1.1 REFERENCE MATERIAL FOR DESIGN CALCULATIONS

$\square 2009$ International Building Code
\square American Concrete Institute (ACI) 318-08
\square Embedment Properties for Headed Studs, TRW Nelson, Design Data Catalog
\square Steel Construction Manual, AISC 360-05
\square ASCE 7-05
1.2 DESIGN CRITERIA USED IN CALCULATIONS
\square Reinforcing Steel Yield Strength $=\mathrm{fy}=60 \mathrm{ksi}$
\square Structural Steel is ASTM A 36/A 36M-05
\square Unconfined Compressive Strength of Concrete $=$ f'c $=5000$ psi
\square Weight of Concrete $=115$ pcf
\square Stud Yield Strength = 50 ksi
1.3 INTERNATIONAL BUILDING CODE REQUIREMENTS

The following is a summary of the Code requirements applicable to CellXion precast concrete equipment shelters.

1.3.1 Occupancy Classification

Occupancy is Group H-2 per section 307.1 and Table 307.1(1).

1.3.2 Construction Type

Type V-B per section 602.5 and Table 601.

1.3.3 Building Limitations

Occupancy H-2
Relative to the location of the nearest structure or property line:
Walls must be rated one hour if less than 10 feet.
(Table 602)
Maximum size of H-2 building (Table 503) is $21,000 \mathrm{SF}$, UL stories. (Table 503)
NOTE: STANDARD SHELTERS MAY BE RATED UP TO 2-HOURS.
REF: Table 720.1(2), Item number 4-1.1, Sand-lightweight concrete 4 inches thick.
IF PROTECTED OPENINGS ARE REQUIRED:
3/4 HOUR RATED OPENINGS ARE REQUIRED IN ONE HOUR ASSEMBLIES. 1.5 HOUR RATED OPENINGS ARE REQUIRED IN TWO HOUR ASSEMBLIES.

Unprotected Openings Allowed Protected Openings Allowed Table 705.8 Not permitted up to 5 feet. 10% permitted >5 feet to 10 feet. 15% permitted >10 feet to 15 feet. 25% permitted >15 feet to 20 feet. 45% permitted >20 feet to 25 feet. 70% permitted >25 feet to 30 feet. No restriction > 30 feet.
1.4 FLOOR LOADS Floor live load required (Table 1607.1) for light storage is; 125 psf The summary loading chart in Section 2.0.1 indicates allowable loads of:

$$
251 \text { psf } \quad 10.000 \quad \mathrm{ft} \text { wide OK }
$$

For a 2 sq ft area per sec 2.3.6, a concentrated load of 2020 lbs can be placed anywhere. If the concentrated load is next to the wall, 4522 lbs can be used.
For a 3 sq ft area per sec 2.3.6, a concentrated load of 4041 lbs can be placed anywhere.
1.5 ROOF LOADS Minimum roof live load required (2009 IBC 1607.11.2.1) is:

$$
L_{r}=L_{o} R_{1} R_{2}
$$

$L_{0}=20$ [sec 1607.11.2.1]
$R_{1}=1.0 \quad$ (worst case for smaller shelters)
[sec 1607.11.2.1, Eq 16-26]
$F=.167$ in per ft slope $\quad \mathrm{R}_{2}=1.0 \quad$ (for $\mathrm{F}<4$) $\quad[\sec$ 1607.11.2.1, Eq 16-29]
$L_{r}=20 \mathrm{psf}$
The summary loading chart in Section 2.0.1 indicates allowable loads of: $135 \mathrm{psf} \quad 10.00 \mathrm{ft}$ wide OK

Snow Loads Section 1608.2 requires use of section 7 of ASCE 7-05

$$
\mathrm{p}_{\mathrm{f}}=0.7 \quad \mathrm{C}_{\mathrm{e}} \quad \mathrm{C}_{\mathrm{t}} \quad \mathrm{I} \mathrm{p}_{\mathrm{g}}
$$

[ASCE 7-05, Equation 7-1, Sec 7.3]
$\mathrm{p}_{\mathrm{f}}=\quad$ (Min. design load for roofs from section 2 of these calcs)
$=135 \mathrm{psf} \quad 10.00 \mathrm{ft}$ wide
$C_{e}=1.2$ (worst case-ASCE 7-05,Table 7-2, lesser factors may be used as appropriate)
$C_{t}=1.0$ (From ASCE 7-05, Table 7-3, heated structure)
$I=1.0$ (Category II, ASCE 7-05 Table 7-4)
Using the design load from section 2 for p_{f} and solving for p_{g} :

$$
\begin{aligned}
\mathrm{p}_{\mathrm{g}} & =\mathrm{p}_{\mathrm{f}} /\left(0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}\right) \\
& =(\text { Allowable ground snow load }) \\
& =\quad 161 \mathrm{psf} \quad 10.00 \mathrm{ft} \text { wide }
\end{aligned}
$$

1.6 WIND LOADS

Sect. 1609.1.1 allows ASCE 7-05, Chapter 6; use sec 6.4, Method 1 - Simplified Procedure:
$\mathrm{V}=160 \mathrm{mph} \quad[$ ASCE 7-05, Section 6.5.4 and Figure 6-1]
$\mathrm{I}=1.0 \quad[$ ASCE 7-05, Category II, Table 6-1 >> Table 1-1]
Exposure Classification: C [ASCE 7-05, section 6.5.6.3]
Exposure C category: $\quad \lambda=1.21 \quad$ [ASCE 7-07, section 6.4.2 \& Figure 6-2]
Enclosure Classification: enclosed [ASCE 7-05, section 6.2]
Roof angle: 0 to 5 degrees $\quad \mathrm{K}_{\mathrm{zt}}=1.0$ [ASCE 7-05, sec 6.5.7.2]
MWFRS Design Wind Pressures: [from ASCE 7-05, Figure 6-2]

$$
p_{s}=\lambda \mathrm{K}_{\mathrm{zt}} \mathrm{I} p_{\mathrm{s} 30}
$$

WALLS: 48.4 psf
25.4 psf [zone B, negligible--> only 1 inch tall]
$32.5 \mathrm{psf} \quad$ [zone C]
-15.1 psf [zone D, negligible--> only 1 inch tall]
Zone A controls, use it for analysis

ROOF: -59.0 psf [zone E]
-33.6 psf [zone F] -40.9 psf [zone G] -25.9 psf [zone H]

Zone E controls, use it for analysis
Allowable negative load on roof: $\quad-53.1 \mathrm{psf}$ (Calcs, sec 2) $\quad 10.00 \mathrm{ft}$ wide
Plus. $6 \times$ DL $\quad 45.7 \mathrm{psf}=\quad 27.4 \mathrm{psf}+$ Allow Neg Ld $=\quad-80.5 \mathrm{psf} \quad$ OK

1.6.1 Check structural connections for carrying wind loads to the foundation.

The worst case for the windward forces are when they are projected onto the long walls. Half of the load is carried to the floor connections and half is carried to the roof connections. The walls are assumed to be 9.25 ft tall the worst case scenario. The connections which connect the long walls to the end walls are neglected for the purposes of this particular analysis. Analysis with Calculations from section 3
1.6.1.1 Check connections for transfer of windward loads from wall to the floor and roof.

The connections along the top and bottom of the walls are at a standard spacing of 56 inches. This will be the tributary width of wind load for each connection at the floor and roof. The load for this tributary area on the windward wall is then:

$\mathrm{P}^{\prime}(\mathrm{w})$	$=\mathrm{P}($ windward wall $) \times$ tributary area
	Where tributary area $=(\quad 9.25 \mathrm{ft} / 2) \times 4 \mathrm{ft} 8 \mathrm{in} \quad 9.25 \mathrm{ft}$ tall wall)
	$=\quad 21.58 \mathrm{sq} . \mathrm{ft}$.
$\mathrm{P}^{\prime}(\mathrm{w})$	$=\quad 1,045 \mathrm{lbs}$

This load is resisted by three main components of the connection at the floor:

$$
\begin{array}{cc}
5.95 \text { kips } & \text { Capacity of P/N } 223100 \text { in tension per Clacs Section } 3.3 .1 \\
22.87 \text { kips } & \text { Capacity of the Floor Lifting Insert in shear per Clacs Section } 3.7 \\
8.35 \text { kips } & \text { Capacity of the weld which connects the plates per Clacs Section } 3.8 \\
\text { The capacity of all } 3 \text { components exceed the wind load }
\end{array}
$$

This load is resisted by three main components of the connection at the roof:

$$
\begin{array}{ll}
3.52 \text { kips } & \text { Capacity of P/N } 223000 \text { in Y-shear per Clacs Section } 3.4 .3 \\
5.95 \text { kips } & \text { Capacity of P/N } 222000 \text { in tension per Clacs Section 3.5.1 } \\
8.35 \text { kips } & \text { Capacity of the weld which connects the plates per Clacs Section } 3.8 \\
\text { The capacity of all } 3 \text { components exceed the wind load }
\end{array}
$$

1.6.1.2 Check connections for transfer of leeward loads from wall to the floor and roof.

The leeward wall has similar construction, but the loads are less and are outward.

```
P'(I)= P(leeward wall) x tributary area
                Where tributary area = ( 9.25 ft / 2 ) x 4 ft 8 in = 21.58 sq. ft.
            = 48.4 psf x 21.58 sq. ft.
P
```

This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the wind load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in Y-shear per Section 3.4.3
5.95 kips \quad Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the wind load OK

1.6.1.3 Windward and leeward loading transfer to endwalls:

The loads on the top half of the shelter must be transferred to the ground through the connections on the endwalls. There are three connections from the roof to the endwall and three connec-
tions from the endwall to the floor. The load on the projected area of the top half of the long side of the shelter is resisted by these connections and is assumed to distribute half of the load to each endwall.
A shelter which is 14.00 feet long has a tributary area of:

$$
\begin{aligned}
\text { Area }= & \left(\begin{array}{rl}
9.667 \text { feet } / 2
\end{array}\right) \times(14.0 \quad \text { feet } / 2) \\
& 33.835 \mathrm{sq} . \mathrm{ft} . \\
\mathrm{P}(\text { proj. }) & = \\
& 33.835 \mathrm{sq} \mathrm{ft} \times \\
& =1,638 \mathrm{lbs} .
\end{aligned}
$$

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
7.04 kips Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips Capacity of the Wall Corner Insert per Section 3.6.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 21.12 kips OK

1.6.1.4 Windward and Leeward loading transfer to floor:

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall.
The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2
22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is: 25.05 kips
OK

1.6.1.5 Find horizontal forces and overturning moments.

This is used in the tie-down anchor analysis in 1.8 below.

Shelter Dims (feet)			Shelter Weight lbs	Hor.Wind (PxA-hor) lbs	Vert. Wind (PxA-vert.) lbs	Overturn Moment ft-Ibs
Width	Length	Height	lbs			
10.00	14.00	10.083	28,791	6,832	8,267	75,781

1.6.1.6 Components and Cladding:

Allowable load on walls: (From section 2)
$87 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall OK
The larger load at the corners does not produce a significant bending stress, and the shear strength of the roof panel will be more than adequate to resist this uplift load. In addition, extra connections between the roof and endwalls anchor the roof at these end zones.
1.7 SEISMIC LOADS Section 1613.1, requires ASCE 7-05 for analysis.

