KEVIN M. MARTIN, P.E. KMM GEOTECHNICAL CONSULTANTS, LLC

7 Marshall Road Hampstead, NH 03841 603-489-5556 (p)/ 603-489-5558 (f)/781-718-4084(m) kevinmartinpe@aol.com

MEMORANDUM

то:	Evolution Rock +Fitness, LLC 10 Langdon Avenue Concord, NH	KEVIN M.
FROM:	Kevin M. Martin, P.E. Geotechnical Engineer	No. 8738
DATE:	November 4, 2013	
RE:	GEOTECHNICAL SUMMAR PROPOSED BUILDING - EV 65 WARREN AVENUE	RY REPORT OLUTION ROCK

This memorandum report serves as a geotechnical summary report for the referenced project. The contents of this memorandum are subject to the attached *Limitations*.

SITE & PROJECT DESCRIPTION

PORTLAND, MAINE

The project site is located on a vacant parcel. Present development includes paved parking to the front with woodlands to the rear. Based on review of the *Site Plan* (Sebago Technics - July 2013), grades in the parking lot are relatively level being near elevation ≈ 103 ft. The site is embanked (elevated) about ≈ 3 ft above Warren Avenue. Grades then slope downward to near elevation ≈ 99 -100 ft towards the rear of the site. Wetlands are delineated towards the rear of the site. There is also a detention pond in this area (elevation ≈ 98 ft). KMM has no knowledge of past construction, use and/or development of the property.

The project includes a new recreational building. The building will include a single-story, metal building about $\approx 13,000$ ft² in footprint area. It is intended to support the building on a conventional spread footing foundation with a concrete floor slab-on-grade. The building will have as stepped floor grade. Specifically, the front of the building will be elevation 105.0 ft with the Climbing Gym at elevation 103.0 ft. Some shallow fill ($\approx 1-2$ ft) will be necessary for final grading.

65 Warren Avenue Portland, Maine

The purpose of this study is to review the subgrade conditions and provide a geotechnical evaluation related to foundation design and construction as required by the *State Building Code*. This report does not include an environmental assessment relative to oil, gasoline, solid waste and/or other hazardous materials. The environmental conditions of the property should be addressed by others as necessary. This study also does not include review of site design or construction issues such as infiltration systems, dry wells, retaining walls, underground utilities or other site and/or temporary design unless specifically addressed herein.

SUBSURFACE EXPLORATION PROGRAM

Test Borings

The exploration program for the project included four (4) test borings throughout the building pad. The test borings (B1 to B4) were advanced to depths of \approx 9-34 ft utilizing 4¹/₄ inch continuous flight hollow stem augers and/or NW casing. Soil samples were typically retrieved at no greater than 5 ft intervals with a 2 inch diameter split-spoon sampler. Standard Penetration Tests (SPTs) were performed at the sampling intervals in general accordance with ASTM-D1586 (*Standard Method for Penetration Test and Split-Barrel Sampling of Soils*). Field descriptions and penetration resistance of the soils encountered, observed depth to groundwater, depth to apparent bedrock refusal and other pertinent data are contained on the attached *Test Boring Logs*. The attached *Sketch* shows the test bore locations.

Vane Shear Testing

Vane shear tests were performed on the cohesive soils to evaluate undrained shear strength. Vane shear testing was performed in accordance with ASTM D2573 (Vane Shear Tests in Cohesive Soils). The test results are shown on the *Test Bore Logs*.

SUBSURFACE CONDITIONS

The subsurface conditions below undocumented Fill and discontinuous buried Organic Silt include a Stiff Silt & Clay. Softer Clay was present at B1. At depth, there is a consolidated Glacial Till then apparent Bedrock refusal. The subgrade conditions are variable for the small site. A *Subsurface Profile* depicting the soil and groundwater conditions is attached for review.

Fill/ Organics

Fill was encountered at most locations to depths of $\approx 5-9$ ft. In the parking lot, there is about ≈ 5 ft of Granular Fill as identified at B1 & B2. Organic laden Fill and/or Organic Silt were identified in the other holes at grade or below the Granular Fill. The parent surface organic soils (Forest Mat & Subsoil) were present at B4 (located in the undeveloped woodlands). Organic laden Fill (dark brown, loose, loamy, silty Sand with trace wood, roots and organic matter) were identified at B2 & B3. A buried Organic Silt was identified at B3. The collective depth of the Fill and Organic laden soils is about $\approx 5-9$ ft.

Stiff Silt & Clay

A Stiff Silt & Clay was identified at all the test bores below the Fill and/or Organic laden soils. The layer includes a grey to olive to brown, Silt & Clay with little to trace sand. The relative consistency of the deposit is generally Stiff based on the SPTs. The Stiff Silt & Clay is considered a competent bearing stratum for support of a spread footing foundation. This is shown on the attached *Profile Section* in relation to the expected foundation. The fine-grained composition of the Silt & Clay renders the soil highly moisture sensitive, poordraining and frost susceptible.

Soft Clay

Soft silty Clay (Penobscot Clay) was encountered at B1 being about ≈ 14 ft in thickness. Vane shear tests at B3 indicate a Stiffer Clay.

