STORMWATER MANAGEMENT REPORT

# 90 JOHNSON ROAD PROPERTY 90 JOHNSON ROAD PORTLAND, MAINE

PREPARED FOR

# TRANSPORT LEASING CORP. 58 LOWELL JUNCTION ROAD ANDOVER, MA 01810

**PREPARED BY** 

# STANTEC CONSULTING SERVICES, INC. 482 PAYNE ROAD SCARBOROUGH, MAINE 04074 (207) 883-3355

JULY 2018

# TABLE OF CONTENTS

# **DESCRIPTION**

# <u>Page</u>

| 1.0  | Introduction                                                | 1 |
|------|-------------------------------------------------------------|---|
| 2.0  | Existing Site Conditions                                    | 1 |
| 3.0  | References                                                  | 2 |
| 4.0  | Method of Analysis                                          | 3 |
| 5.0  | Erosion And Sedimentation Control (Basic Standard)          | 4 |
| 6.0  | Water Quality Measures (General Standard)                   | 4 |
| 7.0  | Stormwater Management for Flood Control (Flooding Standard) | 6 |
| 8.0  | Maintenance and Good Housekeeping Measures                  | 6 |
| 9.0  | Conclusions                                                 | 6 |
| 10.0 | Attachments                                                 | 7 |

# Attachments

**SECTION** 

| Attachment A – Predevelopment Watershed Plan              |
|-----------------------------------------------------------|
| Attachment B – Post Development Watershed Plan            |
| Attachment C - Predevelopment HydroCAD Computations       |
| Attachment D – Post Development HydroCAD Computations     |
| Attachment E – Water Quality Treatment Summary            |
| Attachment F - Drawdown Computations                      |
| Attachment G – Redevelopment Computation                  |
| Attachment H - Stormwater Operations & Maintenance Manual |
|                                                           |

# 1.0 INTRODUCTION

Stantec Consulting Services, Inc. has been retained to prepare the following Stormwater Management analysis for the building and site expansion project at 90 Johnson Road in Portland, ME.

This Stormwater Management analysis has been prepared in accordance with Section 5 – Portland Stormwater Management of the City of Portland Technical Manual, last revised July 26, 2016. As required within Section 5, this project meets the Basic, General, and Flooding Standards as described in the Maine Department of Environmental Protection (MaineDEP) Chapter 500 Rules for Stormwater Management.

The purpose of this analysis is to identify what measures will be implemented to provide stormwater management for the proposed development specifically for water quality improvement, water quantity control, and erosion and sedimentation control. The analysis was prepared to ensure that the development will not result in any adverse effects to the environment, any natural resources, or to properties located downstream of the project site.

## 2.0 EXISTING SITE CONDITIONS

The project site, located at 90 Johnson Road, is approximately 2.67 acres and is comprised of two properties identified as Lot 1 and 3 on Map 214-A of the City of Portland Assessor's Map (1.68 and 0.99 acres respectively). The site is currently occupied by an approximately 20,260 SF single story building which houses Spectrum offices and warehouse space. The building is surrounded by parking and access drives with a total of 41 parking spaces currently provided. The adjacent property at 68 Johnson Road was historically occupied by a single-family home but has since been demolished several years ago and the property is currently a grassed lot.

| Table 1           Existing Lot Coverage Summary |                     |                     |  |  |  |  |
|-------------------------------------------------|---------------------|---------------------|--|--|--|--|
| Lot 1(90 Johnson) Lot 3 (68 Johnson)            |                     |                     |  |  |  |  |
| Roof (sf)                                       | 20,260              | 0                   |  |  |  |  |
| Other Impervious (sf)                           | 34,784              | 285                 |  |  |  |  |
| Landscaped (sf)                                 | 18,137              | 38,251              |  |  |  |  |
| Wooded (sf)                                     | 0                   | 4,588               |  |  |  |  |
| Total                                           | 73,181 SF (1.68 ac) | 43,124 SF (0.99 ac) |  |  |  |  |

The breakdown of the existing lot coverage is summarized in the table below.

A portion of the site's drainage is handled through a series of catch basins and storm drain pipes that discharge to a hydrodynamic separator and then to a vegetated underdrained soil filter. The grassed lot sheet flows towards the Brooklawn Cemetery with runoff being captured in two existing catch basins. All stormwater runoff from the site ultimately outlets to a public storm drain system within Johnson Road and Congress Street<sup>1</sup>. The Congress Street system outfalls

<sup>&</sup>lt;sup>1</sup> See Congress Street & Johnson Road of Unum HO-3 Offsite Traffic Improvement plans by Sebago Technics, City Archive 00731\_003\_005 date 06-22-98

opposite the Cemetery entrance on Congress Street and is tributary to the Stroudwater and the Fore River. Per the Soils Conservation Service (SCS) Medium Intensity Soils mapping the site consists of Scantic, Lyman-Tunbridge, and Woodbridge soil groups. These are classified as Hydrologic Soil Group C and D.

# 3.0 **PROPOSED SITE CONDITIONS**

The proposed development includes the renovations and expansion of the existing Spectrum office/warehouse building. Spectrum occupies other building space on City Line Drive and may consolidate their operations. The applicant is seeking to update the building at 90 Johnson Road to Class A office space. The existing building will be renovated including a vertical expansion to go from one story to three stories. The existing parking area and drive will also be redeveloped into a more functional layout for the expanded use. The undeveloped grassed lot at 68 Johnson Road will include new development of a parking area and associated stormwater management and landscaping. A total of 188 parking spaces are proposed across the properties. Stormwater management will primarily be in the form of porous pavement within the new parking area. The porous pavement is intended to be much like the porous pavement installed at the nearby State of Maine DHHS building off the Jetport Boulevard. Proposed land coverage of the two lots is summarized in the table below:

| Table 2<br>Proposed Lot Coverage Summary |              |           |  |  |  |  |
|------------------------------------------|--------------|-----------|--|--|--|--|
| Lot 1 Lot 3                              |              |           |  |  |  |  |
| Roof (sf)                                | 21,398       | 0         |  |  |  |  |
| Other Impervious (sf)                    | 41,153       | 35,521    |  |  |  |  |
| Landscaped (sf)                          | 10,630 6,785 |           |  |  |  |  |
| Wooded (sf)                              | 0 818        |           |  |  |  |  |
| Total                                    | 73,181 SF    | 43,124 SF |  |  |  |  |

Drainage patterns on site mostly remain the same in the post development condition. The portion of the project consisting of redevelopment continues to primarily drain to the existing vegetated underdrained filter adjacent to the project. The area that sheet flows to towards the cemetery property consists of the majority of the new parking area and is handled through porous pavement. This area will be drained through a series of subsurface underdrain pipes and it will discharge into the public storm drain system within Johnson Road.

The porous pavement section, as detailed in the plans, will contain the following materials section:

- 3" Porous Asphalt
- Choker Course Aggregate Variable Thickness from 4" to 19"
- 12" Reservoir Course of 1.5" to 3" Crushed Stone
- 4" Filter Course
- 12" MDOT Type B aggregate course with collection underdrain.

# 4.0 <u>REFERENCES</u>

The following reference sources were used in preparation of the stormwater analysis:

- 1. <u>Stormwater Management for Maine Volume III BMP Technical Design Manual</u>, MaineDEP
- 2. HydroCAD Stormwater Modeling Software, Version 10.00, build 20
- 3. <u>MaineDEP Erosion and Sediment Maine Erosion and Sediment Control BMP's,</u> October 2016 revision
- 4. MaineDEP Chapter 500 Rules for Stormwater Management, June 2014 revision
- 5. <u>Section 5 of the City of Portland Technical Manual Portland Stormwater</u> <u>Management</u>, July 2016 revision
- 6. Chapter XX and XX of the City of Portland Code of Ordinances
- 7. <u>U.S. Department of Agriculture Natural Resources Conservation Service Web</u> <u>Soil Survey</u>

# 5.0 METHOD OF ANALYSIS

The hydrologic analysis for predevelopment and post development conditions has been conducted based upon the methodology contained in the USDA Soil Conservation Service's Technical Releases Nos. 20 and 55 (SCS TR-20 and TR-55). For Caribou, Maine, a 24-hour SCS Type II storm distribution was used for the analysis using the following storm frequencies and rainfall amounts:

| Table 3                        |                  |  |  |  |
|--------------------------------|------------------|--|--|--|
| Hydrologic Analysis Parameters |                  |  |  |  |
| Storm Event                    | 24-Hour Rainfall |  |  |  |
| 2-Year Storm                   | 3.1 inches       |  |  |  |
| 10-Year Storm                  | 4.6 inches       |  |  |  |
| 25-Year Storm                  | 5.8 inches       |  |  |  |

The HydroCAD computer program was used in the analysis. This program allows critical points of the watershed to be analyzed using the SCS TR-20 methodology to calculate the anticipated conditions at these points. Drainage areas are defined with runoff curve numbers, times of concentration and travel time data based on methods outlined in the USDA TR-55 Manual. To assess storage and kinematic effects of runoff, the model uses reservoirs and pipes to imitate actual conditions. Specific hydrologic characteristics including travel times, storage capacity, and the effects of hydraulic head are considered for analysis with this program.

