tie-downs to foundation For tie-down anchor capacity see Section 3.9 of these calcs: Horizontal: 10472 lbs Per connection Vertical: 6615 lbs Per connection Horizontal forces due to seismic/wind loads:

Shelter Dims (feet)	Shelter	Contents	Seis.Load	Wind load	Control'g	Tie-down	CHECK	Safety
Width Length Height	Weight	Weight	(W x Cs)	1.6.1.5	Load	Capacity		Factor
10.00 14.00 10.083	28,791	12,000	30,593	6,832	SEISMIC	41,887	OK	1.37
Friction against sliding is ignored								

Friction against sliding is ignored.

shelters under 24 ft in length have 4 tie-downs; lengths 24 ft and over have 8 tie-downs Overturning forces due to seismic/wind loads:

			Seis.load	Overturn	Wind Over.	Control'g	Overturn	Tie-down	CHECK	Safety
Shel	ter Dims	(feet)	(W x Cs)	Force	See 1.6.1.5	Load	Resist.	Capacity		Factor
Width	Length	Height	lbs.	lbs.	ft-lbs.		ft-lbs.	lbs		1.5 req'd
10.00	14.00	10.083	30,593	154241	75,781	SEISMIC	129560	41,887	OK	2.20

Overturning resistance uses 0.9 x DL of shelter (no contents)

Weight of shelter and contents are the same as in the horizontal force chart above.

2.0 DESIGN CRITERIA

NOTE: These calculations repres 10.000 ft wide x	sent the panels of a 14.000 ft long x	
STRUCTURAL PROPERTY	<u>UNITS</u>	LABEL
Concrete Compressive Strength	5000 psi	f' _c (sand-lightweight)
Reinforcing bar Yield Stress	60000 psi	fy[REBAR]
Concrete Density	115 pcf	DENSITY
Maximum Building Width	10 feet	BLDGW
Maximum Building Length	14 feet	BLDGL
Maximum Wall Panel Height	9.25 feet	WALLH
Max. Est. weight of Shelter	28,791 LBS.	BLDGWT
Concrete volume reg'd.	8.65 YDS.	CONCYDS
Roof thickness at peak	5 inches	H[ROOF]
Roof thickness at edge	4 inches	
Rebar size used in roof #	4 Rebar	REBARROOF
Steel mesh used in roof:	W4 Wire	
Steel spacing in roof (12"max.)	4 inches	
Lateral rebar spacing: roof	12 inches	ROOFSPACING12
Longitudinal rebar spacing-roof:	18 inches	
Steel mesh used in wall:	W4 Wire	REBARWALL
Add vert steel used in wall #	4 Rebar	REBARWALL2
Steel spacing in wall (12"max.)	4 inches	WALLSPACING
Vertical Rebar spacing in wall	36 inches	WALLSPACING2
Horizontal rebar spacing in wall	48 inches	
Wall panel thickness	4 inches	WALLTHICKNESS
Rebar size used in floor #	6 Rebar	REBARFLR
Number of rebar per floor rib	2 each	REBARFLRQTY
Spacing of ribs in floor	28 inches	FLOORSPACING
Floor thickness	5.75 inches	H[FLOOR]
Floor deck thickness	2.75 inches	H[DECK]
Floor rib width	4 inches	B[RIB]
Floor deck steel size	W4 Wire	
Floor deck steel spacing	4 inches	
Area per roof rebar	0.200 sq. in.	A[REBARROOF]
Diameter of roof rebar	0.500 inches	DIA[REBARROOF]
Area per roof wire	0.040 sq. in.	
Area per wall wire	0.040 sq. in.	A[REBARWALL]
Area per extra vert wall rebar	0.200 sq. in.	A[REBARWALL2]
Diameter of wall wire	0.225 inches	DIA[REBARWALL]
Diameter of wall rebar	0.500 inches	
Area of floor rib rebar	0.880 sq. in.	A[REBARFLR]
Diameter of floor rebar	0.750 inches	DIA[REBARFLR]
Area of deck rebar/wire	0.040 sq. in.	A[REBARDECK]
Diameter of deck rebar/wire	0.225 inches	DIA[REBARDECK]
Area of deck steel per foot	0.120 sq.in./ft.	
Minimum req'd deck steel/foot	0.059 sq.in./ft.	A[DECKSTEEL-MIN]

2.0.1	STRUCTURAL LOADING SUMMARY FOR PA	NELS. AS DESIGNED	
	PANEL ALLOWABLE LOAD	TYPE	
	10.000 ft wide		
	roof 135 psf	LIVE	
	floor 251 psf 9.250 ft tall	LIVE	
	wall 87.3 psf	WIND	
2.0.2	CHECK STEEL RATIOS (ACI 318-08, sec. 21.		ρ_{v}
	B ₁ = 0.80	ROOF: 0.0083	0.0069 OK
	ρ_{b} ρ_{max} ρ_{min}	FLOOR: 0.0068	OK
	0.0335 0.0252 0.0033	WALL: 0.0066	0.0062 OK
		0.0025	0.0002
2.0.3		318-08, sec. 21.7.5.1)	
	Wall	Roof Floo	
	Largest of: $10 d_b = 2.3 in$	5.0 in	7.5 in
	7.5 in	-	7.5 in
	ℓ_{dh} = 1.25 f _y d _b / (65 x f' _c ^{1/2}) 3.7 in	8.2 in	12.2 in
	···· · · · · · · · · · · · · · · · · ·	18 in OK	
2.1	ROOF PANEL CALCULATIONS		
	Temperature steel required: Ats Panels are 4 in thic	k, minimum.	
	Maximum thickness of roof panel is	-	erpeak
	$Ats = Aconc \times 0.0018$		or pound
	= 5 in. x	12 in. x 0.0018	
	= 0.1080 sq. in. per foot		
044		linal: Ats(actual) =	0.2533 sq. in. OK
2.1.1	Determine shear strength: Vu[ROOF] b[ROOF] = 12.0 inches		
	d[ROOFSHEAR]= 3 in DIA[R	FBARROOF1/2	
	2.75 inches		
	Vu[ROOF]= .85 x .85 x 2 x (fc)^.5	x b[ROOF] x d[ROOFS	HEAR]
	= 3372 lbs.		
2.1.2	Determine allowable live load due to shear: w		
	ROOFSPANSHEAR= bldgw - ((d[ROOFSHE/ = 8.875 feet 10.	00 ft wide shelter	
		4.5 in avg) =	43.1 psf (concrete only)
	w[ROOFSHEARLL]= (Vu[ROOF] / ROOFSPA		
		of live load due to shear s	

```
2.1.3
        Determine allowable live load due to moment: w[ROOFMOMENTLL]
         A[ROOFSTEEL12]= A[REBARROOF] x 12 inches / ROOFSPACING )
                          = 0.20 sq. inches per foot of roof panel
                                                                     10.00 ft wide shelter
         d[ROOFMOMENT]= (H[ROOF]) - (1+DIA[REBARROOF]/2)
                               3.75 inches
                a[ROOF12]= (A[ROOFSTEEL12] x fy[REBAR])/(.85 x fc x b[ROOF])
                          = 0.235 inches
              Mu[ROOF12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] x (d[ROOFMOMENT] - a[ROOF12] / 2)
                          = 3269 ft-lbs
              [ROOFSPAN]= BLDGW - .5
                                                 = 9.50 feet
                                                                              10.00 ft wide shelter
       w[ROOFMOMENTLL]= [ ( 8 x Mu[ROOF] / I[ROOFSPAN]^2 ) - (1.4 x w[ROOFDL] ) ] / 1.7
                               135 psf allowable roof live load due to bending strength. 10.00 ft wide
       Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL]
2.1.4
        d[RFNEGMOMENT]= 1 +DIA[REBARROOF] / 2 )
                          = 1.25 inches
               a[RFNEG12]= (A[ROOFSTEEL12] x fy[REBAR])/(.85 x fc x b[ROOF])
                              0.235 inches
             Mu[RFNEG12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] x (d[RFNEGMOMENT] - a[RFNEG12] / 2)
                               1019 ft-lbs
              I[ROOFSPAN]= BLDGW - .5
                                                   = 9.50 feet
                                                                              10.00 ft wide shelter
       w[ROOFNEGMOMLL]= [ ( 8 x Mu[ROOF] ) / ( I[ROOFSPAN]^2 ) ] / 1.7
                          = Allowable negative roof live load due to bending strength (neglecting dead load)
                          = -53.1 psf
                                               10.00 ft wide shelter
2.1.5
        CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF
2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}. (ACI 318-08, 21.9.2.2)
            2 A_{CV} x \land x f_c^{1/2} = 23080 \text{ lbs} [CONTROLS]
2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION
                                                     (per ACI 318-08, sec. 21.9.4.1, eq. 21-7)
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}.
               V_n = A_{CV} \left( \alpha_c x \wedge x f'_c^{1/2} + \rho_t x f_v \right) \qquad \alpha_c = 2.0 \left( \text{for } h_w / I_w > 2 \right)
                               A_{cv} = 192 in<sup>2</sup> \lambda = 0.85 (per ACI 318-08 sec. 8.6.1)
                                \rho_t = A_s / A_{CV} =
                                                              0.0083
                 = 118708 lbs
                                   [DOES NOT CONTROL]
2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM
                                                     (per ACI 318-08, sec 21.11.9.1, eq. 21-10)
             Use a 4 inch panel, 4 foot length, for minimum A_{CV}.
               V_n = A_{CV} (2 x \lambda x {f'_c}^{1/2} + \rho_t x f_y)
                 = 118708 lbs [DOES NOT CONTROL]
```


2.2.2.1	CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT Use a 4 inch panel, 4 foot length, for minimur (ACI 318-08, 21.9.2.2)
	$2 A_{CV} x \wedge x f_c^{1/2} = 23080 \text{ lbs}$ [CONTROLS]
2.2.2.2	NOMINAL SHEAR FOR WALL SECTION(per ACI 318-08, sec. 21.9.4.1, eq. 21-7)Use a4 inch panel, 4 foot length, for minimum A _{CV} .
	$V_n = A_{CV} (\alpha_c x \wedge x f'_c^{1/2} + \rho_t x f_y)$ $A_{CV} = 192 in^2$
	α_{c} = 2.0 (for h _w / l _w > 2) λ = 0.85 (per ACI sec. 8.6.1)
	$\rho_{\rm t}$ = A _s / A _{CV} = 0.0066
	= 99264 lbs [DOES NOT CONTROL]
2.2.2.3	NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACI 318-08, sec. 21.11.9.1, eq. 21-10)
	Use a 4 inch panel, 4 foot length, for minimum A_{CV} .
	$V_n = A_{CV} (2 x \land x f'_c^{1/2} + \rho_t x f_y)$
	= 99264 lbs [DOES NOT CONTROL]
2.3 2.3.1	FLOOR PANEL CALCULATIONS Determine temperature steel required for the deck:
2.3.1	Deck temperature steel required is:
	ATS[DECK]= H[DECK] X 12 in. X .0018
	= 2.75 in. x 12 in. x 0.0018
	=0.0594 sq. in. per foot of width of floor panel.A[DECKSTEEL]=0.1200 sq. in per foot of panel.OK
2.3.2	Determine floor deck strength:
	DECKSPAN= FLOORSPACING - B[RIB]
	= 24.0 inches
	d[DECK] = H[DECK] -1 (Assumes mesh is 1" clear from bottom of deck) = 1.75 inches
	a[DECK]= (A[DECKSTEEL] x FY[REBAR]) / (.85 x fc x 12 in.)
	= 0.1412 inches
	Mu[DECK]= 0.9/12 x A[DECKSTEEL] x fy[REBAR] x (d[DECK] - (a[DECK] / 2))
	= 907 ft-lbs w[DECKTOTALMOM]= (Mu[DECK] x 8) / (DECKSPAN x 12 in. per ft.)^2
	= 1814 psf
	w[DECKDL]= (H[DECK] / 12 in. per ft. x 1 ft.^2 x DENSITY)
	= 26.4 psf
	w[DECKLLMOM]= (w[DECKTOTAL - 1.4 x w[DECKDL]) / 1.7 = 1045 psf
	Vu[DECK]= .85 x .85 x 2 x (fc^.5) x d[DECK] x 12 in.
	= 2146 lbs.
	w[DECKTOTSHEAR]= 2 x (Vu[DECK] / L = 2146 psf
	w[DECKLLSHEAR]= (w[DECKTOTSHEAR] - 1.4 x w[DECKDL]) / 1.7 = 1240 psf
	Allowable live load for the floor deck is: 1045 psf (FLOOR DECK MOMENT CONTROLS)

2.3.3	Determine floor rib strength:
	Effective width of flange: ACI 318-08, sec. 8.12.2 flange width
	1/4 span: = 28.5 inches
	Effective width of overhang: ACI 318-08, sec. 8.12.2 (a) & (b)
	(a) 8 times H[DECK] = 22 inches 48.0 inches
	OR (b) 1/2 clear dist. = 12.0 inches 28.0 inches <controls></controls>
	bf= 28.0 inches
	d[FLOOR]= H[FLOOR] - (.75" + DIA[REBARFLR] / 2)
	4.625 inches
	a[FLOOR]=(A[REBARFLR] x fy[REBAR])/(.85 x fc x bf)
	= 0.444 inches
	Mu[FLOOR]= (.9/12) x A[REBARFLR] x fy[REBAR] x (d[FLOOR] - a[FLOOR] / 2)
	= 17436 ft-lbs
	FLOORSPANMOM= BLDGW5 ft. = 9.50 feet 10.00 ft wide shelter
	w[FLOORMOMTOT]= 8 x Mu[FLOOR] / (FLOORSPANMOM)^2
	= 1546 plf 10.00 ft wide shelter
	w[FLOORDL]=((H[DECK] x bf / 144) + b[RIB] x (H[FLOOR] - H[DECK]) / 144) x 1 ft.x DENSITY
	= 71.1 plf (PER RIB) = 30.5 psf
	w[FLOORMOMLL]= [W[FLOORMOMTOT] - (1.4 x w[FLOORDL])] / (1.7 x trib)
	= 365 psf 10.00 ft wide shelter
2.3.4	Determine rib shear strength: Vu[FLOOR]
	b[RIB] = 4.00 inches
	A[RIBSHEAR]=(H[FLOOR] - (.75" + DIA[REBARFLR]/2)) x B[RIB]
	18.50 sq. in.
	ACI 318-08, sec. 11.2.2.1 Eq. 11-5 λ = 0.85
	Vc[FLOOR]= (1.9 x λ x (fc)^.5 + (2500 x $\rho_{\rm w}$ x A[REBARFLR] / (b[RIB] x d[FLOOR])) x b[RIB] x d[FLOOR]
	= 4313 lbs.
	But not greater than: 3.5 x λ x f'c^.5 x b[RIB] x d[FLOOR]
	= 3892 lbs.
	USE 3892 lbs.
	ACI 318-08, 8.13.8 Vc[FLOORALLOW]= 1.1xVc[FLOOR]= 4281 lbs.

```
2.3.5
        Determine allowable live load due to shear: w[FLOORSHEARLL]
       FLOORSPANSHEAR= bldgw - ((d[FLOOR + 8.5) x 2 / 12)
                                7.81 feet
                                              10.00 ft wide shelter
                           =
        w[FLOORSHEARLL]= (Vc[FLOORALLOW] / (.5xFLOORSPANSHEAR)-1.4 x w[FLOORDL]) / (1.7xFLOORSPACING/12)
                           = Allowable floor live load due to shear strength
                                 251 psf 10.00 ft wide shelter
                           =
                                10.00 ft wide floor rib is: 251 psf
          Allowable LL for the
                                                                       (FLOOR RIB SHEAR CONTROLS)
                 Gross allowable floor load; LL +
                                                   46 psf DL=
                                                                   298 psf
                                                                                        10.00 ft wide
2.3.6
        Determine allowable concentrated load over 2 sg ft and 3 sg ft.
        2 square foot area is equivalent to approximately 17 inch x 17 inch, or 1.41 feet x 1.41 feet.
        Assume one rib takes the entire concentrated load.
        Allowable load based on shear is:
                                                  251 psf
              For a
                     10.00 foot wide shelter with a
                                                         9.00 ft span, the equivalent concentrated load is:
                  P[shear) =
                                 9.00 ft x 251 lbs. x
                                                                     2
                                4522 lbs
                                              Maximum concentrated load (shear).
        Maximum live load for bending on one rib is:
            w[FLOORRIBLL] = w[FLOORMOMLL] x BF / 12 =
                                                                   851 plf
        Make uniform load moment equal to concentrated load moment and solve for P.
        w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM) / 4
                                              Max concentrated load in center of floor (bending).
                          =
                                2020 LBS
        If the load is next to the wall (as is usually the case with batteries) :
        w[FLOORRIBLL]x (FLOORSPANMOM^2) / 8 = P x 1.5
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM<sup>2</sup>) * (2 x 8)
                          _
                                6398 LBS
                                              Max concentrated load next to wall (bending).
                                              Shear controls
              Shear controls when load is next to wall.
        For a 3 square foot area the concentrated load will be supported by two ribs.
        Maximum live load for bending on two ribs is:
            w[FLOORRIBLL]= w[FLOORMOMLL] x BF / 12 =
                                                                  1701 plf
        Make uniform load moment equal to concentrated load moment and solve for P.
        w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
                P(moment) = w[FLOORRIBLL] x (FLOORSPANMOM) / 4
                                4041 LBS
                                            Max concentrated load in center of floor (bending).
                          =
```