Glacial

At depth, there is a silty Sand, little gravel, little clay. These soils are a mixture of Sand, Silt & Gravel with varying clay. These soils are stable and compact.

Groundwater

Groundwater was encountered in the test holes at depths of \approx 5-9 ft below grade. This corresponds to an elevation \approx 94-95 ft. Seasonally perched conditions are also expected given the restrictive Silt & Clay. It should be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature and other factors differing from the time of the measurements. This study was completed at a time of seasonally low groundwater.

FOUNDATION SUBGRADE RECOMMENDATIONS

The subgrade conditions are favorable for supporting the proposed building on a conventional spread footing foundation with a concrete floor slab. The undocumented fill, organic laden soils, intersecting utilities and other questionable materials are **not** rendered suitable for structural support given questionable strength and compressibility characteristics. As such, these soils shall be fully removed from the building pad including the *Footing Zone of Influence (FZOI)* to expose the Stiff Clay. The *FZOI* is defined as that area extending laterally one foot from the edge of footing then outward and downward at a 1H:1V splay. Some over-excavation (below BOF) will be necessary for the proposed foundation. This is shown on the attached *Profile*. Structural Fill necessary to achieve foundation grade should conform to the *Specifications* (Table 1).

The parent subgrade soils (Stiff Clay) should be exposed in the foundation areas prior to casting the footings or placing structural fill. Final excavations to expose the Stiff Clay shall be completed with smooth bladed equipment to mitigate disturbance. It is also recommended that the Stiff Clay be *immediately* protected with Structural Fill and/or $\frac{3}{4}$ inch minus crushed stone. A minimum ≈ 10 inch stone base (encased in a geotextile fabric Mirafi 140N or equal) shall be used if the Stiff Clay is

exposed at BOF grade. Structural Fill may be used if the BOF is greater than ≈ 2 ft above the Stiff Clay. The purpose of the stone or gravel base is to protect the sensitive clay from disturbance when exposed to construction activities and wet conditions. The contractor should exercise extra precaution to minimize subgrade disturbance given the sensitive subgrade. The groundwater table or ponded storm water should be continuously maintained at least one foot below construction grade until the backfilling is complete. A base of ³/₄-inch minus crushed stone should be placed atop the earthen subgrade if wet conditions are present. The stone should be *immediately* placed atop the undisturbed subgrade then tamped with a plate compactor exhibiting stable conditions. The purpose of the stone base is to protect the wet subgrade, facilitate necessary dewatering and provide a dry/stable base upon which to progress foundation construction. Proper groundwater may be an issue if construction occurs during the wetter winter or spring season. The drier summer months are more favorable for groundwater control.

Consolidation settlement of the Soft Clay may be an issue if there is site filling greater than \approx 1-2 ft. Maximum site fill within the building pad is about \approx 2 ft. Preliminary estimates indicate about \approx 0.3 inches of settlement for every \approx 1 ft increase in site grade. For this reason, we recommend filling the pad as soon as practicable to initiate compression of the soft clay. The fill may be elevated (surcharged) in the general area B1 to further compress the Soft Clay. A Sand Fill (unit weight less than \approx 115 pcf) may be used for general backfill within and around the foundation (Table 1). Lowing the FFE would also mitigate concern with consolidation settlement.

The subgrade should ultimately be stable, dewatered, compact and protected from frost throughout construction. Bearing subgrades that become weakened or disturbed due to wet conditions will be rendered unsuitable for structural support. An Engineer from KMM should be scheduled to review the foundation subgrade conditions and preparation during construction.

FOUNDATION DESIGN RECOMMENDATIONS

The footings are expected to gain bearing support atop the Stiff Clay and/or compacted Structural Fill (Table 1). Footings may be designed using an allowable bearing capacity of 4 ksf (FS=3). The allowable bearing capacity may be increased a third ($\frac{1}{3}$) when considering transient loads such as wind or seismic. The bearing capacity is contingent upon the perimeter strip footings and isolated column footings being no less than 2 ft and 3 ft in width respectively. For footings less than 3 ft in lateral dimension, the allowable bearing capacity should be reduced to one-third and multiplied by the least lateral footing dimension in feet. Foundation settlement should be less than 1 inch with differential settlement less than $\frac{1}{2}$ inch. Foundation settlement is in addition to consolidation settlement associated with site fills as previously addressed. Exterior footings shall be provided with at least $\frac{4}{2}$ ft of frost protection. Proper frost protection should be necessary during winter construction.

The subsurface conditions were reviewed with respect to seismic criteria set forth in the *International Building Code (2012)*. Based on the relative density of the site soils, the site does not appear susceptible to liquefaction (complete loss of shear resistance) in the event of an earthquake. Based on interpretation of the *Building Code* together with the project and site conditions, the *Site Classification* is "D" (Stable Soil Profile).

It is recommended that a minimum 6-inch base of *Clean Granular Fill* (Table 1) be placed below the concrete floor slab for moisture and frost control. The gravel base shall be increased to no less than 12 inches for exterior concrete slabs exposed to frost. A subgrade modulus of 150 pci may be used for design of the floor slab. The subgrade modulus may be increased 25 pci for every 3 inch in additional gravel base thickness (200 pci @ 12 inch gravel base). A vapor retarder should be used below the floor slab dependent upon the floor treatment. A vapor barrier should be specified by others per ACI Standards. Structural fill necessary within and below the foundation should also conform to the attached *Specifications* (Table 1). As prior mentioned, a *Clean Sand Fill* (Table 1) is recommended for general fill to limit ground stress. The existing Granular Fill may be re-used on the project. The organic laden soils as well as the silt/clay soils are **not** suitable for re-use within or around the building. These soils should be segregated and used in non-structural areas away from the building.