Site Class is E [Section 1613.5.2]
Occupancy Category: II [Table 1604.5]
Seismic Design Category: D [sec 1613.5.6]
Seismic Importance Factor, I is: $1.50 \quad$ [ASCE $7-05$, sec 11.5, Table 11.5-1]
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \mathrm{w}$
$\mathrm{w}=\mathrm{D}$
$\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / \mathrm{I})$
$V=\left(S_{D S} /(R / I)\right) D$

[ASCE 7-05, sec 12.8.1, Eq. 12.8-1]
[ASCE 7-05, sec 12.7.2]
[ASCE 7-05, sec 12.8.1.1, Eq. 12.8-2]
[ASCE 7-05, Table 12.2-1, A. 2]
[Per 1613.5.4, Eq. 16-39]
[Per 1613.5.3, Eq. 16-37]
1.0 [Table 1613.5.3(1)]
3.00 [Fig 1613.5(1), meets all US areas]
[Use for base shear]

Determine E for use in load combinations on individual panel design.
$E=E_{h}+E_{v} \quad[$ ASCE 7-05, sec 12.4.2, Eq. 12.4-1]
$\mathrm{E}_{\mathrm{h}}=\mathrm{O}_{\mathrm{E}} \quad$ [ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3]
$\mathrm{E}_{\mathrm{v}}=0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} \quad$ [ASCE 7-05, sec 12.4.2.2, Eq. 12.4-4]
$E=\rho Q_{E}+0.2 S_{D S} D \quad[$ ASCE 7-05, sec 12.4.2.1, Eq. 12.4-3 plus sec 12.4.2.2, Eq. 12.4-4]
$\mathrm{Q}_{\mathrm{E}}=\mathrm{V} \quad[$ ASCE 7-05, sec 12.4.2.1] $\quad \rho=1.0 \quad$ [ASCE 7-05, sec 12.3.4.2]
$\mathrm{E}=\rho \mathrm{V}+0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} \quad=\quad 1.150 \mathrm{D} \quad$ [Use in load comb 4 \& 6]
$\mathrm{E}_{m}=\mathrm{E}_{m h}-\mathrm{E}_{v} \quad$ [ASCE 7-05, sec 12.4.3, Eq. 12.4-6]
$\mathrm{E}_{m h}=\Omega_{0} \mathrm{Q}_{\mathrm{E}} \quad$ [ASCE 7-05, sec 12.4.3.1 Eq. 12.4-7]
$\mathrm{E}_{m}=\Omega_{0} \mathrm{Q}_{\mathrm{E}}-0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} \quad \Omega_{0}=2.5 \quad[$ ASCE $7-05$, Table 12.2-1, A.2]
$\mathrm{E}_{m}=1.475 \mathrm{D}$
[Use in load comb 7]
$\mathrm{D}_{\text {wall }}=35.6 \mathrm{psf} \quad \mathrm{D}_{\text {roof }}=\quad 45.7 \mathrm{psf} \quad \mathrm{D}_{\text {fioor }}=46.4 \mathrm{psf} \quad$ (calcs sec 4)
Load combinations: Section 1605.3.1 \& ASCE 7-05 12.4.3.2

Comb 1 D
Comb $2 \mathrm{D}+\mathrm{L}$
Comb 3 D + L + (Lr or S or R)
Comb $4 \quad \mathrm{D}+(\mathrm{W}$ or 0.7 E$)+\mathrm{L}+($ Lr or S or R$)$
Comb $50.6 \mathrm{D}+\mathrm{W}$
Comb 6 0.6D +0.7 E
Comb 7 (0.9-2 $\left.2 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\Omega_{0} \mathrm{Q}_{\mathrm{E}}$
[Notes 1, 2, 3]
[Notes 1, 2, 3]
[Notes 1, 2, 3]
[Notes 1, 2, 3, 4]
[Notes 1, 2, 3]
[Notes 1, 2, 3, 4]
See analysis below:

Note 1: Roof and floor panels are designed using 1.4D and 1.7L, exceeds req'd factors.
Note 2: Wall panels are designed using 1.4D and 1.7 W , exceeds req'd factors.
Note 3: S, R, and Lr are used as Lin panel calculations, see section 2 of these calcs.
Note 4: Wind loads control over Seismic.

Comb 7 check		psf			Min. Design Loads
Walls:	$\left(0.9-.2 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\Omega_{0} \mathrm{Q}_{\mathrm{E}}=$	$2.375 \mathrm{D}_{\text {wall }}=$	84	87 psf	OK
Roof:	$\left(0.9-.2 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\Omega_{0} \mathrm{Q}_{\mathrm{E}}=$	$2.375 \mathrm{D}_{\text {roof }}=$	108	135 psf	OK
Floor:	$\left(0.9-.2 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\Omega_{0} \mathrm{Q}_{\mathrm{E}}=$	$2.375 \mathrm{D}_{\text {floor }}=$	110	251 psf	OK

1.7.1 Seismic loads from top half of the wall panel are transferred to the roof.

Equipment permanently installed in the building is estimated at $\quad 12,000$ pounds. For a 14.00 ft long shelter, this is an average of 857 pounds per linear foot. If this equipment is mounted to the floor and braced at the top, then half the seismic load from the equipment should be added to the top of the walls. Analysis uses sec 3 of these calculations.
The weight of a wall section transferred to the connections at 56 " on center is:
$\mathrm{W}($ wall $)=(56 / 12 \mathrm{ft}$ width $) \times($
9.25 ft high $) \times($
$4 / 12 \mathrm{ft}$ thick) x (
$115 \mathrm{pcf})$

W (equipment $)=(56 / 12 \mathrm{ft}$ width $) \times(\quad 429 \mathrm{plf})=2000 \mathrm{lbs}$
$\mathrm{W}($ top of wall $)=\mathrm{W}($ wall $)+\mathrm{W}($ equipment $)=2,827 \mathrm{lbs}$
For the wall panel, the seismic shear is:
$V=2,121 \mathrm{lbs} \quad$ Seismic shear per connection plate at top of walls
This load is resisted by three main components of the connection at the floor:
5.95 kips Capacity of P/N 223100 in tension per Section 3.3.1
22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
This load is resisted by three main components of the connection at the roof:
3.52 kips Capacity of P/N 223000 in Y-shear per Section 3.4.3
5.95 kips Capacity of P/N 222000 in tension per Section 3.5.1
8.35 kips Capacity of the weld which connects the plates per Section 3.8

The capacity of all 3 components exceed the seismic load OK
1.7.2 Seismic loads from roof are transferred to the top of the endwall.

The seismic load at the top connection plates of the endwalls includes the seismic loads
from the top quarter of two sidewalls, one half of the roof, and one half of the total equipment.

Use a $\quad 9.25 \mathrm{ft}$ tall x W(quarter wall)=		13.33 ft long wall \& use a				10.33 ft wide x			14.33 ft long roof.
		9.25 ft / 2	x		. 33				
$4.00 / 12 \mathrm{ft} \mathrm{x}$		115 pcf	=		82	$\times 2$	2,364	Ibs.	
W (half roof) $=10.33 \mathrm{ft}$		$x \quad 14$	14.3		x				
$4.50 / 12 \mathrm{ftx}$		115 pcf	=				3,193	Ibs.	
W $($ equipment $)=$		7 ft	x		429		3,000	lbs	
TOTAL: \quad W		of endwall)	Il)				8,557	Ibs.	
		V(top of	of						

The roof connection consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.

7.04 kips	Capacity of P/N 223000 in X-shear per Section 3.4.2
22.87 kips	Capacity of the Wall Corner Insert per Section 3.6.1
8.35 kips	Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is:
21.12 kips
This capacity exceeds the seismic load
OK

1.7.3 Seismic loads from endwall are transferred to the floor.

The connections at the bottom of the endwalls have the same seismic load as the connections at the top, except that the seismic load from the endwall itself is added. The weight of the endwall is:

W(endwall)=	10.00 ft	x	9.25 ft	X	
4.00	12 ft x	115 pcf	=	3546 lbs	
$\mathrm{V}($ endwall $)=$					2,659 lbs
V (bottom) $=$	V(top of en	vall) + V(dwall)	$=$	9,077 lbs

The same loads that are transferred to the endwalls from the roof need to be transferred to the floor panel. This is accomplished through the three connections at the base of the endwall.
The floor connections consist of the same three components as were indicated in the sidewalls, except that they are loaded in a different direction. Their capacities are shown below.
14.54 kips Capacity of P/N 223100 in X-shear per Section 3.3.2
22.87 kips Capacity of Floor Lifting Insert in shear per Section 3.7
8.35 kips Capacity of the weld which connects the plates per Section 3.8

Since there are three of these connections, the total capacity is:
25.05 kips This capacity exceeds the seismic load

OK

1.8 Check shelter tie-downs to foundation

For tie-down anchor capacity see Section 3.9 of these calcs:

Horizontal:	10472 lbs	Per connection
Vertical:	6615 lbs	Per connection

Horizontal forces due to seismic/wind loads:

Shelter Dims (feet)			Shelter Weighth	Contents Weight	Seis.Load $(\mathrm{W} \times \mathrm{Cs})$	Wind load 1.6 .1 .5	Control'g Load	Tie-down Capacity	CHECK	Safety Factor
10.00	14.00	10.083	28,791	12,000	30,593	6,832	SEISMIG	41,887	OK	1.37

Friction against sliding is ignored.
shelters under 24 ft in length have 4 tie-downs; lengths 24 ft and over have 8 tie-downs
Overturning forces due to seismic/wind loads:

			Seis.load(W x Cs) lbs.	Overturn Force lbs.	Wind Over See 1.6.1.5 ft-lbs.	Control'g Load	Overturn Resist. ft-lbs.	Tie-down Capacity lbs	CHECK	Safety Factor 1.5 req'd
Shelter Dims (feet)										
Width	Length	Height								
10.00	14.00	10.083	30,593	154241	75,781	SEISMIC	129560	41,887	OK	2.20

Overturning resistance uses $0.9 \times$ DL of shelter (no contents)
Weight of shelter and contents are the same as in the horizontal force chart above.

2.0 DESIGN CRITERIA

NOTE: These calculations repres 10.000 ft wide x	the panels of 14.000 ft long x	9.250 ft tall shelter.
STRUCTURAL PROPERTY	UNITS	LABEL
Concrete Compressive Strength	5000 psi	$\mathrm{f}^{\prime} \mathrm{c}$ (sand-lightweight)
Reinforcing bar Yield Stress	60000 psi	fy[REBAR]
Concrete Density	115 pcf	DENSITY
Maximum Building Width	10 feet	BLDGW
Maximum Building Length	14 feet	BLDGL
Maximum Wall Panel Height	9.25 feet	WALLH
Max. Est. weight of Shelter	28,791 LBS.	BLDGWT
Concrete volume req'd.	8.65 YDS.	CONCYDS
Roof thickness at peak	5 inches	H[ROOF]
Roof thickness at edge	4 inches	
Rebar size used in roof \#	4 Rebar	REBARROOF
Steel mesh used in roof:	W4 Wire	
Steel spacing in roof (12"max.)	4 inches	
Lateral rebar spacing: roof	12 inches	ROOFSPACING12
Longitudinal rebar spacing-roof:	18 inches	
Steel mesh used in wall:	W4 Wire	REBARWALL
Add vert steel used in wall \#	4 Rebar	REBARWALL2
Steel spacing in wall (12"max.)	4 inches	WALLSPACING
Vertical Rebar spacing in wall	36 inches	WALLSPACING2
Horizontal rebar spacing in wall	48 inches	
Wall panel thickness	4 inches	WALLTHICKNESS
Rebar size used in floor \#	6 Rebar	REBARFLR
Number of rebar per floor rib	2 each	REBARFLRQTY
Spacing of ribs in floor	28 inches	FLOORSPACING
Floor thickness	5.75 inches	H[FLOOR]
Floor deck thickness	2.75 inches	H[DECK]
Floor rib width	4 inches	B[RIB]
Floor deck steel size	W4 Wire	
Floor deck steel spacing	4 inches	
Area per roof rebar	0.200 sq. in.	A[REBARROOF]
Diameter of roof rebar	0.500 inches	DIA[REBARROOF]
Area per roof wire	0.040 sq. in.	
Area per wall wire	0.040 sq. in.	A[REBARWALL]
Area per extra vert wall rebar	0.200 sq. in.	A[REBARWALL2]
Diameter of wall wire	0.225 inches	DIA[REBARWALL]
Diameter of wall rebar	0.500 inches	
Area of floor rib rebar	0.880 sq. in.	A[REBARFLR]
Diameter of floor rebar	0.750 inches	DIA[REBARFLR]
Area of deck rebar/wire	0.040 sq. in.	A[REBARDECK]
Diameter of deck rebar/wire	0.225 inches	DIA[REBARDECK]
Area of deck steel per foot	0.120 sq.in./ft.	A[DECKSTEEL]
Minimum req'd deck steel/foot	0.059 sq.in./ft.	A[DECKSTEEL-MIN]

