REPORT (REV 1)

November 28, 2016 (rev 1: April 3, 2017) 15-0071.1 S

Explorations and Geotechnical Engineering Services

Proposed Fred P. Hall Elementary School 23 Orono Road Portland, Maine

PREPARED FOR:

Oak Point Associates Attention: Jonah DeWaters, P.E. 231 Main Street Biddeford, Maine 04005

PREPARED BY:

S. W. Cole Engineering, Inc. 286 Portland Road Gray, Maine 04039 207-657-2866

Geotechnical Engineering

- Construction Materials Testing and Special Inspections
- GeoEnvironmental Services
- Test Boring Explorations

www.swcole.com

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Scope and Purpose	1
1.2 Proposed Construction	1
2.0 EXPLORATION AND TESTING	2
2.1 Explorations	2
2.2 Testing	3
3.0 SITE AND SUBSURFACE CONDITIONS	3
3.1 Surficial	3
3.2 Soil and Bedrock	4
3.3 Groundwater	4
3.4 Frost and Seismic	4
4.0 EVALUATION AND RECOMMENDATIONS	5
4.1 General Findings	5
4.2 Site and Subgrade Preparation	6
4.3 Excavation, Blasting and Dewatering	8
4.4 Foundations and Walls	8
4.5 Foundation Drainage	9
4.6 Slab-On-Grade Floors	9
4.7 Entrance Slabs and Sidewalks	
4.8 Backfill and Compaction	11
4.9 Weather Considerations	12
4.10 Paved Areas	
4.11 Design Review and Construction Testing	
5.0 CLOSURE	13

Appendix A	Limitations
Appendix B	Figures
Appendix C	Logs and Key to Notes and Symbols used on Logs
Appendix D	Laboratory Test Results

www.swcole.com

15-0071.1 S

November 28, 2016 (rev 1: April 3, 2017)

Oak Point Associates Attn: Jonah DeWaters, P.E. 231 Main Street Biddeford, ME 04005

Subject: Explorations and Geotechnical Engineering Services Proposed Fred P. Hall Elementary School 23 Orono Road Portland, Maine

Dear Jonah:

In accordance with our Contract Addendum, dated December 22, 2015, we have performed subsurface explorations for the subject project. This report summarizes our findings and geotechnical engineering recommendations relative to foundations, earthwork and pavements associated with the proposed construction. The contents of this report are subject to the limitations set forth in Appendix A.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information at the site in order to provide geotechnical recommendations for foundations, earthwork and pavements associated with the proposed construction. Our scope of services included: test boring, rod probe and test pit explorations; soils laboratory testing; geotechnical analyses of the subsurface findings; and preparation of this report.

1.2 Proposed Construction

Based on the plans provided and our discussions with you, we understand a new elementary school with associated playfields and paved areas is proposed on the existing Fred P. Hall Elementary School which will be demolished in favor of new construction. We understand the building will be one and two-story construction with

286 Portland Road, Gray, ME 04039-9586 • P: (207) 657.2866 • F: (207) 657.2840 • E: infogray@swcole.com

on-grade floor slabs situated northwest of the existing school building. We understand athletic fields and paved parking are proposed south and east of the proposed building envelope. Two utility easements with water and sewer cross beneath the proposed building footprint and will be re-routed behind and around the building.

Based on our discussions, we understand the building will have a finished floor elevation (FFE) of 68 feet (project datum) requiring about 2 feet of grade raise to achieve FFE. We understand the utilities beneath the proposed building will be removed and rerouted around the building requiring trench excavations approaching 15 feet. Based on the site plan and existing grades, we anticipate tapered cuts and fills approaching 3 feet will be needed to achieve proposed grades. We understand a below grade stormwater treatment system is proposed beneath the proposed athletic fields.

Proposed and site features are illustrated on the "Exploration Location Plans" attached in Appendix B.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Two episodes of subsurface explorations have been performed at the site by drilling and excavating companies working under subcontract to S. W. Cole Engineering, Inc. (S.W.COLE). The explorations made at the site include:

- Fifteen test boring explorations (B-101 through B-115) were made on the site on July 13 and 14, 2015 for a preliminary phase investigation;
- Thirteen test boring explorations (B-201 through B-213) were made on the site on June 29 through July 1, 2016 for a design phase investigation;
- Ten test pit explorations (TP-301 through TP-310) made on the site on June 29, 2016 for a design phase investigation.

The exploration locations were selected by S.W.COLE in collaboration with Oak Point Associates. The approximate exploration locations are shown on the "Exploration Location Plans" attached in Appendix B. Logs of the explorations and a key to the

notes and symbols used on the logs are attached as Appendix C. The elevations noted on the logs were estimated based on topographic information shown on "Exploration Location Plans".

2.2 Testing

The borings were performed using a combination of hollow-stem auger, solid-stem auger, cased wash-boring and rod probing techniques. The soils in the test borings were sampled at 2 to 5 foot intervals using a split spoon sampler and Standard Penetration Test (SPT) methods. Where stiffer clay soils were encountered, Pocket Penetrometer Testing (PPT) was performed on split spoon samples recovered from the borings. Where softer clay soils were encountered, Shelby Tube sampling and in-situ Vane Shear Testing (VSTs) was performed. SPT blow counts, as well as PPT and VST results, are shown on the logs.

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. Moisture content and Atterberg Limit test results are noted on the logs. One-dimensional consolidation test results are attached in Appendix D.

Topsoil samples obtained adjacent to two explorations were forwarded to Maine Soil Testing Service for topsoil testing. The results of pH and nutrient testing are attached in Appendix D.

3.0 SITE AND SUBSURFACE CONDITIONS

3.1 Surficial

The site is located on the west side of Portland, Maine along Capisic Brook. The existing school, parking and playfields are situated in the northern half of the site surrounded by residential properties to the east and west, wooded area to the north and south and Capisic Brook along the north site boundary. Surface relief across the site is relatively flat and level over the central portion of the site. The northern portion of the site slopes downward between 20 to 25 feet to Capisic Brook. Surface relief along the proposed access road slopes downward to a drainage feature in the southern portion of the site. Existing site features are shown on the "Exploration Location Plans" attached in Appendix B.

15-0071.1 S November 28, 2016 (rev 1: April 3, 2017)

3.2 Soil and Bedrock

Below a surficial layer of topsoil, forest duff or pavement, the explorations encountered a soil profile generally consisting of a thin layer of surficial fills and native sands overlying a deep deposit of glaciomarine clay that becomes soft at depths ranging from 8 to 13 feet below the ground surface. A buried layer of organics (relic topsoil/forest duff) was encountered beneath the surficial fills at certain exploration locations. Bedrock was not encountered within the depth explored. Not all the strata were encountered within each of the explorations; refer to the attached exploration logs for detailed soils information.

3.3 Groundwater

Groundwater was generally encountered at depths of about 5 feet across the flat area of the site, becoming deeper to about 11 feet approaching the top of the slope leading down to Capisic Brook. Groundwater likely becomes perched on relatively impervious glaciomarine clays present under the site. Long-term groundwater levels were not determined. It should be anticipated that seasonal groundwater levels will fluctuate, especially in response to periods of snowmelt and precipitation, as well as changes in site use. Refer to the attached logs for more detailed groundwater information.

3.4 Frost and Seismic

The 100-year Air Freezing Index for the Portland, Maine area is about 1,407-Farenheit degree-days, which corresponds to a frost penetration depth on the order of 4.5 feet.

Based on the subsurface findings, we interpret the site soils to correspond to Seismic Soil Site Class E, according to 2009 International Building Code.

4.0 EVALUATION AND RECOMMENDATIONS

4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint. The principle geotechnical considerations include:

- The proposed building footprint is underlain by a thin crust of relatively stiff clay overlying a deep deposit of soft compressible clay necessitating a relatively low allowable soil bearing pressure of 1 ksf for spread footings, a FFE of at least 68 feet and Seismic Soil Site Class E. The use of combined footings is encouraged to reduce the potential for differential settlement; the use of frequent control joints are encouraged in masonry and brittle walls to help control cracking.
- The existing utilities and associated trench backfill beneath the proposed building and paved areas must be completely removed and replaced with compacted Granular Borrow. Trenching for the new utilities around the building must be outside a 1H:1V plane projected down and away from the building perimeter.
- Fabric wrapped crushed stone mats with integral underdrains are recommended below perimeter footings. Interior footings may be founded on compacted Granular Borrow used to raise building grades or 6 inches of compacted Crushed Stone placed over properly prepared subgrades. On-grade floor slabs should be founded on at least 12 inches of compacted Structural Fill or 6 inches of compacted Crushed Stone overlying a non-woven geotextile fabric.
- Pavements should be underlain with high performance woven geotextile fabrics. Storm drains beneath paved areas should be installed as MaineDOT Type C Underdrains with free-draining sand backfill to provide positive drainage relief of pavement gravels.
- Utilities that penetrate the stiff clay with trench bottoms founded on soft clays should be underlain with geotextile wrapped crushed stone mats beneath customary bedding materials to stabilize trench bottoms for pipes and structures.
- The proposed underground stormwater treatment gallery is anticipated to penetrate the stiff clay and be founded on soft clays. We recommend a 1-foot layer of

Underdrain Sand be placed over the bottom of the excavation to provide a working mat for installation of the liner and system.

- Groundwater was encountered at shallow depths across the site, including within the proposed building footprint. Open cut excavations shallower than about 5 feet may be feasible with sump and pump dewatering techniques. Deeper excavations, such as for utilities and the underground stormwater gallery will likely require braced sheetpiling for shoring and groundwater control.
- Imported Granular Borrow, Structural Fill, and Crushed Stone will be needed for construction.

4.2 Site and Subgrade Preparation

We recommend that site preparation begin with the construction of an erosion control system to protect adjacent drainage ways and areas outside the construction limits. Surficial organics, roots, topsoil and existing foundations should be completely removed from areas of proposed fill and construction. As much vegetation as possible should remain outside construction areas to lessen the potential for erosion and site disturbance.

<u>Stripping and Grubbing</u>: All topsoil, stumps, roots, surficial organics, existing fills and relic topsoil must be removed from areas of proposed fill and construction. Stripping and grubbing depths will approach 2 feet in the building pad and 3 feet beneath paved areas. Actual stripping and grubbing depths to remove topsoil and organics will depend on the contractor's means and methods. A greater stripping and grubbing depth will likely be needed during wet weather periods and in wet areas. Existing drainage features and wetland areas must be dewatered and organics removed before filling.

<u>Building Pad</u>: Following removal of organics and existing fills, we recommend removing the existing water-main, sewer and storm drains and associated uncontrolled trench backfill soils from beneath the building. The former utility trenches should then be backfilled with at least 2 feet of compacted Granular Borrow for Underwater Backfill following by compacted Granular Borrow for Embankment Construction. We then recommend raising the building pad to the bottom of slab base gravel with compacted Granular Borrow prior to excavating for footings.

<u>Footing Subgrades</u>: We recommend that footings be excavated using a smooth-edged bucket. We recommend that perimeter footings be underlain by at least 6 inches of Crushed Stone wrapped in non-woven geotextile filter fabric, such as Mirafi 180N; the thickness of Crushed Stone beneath perimeter footings should increase for shallower footings so that a constant excavation grade is made around the perimeter based on the deepest footing. Interior footings should be founded on compacted Granular Borrow or 3 inches of compacted Crushed Stone over undisturbed native, non-organic soils.

<u>Paved Areas</u>: Following removal of organics and existing fills, we recommend removing the existing water-main, storm drains and associated trench backfill materials from beneath the proposed parking and access roads, where present. The former utilities trenches should then be backfilled with at least 2 feet of compacted Granular Borrow for Underwater Backfill following by compacted Granular Borrow for Embankment Construction. We recommend compacted Granular Borrow for fill to raise grades within the parking lot, bus loop, sidewalks and paved play surfaces.

Fill for the access road embankment may consist of compacted Common Borrow placed over an initial lift of Granular Borrow for Underwater Backfill, as necessary in low-lying wet areas. The initial lift of Granular Borrow for Underwater Backfill should daylight to the toe of the fill embankment to provide positive drainage relief.

<u>Utilities</u>: Based on the subsurface findings and our understanding of the proposed construction, we anticipate deeper buried utilities will encounter soft, gray silty clay at the bottom of trench excavations. If soft, gray silty clay or unstable trench bottoms are encountered, we recommend pipe bedding be underlain with at least 12-inches of crushed stone wrapped in non-woven geotextile fabric such as Mirafi 180N and structures be founded on at least 2 feet of crushed stone wrapped in Mirafi 180N. Excavation to subgrade in soft gray clay and native brown silty clays should be completed with a smooth-edged bucket. We recommend 12 inches of Underdrain Sand be placed over the bottom of the Stormwater Gallery excavation in order to provide a working mat for dewatering and installation of the liner.

15-0071.1 S November 28, 2016 (rev 1: April 3, 2017)

4.3 Excavation, Blasting and Dewatering

Excavation work will generally encounter existing fills, relic topsoil and native deposits of clay, silt and sand. Areas of uncontrolled fill and backfill associated with past site usage will be encountered across the site. Saturated soils and groundwater will be encountered at depths as shallow as 5 feet. Based on the subsurface findings, blasting does not appear to be needed.

Care must be exercised during construction to limit disturbance of the bearing soils. Earthwork and grading activities should occur during drier, non-freezing weather of Spring, Summer and Fall. Low pressure tracked equipment will be needed for earthwork activities. Rubber tired construction equipment should not operate directly on the native soils, but should work from advancing fill pads or temporary haul roads. Equipment access in the stormwater gallery is not considered feasible and long-reach excavators or other means of excavation and installation will be needed. Final cuts to subgrade should be performed with a smooth-edged bucket to help minimize soil disturbance.

The contractor should anticipate the need for dewatering in excavations particularly following periods of precipitation and snow melt. Ditching with gravity drainage and sumping and pumping should be adequate to control groundwater seepage in shallow excavations. Deeper excavations will likely require sheetpiling for groundwater control and excavation support. Controlling the water levels to at least one foot below planned excavation depths will help stabilize subgrades during construction. Excavations must be properly shored or sloped in accordance with OSHA Regulations to prevent sloughing and caving of the sidewalls during construction.

The design and planning of excavations, excavation support systems, and dewatering is the responsibility of the contractor. We recommend the contract documents require engineered shop drawings of shoring and dewatering plans for excavations below groundwater and excavations to remove peat and organics.

4.4 Foundations and Walls

We recommend the proposed building be supported on shallow, spread footings. Perimeter footings should be founded on at least 6-inches of crushed stone fully wrapped in non-woven geotextile fabric, such as Mirafi 180N, bearing on undisturbed stiff, brown silty clay or compacted Granular Borrow. Interior footings should be

founded on compacted Granular Borrow used to raise the building pad or 3 inches of compacted Crushed Stone over undisturbed stiff, brown silty clay. For foundations bearing on properly prepared subgrades, we recommend the following geotechnical parameters for design consideration:

Geotechnical Parameters for Spread Footings							
Design Frost Depth	4.5 feet						
Net Allowable Soil Bearing Pressure	1.0 ksf or less						
Subgrade Modulus (Mat Footings)	50 pci						
Base Friction Factor	0.35						
Total Unit Weight of Backfill	130 pcf (compacted Structural Fill)						
At-Rest Lateral Earth Pressure Coefficient	0.5 (compacted Structural Fill)						
Internal Friction Angle of Backfill	32° (compacted Structural Fill)						
Total Post-Construction Settlement	1 inch of less						
Differential Post-Construction Settlement	1/2 inch or less						

As discussed, we recommend combined footings and grade beams to reduce the potential for differential settlement. Additionally, we recommend frequent control joints in masonry walls and brittle wall systems to help control cracking; the control joints should carry down through foundation concrete.

4.5 Foundation Drainage

We recommend an underdrain system be installed along the outside edge of perimeter footings. We recommend a 4-inch diameter, perforated SDR-35 foundation drain pipe bedded in the layer of geotextile wrapped Crushed Stone below the perimeter footings. The underdrain pipes must have a positive gravity outlet protected from freezing, clogging and backflow. Surface grades should be sloped away from the building for positive surface water drainage. General underdrain details are illustrated on the "Foundation Detail Sketches" in Appendix B.

4.6 Slab-On-Grade Floors

On-grade floor slabs in heated areas may be designed using a subgrade reaction modulus of 120 pci provided the slab is underlain by at least 12-inches of compacted Structural Fill or 6-inches of compacted Crushed Stone overlying a non-woven geotextile fabric placed over properly prepared subgrades. The structural engineer or

concrete consultant must design steel reinforcing and joint spacing appropriate to slab thickness and function.

We recommend installation of a subslab radon venting system. We also recommend a sub-slab vapor retarder particularly in areas of the building where the concrete slab will be covered with an impermeable surface treatment or floor covering that may be sensitive to moisture vapors. The vapor retarder must have a permeance that is less than the floor cover or surface treatment that is applied to the slab. The vapor retarder must have sufficient durability to withstand direct contact with the sub-slab base material and construction activity. Additionally, the vapor retarder may be underlain with a shim layer of stone dust over structural fill or non-woven geotextile fabric over crushed stone. The vapor retarder material should be placed according to the manufacturer's recommended method, including the taping and lapping of all joints and wall connections. The architect and/or flooring consultant should select the vapor retarder products compatible with flooring and adhesive materials.