CONSTRUCTION CONCERNS

The contractor should be required to maintain a stable-dewatered subgrade for the building foundation and other concerned areas during construction. Subgrade disturbance may be influenced by excavation methods, moisture, precipitation, groundwater control and construction activities. The silt and clay soils are considered inherently vulnerable to disturbance when exposed to wet conditions and construction activities. The moisture sensitivity of these soils is associated with the high percentage of fine-grained material (silt/clay) which acts to retain moisture. The presence of a perched water or groundwater (ie: wet conditions) will further impact the subgrade stability. The contractor should be aware of the moisture concerns and take precautions to reduce subgrade disturbance. Such precautions may include diverting storm run-off away from construction areas, reducing traffic in sensitive areas, minimizing the extent of exposed subgrade if inclement weather is forecast, backfilling footings as soon as practicable, and maintaining an effective dewatering program. Soils exhibiting weaving or instability should be over-excavated to a competent bearing soil and replaced with a crushed stone or gravel. The moisture concerns are typically more problematic if construction takes place during the winter to spring season or other periods of inclement weather. The Silt & Clay subgrade shall be protected with a minimum ≈ 10 inch base of $\frac{3}{4}$ inch minus crushed stone encased in a geotextile fabric (Mirafi 140N or equal) or a minimum ≈ 24 inches of Structural Fill (ie: Gravel). The stone shall be tamped with a plate compactor and exhibit stable conditions. The purpose of the stone base is to protect the sensitive clay soils from disturbance when exposed to construction activities and wet conditions. The Clay shall also be excavated with a smooth blade and be protected immediately upon exposure. Bearing subgrades that become weakened or disturbed due to wet conditions will be rendered unsuitable for structural support. An Engineer from KMM should inspect bearing subgrades during construction.

Adequate dewatering and storm water management are also necessary for maintaining the competency of the site soils. Groundwater or ponded storm water should be continuously maintained at least one foot below construction grade. The groundwater is expected to be controlled with conventional filtered sumps and pumps together with a base of crushed stone. A ≈ 10 inch lift of ³/₄-inch minus crushed stone (protected with geotextile fabric) should be placed atop the wet subgrade to protect its competency and facilitate dewatering. The footing trenches should have a positive clay slope towards the sumps. The sumps shall extend at least ≈ 2 ft below construction grade and be protected with filter stone.

Soils which become softened and/or disturbed during construction will be rendered unsuitable for structural bearing support. The foundation subgrades should ultimately be stable, dewatered, protected from frost and compact throughout construction. An Engineer from KMM should be scheduled to review the subgrade conditions and preparation.

CONSTRUCTION MONITORING

It is recommended that a qualified engineer or representative be retained to review earthwork activities such as the preparation of the foundation bearing subgrade and the placement/compaction of Structural Fill. It is recommended that KMM be retained to provide construction monitoring services. This is to observe compliance with the design concepts presented herein.

We trust the contents of this memorandum report are responsive to your needs at this time. Should you have any questions or require additional assistance, please do not hesitate to contact our office.

kmm50/PortlandEvolutionRock.wpd

LIMITATIONS

Explorations

- 1. The analyses, recommendations and designs submitted in this report are based in part upon the data obtained from preliminary subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretation of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the individual test pit and/or boring logs.
- 3. Water level readings have been made in the test pits and/or test borings under conditions stated on the logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors differing from the time the measurements were made.

Review

- 4. It is recommended that this firm be given the opportunity to review final design drawings and specifications to evaluate the appropriate implementation of the recommendations provided herein.
- 5. In the event that any changes in the nature, design, or location of the proposed areas are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of the report modified or verified in writing by KMM Geotechnical Consultants, LLC.

Construction

6. It is recommended that this firm be retained to provide geotechnical engineering services during the earthwork phases of the work. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

Use of Report

- 7. This report has been prepared for the exclusive use of Evolution Rock + Fitness, LLC in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made.
- 8. This report has been prepared for this project by KMM Geotechnical Consultants, LLC. This report was completed for preliminary design purposes and may be limited in its scope to complete an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to preliminary geotechnical design considerations only.