INSERT PLATE ANALYSIS 3.0 (Analysis per ACI 318-08, Appendix D) 1" 3.1 **Material Properties** f'_c= 5000 psi (sand-lightweight) 61 ksi $f_{uta} =$ 2" 0.196 in² $A_{se} =$ 0.589 in² $A_{brg} =$ STUD $h_{ef} =$ 2 in $d_a =$ 0.5 in 1/2" 3.2 Stud Analysis 3.2.1 Per D.5.3.4, Eq D-15, Pullout strength in tension shall not exceed: 23,562 lbs/stud $N_p = 8 A_{brg} f'_c$ = (due to crushing strength of concrete at the head of the stud. Basic tension breakout strength of stud shall not exceed: 3.2.2 $N_{b} = k_{c} \lambda (f'_{c})^{1/2} h_{ef}^{1.5}$ [Eq D-7] Sec D.5.2.2 $\lambda~$ = 0.85 Sec 8.6.1 (sand-lightweight) $k_c = 24$ (for cast-in anchors) $N_b =$ 4080 lbs/stud 3.2.3 Check ductile strength of stud. $N_{sa} = A_{se}f_{uta}$ 11.98 kips/stud [See D.4.4 a) i)] Φ= 0.75 $\Phi N_{sa} =$ 8.98 kips/stud 3.2.3 Check shear strength of stud. $V_{sa} = A_{se}f_{uta}$ 11.98 kips/stud = Φ= 0.65 [See D.4.4 a) ii)] $\Phi N_{sa} =$ 7.79 kips/stud **INSERT PLATE "P/N 223100" ANALYSIS** 3.3 Υ 1' Х 1" \bigcirc 6" 8" 3"

1/4" PLATE, 6"x8"

1/2" x 2" STUD (TYP 3 PLCS)

6"

Page 15 of 24: CONNECTIONS

3.3.1 Tension Capacity of "P/N 223100" plate: $N_{cbg} = (A_{nc}/A_{nco}) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$ [Eq D-5] Sec D.5.2.1 $A_{\rm Nco} = 9h_{\rm ef}^2$ 36 in² A_{Nc} = 4" Find A_{Nc} for just the two upper studs. 60 in² $A_{Nc} = A_{Nco} + 4(3)(h_{ef}) =$ റ $\Psi_{ec,N} =$ 1.0 assume no eccentricity Ó 1.0 (c_a min > 1.5 h_{ef} for 2 studs) $\Psi_{ed,N} =$ $\Psi_{c,N} =$ 1.25 (for cast-in anchors) 1.0 (for cast-in anchors) $\Psi_{cp,N} =$ $N_{cbg} =$ Φ= 0.70 [Sec D.4.4 (c) condition B] 8500 lbs $\Phi N_{cbg} =$ 5950 lbs TENSION CAPACITY OF "P/N 223100" PLATE 3.3.2 Shear Capacity of "P/N 223100" plate in the X-direction: This shear force is parallel to the edge of the panel. (equels two times perpendicular) $V_{cbg} = 2(A_{vc}/A_{vco})\psi_{ec,V}\psi_{ed,V}\psi_{c,V}\psi_{h,V}V_{b}$ [Eq D-22 x 2] Sec D.6.2.1 (c) $V_{b} = 7(I_{e}/d_{a})^{0.2} (d_{a})^{1/2} \lambda (f'_{c})^{1/2} (c_{a1})^{1.5}$ [Eq D-24] Sec D.6.2.2 $I_e = h_{ef} =$ 2 inches λ = 0.85 Sec 8.6.1 d_a = 0.5 inches $C_{a1} =$ 7 inches $V_{b} =$ 7270 lbs/stud 1.0 [D.6.2.8] $\psi_{h,V} =$ Ψ_{ec},_V = 1.0 assume no eccentricity $\psi_{\mathrm{ed},\mathrm{V}}$ = 1.0 $\Psi_{c,V} =$ 1.2 (for #4 bar between anchor and edge) h₂ = 4 inches 4 inches $S_1 =$ 84 in² $A_{vco} = 2(1.5 c_{a1}) h_{a=}$ 100 in² $A_{vc} = (2 (1.5 c_{a1}) + s_1) h_a =$ $V_{cbg} =$ 20772 lbs Φ= 0.70 [D.4.4 (c) condition B] $\Phi V_{cbg} =$ 14540 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION Shear Capacity of "P/N 223100" plate in the (negative) Y-direction: 3.3.3 This shear force is perpendicular to the edge of the panel. NOTE: The lower stud is ignored since it is close to the free edge. $V_{cbg} = (A_{vc}/A_{vco}) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V}V_{b}$ [Eq D-22] Sec D.6.2.1 (b) $V_{\rm b} =$ 7270 lbs/stud from 3.3.2 above $\Psi_{ec,V} =$ 1.0 assume no eccentricity 1.0 C_{a2}>1.5C_{a1} $= v_{ed} \psi$ $\psi_{h,V} =$ 1.0 [D.6.2.8] $\Psi_{c,V} =$ 1.2 (for #4 bar between anchor and edge) 4 inches $h_a =$ $S_1 =$ 4 inches 84 in² 100 in² $A_{vco} =$ $A_{vc} =$ from 3.3.2 above $V_{cbq} =$ Φ= 10386 lbs 0.70 [D.4.4 (c) condition B] ⇔V_{cbg} = 7270 lbs SHEAR CAPACITY OF "P/N 223100" PLATE IN Y-DIRECTION

3.4 INSERT PLATE "P/N 223000" ANALYSIS

Find A_{Nc} for just the two studs.

3.6 WALL CORNER INSERT ANALYSIS

This insert is used on the vertical sides of the endwalls. The 4" leg forms the outside edge of the endwalls, and the 6" leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor.

The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls.

The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, (+X or -X direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction.

3.6.1 Capacity of Wall Corner Inserts in X-direction

Check capacity of individual studs on the 6" leg of the angle. These studs would be in shear toward the free edge.

V_{cb} = (A _{vc} /A _{vco}) ψ	$_{ed,V} \psi_{c,V} \psi_{h,V} V_{b}$	C	[Eq D-21 Sec	D.6.2.1 (a)]	
where:					
$V_{b} =$	$7(l_e/d_a)^{0.2} (d_a)^{1/2} \lambda(d_a)^{1/2} $	$f'_{c})^{1/2} (c_{a1})^{1.5}$	[Eq D-24] Sec	D.6.2.2	
	$I_e = h_{ef} =$	2 inches	λ =	0.85 Sec	8.6.1
	d _a =	0.5 inches	c _{a1} =	5 inch	es
$V_b =$	4389 lbs/stu	d			
$\psi_{ed,V}$ =	1.0	$\psi_{h,V}$ =	= 1.0 [D.	6.2.8]	
$\psi_{\mathbf{c},\mathbf{V}} =$	1.2 (for #4	bar between a	nchor and edge)	
h _a =	4 inches	[at step-jo	int]	s ₁ =	24 inches
$A_{vco} =$	$4.5 c_{a1}^{2}$	112.5			
A _{vc} =	2(1.5 c _{a1}) h _{a =}	60) in ²		

3.7 FLOOR LIFTING INSERT ANALYSIS

The floor lifting inserts are made from 5"x5"x5/16" angle with a 5"x5/16" plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, 1/2"x4" long, on 12" centers and two studs, 1/2"x2" long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5"x5"x5/16" angle with one side up and one side out, and extend the entire length of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, 1/2"x4" long, on 12" centers and four # 6 x 30" rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (sec 3.6.1).

3.8 CAPACITY OF WELDS AT CONNECTION PLATES

Welds to be made with SMAW, E70XX electrodes. All standard connection plates will have a 3/16" weld, 3 inches long. E70XX welds are good for .928 kips per inch per sixteenth inch of weld. Weld capacity is then: $Pw = (0.928 \text{ k/inch/sixteenth}) \times (3 \text{ inches}) \times (3 \text{ sixteenths})$

3.9 CAPACITY OF TIE-DOWN CONNECTION PLATES

Three failure modes are noted:

- A: Failure of the connection plate.
- B: Failure of the bolts connecting the plate to the shelter.
- C: Failure of the expansion anchor connecting the plate to the foundation.

HoleArea(bolt)= D(top) x t = 0.3125 in^2 HoleArea(anchor)= D(bot) x t = 0.21875 in^2 PL-Area = t x (2" - (.5 x 1.25")) = 0.34375 in^2 cannot exceed t x 4t = 0.25 in^2 CONTROLS OK [exceeds 2/3 hole area, AISC, LRFD (1999), D3.2]

	Apl(ar Fp(PL-be PL-be oad factor: on plate is: Use A307 bolts		14.50 ki 10.88 ki	² ips/ bolt hole ips/ anchor hole using 1 bolt and	58 ksi 2 anchors)
Fv = A(bolt) =	10.0 ksi 0.785 in ²				
Transient load factor:	1.333				
P(bolt) =	10.47 kips	s / bolt	=	10472 lbs pe	er connection
C: Expansion anchor ca					
Reference ICC report					
Anchor is Hilti Stainless					
Shear in horizontal dire					
	5, 3000 psi norr	•		n ICC report.	
	ent depth:	4.75 in	÷		
	vable load:		s per ancho		
	2, 3000 psi norr	-		n loc report. n direction of loa	ad)
Edge distance for		9.75 in		n direction of loa	au)
Spacing req'd fo Min. spacir		10.75 in		uction per note 4	table 2)
•	al spacing:	4.75 in 8 in	-	iction per note 4	, lable Z)
Interpolated reduction fo		4.6 %			
Transient		1.333			
Modified allowable horizontal s			s per ancho)r	
Modified allowable honzontal a	times $2 =$		s per conne		
Shear in vertical direction				SCHOIT	
	olt 3 requireme		<u>/-</u>		
	4.75" embedme				
			e 50% of ch	nart loads (note	6. table 2)
			for full loa		o, tablo <u>_</u> /
6" edge dist			terpolated i		
	ertical load in 3				
61.54%	х	4225 lb		2600 lbs pe	er anchor
Reduc	tion for spacing	(same as	above):	4.6 %	
		ansient loa		1.333	
Mod	ified allowable	vertical she	ear load:	3308 lbs pe	er anchor
		ti	mes 2 =	6615 lbs pe	er connection
Controlling loads for tie-down co	onnections:				
Horizontal (sliding):	10472 lbs				
Vertical (uplift):	6615 lbs				

STRUCTURAL CALCULATIONS: 2009 IBC; CONCRETE

4 CONCRETE BUILDING WEIGHT CALCULATOR

		Concrete Density =	115 pcf		
		Concrete Required =	8.7 yards		
4.1	Shelter D	Dimensions:	shelter dimensions		
		Width:	10.000 ft		
		Length:	14.000 ft		
		Height:	9.250 ft,(wall height)		
			Weight, Ibs		
		Material			
4.2	ROOF	CONCRETE	6566		
		2.25" INSULATION	49		
		7/16" OSB PANELING	183		
		3/8" OSB W/FINISH	156		
		Total Roof Wt.	6953		
		Avg. Dead Load, psf	45.7		
4.3	WALLS	CONCRETE	14495		
		1.75" INSULATION	118		
		7/16" OSB PANELING	395		
		3/8" OSB W/FINISH	339		
		Total Wall Wt.	15347		
		Avg. Dead Load, psf	35.6		
4.4	FLOOR	CONCRETE	5798		
		L5x5x5/16 PERIMETER BEAM	494		
		STYROFOAM (2 PCF DENSITY)	33		
		TILE, 1/8"	166		
		Total Floor Wt.	6491		
		Avg. Dead Load, psf	46.4		
4.5	WEIGHT	SUMMARY:		Duilding	
4.5	VEIGHT		Width x	Building Length x	Height
		Total Overall : Ibs	28791 10.000	14.000	9.250