To model the watersheds, the drainage system is represented by a network consisting of three basic components:

- **Subcatchment:** A relatively homogenous area of land that drains into a single reach or pond. Each subcatchment generates a runoff hydrograph.
- **Reach:** A uniform stream, channel, or pipe that conveys water from one point to another reach or pond. The outflow of each reach is determined by a hydrograph routing calculation.
- **Pond:** A pond, swamp, dam, or other impoundment which fills with water from one or more sources and empties in a manner determined by a weir, culvert

or other device(s) at its outlet. A pond may empty into a reach or into another pond. The outflow of each pond is also determined by a hydrograph routing calculation.

# 6.0 EROSION AND SEDIMENTATION CONTROL (BASIC STANDARD)

Erosion and sedimentation control (ESC) will be accomplished for this project through the application of various temporary construction and permanent ESC BMPs as described in the MaineDEP Erosion and Sediment Control BMP Manual. BMPs proposed include but are not limited to the following:

- Stabilized construction entrance
- Siltation fence
- Temporary construction inlet protection
- Slope stabilization

The contractor will also be required to employ ESC BMPs for any on site material stockpiles as well as any areas left denuded for extended periods of time during construction.

The ESC plan for this project adheres to the requirements detailed in Appendix A of MaineDEP's Chapter 500 Rules for Stormwater Management.

# 7.0 WATER QUALITY MEASURES (GENERAL STANDARD)

The proposed development includes Stormwater BMPs to provide water quality treatment to onsite runoff as required within the General Standard of MaineDEP's Chapter 500 Rules for Stormwater Management. A portion of the project, described as Lot 1 above, is currently developed with an existing building and associated site features. Therefore, the rules for Redevelopment Projects as described in section 4.C.(2)(d)(i) of Chapter 500 have been applied to this portion of the project. The table below summarizes the redevelopment calculation and establishes the treatment level required for redevelopment activity within the project.

| Redevelopment Treatment Summary                              |      |  |  |  |
|--------------------------------------------------------------|------|--|--|--|
| Total Redevelopment Area (ac)                                | 1.68 |  |  |  |
| Existing Impact Rating                                       | 4.55 |  |  |  |
| Proposed Impact Rating                                       | 4.65 |  |  |  |
| Existing Ranked Impact                                       | 2.71 |  |  |  |
| Proposed Ranked Impact                                       | 2.77 |  |  |  |
| Resultant Ranked Impact Change                               | 0.06 |  |  |  |
| Redeveloped Area Treatment Designation<br>(Site Law Project) |      |  |  |  |

The area described as Lot 3 is considered undeveloped since it has not been maintained and is essentially a meadow in the predevelopment condition. All development on this portion of the project will be considered new development and section 4.C.(2)(a)(i) of Chapter 500 defines the required treatment level.

All BMPs for this project have been designed per the MaineDEP Stormwater BMP Design Manual and previously MaineDEP accepted design measures for Porous surfaces. BMPs included in this project as well as their respective design criteria used are as follows:

**Vegetated Underdrained Soil Filter:** The existing filter adjacent to the site was originally designed to handle 2.5 acres of impervious area. The portion of the site that has been redeveloped remains tributary to the filter, but the total impervious area to the filter from the site has been reduced. For predevelopment conditions approximately 1.16 acres of impervious area drained to the filter. Approximately 1.03 acres of impervious area will drain to the filter in post development conditions. Therefore, the original design has been determined to be adequate without any modifications.

Manmade Porous Surfaces (Porous Pavement): Four areas constructed of porous pavement have been proposed for this project. The entire area is intended to be a direct entry system in order to provide enough storage within the reservoir layer for flood control. The only run-on provided will be from landscaped areas onto porous sections. The surface and associated section have been designed to the following criteria to provide water quality treatment to runoff:

- <u>Treatment Volume</u>: Storage of a 1" rainfall event has been provided for in the reservoir layer which consists of 12 inches of <sup>3</sup>/<sub>4</sub>" crushed stone with an assumed porosity of 40%.
- <u>Minimum Surface Area</u>: The surface area required for porous pavement is 20% of tributary impervious area.
- <u>Drawdown Time</u>: The WQV is required to be released over a 24-48 hour period. This criterion will be met by providing an orifice at the end of each collection pipe system.
- <u>Storage for Flood Control:</u> Storage for a 24 hour 25 year frequency storm event should be provided to meet flooding standards. This will be provided within the reservoir section and will be controlled through a 6" overflow pipe.

The two BMPs described above have been designed per MaineDEP's BMP Design Manual to meet all requirements established within MaineDEP's Chapter 500 Rules for Stormwater Management to meet the General Standard.

The table below summarizes the treatment levels provided for both redevelopment activities and new development for the proposed project.

| Table 4<br>Treatment Summary       |     |        |  |  |  |
|------------------------------------|-----|--------|--|--|--|
| Description Required Provided      |     |        |  |  |  |
| Treated New Impervious (%)         | 95% | 98.77% |  |  |  |
| Treated New Developed (%)          | 80% | 93.83% |  |  |  |
| Treated Redeveloped Impervious (%) | N/A | 90.51% |  |  |  |
| Treated Redeveloped Developed (%)  | 60% | 85.49% |  |  |  |

# 8.0 STORMWATER MANAGEMENT FOR FLOOD CONTROL (FLOODING STANDARD)

The stormwater system for this project, consisting of the porous pavement reservoir layer has been designed to provide detention, and in turn, reduce peak discharge rates from stormwater runoff. Specifically, the 2, 10, and 25-year storm events have been analyzed for this project. Table 1 in Section 5 above summarizes rainfall amounts for each of the storm events analyzed. Table 2 below summarizes peak discharge rates for each storm event for the predevelopment and post development conditions:

| Table 5<br>Comparison of Peak Discharge Rates at Point of Interest 1 |                |       |  |  |
|----------------------------------------------------------------------|----------------|-------|--|--|
| Storm Event & Condition                                              | POI 2<br>(cfs) |       |  |  |
| 2-Yr Predevelopment                                                  | 1.36           | 2.31  |  |  |
| 2-Yr Post Development                                                | 0.09           | 2.19  |  |  |
| Change in 2-Yr Peak Discharge Rate                                   | -1.27          | -0.12 |  |  |
| 10-Yr Predevelopment                                                 | 2.77           | 3.91  |  |  |
| 10-Yr Post Development                                               | 0.19           | 3.35  |  |  |
| Change in 10-Yr Peak Discharge Rate                                  | -2.58          | -0.56 |  |  |
| 25-Yr Predevelopment                                                 | 3.96           | 6.04  |  |  |
| 25-Yr Post Development                                               | 0.27           | 5.11  |  |  |
| Change in 25-Yr Peak Discharge Rate                                  | -3.69          | -0.93 |  |  |

Peak discharge rates for each storm event have been decreased from predevelopment to post development conditions for this project. Therefore, the Flooding Standard has been met.

# 9.0 MAINTENANCE AND GOOD HOUSEKEEPING MEASURES

The owner or the owner's representative will be responsible for maintenance of all permanent stormwater conveyance and treatment systems constructed as part of this project. Inspection, maintenance, and housekeeping action will adhere to Appendix B of MaineDEP's Chapter 500 Rules for Stormwater Management and includes but is not limited to:

- Inspection of infrastructure at regular intervals as established within Appendix B.
- Removal and proper disposal of sediment build up in conveyance systems and BMPs. This will include regular sweeping and vacuuming of the porous pavement surfaces.
- Replacement of any BMP or portion of BMP that is not operating correctly
- Proper documentation of all maintenance activity

The erosion and sediment control plan and maintenance plan have been established to meet the Basic Standard.

# 10.0 CONCLUSION

The stormwater management system for the proposed development will mitigate negative effects due to stormwater runoff generated from the development by reducing peak discharge rates, improving water quality of stormwater runoff discharged from the project site, and eliminating potential erosion and sedimentation due to the development. As a result there will be no adverse effects to downstream conveyance systems of properties due to stormwater runoff from this project.