TABLE 1

Evolution Rock + Fitness 65 Warren Avenue Portland, Maine

Recommended Soil Gradation & Compaction Specifications

Clean Granular Fill (Select GRAVEL borrow)									
SIEVE SIZE	PERCENT PASSING BY WEIGHT								
3 inch	100								
3/4 inch	60-90								
No. 4	30-70								
No. 200	2-8								

NOTES: For minimum 6 inch base below Concrete Floor Slab-on-Grade; For 12 inch base below exterior concrete slabs exposed to frost Compact to 95% relative compaction per ASTM D1557

(Gravelly SAND) SIEVE SIZE PERCENT PASSING **BY WEIGHT** 5 inch 100 60-100 3/4 inch No. 4 20-80 No. 200 0-10

NOTES:

For use below building foundations for structural bearing support A ³/₄-inch crushed stone may be used for Structural Fill in wet conditions For use as backfill behind unbalanced foundation walls Compact to 95% relative compaction per ASTM D1557

Structural Fill

TABLE 1

Evolution Rock + Fitness 65 Warren Avenue Portland, Maine

Sand Fill (SAND)

SIEVE SIZE	PERCENT PASSING BY WEIGHT					
1 inch	100					
3/4 inch	90-100					
No. 4	85-100					
No. 40	10-70					
No. 200	0-8					

NOTES:

For use as general building backfill Not to be used as Structural Fill below footings Not to be use as the Gravel Base below the floor slab Dry unit weight less than 115 pcf Compact to 95% relative compaction per ASTM D1557

Structural Fill placed beneath the foundation should include the *Footing Zone of Influence* which is defined as that area extending laterally one foot from the edge of the footing then outward and downward at a 1H:1V splay. Structural Fill should be placed in loose lifts not exceeding 12 inches for heavy vibratory rollers and 8 inches for vibratory plate compactors. All the fill on the project should be compacted to at least 95 percent of maximum dry density as determined by the Modified Proctor Test (ASTM-D1557). The fill shall be compacted within ± 2 of the optimum moisture content. The adequacy of the compaction efforts should be verified by field density testing which is also a requirement of the *State Building Code*.

GRAPHIC SCALE

CONTRACTOR: Great Works Test Bores Rollingsford, NH					KMM Geotechnical Consultants, LLC 7 Marshall Road Hampstead NH 03841 BORING NO: B-1 SHEET: 1 OF	2	
FORE	MAN: P	ete Mich	aud		DATE: START: Oct 23	, 2013	
RIG:	CME 8	50C			TEST BORING LOG PREPARED BY: Kevin PROJECT: EVOLUTION ROCK CHECKED BY: LOCATION: 65 WARREN AVENUE PORTLAND, MAINE	Martin, P	.E.
EQUI TYPE SIZE HAMM HAMM	<u>PMENT</u> : : ID (I MER WT MER FAL	AUG HS N) 4½ (LB) L (IN)	ER CASIN A NW A 4	<u>G</u> <u>SAMPLER</u> <u>SS</u> <u>2.0</u> <u>140</u> <u>30</u>	CORE GROUNDWATER OBSERVATIONS BAR DATE 10/23 DEPTH (FT) 9 ft	<pre> FIELD LABORA TESTIN MONITO INSTAI </pre>	TESTING ATORY IG DRING WELL LED
LOCZ	TION C	F BORING	: See Sk	etch	GROUND SURFACE ELEV.:		
FT		SAM	PLE DATA		SOIL AND ROCK CLASSIFICATION-DESCRIPTION BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.			
					Pavement		
	<u>S1</u>	1-3	16	13-20	Brn, f-m SAND, some Gravel, trace Silt, dry (FILL)		
				26-23			
	<u>S2</u>	3-5	14	16-15	Brn, f-c SAND & GRAVEL, trace silt, brick, dry (FILL)		
-	63	5-7	20	13-13	Groupers mottled SIIT (CIAV trace fine cand	2.	
5	33	5-7	20	2_3	Grey-Brn, mottred, Sibi & CLAI, trace fine sand		
	S4	7-9	24	6-8	Same		
	~ -			10-10			
10	S5	10-12	24	4-6	Grey, silty Clay, wet		
				8-10			
						14'	
15	S6	15-17	24	WOH/24	Grey, silty Clay w/ sand layers		
20							
20	S7	20-22	18	WOH/18	Same		
				1			
25							
	<u>\$8</u>	25-27	24	1-1	Grey, silty Clay		
				1-1		<u> </u>	
RELA GRAN	ATIVE L	DENSITY LS(Blows/f	t)	NOTES :			
0 to 4 to	4 Ve:	ry Loose ose			BORING NO R-1		
30 to Over	50 Me 50 De 50 Ve	nse ny Dense					
				0.5			
COHES	SIVE SOI	CNSISTEN LS (Blows/	ft)	Standard Blows are	renetration test (SPT) = 140# nammer falling 30" (ASTM D1586) per 6" taken with an 24" long x 2" 0.D. x 1 3/8" I.D. split spoon sa	mpler unle	ess noted.
2 to 4 to	4 So: 8 Me	ft dium Stiff		S = Split	Spoon sample; C = Rock Core Sample; U = Undisturbed Shelby Tube Samp	Te	
8 to 15 to	15 St 30 Ve	iff ry Stiff		REMARKS: transitic	The stratification lines represent the approximate boundary between on may be gradual. Water level readings have been made in the test bo	soil types rings at †	s and the times and
Over	30 Ha:	rd		under cor	ditions stated on the test boring logs. Fluctuations in the level of	the grounde	ndwater may
				Proportic	ns used: trace (0-10%), little (10-20%), some (20-35%) and (35-50%)	ue.	