2.0.1 STRUCTURAL LOADING SUMMARY FOR PANELS, AS DESIGNED.

PANEL	ALLOWABLE LOAD	TYPE
	10.000 ft wide	
roof	135 psf	LIVE
floor	251 psf	LIVE
	9.250 ft tall	
wall	87.3 psf	WIND

2.0.2 CHECK STEEL RATIOS (ACI 318-08, sec. 21.9.2.3)

$\mathrm{B}_{1}=$| | 0.80 | |
| :---: | :---: | :---: |
| | ρ_{b} | $\rho_{\text {max }}$ |$\rho_{\text {min }}$

ROOF: 0.00830 .0069 OK
$\begin{array}{lll}0.0335 & 0.0252 & 0.0033\end{array}$
Min reqd. per ACl 318-08, sec 21.9.2.1 0.0025
2.0.3 CHECK DEVELOPMENT LENGTH (ACI 318-08, sec. 21.7.5.1)

ROOF PANEL CALCULATIONS
Temperature steel required: Ats
Panels are 4 in thick, minimum.
Maximum thickness of roof panel is 5 inches at center peak.

$$
\text { Ats }=\text { Aconc } \times 0.0018
$$

$=\quad 5 \mathrm{in} . \mathrm{x} \quad 12 \mathrm{in} . \quad x \quad 0.0018$
$=0.1080 \mathrm{sq}$. in. per foot of width of roof panel.
Use \#4 rebar at 18 inches, longitudinal: Ats(actual) $=0.2533$ sq. in. OK
2.1.1 Determine shear strength: Vu[ROOF]
b[ROOF] $=12.0$ inches
d[ROOFSHEAR]= 3 in - DIA[REBARROOF] / 2
2.75 inches
$\mathrm{Vu}[\mathrm{ROOF}]=.85 \times .85 \times 2 \times(\mathrm{fc})^{\wedge} .5 \times \mathrm{b}[$ ROOF $] \times \mathrm{d}[$ ROOFSHEAR $]$
$=3372 \mathrm{lbs}$.
2.1.2 Determine allowable live load due to shear: w[ROOFSHEARLL]

ROOFSPANSHEAR= bldgw - ((d[ROOFSHEAR + 4) x $2 / 12)$
$=\quad 8.875$ feet $\quad 10.00 \mathrm{ft}$ wide shelter
w[ROOFDL] = density x thickness $\quad(\quad 4.5$ in avg) $=\quad 43.1$ psf (concrete only)
w[ROOFSHEARLL] $=(V u[R O O F] /$ ROOFSPANSHEAR - $1.4 \times w[R O O F D L]) / 1.7$
$=188 \mathrm{psf}$ allowable roof live load due to shear strength $\quad 10.00 \mathrm{ft}$ wide
2.1.3 Determine allowable live load due to moment: w[ROOFMOMENTLL]

```
    A[ROOFSTEEL12]= A[REBARROOF] x 12 inches / ROOFSPACING )
            = 0.20 sq. inches per foot of roof panel 10.00 ft wide shelter
    d[ROOFMOMENT]= (H[ROOF]) - (1 +DIA[REBARROOF] / 2 )
                    = 3.75 inches
            a[ROOF12]= (A[ROOFSTEEL12] x fy[REBAR])/(.85 x fc x b[ROOF])
                        = 0.235 inches
            Mu[ROOF12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] x (d[ROOFMOMENT] - a[ROOF12] / 2 )
                        = 3269 ft-lbs
            I[ROOFSPAN]= BLDGW -. 5 = 9.50 feet 10.00 ft wide shelter
```

w[ROOFMOMENTLL] $=\left[\left(8 \times\right.\right.$ Mu[ROOF] $/$ I[ROOFSPAN] $\left.\left.{ }^{\wedge} 2\right)-(1.4 \times w[R O O F D L])\right] / 1.7$
$=135$ psf allowable roof live load due to bending strength. 10.00 ft wide
2.1.4 Determine allowable negative live load due to moment: w[ROOFNEGMOMENTLL]
d[RFNEGMOMENT]= 1 +DIA[REBARROOF] / 2)
$=1.25$ inches
a[RFNEG12]= (A[ROOFSTEEL12] \times fy[REBAR] $) /(.85 \times$ fc $\times b[R O O F])$
0.235 inches
Mu[RFNEG12]= (.9/12) x A[ROOFSTEEL12] x fy[REBAR] $\times(d[R F N E G M O M E N T]-a[R F N E G 12] / 2)$
$1019 \mathrm{ft}-\mathrm{lbs}$
I[ROOFSPAN]= BLDGW -. $5 \quad=9.50$ feet $\quad 10.00 \mathrm{ft}$ wide shelter
w[ROOFNEGMOMLL] $=\left[(8 \times\right.$ Mu[ROOF] $\left.) /\left(1[\text { ROOFSPAN }]^{\wedge} 2\right)\right] / 1.7$
= Allowable negative roof live load due to bending strength (neglecting dead load)
$=\quad-53.1 \mathrm{psf} \quad 10.00 \mathrm{ft}$ wide shelter
2.1.5 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF ROOF
2.1.5.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT
Use a $\quad 4$ inch panel, 4 foot length, for minimum $A_{C V} . \quad(A C I ~ 318-08, ~ 21.9 .2 .2) ~$
$2 \mathrm{~A}_{\mathrm{CV}} \times \lambda \times \mathrm{f}_{\mathrm{c}}{ }^{1 / 2}=23080 \mathrm{lbs} \quad$ [CONTROLS]
2.1.5.2 NOMINAL SHEAR FOR ROOF SECTION (per ACI 318-08, sec. 21.9.4.1, eq. 21-7)

Use a 4 inch panel, 4 foot length, for minimum $A_{C V}$.

$$
\begin{array}{ccc}
\mathrm{V}_{\mathrm{n}}=\mathrm{A}_{\mathrm{CV}}\left(\alpha_{\mathrm{c}} \mathrm{x} \lambda \mathrm{xf}_{\mathrm{c}}^{\prime 12}+\rho_{\mathrm{t}} \mathrm{x} \mathrm{f}_{\mathrm{y}}\right) & \alpha_{\mathrm{c}}= & 2.0\left(\text { for } \mathrm{h}_{\mathrm{w}} / \mathrm{I}_{\mathrm{w}}>2\right) \\
\mathrm{A}_{\mathrm{cv}}=192 \mathrm{in}^{2} & \lambda=0.85(\text { per ACI 318-08 sec. 8.6.1) } \\
\rho_{\mathrm{t}}=\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{CV}}= & & 0.0083
\end{array}
$$

$$
=118708 \mathrm{lbs} \quad[\mathrm{DOES} \text { NOT CONTROL] }
$$

2.1.5.3 NOMINAL SHEAR FOR ROOF DIAPHRAGM (per ACI 318-08, sec 21.11.9.1, eq. 21-10)

Use a 4 inch panel, 4 foot length, for minimum $A_{C V}$.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =\mathrm{A}_{\mathrm{CV}}\left(2 \mathrm{x} \lambda \mathrm{xf}_{\mathrm{c}}{ }^{1 / 2}+\rho_{\mathrm{t}} \times \mathrm{f}_{\mathrm{y}}\right) \\
& =118708 \mathrm{lbs} \quad \text { [DOES NOT CONTROL] }
\end{aligned}
$$

2.2 WALL PANEL CALCULATIONS

Temperature steel required: Ats
Panel thickness is: 4 inches
Ats= Aconc $\times 0.0018$
$=\quad 4 \mathrm{in} . \quad x \quad 12 \mathrm{in} . \quad x \quad 0.0018$
$=0.0864$ sq. in. per foot of width of wall panel.
(ACI 318-08, sec. 14.3.5; 18" MAX) use 4x4-W4xW4 mesh:
Use \#4 rebar at 48 inches, longitudinal: Ats(actual)= 0.1700 sq. in. per foot OK
2.2.1 Determine allowable loads perpendicular to plane of wall
2.2.1.1 Determine shear strength perpendicular to plane of wall: (Vu)

```
    b[WALL] = 12 inches
    d[WALL] = 2 inches (Distance from outside face of panel to center of rebar)
```


$=2452 \mathrm{lbs}$.
2.2.1.2 Determine allowable live load due to shear: w[WALLSHEARLL]

WALLSPANSHEAR= WALLH - (d[WALL] x $2 / 12)$
w[WALLDL] $=\quad 38.33 \mathrm{psf}$ (does not add to horizontal force)
NOTE: WALL DEAD LOAD DOES NOT ACT PERPENDICULAR TO PLANE OF PANEL.
w[WALLSHEARLL] $=$ Vu[WALL] / (WALLSPANSHEAR] $\times 1.7$)
$=$ Allowable wall load due to shear strength
$=162 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.3 Determine allowable live load due to WINDWARD moment: w(WALLMOMENTLL)

A[WALLSTEEL] $=$ A[REBARWALL]x(12"/WALLSPACING)+A[REBARWALL2]×12"/WALLSPACING2
$=0.19$ sq. inches per foot of wall panel
$a[W A L L]=(A[W A L L S T E E L] \times$ fy[REBAR] $) /(.85 \times \mathrm{fc} \times \mathrm{b}[W A L L])$
$=0.220$ inches
$\operatorname{Mu}[W A L L]=(.9 / 12) \times$ A[WALLSTEEL] \times fy[REBAR] $\times(d[W A L L]-a[W A L L] / 2)$
$=1588 \mathrm{ft}-\mathrm{lbs}$
$w[W A L L M O M E N T L L]=\left[\left(8 \times M u[W A L L] / I[W A L L H]^{\wedge} 2\right)-(1.4 x w[W A L L D L])\right] / 1.7$
= Allowable wall live load due to bending strength.
$=\quad \mathbf{8 7 . 3} \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.1.4 Determine allowable live load due to LEEWARD moment: w(WALLMOMENTLL)
$\mathrm{d}[\mathrm{LEEWALL}]=\quad 2$ inches (Distance from intside face of panel to center of rebar)
$a[L E E W A L L]=(A[W A L L S T E E L] \times$ fy[REBAR] $) /(.85 \times f c \times b[W A L L])$
$=0.220$ inches
Mu[LEEWALL] $=(.9 / 12) \times$ A[WALLSTEEL] \times fy[REBAR] $\times(d[W A L L]-a[W A L L] / 2)$
$=1588 \mathrm{ft}-\mathrm{lbs}$
w[LEEWALLMOMENTLL]= [($8 \times \mathrm{Mu}[W A L L] /$ I[WALLH]^2 $)-(1.4 \times \mathrm{w}[W A L L D L])] / 1.7$
= Allowable wall live load due to bending strength.
$=\quad 87.3 \mathrm{psf} \quad 9.25 \mathrm{ft}$ tall wall
2.2.2 CHECK SHEAR ALLOWED PARALLEL TO PLANE OF WALL