CODE_SL 1996	IMMARY UNIFORM BUILDING CODE		OF SHEETS	DESIGN PARAMETERS
1996	BOCA NATIONAL BUILDING CODE	INDEA	UF SHEETS	USE GROUP: B (BOCA, MASBC)
1997	INTERNATIONAL BUILDING CODE	LAYOUT D	DRAWINGS	S-2 (FBC, IBC, SBC, U
1997	STANDARD BUILDING CODE	0-0	COVER SHEET	U (OBC)
1997	UNIFORM BUILDING CODE	0-1	PARTS LIST	CONSTRUCTION TYPE: 5B (BOCA, MA
2000 2000	INTERNATIONAL BUILDING CODE	0-2	PARTS LIST CONT'D./CUT LIST	IV-UNP
2000	STANDARD BUILDING CODE INTERNATIONAL BUILDING CODE	*1–0	EXTERIOR ELEVATION "A"	V-B (IB
2006	INTERNATIONAL BUILDING CODE	*1-1	EXTERIOR ELEVATION "C"	V-N (UE
2009	INTERNATIONAL BUILDING CODE	*1-2	EXTERIOR ELEVATION "B"	ROOF LIVE LOAD: 135 PSF
1994	UNIFORM MECHANICAL CODE	*1-3	EXTERIOR ELEVATION "D"	FLOOP LIVE LOAD: 251 DEF
1996	BOCA MECHANICAL CODE	2-0	FLOOR PLAN	FLOOR LIVE LOAD: 251 PSF
1997	INTERNATIONAL MECHANICAL CODE	2-1 3-0	GENERATOR BASE BRACKET DETAIL REFLECTED CEILING PLAN – ELECTRICAL	GROUND SNOW LOAD: 161 PSF (N/
1997 1997	STANDARD MECHANICAL CODE UNIFORM MECHANICAL CODE	3-1	REFLECTED CEILING PLAN - UNISTRUT LAYOUT	
2000	INTERNATIONAL MECHANICAL CODE	4-0	INTERIOR ELEVATION "A"	WIND SPEED: 156 MPH/EXPOSURE C
2000	STANDARD MECHANICAL CODE	4-1	INTERIOR ELEVATION "C"	
2003	INTERNATIONAL MECHANICAL CODE	4-2	INTERIOR ELEVATION "B"	SEISMIC ZONE FOR SBC & UBC:
2006	INTERNATIONAL MECHANICAL CODE	4-3	INTERIOR ELEVATION "D"	SEISMIC DESIGN CATEGORY FOR IBC:
2009	INTERNATIONAL MECHANICAL CODE CALIFORNIA BUILDING CODE	4-4	INTERIOR ELEVATION "A" – UNISTRUT LAYOUT	
2010 2010	CALIFORNIA BUILDING CODE CALIFORNIA GREEN BUILDING STANDARDS	4–5	INTERIOR ELEVATION "C" - UNISTRUT LAYOUT	
2010	CALIFORNIA ENERGY CODE	4-6	INTERIOR ELEVATION "B" - UNISTRUT LAYOUT	
2010	BUILDING CODE OF NEW YORK STATE	4-7	INTERIOR ELEVATION "D" - UNISTRUT LAYOUT	
	ELECTRICAL CODE OF NEW YORK STATE	*5-0	ELECTRICAL SCHEMATIC	
2010	MECHANICAL CODE OF NEW YORK STATE	5-1	GENERATOR DUPLEX WIRING SCHEMATIC	CONCRETE f'c: 5000 PSI AT 28 DAYS
2010	CALIFORNIA BUILDING CODE NORTH CAROLINA BUILDING CODE NORTH CAROLINA ELECTRICAL CODE	5-2 5-3	SMOKE/HEAT WIRING SCHEMATIC LOW VOLTAGE SCHEMATIC	CONCRETE UNIT WEIGHT: 115 PCF
2009 2008	NORTH CAROLINA BUILDING CODE	5-4	ELECTRICAL PANEL CALC (PRE HEMP)	FIRE RATING: 2 HOUR WALL AND ROO
2008	NORTH CAROLINA ELECTRICAL CODE	5-5	ELECTRICAL PANEL CALC (POST HEMP)	OPENINGS AND PROXIMITY ON SITE)
2009	NORTH CAROLINA ENERGY CONSERVATION CODE	5-6	DEC 3000 WIRING SCHEMATIC	
	NORTH DAKOTA ELECTRICAL WIRING STANDARDS	5-7	FUEL MONITORING WIRING SCHEMATIC	
2009	MICHIGAN BUILDING CODE	5-8	HEATER STRIP ELECTRICAL CONNECTION DETAIL	PHYSICAL PROPERTIES SHELTER DIMENSIONS: 10'-0"W X 14'-
2009	MICHIGAN MECHANICAL CODE	5-9	SAUK PANEL CONNECTION DETAIL	SHELTER DIMENSIONS: 10 -0 W X 14 - SHIPPING DIMENSIONS: 11'-10 1/8"W
2000	MINNESOTA STATE ENERGY CODE (CH. 1323)	6-0	GROUND BAR DETAILS	SHELTER WEIGHT: 33,000 # (SHELTER
2007	MINNESOTA STATE MECHANICAL CODE (CH. 1346-2000 IMC & 2000 IFGC W/ AMEND.)	6-1 6-2	GROUND STRAP TO DOOR FRAME DETAIL GROUND BAR THRU WALL DETAIL	SHELLER WEIGHT. 55,000 # (SHELLER
2007 2009	MINNESOTA STATE BUILDING CODE	6-2A	THRU WALL PENETRATION DETAIL	
2009	NEW MEXICO ELECTRICAL CODE	6-3	MUFFLER HANGER DETAILS	GENERAL NOTE:
2009	NEW MEXICO MECHANICAL CODE	7-0	INTERIOR PANELING R/U CALCULATIONS	
2004	CHICAGO BUILDING CODE	7-1	FUEL FILL & RETURN RISER	1. DIMENSIONS MARKED WITH A "D" A
2007	FLORIDA BUILDING CODE WITH 2009 SUPPLEMENTS 1 & 2	7–2	FUEL VENT RISER	TO BE CHECKED. THEY TYPICALLY I
2011	MASSACHUSETTS ELECTRICAL CODE MASSACHUSETTS STATE BUILDING CODE	7–3	HEMP PROTECTION W/G & DOOR SECTION	TERMINATION OR DIMENSION THAT N DIMENSION AT THE INSTALLATION SI
8TH	MASSACHUSEITS STATE BUILDING CODE	7-4	6" SLAB FOUNDATION FLAT TIEDOWN DETAILS	2. PAINT UNGALVANIZED OR UNPAINTE
2010 2010	OHIO BUILDING CODE OHIO MECHANICAL CODE	7-5	CONCRETE SHELTER PANEL CONNECTION DETAILS	A. TWO(2) COATS OF DEVOE 201H U
2010	CALIFORMIA TITLE 25	7-6 7-7	GENERAL ELECTRICAL NOTES & LEGEND THRU WALL PENETRATION DETAIL	DFT OR TWO(2) COATS OF DEVOE
2010	OREGON STRUCTURAL SPECIALITY CODE	7-8	GENERATOR THIMBLE DETAIL	4–8 MIL DFT, THEN
2010	OREGON MECHANICAL SPECIALITY CODE	, 7–9	UMBILICAL CORD PENETRATION DETAIL	B. ONE(1) COAT OF DEVTHANE 389 F
2010	OREGON ENERGY EFFICIENCY SPECIALITY CODE	7–10	COMPRESSOR BRACKET SUPPORT DETAIL	4-8 MIL DFT.
2007	KENTUCKY BUILDING CODE 011 NATIONAL ELECTRICAL CODE	7–10A	DOOR STOP BRACKET INSTALLATION DETAILS	1. ALL EXPOSED UNFINISHED SHEET
<u>1996–2</u> 1989 10	<u>1011 NATIONAL ELECTRICAL CODE</u> 199,2001,2004,2007 ASHRAE 90.1	* 051	INTER CHEETE WHICH MAY CONTAIN FIELDWORK	2. ALL EXTERNAL FASTENERS TO BE WISE NOTED.
2000.20	003,2006,2009 INTERNATIONAL ENERGY CONSERVATION CODE	* = DEN	NOTES SHEETS WHICH MAY CONTAIN FIELDWORK	3. PAINT INTERIOR WITH ONE COAT O
2000.20	03,2005,2006,2009 NFPA 101 LIFE SAFETY CODE			PART SYSTEM 2-8 MIL DFT.
2002	ARKANSAS FIRE PREVENTION CODE	REFEREN	CE DRAWINGS	4. PLUG SCREW HOLES USED TO HO
2009	NORTH CAROLINA FIRE PREVENTION CODE	108-00	07 ABBREVIATIONS AND SYMBOLS	WITH ALUMINUM SCREWS OR ALL-
NOTES		108-01	6 GENERAL CASTING SPECIFICATIONS (4 SHEETS)	
	ED CODES INCLUDE LATEST STATE ADOPTED AMENDMENTS. S SHELTER NOT INTENDED FOR HUMAN HABITATION.		38 SHELTER LIFTING DETAILS (3 SHEETS)	
	ROVED MODEL MAY BE MIRROR IMAGE.			
	UPANT LOAD = 0. OHIO = 2			
	CIAL CONDITIONS AND PERMISSIBLE TYPES OF GASES: N/A		RAL DRAWINGS (MANUFACTURE ONLY)	1-3
	LTER HAS NO COUNTY PLACEMENT RESTRICTION IN THE STATE OF MARYLAND.	S0-0	STRUCTURAL SPECIFICATIONS	
	TE INSIGNIA LABEL/DECAL IS LOCATED NEAR MAIN ELECTRICAL SERVICE PANEL.	S1-0	STRUCTURAL LAYOUT – WALL "A" STRUCTURAL LAYOUT – WALL "C"	
	R MUST BE MINIMUM 90 MINUTE FIRE RATED IF USED IN 2 HOUR FIRE RATED SHELTER AND MINIMUM 45 MINUTE FIRE RATED	S1-1 S1-2	STRUCTURAL LAYOUT - WALL "B"	
	JSED IN 1 HOUR FIRE RATED SHELTER.	S1-2 S1-3	STRUCTURAL LAYOUT - WALL "D"	
	RGY CODE EVALUATION BASED ON COMCHECK-EZ AND ENERGY GAUGE FLACION SOFTWARE.	S2-0	STRUCTURAL LAYOUT - ROOF	
	SUBJECT TO FLORIDA FIRE SAFETY CODE, COMPLIANCE IS THE RESPONSIBILITY OF THE LOCAL JURISDICTION CODE OFFICIAL.		000X1400-03 CONCRETE FLOOR ASSY KIT 10'0"X14'0"	
	WELDS SHALL BE VERIFIED BY SPECIAL INSPECTION SHOWING CONFORMANCE TO THE DESIGN DRAWINGS AND SPECIFICATIONS.			4-3/
	DING CATEGORY II. 1609.1.1 ALLOWS CHAPTER 6 OF ASCE 7; PER SEC 6.5.5, USE TABLE 1-1.			
	LICABLE INTERNAL PRESSURE COEFFICIENT (NOT APPLICABLE) - THESE SHELTERS CONFORM TO THE REQUIREMENTS OF SECTION	N		ELEVATION KE
160	9.1.1 WHICH ALLOWS CHAPTER 6 OF ASCE 7; USE SEC 6.4; METHOD I SIMPLIFIED PROCEDURE.			\\4-1/
	D IMPORTANCE FACTOR $-$ IW = 1.000			(B)
	S SHELTER IS AN "ENCLOSED STRUCTURE".			
	SE PLANS ARE DESIGNED TO BE USED FOR THE CONSTRUCTION OF COMMERCIAL MODULAR UNITS, IN ACCORDANCE WITH CA			4-2/
	LTH AND SAFETY CODE SECTION 18028, 1991 UBC, 1993 NEC, ANSI A117.1–1986. 2005 NEC IS MORE STRINGENT THAN THE 2002 NEC, 2012 NEC.		1-1	
	ERNAL GROUNDING BY OTHERS.			
	LITER CONSTRUCTED IN ACCORDANCE WITH 9N-3 FAC.		•	
	LTERS AND VENTS ARE DESIGNED FOR AND DO MEET THE HVHZ REQUIREMENTS.			

21. SHELTERS AND VENTS ARE DESIGNED FOR AND DO MEET THE HVHZ REQUIREMENTS.

22. THIS BUILDING DOES NOT CONTAIN PLUMBING FACILITIES.

EXTERIOR	EXTERIOR COMPONENTS AND CLADDING POSITIVE AND NEGATIVE PRESSURES IN TERMS OF PSF					
ZONE	2000 IBC,			2000,2003,2006,2009,2007,IBC FBC		
ZONE	120 MPH WIND SPEED	120 MPH WIND SPEED	156 MPH WIND SPEED	156 MPH WIND SPEED		
ROOF ZONE 1 (100 SF EFFECTIVE WIND AREA)	+12.1/-28.7	+10.0/-28.7	+15.7/-44.8	+17.2/-48.4		
ROOF ZONE 2 (20 SF EFFECTIVE WIND AREA)	+12.1/-46.9	+12.0/-46.9	+18.6/-73.4	+20.4/-79.7		
ROOF ZONE 3 (10 SF EFFECTIVE WIND AREA)	+12.7/-79.1	+12.7/-79.1	+20.0/-123.7	+21.5/-135.6		
WALL ZONE 4 (200 SF EFFECTIVE WIND AREA)	+25.8/-28.4	+25.8/-28.4	+39.6/-43.4	+42.7/-47.2		
WALL ZONE 5 (30 SF EFFECTIVE WIND AREA)	+29.3/-38.0	+29.3/-38.0	+45.9/-59.2	+49/-64.4		

В

N	RRG	6/8/12	CHANGES PER 12KBR002-3
М	JJ	7/25/11	UPDATED SHEET INDEX & CODE COMPL
L	RRG	04/28/11	ADDED SHT 2-1 & 5-10
F	MDF	08/03/10	PER MARKUPS
REV	BY	DATE	DESCRIPTION