The floor slab should be appropriately cured using moisture retention methods after casting. Typical floor slab curing methods should be used for at least 7 days. The architect or flooring consultant should assign curing methods consistent with current applicable American Concrete Institute (ACI) procedures with consideration of curing method compatibility to proposed surface treatments, flooring and adhesive materials.

4.7 Entrance Slabs and Sidewalks

Entrance slabs and sidewalks adjacent to the building must be designed to reduce the effects of differential frost action between adjacent pavement, doorways, and entrances. We recommend that non-frost susceptible Structural Fill be provided to a depth of at least 4.5 feet below the top of entrance slabs. This thickness of Structural Fill should extend the full width of the entrance slab and outward at least 4.5 feet, thereafter transitioning up to the bottom of the adjacent sidewalk or pavement gravels at a 3H:1V or flatter slope. General details of this frost transition zone are illustrated on the "Foundation Detail Sketches" attached in Appendix B.

4.8 Backfill and Compaction

We recommend the following fill and backfill materials for construction:

<u>Common Borrow</u>: Fill to raise grades in landscape areas and along the proposed Riggs and Lomond Street access road may be non-organic compactable earth meeting the requirements of 2014 MaineDOT Standard Specification 703.18 Common Borrow.

<u>Granular Borrow</u>: Fill and backfill in building and paved areas should be sand or silty sand meeting the requirements for 2014 Standard Specification MaineDOT 703.19 Granular Borrow. Fill and backfill over wet subgrades may require 2014 MaineDOT 703.19 Granular Borrow of Underwater Backfill.

<u>Structural Fill</u>: Fill to repair soft areas, backfill for foundations, slab base material and material below exterior entrances and sidewalks should be clean, non-frost susceptible sand and gravel meeting the gradation requirements for Structural Fill as given below:

Structural Fill							
Sieve Size	Percent Finer by Weight						
4 inch	100						
3 inch	90 to 100						
1/4 inch	25 to 90						
#40	0 to 30						
#200	0 to 5						

<u>Crushed Stone</u>: Crushed Stone, used beneath foundations, for underdrain aggregate and as slab base material, should meet the requirements of 2014 MaineDOT Standard Specification 703.13 Crushed Stone ³/₄-Inch. A nominally sized, washed ³/₄-inch Crushed Stone usually meets this requirement.

<u>Underdrain Sand</u>: Clean, free-draining sand under the Stormwater Gallery meeting the requirement of 2014 MaineDOT 703.22 Type B Underdrain Backfill Material.

<u>Reuse of Site Soils</u>: The existing sandy fills may be suitable for reuse as Granular Borrow. The native stiff brown clay appear suitable for reuse as Common Borrow. The existing topsoil and organics may be screened and processed for reuse as loam. The native gray silty clays are unsuitable for reuse and will require export from the site.

<u>Placement and Compaction</u>: Fill should be placed in horizontal lifts and compacted such that the desired density is achieved throughout the lift thickness with 3 to 5 passes of the compaction equipment. Loose lift thicknesses for grading, fill and backfill activities should not exceed 12 inches.

We recommend that fill and backfill in building and paved areas be compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557. We recommend that fill and backfill in landscape and playfield areas be compacted to at least 92 percent of its maximum dry density as determined by ASTM D-1557. Crushed Stone should be compacted with 3 to 5 passes of a vibratory plate compactor having a static weight of at least 500 pounds.

4.9 Weather Considerations

Construction activity should be limited during wet and freezing weather and the site soils may require drying before construction activities may continue. The contractor should anticipate the need for water to temper fills in order to facilitate compaction during dry weather. If construction takes place during cold weather, subgrades, foundations and floor slabs must be protected during freezing conditions. Concrete and fill must not be placed on frozen soil; and once placed, the concrete and soil beneath the structure must be protected from freezing.

4.10 Paved Areas

We anticipate paved areas will be subjected primarily to passenger vehicle and light delivery truck traffic with occasional heavy delivery truck traffic. Considering the site soils, and proposed usage, we offer the following pavement section for consideration. Materials are based on MaineDOT Standard Specifications.

FLEXIBLE (HMA) PAVEMENT SECTION									
Pavement Layer Material Thickness									
MaineDOT 9.5 mm Hot Mix Asphalt (50 Gyration Design)	1 ¼ inches								
MaineDOT 19.0 mm Hot Mix Asphalt (50 Gyration Design)	2 ¼ inches								
MaineDOT 703.06 Aggregate Base Type A	6 inches								
MaineDOT 703.06 Aggregate Subbase Type D15 inches									
Subgrade Reinforcement Fabric (Mirafi 600X or equal)									

Hot mix asphalt pavement should be compacted to 92 to 97 percent of its theoretical maximum density as determined by ASTM D-2041. A tack coat should be used between successive lifts of bituminous pavement. The base and subbase materials should be compacted to at least 95 percent of their maximum dry density as determined by ASTM D-1557.

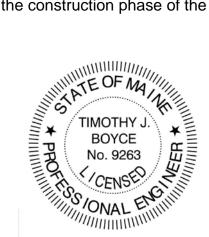
<u>Pavement Underdrains</u>: We recommend storm drains in paved areas be installed as MaineDOT Type C Underdrains with free-draining Granular Borrow for Underwater Backfill used to backfill up to the bottom of pavement gravels in order to provide positive drainage relief of pavement gravels.

4.11 Design Review and Construction Testing

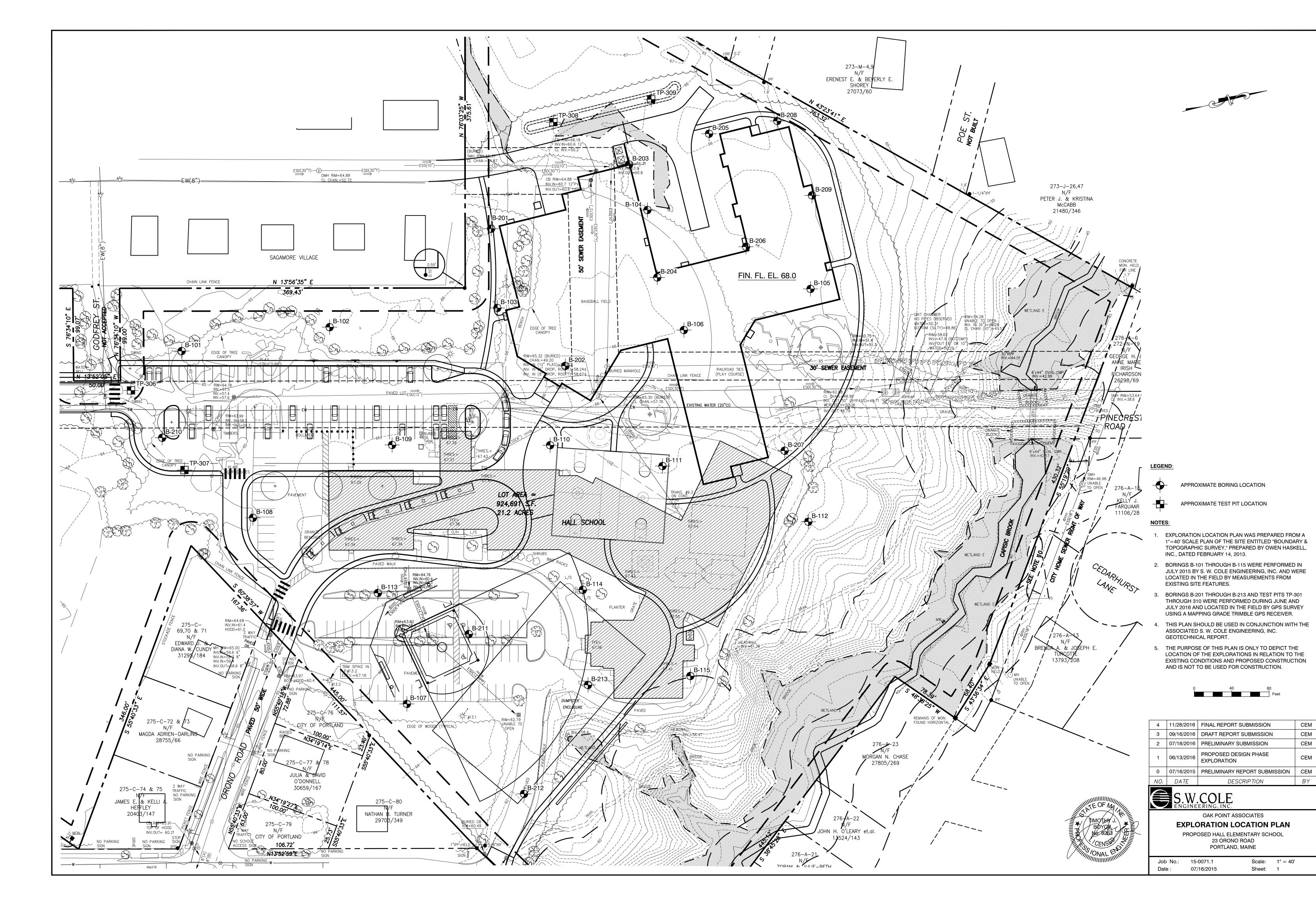
S.W.COLE should review the construction documents prior to bidding to determine that our earthwork, foundation and pavement recommendations have been properly interpreted and implemented.

A testing and special inspections program should be implemented during construction to observe compliance with the construction documents. S.W.COLE should be retained to provide geotechnical observations during earthwork, preparation of foundation bearing surfaces and paving. S.W.COLE is also available to provide testing and special inspection services for soils, concrete, masonry, steel, and spray-applied fireproofing.

5.0 CLOSURE


It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

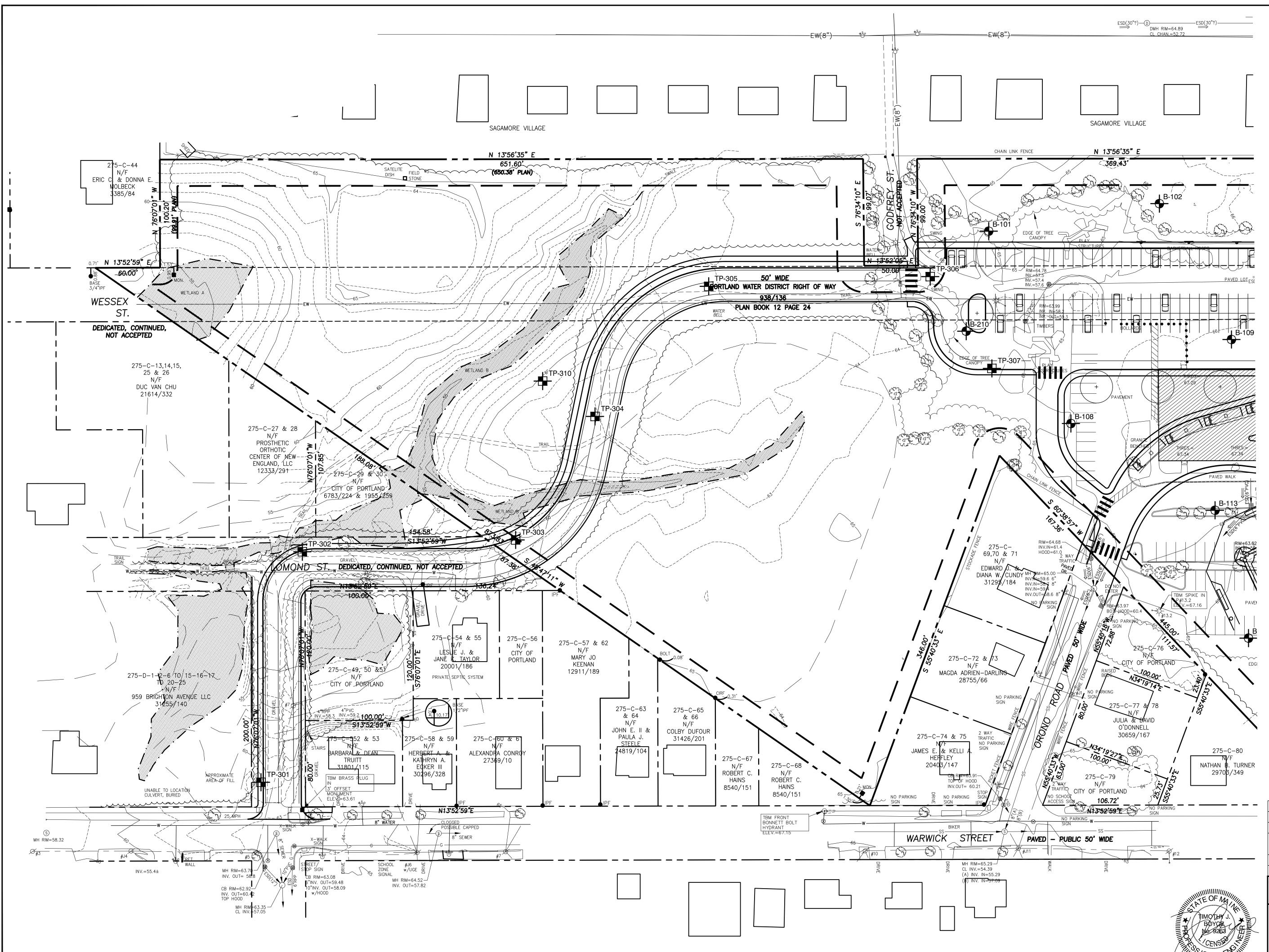
Sincerely,


S. W. Cole Engineering, Inc.

Timothy J. Boyce, P.E. Senior Geotechnical Engineer

TJB:emw/rec

APPENDIX B


CEM

CEM

CEM

CEM

ΒY

LEGEND:

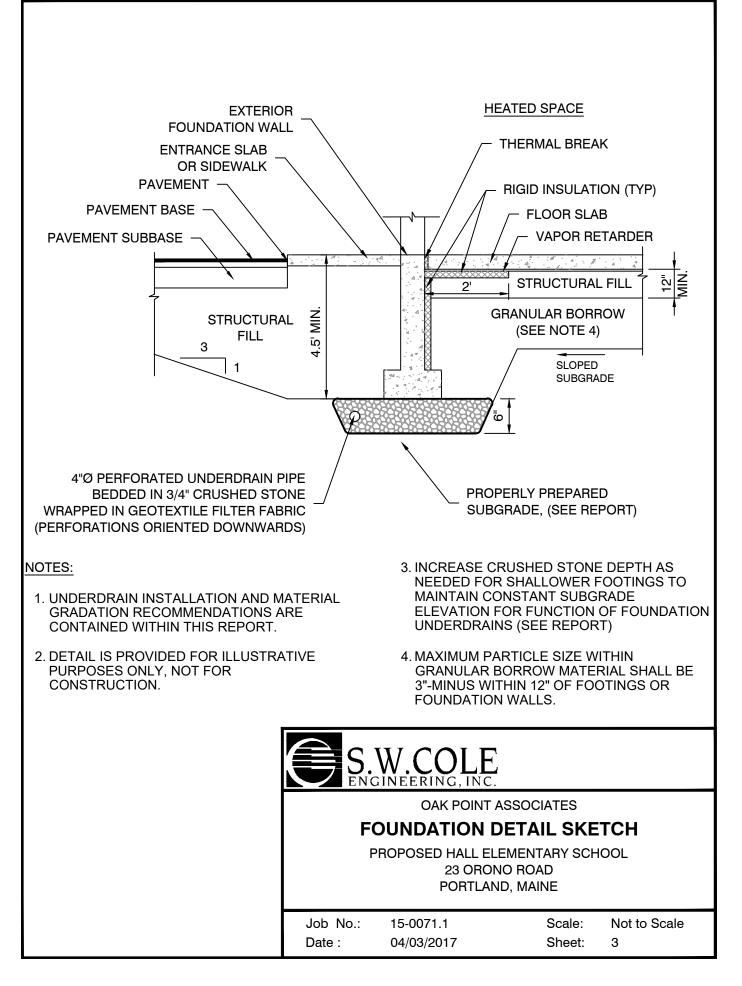

APPROXIMATE BORING LOCATION

APPROXIMATE TEST PIT LOCATION

NOTES

-

- 1. EXPLORATION LOCATION PLAN WAS PREPARED FROM A 1"=40' SCALE PLAN OF THE SITE ENTITLED "BOUNDARY & TOPOGRAPHIC SURVEY," PREPARED BY OWEN HASKELL, INC., DATED FEBRUARY 14, 2013.
- 2. BORINGS B-101 THROUGH B-115 WERE PERFORMED IN JULY 2015 BY S. W. COLE ENGINEERING, INC. AND WERE LOCATED IN THE FIELD BY MEASUREMENTS FROM EXISTING SITE FEATURES.
- 3. BORINGS B-201 THROUGH B-213 AND TEST PITS TP-301 THROUGH 310 WERE PERFORMED DURING JUNE AND JULY 2016 AND LOCATED IN THE FIELD BY GPS SURVEY USING A MAPPING GRADE TRIMBLE GPS RECEIVER.
- 4. THIS PLAN SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT.
- 5. THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.