2.2.2.1 CHECK SHEAR ALLOWED FOR ONE CURTAIN OF REINFORCEMENT

```
            Use a \(\quad 4\) inch panel, 4 foot length, for minimur ( \(A C I\) 318-08, 21.9.2.2 \()\)
    \(2 \mathrm{~A}_{\mathrm{CV}} \times \lambda \times \mathrm{f}_{\mathrm{C}}{ }^{1 / 2}=23080 \mathrm{lbs} \quad\) [CONTROLS]
```

2.2.2.2 NOMINAL SHEAR FOR WALL SECTION
(per ACl 318-08, sec. 21.9.4.1, eq. 21-7)
Use a 4 inch panel, 4 foot length, for minimum $A_{C V}$.

$$
\begin{array}{rlrl}
\mathrm{V}_{\mathrm{n}} & =\mathrm{A}_{\mathrm{CV}}\left(\alpha_{\mathrm{c}} \times \lambda \times \mathrm{f}_{\mathrm{c}}^{\prime 1 / 2}+\rho_{\mathrm{t}} \times \mathrm{f}_{\mathrm{y}}\right) & \mathrm{A}_{\mathrm{CV}}= & 192 \mathrm{in}^{2} \\
\alpha_{\mathrm{c}}=\quad 2.0\left(\text { for } \mathrm{h}_{\mathrm{w}} / \mathrm{I}_{\mathrm{w}}>2\right) \quad & \lambda= & 0.85 \text { (per ACI sec. 8.6.1) } \\
& \rho_{\mathrm{t}}=\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{CV}}=\quad 0.0066 & & \\
& 99264 \mathrm{lbs} \quad \text { [DOES NOT CONTROL] }
\end{array}
$$

2.2.2.3 NOMINAL SHEAR FOR WALL DIAPHRAGM (per ACI 318-08, sec. 21.11.9.1, eq. 21-10)

Use a 4 inch panel, 4 foot length, for minimum $A_{C V}$.

$$
\begin{aligned}
V_{\mathrm{n}} & =\mathrm{A}_{\mathrm{cV}}\left(2 \mathrm{x} \lambda \mathrm{xf}_{\mathrm{c}}^{\left.\mathrm{f}^{1 / 2}+\rho_{\mathrm{t}} \mathrm{x} \mathrm{f}_{\mathrm{y}}\right)}\right. \\
& =99264 \mathrm{lbs} \quad \text { [DOES NOT CONTROL] }
\end{aligned}
$$

2.3 FLOOR PANEL CALCULATIONS

2.3.1 Determine temperature steel required for the deck:

Deck temperature steel required is:
ATS[DECK] $=\mathrm{H}[\mathrm{DECK}] \times 12 \mathrm{in} . \mathrm{X} .0018$
$=\quad 2.75$ in. $x \quad 12$ in. $x \quad 0.0018$
$=0.0594 \mathrm{sq} . \mathrm{in}$. per foot of width of floor panel.
A[DECKSTEEL]= 0.1200 sq . in per foot of panel. OK
2.3.2 Determine floor deck strength:

DECKSPAN = FLOORSPACING - B[RIB]
$=24.0$ inches
$\mathrm{d}[\mathrm{DECK}]=\mathrm{H}[\mathrm{DECK}]-1 \quad$ (Assumes mesh is 1" clear from bottom of deck)
$=\quad 1.75$ inches
$a[D E C K]=(A[D E C K S T E E L] \times F Y[R E B A R]) /(.85 \times \mathrm{fc} \times 12 \mathrm{in}$.
$=0.1412$ inches
Mu[DECK]= 0.9/12 x A[DECKSTEEL] \times fy[REBAR] $\times(d[D E C K]-(a[D E C K] / 2))$
$=907 \mathrm{ft}-\mathrm{lbs}$
$w[D E C K T O T A L M O M]=(M u[D E C K] \times 8) /(D E C K S P A N \times 12 i n . ~ p e r f t)^{\wedge} 2$
$=1814 \mathrm{psf}$
$w[D E C K D L]=(H[D E C K] / 12$ in. per ft. $\times 1 \mathrm{ft} . \wedge 2 \times$ DENSITY $)$
$=26.4 \mathrm{psf}$
$w[D E C K L L M O M]=(w[D E C K T O T A L-1.4 \times w[D E C K D L]) / 1.7$
$=1045 \mathrm{psf}$
$\mathrm{Vu}[\mathrm{DECK}]=.85 \times .85 \times 2 \times\left(\mathrm{fc}^{\wedge} .5\right) \times \mathrm{d}[\mathrm{DECK}] \times 12 \mathrm{in}$.
$=2146 \mathrm{lbs}$.
$w[D E C K T O T S H E A R]=2 \times(V u[D E C K] / L$
$=2146 \mathrm{psf}$
$w[D E C K L L S H E A R]=(w[D E C K T O T S H E A R]-1.4 \times w[D E C K D L]) / 1.7$
$=1240 \mathrm{psf}$
Allowable live load for the floor deck is: 1045 psf (FLOOR DECK MOMENT CONTROLS)
2.3.3 Determine floor rib strength:

Effective width of flange: ACI 318-08, sec. 8.12.2 flange width 1/4 span: $=\quad 28.5$ inches
Effective width of overhang: ACI 318-08, sec. 8.12.2 (a) \& (b)
(a) 8 times $\mathrm{H}[\mathrm{DECK}]=22$ inches 48.0 inches

OR (b) $1 / 2$ clear dist. $=12.0$ inches 28.0 inches <controls>
$\mathrm{bf}=28.0$ inches
d[FLOOR]= H[FLOOR] - (.75" + DIA[REBARFLR] / 2)
4.625 inches
$a[F L O O R]=($ A [REBARFLR] x fy[REBAR] $) /(.85 x f c \times b f)$
$=0.444$ inches
$\mathrm{Mu}[\mathrm{FLOOR}]=(.9 / 12) \times \mathrm{A}[R E B A R F L R] \times$ fy[REBAR] $\times(\mathrm{d}[F L O O R]-\mathrm{a}[F L O O R] / 2)$
$=17436 \mathrm{ft}-\mathrm{lbs}$
FLOORSPANMOM= BLDGW $-.5 \mathrm{ft} . \quad=\quad 9.50$ feet $\quad 10.00 \mathrm{ft}$ wide shelter
$\mathrm{w}[$ FLOORMOMTOT $]=8 \times \mathrm{Mu}[$ FLOOR $] /(\text { FLOORSPANMOM })^{\wedge} 2$
$=1546$ plf $\quad 10.00 \mathrm{ft}$ wide shelter
$w[F L O O R D L]=((H[D E C K] \times b f / 144)+b[R I B] \times(H[F L O O R]-H[D E C K]) / 144) \times 1$ ft.x DENSITY
$=71.1 \mathrm{plf} \quad($ PER RIB $)=30.5 \mathrm{psf}$
w[FLOORMOMLL] $=$ [W[FLOORMOMTOT] - ($1.4 \times \mathrm{w}[$ FLOORDL] $)$] / ($1.7 \times$ trib $)$
$=\quad 365 \mathrm{psf} \quad 10.00 \mathrm{ft}$ wide shelter
2.3.4 Determine rib shear strength: Vu[FLOOR]
$b[R I B]=4.00$ inches
A[RIBSHEAR $]=\left(H[F L O O R]-\left(.75^{\prime \prime}+D I A[R E B A R F L R] / 2\right)\right) \times B[R I B]$
18.50 sq. in.

ACl 318-08, sec. 11.2.2.1 Eq. 11-5 $\quad \lambda=0.85$
Vc[FLOOR] $=\left(1.9 \times \lambda \times(\mathrm{fc})^{\wedge} .5+\left(2500 \times \rho_{\mathrm{w}} \times \mathrm{A}[R E B A R F L R] /(\mathrm{b}[R I B] \times \mathrm{d}[\mathrm{FLOOR}])\right) \times \mathrm{b}[R I B] \times \mathrm{d}[\mathrm{FLOOR}]\right.$
$=4313 \mathrm{lbs}$.
But not greater than: $3.5 \times \lambda \times \mathrm{f}^{\prime} \mathrm{c}^{\wedge} .5 \times \mathrm{b}[\mathrm{RIB}] \times \mathrm{d}[\mathrm{FLOOR}]$ $=3892 \mathrm{lbs}$.
USE 3892 lbs.
ACI 318-08, 8.13.8 \quad Vc[FLOORALLOW $]=\quad 1.1 x \mathrm{Vc}[F L O O R]=\quad 4281 \mathrm{lbs}$.
2.3.5 Determine allowable live load due to shear: w[FLOORSHEARLL]

FLOORSPANSHEAR= bldgw $-((\mathrm{d}[$ FLOOR +8.5$) \times 2$ / 12$)$
$=\quad 7.81$ feet $\quad 10.00 \mathrm{ft}$ wide shelter
$\mathrm{w}[$ FLOORSHEARLL] $=(\mathrm{Vc}[$ FLOORALLOW] $/(.5 \times F L O O R S P A N S H E A R)-1.4 \times w[F L O O R D L]) /(1.7 \times F L O O R S P A C I N G / 12)$
$=$ Allowable floor live load due to shear strength
$=\quad 251 \mathrm{psf} \quad 10.00 \mathrm{ft}$ wide shelter
Allowable LL for the $\quad 10.00 \mathrm{ft}$ wide floor rib is: $251 \mathrm{psf} \quad$ (FLOOR RIB SHEAR CONTROLS) Gross allowable floor load; LL + 46 psf DL= 298 psf 10.00 ft wide
2.3.6 Determine allowable concentrated load over 2 sq ft and 3 sq ft .

2 square foot area is equivalent to approximately 17 inch $\times 17$ inch, or 1.41 feet $\times 1.41$ feet.
Assume one rib takes the entire concentrated load.
Allowable load based on shear is: 251 psf
For a 10.00 foot wide shelter with a $\quad 9.00 \mathrm{ft}$ span, the equivalent concentrated load is:
P [shear) $=9.00 \mathrm{ft} x \quad 251 \mathrm{lbs} . \mathrm{x} \quad 2$ $=4522$ lbs Maximum concentrated load (shear).
Maximum live load for bending on one rib is:

$$
\text { w[FLOORRIBLL] }=\mathrm{w}[\text { FLOORMOMLL }] \times \text { BF / } 12=851 \text { plf }
$$

Make uniform load moment equal to concentrated load moment and solve for P.
w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
$P($ moment $)=w[$ FLOORRIBLL $] \times($ FLOORSPANMOM $) / 4$
$=\quad 2020$ LBS Max concentrated load in center of floor (bending).
If the load is next to the wall (as is usually the case with batteries) :
w[FLOORRIBLL]x (FLOORSPANMOM^2) / $8=\mathrm{P} \times 1.5$
$\mathrm{P}($ moment $)=\mathrm{w}[$ FLOORRIBLL $] \times($ FLOORSPANMOM^2 $) *(2 \times 8)$
$=6398$ LBS $\quad \begin{aligned} & \text { Max concentrated load next to wall (bending). } \\ & \text { Shear controls }\end{aligned}$
Shear controls when load is next to wall.
For a 3 square foot area the concentrated load will be supported by two ribs.
Maximum live load for bending on two ribs is:

$$
\mathrm{w}[\text { [FOORRIBLL] }=\mathrm{w}[\text { FLOORMOMLL }] \times \mathrm{BF} / 12=1701 \mathrm{plf}
$$

Make uniform load moment equal to concentrated load moment and solve for P.
w[FLOORRIBLL]x (FLOORSPANMOM^2) /8 = P x FLOORSPANMOM / 2
$\mathrm{P}($ moment $)=w[$ FLOORRIBLL $] \times($ FLOORSPANMOM $) / 4$
$=4041$ LBS Max concentrated load in center of floor (bending).