				PAR	TS LIST				
ITEM	QTY	U/M	P/N	DESCRIPTION	ITEM	QTY	U/M	P/N	DESCRIPTI
	0.0950	ÉA.	146545	SHEET ALUM,.090",48"X120",5052,COAT	88	2.0000	ÉA.	420202	LABEL, BLK, ELECT, "208V 3-PHASE"
4	1.0000	EA.	146565-001	SHELF,3105 SERIES UPS,15",ALUM	89	1.0000	EA.	420203	LABEL, BLK, ELECT, "CIRCUIT BREAKER BOX"
5	49.0000 4.0000	EA. EA.	163750 168090	WASHER,2"X2"X1/8",SQ,7/16" H,GALV	90	1.0000	EA. EA.	420204 420226	LABEL, BLK, ELECT, "GENERATOR/SHORE POWE
	1.0000	EA. EA.	168283	SCREW,TEK,#8X1/2",PH,MOD_TRUSS BUSHING,PLASTIC,1/2",SNAP-IN,HEYCO	91	1.0000	EA. EA.	420228	LABEL,BLK,ELECT,"HOME" LABEL,BLK,ELECT,"RELEASE"
8	3.0000	EA.	170112	PIPE CAP,PLASTIC,NPT,NIAGARA #249	93	1.0000	EA.	420311	LABEL, BLK, ELECT, "L1"
9	1.0000	EA.	400666	CARD HOUSING W/AC DC 48V ADAPT	94	1.0000	EA.	420312	LABEL,BLK,ELECT,"L2"
10	2.0000	EA.	410000	CONDULET, BODY COVER, 1" ALUM	95	1.0000	EA.	420313	LABEL,BLK,ELECT,"L3"
11	2.0000 2.0000	EA. EA.	410006 410041	CONDULET,BODY AL LB,1",LB100D CONDULET,GASKET 1",GASK035N	96 97	1.0000	EA. EA.	420314 420321	LABEL,BLK,ELECT,"N" LABEL,BLK,ELECT,"NORMAL"
13	4.0000	EA.	410049	LOCKNUT,EMT,1 1/2"	98	1.0000	EA.	420322	LABEL, BLK, ELECT, NORMAL
14	1.0000	EA.	410050	LOCKNUT,EMT,2"	99	1.0000	EA.	420328	LABEL, BLK, ELEC, "TORQUE REQUIREMENT"
15	3.0000	EA.	410077	BUSHING, 1", PLASTIC	100	2.0000	EA.	420329	LABEL,YEL,"OSHA CLEARANCE REQUIRE"
16	11.0000	EA.	410102	CONDUIT, PVC, 1", CONNECTOR, MALE	101	8.0000	EA.	430034	RECEPTACLE, DUPLEX, 125V, 20A, IVORY
17	1.0000 21.0000	EA. EA.	410147 410177	CONDULET,PVC LL,1",W/GASKET & CVR CONDUIT HANGER,3/4" EMT/RIGID	102	1.0000	EA. EA.	430084 430170	SWITCH,SPST,20A,120V,IVORY GEN RECPT,DECONTACTOR,MALE,MELTRIC
19	1.0000	EA.	410203	CONDUIT, PVC, 2", MALE ADAPTER	105	1.0000	EA.	430171	RECEPT, DECONTACTOR, FEMALE, MELTRIC
20	2.0000	EA.	410341	CONDUIT, PVC, 2", 90 DEGREE SWEEP BEND	105	1.0000	EA.	430247	GEN RECPT, PROTECTIVE CAP, MALE, MELTR
21	1.0000	EA.	410405	NIPPLE,RIGID,2"X5"	106	1.0000	EA.	430354	PANELBOARD,SQD,225A,30P,3PH,NQ430L2
22	11.0000	EA.	410416	LOCKNUT,RNC,1",LT9LF	107	1.0000	EA.	430503	COVER, RECPT PLATE, 4X4, QUAD, PLASTIC
23	24.0000 5.0000	EA. EA.	410421 410422	CONDUIT,PVC,1/2",CONNECTOR,MALE ELBOW,SCH.40 RNC,1",90 DEGREE	108	9.0000	EA. EA.	430569 430721	COVER,BLANK PLATE, 4X4X2,PVC,NEMA 6 PANELBOARD,SQD,COVER.NC32S
24	12.0000	EA. EA.	410422	ELBOW,SCH.40 RNC,1,90 DEGREE ELBOW,SCH.40 RNC,1/2",90 DEGREE	110	6.0000	EA. EA.	430928	COVER,RECPT PLATE,4X2,2R,SS
26	3.0000	EA.	410424	CONDUIT, PVC, 1, CONNECTOR, FEMALE	111	1.0000	EA.	430929	COVER,SWITCH PLATE,4X2,1 SWITCH,SS
27	1.0000	EA.	410425	CONDUIT, PVC, 2", CONNECTOR, FEMALE	112	1.0000	EA.	431201	GEN RECEPT, HANDLE, METAL, MELTRIC
28	24.0000 1.0000	EA.	410426	LOCKNUT,RNC,1/2",LT9LD	113	1.0000	EA. EA.	431202	GRIP,CORD,NO MESH,AL,1.438-1.562
29 30	1.0000	EA. EA.	410429 410434	CONNECTOR,1 1/2",CGB5913 CONDULET.PVC LB,1".W/GASKET & CVR	114	1.0000 4.0000	EA. EA.	440071 470047	SURGE ARRESTOR,SQ-D,3PHASE,SDSA3650
31	1.0000	EA.	410435	CONDULET, PVC LB, 1 , W/ GASKET & CVR CONDULET, PVC LL, 2" (OR EQUAL)	116	8.0000	EA.	470058	LIGHT BULB,F32 T-8 MED BIPIN
32	1.0000	EA.	410445	CONNECTOR,1 1/4",CG1144A	117	1.0000	EA.	540211	G-BAR KIT, SQUARE D, PK23GTAL
33	10.0000	EA.	410461	1IN CONDUIT VIBRACLAMP BVP100	118	1.0000	EA.	168029	BOLT, 3/8"X2", STAINLESS STEEL
34	1.0000	EA.	430161	BOX,BACK,GEN RECPT 100A,MELTRIC	119	2.0000	EA.	168030	WASHER,3/8" LOCK,STAINLESS STEEL
35 36	2.0000	EA. EA.	430244 430286	BOX,JUNCTION,ROUND,1/2"KO, E970CD BOX,ENCLOSURE,16X16X6,HINGED,NEMA3	120 121	2.0000	EA. EA.	168031 168032	WASHER,3/8" FLAT,STAINLESS STEEL NUT,3/8"-UNC,HEX,STAINLESS STEEL
37	3.0000	EA.	430566	BOX, JUNCTION, 2X4, 1/2"KO, E981DFN	122	1.0000	EA.	168120	WASHER,3/8" DRAGON TOOTH,DTW38
38	2.0000	EA.	430567	WBOX, JUNCTION, 2X4, 1/2" KO, E980DFN	123	50.0000	ि हा.	400030	WIRE,#6 THHN,STRAND,GRN
39	9.0000	EA.	430659	BOX, JUNCTION, 4X4X2, PVC, NEMA 6P		80.0000	FT.	400050	WIRE,#2 THHN,STRAND,GRN
40	1.0000	EA.	430720 430813	LOADCENTER, SQD, BOX, MH32	127 128	1.0000	EA. EA.	400051 400174	C-TAP,ORANGE,54740 C-TAP,PINK,54730
41 42	4.0000	EA. EA.	430936	SWITCH,MTS,4P200A,SQD,82454,NEMA1 BOX,JUNCT,2"X4",1 7/8"D,NONMETALIC	128	1.0000	EA. EA.	400174	LUG,2H,#6,BLU,1/4"BOLT,3/4"C/C,LBFW
43	1.0000	EA.	440115	UPS,SYSTEM,3105 SERIES,EATON	130	2.0000	EA.	400390	LUG,2H,#2,BRN,1/4"BOLT,3/4"C/C,LBFW
44	4.0000	EA.	470057	LIGHT FIXTURE,32W,2 BULB,4FT,WR,T-8	131	43.0000	EA.	410430	CABLE TIE MOUNT TM3S25-C
45	1.0000	EA.	470423	LOUVER,8"X9 1/2",HOFFMAN,AVK86	132	1.0000	EA.	480005	CELLXION GREEN SERIAL NO.PLAT
57	45.5417 38.0000	FT. EA.	510017 P410127-00	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW KIT,CONDUIT HANGER,3/8" & 1/2"	133	19.2500 1.0000	FT. EA.	510017 510017-001	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW UNISTRUT,WELDED ASSEMBLY,-001
58	4.0000	EA.	P410127-00	KIT,CONDUIT HANGER,378 & 172 KIT,CONDUIT HANGER,2"	135	1.0000	EA.	510017-002	UNISTRUT, WELDED ASSEMBLY, -001
59	16.0000	EA.	P510020-00	KIT,HARDWARE,ISOLATING,1/4"	136	1.0000	EA.	510017-003	UNISTRUT,WELDED ASSEMBLY,-003
60	1.0000	EA.	390009	DETECTOR, SMOKE, 120V, ION, KIDDE/FYRN	137	1.0000	EA.	510017-004	UNISTRUT,WELDED ASSEMBLY,-004
61	1.0000	EA.	390020	RELAY, SMOKE DETECTOR, RM3	138	1.0000	EA.	510017-005	UNISTRUT, WELDED ASSEMBLY, -005
62 63	1.0000 5.0000	EA. EA.	390032 400272	DETECTOR,HEAT,120V,9V BU,KIDDE/FYR BREAKER,SQD,1P 20A,BOLT 0N,QOB120	139	1.0000	EA. EA.	510017-007 510017-008	UNISTRUT,WELDED ASSEMBLY,-007 UNISTRUT,WELDED ASSEMBLY,-008
64	1.0000	EA.	400272	BREAKER, SQD, 1P 15A, BOLT ON, QOB 120 BREAKER, SQD, 1P 15A, BOLT ON, QOB 115	140	1.0000	EA.	510017-009	UNISTRUT,WELDED ASSEMBLY,-009
65	1.0000	EA.	400273	BREAKER, SQD, 1P 15A, BOLT ON, QOB115	142	1.0000	EA.	510017-010	UNISTRUT, WELDED ASSEMBLY, -010
66	10.0000	FT.	400274	WIRE,#4/5,TYPE W MULTICONDUCTOR CAB	143	1.0000	EA.	510017-011	UNISTRUT, WELDED ASSEMBLY, -011
67 68	1.0000	EA. EA.	400295 400315	BREAKER,SQD,2P 20A,BOLT 0N,QOB220 BREAKER,SQD,3P 30A,BOLT 0N,QOB330	144	1.0000	EA. EA.	510017-012 510017-014	UNISTRUT,WELDED ASSEMBLY,-012 UNISTRUT,WELDED ASSEMBLY,-014
69	1.0000	EA. EA.	400315	BREAKER,SQD,3P 30A,BOLT ON,QOB330 BREAKER,SQD,3P 150A,B,QOB3150	0++J	1.0000	EA.	510017-014	UNUTION, WELDED ASSEMBLI, -UT4
70	1.0000	EA.	400438	BREAKER,SQD,3P,90A,BOLT ON,QOB390					
71	1.0000	EA.	400664	CONTACT CLOSURE TRANSMITTER CARD					
72	8.0000	FT.	410165	CONDUIT, LFMC, 1 1/2", SEALTITE	_				
73	1.0000	EA. EA.	410171 420009	CONNECTOR,LFMC,1",STRAIGHT,ST (OR EQUAL)					
75	80.0000	EA.	420033	LABEL, BEL, ELECT, INTERIOR LIGHT					
76	1.0000	EA.	420037	LABEL,BLK,ELECT, "TVSS"					
77	2.0000	EA.	420041	LABEL,"ARC FLASH AND SHOCK WARNING"					
78	5.0000	EA.	420047	LABEL, BLK, ELECT, "120V RECEPT"					
79 80	4.0000	EA. EA.	420082 420143	LABEL, BLK, ELECT, "CKT 14" LABEL,RED, ELECT,BONDING TAG					
81	2.0000	EA.	420174	LABEL, BLK, ELECT, "CKT 18"	\neg				
82	1.0000	EA.	420193	LABEL, BLK, ELECT, "CKT 21"					
83	2.0000	EA.	420196	LABEL, BLK, ELECT, "CKT 24"					0/31/12 UPDATED PARTS LIST
84 85	1.0000	EA. EA.	420198 420199	LABEL,BLK,ELECT,"CKT 26&28&30"	_				5/8/12 UPDATED PARTS LIST /25/11 UPDATED PARTS LIST
85	1.0000	EA. EA.	420199	LABEL, BLK, ELECT, "DRYER/FILTER" LABEL, BLK, ELECT, "REGULATOR 30–35 PSI"				L RRG 04	
87	1.0000	EA.	420201	LABEL, BLK, ELECT, "OPTICAL CONNECTOR"	\neg				DATE DESCRIPTION