CONT	TRACTOR	: Great Rolli	Works Te ngsford,	st Bores NH	KMM	Geotechnical Consultants, LLC 7 Marshall Road Hampstead, NH 03841	BORING NO: B-1 SHEET: 2 OF	2	
FORE RIG:	CMAN: F	ete Mich 50C	laud		PROJECT: LOCATION:	TEST BORING LOG EVOLUTION ROCK 65 WARREN AVENUE	DATE: START: Oct 23 FINISH: PREPARED BY: Kevin CHECKED BY:	, 2013 Martin, P	. E .
EQUI TYPE SIZE HAMN HAMN	I <u>PMENT</u> 2 2 ID (I MER WT MER FAI	AUG HS N) 4½ (LB) L (IN)	ER CASIN A NW A 4	G <u>SAMPLER</u> SS 2.0 140 30	CORE BAR BIT	PORTLAND, MAINE GROUNDWATER OBSERVATI DATE 10/23 DEPTH (FT) 9 ft CASING AT (FT) INO GROUNDWATER ENCOUNTERED INO GROUNDWATER ENCOUNTERED LIQUID INTRODUCED DURING DRI	CONS 	 FIELD LABORA TESTIN MONITO INSTAI 	TESTING ATORY IG JRING WELL .LED
LOCA	TION C	F BORING	: See Sk	etch		GROUND SURFACE	ELEV.:		
FT		SAM	PLE DATA			SOIL AND ROCK CLASSIFICATION-DESCR BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (1	RIPTION ROCK)	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.					
								28'	
30				15.10					
	59	30-32	6	18-18	Brown, Sil	ty Sand & Gravel			
35								34.5'	
					Refusal				
40									
45									
50									
55									
RELA GRANU	ATIVE I	ENSITY LS(Blows/f	t)	NOTES :					
0 to 4 to	4 Ve 10 Lo	ry Loose ose					BORING NO. B-1		
30 to Over	50 De 50 Ve	nse ry Dense							
RELA COHES 0 to 2 to	ATIVE (SIVE SOI 2 Ve 4 So	CONSISTEN LS (Blows/ ry Soft ft	ICY ft)	Standard Blows are S = Split	Penetration e per 6" take t-Spoon Samp	Test (SPT) = 140# hammer falling 30" en with an 24" long x 2" O.D. x 1 3/8" le; C = Rock Core Sample; U = Undistu	(ASTM D1586) ' I.D. split spoon sau cbed Shelby Tube Samp	mpler unle le	ess noted.
4 to 8 to 15 to Over	8 Me 15 St 30 Ve 30 Ha	dium Stiff iff ry Stiff rd		REMARKS: transitio under cor occur due Proportio	The strati on may be gra nditions sta to other fa ons used: t	fication lines represent the approxima adual. Water level readings have been ted on the test boring logs. Fluctuat actors than those present at the time race (0-10%), little (10-20%), some (2	ate boundary between a n made in the test bo tions in the level of measurements were ma 20-35%) and (35-50%)	soil types rings at t the grour de.	s and the times and ndwater may

CONTRACTOR: Great Works Test Bores Rollingsford, NH					KMM Geotec	Anical Consultants, LLC	BORING NO: B-2 SHEET: 1 OF	2	
FORE	MAN: F	ete Mich	aud		Натр	DSTEAD, NH U3841	DATE: START: Oct 23 FINISH:	, 2013	
RIG	CME 8	50C			TE PROJECT: EVOLU LOCATION: 65 WA PORTL	EST BORING LOG TION ROCK RREN AVENUE AND, MAINE	PREPARED BY: Kevin CHECKED BY:	Martin, P.	.Е.
EQUI TYPE SIZE HAMA HAMA	<u>PMENT</u> : : ID (I MER WT MER FAL	AUG HS (N) 44 (LB) L (IN)	ER CASIN	G <u>SAMPLER</u> SS 2.0 140 30	CORE <u>BAR</u> DATE <u>DEPTH</u> CASING BIT TIME (GROUNDWATER OBSERVATI 10/23 (FT) 9 ft AT (FT) n/a HR) 0.1 0.1 NO GROUNDWATER ENCOUNTERED LIQUID INTRODUCED DURING DRI	ONS	<pre>FIELD LABORA TESTIN MONITO INSTAL </pre>	TESTING NTORY IG NRING WELL LED
LOC	TION C	F BORING	: See Sk	etch		GROUND SURFACE	ELEV.:		
FT		SAM	PLE DATA		SOIL	AND ROCK CLASSIFICATION-DESCR BURMISTER SYSTEM (SOIL)	IPTION	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.	0.5	S. CORPS OF ENGINEERS SISTEM (F	(OCK)		
	S1	0-2	12	4 - 4	Brn, f-m SAND, so	me Gravel, trace Silt, dry (FI	LL)		
			ļ	4-4					
	S2	2-4	3	4-5	Same (FILL)				
				5-5					
			ļ						
5	S3	5-7	6	2-1	Dark Brn, f-m SAN	D, little Gravel, little Silt,	trace organic, dry		
				1-2					
	S4	7-9	6	3-3	Same, trace wood,	organic (ORGANIC FILL)			
				6-7				9'	
10									
	<u>S5</u>	10-12	24	5-6	Olive Brown, SILT	& CLAY, little sand, wet			
				8-10					
15	56	15-17	24	1_1	Grou silty Clay	w/ cand lawore wot			
		15-17	27	6-3	Gley, Slity Clay	w, sand layers, wet			
								20'	
20	S7	20-22	24	2-3	Grey, silty Sand.	little gravel, little clav. we	et	-	
				4-4	,				
25	S8	25-27	14	5-5	Same				
				6-6					
RELA	TIVE D	DENSITY		NOTES :					
GRANU O to	JLAR SOI 4 Ve	LS(Blows/f ry Loose	t)						
4 to 10 to	10 Lo 30 Me	ose dium Dense nse					BORING NO. B-2		
Over	50 Ve	ry Dense							
RELA COHES 0 to	ATIVE (SIVE SOI 2 Ve	CONSISTEN LS (Blows/ ry Soft	ICY ft)	Standard Blows are S = Split	Penetration Test (S per 6" taken with -Spoon Sample; C =	SPT) = 140# hammer falling 30" an 24" long x 2" O.D. x 1 3/8" Rock Core Sample; U = Undistur	(ASTM D1586) I.D. split spoon sam bed Shelby Tube Samp	mpler unle Le	ess noted.
2 to 4 to 8 to	a so 8 Me 15 St	dium Stiff iff		BENADKG .	The stratification	n lines represent the approxima	te houndary between	soil turner	and the
15 to Over	30 Ve 30 Ha	ry Stiff rd		transitio	n may be gradual.	Water level readings have been	made in the test bo	ings at t	imes and
				occur due	to other factors t	the test boring logs. Fluctuat	measurements were mad	che groun le.	uwater may
				Proportio	ns used: trace (0-	-10%), little (10-20%), some (2	0-35%) and (35-50%)		