INSERT PLATE ANALYSIS
(Analysis per ACl 318-08, Appendix D)
3.1

Material Properties

$$
\begin{array}{rlrl}
\mathrm{f}_{\mathrm{c}}^{\prime}= & 5000 \mathrm{psi} \text { (sand-lightweight) } \\
\mathrm{f}_{\mathrm{cta}} & = & 61 \mathrm{ksi}^{2} \\
\mathrm{~A}_{\text {se }} & = & 0.196 \mathrm{in}^{2} \\
\mathrm{~A}_{\text {brg }} & = & 0.589 \mathrm{in}^{\angle} \\
\mathrm{h}_{\text {ef }} & = & 2 \mathrm{in} \\
\mathrm{~d}_{\mathrm{a}} & = & 0.5 \mathrm{in}
\end{array}
$$

3.2 Stud Analysis

Per D.5.3.4, Eq D-15, Pullout strength in tension shall not exceed:

$$
N_{p}=8 A_{\text {brg }} f_{c}^{\prime}=\quad 23,562 \mathrm{lbs} / \mathrm{stud}
$$

(due to crushing strength of concrete at the head of the stud.
3.2.2 Basic tension breakout strength of stud shall not exceed:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{b}}=\mathrm{k}_{\mathrm{c}} \lambda\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2} \mathrm{~h}_{\mathrm{ef}}^{1.5} \\
& \lambda=0.85 \mathrm{Sec} 8.6 .1 \text { (sand-lightweight) } \\
& \mathrm{N}_{\mathrm{b}}=\quad 4080 \mathrm{lbs} / \text { stud }
\end{aligned}
$$

3.2.3 Check ductile strength of stud.

$\mathrm{N}_{\text {sa }}$	$=\mathrm{A}_{\text {se }} \mathrm{f}_{\text {uta }}$	$=$	$11.98 \mathrm{kips} / \mathrm{stud}$
ϕ	$=$	0.75	[See D.4.4 a) i)]
$\phi \mathrm{N}_{\text {sa }}$	$=$	$8.98 \mathrm{kips} /$ stud	

3.2.3

Check shear strength of stud.

$$
\begin{array}{rlll}
\mathrm{V}_{\mathrm{sa}} & = & \mathrm{A}_{\text {se }} \mathrm{f}_{\mathrm{uta}} & = \\
\phi & & 11.98 \mathrm{kips} / \mathrm{stud} \\
\phi \mathrm{~N}_{\mathrm{sa}} & = & 0.65 & 7.79 \mathrm{kips} / \mathrm{stud}
\end{array}
$$

3.3 INSERT PLATE "P/N 223100" ANALYSIS

3.3.1 Tension Capacity of "P/N 223100" plate:
$N_{c b g}=\left(A_{n c} / A_{n c o}\right) \psi_{\text {ec, } N} \psi_{\text {ed }, N} \psi_{c, N} \psi_{c p, N} N_{b}$

$$
\mathrm{A}_{\mathrm{Nco}}=9 \mathrm{~h}_{\mathrm{ef}}^{2} \quad=
$$

Find $A_{N c}$ for just the two upper studs.

$$
A_{N c}=A_{N c o}+4(3)\left(h_{e f}\right)=
$$

$\psi_{\text {ec, } \mathrm{N}}=\quad 1.0$ assume no eccentricity
$\psi_{\text {ed }, \mathrm{N}}=\quad 1.0$ ($\mathrm{c}_{\mathrm{a}} \mathrm{min}>1.5 \mathrm{hef}_{\text {ef }}$ for 2 studs)
$\psi_{\mathrm{c}, \mathrm{N}}=\quad 1.25$ (for cast-in anchors)
$\psi_{\text {cp,N }}=\quad 1.0$ (for cast-in anchors)
$\mathrm{N}_{\mathrm{cbg}}=8500 \mathrm{lbs} \quad \phi=0.70$ [Sec D.4.4 (c) condition B]
$\phi \mathrm{N}_{\mathrm{cbg}}=5950 \mathrm{lbs}$
TENSION CAPACITY OF "P/N 223100" PLATE
[Eq D-5] Sec D.5.2.1
$36 \mathrm{in}^{2}$
$60 \mathrm{in}^{2}$

促
Shear Capacity of "P/N 223100" plate in the X-direction:
This shear force is parallel to the edge of the panel

$$
\begin{array}{rr}
V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c, v} \psi_{\text {ed }, v} \psi_{c, v} \psi_{h, v} V_{b} \\
V_{b}=7\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}_{\mathrm{a}}\right)^{0.2}\left(\mathrm{~d}_{\mathrm{a}}\right)^{1 / 2} \lambda\left(\mathrm{f}_{\mathrm{c}}\right)^{1 / 2}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5} \\
\mathrm{I}_{\mathrm{e}}=\mathrm{h}_{\mathrm{ef}}= & 2 \text { inches } \\
\mathrm{d}_{\mathrm{a}}= & 0.5 \text { inches }
\end{array}
$$

(equels two times perpendicular)
[Eq D-22 x 2] Sec D.6.2.1 (c)
[Eq D-24] Sec D.6.2.2

$$
\begin{array}{cc}
\lambda= & 0.85 \text { Sec 8.6.1 } \\
\mathrm{c}_{\mathrm{a} 1}= & 7 \text { inches }
\end{array}
$$

$$
V_{b}=7270 \mathrm{lbs} / \mathrm{stud} \quad \psi_{\mathrm{h}, \mathrm{v}}=
$$

$$
1.0 \text { [D.6.2.8] }
$$

$\psi_{\text {ec,v }}=\quad 1.0$ assume no eccentricity

$$
\psi_{\mathrm{c}, \mathrm{v}}=\quad 1.2 \text { (for \#4 bar between anchor and edge) }
$$

$$
h_{\mathrm{a}}=\quad 4 \text { inches } \quad \mathrm{s}_{1}=\quad 4 \text { inches }
$$

$$
\mathrm{A}_{\mathrm{vco}}=2\left(1.5 \mathrm{c}_{\mathrm{a} 1}\right) \mathrm{h}_{\mathrm{a}}=
$$

$$
84 \mathrm{in}^{2}
$$

$$
\mathrm{A}_{\mathrm{vc}}=\left(2\left(1.5 \mathrm{c}_{\mathrm{a} 1}\right)+\mathrm{s}_{1}\right) \mathrm{h}_{\mathrm{a}}=\quad 100 \mathrm{in}^{2}
$$

$$
\mathrm{V}_{\mathrm{cbg}}=20772 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [D.4.4 (c) condition B] }
$$

$\phi \mathrm{V}_{\mathrm{cbg}}=14540 \mathrm{lbs}$

SHEAR CAPACITY OF "P/N 223100" PLATE IN X-DIRECTION
Shear Capacity of "P/N 223100" plate in the (negative) Y-direction:

This shear force is perpendicular to the edge of the panel.
NOTE: The lower stud is ignored since it is close to the free edge.

```
    \(V_{c b g}=\left(A_{v c} / A_{v c o}\right) \psi_{e c, v} \psi_{e d}, v \psi_{c, v} \psi_{h}, v V_{b}\)
        \(\mathrm{V}_{\mathrm{b}}=7270 \mathrm{lbs} /\) stud
    \(\psi_{\text {ec,v }}=\quad 1.0\) assume no eccentricity
    \(\psi_{e d, v}=1.0 \mathrm{C}_{\mathrm{a} 2}>1.5 \mathrm{C}_{\mathrm{a} 1} \quad \psi_{\mathrm{h}, \mathrm{v}}=1.0\) [D.6.2.8]
    \(\psi_{c, v}=\quad 1.2\) (for \#4 bar between anchor and edge)
            \(\mathrm{h}_{\mathrm{a}}=4\) inches \(\mathrm{s}_{1}=\quad 4\) inches
    \(\mathrm{A}_{\mathrm{vco}}=\quad 84 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{vc}}=\quad 100 \mathrm{in}^{\perp} \quad\) from 3.3.2 above
    \(\mathrm{V}_{\mathrm{cbg}}=10386 \mathrm{lbs} \quad \phi=0.70\) [D.4.4 (c) condition B]
    \(\phi \mathrm{V}_{\mathrm{cbg}}=7270 \mathrm{lbs}\)
SHEAR CAPACITY OF "P/N 223100" PLATE IN Y-DIRECTION
```

3.4 INSERT PLATE "PIN 223000" ANALYSIS

3.4.1

Tension Capacity of "P/N 223000" plate:
$N_{c b g}=\left(A_{n c} / A_{\text {nco }}\right) \psi_{\text {ec }, N} \psi_{\text {ed }, N} \psi_{c, N} \psi_{c p, N} N_{b}$ $A_{N c o}=9 h_{e f}{ }^{2}$
Find $A_{N c}$ for just the two upper studs.
$A_{N c}=A_{N c o}+4(3)\left(h_{e f}\right)=$

$\psi_{\text {ec,N }}=\quad 1.0$ assume no eccentricity
$\psi_{\text {ed }, \mathrm{N}}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \mathrm{min}>1.5 \mathrm{~h}_{\mathrm{ef}}\right.$ for 2 studs considered $)$
$\psi_{c, N}=1.25$ (for cast-in anchors)
$\psi_{\text {cp,N }}=1.0$ (for cast-in anchors)
$\mathrm{N}_{\mathrm{cbg}}=8500 \mathrm{lbs}$
$=0.70$
[Use condition B, D.4.4]

$$
\phi \mathrm{N}_{\mathrm{cbg}}=\quad 5950 \mathrm{lbs}
$$

TENSION CAPACITY OF "P/N 223000" PLATE
3.4.2

Shear Capacity of "P/N 223000" plate in the X-direction:

This shear force is parallel to the edge of the panel.
$V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c, V} \psi_{e d, v} \psi_{c, v} \psi_{h, v} V_{b}$
where: $\quad V_{b}=7\left(I_{e} / d_{a}\right)^{0.2}\left(d_{a}\right)^{1 / 2} \lambda\left(f_{c}^{\prime}\right)^{1 / 2}\left(c_{a 1}\right)^{1.5}$ [Eq D-22 x 2] Sec D.6.2.1 (c)
[Eq D-24] Sec D.6.2.2
$\mathrm{I}_{\mathrm{e}}=$ hef $=\quad 2$ inches $\quad \lambda=0.85 \operatorname{Sec} 8.6 .1$
$\mathrm{d}_{\mathrm{a}}=\quad 0.5$ inches $\quad \mathrm{c}_{\mathrm{a} 1}=\quad 4$ inches

3.4.3 Shear Capacity "P/N 223000" in the neg Y-direction (toward free edge):

This shear force is perpendicular to the edge of the panel.

$$
\begin{aligned}
& V_{c b g}=\left(A_{v c} / A_{v c o}\right) \psi_{e c, v} \psi_{e d, v} \psi_{c, v} \psi_{h, v} V_{b} \quad[E q D-22] \text { Sec D.6.2.1 (b) } \\
& \mathrm{V}_{\mathrm{b}}=3140 \mathrm{lbs} / \text { stud from 3.4.2 above } \\
& \psi_{\text {ec,v }}=\quad 1.0 \text { assume no eccentricity } \\
& \psi_{\mathrm{ed}, \mathrm{~V}}=\quad 1.0 \mathrm{C}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} \quad \psi_{\mathrm{h}, \mathrm{v}}=\quad 1.0 \text { [D.6.2.8] } \\
& \psi_{c, v}=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& \mathrm{A}_{\text {vco }}=\quad 42 \mathrm{in}^{2} \quad \mathrm{~A}_{\mathrm{vc}}=\quad 56 \mathrm{in}^{2} \\
& \text { from 3.4.2 above } \\
& \mathrm{V}_{\mathrm{cbg}}=\quad 5025 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
\end{aligned}
$$

$$
\begin{aligned}
& \phi \mathrm{V}_{\mathrm{cbg}}=3517 \mathrm{lbs} \\
& \text { SHEAR CAPACITY OF "P/N 223000" PLATE IN Y-DIRECTION }
\end{aligned}
$$