				PARTS LIST	(CONTINU	JED)								
ITEM	QTY	U/M	P/N	DESCRIPTION	TITEM	QTY	U/M	P/N		DESC	CRIPTION			11
146	1.0000	ÉA.	540104	G-BAR KIT,SQUARE D,PTOGTA-6	222	1.0000	ÉA.			-THRESHOLD,SELF-ADHE	SIE] [
147 148	1.0000	EA. EA.	540115 P540299-01	G-BAR,CU,1/8"X1"X12",2 HOLE,DR FRM G-BAR,KIT,CU,540299-01	223 224	1.0000	EA. EA.		SIGN, BLK, "CLE SIGN, PPE WAR	AN INNER DOOR"				-
149	4.0000	EA.	100065	SEAL,EMSEAL,COLORSEAL,COS-60-40-02	225	1.0000	EA.			ICY BACK-UP EXIT				-
150	1.0000	EA.	141104-001	FLATBAR DOOR PULL,1/4"X4"X9",A304,S	226	1.0000	EA.	480229	· ·	PANEL KEEP CLEAR 36"			,	-
151	0.0042	EA.	146545	SHEET ALUM,.090",48"X120",5052,COAT	227	3.0000	EA.	480232	. ·	L,SELF-ADHESIVE				
152 153	1.0000 3.0000	EA. EA.	500004 504007	DOOR,4068,CURRIES,LH/RH,18G DOOR,HINGES,SPRING,NEWSH140	228 229	3.0000 1.0000	EA. EA.	480233 560536		TURN,SELF-ADHESIVE				1
154	2.0000	EA.	504007	DOOR,BUMPER,SS RUBBER STOP,BLACK	230	1.0000	EA.		ALUMINUM SH					
155	1.0000	EA.	504113	DOOR,HOLD OPEN,T-LATCH,6" SS	231	1.0000	EA.	900102	HEMP FILTER	30AMP AND CABINET (P				
156 157	1.0000 4.0000	EA.	504140 504203	DOOR STOP BRACKET ASSY	232	1.0000 4.0000	EA.			115V,4.3A,1/6 HP,1HAB			3 CONT'R.	_/
157	1.0000	EA. EA.	504203	DOOR,SWEEP WEATHERSTRIPPING,48" DOOR,LOCKGUARD,10" 32D	233	8.0000	EA. EA.			ETE,1/4"X1 3/4",PH,SS FLAT,STAINLESS STEEL (-
159	1.0000	EA.	504405	DOOR,DRIP CAP,NGF16A-54"	235	1.0000	EA.	170300		GALV,2 HOLE (PACKING				- 1
160	1.0000	EA.	504501	CORE, LOCKSET, BEST, CONSTRUCT, GREEN	236	1.0000	EA.			GALV,2 HOLE (PACKING			<u> </u>	- I I
161 162	1.0000 2.0000	EA. EA.	504503 504504	LOCKSET,DEAD BOLT,CYLINDRICAL,BEST (OR EQUAL) DOOR,PULL HANDLE KASON,CAST,382	237 238	4.0000	EA. KIT	470005 480087-01		.,70W,EXTERIOR,WALL W/ YPICAL EVERY SHELTER			<u>/)</u>	-
163	1.0000	EA.	540216	GROUND STRAP ASSY,1/2 BRAIDED,18"	239	1.0000	КІТ			ENERTOR ROOM PARTS				-
164	10.0000	EA.	560026	FLOOR, MATTING, NOTRAX #556	240	1.0000	EA.	480181	TRUCK,STEEL	PLATFORM,#9925T31 (P/	ACKING LIST ITEI	(N		
165	1.0000 1.0000	EA.	146545-001 170104	RETAINING STRAP,ALUM	241	2.0000	EA.	520294	HVAC,WINDOW,	1.5T,4KW,FREDRH,EM18M	34 (PACKING LI	ST ITEM)		L
166 167	1.0000	EA. EA.	170104	PIPE,DRAIN COCK,1/4" PIPE CAP,PLASTIC,NPT,NIAGARA #2046	-									
168	1.0000	EA.	170125	PIPE CAP, PLASTIC, NPT, NIAGARA #257	1									
169	30.0000	FT.	170142	PIPE,BLK,SCH40,1",STEEL,USA]									
170	10.0000 8.0000	FT.	170143 170144	PIPE,BLK,SCH40,2",STEEL,USA PIPE,GALV,SCH40,2",MAL,USA	┥ ┍━━━				<u> </u>					,
173	2.0000	EA.	170144	PIPE,BLK,150#,2",90ELBOW,MAL,USA	┥ └──		-		CUT				1 5 6 5	
174	2.0000	EA.	170148	PIPE,BLK,150#,2" UNION,MAL,USA		M P/N		DESCRIPTIO	N	CUT	LENGTH	WIDTH	PCS	
175	2.0000	EA.	170149								(INCH)	(INCH)		
176	1.0000 8.0000	EA. EA.	170150 170151	COUPLING,RIGID,2",BLK,MAL,USA PIPE,BLK,150#,1",90ELBOW,MAL,USA	-1	146545		_UM,.090",48"X120",5		4 1/16" X 5 7/8"	4.0625	5.8750	1]
178	2.0000	EA.	170152	PIPE,SS,DIELECTRIC,1",UNION	2			_UM,.090",48"X120",5 _UM,.090",48"X120",5		4 3/4" X 37" 5 7/8" X 5 7/8"	4.7500 5.8750	37.0000 5.8750	1 10	-
179	4.0000	EA.	170158	CLAMP,HOSE,WORM DR,SS,13/16"-1 1/2"	46			1 5/8"CHANNEL,GOL		<u> </u>	6.0000	3.8730	2	1
180	1.0000	EA.	170160	PIPE,GALV.SCH 40,2",TEE,USA MADE	47	510017	UNISTRUT	,1 5/8"CHANNEL,GOL	DGALV,RAW	18"	18.0000		1	11
181 182	1.0000 4.0000	EA. EA.	170162 400667	PIPE,GALV,SCH 40,2",CAP,USA MADE STEEL SPRING ISOLATER/RESTRAINT	- 48			,1 5/8"CHANNEL,GOL		20"	20.0000		1	11
183	1.0000	EA.	400893	CORD,POWERSUPPLY,12/3,PIGTAIL,8FT	49			1 5/8"CHANNEL,GOL 5/8"CHANNEL,GOL		20 3/4" 22"	20.7500 22.0000		2	-
184	1.0000	EA.	410080	BUSHING,2",PLASTIC	51			,1 5/8"CHANNEL,GOL		24"	24.0000			1
185 186	10.0000 10.0000	FT.	410112 410119	CONDUIT,LFMC,1/2",SEALTITE CONDUIT,LFMC,1",SEALTITE	52		UNISTRUT	,1 5/8"CHANNEL,GOL	.DGALV,RAW	34"	34.0000		1	1
180	1.0000	EA.	410146	CONDUTI,LFMC, 1 ,SEALTITE CONNECTOR,LFMC,1/2",45D,SEALTITE	53			1 5/8"CHANNEL,GOL		42" 51"	42.0000 51.0000		1 3	-
188	1.0000	EA.	410155	CONNECTOR, LFMC, 1", 45D, SEALTITE (OR EQUAL)	55			,1 5/8"CHANNEL,GOL ,1 5/8"CHANNEL,GOL		84"	84.0000		$\frac{3}{1}$	1
189	1.0000	EA.	410160	BUSHING,3",PLASTIC	56	510017		1 5/8"CHANNEL,GOL		96"	96.0000		1	1
190 191	10.0000	FT. EA.	410232 410252	CONDUIT,LFMC,2",SEALTIGHT CONNECTOR,LFMC,2",45	66		WIRE,#4/	5,TYPE W MULTICONE	DUCTOR CAB	120"	120.0000		1	-
192	2.0000	EA.	410404	COUPLING, PVC, 1/2"	- 72 123			LFMC,1 1/2",SEALTITI THHN,STRAND,GRN	E	96" 600"	96.0000 600.0000			-
193	2.0000	EA.	410438	COUPLING, PVC, 1"				THHN,STRAND,GRN		48"	48.0000		+ 1	1
194 195	1.0000 4.0000	EA.	410439		125		WIRE,#2	THHN, STRAND, GRN		192"	192.0000		1	1
195	2.0000	FT. EA.	410442 410468	CONDUIT,LFNC,1",SEALTITE COUPLING,REDUCING,1"x1/2",BLK,USA				THHN,STRAND,GRN	DO411/ D1	720"	720.0000			
197	1.0000	EA.	410519	CONNECTOR, FLEX CORD, 1/2"-3/4"	133			,1 5/8"CHANNEL,GOL _UM090".48"X120".5		77" 6" X 4"	77.0000 6.0000	4.0000	3	$\left \right $
198	1.0000	EA.	430034	RECEPTACLE, DUPLEX, 125V, 20A, IVORY (OR EQUAL)	157	504203	DOOR,SW	EEP WEATHERSTRIPPI		48"	48.0000		1	1
199 200	1.0000 2.0000	EA. EA.	430168 430651	COVER,RECPT PLATE,4 11/16,1 REC (OR EQUAL) SWITCH,FLOAT,GRAINGER,ASSY	159		DOOR, DRI	P CAP,NGF16A-54"		52"	52.0000		1]
200	1.0000	EA. EA.	431181	BOX,JUNCT,4-11/16" SQ,D-2 1/8",1"KO (OR EQUAL)	169			SCH40,1",STEEL,USA SCH40,2",STEEL,USA		360" 120"	360.0000 120.0000		$\frac{1}{1}$	
202	1.0000	EA.	470497	LOUVER,RUSKIN,36"X72",INTAKE,6625D				SCH40,2",STEEL,USA /,SCH40,2",MAL,USA		36"	36.0000		1	1
203	1.0000	EA.	470498	LOUVER,RUSKIN,6625D,48"X48"	172	170144	PIPE,GALV	/,SCH40,2",MAL,USA		60"	60.0000		1	1
204 205	1.0000	EA. EA.	471000 471001	COWLING ASSEMBLY,4'0" X 4'0" COWLING ASSEMBLY,3'0" X 6'0"	185			LFMC,1/2",SEALTITE		120"	120.0000			4 I
205	2.0000	EA.	510114	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,18"	186			LFMC,1",SEALTITE LFMC,2",SEALTIGHT		120" 120"	120.0000 120.0000		1	+
207	1.0000	EA.	550042-011	GENERATOR, EXHAUST TL PIPE ASSM, USA	195		100110011	LFMC,2 ,SEALTIGHT		48"	48.0000		1	1
208 209	1.0000 4.0000	EA. EA.	550124 550125	EXHAUST THIMBLE,8"OD,ASSEMBLY	-						•	•	-	1
209	1.0000	EA. EA.	550125	CLAMP,IRON BEAM, T&B #502 GENERATOR OILER STAND (PROVIDED TO KBR FOR KOHLER)	4									
211	4.0000	EA.	550220	MOUNT,GENSET INSTALL ASSY,6"X12"	1									
212	2.0000	EA.	550222	GENERATOR, KBR FUEL LINE	4									
213 214	1.0000	EA. EA.	900001 420048	GENERATOR,45KW,3PHASE (SUPPLIED BY KBR) LABEL,DATA,STANDARD SHELTER	4			D D D D D D D D D D D D D D D D D D D	4.0	DADTO 1:07			u les (=)	<u></u>
214	1.0000	EA.	480001	PLATE, DATA, STANDARD SHELTER PLATE, DATA, ALUM, 8"X12", GRAY	-			P RRG 10/31/ N RRG 6/8/1					IL 10/31/ IL 6/8/1	
216	8.0000	EA.	168042	NUT,1/4"-20,HEX,PLATED	1					PARTS & CUT LIST			IL 7/25/	
217	12.0000	EA.	168043	WASHER,1/4" LOCK,PLATED	4			L RRG 04/25/	11 UPDATED	PARTS LIST		LJ	JL 04/25	/11
218 219	8.0000 4.0000	EA. EA.	168109 168401	WASHER,1/4" FLAT Z/P SCREW,CAP,1/4"X1 1/2",GLASS-NYLON	-					CUT LIST AND PARTS L	IST		IL 02/03/	
219	2.0000	EA.	410134	NIPPLE,RIGID,1/2",CLOSE	1			F MDF 08/03/ E JFA 5/7/1		KUPS JORIDA OPTIONS			B 08/05/ AB 5/7/1	
221	7.0000	EA.	410465	BUSHING,BUMPER,7/8",9305K28]			REV BY DATE		DESCRIPTIC	N		P.BY DATE	
								· · · ·						

NOTE: 1. FILL ALL SHIPPING SCREWS HOLES IN COWLING, PART NUMBERS 471000 & 471001 IN FIELD. WIRE ALL ALUMINUM RIVETS DURING FINAL INSTALLATION, CAULK ALL TOP & SIDE. 2. DRILL 2 WEEP HOLES IN THE BOTTOM OF COWLINGS

EXTERIOR ELEVATION "C"

Ν	RRG	6/8/12	ADDED NOTE
М	JJ	7/25/11	ADDED NOTE, CHANGED PIPE STRAP, U
L	RRG	04/25/11	PER MARKUPS
F	MDF	08/03/10	PER MARKUPS
REV	BY	DATE	DESCRIPTION

	М	LJL	1/16/12	UPDATED GROUND PAD NOTE
	Г	RRG	04/25/11	UPDATED VENT PER CUSTOMER & RE
	F	MDF	08/03/10	PER MARKUPS
	REV	BY	DATE	DESCRIPTION
1				

· . 4 4 SEE NOTE K 2 211 (3)ЪЪ 14¼") GENERATOR FLOOR PLATE SEE NOTE #2 • (64¼" 4 ۰. A ⊿à

GENERATOR BASE BRACKET DETAIL

NOTE:

1. FLOOR PROVIDED & INSTALLED BY SUBCONTRACTOR PRIOR TO INSTALLATION OF GENERATOR FOOT & RF SHIELDING 304 STAINLESS 48" X 96" X ¼" THICK, DRILLED & TINNED & BEVELED BY SUBCONTRACTOR PRIOR TO INSTALLATION.

2. SEE 550220 PART DRAWING: (4) REQUIRED

			UPDATED	NOTES,	ADDED	BUBBLE
REV	BY	DATE			DI	ESCRIPTION

		SUB-PARTS LIST	
ITEM	P/N	DESCRIPTION	CUT
47	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	18"
56	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	96"

NOTE:

- 1. TOLERANCES THIS SHT ±1" (UNLESS OTHERWISE NOTED)
- 2. ADJUST AS REQUÍRED TO AVOID SOLDER SEAM.
- 3. INSTALL UNISTRUTS USING ⅔" STUDS 1" FROM ENDS AND EVERY 24" ON CENTER. 2 STUDS MIN. EACH UNISTRUT(TYP.).

REFLECTED CEILING PLAN UNISTRUT LAYOUT

Ρ	RRG	10/31/12	MOVED UNISTRUT
N	RRG	6/8/12	ADDED NOTE
М	JJ	7/25/11	CHANGED UNISTRUT ASSEMBLY
REV	BY	DATE	DESCRIPTION

February 27, 20 JOHN T. IRVINC THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213–2900 2919 \sim 100 5031 H Bossier C voice: fax: CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'–0" X 14'–0" CONCRETE SHELTER REFLECTED CEILING PLAN UNISTRUT LAYOUT FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 3–1 DRAWING NO .: REV .: SKBR01 Ρ

	LJL	10/31/12
	LJL	6/8/12
	LJL	7/25/11
	APP.BY	DATE

TE OF MAINTO February 27 No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION. CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. I Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 voice: 5031 Bossier (fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER INTERIOR ELEVATION FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 4-1 DRAWING NO .: REV .: Ρ SKBR01

ENERATOR &	LJL	10/31/12
INECTION	LJL	6/8/12
DE NOTE	LJL	7/25/11
		04/25/11
	DB	08/03/10
	APP.BY	DATE

February 27, A THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION. CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier C voice: fax: CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER INTERIOR ELEVATION B" FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. LJL 6/8/12 LJL 7/25/11 LJL 04/25/11 LJL 2/3/11 4-2 DRAWING NO .: REV.: SKBR01 Ρ DB 08/03/10 APP.BY DATE

	SUB-PARTS LIST									
ITEM	ITEM P/N DESCRIPTION									
49	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	20 3/4"							

– UNISTRUT LAYOUT

"A"

NOTE:

- 1. TOLERANCES THIS SHT ± 1 " (UNLESS OTHERWISE NOTED).
- INSTALL UNISTRUTS USING ⅔ " STUDS 1" FROM ENDS AND EVERY 24" ON CENTER.
 2 STUDS MIN. EACH UNISTRUT(TYP.).

P	RRG	10/31/12			10/31/12
N	RRG	6/8/12	MODIFIED UNISTRUT ASSEMBLY/CHANGED 15 1/2" TO 17" & 13 1/4" TO 13 3/4"		6/8/12
M	JJ	7/25/11	RELOCATED UNISTRUT TO "D" WALL & ADDED PENETRATION	LJL	7/25/11
REV	BY	DATE	DESCRIPTION	APP.BY	DATE

No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER INTERIOR ELEVATION "A" UNISTRUT LAYOUT FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 4-4 DRAWING NO .: REV .: SKBR01 Ρ

	SUB-PARTS LIST ITEM P/N DESCRIPTION CUT									
ITEM	P/N	CUT								
50	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	22"							
53	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	42"							

<u>INTERIOR ELEVATION</u> <u>"C" – UNISTRUT LAYOUT</u>

NOTE:

- 1. TOLERANCES THIS SHT ±1" (UNLESS OTHERWISE NOTED).
- 2. INSTALL UNISTRUTS USING 3/6" STUDS 1" FROM ENDS AND EVERY 24" ON CENTER. 2 STUDS MIN. EACH UNISTRUT(TYP.).

L	RRG	04/25/11	ADDED TOLERANCE NOTE
F	MDF	08/03/10	CREATED UNISTRUT ASSEMBLIES
RE	V BY	DATE	DESCRIPTION

COEVARY 27. TE OF MANY 20 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'–0" X 14'–0" CONCRETE SHELTER INTERIOR ELEVATION "C" – UNISTRUT LAYOUT FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 4-5 DRAWING NO .: REV .: SKBR01 Ρ

LJL	04/25/11
DB	08/05/10
APP.BY	DATE

		SUB-PARTS LIST	
ITEM	P/N	DESCRIPTION	CUT
133	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	77"

NOTE:

- 1. TOLERANCES THIS SHT ± 1 " (UNLESS OTHERWISE NOTED).
- 2. INSTALL UNISTRUTS USING 3/8" STUDS 1" FROM ENDS AND EVERY 24" ON CENTER.
 2 STUDS MIN. EACH UNISTRUT(TYP.).

<u>INTERIOR ELEVATION</u> <u>"B" – UNISTRUT LAYOUT</u>

February 27, 20 JOHN T. IRVINC THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER INTERIOR ELEVATION "B" - UNISTRUT LAYOUT FILENAME: KBR/SKBR01 SCALE: TOLERANCE: 1/2" = 1'-0"DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 4-6 DRAWING NO .: REV .: SKBR01 Ρ

	LJL	1/16/12
NOTE	LJL	04/25/11
	DB	08/05/10
	APP.BY	DATE

		SUB-PARTS LIST	
ITEM	P/N	DESCRIPTION	CUT
46	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	6"
48	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	20"
51	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	24"
54	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	51"
55	510017	UNISTRUT,1 5/8"CHANNEL,GOLDGALV,RAW	84"

NOTES (SHIELDING CONTRACTOR):

NOTE:

- 1. TOLERANCES THIS SHT $\pm 1"$ (UNLESS OTHERWISE NOTED).
- 2. INSTALL UNISTRUTS USING 3/8" STUDS 1" FROM ENDS AND EVERY 24" ON CENTER. 2 STUDS MIN. EACH UNISTRUT(TYP.).