CONT	RACTOR	t: Great Rolli	Works Te .ngsford,	st Bores NH	KMM	Geotechnical Consultants, LLC 7 Marshall Road Hampstead, NH 03841	BORING NO: B-2 SHEET: 2 OF	2	
FORE RIG:	CME 8	ete Mich	aud			TEST BORING LOG	DATE: START: Oct 23 FINISH: PREPARED BY: Kevin	, 2013 Martin, P	.E.
					PROJECT: LOCATION:	EVOLUTION ROCK 65 WARREN AVENUE PORTLAND, MAINE	CHECKED BY:		
EQUI TYPE SIZE HAMM HAMM	IPMENT IID (I MER WT MER FAI	AUG HS N) 43 (LB) L (IN)	GER CASIN 3A NW 4 4	G <u>SAMPLER</u> SS 2.0 140 30	CORE BAR BAR BIT	GROUNDWATER OBSERVATION DATE 10/23 DEPTH (FT) 10 ft CASING AT (FT) n/a TIME (HR) 0.1 In NO GROUNDWATER ENCOUNTERED ILIQUID INTRODUCED DURING DRI	IONS	<pre>FIELD LABORA TESTIN MONITO INSTAL .</pre>	TESTING MTORY IG DRING WELL MED
LOCA	TION C	F BORING	: See Sk	etch		GROUND SURFACE	ELEV.:		
FT		SAM	PLE DATA			SOIL AND ROCK CLASSIFICATION-DESCR BURMISTER SYSTEM (SOIL)	RIPTION	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.		U.S. CORPS OF ENGINEERS SISTEM (1	RUCK		
								29'	
30	S9	30-32	6	20-22	Grey, fine	e to medium Sand & Gravel, some silt,	fractured rock		
				50/5"				31.5'	
35									
40									
45									
50									
RELA	TIVE I	DENSITY		NOTES :					
GRANU O to 4 to	4 Ve 10 Lo	<u>LS</u> (Blows/f ry Loose ose	τ)						
10 to 30 to	50 We	dium Dense nse rv Dence					BORING NO. B-2		
RELA COHES	ATIVE (SIVE SOI 2 Ve	CONSISTEN LS (Blows/	<i>ICY</i> ft)	Standard Blows are	Penetration e per 6" tak	Test (SPT) = 140# hammer falling 30" en with an 24" long x 2" O.D. x 1 3/8"	(ASTM D1586) 'I.D. split spoon sa	mpler unle	ess noted.
2 to 4 to	4 So 8 Me	ft dium Stiff		s = split	-spoon Samp	ie; C = ROCK COTE Sample; U = Undistu	LDEG SHELDY TUDE Samp	те те	
8 to 15 to Over	15 St 30 Ve 30 Ha	iff ry Stiff rd		REMARKS: transitic under con occur due	The strati on may be granditions sta to other f	fication lines represent the approxima adual. Water level readings have beer ted on the test boring logs. Fluctuat actors than those present at the time	ate boundary between and made in the test boot to the test boot to the level of measurements were make	soil types rings at t the grour de.	and the times and ndwater may
				Proportio	ons used: t	race (0-10%), little (10-20%), some (2	20-35%) and (35-50%)		