INSERT ANGLE "P/N 222000" ANALYSIS

3.5.1 Tension Capacity of "P/N 222000" Insert Angle: (negative Z)

$$
N_{c b g}=\left(A_{n c} / A_{n c o}\right) \psi_{e c, N} \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}
$$

$$
\mathrm{A}_{\mathrm{Nco}}=9 \mathrm{~h}_{\mathrm{ef}}{ }^{2}=
$$

[Eq D-5] Sec D.5.2.1 (b)
$36 \mathrm{in}^{<}$

Find $A_{N c}$ for just the two studs.

$$
\begin{aligned}
& \psi_{\text {ec,N }}=\quad 1.0 \text { assume no eccentricity } \\
& \psi_{\text {ed, } \mathrm{N}}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \min >1.5 \mathrm{~h}_{\mathrm{ef}} \text { for } 2 \text { studs considered }\right) \\
& \psi_{\mathrm{c}, \mathrm{~N}}=\quad 1.25 \text { (for cast-in anchors) } \\
& \psi_{\mathrm{cp}, \mathrm{~N}}=1.0 \text { (for cast-in anchors) } \\
& \mathrm{N}_{\mathrm{cbg}}=8500 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
\end{aligned}
$$

Shear Capacity of "P/N 222000" Insert Angle in X direction:
This shear force is parallel to the edge of the panel. (equels two times perpendicular)

$$
V_{c b g}=2\left(A_{v c} / A_{v c o}\right) \psi_{e c, v} \psi_{\text {ed }, \mathrm{v}} \psi_{\mathrm{c}, \mathrm{v}} \psi_{\mathrm{h}, \mathrm{~V}} \mathrm{~V}_{\mathrm{b}} \quad[\text { Eq D-22 } \times 2] \text { Sec D.6.2.1 (c) }
$$

where:

$$
\begin{aligned}
& \phi \mathrm{V}_{\mathrm{cbg}}=\quad 5140 \mathrm{lbs} \\
& \text { SHEAR CAPACITY OF "P/N 222000" INSERT, X-DIRECTION }
\end{aligned}
$$

3.5.3 Shear Capacity of "P/N 222000" Insert Angle in Y direction:

This is for uplift forces from the roof panel.

$$
\begin{array}{rcrl}
\mathrm{V}_{\mathrm{cbg}}=\left(\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\right) \psi_{\mathrm{ec}, \mathrm{v}} \psi_{\mathrm{ed}, \mathrm{v}} \psi_{\mathrm{c}, \mathrm{v}} \psi_{\mathrm{h}, \mathrm{v}} \mathrm{~V}_{\mathrm{b}} & \quad[\mathrm{Eq} \mathrm{D}-22] \text { Sec D.6.2. } \\
\mathrm{V}_{\mathrm{b}} & = & 2040 \mathrm{lbs} / \text { stud } & \text { from 3.5.2 above } \\
\psi_{\text {ec }, \mathrm{v}} & = & 1.0 \text { assume no eccentricity } \\
\psi_{\text {ed }, \mathrm{v}} & = & 1.0 \mathrm{c}_{\mathrm{a} 2}>1.5 \mathrm{c}_{\mathrm{a} 1} & \psi_{\mathrm{h}, \mathrm{v}}=
\end{array}
$$

$\psi_{c, v}=$	1.2 (for \#4 bar between anchor and edge)		
$\mathrm{A}_{\mathrm{vco}}=$	$36 \mathrm{in}^{2}$	from 3.5.2 above	
$\mathrm{A}_{\mathrm{vc}}=$	$54 \mathrm{in}^{2}$	from 3.5.2 above	
$\mathrm{V}_{\mathrm{cbg}}=$	3672 lbs		
$\phi=$	0.70	[Use condition B, D.4.4]	
$\phi \mathrm{V}_{\mathrm{cbg}}=$	2570 lbs		
SHEAR CAPACITY OF "P/N 222000" INSERT, Y-DIRECTION			

3.6
 WALL CORNER INSERT ANALYSIS

This insert is used on the vertical sides of the endwalls. The 4 " leg forms the outside edge of the endwalls, and the 6 " leg is abutted to the side walls and is used for the welded connection to the side wall, the roof, and the floor.
The primary loads on this insert are those from wind and seismic forces as they are transferred to/from the floor/roof panel by using the endwall as a shearwall against the forces as they are applied to the side walls.
The shearwall forces are applied in the X-direction as applied to the end view on the right side of the picture above. Of the 7 studs (minimum) that are on the insert, three of them would be analyzed for tension and the other four would be in shear. Depending on the direction of shear, (+X or -X direction), the free edge will come into play. This analysis will only consider the free edge allowable loads with the assumption that the insert will exceed that capacity when loaded in the opposite direction.
Capacity of Wall Corner Inserts in X-direction
Check capacity of individual studs on the 6 " leg of the angle.
These studs would be in shear toward the free edge.

$$
V_{c b}=\left(A_{v c} / A_{v c o}\right) \psi_{\text {ed }, v} \psi_{c, v} \psi_{h, v} V_{b}
$$

[Eq D-21 Sec D.6.2.1 (a)]
where:

$$
\begin{aligned}
& V_{b}=7\left(l_{e} / d_{a}\right)^{0.2}\left(d_{a}\right)^{1 / 2} \lambda\left(f_{c}^{\prime}\right)^{1 / 2}\left(c_{a 1}\right)^{1.5} \\
& l_{e}=h_{e f}=2 \text { inches } \\
& \mathrm{d}_{\mathrm{a}}=\quad 0.5 \text { inches } \\
& \psi_{\text {ed, }, ~}=1.0 \quad \psi_{h, v}=\quad 1.0 \text { [D.6.2.8] } \\
& \text { [Eq D-24] Sec D.6.2.2 } \\
& \lambda=0.85 \operatorname{Sec} 8.6 .1 \\
& c_{a 1}=5 \text { inches } \\
& \mathrm{V}_{\mathrm{b}}=\quad 4389 \mathrm{lbs} / \text { stud } \\
& \psi_{\mathrm{c}, \mathrm{v}}=\quad 1.2 \text { (for \#4 bar between anchor and edge) } \\
& \mathrm{h}_{\mathrm{a}}=\quad 4 \text { inches } \quad \text { [at step-joint] } \quad \mathrm{s}_{1}=\quad 24 \text { inches } \\
& \mathrm{A}_{\mathrm{vco}}=4.5 \mathrm{c}_{\mathrm{a} 1}{ }^{2}= \\
& A_{v c}=2\left(1.5 c_{a 1}\right) h_{a=} \\
& 112.5 \mathrm{in}^{2} \\
& 60 \mathrm{in}^{2}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{cb}}=\quad 5618 \mathrm{lbs} \quad \phi=\quad 0.70$ [Use condition B, D.4.4]
$\phi \mathrm{V}_{\mathrm{cb}}=3932 \mathrm{lbs}$

Shear capacity of studs on 6 " leg, X direction.
To this, add the tension load from the studs on the 4" leg.

$$
\begin{array}{ccc}
N_{c b}=\left(A_{n c} / A_{n c o}\right) \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b} & {[\text { Eq D-4] Sec D.5.2.1 (a) }} \\
A_{N c o}=9 h_{e f}{ }^{2} & = & 36 \text { in }^{2}
\end{array}
$$

$$
\begin{aligned}
& \text { Find } A_{N c} c_{a 1}= \\
& A_{N c}=2\left(c_{a 1}\right) \times 2\left(1.5 h_{e f}\right)= \\
& 24 \mathrm{in}^{\angle} h_{\mathrm{ef}}= \\
&
\end{aligned}
$$

$$
\psi_{\text {ed, } \mathrm{N}}=\quad 1.0\left(\mathrm{c}_{\mathrm{a}} \min >1.5 \mathrm{~h}_{\mathrm{ef}} \text { for } 2 \text { studs considered }\right)
$$

$$
\psi_{\mathrm{c}, \mathrm{~N}}=\quad 1.25 \text { (for cast-in anchors) }
$$

$$
\psi_{\mathrm{cp,N}}=\quad 1.0 \text { (for cast-in anchors) }
$$

$$
\mathrm{N}_{\mathrm{cb}}=3400 \mathrm{lbs} \quad \phi=\quad 0.70 \text { [Use condition B, D.4.4] }
$$

$$
\phi \mathrm{N}_{\mathrm{cb}}=2380 \mathrm{lbs}
$$

Shear capacity of studs on 6 " leg, X direction.
These two were analyzed as individual studs since they are spaced 12 inches apart, far enough to act alone, not as a group.
In this direction, there would be a minimum of 4 studs in shear,
and three studs in tension. The total allowable load is:

$$
\begin{array}{|cr}
\mathrm{P}_{\mathrm{x}}=4\left(\phi \mathrm{~V}_{\mathrm{cb}}\right)+3\left(\phi \mathrm{~N}_{\mathrm{cb}}\right)= & 22870 \mathrm{lbs} \\
\text { SHEAR CAPACITY OF WALL INSERT, +/- } \mathrm{X} \text {-direction }
\end{array}
$$

FLOOR LIFTING INSERT ANALYSIS

The floor lifting inserts are made from 5 " $x 5$ " $x 5 / 16$ " angle with a $5 " x 5 / 16$ " plate welded on the open top, to form a channel, and extend across the entire width of the floor panel at each end of the shelter. The inserts are similar to the wall corner inserts in design as they have no less than 6 studs, $1 / 2^{\prime \prime} \times 4$ " long, on 12 " centers and two studs, $1 / 2$ " $\times 2$ " long. These inserts provide three connection points for the endwall, and the two outer connections also double as side wall connections. The floor panel side inserts are made from a 5 " $\times 5$ " $\times 5 / 16$ " angle with one side up and one side out, and extend the entire length of the shelter. They are also similar to the wall corner inserts in design by having a minimum of 6 studs, $1 / 2^{\prime \prime} \times 4$ " long, on 12 " centers and four \# 6×30 " rebar splices. These inserts provide three or more connection points for the sidewall. By inspection these inserts are highly integrated into the floor structure. A failure would require much more than the shear cone failures as provided by the stud design manual. Therefore, the connections will be considered as equivalent to the analysis of the wall corner insert (sec 3.6.1).

$3.8 \quad$ CAPACITY OF WELDS AT CONNECTION PLATES

Welds to be made with SMAW, E70XX electrodes.
All standard connection plates will have a $3 / 16$ " weld, 3 inches long.
E70XX welds are good for .928 kips per inch per sixteenth inch of weld.
Weld capacity is then:
Pw = ($0.928 \mathrm{k} /$ inch/sixteenth) \times (3 inches) \times (3 sixteenths)
Pw = $\quad 8.352 \mathrm{kips}$
CAPACITY OF ALL STANDARD CONNECTION PLATE WELDS

CAPACITY OF TIE-DOWN CONNECTION PLATES
Three failure modes are noted:
A: Failure of the connection plate.
B: Failure of the bolts connecting the plate to the shelter.
C: Failure of the expansion anchor connecting the plate to the foundation.

A: Shear through edge of plate at one hole is:

HoleArea(bolt) $=D($ top $) \times t$
HoleArea(anchor) $=D(b o t) \times t$
PL-Area $=\mathrm{t} \times\left(2^{\prime \prime}-\left(.5 \times 1.25^{\prime \prime}\right)\right)$
cannoted
OK [exceeds $2 / 3$ hole area, AISC, LRFD (1999), D3.2]

4 CONCRETE BUILDING WEIGHT CALCULATOR

EXTERIOR ELEVATION "B"

SIDE AT CONNECTION TO BUIIDING

NOTE:

1. TOLERANCES THIS SHT $\pm 1^{\prime \prime}$ (UNLESS OTHERWISE NOTED)
2. INSTALL UNISTRUTS USING $3 / 8$ STUDS 1 FROM ENDS AND EVERY $24 "$ ON CENTER 2 STUDS MIN. EACH UNISTRUT(TYP.)