# 11.0 ATTACHMENTS

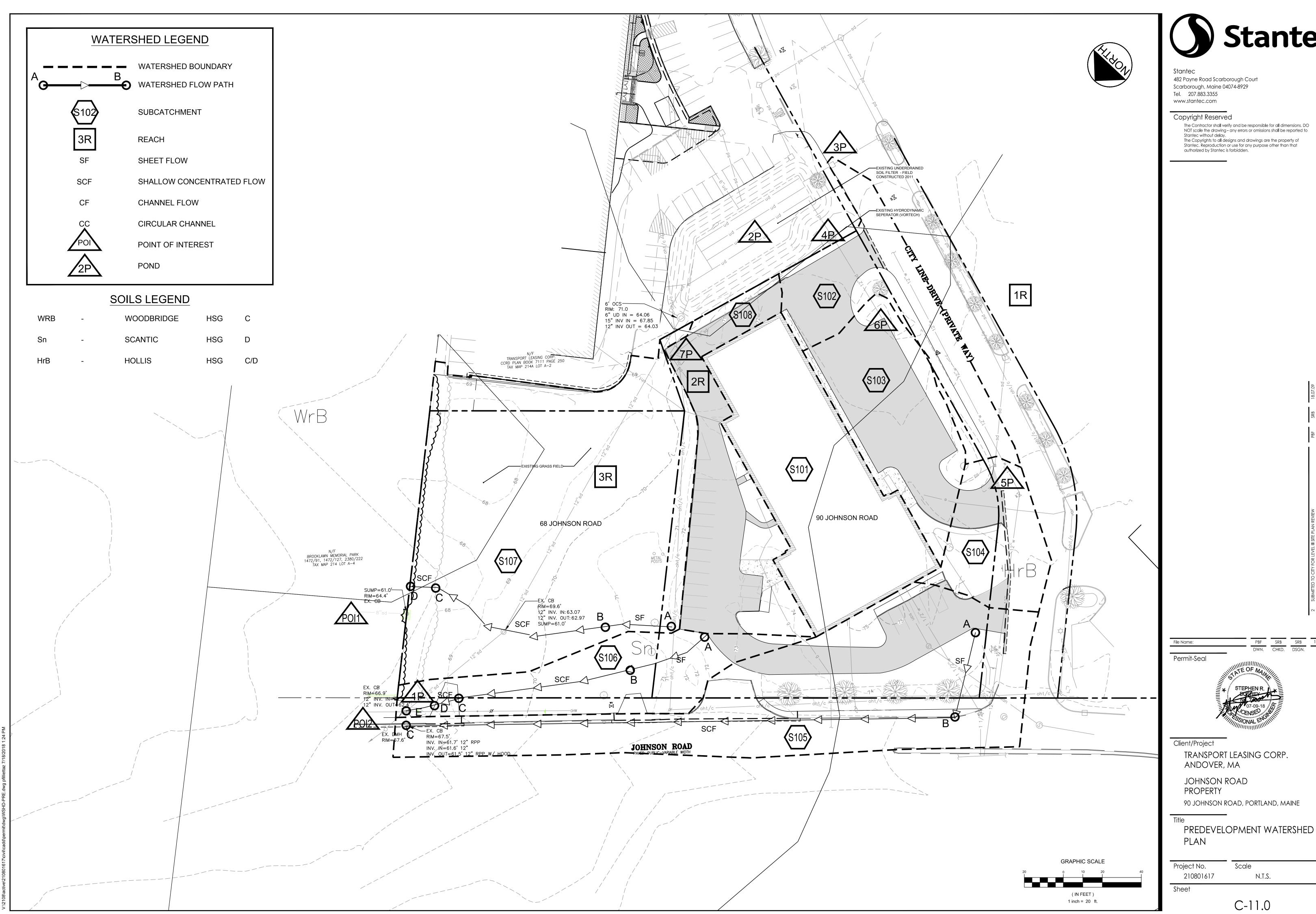
Attachment A – Predevelopment Watershed Plan

Attachment B – Post Development Watershed Plan

Attachment C – Predevelopment HydroCAD Computations

Attachment D – Post Development HydroCAD Computations

Attachment E – Water Quality Treatment Summary


Attachment F – Drawdown Computations

Attachment G – Redevelopment Computation

Attachment H – Stormwater Operations & Maintenance Manual

# ATTACHMENT A

PREDEVELOPMENT WATERSHED PLAN







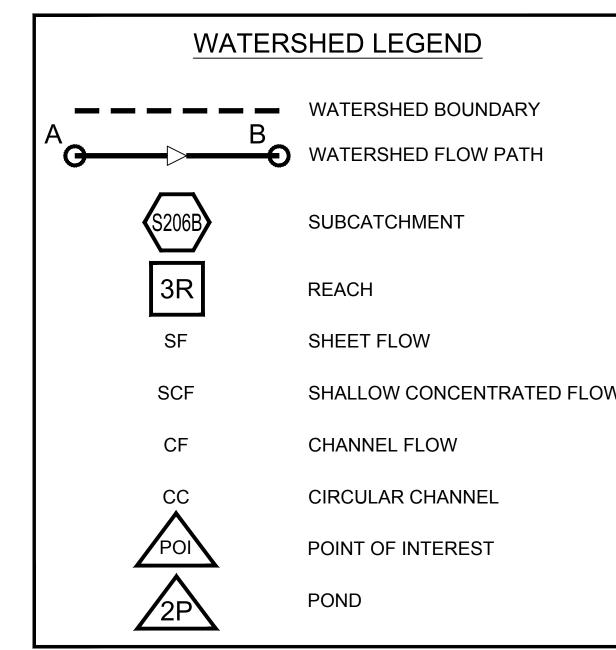
18.07.09 18.05.22 YY.MM.DD

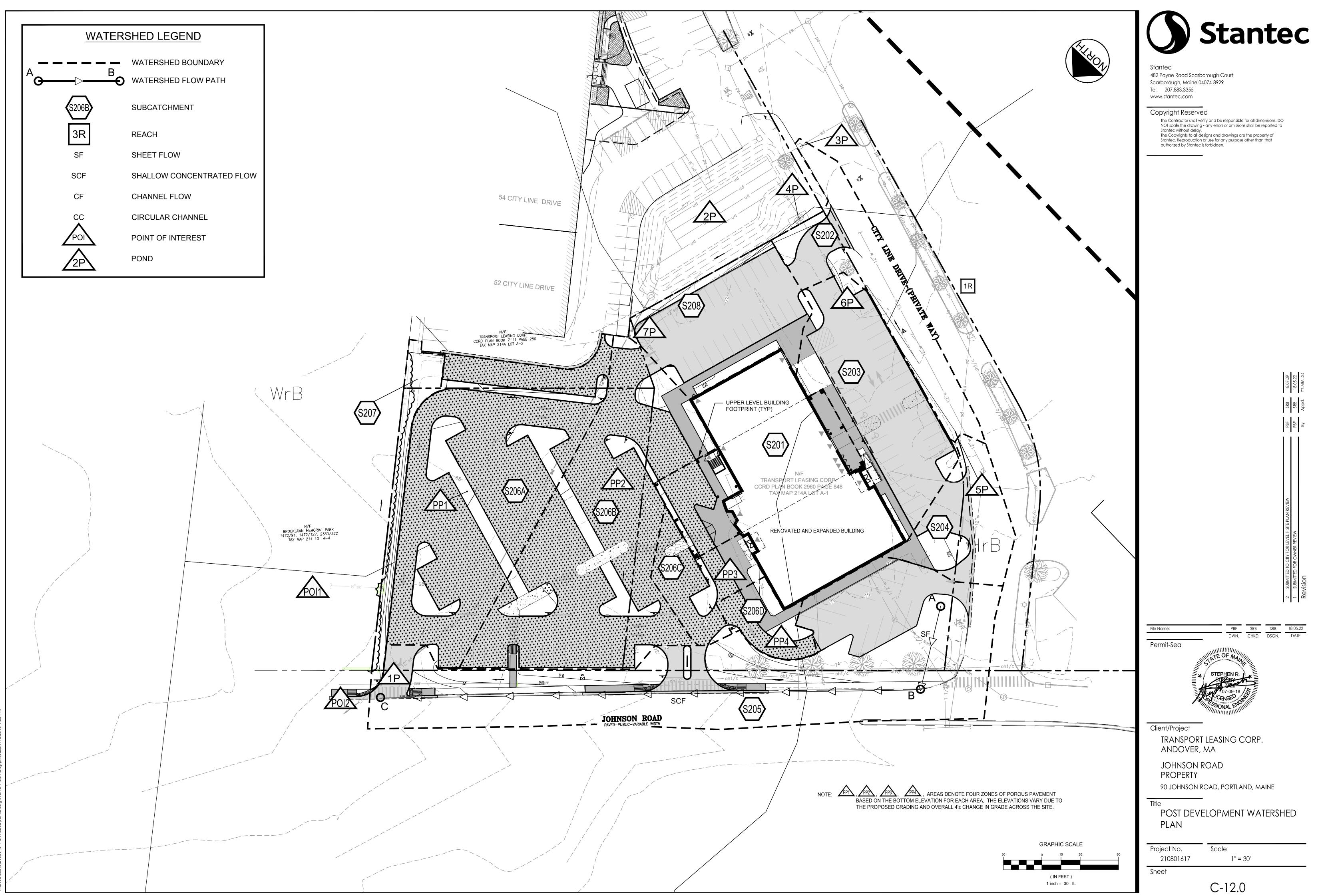
SRB SRB Appd.