CONT	RACTOR	R: Great Rolli Pete Mich	Works Te .ngsford, naud	st Bores NH	KMM Geotechnical Consultants 7 Marshall Road Hampstead, NH 03841	, LLC	BORING NO: B-3 SHEET: 1 OF DATE: START: Oct 23	2 3, 2013	
RIG:	CME 8	50C			TEST BORING LOG PROJECT: EVOLUTION ROCK LOCATION: 65 WARREN AVENUE PORTLAND, MAINE		FINISH: PREPARED BY: Kevin CHECKED BY:	Martin, P	. E .
EQUI TYPE SIZE HAMN HAMN	<u>PMENT</u> ID (1 IER WT IER FAI	AUG HS (LB) L (IN)	EER CASIN 5A NW 4 4	G <u>SAMPLER</u> SS 2.0 140 30	CORE GROUNDWATER BAR DATE 10/23 DEPTH (FT) 9 ft CASING AT (FT) n/a BIT TIME (HR) 0.1 Image: Comparison of the second s	OBSERVAT	IONS	<pre> FIELD LABORA TESTIN MONITO INSTAI </pre>	TESTING NTORY IG DRING WELL LED
LOCA	TION C	F BORING	: See Sk	etch	GROU	JND SURFAC	E ELEV.:		
FT		SAM	PLE DATA		SOIL AND ROCK CLASSIFICA BURMISTER SYSTEM	TION-DESC M (SOIL)	RIPTION	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.	U.S. CORPS OF ENGINEERS	S SISTEM (ROCK)		
	S1	0-2	14	3-3	Dark Brn, loamy, silty SAND, little G	ravel, tra	ce organic (FILL)		
				4-6					
	S2	2-4	10	6-7	Dark Brown, Organic Clay & Silt, trace	e wood (Fl	:LL)		
				6-8				5'	
5	S 3	5-6	10	1-1	Black Organic Silt w/ roots (ORGANIC)		·····	Ū	
-		6-7	10	4-4				6'	
	S4	7-9	24	4-6	Olive Brown, SILT & CLAY, little fine	sand			
				7-9					
10	S5	10-12	24	5-7	Olive Brown, SILT & CLAY, trace sand, wet				
				11-13					
15									
15	U1	15-17	24	SHELBY	Grey, silty Clay w/ sand layers, wet	- STIFF C	LAY		
				TUBE					
	V1	17-18		VANE	S > 1,300 psf				
20									
20	V2	20-21		VANE	S = 900 psf				
	V3	21-22		VANE	S = 1,050 psf				
25								25'	
	S8	25-27	14	9-3	Grey, Silt & Clay, some Sand, trace g	ravel, wet	1		
				1-1				<u> </u>	
GRAN	ATIVE I	DENSITY LS(Blows/f	t)	NOTES :					
0 to 4 to	4 Ve 10 Lo	ry Loose ose					BORING NO P-2		
10 to 30 Medium Dense 30 to 50 Dense							DONING NO. D-2		
over	Ju ve	ry Dense							
COHES	ATIVE C	CONSISTEN	ICY ft)	Standard Blows are	enetration Test (SPT) = 140# hammer fa per 6" taken with an 24" long x 2" O.D	alling 30" D. x 1 3/8	(ASTM D1586) " I.D. split spoon sa	mpler unle	ess noted.
2 to 4 to	4 So 8 Me	ft fium Stiff		S = Split	Spoon Sample; C = Rock Core Sample; U	= Undistu	rbed Shelby Tube Samp	le	
8 to 15 to	15 St 30 Ve	iff ry Stiff		REMARKS:	The stratification lines represent the	e approxim	ate boundary between n made in the test bo	soil types	and the
Over	30 Ha	rd		under con	itions stated on the test boring logs.	. Fluctua	tions in the level of	the grour	ndwater may
				Proportio	s used: trace (0-10%), little (10-20%	t the time 8), some (measurements were ma 20-35%) and (35-50%)	ue.	

CONT	RACTOF	: Great Rolli	Works Te .ngsford,	st Bores NH	КММ	Geotechnical Consultants, LLC 7 Marshall Road Hampstead, NH 03841	BORING NO: B-3 SHEET: 2 OF	2	
FORE RIG:	CME 8	ete Mich	laud		PROJECT : LOCATION :	TEST BORING LOG EVOLUTION ROCK 65 WARREN AVENUE PORTLAND, MAINE	DATE: START: Oct 23 FINISH: PREPARED BY: Kevin CHECKED BY:	, 2013 Martin, P	. E .
EQUI TYPI SIZI HAMI HAMI	<u>PMENT</u> I ID (1 MER WT MER FAI	AUG HS (LB) (LB) L (IN)	SER CASIN SA NW 4 4	G <u>SAMPLER</u> SS 2.0 140 30	CORE BAR BIT BIT	GROUNDWATER OBSERVATION DATE 10/23 DEPTH (FT) 9 ft CASING AT (FT) n/a TIME (HR) 0.1 Image: Image of the second secon	IONS	<pre>FIELD LABORA TESTIN MONITO INSTAL </pre>	TESTING ATORY IG JRING WELL .LED
LOCA	TION C	F BORING	G: See Sk	etch	-	GROUND SURFACE	E ELEV.:		
FT		SAM	PLE DATA			SOIL AND ROCK CLASSIFICATION-DESCR BURMISTER SYSTEM (SOIL)	RIPTION	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.		U.S. CORPS OF ENGINEERS SISTEM (I	NOCK)		
								29.5'	
30					Refusal 0	29.5'			
35									
40									
45									
50									
RELA	ATIVE I	DENSITY	+)	NOTES :	<u> </u>			<u> </u>	
GRANULAR SOILS (Blows/ft) 0 to 4 Very Loose 4 to 10 Loose 10 to 30 Medium Dense 30 to 50 Dense Over 50 Very Dense							BORING NO. B-3		
RELA COHE: 0 to 2 to	ATIVE (SIVE SOI 2 Ve 4 So	CONSISTEN LS (Blows/ ry Soft ft	ICY ft)	Standard Blows are S = Split	Penetration e per 6" tak t-Spoon Samp	Test (SPT) = 140# hammer falling 30" en with an 24" long x 2" O.D. x 1 3/8" le; C = Rock Core Sample; U = Undistu	(ASTM D1586) ' I.D. split spoon sa rbed Shelby Tube Samp	mpler unle le	ess noted.
4 to 8 to 15 to Over	8 Me 15 St 30 Ve 30 Ha	dium Stiff iff ry Stiff rd		REMARKS: transitio under com occur due Proportio	The strati on may be gr nditions sta e to other f ons used: t	-Spoon Sample; C = Rock Core Sample; U = Undisturbed Shelby Tube Sample The stratification lines represent the approximate boundary between soil types and the n may be gradual. Water level readings have been made in the test borings at times and ditions stated on the test boring logs. Fluctuations in the level of the groundwater may to other factors than those present at the time measurements were made.			