INTERIOR ELEVATION
"B" - UNISTRUT LAYOUT

	CUSTOMER: KELLOGG BROWN \& ROOT FEMA (PEP) EXPANSION PROGRAM		
	$\begin{aligned} & \hline \text { FILENAME: } \\ & \text { KBR/SKBRO1 } \end{aligned}$		
		TOLERANCE:	
	DRWW. BY: D. CHRISTOPHE dit	DATE: 03/22/10	
	CHK. BY: C. BRINKMAN	${ }^{\text {DATE: }}$ 03/22/10	
	C ENG. BY: ${ }_{\text {A. }}^{\text {A. DUMAS }}$	DATE:	
	${ }^{\text {APP. BY: }}$,	DATE:	
	$\begin{aligned} & \text { SHEET NO. } \\ & 4-6 \end{aligned}$		
/16/12	$\begin{aligned} & \text { DRAWING NO.: } \\ & \text { SKBRO1 } \end{aligned}$		REV.:
DA5TE			P

ELEVATION A

CUSTOMER:KELLOGGBROWN \& ROOTFEMA (PEP)EXPANSION PROGRAM	
CONCRETE SHELTER GROUND BAR THRU WALL DETAIL	
$\begin{aligned} & \text { FILENAME: } \\ & \text { KBR/SKBRO1 } \end{aligned}$	
SCALE: N.T.S.	TOLERANCE:
DRWN. BY: D. CHRISTOPHE	DATE: 03/22/10
CHK. BY: G. BRINKMAN	DATE: 03/22/10
ENG. BY: A. DUMAS	DATE:
	DATE:
$\begin{aligned} & \text { SHEET NO. } \\ & 6-2 A \end{aligned}$	
DRAWING NO.: SKBRO1	REV.: P

NOTES:

1. FUEL LINE ON BOTTOM. THIS LINE IS DESIGNATED AS FUEL OIL SUPPLY LINE ON KBR DRAWINGS.
2. PIPE LENGTHS TO SUIT FITTER. MOUNT PIPE ON UNISTRUT USING $\mathrm{P} / \mathrm{N}-410461$.
3. PAINT ALL FUEL LINES BLACK.
4. FIELD NOTE: WHEN ATTACHING PIPE PENETRATIONS TO FIELD PIPING, USE RECTOR SEAL NO 7 TM AND BACK UP STUBS WITH PIPE WRENCH WHILE TIGHTENING TO ELIMINATE TWISTING OF PIPE IN WAL
5. ELLS REDUCERS ETC... SHALL BE 150\# STEEL OR MALLEABLE IRON FITTINGS, FNPT.
6. USE ONLY RECTORSEAL® 7 PIPE DOPE ON FUEL LINE FITTINGS.
7. ORIENT DIELECTRIC COUPLING SO THAT S.S. SIDE IS ATTACHED TO S.S. PENETRATIN PIPING, AND INSULATED C.S. PIPE IS ATTACHED TO INTERIOR C.S. PIPING

NOTES:

1. ALL REQUIRED TIE DOWN PLATES, SHIMS, BOLTS AND ANCHORS SHALL BE PLACED INSIDE SHELTER
2. USE SHIMS AS REQUIRED TO ASSURE SHELTER IS BEARING AT PERIMETER. SEAL PERIMETER W/ CAULK OR GROUT AS DESIRED.

CONNECTION DETAIL ISOMETRIC

CONNECTION DETAIL FRONT

NOTES：

1．CONDUCTOR COLORS ARE AS FOLLOWING
120／240 SINGLE PHASE
PHASE＂A＂＝BLACK
PHASE＂B＂＝RED
120／208 THREE PHASE
PHASE＂A＂BLACK
PHASE＂A＂＝BLAC
PHASE＂C＂＝BLUE
NEUTRAL＝WHITE
277 ／480 THREE PHASE
277／480 THREE PHASE
PHASE＂A＂$=$ YELLOW
PHASE＂B＂＝BROWN
NEUTRAL＝GRAY
ALL ELECTRICAL GROUND＝GREEN
ALL ISOLATED GROUND＝GREEN／YELLOW STRIPE
ALL SWITCHED＝PURPLE
2．ALL CONDUCTORS（UNLESS OTHERWISE NOTED）TO BE STRANDED THHN OR THWN COPPER WIRE
3．ALL CONDUIT TO BE $1 / 2$＂ENT UNLESS OTHERWISE NOTED．
4．ALL LOW VOLTAGE CONDUIT TO BE $1 / 2$＂ENT UNLESS NOTED．
5．ALL CONDUCTOR AMPACITIES ARE BASED ON TABLE 310－16 NATIONAL ELECTRICAL CODE
6．CONDUIT FILL BASED ON CHAPTER 9 －NATIONAL ELECTRICAL CODE
7．PLACEMENT OF ELECTRICAL AND CONDUIT COMPONENTS OR BOXES MAY VARY TO ALIGN WITH COMPONENTS MANUFACTURE＇S PRE－MADE BOX KNOCKOUTS． THIS MAY INCLUDE ALIGNMENT WITH SHELTER PENETRATIONS AND／OR INTERFERENCE WITH OTHER COMPONENTS
8．CONDUIT，ELECTRICAL AND MECHANICAL DIMENSION TOLERANCE SHALL BE $\pm 1 / 4$＂．
9．DASHED LINES（－－－－－）DENOTE FIELD WORK．
10．ALL CIRCUITS ON 25 AMP THROUGH 60 AMP BREAKER MUST USE \＃10 GROUND CONDUCTOR．
1．CONDUCTORS SMALLER THAN 4 AWG MUST HAVE CORRECT COLOR INSULATION． CONDUCTORS 4 AWG AND LARGER MAY BE RE－IDENTIFIED BY COLORED TAPE． BLACK INSULATED CONDUCTOR SHALL BE THE ONLY COLOR TO BE RE－IDENTIFIED．IF CONDUCTORS ARE RE－IDENTIFIED，IDENTIFICATION MUST BE APPLIED IN THREE INCH（ $3^{\prime \prime}$ ）WRAPS，MINIMUM EVERY THREE FEET（ $\left.3^{\prime}-0^{\prime \prime}\right)$ ． RE－IDENTIFICATION SHALL BE VISIBLE BY OPENING ANY ENCLOSURE．WHITE，
GLL ANDALLCEN CONDUCTORS SHALL NOT BE RE DUENIFIED．
2．ALL METALLIC ELECTRICAL BOXES（SWITCH BOXES，DUPLEX BOXES，LIGHTS JUNCTION BOXES，ETC）SHALL BE CONNECTED TO THE PROTECTED GROUND OF THE ACG DISTRIBUTION PANEL WITH A \＃12 GREEN INSULATED STRANDED CONDUCTOR WHICH SHALL BE RUN INTERNAL TO THE CONDUIT．
3．ALL CIRCU
15．USE GROUNDING WIRENUT FOR TIEING MULTIPLE GROUNDS TOGETHER．
16．WEEP HOLES IN CAULKING SHOUDL BE CENTERED IN THE LOWER BEAD UNDERNEATH THE DEVICE AND BE BETWEEN $1 / 8$＂TO 1 ＂WIDE．

LEGEND
$=$ CONDUIT（THICKNESS VARIES WITH SIZE OF CONDUIT）

－$=$ GROUND WIR

包気 $=4 \times 4$ BOX WITH QUAD RECEPTACLE
® $=4 \times 4$ BOX WITH DUPLEX RECEPTACLE
$\bullet=4 \times 4$ BOX WITH PENETRATION
$\square=4 \times 4$ BOX BLANK
\square＝ 4×4 BOX WITH 2 SWITCHES
$1=4 \times 4$ BOX WITH SINGLE SWITCH
（S）$=4$＂OCTAGON BOX WITH SMOKE DETECTOR
（®i）$=4$＂OCTAGON BOX WITH HEAT DETECTOR
क्ञ $=4 \times 4$ BOX WITH TWIST－LOCK RECEPTACLE
圈 $=4 \times 4$ BOX WITH TIMER SWITCH$=$ PHOTOCELL SWITCH
$\stackrel{\rightharpoonup}{\overline{\bar{T}}}$
$=$ SYSTEM GROUND FOR AC CIRCUITS
$\overline{\overline{\bar{F}}}^{16}=$ ISOLATED GROUND FOR AC CIRCUITS
$(88)=$ VENT FAN

CUSTOMER：KELOGGBROWN \＆ROOTFEMA（PEP）EXPANSION PROGRAM	
$10^{\prime}-0^{\text {PROJECT }} \times 14^{\prime}-0$＂ CONCRETE SHELTER GENERAL ELECTRICAL NOTES \＆LEGEND	
$\begin{aligned} & \hline \text { FILENAME: } \\ & \text { KBR//KKBRO1 } \\ & \hline \text { CONF } \end{aligned}$	
$\begin{aligned} & \text { SCALE: } \\ & \text { N.T.S. } \end{aligned}$	TOLERANCE：
DRWN．BY： D．CHRISTOPHE	DATE： \qquad
CHK．BY： G．BRINKMAN	DATE： 03／22／10
ENG．BY： A．DUMAS	DATE：
APP．BY：	DATE：
$\begin{aligned} & \text { SHEET NO. } \\ & 7-6 \end{aligned}$	
DRAWING No．： SKBRO1	$\stackrel{\text { Rev．：}}{ } \times$

NOTE:
. SEF ALSO SHEFT 7-7 FOR MDFB TI-SHIELD MODIFICATION \& SOLDER DETALLS 2. PASS-THROUGH ASSY PROVIDED \& INSTALLED BY SUB-CONTRACTOR

GENERAL NOTES

1. ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC LRFD(1999) AND
AWS D1.1 SPECIFICATIONS
2. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
$\begin{array}{lll}\text { WIRE SIZE --------------------------- } & 0.35 \\ \text { WIRE FEED SPEED (in/min) } & \end{array}$
VOLTAGE, DC (+) ----------------------
AMPERAGE, DC
SHIELDING GAS

40
10-12
75/25
3. STRUCTURAL STEEL SPECIFICATIONS:

STRUCTURAL SHAPES ASTM A36M-97a
HIGH STRENGTH BOLTS, ASTM A 307-97
OTHER BOLTS, SAE J429 GRADE 5
4. ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I 318-99 BUILDING CODES 311 \& 211, AND ASTM STANDARDS C-172-97,
C-31/31M96, C-39-96, AND PROVISIONS OF C-94-98
5. ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.
. ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL
CONFORMING TO ASTM A-615m-96a SPECIFICATIONS
CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF 3/4".
8. ALL REBAR SHALL BE TIED 100\% AT THE PERIMETER, AND 50% ELSEWHERE.
9. ALL REBAR WIRE TIES TO BE 16 GAUGE.
0. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOOR IF DESIRED IN
11. MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE $3 / 8$ " MEASURED BY REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT
12. WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT IN CASES WHERE OPENINGS PROHIBIT.
13. TOLERANCES SHALL BE AS FOLLOWS:

PANEL THICKNESS: $\pm 1 / 8$
PANEL SIZE: $\pm 1 / 16$
PANEL SQUARENESS: $\pm 1 / 8^{\prime \prime}$ AGREEMENT ON DIAGONALS
LOCATION OF BLOCKOUTS \& PVC'S: $\pm 1 / 4^{\prime \prime}$
BLOCKOUT DIMENSIONS: $+1 / 4^{\prime \prime},-0 "$
PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14. REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18" FOR \#4 REBAR AND 30 " FOR \#6 REBAR.
15. CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6\%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF $3 / 8$ INCH.
16. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50 .