PBF PBF BV

~ - Ř

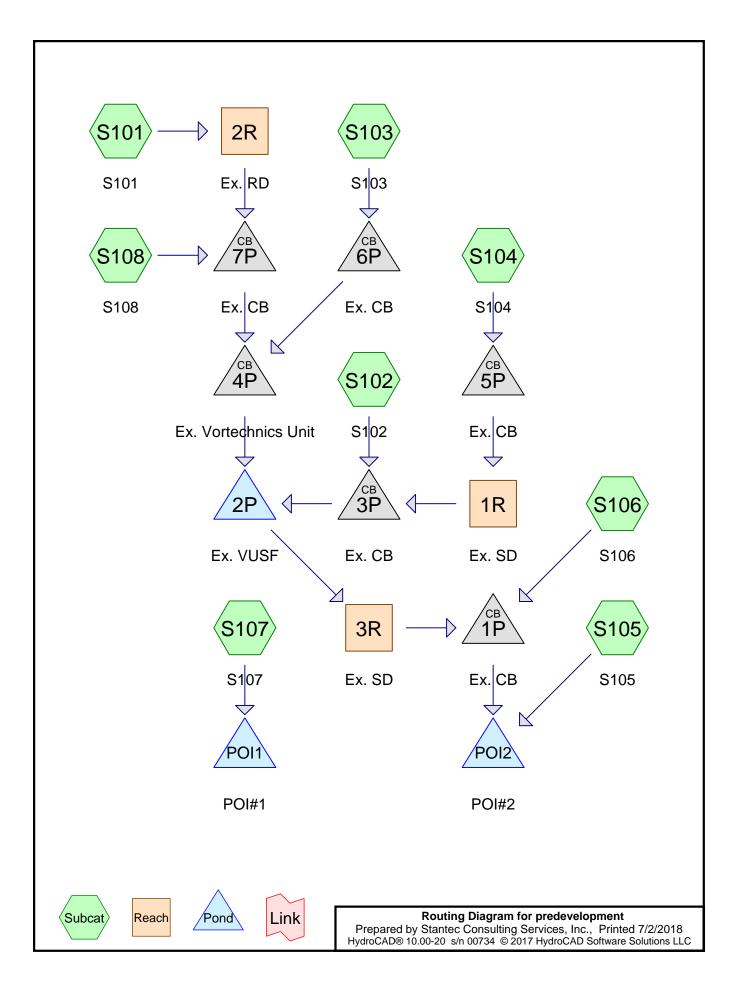
18.05.22


DATE


SRB

DSGN.

# ATTACHMENT B


# POST DEVELOPMENT WATERSHED PLAN





# ATTACHMENT C

# PREDEVELOPMENT HYDROCAD COMPUTATIONS



# Area Listing (all nodes)

| Area    | CN | Description                                                       |
|---------|----|-------------------------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                                            |
| 0.145   | 79 | 50-75% Grass cover, Fair, HSG C (S105)                            |
| 0.049   | 84 | 50-75% Grass cover, Fair, HSG D (S105)                            |
| 0.248   | 74 | >75% Grass cover, Good, HSG C (\$102, \$103, \$104, \$107, \$108) |
| 1.124   | 80 | >75% Grass cover, Good, HSG D (\$102, \$103, \$106, \$107, \$108) |
| 0.643   | 98 | Paved parking, HSG C (\$102, \$103, \$104, \$105, \$108)          |
| 0.794   | 98 | Paved parking, HSG D (\$102, \$103, \$105, \$106, \$108)          |
| 0.192   | 98 | Roofs, HSG C (S101)                                               |
| 0.273   | 98 | Roofs, HSG D (S101)                                               |
| 0.066   | 70 | Woods, Good, HSG C (S107)                                         |
| 0.040   | 77 | Woods, Good, HSG D (S106, S107)                                   |
| 3.573   | 89 | TOTAL AREA                                                        |

# Soil Listing (all nodes)

| ea Soil   | Subcatchment                                                                           |
|-----------|----------------------------------------------------------------------------------------|
| es) Group | Numbers                                                                                |
| 00 HSG A  |                                                                                        |
| 00 HSG E  |                                                                                        |
| 93 HSG C  | S101, S102, S103, S104, S105, S107, S108                                               |
| 80 HSG E  | S101, S102, S103, S105, S106, S107, S108                                               |
| 00 Other  |                                                                                        |
| 73        | TOTAL AREA                                                                             |
|           | ea Soil<br>es) Group<br>00 HSG A<br>00 HSG B<br>93 HSG C<br>80 HSG D<br>00 Other<br>73 |

| Prepared by Stantec Consulting Services, Inc.                       |   |  |  |  |  |  |
|---------------------------------------------------------------------|---|--|--|--|--|--|
| HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC | ) |  |  |  |  |  |

Printed 7/2/2018 Page 4

Ground Covers (all nodes)

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other<br>(acres) | Total<br>(acres) | Ground<br>Cover          | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|-------------------------|
| <br>0.000        | 0.000            | 0.145            | 0.049            | 0.000            | 0.194            | 50-75% Grass cover, Fair | S105                    |
| 0.000            | 0.000            | 0.248            | 1.124            | 0.000            | 1.372            | >75% Grass cover, Good   | S102, S103,             |
|                  |                  |                  |                  |                  |                  |                          | S104, S106,             |
|                  |                  |                  |                  |                  |                  |                          | S107, S108              |
| 0.000            | 0.000            | 0.643            | 0.794            | 0.000            | 1.437            | Paved parking            | S102, S103,             |
|                  |                  |                  |                  |                  |                  |                          | S104, S105,             |
|                  |                  |                  |                  |                  |                  |                          | S106, S108              |
| 0.000            | 0.000            | 0.192            | 0.273            | 0.000            | 0.465            | Roofs                    | S101                    |
| 0.000            | 0.000            | 0.066            | 0.040            | 0.000            | 0.105            | Woods, Good              | S106, S107              |
| 0.000            | 0.000            | 1.293            | 2.280            | 0.000            | 3.573            | TOTAL AREA               |                         |

#### Summary for Subcatchment \$101: \$101

Runoff = 1.41 cfs @ 12.07 hrs, Volume= 0.111 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (st   | ) CN    | Description   |              |               |  |
|------------|---------|---------------|--------------|---------------|--|
| 11,87      | 9 98    | Roofs, HSG D  |              |               |  |
| 8,38       | 1 98    | Roofs, HSG C  |              |               |  |
| 20,26      | ) 98    | Weighted Av   | rerage       |               |  |
| 20,26      | C       | 100.00% Impe  | ervious Area | а             |  |
|            |         |               |              |               |  |
| Tc Leng    |         | pe Velocity   |              | Description   |  |
| (min) (fee | et) (ft | /ft) (ft/sec) | (cfs)        |               |  |
| 5.0        |         |               |              | Direct Entry, |  |

### Summary for Subcatchment \$102: \$102

Runoff = 0.76 cfs @ 12.07 hrs, Volume= 0.056 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (sf)                 | CN                                    | Description                                             |  |  |  |  |
|---------------------------|---------------------------------------|---------------------------------------------------------|--|--|--|--|
| 5,739                     | 98                                    | Paved parking, HSG D                                    |  |  |  |  |
| 3,723                     | 98                                    | Paved parking, HSG C                                    |  |  |  |  |
| 1,258                     | 80                                    | >75% Grass cover, Good, HSG D                           |  |  |  |  |
| 1,230                     | 74                                    | >75% Grass cover, Good, HSG C                           |  |  |  |  |
| 11,950                    | 94                                    | Weighted Average                                        |  |  |  |  |
| 2,488                     |                                       | 20.82% Pervious Area                                    |  |  |  |  |
| 9,462                     |                                       | 79.18% Impervious Area                                  |  |  |  |  |
| Tc Length<br>(min) (feet) |                                       | pe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |  |  |  |  |
| 5.0                       |                                       | Direct Entry,                                           |  |  |  |  |
|                           | Summary for Subcatchment \$103: \$103 |                                                         |  |  |  |  |

Runoff = 0.78 cfs @ 12.07 hrs, Volume= 0.058 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)    | CN     | Description                      |
|--------------|--------|----------------------------------|
| 6,090        | 98     | Paved parking, HSG C             |
| 4,098        | 98     | Paved parking, HSG D             |
| 1,212        | 74     | >75% Grass cover, Good, HSG C    |
| 897          | 80     | >75% Grass cover, Good, HSG D    |
| 12,297       | 94     | Weighted Average                 |
| 2,109        |        | 17.15% Pervious Area             |
| 10,188       |        | 82.85% Impervious Area           |
|              |        |                                  |
| Tc Length    | n Slo  | pe Velocity Capacity Description |
| (min) (feet) | ) (ft. | /ft) (ft/sec) (cfs)              |
| 5.0          |        | Direct Entry,                    |
|              |        |                                  |

# Summary for Subcatchment \$104: \$104

Runoff = 0.52 cfs @ 12.07 hrs, Volume= 0.040 af, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (sf) (  | CN   | Description                      |
|--------------|------|----------------------------------|
| 464          | 74   | >75% Grass cover, Good, HSG C    |
| 7,115        | 98   | Paved parking, HSG C             |
| 7,579        | 97   | Weighted Average                 |
| 464          |      | 6.12% Pervious Area              |
| 7,115        |      | 93.88% Impervious Area           |
|              |      |                                  |
| Tc Length    | Slop | pe Velocity Capacity Description |
| (min) (feet) | (ft/ | /ft) (ft/sec) (cfs)              |
| 5.0          |      | Direct Entry,                    |
|              |      |                                  |

#### Summary for Subcatchment \$105: \$105

Runoff = 1.71 cfs @ 12.14 hrs, Volume= 0.146 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (s | sf) CN | Description                     |
|---------|--------|---------------------------------|
| 2,13    | 37 84  | 50-75% Grass cover, Fair, HSG D |
| 6,29    | 97 79  | 50-75% Grass cover, Fair, HSG C |
| 13,21   | 18 98  | Paved parking, HSG D            |
| 10,73   | 36 98  | Paved parking, HSG C            |
| 32,38   | 38 93  | Weighted Average                |
| 8,43    | 34     | 26.04% Pervious Area            |
| 23,95   | 54     | 73.96% Impervious Area          |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - | 7.5         |                  | 0.0100           | 0.11                 | (013)             | Shoot Flow A to P                 |
|   | 7.5         | 50               | 0.0100           | 0.11                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |
|   |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |
| _ | 10.2        | 470              | Total            |                      |                   |                                   |