CONT	RACTOR	: Great Rolli	Works Te .ngsford,	st Bores NH	KMM (Geotechnical Consultants, LLC 7 Marshall Road	BORING NO: B-4 SHEET: 1 OF	1	
FORE	MAN: P	ete Mich	aud			Hampstead, NH 03841	DATE: START: Oct 23	, 2013	
RIG	CME 8	50C				TEST BORING LOG	PREPARED BY: Kevin	Martin, P	.E.
					PROJECT: LOCATION:	EVOLUTION ROCK 65 WARREN AVENUE	CHECKED BY:		
						PORTLAND, MAINE			
					CORE	GROUNDWATER OBSERVATI	ONS	□ FIELD	TESTING
TYPE	PMENT	AUG HS	GER CASIN SA NW	G SAMPLER SS	BAR	DATE <u>10/23</u> DEPTH (FT) 5 ft		LABORA TESTIN	IG
SIZE	ID (I הוא שיד	N) 4 ¹ / ₂	<u>i 4</u>	2.0	BTT	CASING AT (FT) n/a		MONITO INSTAL	NRING WELL
HAM	IER FAL	L (IN)		30		D NO GROUNDWATER ENCOUNTERED			
						LIQUID INTRODUCED DURING DRI	LLING		
LOCA	TION C	F BORING	: See Sk	etch		GROUND SURFACE	ELEV.:		
FT		SAM	PLE DATA			SOIL AND ROCK CLASSIFICATION-DESCR BURMISTER SYSTEM (SOIL)	IPTION	STRATUM CHANGE	NOTES
	NO.	DEPTH	REC. (IN)	BLOWS/ 6 IN.		U.S. CORPS OF ENGINEERS SISTEM (I	(OCK)		
	S1	0-2	14	3-4	Dark Brown,	Organic Forest Mat (ORGANIC)			
				4-3	Rust Brown,	silty Sand, trace loam, roots (SUBS	OIL)		
	<u>s2</u>	2-4	10	6-7				2'6"	
				10-10	Brown, Sil+	z + Clay + Sand, drv			
								5'	
5	S 3	5-7	12	8-15	Brown, fine	to coarse Sand, little gravel, litt	le silt, wet	_	
				20-40					
								9'	
					· · · · · · · · · · · · · · · · · · ·		·····	2	
10					Auger Refus	sal 0 9 ft			
					inager nerab				
15					•				
					1				
20					1				
					1				
					1				
				ļ	1				
25				ļ	1				
			1		1			<u> </u>	
RELA GRANU	ATIVE L	ENSITY LS(Blows/f	t)	NOTES :					
O to 4 to	4 Ve: 10 Lo	ry Loose ose							
10 to 30 to	50 Me	dium Dense nse					BORING NO. B-4		
Over	50 Ve:	ry Dense							
RELA	TIVE C	ONSISTEN	ICY	Standard	Penetration !	Test (SPT) = 140# hammer falling 30"	(ASTM D1586)		
$\frac{COHES}{0}$ to	2 Ve: 4 Sol	ry Soft	10)	втоws are S = Split	e per 6" take t-Spoon Sample	n with an 24" long x 2" O.D. x 1 3/8" e; C = Rock Core Sample; U = Undistur	L.D. Split spoon san bed Shelby Tube Samp	mpier unle le	ess noted.
4 to 8 to	8 Me 15 St	dium Stiff iff		BENADKG .	The etratif	ication lines represent the approximation	ate boundary batwaan	soil turner	and the
15 to Over	30 Ve:	ry Stiff rd		transitio	on may be grad	dual. Water level readings have been	made in the test bo	rings at t	times and
				under con occur due	nditions state e to other fac	ed on the test boring logs. Fluctuat ctors than those present at the time	cions in the level of measurements were made	the grour de.	dwater may
				Proportio	ace (0-10%), little (10-20%), some (2	20-35%) and (35-50%)			