4	11/28/2016	FINAL REPORT SUBMISSION	CEM
3	09/16/2016	DRAFT REPORT SUBMISSION	CEM
2	07/18/2016	PRELIMINARY SUBMISSION	CEM
1	06/13/2016	PROPOSED DESIGN PHASE EXPLORATION	CEM
0	07/16/2015	PRELIMINARY REPORT SUBMISSION	CEM
NO.	DATE	DESCRIPTION	ΒY
	S.W.	COLE ering, inc.	
		OAK POINT ASSOCIATES	

EXPLORATION LOCATION PLAN PROPOSED HALL ELEMENTARY SCHOOL 23 ORONO ROAD

PORTLAND, MAINE

	I OITIEAN			
Job No.:	15-0071.1	Scale:	1" = 40'	
Date :	07/16/2015	Sheet:	2	

APPENDIX C

BORING LOG

BORING NO .:	B-101
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/13/2015
DATE FINISH:	7/13/2015
ELEVATION:	65'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 7'	

PROJECT / CLIENT:	PROPOSED	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES										
LOCATION:	23 ORONO R	23 ORONO ROAD, PORTLAND, MAINE										
DRILLING CO. :	GREAT WOR	GREAT WORKS TEST BORING DRILLER:										
				-								
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL								
CASING:	SSA	4 1/2" O.D.										
SAMPLER:	D	1 3/8"	140#	30"								

SAMPLER: CORE BARREL:

CASING BLOWS			MPLE SAMPLER BLOWS PER 6"	DEDTU	οτρατά ο τέςτ ρατά					
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
									0.8'	FOREST DUFF AND TOPSOIL
	1D	24"	15"	2.0'	2	2	1	2		TAN SANDY SILT
									3'	~ MEDIUM ~
										OLIVE-BROWN SILTY CLAY
										~ STIFF ~
					-	-				
	2D	24"	20"	7.0'	2	3	5	5	7'	GRAY SILTY FINE SAND
									9'	~ MEDIUM DENSE ~
										GRAY SILTY CLAY
										~ MEDIUM TO SOFT~
	3D	24"	24"	12.0'	1	1	1	1		
										BOTTOM OF EXPLORATION @ 12'
SAMPLE	ES:			SOIL C	LASSI	FIED B	Y:		REMAR	KS:
D = SPL										\frown
C = 2" S						LLER -				STRATIFICATION LINES REPRESENT THE
S = 3" S				Х		L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"	SHELE	SY TUB	E		LAB	ORATO	JRY TE	SI		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-101

SSA

D

BORING LOG

BORING NO .:	B-102
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	65'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 6'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING

 DRILLER:
 JEFF LEE

 TYPE
 SIZE I.D.

140#

30"

4 1/2" O.D.

1 3/8"

CASING: SAMPLER:

CASING BLOWS	SAMPLE SAMPLER BLOWS PER 6"			PER 6"							
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
									1.3'	FOREST DUFF OVER ASH OVER RELIC TOPSOIL (RELIC BURN P	PIT)
	1D	24"	19"	2.0'	1	3	6	8		TAN FINE TO MEDIUM SAND SOME SILT	
									3'	~ LOOSE ~	
										OLIVE-BROWN SILTY CLAY	
										~ STIFF ~	
									6'		
	2D	24"	24"	7.0'	3	4	2	2		GRAY SILTY CLAY WITH SAND SEAMS	
	20	24"	20"	0.01	2	2	2	2	9'	~ MEDIUM ~ q _P = 1.0) to 0.5 ksf
	3D	24	20"	9.0'	2	2	2	2	9	BOTTOM OF EXPLORATION @ 9'	
										BOTTOM OF EXPLORATION @ 9	
SAMPLI	SAMPLES: SOIL CLASSIFIED BY:				REMAR	· ·					
D = SPL	IT SPC	ON									\frown
C = 2" S	HELBY	' TUBE			DRI	LLER -	VISUA	LLY		STRATIFICATION LINES REPRESENT THE	()
S = 3" S				Х		L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	\smile
U = 3.5"	SHELE	BY TUE	BE		LAB	ORATO	ORY TE	ST		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B	-102

SSA

D

BORING LOG

BORING NO .:	B-103
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 5.5	2

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER:

 TYPE
 SIZE I.D.
 HAMMER WT. HAMMER FALL

140#

30"

4 1/2" O.D.

1 3/8"

CASING: SAMPLER:

CASING BLOWS	OWS				SAMPLER BLOWS PER 6"			PER 6"			
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
									0.1'	GRASS OVER BROWN SANDY LOAM	
	1D	24"	14"	2.0'	4	4	3	7	2'	BROWN-GRAY GRAVELLY SAND SOME SILT (RELIC	ROAD)
											FTG Subgrade
										OLIVE-BROWN SILTY CLAY	-
										~ STIFF ~	
									5.5'		q _P = 2 ksf
	2D	24"	24"	7.0'	1	3	2	3		GRAY SILTY CLAY ~ MEDIUM ~	q _P = 0.5 ksf
										BOTTOM OF EXPLORATION @ 7.0	
	-				-						
	-				-						
						I	I	I			
SAMPLI				SOIL C	LASSI	FIED B	Y:		REMAR	KS:	
D = SPL				·							\frown
C = 2" S				V			VISUA			STRATIFICATION LINES REPRESENT THE	
S = 3" S				X			I VISI			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	\smile
U = 3.5" SHELBY TUBE			LABORATORY TEST					AND THE TRANSITION MAY BE GRADUAL. BORING NO.:	B-103		

D

BORING LOG

BORING NO .:	B-104
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 9'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER:

 JEFF LEE
 JEFF LEE

 CASING:
 SSA
 4 1/2" O.D.

140#

30"

1 3/8"

SAMPLER:

CASING BLOWS	SAMPLE			SAMPLER BLOWS PER 6"							
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
									1.2'	GRASS OVER BROWN SILTY LOAM OVER BROWN C	LAY (FILL)
	1D	24"	17"	2.0'	7	10	10	9		ORANGE-BROWN SILTY SAND WITH ORGANICS (RELIC B H	
									3'		FTG Subgrade
										OLIVE-BROWN SILTY CLAY	
										~ VERY STIFF ~	
									5.5'		
	2D	24"	24"	7.0'	3	4	4	5		GRAY-BROWN SILTY CLAY	$q_{P} = 4 .0 \text{ to } 3.0 \text{ ksf}$
										~ STIFF ~	
									9'		
										GRAY SILTY CLAY	$q_P = 0.0 \text{ ksf}$
										WITH OCCASIONAL SAND SEAMS	
	3D	24"	24"	12.0'	V	VOR / 1	8"	WOM		~ SOFT ~	
										BOTTOM OF EXPLORATION @ 12'	
SAMPL	= 9.	L	1	SOIL C	1 7001	FIED B	v .		REMAR	Kč.	
D = SPL	-	ON			LA331						
D = 3PL C = 2" S					יסח	LLER -	1/10114			STRATIFICATION LINES REPRESENT THE	()
				X						APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	\bigcirc
		BY TUBE X SOIL TECH VISUALLY ELBY TUBE LABORATORY TEST								- D 404	
5 = 5.5		- 100							I	AND THE TRANSITION MAY BE GRADUAL. BORING NO.	: B-104

HW

D

BORING LOG

BORING NO .:	B-105
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	65'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 9'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE
 SIZE I.D.
 HAMMER WT. HAMMER FALL

140#

30"

4"

1 3/8"

CASING: SAMPLER:

CASING BLOWS	SAIVIPLE SAIVIPLER BLOWS PER 6						_OWS F	PER 6"				
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA		
									1.1'	FOREST DUFF OVER DARK BROWN SANDY LOAM OVER ORANGE SILTY SAN	ID	
	1D	24"	21"	2.0'	1	2	3	2		TAN FINE TO MEDIUM SAND TRACE TO SOME SILT FTG Subgrade		
							-					
									4'			
										OLIVE-BROWN SILTY CLAY		
										WITH OCCASIONAL TAN SILTY FINE SAND SEAMS		
	2D	24"	24"	7.0'	4	5	8	9		w = 34.9% q _P = 5.0 ksf		
									11.5'			
	3D	24"	24"	12.0'	1	2	1	2		GRAY SILTY CLAY $q_P = 0.5$ to 0.0 l	ksf	
									_	~ MEDIUM		
									_			
	1S	24"	22"	17.0'	PISTO	PISTON SAMPLER			$W_L = 37 \ W_P = 21 \ w = 37.4\%$			
	1V			17.8'	3.5" x 7" TAPERED			Sv = 0.47 / 0.02 ksf BECOMES SOFT ~				
	1V'			18.6'	3.	5" x 7" ⁻	TAPER	ED		Sv = 0.37 / 0.01 ksf		
									_			
									_			
	1S	24"	24"	27.0'	PISTO	N SAM	PLER		_	$W_L = 37 \ W_P = 22 \ w = 35.7\%$		
	1V			27.8'	3.	5" x 7" ⁻	TAPER	ED		Sv = 0.42 / 0.02 ksf		
	1V'			28.6'	3.	5" x 7" ⁻	TAPER	ED		Sv = 0.35 / 0.01 ksf		
									1	ROD PROBE - NO SAMPLING		
									1	DEPTH RESISTANCE PROBABLE SOIL		
									1	27'-68' HYD CLAY		
				ļ					4	68'-71' HYD SILTY SAND		
									1	BOTTOM OF EXPLORATION @ 71'		
									-			
SAMPLE				SOIL C	LASSI	FIED B	Y:		REMAR	KS:		
D = SPL				r	·						\mathbf{v}	
C = 2" S						LLER -				STRATIFICATION LINES REPRESENT THE		
S = 3" S				X						APPROXIMATE BOUNDARY BETWEEN SOIL TYPES		
U = 3.5"	SHELL	SY IUE	56		LAB	ORATO	JRY IE	51		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-105		

SSA

D

BORING LOG

BORING NO .:	B-106
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 8'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO.:
 GREAT WORKS TEST BORING
 DRILLER:
 JEFF LEE

 TYPE
 SIZE I.D.
 HAMMER WT. HAMMER FALL

140#

30"

4 1/2" O.D.

1 3/8"

CASING: SAMPLER:

CASING BLOWS SAMPLE					SAM	PLER BL	LOWS F	'ER 6"	DEDTU		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
									0.7'	GRASS OVER BROWN SANDY LOAM	
	1D	24"	19"	2.0'	2	3	3	4		TAN FINE TO MEDIUM SAND SOME SILT	
									3'	~ LOOSE ~ F	FTG Subgrade
										OLIVE-BROWN SILTY CLAY	
										C	$q_{P} = 5.0 \text{ to } 2.5 \text{ ksf}$
	2D	24"	24"	7.0'	2	4	4	5			
									8'		
	3D	24"	24"	9.0'	2	2	2	1			$q_{\rm P} = 0.5 \text{ to } 0.0 \text{ ksf}$
										BOTTOM OF EXPLORATION @ 9'	
	-				-						
	-				-						
	-				-						
SAMPLI	=0.			SOIL C			v.		REMAR		
D = SPL				SULC	,LA291	FIED B	1.			no.	
D = 3PL C = 2"S					ופח		VISUAI	IY		STRATIFICATION LINES REPRESENT THE	()
S = 3" S				Х			1 VISI			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	\bigcirc
U = 3.5"							DRY TE			AND THE TRANSITION MAY BE GRADUAL. BORING NO.:	B-106
				L					1	BORING NO	D-100

BORING LOG

BORING NO .:	B-107
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/13/2015
DATE FINISH:	7/13/2015
ELEVATION:	65'
SWCOLE REP:	TJB
	ΜΑΤΙΩΝ

WATER LEVEL INFORMATION

|--|

7/14/2015: WATER @ 5.7', CAVED @ 5.7'

PROJECT / CLIENT:	PROPOSED	HALL ELEME	NTARY SCHOO	DL / OAK POINT AS	SSOCIATES	
LOCATION:	23 ORONO F	ROAD, PORTL				
DRILLING CO. :	GREAT WOR	RKS TEST BOR	RING	DRILLER:	JEFF LEE	
				_		
	TYPE	SIZE I.D.	HAMMER WT	HAMMER FALL		
CASING:	SSA	4 1/2" O.D.				
SAMPLER:	D	1 3/8"	140#	30"		-

CORE BARREL:

CASING
BLOWS
PER
DEPTH

BLOWS								LIKO	DEPTH	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24			
									GRASS AT EDGE OF PAVEMENT OVER	_	
	1D	24"	14"	2.0'	2	2	4	11	1.5'	TAN SILTY SAND & SANDY SILT (FILL)	
										RUST OXIDE TAN SILTY SAND	
										~ MEDIUM DENISE ~	
	2D	24"	20"	7.0'	4	8	5	3	6'	GRAY SILTY FINE SAND	
	20	24	20	7.0	4	0	5	3	8'	~ LOOSE ~	
									0	GRAY SILTY CLAY	
										~ MEDIUM TO SOFT ~	
									1		
	3D	24"	24"	12.0'		WOH	1/24"	1			
										BOTTOM OF EXPLORATION @ 12'	
SAMPL				SOIL C	LASSI	SSIFIED BY:				RKS:	
	IT SPOON										١
C = 2" S				~						STRATIFICATION LINES REPRESENT THE)
S = 3" S II - 3 5"				Х			I VISI DRY TE			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	
0 = 0.0	= 3.5" SHELBY TUBE									AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-107	

TYPE

BORING LOG

JEFF LEE

DRILLER:

30"

BORING NO .:	B-108
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	65'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 5'	

CASING: SAMPLER:

 SSA
 4 1/2" O.D.

 D
 1 3/8"
 140#

23 ORONO ROAD, PORTLAND, MAINE

GREAT WORKS TEST BORING

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

CORE BARREL:

LOCATION:

DRILLING CO. :

CASING BLOWS		SAN	/IPLE		SAM	PLER BL	LOWS F	PER 6"		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
									0.9'	SAND OVER BROWN-OXIDE SANDY LOAM
	1D	24"	17"	2.0'	2	2	2	3	2'	GRAY-BROWN MOTTLED CLAYEY SILT TRACE SAND
										BROWN FINE TO MEDIUM SAND
										WITH FREQUENT BROWN CLAY SEAMS
										~ MEDIUM DENSE ~
	2D	24"	24"	7.0'	4	7	13	10		
									8'	
										GRAY SILTY CLAY
										~ SOFT ~
	3D	24"	9"	12.0'	1/	12"	1/*	12"		
										BOTTOM OF EXPLORATION @ 12'
	-				-					
					-					
SAMPLI				SOIL C	LASSI	FIED B	Y:		REMAR	KS:
D = SPL				·						
C = 2" S										STRATIFICATION LINES REPRESENT THE
S = 3" S				X						APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"	SHELI	DITUE			LAE	ORATO	ITAL	31		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-108

D

BORING LOG

BORING NO .:	B-109
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/13/2015
DATE FINISH:	7/13/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 8'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE

 SIZE I.D.
 HAMMER WT. HAMMER FALL

 CASING:
 HW
 4"

140#

30"

1 3/8"

SAMPLER:

CASING BLOWS		SAN	IPLE		SAM	PLER BL	LOWS F	'ER 6"		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
				0.000					0.6'	GRASS OVER DARK BROWN SILTY LOAM
	1D	24"	14"	2.0'	3	3	3	3		OLIVE-BROWN SILTY CLAY
									3'	~ STIFF ~ LAYERED TAN FINE SAND AND TAN SANDY SILT
										~ MEDIUM DENSE ~
									6'	
	2D	24"	19"	7.0'	7	7	11	12		RUST-OXIDE FINE TO MEDIUM SAND TRACE SILT
									8'	~ MEDIUM DENSE ~
										GRAY SILTY CLAY
										~ MEDIUM
	3D	24"	24"	12.0'	1	2	1	1		w = 30.8%
	1V			15.8'	3.	5" x 7" ⁻	TAPERI	ED		Sv = 0.37 / 0.00 ksf BECOMES SOFT ~
	1V'			16.6'	3.	5" x 7" ⁻	TAPER	ED		Sv = 0.32 / 0.00 ksf
	2V			25.8'	3.	5" x 7" ⁻	TAPER	ED		Sv = 0.35 / 0.00 ksf
	2V'			26.6'		5" x 7" ⁻				Sv = 0.32 / 0.00 ksf
										ROD PROBE - NO SAMPLING
										DEPTH RESISTANCE PROBABLE SOIL
										26.6'-91 HYD CLAY
										91'-94' HYD SILTY SAND
										BOTTOM OF EXPLORATION @ 94'
										l
SAMPL				SOIL C	LASSI	FIED B	Y:		REMAR	KS:
D = SPL C = 2" S					ואט	LLER -	VISLIAI	IY		STRATIFICATION LINES REPRESENT THE
S = 3" S				Х		L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"	SHELE	BY TUE	E		LAB	ORATO	ORY TE	ST		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-109

D

BORING LOG

BORING NO .:	B-110
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 6'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO.:
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE

 SIZE I.D.
 HAMMER WT. HAMMER FALL

 CASING:
 SSA
 4 1/2" O.D.

140#

30"

1 3/8"

SAMPLER:

CASING BLOWS		SAN	1PLE		SAMF	PLER BL	LOWS F	PER 6"	DEDTU		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
	15	0.4"	0.4"	0.01	0	Ľ		0	ä	GRASS OVER SILT LOAM OVER BROWN SILTY CLAY	
	1D	24"	24"	2.0'	2	5	4	3	2'	OVER TAN SAND WITH RELIC LOAM (FILL)	
										BROWN-OXIDE MOTTLED FINE TO MEDIUM SAND SOME SILT \sim MEDIUM DENSE \sim	
	2D	24"	24"	7.0'	9	12	14	13			
									8.5'		
										GRAY SILTY CLAY	
	20	24"	0.4"	10.01		4	2	4		\sim MEDIUM \sim q _P = 0.5 ksf	
	3D	24"	24"	12.0'	WOM	1	2	1		BOTTOM OF EXPLORATION @ 12'	
SAMPLI D = SPL		DON		SOIL C	LASSI	FIED B	Y:		REMAR	rks:	
C = 2" SHELBY TUBE DRILLER - VISUALLY S = 3" SHELBY TUBE X U = 3.5" SHELBY TUBE LABORATORY TEST			STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-110)							

SSA

D

BORING LOG

BORING NO .:	B-111
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	66'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 6'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE
 SIZE I.D.
 HAMMER WT. HAMMER FALL

140#

30"

4 1/2" O.D.