#### Summary for Subcatchment S106: S106

Runoff = 0.41 cfs @ 12.13 hrs, Volume= 0.033 af, Depth= 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| A     | rea (sf) | CN I   | Description  |              |                                   |
|-------|----------|--------|--------------|--------------|-----------------------------------|
|       | 1,431    | 98 I   | Paved parki  | ng, HSG D    |                                   |
|       | 210      | 77 \   | Noods, Goo   | od, HSG D    |                                   |
|       | 10,099   | 80 :   | >75% Grass   | cover, Goo   | d, HSG D                          |
|       | 11,740   | 82 \   | Neighted A   | verage       |                                   |
|       | 10,309   | 8      | 37.81% Pervi | ous Ărea     |                                   |
|       | 1,431    |        | 12.19% Impe  | ervious Area |                                   |
|       |          |        |              |              |                                   |
| Tc    | Length   | Slope  | 5            | Capacity     | Description                       |
| (min) | (feet)   | (ft/ft | ) (ft/sec)   | (cfs)        |                                   |
| 4.3   | 50       | 0.040  | 0 0.19       |              | Sheet Flow, A to B                |
|       |          |        |              |              | Grass: Short n= 0.150 P2= 3.10"   |
| 3.9   | 165      | 0.010  | 0 0.70       |              | Shallow Concentrated Flow, B to C |
|       |          |        |              |              | Short Grass Pasture Kv= 7.0 fps   |
| 0.1   | 18       | 0.040  | 0 4.06       |              | Shallow Concentrated Flow, C to D |
|       |          |        |              |              | Paved Kv= 20.3 fps                |
| 0.3   | 25       | 0.040  | 0 1.40       |              | Shallow Concentrated Flow, D to E |
|       |          |        |              |              | Short Grass Pasture Kv= 7.0 fps   |
| 8.6   | 258      | Total  |              |              |                                   |

#### Summary for Subcatchment S107: S107

Runoff = 1.36 cfs @ 12.11 hrs, Volume= 0.105 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| <br>Area (sf) | CN | Description                   |
|---------------|----|-------------------------------|
| 33,773        | 80 | >75% Grass cover, Good, HSG D |
| 7,381         | 74 | >75% Grass cover, Good, HSG C |
| 2,860         | 70 | Woods, Good, HSG C            |
| <br>1,518     | 77 | Woods, Good, HSG D            |
| 45,532        | 78 | Weighted Average              |
| 45,532        |    | 100.00% Pervious Area         |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   |       | Length |         | <b>J</b> |       | Description                       |
|---|-------|--------|---------|----------|-------|-----------------------------------|
| _ | (min) | (feet) | (ft/ft) | (ft/sec) | (cfs) |                                   |
|   | 4.9   | 50     | 0.0300  | 0.17     |       | Sheet Flow, A to B                |
|   |       |        |         |          |       | Grass: Short n= 0.150 P2= 3.10"   |
|   | 1.8   | 145    | 0.0370  | 1.35     |       | Shallow Concentrated Flow, B to C |
|   |       |        |         |          |       | Short Grass Pasture Kv= 7.0 fps   |
|   | 0.4   | 20     | 0.0300  | 0.87     |       | Shallow Concentrated Flow, C to D |
| _ |       |        |         |          |       | Woodland Kv= 5.0 fps              |
| _ | 7.1   | 215    | Total   |          |       |                                   |

Summary for Subcatchment S108: S108

Runoff = 0.86 cfs @ 12.07 hrs, Volume= 0.063 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

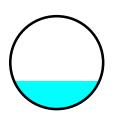
| Area (sf)   | CN    | Description                      |
|-------------|-------|----------------------------------|
| 10,119      | 98    | Paved parking, HSG D             |
| 330         | 98    | Paved parking, HSG C             |
| 2,951       | 80    | >75% Grass cover, Good, HSG D    |
| 506         | 74    | >75% Grass cover, Good, HSG C    |
| 13,906      | 93    | Weighted Average                 |
| 3,457       |       | 24.86% Pervious Area             |
| 10,449      |       | 75.14% Impervious Area           |
|             |       |                                  |
| Tc Length   | n Slo | pe Velocity Capacity Description |
| (min) (feet | ) (ft | /ft) (ft/sec) (cfs)              |

(min) (feet) (ft/ft) (ft/sec) 5.0

Direct Entry,

#### Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.174 ac, 93.88% Impervious, Inflow Depth = 2.76" for 2-Yr event


 Inflow =
 0.52 cfs @ 12.07 hrs, Volume=
 0.040 af

 Outflow =
 0.50 cfs @ 12.09 hrs, Volume=
 0.040 af, Atten= 3%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.57 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.84 fps, Avg. Travel Time= 1.9 min

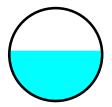
Peak Storage= 19 cf @ 12.08 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



# Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.465 ac,100.00% Impervious, Inflow Depth = 2.87" for 2-Yr event


 Inflow =
 1.41 cfs @ 12.07 hrs, Volume=
 0.111 af

 Outflow =
 1.38 cfs @ 12.08 hrs, Volume=
 0.111 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.21 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 1.0 min

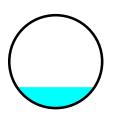
Peak Storage= 27 cf @ 12.08 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



# Summary for Reach 3R: Ex. SD

 Inflow Area =
 1.515 ac, 87.09% Impervious, Inflow Depth = 2.59" for 2-Yr event


 Inflow =
 0.28 cfs @ 13.58 hrs, Volume=
 0.327 af

 Outflow =
 0.28 cfs @ 13.60 hrs, Volume=
 0.327 af, Atten= 0%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.11 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.58 fps, Avg. Travel Time= 1.0 min

Peak Storage= 12 cf @ 13.59 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



# Summary for Pond 1P: Ex. CB

| Inflow Are | a = | 1.784 ac, 75.78% Impervious, Inflow Depth = 2.42" for 2-Yr event |  |
|------------|-----|------------------------------------------------------------------|--|
| Inflow     | =   | 0.60 cfs @ 12.13 hrs, Volume= 0.360 af                           |  |
| Outflow    | =   | 0.60 cfs @ 12.13 hrs, Volume= 0.360 af, Atten= 0%, Lag= 0.0 min  |  |
| Primary    | =   | 0.60 cfs @ 12.13 hrs, Volume= 0.360 af                           |  |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 62.84' @ 12.13 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                   |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 62.40' | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= $62.40' / 61.70'$ S= $0.0700' / Cc = 0.900$<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=0.59 cfs @ 12.13 hrs HW=62.84' (Free Discharge) **1=Culvert** (Inlet Controls 0.59 cfs @ 1.78 fps)

### Summary for Pond 2P: Ex. VUSF

| Inflow Are | a = | 1.515 ac, 87.09% Impervious, Inflow Depth = 2.59" for 2-Yr event  |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 4.25 cfs @ 12.08 hrs, Volume= 0.327 af                            |
| Outflow    | =   | 0.28 cfs @ 13.58 hrs, Volume= 0.327 af, Atten= 93%, Lag= 90.3 min |
| Primary    | =   | 0.28 cfs @ 13.58 hrs, Volume= 0.327 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.99'@ 13.58 hrs Surf.Area= 5,495 sf Storage= 6,804 cf

Plug-Flow detention time= 290.7 min calculated for 0.327 af (100% of inflow) Center-of-Mass det. time= 290.6 min (1,066.3 - 775.7)

| Volume    | Invert Av | ail.Storage | Storag | ge Description  |                                  |
|-----------|-----------|-------------|--------|-----------------|----------------------------------|
| #1        | 66.50'    | 13,049 cf   | Custo  | m Stage Data (I | Prismatic) Listed below (Recalc) |
| Elevation | Surf.Area | a Inc.      | Store  | Cum.Store       |                                  |
| (feet)    | (sq-ft    | ) (cubic-   | feet)  | (cubic-feet)    |                                  |
| 66.50     | 3,670     | )           | 0      | 0               |                                  |
| 67.00     | 4,26      | l ·         | 1,983  | 1,983           |                                  |
| 68.00     | 5,510     | ) .         | 4,886  | 6,868           |                                  |
| 69.00     | 6,85      | (           | 6,181  | 13,049          |                                  |

Type III 24-hr 2-Yr Rainfall=3.10" Printed 7/2/2018 Page 11

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate $C = 0.600$                           |
| #3     | Device 2 | 67.85' | <b>15.0" Vert. Orifice/Grate</b> C= 0.600                      |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=0.28 cfs@13.58 hrs HW=67.99' (Free Discharge)

-1=Culvert (Passes 0.28 cfs of 3.93 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 0.07 cfs @ 1.27 fps) **3=Orifice/Grate** (Passes 0.07 cfs of 0.09 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.21 cfs @ 9.44 fps)