INTERIOR ELEVATION <u>"D" – UNISTRUT LAYOUT</u>

N		6/8/12	
М	JJ	11/16/11	ADDED UNISTRUT FROM "A" WALL
L	RRG	04/25/11	ADDED TOLERANCE NOTE
F	MDF	08/03/10	CREATED UNISTRUT ASSEMBLIES
REV	BY	DATE	DESCRIPTION

Ρ	RRG	10/31/12	CHANGED WIRE FROM #22 TO #18	LJL	10/31/12
L	RRG	04/25/11	MOVED RELAY MOVED TO SMOKE DETECTOR	LJL	04/25/11
K	AMM	2/2/11	CHANGED N/C CONTACT TO N/O PER ELEC ENG	LJL	2/2/11
REV	BY	DATE	DESCRIPTION	APP.BY	DATE

EDESIATY 27, 20 JOHN T. IRVING CENSE NONAL ENGINE THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 1 Hazel Jones Road City, Louisiana 7111 e: (318) 213-2900 : (318) 213-2919 5031 H Bossier Ci voice: fax: CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER SMOKE/HEAT DETECTOR WIRING SCHEMATIC FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 5-2 DRAWING NO .: REV .: SKBR01 Ρ

PANEL NAME:						P	ANEL "I	В"						
			V	OLTAGE:	208	1	120				MAIN B	REAKER:	Y	
PRE HEMP LOADING				PHASE:	3						LUC	GS ONLY:		
FED FROM PANEL "A"				WIRE:	4						S	JRFACE:	Y	
			BU	S AMPS:	150		150	:MAI	NCB A	AMPS		FLUSH:		
			SUPPL	YAMPS:	25						GROU	IND BUS:	Y	
	M	N. SHO	RT CIRCUIT	RATING:	10000				15	SOLATE	D GROL	IND BUS:		
INCLUDE SPARE CAP Y/ N:	N										NEUTE	RAL BUS:	Y	
INCLUDE SPARE CAP Y/ N:														
Z SERVES	LTG	RCPT	PWR	MOT	CB*	CKT	PH	CKT	CB*	LTG	RCPT	PWR	MOT	SERVES
MAIN BREAKER					150	1	A	2						NOT USABLE
MAIN BREAKER			******	*****	[3	В	4					*****	NOT USABLE
MAIN BREAKER					Ī	5	C	6						NOT USABLE
Not Usable			*****	*****	[7	A	8					*****	NOT USABLE
Not Usable					[9	В	10						NOT USABLE
Not Usable]	11	С	12						NOT USABLE
GENERATOR FUEL ALARMS			60		20	13	A	14	20		720			RECEPT
					-	15	В	16						
GENERATOR FUEL PUMP			1728		20	17	C	18	15			120		SMOKE / HEAT DETECTOR
FENERATOR ALTERNATOR HTR.			200		20	19	A	20	20			192		BATTERY CHARGER
GENERATOR RM LIGHTING	256				15	21	В	22]			1000		GENERATOR BLOCK HTR (CON)
			64			23	C	24	20			636		RECEPT(AIR COMP, OPTICAL ENCO
1 PANEL C SEE NOTE 1					90	25	A	26	30			60		TVSS
1 PANEL C SEE NOTE 1]	27	В	28	[60		TVSS
1 PANEL C SEE NOTE 1]	29	C	30	[60		TVSS
CO	NNECT	ED VA	A:	1,23	32	B:	1,3	16	C:	2,0	608			
			*****	*****				*****			*****	AMPS	KVA	
CONNECTE	D KVA:					D.F.	DEMA	ND K	VA:			25.0	9.0	DESIGN (BASED ON SUPF
LIGHTING LOAD:	0.3					1.25	0.3	ł				14.3	5.2	CONNECTED
RECEPT. LOAD - FIRST 10 KVA:	0.7					1.00	0.7	e la				14.5	5.2	DEMAND
RECEPT. LOAD - REMAINDER:	0.0					0.50	0.0					10.5	3.8	SPARE
POWER LOAD:	4.2					1.00	4.2			AVG				
MOTOR LOAD EXCEPT LARGEST:	0.0					1.00	0.0			KVA		AMPS	KVA	CONNECTED
LARGEST MOTOR:	0.0					1.25	0.0			1.7		10	1.2	PHASE A
20% SPARE CAPACITY:	0.0					1.00	0.0					11	1.3	PHASE B
TOTAL CONNECTED LOAD:	5.2		TC	TAL DEN	AND L	OAD:	5.2					22	2.6	PHASE C
INSTRUCTIONS:											PHASE			
* - ALL BRANCH CIRCUIT BREAKE	RS ARE	1P20 L	INLESS OT	HERWISE	E SHOV	VN					LOAD			PHASE BALANCE
[-DENOTES ADDITIONAL POLES	OF MUL	TI-POLE	E CIRCUIT E	BREAKEF	RS						41%		72%	PHASE A
NOTES:											44%		77%	PHASE B
1 This circuit will not be connected in the	"PRE-H	EMP" s	tage and an	e shown fo	or inform	nation	purpose	es.			87%		152%	PHASE C
2 The circuit breaker shall have red iden														
						2								

			ADDED NOTE 2, UPDATED SPREADSHE
Ν	RRG	6/8/12	UPDATED TO MATCH SHEET 5-0
М	JJ	7/25/11	UPDATED LINETYPES
L	RRG	04/25/11	UPDATED DISPLAY
REV	BY	DATE	DESCRIPTION

MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	REAKER REAKER ABLE ABLE	N LTG	IN. SHOP	BU	OLTAGE: PHASE: WIRE: S AMPS: Y AMPS: RATING: MOT	3 4 150 150	/ CKT 1 3	120 150 PH A	:MAII	N CB A		LUG SU GROU D GROU	REAKER: GS ONLY: JRFACE: FLUSH: JND BUS: JND BUS: RAL BUS: PWR	Y Y Y Y MOT	
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	FED FROM GENERATOR NCLUDE SPARE CAP Y/N: SERVES REAKER REAKER REAKER REAKER ABLE ABLE ABLE ABLE ABLE ABLE ATOR FUEL ALARMS	N LTG		SUPPL RT CIRCUIT	WIRE: IS AMPS: Y AMPS: RATING:	4 150 150 10000 CB *	1	PH	СКТ	IS	SOLATE	GROU D GROU NEUTF	JRFACE: FLUSH: IND BUS: IND BUS: RAL BUS:	Y Y	
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	NCLUDE SPARE CAP Y/N: SERVES REAKER REAKER REAKER ABLE ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	N LTG		SUPPL RT CIRCUIT	IS AMPS: Y AMPS: RATING:	150 150 10000 CB *	1	PH	СКТ	IS	SOLATE	GROU D GROU NEUTR	FLUSH: IND BUS: IND BUS: RAL BUS:	Y Y	
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	SERVES REAKER REAKER ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	N LTG		SUPPL RT CIRCUIT	Y AMPS: RATING:	150 10000 CB *	1	PH	СКТ	IS	SOLATE	D GROU NEUTF	IND BUS: IND BUS: RAL BUS:	Y	
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	SERVES REAKER REAKER ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	N LTG		RT CIRCUIT	RATING:	10000 CB*	1	A				D GROU NEUTF	IND BUS: RAL BUS:	Y	
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	SERVES REAKER REAKER ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	N LTG				CB *	1	A				NEUTR	RAL BUS:		
MAIN BRI MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C PANEL C REC REC	SERVES REAKER REAKER ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	LTG	RCPT	PWR	MOT		1	A		CB*	LTG				
MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	REAKER REAKER ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.		RCPT	PWR	MOT		1	A		CB*	LTG	RCPT	PWR	MOT	
MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	REAKER REAKER ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.			PWR	MOT		1	A		CB*	LTG	RCPT	PWR	MOT	
MAIN BRI MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	REAKER REAKER ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.					150 [1		2						SER
MAIN BRI NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	REAKER ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.]	2		-						NOT USABLE
NOT USA NOT USA GENERA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	ABLE ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.					Г	5	B	4						NOT USABLE
NOT USA NOT USA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	ABLE ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.					L	5	С	6						NOT USABLE
NOT USA GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	ABLE ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	Ē				[7	A	8						NOT USABLE
GENERA GENERA GENERA PANEL C PANEL C PANEL C REC REC	ATOR FUEL ALARMS ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	E]	9	B	10						NOT USABLE
GENERA GENERA PANEL C PANEL C PANEL C REC	ATOR FUEL PUMP/ TM MODUL ATOR ALTERNATOR HTR.	_E]	11	С	12						NOT USABLE
GENERA GENERA PANEL C PANEL C PANEL C REC REC	ATOR ALTERNATOR HTR.	E		60		20	13	A	14	20		720			RECEPT.
GENERA GENERA PANEL C PANEL C PANEL C REC REC	ATOR ALTERNATOR HTR.	E					15	B	16						
GENERA PANEL C PANEL C PANEL C REC REC				1728		20	17	С	18	15			120		SMOKE / HEAT D
PANEL C PANEL C PANEL C REC REC	ATOR RM LIGHTING					20	19	A	20	20					BATTERY CHARG
PANEL C PANEL C REC REC		256	5			15	21	B	22]					GENERATOR BLOCK
PANEL C PANEL C REC REC							23	С	24	20			636		RECEPT(AIR COMP & O
PANEL C				7872		90	25	A	26	30			60		TVSS
REC				7642]	27	B	28	30			60		TVSS
RE	0			7812		[29	C	30	30			60		TVSS
RE	CO	NNECT	ED VA	A:	8,71	2	B:	7,95	58	C:	10,	356			
RE													AMPS	KVA	
RE	CONNECTE	D KVA	:				D.F.	DEMAN	ND KV	/A:			150.0	54.0	DESIGN (BASED (
RE	LIGHTING LOAD:	0.3	3				1.25	0.3					75.0	27.0	CONNECTED
	CEPT. LOAD - FIRST 10 KVA:	0.7	7				1.00	0.7					75.2	27.1	DEMAND
	ECEPT. LOAD - REMAINDER:	0.0)				0.50	0.0					74.8	26.9	SPARE
	POWER LOAD:	26.1	1				1.00	26.1			AVG				
MOTO	OR LOAD EXCEPT LARGEST:	0.0)				1.00	0.0			KVA		AMPS	KVA	CONNECTED
	LARGEST MOTOR:	0.0)				1.25	0.0			9.0		73	8.7	PHASE A
	20% SPARE CAPACITY:	0.0)				1.00	0.0					66	8.0	PHASE B
	TOTAL CONNECTED LOAD:	27.0)	ТС	DTAL DEM	IAND L	OAD:	27.1					86	10.4	PHASE C
INSTRUC	CTIONS:											PHASE			
* - ALL E	BRANCH CIRCUIT BREAKERS	ARE 1	P20 UNL	ESS OTHE	RWISE S	HOWN						LOAD			PHASE BALANCE
[-DENC	OTES ADDITIONAL POLES OF	MULTI	POLE C	RCUIT BR	EAKERS							48%		97%	PHASE A
NOTES:												44%		88%	PHASE B
The circui		cation a	nd labele	d as "FIRE	ALARM C	IRCUIT	".					57%		115%	PHASE C

Ρ	LJL	12/11/12	ADDED NOTE 1, UPDATED SPREAD
Ν	RRG	6/8/12	UPDATED TO MATCH SHEET 5-0
L	RRG	04/25/11	UPDATED LINTEYPES
REV	BY	DATE	DESCRIPTIO

February 27, 2013 JOHN T. IRVING THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER SAUK PANEL CONNECTION DETAIL FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 5-9 DRAWING NO .: REV .: SKBR01 Ρ

RING	USE

CTOR/REMOVED BOX	LJL	6/8/12
		7/25/11
	LJL	04/25/11
DN .	APP.BY	DATE

INI	00	1/23/
L	RRG	04/25
F	MDF	08/03,

February 27. 2013 JOHN T. IRVING THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION. CONTAINED HEREIN Or INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER GROUND STRAP TO DOOR FRAME DETAIL FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 6-1 DRAWING NO .: REV.: SKBR01 Ρ

REV BY DATE DESCRIPTION

TE OF MAINTE February 27. IRVING No. 12678 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 7111 voice: (318) 213-2900 fax: (318) 213-2919 Com cellxion. Ň customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER GROUND BAR THRU WALL DETAIL FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 6-2 DRAWING NO .: REV .: LJL 6/8/12 LJL 7/25/11 SKBR01 Ρ APP.BY DATE

N	RRG	6/8/12	UPDATED GROUND BAR DETAIL
М	JJ	7/25/11	ADDED SHEET WITH GAVEN DR
REV	BY	DATE	DESCRIF

N		6/8/12	
М	JJ	1/20/11	EDIT FUEL LINE
L	RRG	04/25/11	UPDATED DESCRIPTIONS
F	MDF	08/03/10	OFFSET WALL PENETRATIONS
REV	BY	DATE	DESCRIPTIO

February 27, 2013 JOHN T. IRVING THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE $\mathcal{O}_{\mathcal{A}}$ SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER FUEL VENT RISER FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 7–2 DRAWING NO .: REV .: LJL 6/8/12 LJL 04/25/11 SKBR01 Ρ APP.BY DATE

February 27 3 **IRVING** No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 7111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com CUSTOMER: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER 6" SLAB FOUNDATION FLAT TIEDOWN DETAILS FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: SHEET NO. 7-4 DRAWING NO .: REV .: SKBR01 Ρ APP.BY DATE

NOTES:

1	. CONDUCTOR COLORS ARE AS FOLLOWING: <u>120/240 SINGLE PHASE</u> PHASE "A" = BLACK PHASE "B" = RED NEUTRAL = WHITE <u>120/208 THREE PHASE</u> PHASE "A" = BLACK PHASE "B" = RED PHASE "C" = BLUE NEUTRAL = WHITE <u>277/480 THREE PHASE</u> PHASE "A" = YELLOW PHASE "B" = BROWN PHASE "C" = ORANGE NEUTRAL = GRAY	LEGEND = CONDUIT (THICKNESS VARIES WITH SIZE
	ALL ELECTRICAL GROUND = GREEN ALL ISOLATED GROUND = GREEN/YELLOW STRIPE ALL SWITCHED = PURPLE	$= 4 \times 4 \text{ BOX BLANK}$ $= 4 \times 4 \text{ BOX WITH 2 SWITCHES}$
	ALL CONDUCTORS (UNLESS OTHERWISE NOTED) TO BE STRANDED THHN OR THWN COPPER WIRE.	= 4 X 4 BOX WITH SINGLE SWITCH
4	 ALL CONDUIT TO BE ½" ENT UNLESS OTHERWISE NOTED. ALL LOW VOLTAGE CONDUIT TO BE ½" ENT UNLESS NOTED. ALL CONDUCTOR AMPACITIES ARE BASED ON TABLE 310–16 NATIONAL ELECTRICAL CODE. 	\bigcirc = 4" octagon box with smoke detecto
	 CONDUIT FILL BASED ON CHAPTER 9 – NATIONAL ELECTRICAL CODE. PLACEMENT OF ELECTRICAL AND CONDUIT COMPONENTS OR BOXES MAY VARY TO ALIGN WITH COMPONENTS MANUFACTURE'S PRE-MADE BOX KNOCKOUTS. 	= 4" octagon box with heat detector = 4 X 4 box with twist-lock receptad
8	THIS MAY INCLUDE ALIGNMENT WITH SHELTER PENETRATIONS AND/OR INTERFERENCE WITH OTHER COMPONENTS. CONDUIT, ELECTRICAL AND MECHANICAL DIMENSION TOLERANCE SHALL BE	= 4 X 4 BOX WITH TIMER SWITCH
	$\pm 1/4$ ". D. DASHED LINES () DENOTE FIELD WORK. O. ALL CIRCUITS ON 25 AMP THROUGH 60 AMP BREAKER MUST USE #10	- PHOTOCELL SWITCH
1	GROUND CONDUCTOR. 1. CONDUCTORS SMALLER THAN 4 AWG MUST HAVE CORRECT COLOR INSULATION. CONDUCTORS 4 AWG AND LARGER MAY BE RE-IDENTIFIED BY COLORED TAPE.	Ţ_ = SYSTEM GROUND FOR AC CIRCUITS
	BLACK INSULATED CONDUCTOR SHALL BE THE ONLY COLOR TO BE RE-IDENTIFIED. IF CONDUCTORS ARE RE-IDENTIFIED, IDENTIFICATION MUST BE APPLIED IN THREE INCH (3") WRAPS, MINIMUM EVERY THREE FEET (3'-0"). RE-IDENTIFICATION SHALL BE VISIBLE BY OPENING ANY ENCLOSURE. WHITE,	= ISOLATED GROUND FOR AC CIRCUITS
1	GRAY AND GREEN CONDUCTORS SHALL NOT BE RE-IDENTIFIED. 2. ALL METALLIC ELECTRICAL BOXES (SWITCH BOXES, DUPLEX BOXES, LIGHTS, JUNCTION BOXES, ETC) SHALL BE CONNECTED TO THE PROTECTED GROUND OF THE ACG DISTRIBUTION PANEL WITH A #12 GREEN INSULATED STRANDED	
1 1	CONDUCTOR WHICH SHALL BE RUN INTERNAL TO THE CONDUIT. 3. ALL CIRCUIT RUNS TO INCLUDE INDEPENDENT NEUTRAL. 4. ALL WIRES TO BE LABELED FROM END WITH CIRCUIT NO. 5. USE GROUNDING WIRENUT FOR TIEING MULTIPLE GROUNDS TOGETHER. 6. WEEP HOLES IN CAULKING SHOUDL BE CENTERED IN THE LOWER BEAD UNDERNEATH THE DEVICE AND BE BETWEEN ¹ / ₈ " TO 1" WIDE.	
		M LJL 1/16/12 ADDED NOTE 16 L RRG 04/25/11 ADDED NOTES 13-15
		REV BY DATE DESCRIPTION

		NIP	PLE SCHEDUL	E
DESCRIPTION	QTY.	DIAMETER – A	LENGTH – B	OUTSIDE - (
FUEL LINES	2	1"	14"	4"
FIBER OPTIC	1	1"	14"	4"
FUEL VENT	1	2"	14"	4"
GENERATOR EXHAUST	1	3"	16"	4"

WAVEGUIDE	PENETRATION				
DETAIL					

N	RRG	6/8/12	ADDED HOLE PATTERN AND NOTE
К	AMM	02/03/11	UPDATED DETAIL AS PER COMMEN
F	MDF	08/03/10	WALL THICKNESS CHANGE AND MA
REV	BY	DATE	DESCRIPTIO

NIPPLE SCHEDULE				
QTY.	DIAMETER – A	LENGTH – B	OUTSIDE - (
2	1"	14"	4"	
1	1"	14"	4"	
1	2"	14"	4"	
1	3"	16"	4"	
	QTY. 2 1 1 1		QTY. DIAMETER - A LENGTH - B 2 1" 14" 1 1" 14" 1 2" 14"	

N	RRG	6/8/12	UPDATED	DIMENSION
М	JJ	7/25/11	UPDATED	PIPE DETAILS & P/N'S
L	RRG	04/25/11	UPDATED	NOTES/DETAIL
		02/03/11	UPDATED	DETAIL AS PER COMMEN
REV	BY	DATE		DESCRIPTIO

1/4" TI-SHIELD/ MDFB (SUPPLIED BY TI-SHIELD/ MDFB SUB-CONTRACTOR) 1 3/4" INSULATION 3/4" PLYWOOD CONCRETE WALL AROUND LEAVE WEEP HOLE (22) (22) (22) (22) (22) (22) (22) (22	LV ENTRY INTO CONDUIT 76" BUMPER BUSHING 18/2 AWG WIRE, TUCK BEHIND FLANGE PLUNGER REED SWITCH INSTALLED BY SUB-CONTRACTOR & WIRED BY CELLXION 1/4" PLATE SUPPLIED BY SUB-CONTRACTOR HEMP CAP ASSEMBLY UPPLIED & INSTALLED BY SUB-CONTRACTOR HEMP CAP ASSEMBLY OR EQUAL WITH RUBBER TIP ASSEMBLY (CL-38 314-FC) OR EQUAL SUPPLIED & INSTALLED BY SUB-CONTRACTOR SUB-CONTRACTOR SUB-CONTRACTOR SUB-CONTRACTOR OR EQUAL SUPPLIED & INSTALLED SUB-CONTRACTOR OR EQUAL SUPPLIED & INSTALLED SUB-CONTRACTOR ORELD/ MDFB SUB-CONTRACTOR)
NOTE: 1. SEE ALSO SHEET 7–7 FOR MDFB TI–SHIELD MODIFICATION & SOLDER DETAILS 2. PASS–THROUGH ASSY PROVIDED & INSTALLED BY SUB–CONTRACTOR	P RRG 10/31/12 CHANGED WIRE FROM #22 TO #18 N RRG 6/8/12 CORRECTED DIMENSION L RRG 04/25/11 ADDED BUSHING K AMM 02/03/11 UPDATED DETAIL AS PER COMMENTS F MDF 08/03/10 WALL THICKNESS CHANGE ANTE REV BY DATE DESCRIPTION

REV BY DATE

February 27, 2013 JOHN T. IRVING No. 12078 THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINS TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE. 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213-2900 fax: (318) 213-2919 www.cellxion.com 1 customer: KELLOGG BROWN & ROOT FEMA (PEP) EXPANSION PROGRAM PROJECT: 10'-0" X 14'-0" CONCRETE SHELTER UMBILICAL CORD PENETRATION DETAIL FILENAME: KBR/SKBR01 SCALE: TOLERANCE: N.T.S. DRWN. BY: DATE: D. CHRISTOPHE 03/22/10 CHK. BY: DATE: G. BRINKMAN 03/22/10 ENG. BY: DATE: A. DUMAS APP. BY: DATE: JI SHEET NO. LJL 10/31/12 LJL 6/8/12 7–9 LJL 04/25/11 LJL 02/03/11 DRAWING NO .: REV.: SKBR01 Ρ DB 08/03/1 APP.BY DATE

LJL	6/1/09
	8/15/08
VGH	06/02/08
VGH	7/27/04
APP.BY	DATE

GENERAL NOTES

1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC LRFD(1999) AND
2.	AWS D1.1 SPECIFICATIONS. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
	WIRE SIZE 0.35
	WIRE FEED SPEED (in/min) 5
	VOLTAGE, DC (+) 18.5 AMPERAGE, DC 140
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	VOLTAGE, DC (+) 18.5 AMPERAGE, DC 140 TRAVEL SPEED (in/min) 10–12 SHIELDING GAS 75/25
3.	STRUCTURAL STEEL SPECIFICATIONS:
5.	STRUCTURAL SHAPES ASTM A36M-97a
	HIGH STRENGTH BOLTS, ASTM A 307–97
	OTHER BOLTS, SAE J429 GRADE 5
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I.
	318-99 BUILDING CODES 311 & 211, AND ASTM STANDARDS C-172-97,
_	C-31/31M96, C-39-96, AND PROVISIONS OF C-94-98.
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM
6.	COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL
	CONFORMING TO ASTM A-615m-96a SPECIFICATIONS.
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF
	3/4".
8.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9.	ALL REBAR WIRE TIES TO BE 16 GAUGE.
10.	FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28
	DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF DESIRED IN
	ORDER TO MAKE BATCHING OPERATION MORE EFFICIENT.
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY REFUSAL
	OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE JOINT AT ANY
	POINT ALONG THE JOINT.
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE FLOOR
	AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT IN CASES
13.	WHERE OPENINGS PROHIBIT. TOLERANCES SHALL BE AS FOLLOWS:
15.	PANEL THICKNESS: ±1/8"
	PANEL SIZE: $\pm 1/16$ "
	PANEL SQUARENESS: ±1/8" AGREEMENT ON DIAGONALS
	LOCATION OF BLOCKOUTS & PVC'S: $\pm 1/4$ "
	BLOCKOUT DIMENSIONS: $+1/4$ ", -0 "
	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18" FOR
	#4 REBAR AND 30" FOR #6 REBAR.
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND A
	MAYIMUM ACCRECATE SIZE OF 3/8 INCH

MAXIMUM AGGREGATE SIZE OF 3/8 INCH. 16. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.

- THESE REBAR SIZES AND SPACING REPRESENT THE MINIMUM AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWINGS MAY REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.
- ROOF PANEL: #4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6" AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND #4 (LONG AXIS) AT 18" O.C.
- WALL PANEL: #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH THROUGHOUT.
- FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

GENERAL:

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 & 2000 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

<u>GE</u>	NERAL NOTES	GENEF
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC	
2.	LRFD(1999) AND AWS D1.1 SPECIFICATIONS. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:	ROOF
	WIRE SIZE 0.35 WIRE FEED SPEED (in/min) 5	
	VOLTAGE, DC (+) 18.5	WALL
	AMPERAGE, DC 140 TRAVEL SPEED (in/min) 10-12 SHIELDING GAS 75/25	
3.	SHIELDING GAS 75/25 STRUCTURAL STEEL SPECIFICATIONS:	FLOOF
0.	STRUCTURAL SHAPES ASTM A36/A 36M–00	
	HIGH STRENGTH BOLTS, ASTM A 307–00 OTHER BOLTS, SAE J429 GRADE 5	<u>SEAI</u>
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I. 318-02 BUILDING CODES 311 & 211, AND ASTM STANDARDS	STEP
	C-172-99, C-31/C31M98, C-39-99ae1, AND PROVISIONS OF C-94/C94M-00.	STEI
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A	STEP
6.	MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL	
7.	CONFORMING TO ASTM A 615M-00 SPECIFICATIONS. CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM	STEP
8.	OF 3/4". ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.	
9. 10.	ALL REBAR WIRE TIES TO BE 16 GAUGE.	STEP
10.	AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000	UTE:
	PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF DESIRED IN ORDER TO MAKE BATCHING OPERATION MORE EFFICIENT.	STEP
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE	
10	JOINT AT ANY POINT ALONG THE JOINT.	
12.	FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT	
13.	IN CASES WHERE OPENINGS PROHIBIT. TOLERANCES SHALL BE AS FOLLOWS:	
	PANEL THICKNESS: ±1/8" PANEL SIZE: ±1/16"	
	PANEL SQUARENESS: $\pm 1/8$ " AGREEMENT ON DIAGONALS	
	LOCATION OF BLOCKOUTS & PVC'S: ±1/4" BLOCKOUT DIMENSIONS: +1/4", -0"	
14	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18"	
	FOR #4 REBAR AND 30" FOR #6 REBAR.	
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF 3/8 INCH.	
16.		

GENERAL:	THESE REBAR SIZES AND SPACING REPRESENT TH AMOUNT FOR ALL CASTING PLANS. PROJECT DRAW REQUIRE REINFORCEMENT IN ADDITION TO CELLXIO STANDARDS.
ROOF PANEL:	#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH O

- F PANEL: #4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'–6" AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'–6" AND #4 (LONG AXIS) AT 18" O.C.
- ALL PANEL: #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH THROUGHOUT.
- LOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 & 2003 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

HE MINIMUM WINGS MAY ON

<u>GE</u>	NERAL NOTES
	ALL STEEL EARDIGATION AND INSTALLATION SUMLE DE DONE IN ASSORDANCE
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC
I	360-05 AND AWS D1.1-04 SPECIFICATIONS.
2.	ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING
	SETTINGS:
I	WIRE SIZE 0.35
I	WIRE FEED SPEED (in/min) 5
I	VOLTAGE, DC (+) 18.5 AMPERAGE, DC 140
I	TRAVEL SPEED (in/min) 10-12
I	SHIELDING GAS 75/25
3.	STRUCTURAL STEEL SPECIFICATIONS:
I	STRUCTURAL SHAPES ASTM A36/A 36M-04a
I	HIGH STRENGTH BOLTS, ASTM A 307-03
4.	OTHER BOLTS, SAE J429 GRADE 5 ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE
T .	A.C.I. 318–05 BUILDING CODES 311 & 211, AND ASTM STANDARDS
I	C-172-04, C-31/C31M98, C-39-05e1, AND PROVISIONS OF
I	C-94/C94M-04.
5.	ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A
6.	MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL
0.	CONFORMING TO ASTM A 615M-04a SPECIFICATIONS.
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM
	OF 3/4".
8.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9.	ALL REBAR WIRE TIES TO BE 16 GAUGE. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF
	AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000
	PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF
	DESIRED IN ORDER TO MAKE BATCHING OPERATION MORE EFFICIENT.
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY
	REFUSAL OF ABILITY TO PASS A $3/8$ " ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT.
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE
	FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT
	IN CASES WHERE OPENINGS PROHIBIT.
13.	TOLERANCES SHALL BE AS FOLLOWS:
	PANEL THICKNESS: ±1/8" PANEL SIZE: ±1/16"
	PANEL SIZE: ±1/10 PANEL SQUARENESS: ±1/8" AGREEMENT ON DIAGONALS
	LOCATION OF BLOCKOUTS & PVC'S: $\pm 1/4$ "
1	BLOCKOUT DIMENSIONS: $+1/4$ ", -0 "
1	PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18"
1	FOR #4 REBAR AND 30" FOR #6 REBAR.
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND
16.	A MAXIMUM AGGREGATE SIZE OF 3/8 INCH. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.
1	

GENERAL:	THESE REBAR SIZES AND SPACING REPRESENT THE AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWI REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.