1 3/8"

CASING: SAMPLER:

CASING BLOWS		SAN	IPLE		SAMF	PLER BI		PER 6"	DEDTU		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
				0.00.						GRASS OVER BROWN SILT LOAM	
	1D	24"	19"	2.0'	2	4	4	6	2'	BROWN-MOTTLED TAN SANDY SILT WITH ROOTLETS AND RELIC LOAM	
										TAN-OXIDE MOTTLED FINE TO MEDIUM SAND SOME SILT FTG Subgrade	
										~ MEDIUM DENSE ~	
									6'	BECOMES SILTY FINE SAND	
	2D	24"	22"	7.0'	8	10	9	9		OLIVE-BROWN SILTY CLAY $q_P = 2.5$ to 1.5 ksf	
										~ STIFF ~	
									9'		
										GRAY SILTY CLAY	
										~ MEDIUM ~	
	3D	24"	24"	12.0'	WOR	1	2	1		w = 34.9% q _P = 0.5 ksf BOTTOM OF EXPLORATION @ 12'	
SAMPLI	ES:			SOILC	LASSI	FIED B	Y:		REMAR	· KS:	
D = SPL		DON		•						\sim	
C = 2" S					DRI	LLER -	VISUA	LLY		STRATIFICATION LINES REPRESENT THE	
S = 3" S				Х			I VISI			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	
U = 3.5"	SHEL	BY TUB	BE				ORY TE			AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-111	

D

BORING LOG

BORING NO .:	B-112
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/14/2015
DATE FINISH:	7/14/2015
ELEVATION:	64'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 9'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE

 SIZE I.D.
 HAMMER WT. HAMMER FALL

 CASING:
 SSA
 4 1/2" O.D.

140#

30"

1 3/8"

SAMPLER:

CASING BLOWS		SAN	IPLE		SAM	PLER BI	LOWS P	PER 6"			
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
				0 - 0 -					0.8'	GRASS OVER DARK BROWN SANDY LOAM	
	1D	24"	17"	2.0'	2	2	3	4		TAN-ORANGE SILTY SAND	
									3'		
										OLIVE-BROWN SILTY CLAY	
										~ VERY STIFF ~	
	0 D	0.4"	0.4	7.01				-			$q_{P} = 3.0$ to 1.5 ksf
	2D	24"	24"	7.0'	4	4	6	7			
									9'		
										GRAY SILTY CLAY	
										~ MEDIUM TO SOFT ~	$q_{P} = 0.5 \text{ to } 0.0 \text{ ksf}$
	3D	24"	24"	12.0'	1	2	1	2			
										BOTTOM OF EXPLORATION @ 12'	
SAMPLI	ES:			SOIL C	LASSI	FIED B	Y:		REMAR		
D = SPL		DON			2.2.1						\frown
C = 2" S	HELBY	′ TUBE			DRI	LLER -	VISUAI	LLY		STRATIFICATION LINES REPRESENT THE	()
S = 3" S				Х			I VISI			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	\bigcirc
U = 3.5" SHELBY TUBE LABOR		ORATO	ORY TE	ST		AND THE TRANSITION MAY BE GRADUAL. BORING NO.:	B-112				

SSA

D

BORING LOG

BORING NO .:	B-113
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/13/2015
DATE FINISH:	7/13/2015
ELEVATION:	65'
SWCOLE REP:	TJB
WATER LEVEL INFOR	MATION
WATER @ 5'	

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO.:
 GREAT WORKS TEST BORING
 DRILLER: JEFF LEE

 TYPE
 SIZE I.D. HAMMER WT. HAMMER FALL

140#

30"

4 1/2" O.D.

1 3/8"

CASING:
SAMPLER:

CASING BLOWS					PLER BL	LOWS F	PER 6"	DEDT	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
	1D	24"	15"	2.0'	8	9	15	15	2'	GRASS AT EDGE OF PAVEMENT OVER BROWN GRAVELLY SAND SOME SILT (FILL)
		24	10	2.0	0	5	10	10	2	
										BROWN-OXIDE MOTTLED FINE TO MEDIUM SAND TRACE SILT
										~ MEDIUM DENSE ~
	2D	24"	19"	7.0'	5	9	9	9	8'	
									-	GRAY SILTY CLAY
										~ MEDIUM TO SOFT ~
	3D	24"	24"	12.0'		WOF	1/24"			
										BOTTOM OF EXPLORATION @ 12'
SAMPLES: SOIL CLASSIFIED BY:							Y:		REMAR	KS:
D = SPLIT SPOON										
	2" SHELBY TUBE DRILLER - VISUALLY 3" SHELBY TUBE X SOIL TECH VISUALLY									STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5" SHELBY TUBE LABORATORY TEST										AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-113

BORING LOG

JEFF LEE

DRILLER:

30"

BORING NO .:	B-114					
SHEET:	1 OF 1					
PROJECT NO .:	15-0071.1					
DATE START:	7/14/2015					
DATE FINISH:	7/14/2015					
ELEVATION:	67'					
SWCOLE REP:	TJB					
WATER LEVEL INFORMATION						
WATER @ 6'						

DRILLING CO. : GREAT WORKS TEST BORING SIZE I.D. HAMMER WT. HAMMER FALL TYPE CASING: SSA 4 1/2" O.D. D 1 3/8" 140#

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

23 ORONO ROAD, PORTLAND, MAINE

SAMPLER: CORE BARREL:

LOCATION:

BLOWS PER FOOT NO. PEN. REC. DEPTH @ BOT 0-6 6-12 12-18 18-24 DEPTH	
Image: Constraint of the state of	
TAN-OXIDE MOTTI ED FIINE SAND SOME SILT	
~ MEDIUM DENSE	
BECOMES TAN WITH OLIVE BROWN SILTY CLAY SEA	MS
2D 24" 24" 7.0' 12 15 16 22BECOMES DENSE ~	
9' GRAY SILTY CLAY	
~ MEDIUM ~	
	= 0.5 ksf
BOTTOM OF EXPLORATION @ 12'	- 0.0 101
SAMPLES: SOIL CLASSIFIED BY: REMARKS:	
D = SPLIT SPOON	_
C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE	()
S = 3" SHELBY TUBE X SOIL TECH VISUALLY STRATIFICATION LINES REPRESENT THE	\bigcirc
U = 3.5" SHELBY TUBE LABORATORY TEST AND THE TRANSITION MAY BE GRADUAL. BORING NO.:	B-114

HW

D

BORING LOG

BORING NO .:	B-115					
SHEET:	1 OF 2					
PROJECT NO .:	15-0071.1					
DATE START:	7/13/2015					
DATE FINISH:	7/13/2015					
ELEVATION:	66'					
SWCOLE REP:	TJB					
WATER LEVEL INFORMATION						

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING

 DRILLER:
 JEFF LEE

 TYPE
 SIZE I.D.

 HAMMER WT. HAMMER FALL

140#

30"

4"

1 3/8"

CASING: SAMPLER:

CASING BLOWS	SAMPLE SAMPLER BLO					PLER BI	_OWS P	VS PER 6"	DEPTH	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24			
									0.7'	GRASS AT EDGE OF PAVEMENT OVER DARK BROWN SANDY LOAM (TOPSOIL)	
	1D	24"	20"	2.0'	3	2	3	3	2'	TAN FINE TO MEDIUM SAND TRACE SILT	
									6.5'	TAN SANDY SILT ~ STIFF ~	
	2D	4"	8"	7.0'	4	8	13	15	0.0	TAN-OXIDE MOTTLED FINE TO MEDIUM SAND SOME SILT	
									9'	~ LOOSE ~	
									<u> </u>	OLIVE-BROWN-GRAY SILTY CLAY	
										~ MEDIUM ~ $q_P = 2.5$ ksf	
	3D	24"	24"	12.0'	3	5	5	6		w = 29.7%	
									13'		
										GRAY SILTY CLAY	
	1V			15.8'	-	-	TAPER			Sv = 0.74 / 0.05 ksf ~ MEDIUM	
	1V'			16.6'	3.8	5" x /"	TAPER	ED	-	Sv = 0.63 / 0.05 ksf	
									1		
	1S	24"	22"	22.0'	PISTO	N SAM	PLER			$W_L = 56 \ W_P = 26 \ w = 49.7\%$	
	2V			22.8'			TAPER			Sv = 0.56 / 0.05 ksf	
	2V'			23.6'	3.5	5" x 7" ⁻	TAPER	ED	-	Sv = 0.42 / 0.05 ksf	
										BECOMES SOFT ~	
]		
]		
	2S	24"	24"		PISTO					$W_L = 38 W_P = 22 w = 42.8\%$	
	3V			32.8'					-	Sv = 0.49 / 0.02 ksf	
	3V'			33.6'	3.5	5" x 7" ⁻	TAPER	ED	-	Sv = 0.42 / 0.02 ksf	
					<u> </u>				1		
					-				1		
									1		
									1		
										CONTINUED	
SAMPLES: SOIL CLASSIFIED BY:							Y:		REMAR	RKS:	
D = SPLIT SPOON											
C = 2" SHELBY TUBE DRILLER - VISUALLY										STRATIFICATION LINES REPRESENT THE	
S = 3" SHELBY TUBE X SOIL TECH VISUALLY											
U = 3.5" SHELBY TUBE LABORATORY TEST						URAT	JRY IE	51		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-115	

BORING NO .:	B-115							
SHEET:	2 OF 2							
PROJECT NO .:	15-0071.1							
DATE START:	7/13/2015							
DATE FINISH:	7/13/2015							
ELEVATION:	66'							
SWCOLE REP:	TJB							
WATER LEVEL INFORMATION								
WATER @ 11	1							

PROJECT / CLIENT:	PROPOSED H	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES										
LOCATION:	23 ORONO R	23 ORONO ROAD, PORTLAND, MAINE										
DRILLING CO. :	GREAT WOR	KS TEST BOI	RING	DRILLER:	JEFF LEE							
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL								
CASING:	HW	4"										
SAMPLER:	D	1 3/8"	140#	30"								

CASING BLOWS PER	NO.	SAM PEN.	IPLE REC.	DEPTH	SAMF 0-6	PLER BL	-OWS P	ER 6" 18-24	DEPTH	STRATA & TEST DATA
FOOT	4V	T EIN.	REO.	@ BOT 40.8'		5" x 7" ⁻				Sv = 0.39 / 0.00 ksf
	4 V 4 V'			40.8		5 x 7 5" x 7" ⁻				SV = 0.52 / 0.00 ks
	4 v			41.0	5.					GRAY SILTY CLAY
					-					~ SOFT ~
	5V			50.8'	3	5" x 7" ⁻		ED		Sv = 0.52 / 0.00 ksf
	5V'			51.6		5" x 7" ⁻				Sv = 0.45 / 0.00 ksf
				0.10	0.					
										ROD PROBE - NO SAMPLING
										DEPTH RESISTANCE PROBABLE SOIL
										51.6'-95' HYD CLAY
										95'-100' HYD LAYERED CLAY AND SAND
	-				-					100'-104' HYD SILTY SAND
			-							BOTTOM OF EXPLORATION @ 104'
SAMPLI	ES:			SOIL C	LASSI	FIED B	Y:		REMAR	KS:
D = SPL										\frown
C = 2" S						LLER -				STRATIFICATION LINES REPRESENT THE
S = 3" S				Х		L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"	SHELL	DITUB			LAB	UKAI	JKT IE	31		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-115

PROJECT / CLIENT:	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES											
LOCATION:	23 ORONO RO	23 ORONO ROAD, PORTLAND, MAINE										
DRILLING CO. :	GREAT WORK	KS TEST BOI	RING	DRILLER:	JEFF LEE							
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL								
CASING:	HW	4"	HYD PUSH									
SAMPLER:	D	1 3/8"	140#	30"								

CORE BARREL:

PERK REC Defin 0.6 6-12 12-16 1124 10 24 18 2.0 5 8 7 8 10 24 18 2.0 5 8 7 8 11 2.0 5 8 7 8 7 8 11 2.0 5 8 7 8 7 8 12 2.0 2.0 7.0 3 3 2 -<	CASING BLOWS		SAM	1PLE		SAMF	PLER BL	OWS P	'ER 6"	DEPTH	STRATA & TEST DATA
1D 24' 18' 20' 5 8 7 8 1.5' WITH ORGANDIS (TO PSOLE / FILL) GRAY-BROWN TO RUST-BROWN SLITY CLAY WITH FREQUENT SAND SEAMS		NO.	PEN.	REC.		0-6	6-12	12-18	18-24	DEFIN	STRATA & TEST DATA
GRAY-BROWN TO RUST-BROWN SILTY SAND FTG Subgrade 4.0' GRAY-BROWN TO RUST-BROWN SILTY SAND FTG Subgrade 2.0 2.4' 20' 7.0' 3 3 2 3.0 24' 20' 7.0' 3 3 2 -											VEGETATION / DARK BROWN SILTY SAND, SOME GRAVEL
Image: Solution of the second secon		1D	24"	18"	2.0'	5	8	7	8	1.5'	WITH ORGANICS (TOPSOIL / FILL)
CRAY-BROWN SILTY CLAY WITH FREQUENT SAND SEAMS 2D 24" 20" 7.0" 3 3 2 3D 24" 20" 7.0" 3 3 2 3D 24" 20" 10" 3 3 2 1S 24" 20" 12.0 PISTON SAMPLER -											GRAY-BROWN TO RUST-BROWN SILTY SAND FTG Subgrade
2D 24' 20' 7.0' 3 3 2 3D 24' 20' 7.0' 3 3 2 3D 24' 20' 9.0' 3 3 2 1S 24' 20' 12.0' PISTON SAMPLER - - - 1V 12.8' 3.6'8' X.7' VANE - - Soft X.7' VANE - 1V 13.6' 3.6'8' X.7' VANE - - Soft X.7' VANE 22 24' 22.0' PISTON SAMPLER - - Soft X.7' VANE 22 24' 22.0' PISTON SAMPLER - - - - 23 24' 22.0' PISTON SAMPLER - - - - 22 24' 24' 22.0' PISTON SAMPLER - - - - - 22V 22.8' 3.6'8' X.7' VANE - - - - - - - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0'</td><td></td></td<>										4.0'	
2D 24' 20' 7.0' 3 3 3 2 3D 24' 20' 9.0' 3 3 3 2 1S 24' 20' 12.0' PISTON SAMPLER											
3D 24" 20" 9.0" 3 3 2 1 1 20 9.0" 3 3 2 1 15 24' 20" 9.0" 3 3 2 1 15 24' 20" 12.0" PISTON SAMPLER WL 35/8" X 7" VANE 1 112.8" 3.5%" X 7" VANE 3 3 3.6" X" VANE 1 10 1 1 1 1 1 1 2 2 24" 24" 22.0" PISTON SAMPLER GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS 2 2 24" 24" 22.0" PISTON SAMPLER WL 36%" X 7" VANE 2 2 24" 24" 22.0" PISTON SAMPLER WL 36.00 KSF 2 2 2.4" 2.4" 2.4" 2.4" 2.4" 2.4" 2 2.4" 2.4" 2.5" 3.5% X 7" VANE S." 0.00 KSF 2 2.4" 2.4" 2.5" 5.5" WD CLAY <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.0'</td> <td></td>										6.0'	
Image: Second system Image: Second system <th< td=""><td></td><td>2D</td><td>24"</td><td>20"</td><td>7.0'</td><td>3</td><td>3</td><td>3</td><td>2</td><td></td><td>\sim STIFF \sim q_p = 4 KSF</td></th<>		2D	24"	20"	7.0'	3	3	3	2		\sim STIFF \sim q _p = 4 KSF
Image: Second system Image: Second system <th< td=""><td></td><td>20</td><td>24"</td><td>20"</td><td>0.0'</td><td>2</td><td>2</td><td>2</td><td>2</td><td></td><td></td></th<>		20	24"	20"	0.0'	2	2	2	2		
1V 12.8 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2 0 0 2 0 0 2 0 0 2 0 0 2 24" 22.0 2V 22.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2V 23.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2.0 0 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF <td></td> <td>30</td> <td>24</td> <td>20</td> <td>9.0</td> <td>3</td> <td>3</td> <td>3</td> <td>2</td> <td></td> <td>\sim INEDIDINI \sim $q_p = 0.5 \text{ KSF}$</td>		30	24	20	9.0	3	3	3	2		\sim INEDIDINI \sim $q_p = 0.5 \text{ KSF}$
1V 12.8 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2 0 0 2 0 0 2 0 0 2 0 0 2 24" 22.0 2V 22.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2V 23.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2.0 0 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF <td></td>											
1V 12.8 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 1V 13.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2 0 0 2 0 0 2 0 0 2 0 0 2 24" 22.0 2V 22.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2V 23.6 $3.5/8^{\circ} X.7^{\circ} VANE$ 2.0 0 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.28 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF Sv = 0.30 / 0.00 KSF <td></td> <td>15</td> <td>24"</td> <td>20"</td> <td>12 0'</td> <td>PI</td> <td>STON</td> <td>SAMPLI</td> <td>FR</td> <td></td> <td>W₁ = 35 W₀ = 19 w = 50.3% 0 = 0.78 KSF</td>		15	24"	20"	12 0'	PI	STON	SAMPLI	FR		W ₁ = 35 W ₀ = 19 w = 50.3% 0 = 0.78 KSF
1V 13.6' 3 5/8'' X 7' VANE 2 2 2 3 5/8'' X 7' VANE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 5/8'' X 7' VANE 2 2 2 3 5/8'' X 7' VANE 2 2 23.6'' - 55'' WOM 2 2 2 3 3.6'' 5.9'' HYD SAND 60.5' - 61.5'' 44 BLOWS SAND 61.5' - 62.5'' 24 BLOWS SAND 62.5' - 63.5'' 32 BLOWS SAND 62.5' - 63.5'' 32 BLOWS SAND 62.5' - 63.5'' 32 BLOWS SAND 62.5' HYD <td></td> <td></td> <td>27</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			27	20							
GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS U GRAY SILTY CLAY WITH FREQUENT SAND U GRAY SILTY CLAY U GRAY SILTY CLAY WITH FREQUENT SAND GRAY SILTY CLAY GRAY SILTY CLAY SU GRAY SILTY CLAY											•
2S 24* 22.0' PISTON SAMPLER 2V 22.8' 3 5/8' X 7' VANE 2V 23.6' 3 5/8' X 7' VANE 20 20 21.0' L 21.0' L 20 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 22.0' L 22.0' L 22.0' L 22.0' L 23.6' - 55' WOM CLAY 23.6' - 55' WOM 22.0' L 23.0' L 23.0' L 23.0' L						-			_		
2S 24* 22.0' PISTON SAMPLER 2V 22.8' 3 5/8' X 7' VANE 2V 23.6' 3 5/8' X 7' VANE 20 20 21.0' L 21.0' L 20 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 21.0' L 22.0' L 22.0' L 22.0' L 22.0' L 23.6' - 55' WOM CLAY 23.6' - 55' WOM 22.0' L 23.0' L 23.0' L 23.0' L										1	
2V 22.8 3 5/8" X 7" VANE 2V' 23.6' - NO SAMPLING 200 23.6' - 55' WOM 210 23.6' - 55' WOM 210 200 23.6' - 55' 22.6' - 55' WOM CLAY 59' - 60.5' HYD CLAY 59' - 60.5' HYD SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND 62.5' - 83.5' SOIL CLASSIFIED BY: SOIL CLAS											GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND PARTINGS
2V 22.8 3 5/8" X 7" VANE 2V' 23.6' - NO SAMPLING 200 23.6' - 55' WOM 210 23.6' - 55' WOM 210 200 23.6' - 55' 22.6' - 55' WOM CLAY 59' - 60.5' HYD CLAY 59' - 60.5' HYD SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND 62.5' - 83.5' SOIL CLASSIFIED BY: SOIL CLAS											
2V 22.8 3 5/8" X 7" VANE 2V' 23.6' - NO SAMPLING 200 23.6' - 55' WOM 210 23.6' - 55' WOM 210 200 23.6' - 55' 22.6' - 55' WOM CLAY 59' - 60.5' HYD CLAY 59' - 60.5' HYD SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND 62.5' - 83.5' SOIL CLASSIFIED BY: SOIL CLAS											
2V 22.8 3 5/8" X 7" VANE 2V' 23.6' - NO SAMPLING 200 23.6' - 55' WOM 210 23.6' - 55' WOM 210 200 23.6' - 55' 22.6' - 55' WOM CLAY 59' - 60.5' HYD CLAY 59' - 60.5' HYD SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND 62.5' - 83.5' SOIL CLASSIFIED BY: SOIL CLAS											
2V 22.8 3 5/8" X 7" VANE 2V' 23.6' - NO SAMPLING 200 23.6' - 55' WOM 210 23.6' - 55' WOM 210 200 23.6' - 55' 22.6' - 55' WOM CLAY 59' - 60.5' HYD CLAY 59' - 60.5' HYD SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND 62.5' - 83.5' SOIL CLASSIFIED BY: SOIL CLAS											
2V' 23.6' 3 5/8' X 7' VANE 2V' 23.6' NO SAMPLING 2V' 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 23.6' 55' 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200		2S	24"	24"	22.0'	PI	STON S	SAMPLI	ER		$W_L = 36 W_P = 21 w = 44.9\%$
Image: Solution of the second state		2V			22.8'	3	5/8" X	7" VAN	E		S _V = 0.28 / 0.00 KSF
DEPTH RESISTANCE PROBABLE SOIL 23.6' - 55' WOM CLAY 23.6' - 55' WOM CLAY 55' - 59' HYD SAND 60.5' - 61.5' 44 BLOWS SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON CLASSIFIED BY: REMARKS: C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES		2V'			23.6'	3	5/8" X	7" VAN	E		S _V = 0.30 / 0.00 KSF
DEPTH RESISTANCE PROBABLE SOIL 23.6' - 55' WOM CLAY 23.6' - 55' WOM CLAY 55' - 59' HYD SAND 60.5' - 61.5' 44 BLOWS SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON CLASSIFIED BY: REMARKS: C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
DEPTH RESISTANCE PROBABLE SOIL 23.6' - 55' WOM CLAY 23.6' - 55' WOM CLAY 55' - 59' HYD SAND 60.5' - 61.5' 44 BLOWS SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON CLASSIFIED BY: REMARKS: C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
23.6' - 55' WOM CLAY 23.6' - 55' WOM CLAY 55' - 59' HYD CLAY 59' - 60.5' HYD SAND 60.5' - 61.5' 44 BLOWS SAND 61.5' - 62.5' 24 BLOWS SAND 62.5' - 63.5' 32 BLOWS SAND SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE S = 3'' SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE S = 3'' SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE											
SAMPLES: Soll CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE Soll CLASSIFIED BY: DRILLER - VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON C = 2" SHELBY TUBE SOIL CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE DRILLER - VISUALLY S = 3" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
Image: Solution of the second state	┝───┤										
G1.5' - 62.5' 24 BLOWS SAND G1.5' - 63.5' 32 BLOWS SAND G2.5' - 63.5' 32 BLOWS SAND G1.5' - 62.5' 24 BLOWS SAND G2.5' - 63.5' 32 BLOWS G3.5' SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE SAPPROXIMATE BOUNDARY BETWEEN SOIL TYPES SOIL TECH VISUALLY											
General Control Contrel Control Control Control Control Control											
SAMPLES: SOIL CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE SOIL CLASSIFIED BY: DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
SAMPLES: SOIL CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE S = SPLIT SPOON C = 2" SHELBY TUBE DRILLER - VISUALLY SOIL CLASSIFIED BY: APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											02.3 - 03.3 32 DLOWS SAIND
SAMPLES: SOIL CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE S = SPLIT SPOON C = 2" SHELBY TUBE DRILLER - VISUALLY SOIL CLASSIFIED BY: APPROXIMATE BOUNDARY BETWEEN SOIL TYPES										1	
SAMPLES: SOIL CLASSIFIED BY: D = SPLIT SPOON C = 2" SHELBY TUBE S = SPLIT SPOON C = 2" SHELBY TUBE DRILLER - VISUALLY SOIL CLASSIFIED BY: APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
D = SPLIT SPOON C = 2" SHELBY TUBE S = 3" SHELBY TUBE X SOIL TECH VISUALLY SOIL TECH VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
D = SPLIT SPOON C = 2" SHELBY TUBE S = 3" SHELBY TUBE X SOIL TECH VISUALLY SOIL TECH VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
D = SPLIT SPOON C = 2" SHELBY TUBE S = 3" SHELBY TUBE X SOIL TECH VISUALLY SOIL TECH VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES											
C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE S = 3" SHELBY TUBE X SOIL TECH VISUALLY					REMAR	RKS:					
	C = 2" S	HELBY	' TUBE			DRI	LLER -	VISUAL	LY		STRATIFICATION LINES REPRESENT THE ()
U = 3.5" SHELBY TUBE LABORATORY TEST AND THE TRANSITION MAY BE GRADUAL. BORING NO.: R-201					Х						
	U = 3.5"	SHELE	BY TUB	E		LAB	ORATO	DRY TE	ST		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-201

SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	6/30/2016
DATE FINISH:	6/30/2016
ELEVATION:	66' +/-

B-201

SWCOLE REP: EMW

BORING NO .:

WATER LEVEL INFORMATION SOILS MOIST AT GROUND SURFACE

WET BEL	.OW 5', SA	TURATED	BELOW 8' +/-

BORING NO.:	B-202							
SHEET:	1 OF 1							
PROJECT NO.:	15-0071.1							
DATE START:	6/30/2016							
DATE FINISH:	6/30/2016							
ELEVATION:	66' +/-							
SWCOLE REP:	EMW							
WATER LEVEL INFORMATION								
SOILS DAMP FROM GROUND SURFACE								

MOIST BELOW 5', SATURATED BELOW 10' +/-

LOCATION:	23 ORONO ROAD, PORTLAND, MAINE										
DRILLING CO. :	GREAT WOR	KS TEST BO	DRILLER:	JEFF LEE							
				-							
	TYPE	SIZE I.D.	HAMMER WT	. HAMMER FALL							
CASING:	HSA	2 1/4"									
SAMPLER:	D	1 3/8"	140#	30"							

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

CASING BLOWS		SAM	MPLE		SAM	PLER BI	LOWS F	PER 6"	DEDTU		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA	
									1.0'	VEGETATION / DARK BROWN SILTY SAND WITH ORGANICS (TOPSOIL / FILL)	
	1D	24"	18"	2.0'	2	1	3	3	2.0'	DARK BROWN AND BLACK SILTY SAND WITH TRACE ASH (FILL)	
										FTG Subgrade	
	2D	24"	18"	4.0'	7	13	12	14		BROWN TO ORANGE-BROWN SAND, TRACE TO SOME SILT	
									5'	~ MEDIUM DENSE ~	
										BROWN SILTY CLAY WITH FREQUENT SAND SEAMS	
	3D	24"	20"	7.0'	5	4	5	6		~ VERY STIFF ~ qp = 5-6 KSF	
									8'		
										GRAY SILTY CLAY	
									1	~ SOFT ~	
	4D	24"	24"	12.0'	WO	H-12"	1	1			
										BOTTOM OF EXPLORATION @ 12.0'	
									-		
									-		
0.4.4.5		I	1	0.011 0				1			
SAMPLI				SOILC	LASSI	FIED B	Υ:		REMAR	KS:	
D = SPL							1/101141				
C = 2" S S = 3" S				Х		LLER - L TECH				STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	
S = 3" S U = 3.5"						BORAT					
0 = 3.5	JIEL			L		-OINAI (.01	1	AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-202	

BORING NO .:	B-203								
SHEET:	1 OF 1								
PROJECT NO.:	15-0071.1								
DATE START:	7/1/2016								
DATE FINISH:	7/1/2016								
ELEVATION:	66' +/-								
SWCOLE REP:	PJO								
WATER LEVEL INFORMATION									
SOILS WET AT	5'								

SOILS SATURATED AT 10'

PROJECT / CLIENT:	PROPOSED I	ROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES										
LOCATION:	23 ORONO R	3 ORONO ROAD, PORTLAND, MAINE										
DRILLING CO. :	GREAT WOR	KS TEST BOR	RING	DRILLER:	JEFF LEE							
				_								
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL								
CASING:	SSA	4 1/2" O.D										
SAMPLER:	D	1 3/8"	140#	30"								

CASING BLOWS		SAN	/IPLE		SAMF	PLER BI	_OWS F	PER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEI III	
									0.5'	DARK BROWN SILT LOAM (TOPSOIL) ~LOOSE~
	1D	24"	19"	2.0'	2	5	5	10	1.9'	GRAY SANDY SILT ~MEDIUM DENSE~
										RUST BROWN TO BROWN SILTY MEDIUM TO COARSE SAND FTG Subgrade
	2D	24"	17"	4.0'	15	12	13	8	3.8'	~MEDIUM DENSE~
										GRAY-BROWN SILTY CLAY
					-	-	-			WITH SAND SEAMS AND LAYERS
	3D	24"	24"	7.0'	6	8	8	10		\sim STIFF \sim q _p = 3.5 ksf
									8.0'	
									0.0	GRAY SILTY CLAY WITH SAND SEAMS
	4D	24"	24"	12.0'		WOI	H / 24"	1		~SOFT~
										ROD PROBE BELOW 12' - NO SAMPLING
									-	
									-	
									-	
									-	
									-	
										DEPTH RESISTANCE PROBABLE SOIL
			-							12' - 66.5' HYD CLAY
										66.5' - 71.5' HYD LAYERED CLAY AND SAND
									1	71.5' - 72.2' 50 BLOWS / 8" SAND
									1	
										BOTTOM OF EXPLORATION @ 72.2'
SAMPLI	ES:	<u>I</u>	1	SOIL C	LASSI	FIED B	Y:	<u>I</u>	REMAR	KS: BORING MADE 3' EAST OF STAKED LOCATION
D = SPL		DON			_					\frown
C = 2" S S = 3" S				X		LLER - L TECH				STRATIFICATION LINES REPRESENT THE
U = 3.5"										
0.0				L		2.3.10		5.		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-203

TYPE

HW

D

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

HYD PUSH

140#

23 ORONO ROAD, PORTLAND, MAINE

4"

1 3/8"

GREAT WORKS TEST BORING

BORING LOG

DRILLER:

30"

JEFF LEE

BORING NO .:	B-204								
SHEET:	1 OF 2								
PROJECT NO .:	15-0071.1								
DATE START:	6/30/2016								
DATE FINISH:	6/30/2016								
ELEVATION:	66' +/-								
SWCOLE REP:	EMW								
WATER LEVEL INFOR	MATION								
SOILS DAMP FROM GROUND SURFACE,									

WET BELOW

SAMPLER: CORE BARREL:

CASING:

I OCATION.

DRILLING CO. :

CASING SAMPLE SAMPLER BLOWS PER 6" BLOWS **STRATA & TEST DATA** DEPTH PER DEPTH NO. PEN. REC. 0-6 6-12 12-18 18-24 FOOT @ BOT DARK BROWN SILTY SAND, TRACE GRAVEL, WITH ORGANICS 1D 24" 20" 2.0' 2 3 6 12 1.5' (TOPSOIL / FILL) RUST BROWN, ORANGE-BROWN AND LIGHT BROWN SAND FTG Subgrade TRACE TO SOME SILT (CEMENTED) 2D 24" 22" 4.0' 18 29 29 26 5.0' ~ MEDIUM DENSE TO VERY DENSE ~ $q_p = 5 \text{ KSF}$ 5.5' BROWN SILTY CLAY ~ VERY STIFF ~ 3D 24" 22" 7.0' 4 5 7 7 ~ STIFF ~ $q_p = 4 \text{ KSF}$ GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND LAYERS 24" WOH ~ SOFT ~ 4D 14" 12.0' 1-12" 1 1S 24" 24" 17.0' **PISTON SAMPLER** $W_L = 54 W_P = 25 w = 54.9\%$ 1V 17.8 3 5/8" X 7" VANE $S_{V} = 0.30 / 0.00 \text{ KSF}$ 1V 3 5/8" X 7" VANE 18.6' $S_{V} = 0.28 / 0.00 \text{ KSF}$ **PISTON SAMPLER** $W_1 = 37 W_P = 21 w = 44.7\%$ 2S 24" 24" 27.0' 2V 3 5/8" X 7" VANE 27.8 S_V = 0.29 / 0.00 KSF 3 5/8" X 7" VANE 2V 28.6 S_V = 0.29 / 0.00 KSF 24" 20" 37.0' **PISTON SAMPLER** 3S $W_L = 37 W_P = 20 w = 41.6\%$ 3 5/8" X 7" VANE 3V 37.8 S_V = 0.41 / 0.00 KSF 3V' 38.6' 3 5/8" X 7" VANE S_V = 0.52 / 0.01 KSF - PROBABLE SAND SEAM SOIL CLASSIFIED BY: REMARKS: CONTINUED... SAMPLES. D = SPLIT SPOON C = 2" SHELBY TUBE **DRILLER - VISUALLY** STRATIFICATION LINES REPRESENT THE S = 3" SHELBY TUBE Х SOIL TECH. - VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES U = 3.5" SHELBY TUBE LABORATORY TEST AND THE TRANSITION MAY BE GRADUAL. BORING NO .: B-204

TYPE

HW

D

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

HYD PUSH

140#

23 ORONO ROAD, PORTLAND, MAINE

4"

1 3/8"

GREAT WORKS TEST BORING

BORING LOG

JEFF LEE

DRILLER:

30"

BORING NO .:	B-204								
SHEET:	2 OF 2								
PROJECT NO.:	15-0071.1								
DATE START:	6/30/2016								
DATE FINISH:	6/30/2016								
ELEVATION:	66' +/-								
SWCOLE REP:	EMW								
WATER LEVEL INFOR	MATION								
SOILS DAMP FROM GROU	SOILS DAMP FROM GROUND SURFACE,								

WET BELOW

SAMPLER: CORE BARREL:

CASING:

LOCATION:

DRILLING CO. :