**5=Exfiltration** (Passes 0.21 cfs of 0.31 cfs potential flow)

## Summary for Pond 3P: Ex. CB

| Inflow Are | a = | 0.448 ac, 84.88% Impervious, Inflow Depth = 2.57" for 2-Yr e | vent       |
|------------|-----|--------------------------------------------------------------|------------|
| Inflow     | =   | 1.25 cfs @ 12.08 hrs, Volume= 0.096 af                       |            |
| Outflow    | =   | 1.25 cfs @ 12.08 hrs, Volume= 0.096 af, Atten= 0%, Lag       | g= 0.0 min |
| Primary    | =   | 1.25 cfs @ 12.08 hrs, Volume= 0.096 af                       |            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.09' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=1.21 cfs @ 12.08 hrs HW=67.08' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 1.21 cfs @ 2.58 fps)

### Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Area = |   | 1.067 ac, 88.02% Impervious, Inflow Depth = 2. | .60" for 2-Yr event     |
|---------------|---|------------------------------------------------|-------------------------|
| Inflow        | = | 3.00 cfs @ 12.08 hrs, Volume= 0.231 af         |                         |
| Outflow       | = | 3.00 cfs @ 12.08 hrs, Volume= 0.231 af,        | Atten= 0%, Lag= 0.0 min |
| Primary       | = | 3.00 cfs @ 12.08 hrs, Volume= 0.231 af         |                         |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.15'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                   |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= 30.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= $66.60' / 66.50'$ S= $0.0033' / Cc = 0.900$<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

Primary OutFlow Max=2.91 cfs@12.08 hrs HW=68.10' (Free Discharge) **1=Culvert** (Barrel Controls 2.91 cfs @ 3.70 fps)

### Summary for Pond 5P: Ex. CB

 Inflow Area =
 0.174 ac, 93.88% Impervious, Inflow Depth = 2.76" for 2-Yr event

 Inflow =
 0.52 cfs @ 12.07 hrs, Volume=
 0.040 af

 Outflow =
 0.52 cfs @ 12.07 hrs, Volume=
 0.040 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.52 cfs @ 12.07 hrs, Volume=
 0.040 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.95' @ 12.07 hrs

| Device Routing Invert Outlet Devices                                                                                                                                                                                     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| #1 Primary 68.54' <b>12.0" Round Culvert</b> L= 78.0' CPP, projecting, no headwall, Ke=<br>Inlet / Outlet Invert= 68.54' / 67.21' S= 0.0171 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf | ).900 |

**Primary OutFlow** Max=0.50 cfs @ 12.07 hrs HW=68.94' (Free Discharge) **1=Culvert** (Inlet Controls 0.50 cfs @ 1.70 fps)

### Summary for Pond 6P: Ex. CB

| Inflow Area = |   | 0.282 ac, 82.85% Impervious, Inflov | w Depth = 2.45" for 2-Yr event    |
|---------------|---|-------------------------------------|-----------------------------------|
| Inflow        | = | 0.78 cfs @ 12.07 hrs, Volume=       | 0.058 af                          |
| Outflow       | = | 0.78 cfs @ 12.07 hrs, Volume=       | 0.058 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 0.78 cfs @ 12.07 hrs, Volume=       | 0.058 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.40' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.80' | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.80' / 66.60' S= 0.0028 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

Primary OutFlow Max=0.75 cfs @ 12.07 hrs HW=67.39' (Free Discharge) 1=Culvert (Barrel Controls 0.75 cfs @ 2.26 fps)

#### Summary for Pond 7P: Ex. CB

| Inflow Area = |   | 0.784 ac, 89.88% Impervious, Inflow Depth = 2.6 | 6" for 2-Yrevent       |
|---------------|---|-------------------------------------------------|------------------------|
| Inflow        | = | 2.23 cfs @ 12.08 hrs, Volume= 0.174 af          |                        |
| Outflow       | = | 2.23 cfs @ 12.08 hrs, Volume= 0.174 af, A       | tten= 0%, Lag= 0.0 min |
| Primary       | = | 2.23 cfs @ 12.08 hrs, Volume= 0.174 af          |                        |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.41' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                 |
|--------|---------|--------|----------------------------------------------------------------|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |
|        |         |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |

**Primary OutFlow** Max=2.16 cfs @ 12.08 hrs HW=68.35' (Free Discharge) **1=Culvert** (Barrel Controls 2.16 cfs @ 2.75 fps)

# Summary for Pond POI1: POI#1

| Inflow Area = |   | 1.045 ac,  | 0.00% Impervious, Inflow | Depth = 1.20" for 2-Yr event      |
|---------------|---|------------|--------------------------|-----------------------------------|
| Inflow        | = | 1.36 cfs @ | 12.11 hrs, Volume=       | 0.105 af                          |
| Primary       | = | 1.36 cfs @ | 12.11 hrs, Volume=       | 0.105 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

#### Summary for Pond POI2: POI#2

| Inflow Are | a = | 2.528 ac, 75.24% Impervious  | s, Inflow Depth = 2.40" for 2-Yr event |
|------------|-----|------------------------------|----------------------------------------|
| Inflow     | =   | 2.31 cfs @ 12.14 hrs, Volume | e= 0.505 af                            |
| Primary    | =   | 2.31 cfs @ 12.14 hrs, Volume | e= 0.505 af, Atten= 0%, Lag= 0.0 min   |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

#### Summary for Subcatchment \$101: \$101

Runoff = 2.10 cfs @ 12.07 hrs, Volume= 0.169 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Α     | vrea (sf) | CN   | Description   |              |               |  |
|-------|-----------|------|---------------|--------------|---------------|--|
|       | 11,879    | 98   | Roofs, HSG E  | )            |               |  |
|       | 8,381     | 98   | Roofs, HSG C  | 2            |               |  |
|       | 20,260    | 98   | Weighted Av   | verage       |               |  |
|       | 20,260    |      | 100.00% Imp   | ervious Area | а             |  |
| т     |           |      |               |              |               |  |
| TC    |           |      |               | Capacity     | Description   |  |
| (min) | (feet)    | (ft/ | /ft) (ft/sec) | (cfs)        |               |  |
| 5.0   |           |      |               |              | Direct Entry, |  |

#### Summary for Subcatchment \$102: \$102

Runoff = 1.18 cfs @ 12.07 hrs, Volume= 0.089 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Area (sf              | ) CN                                  | Description                                              |  |  |  |  |
|-----------------------|---------------------------------------|----------------------------------------------------------|--|--|--|--|
| 5,739                 | 98                                    | Paved parking, HSG D                                     |  |  |  |  |
| 3,723                 | 3 98                                  | Paved parking, HSG C                                     |  |  |  |  |
| 1,258                 | 8 80                                  | >75% Grass cover, Good, HSG D                            |  |  |  |  |
| 1,230                 | ) 74                                  | >75% Grass cover, Good, HSG C                            |  |  |  |  |
| 11,950                | ) 94                                  | Weighted Average                                         |  |  |  |  |
| 2,488                 | 3                                     | 20.82% Pervious Area                                     |  |  |  |  |
| 9,462                 | 2                                     | 79.18% Impervious Area                                   |  |  |  |  |
| Tc Leng<br>(min) (fee |                                       | ppe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |  |  |  |  |
| 5.0                   |                                       | Direct Entry,                                            |  |  |  |  |
|                       | Summary for Subcatchment \$103: \$103 |                                                          |  |  |  |  |

Runoff = 1.22 cfs @ 12.07 hrs, Volume= 0.092 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)    | CN   | Description                       |
|--------------|------|-----------------------------------|
| 6,090        | 98   | Paved parking, HSG C              |
| 4,098        | 98   | Paved parking, HSG D              |
| 1,212        | 74   | >75% Grass cover, Good, HSG C     |
| 897          | 80   | >75% Grass cover, Good, HSG D     |
| 12,297       | 94   | Weighted Average                  |
| 2,109        |      | 17.15% Pervious Area              |
| 10,188       |      | 82.85% Impervious Area            |
|              |      |                                   |
| Tc Length    | Slo  | ope Velocity Capacity Description |
| (min) (feet) | (ft, | :/ft) (ft/sec) (Cfs)              |
| 5.0          |      | Direct Entry,                     |

# Summary for Subcatchment \$104: \$104

Runoff = 0.78 cfs @ 12.07 hrs, Volume= 0.062 af, Depth= 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| 5.0   |         |      |               |              | Direct Entry, |
|-------|---------|------|---------------|--------------|---------------|
| (min) | (feet)  | (ft/ | 'ft) (ft/sec) | (cfs)        |               |
| Tc    | Length  | Slop | pe Velocity   | Capacity     | Description   |
|       | 7,115   |      | 93.88% Impe   | ervious Area | 3             |
|       | 464     |      | 6.12% Pervio  | us Area      |               |
|       | 7,579   | 97   | Weighted Av   | verage       |               |
|       | 7,115   | 98   | Paved parki   | ng, HSG C    |               |
|       | 464     | 74   | >75% Grass of | cover, Good  | d, HSG C      |
| Ar    | ea (sf) | CN   | Description   |              |               |