ROOF PANEL:

WALL PANEL:

FLOOR:

SEALANT APPLICATION

STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT ($\frac{1}{2}$ " BEAD) DURING ASSEMBLY.

STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY

STEP 3. ROOF COATING
APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 \& 2000 IBC 1507.15.2.
STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.

STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT
 AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWINGS MAY STANDARDS.

1. ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC
LRFD (1999) AND AWS D1.1 SPECIFICATIONS.
2. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING SETTINGS:
 AMPERAGE, DC TRAVEL SPEED (in/min) --SHIELDING GAS \qquad
3. STRUCTURAL STEEL SPECIFICATIONS:

STRUCTURAL SHAPES ASTM A36/A 36M-00
HIGH STRENGTH BOLTS, ASTM A 307-00
OTHER BOLTS, SAE J429 GRADE 5
4. ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I 318-02 BUILDING CODES 311 \& 211, AND ASTM STANDARDS C-172-99, C-31/C31M98, C-39-99ae1, AND PROVISIONS OF C-94/C94M-00
5. ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS
. ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL CONFORMING TO ASTM A 615M-00 SPECIFICATIONS.
CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF $3 / 4$ ".
. ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9. ALL REBAR WIRE TIES TO BE 16 GAUGE.
0. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 DESIRED IN ORDER TO MAKE BATCHING OPERATION MORE EFFICIENT

1. MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE $3 / 8^{\prime \prime}$ MEASURED BY REFUSAL OF ABILITY TO PASS A $3 / 8^{\prime \prime}$ ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT.
2. WELD PLATE CONNECTIONS SHALL BE SPACED AT 4'-8" MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEP IN CASES WHERE OPENINGS PROHIBIT.
3. TOLERANCES SHALL BE AS FOLLOWS:

PANEL THICKNESS: $\pm 1 / 8$
PANEL SIZE: $\pm 1 / 16$
PANEL SQUARENESS: $\pm 1 / 8^{\prime \prime}$ AGREEMENT ON DIAGONALS
LOCATION OF BLOCKOUTS \& PVC'S: $\pm 1 / 4^{\prime \prime}$
BLOCKOUT DIMENSIONS: $+1 / 4 ",-0 "$
PVC SIZE: USE TRADE SIZE AS LISTED ON PROJECT DRAWINGS
14. REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18" FOR \#4 REBAR AND 30" FOR \#6 REBAR.
15. CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6\%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF $3 / 8$ INCH.
16. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50
\#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6 AND LESS, 10" O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND \#4 (LONG AXIS) AT 18" O.C.

FLOOR:

\#4 AT PERIMETER AND $4 \times 4 \times$ W4.5 \times W4.5 MESH THROUGHOUT.
(2)-\#6 (SHORT AXIS) EACH RIB, \#6 (LONG AXIS) EACH

SEALANT APPLICATION

STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT ($\frac{1}{2}{ }^{n}$ AT MATING SURFACES BET

STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.

STEP 3. ROOF COATING:
APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 \&
2003 IBC 1507.15.2.

STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.

STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

1. ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC
360-05 AND AWS D1.1-04 SPECIFICATIONS
2. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING

SETTINGS:
WIRE SIZE ------------------------ 0.35
WIRE FEED SPEED (in/min) ------------- 5
VOLTAGE, DC (+) ---------------------------------------
AMPERAGE, DC
TRAVEL SPEED (in/min) \qquad SHIELDING GAS
5
18.5
140
10-12
$10-12$
$75 / 25$

STRUCTURAL SHAPES ASTM A36/A 36M-040
HIGH STRENGTH BOLTS, ASTM A 307-03
OTHER BOLTS, SAE J429 GRADE 5
4. ALL CONCRETE WORK SHALL CONFORM TO AMERICAN CONCRETE INSTITUTE A.C.I. 318-05 BUILDING CODES $311 \& 211$, AND ASTM STANDARDS C-172-04, C-31/C31M98, C-39-05e1, AND PROVISIONS OF
ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.
ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL CONFORMING TO ASTM A 615M-04a SPECIFICATIONS
CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF $3 / 4$ "
. ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE. ALL REBAR WIRE TIES TO BE 16 GAUGE
0. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 DESIRED IN ORDER TO MAKE BATCHING OPERATION USED IN THE FLOOR
11. MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE $3 / 8^{\prime \prime}$ MEASURED BY REFUSAL OF ABILITY TO PASS A $3 / 8^{\prime \prime}$ ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT.
12. WELD PLATE CONNECTIONS SHALL BE SPACED AT $4^{\prime \prime}-8^{\prime \prime}$ MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEP IN CASES WHERE OPENINGS PROHIBIT
13. TOLERANCES SHALL BE AS FOLLOWS:

PANEL THICKNESS: $\pm 1 / 8$
PANEL SIZE: $\pm 1 / 16$
PANEL SQUARENESS: $\pm 1 / 8^{\prime \prime}$ AGREEMENT ON DIAGONALS
LOCATION OF BLOCKOUTS \& PVC'S: $\pm 1 / 4$ "
BLOCKOUT DIMENSIONS: $+1 / 4 ",-0 "$
PVC SIZE: USE TRADE SIZE AS' LISTED ON PROJECT DRAWINGS
14. REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18 " FOR \#4 REBAR AND 30" FOR \#6 REBAR.
15. CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6\%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF $3 / 8$ INCH.
6. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50

GENERAL:

FLOOR.

THESE REBAR SIZES AND SPACING REPRESENT THE MINIMUM AMOUNT FOR ALL CASTING PLANS. PROJECT DRAWINGS MAY REQUIRE REIAND.
STANDARDS
\#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF $11^{\prime}-6$ AND LESS, 10 " O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND \#4 (LONG AXIS) AT 18" O.C.
\#4 AT PERIMETER AND $4 \times 4 \times$ W4.5 \times W4.5 MESH THROUGHOUT.
(2)-\#6 (SHORT AXIS) EACH RIB, \#6 (LONG AXIS) EACH INTERIOR RIB DECK. $4 \times 4 \times 1{ }^{2} 5 \times$ W4.5 MESH

SEALANT APPLICATION

STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT ($\frac{1}{2}{ }^{n}$ BEAD) DURING ASSEMBLY

STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY

STEP 3. ROOF COATING
APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-97A, OBC 1507.15.2 \&
2006 IBC 1507.15.2.

STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.

STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

1. ALL STEEL FABRICATION AND INSTALLATION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL AISC
360-05 AND AWS D1.1-04 SPECIFICATIONS
2. ALL WELDING SHALL BE MIG TYPE WITH THE FOLLOWING OPERATING

SETTINGS:

AMPERAGE, DC
TRAVEL SPEED
3. STRUCTURAL STEEL SPECIFICATIONS:

STRUCTURAL SHAPES ASTM A36/A 36M-05
HIGH STRENGTH BOLTS, ASTM A 307-03
OTHER BOLTS, SAE J429 GRADE 5 TO AMERICAN CONCRETE INSTITU
CONCRETE WORK SHALL CONFORM TO
ALL CONCRETE WORK SHAL C-172-04, $\mathrm{C}-31 / \mathrm{C} 31-06, \mathrm{C} 39-051$ AND PROVTM STANDA C-94/C94M-07
ALL PRECAST STRUCTURAL SAND-LIGHTWEIGHT CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS.
ALL REINFORCING STEEL BARS SHALL BE DOMESTIC, NEW BILLET STEEL CONFORMING TO ASTM A 615M-04a SPECIFICATIONS
CONCRETE COVERAGE OVER ALL REINFORCING STEEL SHALL BE A MINIMUM OF $3 / 4$ ".
. ALL REBAR SHALL BE TIED 100% AT THE PERIMETER, AND 50% ELSEWHERE.
9. ALL REBAR WIRE TIES TO BE 16 GAUGE.
0. FIBROUS REINFORCED LIGHTWEIGHT CONCRETE MAY BE USED IN THE ROOF AND FLOOR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5000 PSI AT 28 DAYS. FIBER REINFORCEMENT MAY BE USED IN THE FLOO
11. MAXIMUM JOINT SPACE BETWEEN PANELS SHALL BE $3 / 8^{\prime \prime}$ MEASURED BY REFUSAL OF ABILITY TO PASS A 3/8" ROD ALL THE WAY THROUGH THE JOINT AT ANY POINT ALONG THE JOINT.
12. WELD PLATE CONNECTIONS SHALL BE SPACED AT 4-8" MAXIMUM ON THE FLOOR AND ROOF PANELS. THIS DIMENSION SHALL BE MAINTAINED EXCEPT IN CASES WHERE OPENINGS PROHIBIT.
13. TOLERANCES SHALL BE AS FOLLOWS:

PANEL THICKNESS: $\pm 1 / 8^{\prime \prime}$
PANEL SIZE: $\pm 1 / 16$
PANEL SQUARENESS: $\pm 1 / 8^{\prime \prime}$ AGREEMENT ON DIAGONALS
LOCATION OF BLOCKOUTS \& PVC'S: $\pm 1 / 4^{\prime \prime}$
BLOCKOUT DIMENSIONS: $+1 / 4 ",-0 "$
PVC SIZE: USE TRADE SIZE AS' LISTED ON PROJECT DRAWINGS
14. REBAR SPLICING IS ALLOWED WHERE SPACE PERMITS. MINIMUM LAP IS 18 " FOR \#4 REBAR AND 30" FOR \#6 REBAR.
15. CONCRETE SHALL HAVE AIR ENTRAINMENT OF 6\%, MODERATE EXPOSURE AND A MAXIMUM AGGREGATE SIZE OF $3 / 8$ INCH.
6. CONCRETE SHALL HAVE A WATER-CEMENTITIOUS MATERIAL RATIO OF 0.50

GENERAL: AMESE REBAR SIZES AND SPACING REPRESENT THE MINIMUN REQUIRE REINFORCEMENT IN ADDITION TO CELLXION STANDARDS.
\#4 (SHORT AXIS) 12" O.C. ON SHELTER WIDTH OF 11'-6 AND LESS, $10^{\prime \prime}$ O.C. ON SHELTER WIDTH GREATER THAN 11'-6" AND \#4 (LONG AXIS) AT 18" O.C.
\#4 AT PERIMETER AND $4 \times 4 \times$ W4.5 \times W4.5 MESH THROUGHOUT.
(2)-\#6 (SHORT AXIS) EACH RIB, \#6 (LONG AXIS) EACH INTERIOR RIB DECK. $4 \times 4 \times 1{ }^{2} 5 \times$ W4.5 MESH

SEALANT APPLICATION

STEP 1. AT MATING SURFACES BETWEEN PANELS, APPLY URETHANE SEALANT ($\frac{1}{2}{ }^{n}$ BEAD) DURING ASSEMBLY

STEP 2. URETHANE SEALANT REQUIRED ON ALL JOINTS. APPLY TO EXTERIOR AFTER PANEL ASSEMBLY.

STEP 3. ROOF COATING
APPLY SHELTER ROOF COATING PER MANUFACTURER INSTRUCTION. ROOF COATING TO CONFORM TO, ASTM D6083-05e01, OBC 1507.15.2 \& 2009 IBC 1507.15.2

STEP 4. APPLY AGGREGATE SEALER TO EXTERIOR WALLS. USE 1 GALLON PER 200 SQ. FEET.

STEP 5. USE TEXTURED SEALER ON ALL SMOOTH EXPOSED SURFACES. USE CEMENTITOUS GRAY PAINT.

1/19/2011 2:28:38 PM, gbrinkman, CONFIDENTIAL

1/19/2011 2:29:00 PM, gbrinkman, CONFIDENTIAL

1/19/2011 2:29:05 PM, gbrinkman, CONFIDENTIAL