CASING					OWS P	PER 6"				
BLOWS PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
										ROD PROBE BELOW 38.6' - NO SAMPLING
										PROBABLE SILTY CLAY
	-									
									66'	
										PROBABLE LAYERED CLAY AND SAND
										DEPTH RESISTANCE PROBABLE SOIL
										38.6' - 66' HYD CLAY
										66' - 76' HYD LAYERED CLAY AND SAND
										76' - 76.7' 50 BLOWS SAND
										PROBABLE SAND
										BOTTOM OF EXPLORATION @ 76.7'
SAMPLI	ES:			SOIL C	LASSI	FIED B	Y:		REMAR	· KS:
D = SPL		OON				-				\frown
C = 2" S							VISUAI			STRATIFICATION LINES REPRESENT THE
S = 3" S U = 3.5"				X			I VISI DRY TE			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
5 = 0.0	5. ICCI		-			5.0.10		.		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-204

BORING NO .:	B-205
SHEET:	1 OF 1
PROJECT NO .:	15-0071.1
DATE START:	7/1/2016
DATE FINISH:	7/1/2016
ELEVATION:	66' +/-
SWCOLE REP:	PJO
WATER LEVEL INFOR	MATION
SOILS SATURATED	AT 10'

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER:

 JEFF LEE
 JEFF LEE

 CASING:
 SSA
 4 1/2" O.D

 SSA
 4 1/2" O.D

 D
 1 3/8"
 140#
 30"

CASING BLOWS	SAMPLE SAMPLER BLOWS FER 0									
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
									0.2'	FOREST DUFF
	1D	24"	14"	2.0'	1	1	1 FO	R 12"	2.0'	BROWN SILTY SAND WITH ORGANICS AND ROOTLETS ~VERY LOOSE~
										BROWN SILTY SAND FTG Subgrade
									4.0'	~ LOOSE ~
										BROWN SILTY CLAY WITH SAND SEAMS
										~ VERY STIFF TO STIFF ~ $q_p = 4-4.5$ ksf
	2D	24"	24"	7.0'	4	6	7	9	7.0'	
					-					GRAY-BROWN SILTY CLAY $q_p = 1.5-2.5$ ksf
	3D	24"	15"	9.0'	8	8	7	6	8.8'	WITH SAND SEAMS ~ STIFF TO MEDIUM ~
										GRAY SILTY CLAY
	4D	24"	24"	12.0'		WO	ЭН	1		~SOFT~
										BOTTOM OF EXPLORATION AT 12.0'
	-				-					
	-				-					
	-				-					
									1	
SAMPL	=0.			5011 0	1 4001	FIED B	v.		REMAR	Kč.
D = SPL				SUIL U	LASSI	רובט ש	1.		REIVIAR	
D = 3PL C = 2"S					ופח	LLER -	VISUM	IY		STRATIFICATION LINES REPRESENT THE
S = 3"S				Х		L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"						ORATO				AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-205
										Bortino ito B-203

BORING NO .:	B-206
SHEET:	1 OF 1
PROJECT NO.:	15-0071.1
DATE START:	7/1/2016
DATE FINISH:	7/1/2016
ELEVATION:	66' +/-
SWCOLE REP:	PJO
WATER LEVEL INFOR	MATION
SOILS SATURATED	AT 10'

 PROJECT / CLIENT:
 PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

 LOCATION:
 23 ORONO ROAD, PORTLAND, MAINE

 DRILLING CO. :
 GREAT WORKS TEST BORING
 DRILLER:

 JEFF LEE
 JEFF LEE

 CASING:
 SSA
 4 1/2" O.D

D 1 3/8" 140# 30"

CASING BLOWS		SAM	1PLE		SAMF	PLER BL	_OWS F	'ER 6"	DEPTH	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		SIRATA d LESI DATA	
									0.2'	FOREST DUFF	
	1D	24"	18"	2.0'	1	1	1	10	1.5'	RUST BROWN SILTY SAND WITH ORGANICS ~VERY LOOSE~	
										RUST BROWN TO BROWN SILTY SAND FTG Subgrade	
									4.0'	~MEDIUM DENSE~	
										BROWN SILTY CLAY	
										WITH FREQUENT SAND SEAMS $q_p = 3.5-4 \text{ ksf}$	
	2D	24"	20"	7.0'	2	3	4	6		~STIFF TO VERY STIFF~	
							-			$q_p = 3-4.5 \text{ ksf}$	
	3D	24"	16"	9.0'	7	7	6	4	9.0'		
	4D	24"	2.4"	12.0	14/ 4		4	-		GRAY SILTY CLAY WITH SAND SEAMS	
	4D	24"	24"	12.0'	WC	Л	1	2			
										BOTTOM OF EXPLORATION @ 12'	
SAMPL				SOIL C	LASSI	FIED B	Y:		REMAR	KS: BORING MADE 5' WEST OF STAKED LOCATION	
D = SPL											
C = 2" S							VISUAI			STRATIFICATION LINES REPRESENT THE	
S = 3" S				Х			I VISU			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	
U = 3.5" SHELBY TUBE			LAB	UKAT	DRY TE	51		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-206			

PROJECT / CLIENT:	PROPOSED I	HALL ELEME	NTARY SCHOO	L / OAK POINT A	SSOCIATES				
LOCATION:	23 ORONO R	23 ORONO ROAD, PORTLAND, MAINE							
DRILLING CO. :	GREAT WOR	KS TEST BO	DRILLER:	JEFF LEE					
	TYPE	SIZE I.D.	HAMMER WT	HAMMER FALL					
CASING:	HW	4"	HYD PUSH						
SAMPLER:	D	1 3/8"	140#	30"					

BORING NO .:	B-207								
SHEET:	1 OF 1								
PROJECT NO.:	15-0071.1								
DATE START:	6/29/2016								
DATE FINISH:	6/29/2016								
ELEVATION:	66' +/-								
SWCOLE REP:	EMW								
WATER LEVEL INFOR	MATION								
SOILS MOIST BELOV	N 5' +/-								
SOILS SATURATED BE	SOILS SATURATED BELOW 9' +/-								

CORE BARREL:

CASING BLOWS		SAN	/IPLE		SAMF	PLER BL	OWS P	'ER 6"	DEPTH	STRATA & TEST DATA		
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24				
									0.1'	VEGETATION / TOPSOIL (FILL)		
	1D	24"	16"	2.0'	3	5	5	9		DARK BROWN SILTY SAND, TRACE GRAVEL, TRACE ORGANICS (FILL)		
									3'	~ MEDIUM DENSE ~ FTG Subgrade		
									_			
									6'	BROWN WITH RUST STAINING SAND, SOME SILT		
	2D	24"	18"	7.0'	8	8	8	12	7'	LAYERED GRAY-BROWN SILTY CLAY AND SILTY SAND		
	20	21	10	1.0	•	0	0					
	3D	24"	20"	9.0'	8	7	10	7		GRAY-BROWN SILTY CLAY WITH FREQUENT SAND SEAMS		
									10'			
	4D	24"	18"	12.0'	2	2	2	3	-	GRAY SILTY CLAY WITH FREQUENT SAND SEAMS		
]			
	1V			15.8'	3	5/8" X	7" VAN	E]	S _v = 0.71 / 0.07 KSF ~ MEDIUM ~		
	1V'			16.6'	3	5/8" X	7" VAN	E		S _V = 0.72 / 0.03 KSF		
										ROD PROBE BELOW 16.6' - NO SAMPLING		
									-			
										DEPTH RESISTANCE PROBABLE SOIL		
									-	16.6' - 87' HYD CLAY		
									1	87' - 91' HYD LAYERED CLAY AND SAND		
										91' - 92' 46 BLOWS SAND OR TILL		
										92' - 93' 32 BLOWS SAND OR TILL		
									-			
									1			
									1			
									1			
									1			
									1			
									1			
									1/	BOTTOM OF EXPLORATION @ 93'		
									1/			
									1/			
									V			
									1			
SAMO				SOIL 0	1 4 6 6 1		<i>.</i>		REMAR			
SAMPLE D = SPL				SOIL C	LASSI	א עבו-	1.					
D = SPL C = 2" S					ייסח		VISUAL	IV		STRATIFICATION LINES REPRESENT THE		
$C = 2^{n} S$ S = 3" S		-		Х			VISUAL I VISL			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES		
U = 3.5" SHELBY TUBE LABORATORY TES			5.		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-207							

TYPE

HW

D

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

HYD PUSH

140#

23 ORONO ROAD, PORTLAND, MAINE

4"

1 3/8"

GREAT WORKS TEST BORING

BORING LOG

DRILLER:

30"

JEFF LEE

BORING NO .:	B-208								
SHEET:	1 OF 1								
PROJECT NO.:	15-0071.1								
DATE START:	6/30/2016								
DATE FINISH:	6/30/2016								
ELEVATION:	65' +/-								
SWCOLE REP:	EMW								
WATER LEVEL INFOR	RMATION								
SOILS MOIST FROM GROU	IND SURFACE								
WET TO SATURATED BELOW 5' +/-									

SAMPLER: CORE BARREL:

CASING:

LOCATION:

DRILLING CO. :

CASING SAMPLE SAMPLER BLOWS PER 6" BLOWS **STRATA & TEST DATA** DEPTH PER DEPTH NO. PEN. REC. 0-6 6-12 12-18 18-24 FOOT @ BOT FOREST DUFF AND ORGANICS 0.5' 1D 24" 18" 2.0' 2 1 4 5 FTG Subgrade ORANGE-BROWN TO BROWN FINE TO MEDIUM SAND, SOME SILT 4' GRAY-BROWN SILTY CLAY WITH OCCASIONAL SAND SEAMS 2D 24" 22" 7.0' 3 3 6 5 8' 1V 10.8 3 5/8" X 7" VANE $S_V = 0.94 / 0.08 \text{ KSF}$ ~ MEDIUM ~ 1V 11.6' 3 5/8" X 7" VANE $S_V = 0.45 / 0.02 \text{ KSF}$ ~ SOFT ~ GRAY SILTY CLAY 2V 3 5/8" X 7" VANE S_V = 0.26 / 0.00 KSF 20.8 3 5/8" X 7" VANE 2V 21.6 S_V = 0.27 / 0.00 KSF ROD PROBE BELOW 21.6' - NO SAMPLING RESISTANCE PROBABLE SOIL DEPTH 21.6' - 50' WOM CLAY 50' - 68' HYD CLAY 68' - 71' HYD LAYERED CLAY AND SAND 50 BLOWS SAND 71' - 71.9' BOTTOM OF EXPLORATION @ 71.9 SOIL CLASSIFIED BY: SAMPLES: REMARKS: D = SPLIT SPOON C = 2" SHELBY TUBE DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE S = 3" SHELBY TUBE Х SOIL TECH. - VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES U = 3.5" SHELBY TUBE LABORATORY TEST AND THE TRANSITION MAY BE GRADUAL. BORING NO .: B-208

D

BORING LOG

BORING NO.:	B-209							
SHEET:	1 OF 1							
PROJECT NO.:	15-0071.1							
DATE START:	6/30/2016							
DATE FINISH:	6/30/2016							
ELEVATION:	65' +/-							
SWCOLE REP:	EMW							
WATER LEVEL INFORMATION								
SOILS MOIST BELOW 5' +/-								
SOILS SATURATED BELOW 8' +/-								

- - -

PROJECT / CLIENT:	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES								
LOCATION:	23 ORONO ROAD, PORTLAND, MAINE								
DRILLING CO. :	GREAT WOR	KS TEST BO	RING	DRILLER:	JEFF LEE				
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL					
CASING:	HSA	2 1/4"							

140#

30"

1 3/8"

CASING BLOWS				SAMPLE			SAMPLER BLOWS PER 6"			OTDATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
									0.4'	FOREST DUFF AND ORGANICS
	1D	24"	16"	2.0'	1	1	1	2		FTG Subgrade
										BROWN SAND, SOME SILT
									4'	~ LOOSE ~
										GRAY-BROWN SILTY CLAY WITH FREQUENT SAND SEAMS
	2D	24"	20"	7.0'	2	5	6	7		\sim VERY STIFF \sim q _p = 5 KSF
	3D	24"	22"	9.0'	5	5	5	4	9'	
										GRAY SILTY CLAY WITH FREQUENT SAND SEAMS AND LAYERS
	4D	24"	18"	12.0'	WOH	4	1-	12"		~ SOFT ~
										BOTTOM OF EXPLORATION @ 12.0'
									1	
SAMDI	-e.			SOIL 0						
SAMPLI D = SPL				SOIL C	LASSI	LIED R	τ.		REMAR	
D = SPL C = 2" S					יסס	LLER -	1/101141	цv		STRATIFICATION LINES REPRESENT THE
$C = 2^{n} S$ S = 3" S				Х		LLER - L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
S = 3 S U = 3.5"										
0 - 0.0			· -						l I	AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-209

TYPE

HW

D

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

HYD PUSH

140#

23 ORONO ROAD, PORTLAND, MAINE

4"

1 3/8"

GREAT WORKS TEST BORING

BORING LOG

JEFF LEE

DRILLER:

30"

BORING NO .:	B-210						
SHEET:	1 OF 1						
PROJECT NO .:	15-0071.1						
DATE START:	6/29/2016						
DATE FINISH:	6/29/2016						
ELEVATION:	65' +/-						
SWCOLE REP:	EMW						
WATER LEVEL INFOR	MATION						
SOILS WET BELOW 5' +/-							
SOILS SATURATED BELOW 6' +/-							

SAMPLER: CORE BARREL:

LOCATION:

CASING:

DRILLING CO. :

CASING		SAN	/IPLE		SAM	PLER BI	OWSP	PER 6"		
BLOWS PER	NO.	PEN.	REC.	DEPTH	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
FOOT	110.	1 214.	ILEO.	@ BOT	00	0.12	12 10	10 24		BROWN GRAVELLY SAND, TRACE SILT (FILL)
	1D	24"	8"	2.0'	2	5	8	10		~ MEDIUM DENSE ~
									3'	
									-	GRAY-BROWN SILTY CLAY WITH FREQUENT SAND SEAMS
										$q_p = 2 \text{ KSF}$
	2D	24"	18"	7.0'	2	3	3	6	-	~ STIFF TO MEDIUM ~
									9'	
	1V 1V'			10.8' 11.6'		3 5/8" X 3 5/8" X			-	S _V = 0.48 / 0.04 KSF S _V = 0.34 / 0.02 KSF
				11.0	,					
									-	
										GRAY SILTY CLAY
										~ SOFT ~
	2V			20.8'		8 5/8" X				S _V = 0.29 / 0.00 KSF
	2V'			21.6'	3	3 5/8" X	7" VAN	E	-	S _V = 0.29 / 0.00 KSF
					-					
									-	
	3V			30.8'	3	3 5/8" X	7" VAN	E		S _V = 0.41 / 0.00 KSF
	3V'			31.6'		8 5/8" X				S _V = 0.34 / 0.01 KSF
									-	BOTTOM OF EXPLORATION @ 31.6'
										BOTTOM OF EXPLORATION @ 31.0
									1	
									1	
SAMPLE				SOIL C	LASSI	FIED B	Y:		REMAF	RKS:
D = SPL C = 2" S					ואט	LLER -	VISUA	IY		STRATIFICATION LINES REPRESENT THE
S = 3" S				Х		LLER - L TECH				APPROXIMATE BOUNDARY BETWEEN SOIL TYPES
U = 3.5"	SHELI	BY TUE	BE		LAE	BORATO	ORY TE	ST		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-210

BORING NO .:	B-211							
SHEET:	1 OF 1							
PROJECT NO.:	15-0071.1							
DATE START:	6/29/2016							
DATE FINISH:	6/29/2016							
ELEVATION:	65' +/-							
SWCOLE REP:	EMW							
WATER LEVEL INFORMATION								
SOILS WET BELOW 5' +/-								

- - -

SOILS SATURATED BELOW 6' +/-

PROJECT / CLIENT:	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES								
LOCATION:	23 ORONO ROAD, PORTLAND, MAINE								
DRILLING CO. :	GREAT WOR	KS TEST BOI	RING	DRILLER:	JEFF LEE				
				-					
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL					
CASING:	HW	4"	HYD PUSH						
SAMPLER:	D	1 3/8"	140#	30"					

CORE BARREL:

CASING BLOWS		SAN	IPLE		SAMF	PLER BL	.OWS P	'ER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		
									3"	ASPHALT PAVEMENT
										BROWN GRAVELLY SAND, TRACE SILT (FILL)
	1D	24"	3"	2.4'	4	7	4	4	2.5'	~ MEDIUM DENSE ~
									3.5'	LIGHT BROWN SILTY SAND ~ MEDIUM DENSE ~
									5'	BROWN SILTY CLAY ~ STIFF ~
									5.5'	DARK RUST BROWN TO ORANGE-BROWN SAND, TRACE SILT
	2D	24"	16"	7.0'	7	9	11	8		GRAY-BROWN LAYERED SILTY FINE SAND AND SILTY CLAY
									8'	~ MEDIUM DENSE / STIFF ~
									-	
										GRAY SILTY CLAY
	3D	24"	22"	12.0'	WOH	1	1	1	-	~ SOFT ~
	50	24	22	12.0	WOIT	1	1	1	-	
									-	
	1V			15.8'	3	5/8" X	7" VAN	E		S _V = 0.31 / 0.00 KSF
	1V'			16.6'	3	5/8" X	7" VAN	E		S _V = 0.32 / 0.00 KSF
									-	
									-	
	2V			20.8'	3	5/8" X	7" VAN	E		S _V = 0.29 / 0.00 KSF
	2V'			21.6'	3	5/8" X	7" VAN	E		S _V = 0.32 / 0.00 KSF
									-	
	3V			25.8'	3	5/8" X	7" VAN	E		S _V = 0.27 / 0.00 KSF
	3V'			26.6'	3	5/8" X	7" VAN	E	_	S _V = 0.28 / 0.00 KSF
									-	
	4V			30.8'			7" VAN			$S_V = 0.56 / 0.00 \text{ KSF}$ - PROBABLE SAND SEAM
	4V'			31.6'	3	5/8" X	7" VAN	E		S _V = 0.38 / 0.00 KSF
									-	
										BOTTOM OF EXPLORATION @ 31.6'
									-	
									-	
									-	
									-	
									1	
		<u> </u>	I	[<u> </u>	<u> </u>		
SAMPL				SOIL C	LASSI	FIED B	Y:		REMAR	RKS:
D = SPL		-			I					\frown
C = 2" S							VISUAI			STRATIFICATION LINES REPRESENT THE
S = 3" S				X			I VISU			
U = 3.5" SHELBY TUBE LABORATORY TEST			AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-211							