- ROOF PANEL: #4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6" AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND #4 (LONG AXIS) AT 18" O.C.
- WALL PANEL: #4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MESH THROUGHOUT.
- FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 & 2006 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

E MINIMUM VINGS MAY N

GE	NERAL NOTES
1.	ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC 360–05 AND AWS D1.1–04 SPECIFICATIONS.
2.	ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
	WIRE SIZE 0.35 WIRE FEED SPEED (in/min) 5
	VOLTAGE, DC (+) 18.5 AMPERAGE, DC
	TRAVEL SPEED (in/min) 10-12 SHIELDING GAS 75/25
3.	STRUCTURAL STEEL SPECIFICATIONS: STRUCTURAL SHAPES ASTM A36/A 36M-05 HIGH STRENGTH BOLTS, ASTM A 307-03 OTHER BOLTS, SAE J429 GRADE 5
4.	ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I. 318-08 BUILDING CODES 311 & 211, AND ASTM STANDARDS C-172-04, C-31/C31-06, C-39-05e1, AND PROVISIONS OF C-94/C94M-07.
5.	ALL ÉRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.
6.	ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL CONFORMING TO ASTM A 615M-04a SPECIFICATIONS.
7.	CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF 3/4".
8. 9. 10.	ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE. ALL REBAR WIRE TIES TO BE 16 GAUGE. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF DESIRED IN ORDER TO MAKE BATCHING OPERATION MORE EFFICIENT.
11.	MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE 3/8" MEASURED BY REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT.
12.	WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT IN CASES WHERE OPENINGS PROHIBIT.
13.	TOLERANCES SHALL BE AS FOLLOWS: PANEL THICKNESS: ±1/8" PANEL SIZE: ±1/16" PANEL SIZE: ±1/16"
	PANEL SQUARENESS: $\pm 1/8$ " AGREEMENT ON DIAGONALS LOCATION OF BLOCKOUTS & PVC'S: $\pm 1/4$ " BLOCKOUT DIMENSIONS: $\pm 1/4$ ", -0 " PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14.	REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18" FOR #4 REBAR AND 30" FOR #6 REBAR.
15.	CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF 3/8 INCH.
16.	CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50.

GENERAL:	THESE REBAR SIZES AND SPACING REPRESENT THE AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWIN REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.
ROOF PANEL:	#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF AND LESS, 10" O.C. ON SHELTER WIDTH GREATER 11'—6" AND #4 (LONG AXIS) AT 18" O.C.
WALL PANEL:	#4 AT PERIMETER AND 4 X 4 X W4.5 X W4.5 MES THROUGHOUT.

FLOOR: (2)-#6 (SHORT AXIS) EACH RIB, #6 (LONG AXIS) EACH INTERIOR RIB. DECK: 4 X 4 X W4.5 X W4.5 MESH.

SEALANT APPLICATION

- STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT (2" BEAD) DURING ASSEMBLY.
- STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.
- STEP 3. ROOF COATING: APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-05e01, OBC 1507.15.2 & 2009 IBC 1507.15.2.
- STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.
- STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

E MINIMUM INGS MAY 11'-6" THAN SH

PARTS LIST								
ITEM	QTY	U/M	P/N	DESCRIPTION				
500	1.0000	EA.	022008	BLOCKOUT ASSY, ANGLE,58 1/2"X58 1/2"				
501 1.0000 EA. 022		022009	BLOCKOUT ASSY, ANGLE,46 1/2"X82 1/2"					
502	1.0000	EA.	022010	BLOCKOUT ASSY, FLAT BAR, 56"X88"				
503	4.5200	CU.YD.	100052-001	CONCRETE,1 CUBIC YARD BATCH,WALLS				
504	2.4100	CU.YD.	100052-003	CONCRETE,1 CUBIC YARD BATCH,ROOF				
505	2.7000	EA.	110001	MESH,WIRE,4X4,W4XW4,8'X20'				
	646.1450	FT.	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60				
	229.2290	FT.	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS				
519	15.0000	EA.	119010	REBAR CHAIR, PLASTIC, #4 W/BASE 1"				
520	80.0000	EA.	119026	REBAR CHAIR,PLASTIC,#4,2",W/BASE				
521	70.0000	EA.	119027	REBAR CHAIR, PLASTIC, MESH, 2-1/2", W/B				
522	1.0000	FT.	170000	PIPE,PVC,SCH 40,1"				
523	2.0000	FT.	170003	PIPE,PVC,SCH 40,1 1/2"				
524	0.5000	FT.	170005	PIPE,PVC,SCH 40,3"				
525	4.0000	EA.	220219-01	ROOF ANCHOR,LIFTING INSERT				
526	1.0000	EA.	221-1000X1400-03	CONCRETE FLOOR ASSY KIT, 10'0"X14'0"				
527	4.0000	EA.	221011	WALL EMBED ANGLE ASSY,6"X4" X 9'3"				
528	16.0000	EA.	222000	INSERT ANGLE,WALL TO ROOF				
529	16.0000	EA.	223000	INSERT PLATE, ROOF TO 4" WALL				
530	21.0000	EA.	223100	EMBED PLATE,WALL,1/4"X6"X8"				
531	37.0000	EA.	223102	INSERT,WELD PLATE 1/4"X3"X4",F/B				
532	15.0000	EA.	350034	PLYWOOD,3/4"X4'X8',PYRO-GUARD				
	4.5347	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT				
535	11.0000	EA.	360161	INSULATION,RMAX,1 3/4",MULTI-MAX,RM				
536	4.0000	EA.	360162	INSULATION,RMAX,2 1/4",MULTI-MAX,RM				
537	1.0000	EA.	501047-00003	DOOR FRM,CURRIES,4068 RH,4 SIDED				
538	6.0000	EA.	502011	T-ANCHOR,DOOR FRAME				
539	5.0000	EA.	540237	GROUND STRAP ASSY, STRUCTURE, 12"SOLID				

CUT LIST						
ITEM	P/N	DESCRIPTION	CUT	PCS		
506	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	156 3/4"	5		
507	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	108"	20		
508	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	117"	8		
509	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	31 1/2"	2		
510	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	36"	18		
511	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	125"	15		
512	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	161"	8		
513	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	36"	4		
514	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	156 3/4"	2		
515	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	108"	11		
516	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	117"	7		
517	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	86 1/4"	1		
518	112505	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	100"	2		
523	170003	PIPE, PVC, SCH 40,1 1/2"	6"	4		
524	170005	PIPE, PVC, SCH 40,3"	6"	1		
533	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT 11	" X 11" X 4"	1		
534	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT 6 1/2	" X 6 1/2" X 4"	1		

		6/8/12	CHANGES PER 12KBR002-3
K	AMM	02/10/11	UPDATED BUBBLES, PEN DIMENSIONS
D	MDF	07/28/10	PER MARKUPS
REV	BY	DATE	DESCRIPTION

SUB-PARTS LIST									
CUT	DESCRIPTION	P/N	ITEM	CUT	DESCRIPTION	P/N	ITEM		
	REBAR CHAIR, PLASTIC, MESH, 2-1/2", W/B	119027	521		BLOCKOUT ASSY,FLAT BAR,56"X88"	022010	502		
6"	PIPE, PVC, SCH 40,1 1/2"	170003	523	108"	REBAR,#4 (1/2") #13 METRIC,GRADE 60	112502	507		
	WALL EMBED ANGLE ASSY,6"X4" X 9'3"	221011	527	117"	REBAR,#4 (1/2") #13 METRIC,GRADE 60	112502	508		
	INSERT ANGLE, WALL TO ROOF	222000	528	31 1/2"	REBAR,#4 (1/2") #13 METRIC,GRADE 60	112502	509		
	EMBED PLATE, WALL, 1/4"X6"X8"	223100	530	36"	REBAR,#4 (1/2") #13 METRIC,GRADE 60	112502	510		
	INSERT,WELD PLATE 1/4"X3"X4",F/B	223102	531	36"	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	112505	513		
	DOOR FRM,CURRIES,4068 RH,4 SIDED	501047-00003	537	108"	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	112505	515		
	T-ANCHOR,DOOR FRAME	502011	538	117"	REBAR,#4 (1/2") #13 METRIC,FIBERGLS	112505	516		
	GROUND STRAP ASSY, STRUCTURE, 12"SOLID	540237	539		REBAR CHAIR, PLASTIC, #4, 2", W/BASE	119026	520		
	DOOR FRM,CURRIES,4068 RH,4 SIDED T-ANCHOR,DOOR FRAME	501047-00003 502011	537 538	108"	REBAR,#4 (1/2") #13 METRIC,FIBERGLS REBAR,#4 (1/2") #13 METRIC,FIBERGLS	112505 112505	515 516		

NOTE:

1. EMBED MUST BE ISOLATED FROM STRUCTURAL STEEL BY MIN. 3/4".

 KKG
 0/0/12
 ADJUSTED
 PENETRATION
 HEIGHT

 K
 AMM
 02/10/11
 UPDATED
 BUBBLES
 AND
 PENETRATION
 E

 D
 MDF
 07/28/10
 PER
 MARKUPS
 E
 DESCRIPTION

 REV
 BY
 DATE
 DESCRIPTION
 E
 D

	THIS DRAWING IS THE CONFIDENTIAL PROPERTY AND CONTAINES TRADE SECRETS OF CELLXION, LLC. ANY USE OF THESE DRAWINGS OR THE INFORMATION CONTAINED HEREIN FOR ANY REASON OTHER THAN AS EXPRESSLY AUTHORIZED BY SABRE INDUSTRIES, INC. IS STRICTLY PROHIBITED. THIS DRAWING HAS BEEN DISTRIBUTED WITH THE UNDERSTANDING THAT ANYONE RECEIVING OR OTHERWISE OBTAINING POSSESSION OF IT WILL BE EXPRESSLY NOTIFIED OF ITS CONFIDENTIAL NATURE.
	5031 Hazel Jones Road 5031 Hazel Jones Road Bossier City, Louisiana 71111 voice: (318) 213–2910 fax: (318) 213–2919 www.cellxion.com
	$\begin{tabular}{c} customer: \\ KELLOGG \\ BROWN & ROOT \\ FEMA (PEP) \\ EXPANSION PROGRAM \\ \hline PROJECT: \\ 10'-0'' X 14-0'' \\ CONCRETE SHELTER \\ STRUCTURAL LAYOUT \\ ELEVATION ''A'' \\ \hline FILENAME: \\ KBR/SKBRO1S \\ \hline SCALE: \\ 1/2'' = 1'-0'' \\ \hline DRWN. BY: \\ J. ASHLEY \\ J. ASHLEY \\ 5/02/10 \\ \hline CHK. BY: \\ G. BRINKMAN \\ 5/02/10 \\ \hline ENG. BY: \\ \hline DATE: \\ \hline DATE: \\ \hline \end{tabular}$
LJL 6/8/12 DIMENSIONS LJL 02/10/11 DB 07/29/10 APP.BY DATE	APP. BY: DATE: SHEET NO. S1-O DRAWING NO.: REV.: SKBR01S P

			SUB-P	ARTS LIS	Т] (
ITEM	P/N	DESCRIPTION	CUT	ITEM	P/N	DESCRIPTION	CUT	
506	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	156 3/4"	524	170005	PIPE, PVC, SCH 40,3"	6"	1
507	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	108"	528	222000	INSERT ANGLE, WALL TO ROOF]
510	112502	REBAR,#4 (1/2") #13 METRIC,GRADE 60	36"	530	223100	EMBED PLATE,WALL,1/4"X6"X8"		-
520 521	119026 119027	REBAR CHAIR,PLASTIC,#4,2",W/BASE REBAR CHAIR,PLASTIC,MESH,2-1/2",W/B		531 539	223102 540237	INSERT,WELD PLATE 1/4"X3"X4",F/B GROUND STRAP ASSY,STRUCTURE,12"SOLID		-
523	170003	PIPE, PVC, SCH 40,1 1/2"	6"		340237	GROUND STRAP ASST, STRUCTURE, 12 SULID		
								\subset
								/
			13 '	-3¾" [1	59¾"] ——			
				ົ້		2776"		
		- 58½" -		797/8"		5		
		717/"	48"		48 [°]			
1		<u>→</u> 31%" →	40			(531)(528)		
					506 2 1 CLE	AR		
						<u> </u>		
			— — — <u>+</u> <u>+</u>		+ /-	72'' = 531 528 AR $10^{9} + 10^{9} $		
1		15¼ "		l	Ť			
						● 510		
			<u> </u>		1			
		i i i	(524)		1	i il		
					I			
			1		1	2"		
			•	۲	I	● 507 ² " CLEAR		
			· · · · · · · · · · · · · · · · · · ·					
			I			I r		
					-4-			
		به رب هه اف هه	*	/	< ♥	♥ <u>●</u> ♥		
		, б	(520)					
			•					
			X					
		·····		(521)	25½,		
		(523)				(523)		
				۲	•			
1				• •	<u>4</u>			
			<u> </u>	•				
			(539) (505)2 1	/2" CLE/	٩R			
		- 13" -	\bigcirc	,		(531)(530) -13" -		
			GND TO REBAR STRUC					
			<u> 511(00</u>		<u>LAYOU</u>			
			<u>SID</u>	E WAL	<u>L "B"</u>			
				1.52 CU.		M JJ 11/15/11 CORRECTED PENETRATION LOCATION L RRG 04/25/11 MOVED PENETRATIONS	NS LJ	JL 11/15/11 JL 04/25/11
						K AMM 02/10/11 UPDATED BUBBLES AND PENETRATI	ON DIMENSIONS LJ	JL 02/10/11
						H AMM 12/22/10 REPLACED PVC PENETRATION SIZE D MDF 07/28/10 PER MARKUPS	W/	JL 02/10/11 AR 12/22/10 B 07/29/10
L						REV BY DATE DESCRIPTION	I APP	P.BY DATE

′								
PARTS LIST								
ITEM	QTY	U/M	P/N	DESCRIPTION	LENGTH	WIDTH	PCS	
1	1.33333 ft	ft	141034	FLATBAR, 1/4" X 4, GRADE 36	4.000 in		4	
2	2.053	CU.YD.	100052-002	CONCRETE, 1 CUBIC YARD BATCH, FLOOR	168.000 in	120.000 in	1	
3	.492	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	118.000 in	96.000 in	1	
4	.379	EA.	110001	MESH, WIRE, 4X4, W4XW4, 8'X20'	118.000 in	74.000 in	1	
5	27.5	FT.	112502	REBAR, #4 (1/2") #13 METRIC, GRADE 60	165.000 in		2	
6	117	FT.	112502	REBAR, #4 (1/2") #13 METRIC, GRADE 60	117.000 in		12	
7	27.5	FT.	112503	REBAR #6 (3/4") #19 METRIC, GRADE 60	165.000 in		2	
8	12	Each	119013	REBAR CHAIR, PLASTIC, MESH WITH BASE 1"			12	
9	36	Each	119016	REBAR CHAIR, PLASTIC, #6, 3/4"			36	
10	8	Each	119022	REBAR CHAIR,PLASTIC,MESH W/BASE 4"			8	
11	1	Each	22-1000X1400-00	PMTR ANGLE FRAME ASSY H.S.10'0"X14'			1	
12	96	FBM	360151	INSULATION, EPS, FOAM, RAW MATL B-FOOT	24.000 in	24.000 in	8	
13	28.125	FBM	360151	INSULATION,EPS,FOAM,RAW MATL B-FOOT	45.000 in	15.000 in	2	
14	1	Each	540237	GROUND STRAP ASSEMBLY, STRUCTURE, 12" SOLID			1	

SHOP DETAILS					
DWG. NO.	DESCRIPTION				
12-001	CONCRETE STEP JOINT DETAIL				
12-002	CONCRETE RIB SECTION DETAIL				