### Summary for Subcatchment S105: S105

Runoff = 2.70 cfs @ 12.14 hrs, Volume= 0.236 af, Depth= 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Are | ea (sf) | CN | Description                     |
|-----|---------|----|---------------------------------|
|     | 2,137   | 84 | 50-75% Grass cover, Fair, HSG D |
|     | 6,297   | 79 | 50-75% Grass cover, Fair, HSG C |
| -   | 13,218  | 98 | Paved parking, HSG D            |
|     | 10,736  | 98 | Paved parking, HSG C            |
|     | 32,388  | 93 | Weighted Average                |
|     | 8,434   |    | 26.04% Pervious Area            |
|     | 23,954  |    | 73.96% Impervious Area          |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - | 7.5         | 50               | 0.0100           | 0.11                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |
| _ |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |
| - | 10.2        | 470              | Total            |                      |                   |                                   |

#### Summary for Subcatchment S106: S106

Runoff = 0.78 cfs @ 12.12 hrs, Volume= 0.061 af, Depth= 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| A     | rea (sf) | CN I   | Description  |              |                                   |
|-------|----------|--------|--------------|--------------|-----------------------------------|
|       | 1,431    | 98 I   | Paved parki  | ng, HSG D    |                                   |
|       | 210      | 77 \   | Noods, Goo   | d, HSG D     |                                   |
|       | 10,099   | 80 :   | >75% Grass ( | cover, Good  | d, HSG D                          |
|       | 11,740   | 82 V   | Neighted A   | verage       |                                   |
|       | 10,309   | 8      | 37.81% Pervi | ous Ārea     |                                   |
|       | 1,431    |        | 12.19% Impe  | ervious Area |                                   |
|       |          |        |              |              |                                   |
| TC    | Length   | Slope  | 5            |              | Description                       |
| (min) | (feet)   | (ft/ft | ) (ft/sec)   | (cfs)        |                                   |
| 4.3   | 50       | 0.040  | 0 0.19       |              | Sheet Flow, A to B                |
|       |          |        |              |              | Grass: Short n= 0.150 P2= 3.10"   |
| 3.9   | 165      | 0.010  | 0 0.70       |              | Shallow Concentrated Flow, B to C |
|       |          |        |              |              | Short Grass Pasture Kv= 7.0 fps   |
| 0.1   | 18       | 0.040  | 0 4.06       |              | Shallow Concentrated Flow, C to D |
|       |          |        |              |              | Paved Kv= 20.3 fps                |
| 0.3   | 25       | 0.040  | 0 1.40       |              | Shallow Concentrated Flow, D to E |
|       |          |        |              |              | Short Grass Pasture Kv= 7.0 fps   |
| 8.6   | 258      | Total  |              |              |                                   |

#### Summary for Subcatchment S107: S107

Runoff = 2.77 cfs @ 12.11 hrs, Volume= 0.207 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| <br>Area (sf) | CN | Description                   |
|---------------|----|-------------------------------|
| 33,773        | 80 | >75% Grass cover, Good, HSG D |
| 7,381         | 74 | >75% Grass cover, Good, HSG C |
| 2,860         | 70 | Woods, Good, HSG C            |
| <br>1,518     | 77 | Woods, Good, HSG D            |
| 45,532        | 78 | Weighted Average              |
| 45,532        |    | 100.00% Pervious Area         |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - |             | (ieel)           | (10,10)          | (11/300)             | (CIS)             |                                   |
|   | 4.9         | 50               | 0.0300           | 0.17                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 1.8         | 145              | 0.0370           | 1.35                 |                   | Shallow Concentrated Flow, B to C |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps   |
|   | 0.4         | 20               | 0.0300           | 0.87                 |                   | Shallow Concentrated Flow, C to D |
| _ |             |                  |                  |                      |                   | Woodland Kv= 5.0 fps              |
|   | 7.1         | 215              | Total            |                      |                   |                                   |

Summary for Subcatchment S108: S108

Runoff = 1.35 cfs @ 12.07 hrs, Volume= 0.101 af, Depth= 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

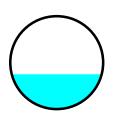
| Area (sf)   | CN    | Description                      |
|-------------|-------|----------------------------------|
| 10,119      | 98    | Paved parking, HSG D             |
| 330         | 98    | Paved parking, HSG C             |
| 2,951       | 80    | >75% Grass cover, Good, HSG D    |
| 506         | 74    | >75% Grass cover, Good, HSG C    |
| 13,906      | 93    | Weighted Average                 |
| 3,457       |       | 24.86% Pervious Area             |
| 10,449      |       | 75.14% Impervious Area           |
|             |       |                                  |
| Tc Length   | n Slo | pe Velocity Capacity Description |
| (min) (feet | ) (ft | /ft) (ft/sec) (cfs)              |

(min) (feet) (ft/ft) (ft/sec) 5.0

Direct Entry,

#### Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.174 ac, 93.88% Impervious, Inflow Depth = 4.25" for 10-Yr event


 Inflow =
 0.78 cfs @ 12.07 hrs, Volume=
 0.062 af

 Outflow =
 0.76 cfs @ 12.09 hrs, Volume=
 0.062 af, Atten= 3%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.88 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.95 fps, Avg. Travel Time= 1.7 min

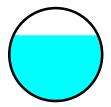
Peak Storage= 25 cf @ 12.08 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



# Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.465 ac,100.00% Impervious, Inflow Depth = 4.36" for 10-Yr event


 Inflow =
 2.10 cfs @ 12.07 hrs, Volume=
 0.169 af

 Outflow =
 2.06 cfs @ 12.08 hrs, Volume=
 0.169 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 0.9 min

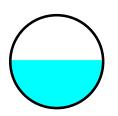
Peak Storage= 37 cf @ 12.08 hrs Average Depth at Peak Storage= 0.71' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



# Summary for Reach 3R: Ex. SD

 Inflow Area =
 1.515 ac, 87.09% Impervious, Inflow Depth = 4.07" for 10-Yr event


 Inflow =
 1.33 cfs @ 12.50 hrs, Volume=
 0.514 af

 Outflow =
 1.33 cfs @ 12.51 hrs, Volume=
 0.514 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.25 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 0.9 min

Peak Storage= 38 cf @ 12.51 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



# Summary for Pond 1P: Ex. CB

| Inflow Are | a = | 1.784 ac, 75.78% lm  | npervious, Inflow | Depth = 3.86"  | for 10-Yr event      |
|------------|-----|----------------------|-------------------|----------------|----------------------|
| Inflow     | =   | 1.59 cfs @ 12.43 hrs | , Volume=         | 0.575 af       |                      |
| Outflow    | =   | 1.59 cfs @ 12.43 hrs | , Volume=         | 0.575 af, Atte | en= 0%, Lag= 0.0 min |
| Primary    | =   | 1.59 cfs @ 12.43 hrs | , Volume=         | 0.575 af       |                      |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 63.19'@ 12.43 hrs

| Device | Routing | Invert | Outlet Devices                                                              |
|--------|---------|--------|-----------------------------------------------------------------------------|
| #1     | Primary | 62.40' | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900 |
|        |         |        | Inlet / Outlet Invert= 62.40' / 61.70' S= 0.0700 '/' Cc= 0.900              |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf                 |

**Primary OutFlow** Max=1.59 cfs @ 12.43 hrs HW=63.19' (Free Discharge) **1=Culvert** (Inlet Controls 1.59 cfs @ 2.39 fps)

### Summary for Pond 2P: Ex. VUSF

| Inflow Are | a = | 1.515 ac, 87.09% Impervious, Inflow Depth = 4.07" for 10-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 6.53 cfs @ 12.08 hrs, Volume= 0.514 af                            |
| Outflow    | =   | 1.33 cfs @ 12.50 hrs, Volume= 0.514 af, Atten= 80%, Lag= 25.4 min |
| Primary    | =   | 1.33 cfs @ 12.50 hrs, Volume= 0.514 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.47'@ 12.50 hrs Surf.Area= 6,141 sf Storage= 9,611 cf

Plug-Flow detention time= 239.4 min calculated for 0.513 af (100% of inflow) Center-of-Mass det. time= 239.6 min (1,005.1 - 765.5)

| Volume    | Invert Av | ail.Storage | Storag | ge Description |                                  |
|-----------|-----------|-------------|--------|----------------|----------------------------------|
| #1        | 66.50'    | 13,049 cf   | Custo  | m Stage Data ( | Prismatic) Listed below (Recalc) |
| Elevation | Surf.Area | a Inc.      | Store  | Cum.Store      |                                  |
| (feet)    | (sq-ft    | ) (cubic-   | -feet) | (cubic-feet)   |                                  |
| 66.50     | 3,670     | )           | 0      | 0              |                                  |
| 67.00     | 4,26      | 1           | 1,983  | 1,983          |                                  |
| 68.00     | 5,510     | ) .         | 4,886  | 6,868          |                                  |
| 69.00     | 6,85      | 1           | 6,181  | 13,049         |                                  |

Type III 24-hr 10-Yr Rainfall=4.60" Printed 7/2/2018 Page 20

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n = 0.013 Corrugated PE, smooth interior, Flow Area = 0.79 sf  |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate C= 0.600                              |
| #3     | Device 2 | 67.85' | 15.0" Vert. Orifice/Grate C= 0.600                             |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=1.33 cfs@ 12.50 hrs HW=68.47' (Free Discharge)

-**1=Culvert** (Passes 1.33 cfs of 4.17 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 1.11 cfs @ 2.68 fps) **3=Orifice/Grate** (Passes 1.11 cfs of 1.63 cfs potential flow)