BORING NO .:	B-212							
SHEET:	1 OF 1							
PROJECT NO.:	15-0071.1							
DATE START:	6/29/2016							
DATE FINISH:	6/29/2016							
ELEVATION:	62' +/-							
SWCOLE REP:	EMW							
WATER LEVEL INFORMATION								
SOILS WET BELOW 5' +/-								

- - -

SOILS SATURATED BELOW 6' +/-

PROJECT / CLIENT:	PROPOSED H	PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES								
LOCATION:	23 ORONO RO	23 ORONO ROAD, PORTLAND, MAINE								
DRILLING CO. :	GREAT WOR	KS TEST BO	RING	DRILLER:	JEFF LEE					
				_						
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL						
CASING:	HW	4"	HYD PUSH							
SAMPLER:	D	1 3/8"	140#	30"						

CASING BLOWS		SAN	IPLE		SAMF	PLER BL	OWS F	'ER 6"	DEPTH	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPIN	STRATA & TEST DATA	
									3"	ASPHALT PAVEMENT	
		o. (1)	10"	0.5	-	10	10		1'	BROWN GRAVELLY SAND, TRACE SILT (FILL), OVERLYING GEOTEXTILE	
	1D	24"	18"	2.5'	6	18	12	12		BROWN SAND, SOME SILT	
	-								5'	~ MEDIUM DENSE ~	
									Ű	LAYERED GRAY-BROWN SILTY SAND AND SILTY CLAY	
	2D	24"	22"	7.0'	3	2	2	2	6.5'	~ LOOSE / STIFF ~	
										q _p = 0.5-1 KSF	
										GRAY-BROWN SILTY CLAY	
	1V			10.8'	2	5/8" X	7" \/AN	F	10'	~ MEDIUM ~	
	1V 1V'			10.6		5/8" X				S _V = 0.32 / 0.00 KSF S _V = 0.37 / 0.00 KSF	
	I V			11.0	0	0,0 1					
										GRAY SILTY CLAY	
										~ SOFT ~	
	2V			20.8'	3	5/8" X	7" VAN	E		S _V = 0.27 / 0.00 KSF	
	2V'			21.6'	3	5/8" X	7" VAN	E		S _V = 0.31 / 0.00 KSF	
	3V			30.8'	3	5/8" X	7" VAN	E		S _v = 0.27 / 0.00 KSF	
	3V'			31.6'	3	5/8" X	7" VAN	E		S _V = 0.32 / 0.00 KSF	
										BOTTOM OF EXPLORATION @ 31.6'	
]		
SAMPLE	ES:			SOIL C	LASSI	FIED B	Y:		REMAR	RKS:	
D = SPL		DON								\frown	
C = 2" S						LLER -				STRATIFICATION LINES REPRESENT THE	
S = 3" S		-		Х			-			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES	
U = 3.5"	SHELL	SY IUE			LAB	ORATO	JRY ΙΕ	51		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-21:	

TYPE

HSA

D

PROJECT / CLIENT: PROPOSED HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

140#

23 ORONO ROAD, PORTLAND, MAINE

2 1/4"

1 3/8"

GREAT WORKS TEST BORING

BORING LOG

JEFF LEE

DRILLER:

30"

BORING NO .:	B-213						
SHEET:	1 OF 1						
PROJECT NO.:	15-0071.1						
DATE START:	6/29/2016						
DATE FINISH:	6/29/2016						
ELEVATION:	65' +/-						
SWCOLE REP:	EMW						
WATER LEVEL INFORMATION							
SOILS WET TO SATURATED BELOW 5' +/-							

SAMPLER:

CASING:

LOCATION:

DRILLING CO. :

CORE BARREL:

CASING BLOWS		SAN	IPLE		SAM	PLER BI	_OWS P	'ER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	20111	
									0.1'	CRUSHED STONE (FILL)
	1D	24"	16"	2.0'	2	2	4	4	1'	DARK BROWN SILTY SAND, SOME GRAVEL, WITH TRACE ORGANICS (FILL)
		0.4#	0.0.1	7.0			- 10		5'	LIGHT BROWN MEDIUM SAND, TRACE SILT ~ LOOSE TO MEDIUM DENSE ~ BROWN WITH OXIDE STAINING SILTY SAND
	2D	24"	20"	7.0'	4	8	12	12		WITH OCCASIONAL CLAYEY SILT SEAMS
									8'	~ MEDIUM DENSE ~
	3D	24"	22"	12.0'	1	1	2	1		GRAY SILTY CLAY WITH OCCASIONAL SAND SEAMS ~ MEDIUM TO SOFT ~
										BOTTOM OF EXPLORATION @ 12.0'
SAMPLI D = SPL C = 2" S	IT SPC		<u>.</u>	SOIL C		FIED B'			REMAR	KS: STRATIFICATION LINES REPRESENT THE
S = 3" S U = 3.5"	HELBY	TUBE		Х	SOI	L TECH	I VISI	JALLY		APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-213

PROJECT/CLIENT: HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

LOCATION: ORONO STREET, PORTLAND, MAINE EXCAVATING CO: SHAW BROTHERS CONSTRUCTION

PROJECT NO.: 15-0071.1 S.W.COLE REP: TJB

TEST PIT TP-301 DATE: 6/29/2016 SURFACE ELEVATION: LOCATION: 61' +/-SEE SHEET 1 SAMPLE DEPTH STRATUM DESCRIPTION **TEST RESULTS** (FT) NO. DEPTH BROWN SAND & SILT WITH ASPHALT & BRICK DEBRIS (FILL) 3' TAN-OXIDE STAINED SILTY FINE SAND 6'

COMPLETION DEPTH:

DEPTH TO WATER: NONE OBSERVED

				T		TP-302			
		DATE:	6/29/2016	SURFACE ELE	EVATION:	54' +/-	LOCAT		SEE SHEET 1
SAN	1PLE	DEPTH		STRATU		TEST RESULTS			
NO.	DEPTH	(FT)				non			
		0.8'		DARK BROWN (
				GRAY-BROV	WN SILTY CL/	AY (FILL)			
		0							
		2'		DARK BROWN CLA					
		3'		DARK BROWN CLA					
		0							
				GRAY-MOTTLED BE	ROWN SILTY	CLAY ~ STIFF ~			
	СС	OMPLETI	ON DEPTH:	5'		DEPTH TO WAT		NE OB	SERVED

PROJECT/CLIENT: HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

LOCATION: ORONO STREET, PORTLAND, MAINE EXCAVATING CO: SHAW BROTHERS CONSTRUCTION PROJECT NO.: 15-0071.1

S.W.COLE REP: TJB

				TES	ST PIT	TP-303		
		DATE:	6/29/2016	SURFACE ELEV	ATION:	60' +/-	LOCATION:	SEE SHEET 1
-	/IPLE	DEPTH		STRATUM	DESCRIP	PTION		TEST RESULTS
NO.	DEPTH	(FT)						
-				DARK BROWN SA	NDY LOAM	(TOPSOIL)		
		0.9'						
				TAN SILT	TY FINE SAI	ND		
		1.7'						
				OLIVE BROWN MOTTLEE				
				6" OXIDIZI	ED LAYER (@ 3'		
-								
-								
	C	OMPLETI	ON DEPTH:	6'		DEPTH TO WATE	ER: NONE OB	SERVED

						TP-304		
		DATE:	6/29/2016	SURFACE E	LEVATION:	63' +/-	LOCATION:	SEE SHEET 1
SAN	1PLE	DEPTH		STRAT	UM DESCRI	PTION		TEST RESULTS
NO.	DEPTH	(FT)		Unit		non		
		1'		DARK BROW	VN SILTY LOAM	(TOPSOIL)		
				GRAY-BROV	VN MOTTLED S	ANDY SILT		
		4.6'						
		5'		OXID	E CEMENTED S	AND		
				GRA	Y SILTY FINE SA	AND		
	CC	OMPLETI	ON DEPTH:	6'	_	DEPTH TO WAT	TER: WET B	ELOW 5'

PROJECT/CLIENT: HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

LOCATION: ORONO STREET, PORTLAND, MAINE EXCAVATING CO: SHAW BROTHERS CONSTRUCTION

PROJECT NO.: 15-0071.1 S.W.COLE REP: TJB

			TEST		TP-305		
	DATE:	6/29/2016	SURFACE ELEVA	TION:	64' +/-	LOCATION:	SEE SHEET 1
SAMPLE	DEPTH (FT)		STRATUM D	ESCRI	PTION		TEST RESULTS
NO. DEPTH			DARK BROWN SAND	DY LOAN	1 (TOPSOIL)		
	4.3'		BROWN-MOTTLED	GRAY S	ANDY SILT		
			OLIVE-BROWI ~STI		CLAY		
С	OMPLETI	ON DEPTH:	5'		DEPTH TO	WATER: NONE OF	SERVED

				TE	ST PIT	TP-306		
		DATE:	6/29/2016	SURFACE ELE	VATION:	65' +/-	LOCATION:	SEE SHEET 1
SAN	/IPLE	DEPTH		STRATUM		NOIT		TEST RESULTS
NO.	DEPTH	(FT)		011011	DECON	non		
				GRAY-BR	OWN SILT (F	FILL)		
		1.5'						
		2'		DARK BROWN SILT	'Y LOAM (RE	LIC TOPSOIL)		
		2.5'		ORANGE BF	ROWN SAND	Y SILT		
				BROWN-MOTTL	ED GRAY S	ANDY SILT		
	I							
	CC	OMPLETI	ON DEPTH:	5'		DEPTH TO WATI	ER: NONE OF	BSERVED

PROJECT/CLIENT: HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

LOCATION: ORONO STREET, PORTLAND, MAINE EXCAVATING CO: SHAW BROTHERS CONSTRUCTION PROJECT NO.: 15-0071.1

S.W.COLE REP: TJB

				TES		TP-307		
		DATE:	6/29/2016	SURFACE ELEVA	TION:	65' +/-	LOCATION:	SEE SHEET 1
SAN NO.	IPLE DEPTH	DEPTH (FT)		STRATUM D	ESCRI	PTION		TEST RESULTS
		0.5'		PEA STONE (PLAY	GROUND	SURFACE)		
				BROWN GRAVELLY S	SAND SOI	ME SILT (FILL)		
		2'		NON-WOVEN	N FABRIC	@ 2'		
			BLAC	K-BROWN-GRAY SILTY CLAY	WITH O	RGANICS (RELI	C TOPSOIL)	
		3'						
				TAN OXIDE MOTTLED	FINE SA	ND SOME SILT		
	C	OMPLETI	ON DEPTH:	6.5'		DEPTH TO W	ATER: <u>SEEPAGE A</u>	ND CAVING BELOW 6'

					TEST PIT	TP-308		
		DATE:	6/29/2016	SURFACE E	ELEVATION:	66' +/-	LOCATION:	SEE SHEET 1
SAN	/IPLE	DEPTH		STRATUM DESCRIPTION				
NO.	DEPTH	(FT)		UNA		non		TEST RESULTS
				DARK BROW	N SANDY LOAM	(TOPSOIL)		
		1.5'						
		1.5						
				BRO	OWN SANDY SIL	Т		
		3.5'						
-				GF	RAY SANDY SILT			
	C	OMPLETI	ON DEPTH:	5.4'		DEPTH TO W	ATER: WET BEI	_OW 3.5'

PROJECT/CLIENT: HALL ELEMENTARY SCHOOL / OAK POINT ASSOCIATES

LOCATION: ORONO STREET, PORTLAND, MAINE

PROJECT NO.: <u>15-0071.1</u> S.W.COLE REP: TJB

EXCAVATING CO: SHAW BROTHERS CONSTRUCTION **TEST PIT TP-309** DATE: 6/29/2016 SURFACE ELEVATION: LOCATION: 66' +/-SEE SHEET 1 SAMPLE DEPTH STRATUM DESCRIPTION **TEST RESULTS** (FT) NO. DEPTH DARK BROWN SANDY LOAM (TOPSOIL) 1.5' **BROWN SANDY SILT** 3.5' GRAY SANDY SILT

COMPLETION DEPTH:

6'

DEPTH TO WATER: WE

WET BELOW 3.5'

				TES	T PIT <u>TP-3</u>	<u>510</u>		
		DATE:	6/29/2016	SURFACE ELEVA	TION: 60' +	-/- L	OCATION:	SEE SHEET 1
SAN	IPLE	DEPTH		STRATUM D	ESCRIPTION	1		TEST RESULTS
NO.	DEPTH	(FT)						
-		1'		DARK BROW	N SILTY LOAM			
				TAN SAI	NDY SILT			
		4.3'		GRAY-BROW FISSURED AND	N SILTY CLAY OXIDE STAINEI	D		
	CC	OMPLETI	ON DEPTH:	6'	DEPT	TH TO WATER:	NONE OB	BSERVED

• Geotechnical Engineering • Field & Lab Testing • Scientific & Environmental Consulting

KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight
- $\gamma_{\rm B}$ buoyant soil weight

Description of Proportions:

Description of Stratified Soils

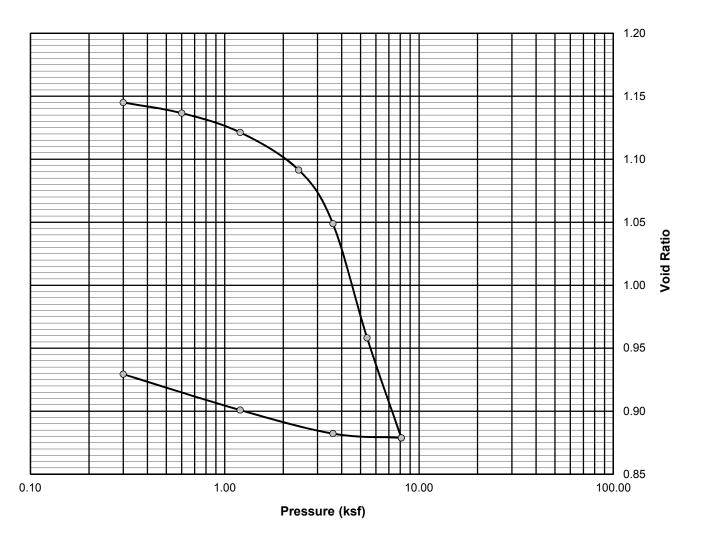
		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	½" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness
With	Undifferentiated	Frequent:	more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

APPENDIX D

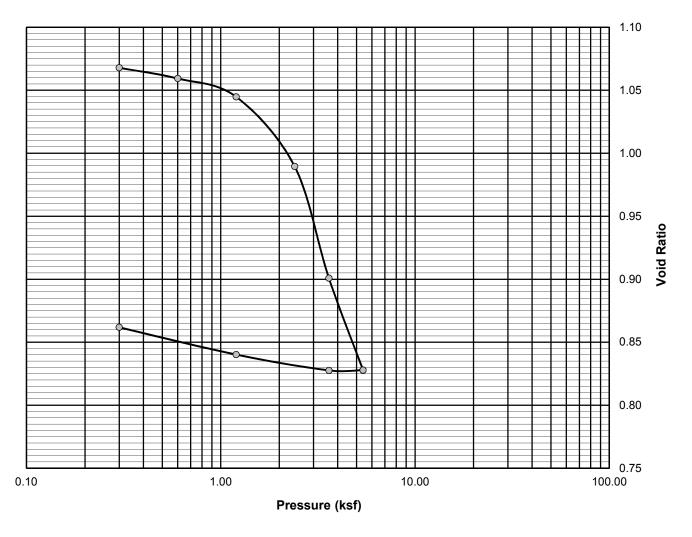

|--|

Project Number:	15-0071.1
Lab ID:	15645B
Date:	7/15/2015

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates

Boring:B-105Sample:1SDepth:15-17'

P _C =	2.9 ksf
C _C =	0.48
C _R =	0.05
w =	37.4%
$W_L =$	37
W _P =	21

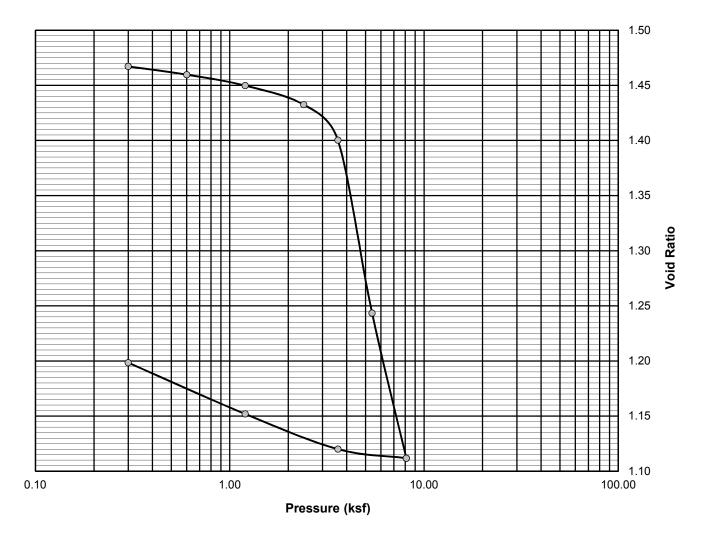

Consolidation Test

Project Number:	15-0071.1
Lab ID:	15646B
Date:	7/15/2015

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates

Boring:B-105Sample:1SDepth:25-27'

P _C =	2.0 ksf
C _C =	0.46
C _R =	0.04
w =	35.7%
$W_L =$	37
W _P =	22


Consolidation Test

Project Number:	15-0071.1
Lab ID:	15647B
Date:	7/18/2015

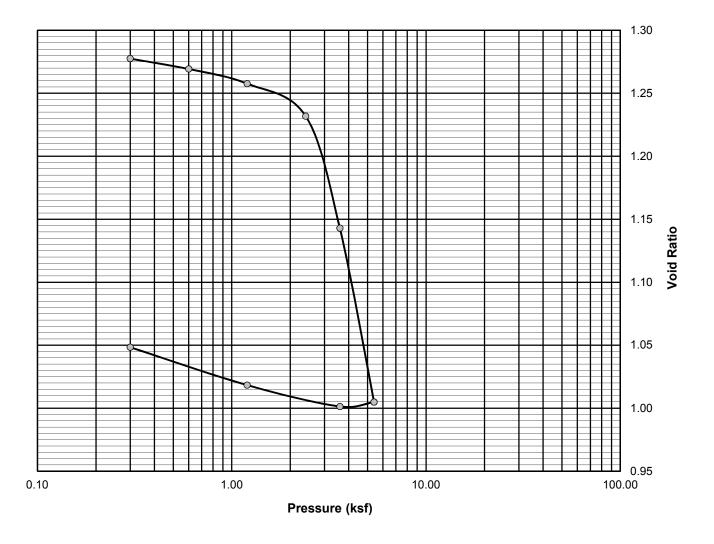
Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates

Boring:B-115Sample:1SDepth:20-22'

P _C =	3.3 ksf
C _C =	0.82
C _R =	0.03
w =	49.7%
$W_L =$	56
W _P =	26

Comments: T. Boyce Reviewed By

Consolidation Test


Project Number:	15-0071.1
Lab ID:	15648B
Date:	7/18/2015

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates

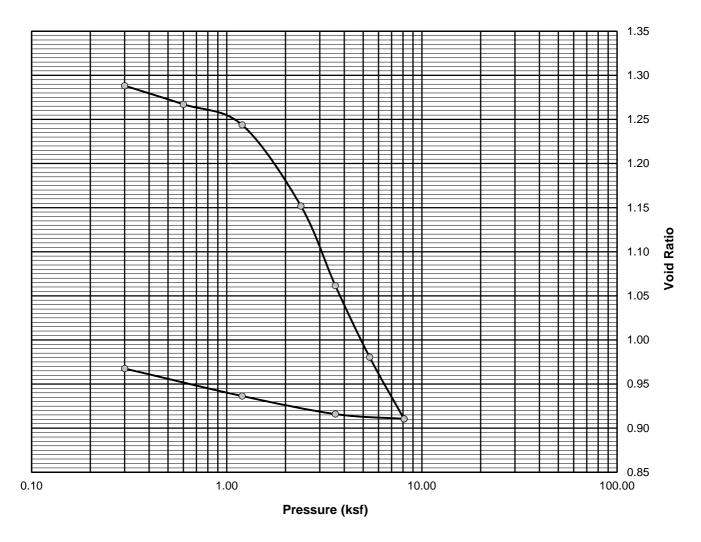
Boring:B-115Sample:2SDepth:30-32'

Comments:

P _c =	2.9 ksf
C _C =	0.64
C _R =	0.03
w =	42.8%
$W_L =$	38
W _P =	22

T. Boyce

Reviewed By



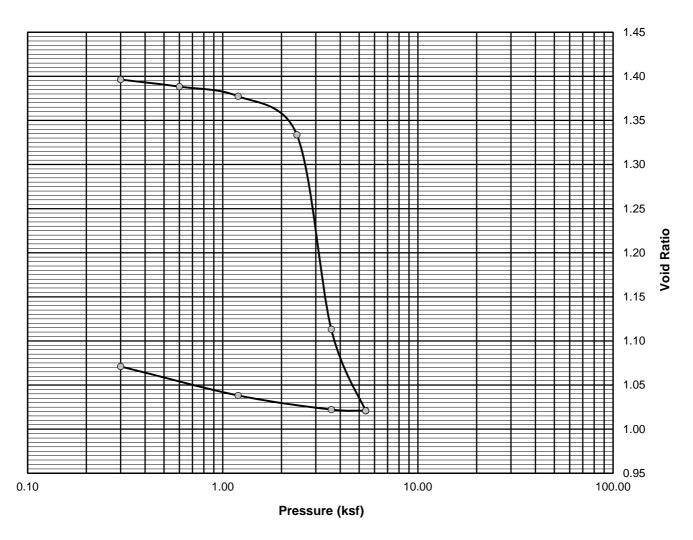
Project Number:	15-0071.1
Lab ID:	19665B
Date:	7/15/2016

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates, Inc.

Boring:B-201Sample:1SDepth:10-12'

P _C =	1.8 ksf
C _C =	0.49
C _R =	0.07
w =	50.3%
$W_L =$	35
W _P =	19

Comments: T. Boyce Reviewed By

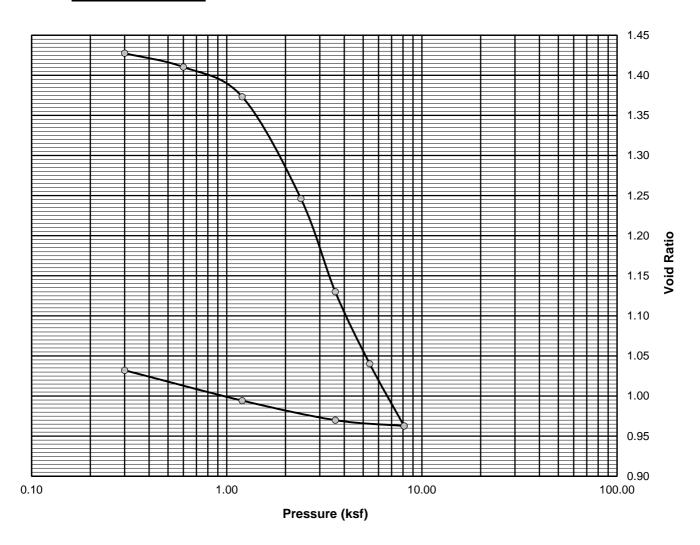


Project Number:	15-0071.1
Lab ID:	19666B
Date:	7/26/2016

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates, Inc.

Boring:B-201Sample:2SDepth:20-22'

P _C =	2.2 ksf
C _C =	1.25
C _R =	0.03
w =	44.9%
$W_L =$	36
W _P =	21



Project Number:	15-0071.1
Lab ID:	19662B
Date:	7/15/2016

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates, Inc.

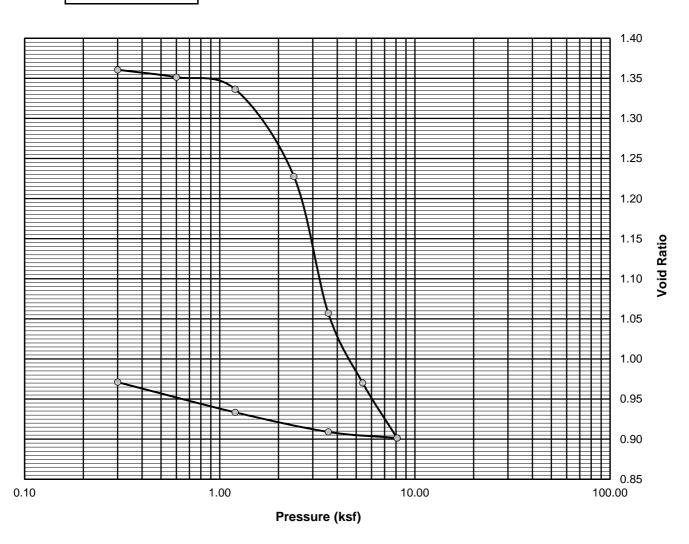
Boring:B-204Sample:1SDepth:15-17'

P _C =	1.8 ksf
C _C =	0.66
C _R =	0.06
w =	54.9%
$W_L =$	54
W _P =	25

19663B 7/15/2016

ASTM D-4767

Project Number: 15-0071.1


Lab ID:

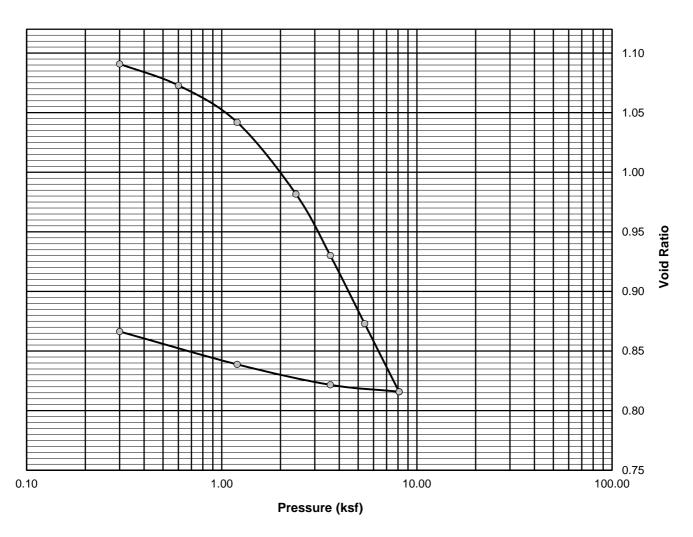
Date:

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates, Inc.

Boring:	B-204
Sample:	2S
Depth:	25-27'

P _C =	2.0 ksf
C _C =	0.97
C _R =	0.04
w =	44.7%
$W_L =$	37
W _P =	21

Comments: T. Boyce Reviewed By



Project Number:	15-0071.1
Lab ID:	19664B
Date:	7/15/2016

Project Name:	Proposed Fred P. Hall Elementary School
Client:	Oak Point Associates, Inc.

Boring:B-204Sample:3SDepth:35-37'

P _C =	1.9 ksf
C _C =	0.32
C _R =	0.06
w =	41.6%
$W_L =$	37
W _P =	20

08/10/2015	5320	B106 S1	CUMBERL	CUMBERLAND 20000 sq. ft			
PRINT DATE	LAB NO.	SAMPLE IDENTIFICATION	COUN	ITY	ACRES OR	SQ. FT.	
286 POI		EERING INC (TIM BOYC	572	ERSITY 2 DEERIN	OF MAIN	1865	
			MEDIUM	OF	PTIMUM	ABOVE OPTIMUM	
Major nutr Phosphoru Potassium Calcium Magnesium Sulfur <u>Micronutri</u> Boron Copper Iron Manganese Zinc	5. atter(%) 3. <u>rients</u> IS(1b/A) 2. (% Sat) 2. (% Sat) 30. (% Sat) 5. (ppm) 1 <u>ients</u> (ppm) 0. (ppm) 0. (ppm) 1. (ppm) 1. (ppm) 0.	4 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxxxx	****	****		
• RECOMMENI			<u>W SEEDING - Crop</u> lime per 1000	••••••	11		

To raise soil pH to 6.0, apply 70 pounds of lime per 1000 sq. ft.

To meet crop magnesium requirement, use a magnesium lime. Calculated major nutrient requirements as follows:

- 2.0 pounds nitrogen per 1000 sq. ft.
- 3.7 pounds phosphate per 1000 sq. ft.
- 0.7 pounds potash per 1000 sq. ft.

To meet major nutrient requirements: Apply 20 lb 10-20-10 or 40 lb 5-10-5 fertilizer/1000 sq. ft.

Other fertilizers of similar N-P-K ratio may be substituted. Till in lime (if needed) and fertilizer to a 4-6 inch depth. Till in an inch of compost or peat, with lime & fertilizer, to a 4-6 inch depth before seeding to improve soil nutrient & water holding capacity.

For information on micronutrient management and recommendations, see enclosed form.												
• NUMERICAL RESULTS (Test methodology: pH in water and Mehlich buffer, available nutrients by modified Morgan extract) (Organic matter measured by LOI, P determined colorimetrically, all others measured by ICP-OES)												
CEC	and nutr	ient ba	lance cal	lculat	ions as	sume t	che pH w	vill be r	aised to	6.0		
Level Found	5.4	5.80	2.0	11	10	60	581	4.8	2.9	5.2	30.2	61.7
	Soil pH	Lime Index 2	Phosphoru (lb/A)			nesium lb/A)		CEC (me/100 g	ĸ	Mg (% Satu	Ca ration)	Acidity
Optimum Range	5.5-6.5	N/A	10-20	see	% Satu	ration	levels	> 5	2.1-3.0	10-20	60-80	< 10
Level Found	3.7	10	0.15	10.9	1.9	-	.7	Addi	tional F	esults o	or Commen	ts:
	Organic Matter(%)	Sulfur (ppm)	Copper (ppm)	Iron (ppm)	Mangane (ppm)		lnc pm)					
Normal Range	5 - 8	> 15	.2560	6 - 10	0 4 - 8	8 1 -	- 2		no he	alth risk		
Level Found	0.3	N/A	N/A		N/A	N/2	A					
(Extras)	Boron (ppm)	Sodium (ppm)	Soluble Sa (mmhos/ca		itrate-N (ppm)	Ammon: (pp						
Normal Range	0.5-1.2											

08/10/2015	5321	B110 S1	CUMBERL	CUMBERLAND		20000 sq. ft			
PRINT DATE	LAB NO.	SAMPLE IDENTIFICATION	COUR	COUNTY ACRES OR		SQ. FT.			
S.W. CO 286 PO	RTLAND R	EERING INC (TIM BOYC	MAINE SOIL TESTING SERVICE UNIVERSITY OF MAINE						
GRAY	ME 04039		ORON	O,MAINE	E 04469-5722				
	l Results sec	& INTERPRETATION tion for more information)				ABOVE			
	Leve		MEDIUM	0	PTIMUM	<u>OPTIMUM</u>			
Major nutr Phosphoru Potassium Calcium	atter(%) 2. <u>cients</u> 1S(1b/A) 1. A(% Sat) 3. (% Sat) 31. A(% Sat) 5. (ppm) <u>ients</u> (ppm) 0.1 (ppm) 8.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	××××××××××××××××××××××××××××××××××××××						
• RECOMMENDED ADDITIONS FOR ALL TURF-NEW SEEDING - Crop Code # 211									
To raise soil pH to 6.0, apply 50 pounds of lime per 1000 sq. ft.									

To meet crop magnesium requirement, use a magnesium lime.

- Calculated major nutrient requirements as follows:
 - 2.0 pounds nitrogen per 1000 sq. ft.
 - 3.8 pounds phosphate per 1000 sq. ft.
 - 0.7 pounds potash per 1000 sq. ft.

To meet major nutrient requirements: Apply 20 lb 10-20-10 or 40 lb 5-10-5 fertilizer/1000 sq. ft.

Other fertilizers of similar N-P-K ratio may be substituted. Till in lime (if needed) and fertilizer to a 4-6 inch depth. Till in an inch of compost or peat, with lime & fertilizer, to a 4-6 inch depth before seeding to improve soil nutrient & water holding capacity.

For information on micronutrient management and recommendations, see enclosed form.												
• NUMERICAL RESULTS (Test methodology: pH in water and Mehlich buffer, available nutrients by modified Morgan extract) (Organic matter measured by LOI, P determined colorimetrically, all others measured by ICP-OES)												
CEC and nutrient balance calculations assume the pH will be raised to 6.0												
Level Found	5.5	5.95	1.7		87	48	465	3.6	3.0	5.5	31.9	59.6
	Soil pH	Lime Index 2	Phosphoru (lb/A)		assium M b/A)	(agnesi (lb/A)		um CEC) (me/100 g	K	Mg (% Satu	Ca ration)	Acidity
Optimum Range	5.5-6.5	N/A	10-20	see	% Sat	urati	on level	. s > 5	2.1-3.0	10-20	60-80	< 10
Level Found	2.7	8	0.15	8.2	2 4.	.9	0.7	Add	itional F	esults o	or Commen	its:
	Organic Matter(%)	Sulfur (ppm)	Copper (ppm)	Iron (ppm		anese om)	se Zinc			L BACKGROUND LEVEL -		
Normal Range	5 - 8	> 15	.2560	6 - 1	.0 4 -	- 8 1	1 - 2		no he	alth risk		
Level Found	0.2	N/A	N/A		N/A	1	N/A					
(Extras)	Boron (ppm)	Sodium (ppm)	Soluble S (mmhos/c		Nitrate (ppm)		ppm)					
Normal Range	0.5-1.2											