**4=Orifice/Grate** (Orifice Controls 0.22 cfs @ 10.02 fps)

**5=Exfiltration** (Passes 0.22 cfs of 0.34 cfs potential flow)

## Summary for Pond 3P: Ex. CB

| Inflow Are | a = | 0.448 ac, 84.88% Impervious, Inflow Depth = 4.04" for 1 | 0-Yr event     |
|------------|-----|---------------------------------------------------------|----------------|
| Inflow     | =   | 1.92 cfs @ 12.08 hrs, Volume= 0.151 af                  |                |
| Outflow    | =   | 1.92 cfs @ 12.08 hrs, Volume= 0.151 af, Atten= 0%       | , Lag= 0.0 min |
| Primary    | =   | 1.92 cfs @ 12.08 hrs, Volume= 0.151 af                  |                |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.27'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=1.86 cfs @ 12.08 hrs HW=67.25' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 1.86 cfs @ 2.95 fps)

### Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Are | a = | 1.067 ac, 88.02% Impervious, Inflow Depth = 4.08" | for 10-Yr event     |
|------------|-----|---------------------------------------------------|---------------------|
| Inflow     | =   | 4.61 cfs @ 12.08 hrs, Volume= 0.362 af            |                     |
| Outflow    | =   | 4.61 cfs @ 12.08 hrs, Volume= 0.362 af, Atten     | n= 0%, Lag= 0.0 min |
| Primary    | =   | 4.61 cfs @ 12.08 hrs, Volume= 0.362 af            |                     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.46'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= 30.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.60' / 66.50' S= 0.0033 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |
|        |         |        | n= 0.013 Conagateur E, smoothintenol, 110W Alea- 0.77 si                                                                                                                                                     |

Primary OutFlow Max=4.46 cfs@12.08 hrs HW=69.34' (Free Discharge) **1-1=Culvert** (Inlet Controls 4.46 cfs @ 5.68 fps)

## Summary for Pond 5P: Ex. CB

| Inflow Area | a = | 0.174 ac, 93.88% Impervious, Inflow Depth = 4.25 | 5" for 10-Yr event    |
|-------------|-----|--------------------------------------------------|-----------------------|
| Inflow      | =   | 0.78 cfs @ 12.07 hrs, Volume= 0.062 af           |                       |
| Outflow     | =   | 0.78 cfs @ 12.07 hrs, Volume= 0.062 af, At       | ten= 0%, Lag= 0.0 min |
| Primary     | =   | 0.78 cfs @ 12.07 hrs, Volume= 0.062 af           |                       |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.05' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                       |
|--------|---------|--------|----------------------------------------------------------------------|
| #1     | Primary | 68.54' | 12.0" Round Culvert L= 78.0' CPP, projecting, no headwall, Ke= 0.900 |
|        |         |        | Inlet / Outlet Invert= 68.54' / 67.21' S= 0.0171 '/' Cc= 0.900       |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf          |

**Primary OutFlow** Max=0.75 cfs @ 12.07 hrs HW=69.04' (Free Discharge) **1=Culvert** (Inlet Controls 0.75 cfs @ 1.90 fps)

# Summary for Pond 6P: Ex. CB

| Inflow Area | a = | 0.282 ac, 82.85% Impervious, Inflow | Depth = 3.91" for 10-Yr event     |
|-------------|-----|-------------------------------------|-----------------------------------|
| Inflow      | =   | 1.22 cfs @ 12.07 hrs, Volume=       | 0.092 af                          |
| Outflow     | =   | 1.22 cfs @ 12.07 hrs, Volume=       | 0.092 af, Atten= 0%, Lag= 0.0 min |
| Primary     | =   | 1.22 cfs @ 12.07 hrs, Volume=       | 0.092 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.58' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.80' | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.80' / 66.60' S= 0.0028 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=1.17 cfs @ 12.07 hrs HW=67.56' (Free Discharge) **1=Culvert** (Barrel Controls 1.17 cfs @ 2.54 fps)

### Summary for Pond 7P: Ex. CB

| Inflow Area = |   | 0.784 ac, 89.88% Impervious, Inflow Depth = 4.14" for 10 | )-Yr event   |
|---------------|---|----------------------------------------------------------|--------------|
| Inflow        | = | 3.40 cfs @ 12.08 hrs, Volume= 0.270 af                   |              |
| Outflow       | = | 3.40 cfs @ 12.08 hrs, Volume= 0.270 af, Atten= 0%,       | Lag= 0.0 min |
| Primary       | = | 3.40 cfs @ 12.08 hrs, Volume= 0.270 af                   |              |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.46' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                 |  |  |
|--------|---------|--------|----------------------------------------------------------------|--|--|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |  |  |
|        | -       |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |  |  |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |  |  |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |  |  |

**Primary OutFlow** Max=3.29 cfs @ 12.08 hrs HW=69.35' (Free Discharge) **1=Culvert** (Barrel Controls 3.29 cfs @ 4.20 fps)

# Summary for Pond POI1: POI#1

| Inflow Area = |   | 1.045 ac, | 0.00% Impervious, Inflow | Depth = 2.38" for 10-Yr event     |
|---------------|---|-----------|--------------------------|-----------------------------------|
| Inflow        | = | 2.77 cfs@ | 12.11 hrs, Volume=       | 0.207 af                          |
| Primary       | = | 2.77 cfs@ | 12.11 hrs, Volume=       | 0.207 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

#### Summary for Pond POI2: POI#2

| Inflow Area = |   | 2.528 ac, 7 | 5.24% Impervious, Inflo | ow Depth = 3.85" | for 10-Yr event     |
|---------------|---|-------------|-------------------------|------------------|---------------------|
| Inflow        | = | 3.91 cfs@   | 12.16 hrs, Volume=      | 0.811 af         |                     |
| Primary       | = | 3.91 cfs @  | 12.16 hrs, Volume=      | 0.811 af, Atte   | n= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# Summary for Subcatchment S101: S101

Runoff = 2.66 cfs @ 12.07 hrs, Volume= 0.216 af, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (s          | f) CN  | Description     |             |               |  |
|------------------|--------|-----------------|-------------|---------------|--|
| 11,87            | 9 98   | Roofs, HSG E    | )           |               |  |
| 8,38             | 1 98   | Roofs, HSG C    | 2           |               |  |
| 20,26            | 0 98   | 8 Weighted Av   | verage      |               |  |
| 20,26            | 0      | 100.00% Imp     | ervious Are | а             |  |
|                  |        |                 |             |               |  |
| Tc Leng          |        |                 | Capacity    | Description   |  |
| <u>(min)</u> (fe | et) (t | ft/ft) (ft/sec) | (cfs)       |               |  |
| 5.0              |        |                 |             | Direct Entry, |  |

# Summary for Subcatchment \$102: \$102

Runoff = 1.52 cfs @ 12.07 hrs, Volume= 0.117 af, Depth= 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (sf)                 | CN                                    | Description                                             |  |  |  |  |
|---------------------------|---------------------------------------|---------------------------------------------------------|--|--|--|--|
| 5,739                     | 98                                    | Paved parking, HSG D                                    |  |  |  |  |
| 3,723                     | 98                                    | Paved parking, HSG C                                    |  |  |  |  |
| 1,258                     | 80                                    | >75% Grass cover, Good, HSG D                           |  |  |  |  |
| 1,230                     | 74                                    | >75% Grass cover, Good, HSG C                           |  |  |  |  |
| 11,950                    | 94                                    | Weighted Average                                        |  |  |  |  |
| 2,488                     |                                       | 20.82% Pervious Area                                    |  |  |  |  |
| 9,462                     | 9,462 79.18% Impervious Area          |                                                         |  |  |  |  |
| Tc Length<br>(min) (feet) |                                       | be Velocity Capacity Description<br>(ft) (ft/sec) (cfs) |  |  |  |  |
| 5.0 Direct Entry,         |                                       |                                                         |  |  |  |  |
|                           | Summary for Subcatchment \$103: \$103 |                                                         |  |  |  |  |

Runoff = 1.56 cfs @ 12.07 hrs, Volume= 0.120 af, Depth= 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)    | CN     | Description                       |  |
|--------------|--------|-----------------------------------|--|
| 6,090        | 98     | Paved parking, HSG C              |  |
| 4,098        | 98     | Paved parking, HSG D              |  |
| 1,212        | 74     | >75% Grass cover, Good, HSG C     |  |
| 897          | 80     | >75% Grass cover, Good, HSG D     |  |
| 12,297       | 94     | Weighted Average                  |  |
| 2,109        |        | 17.15% Pervious Area              |  |
| 10,188       |        | 82.85% Impervious Area            |  |
|              |        |                                   |  |
| Tc Length    | i Slo  | ope Velocity Capacity Description |  |
| (min) (feet) | ) (ft. | t/ft) (ft/sec) (Cfs)              |  |
| 5.0          |        | Direct Entry,                     |  |

# Summary for Subcatchment \$104: \$104

Runoff = 0.99 cfs @ 12.07 hrs, Volume= 0.079 af, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (sf) (  | CN   | Description                      |
|--------------|------|----------------------------------|
| 464          | 74   | >75% Grass cover, Good, HSG C    |
| 7,115        | 98   | Paved parking, HSG C             |
| 7,579        | 97   | Weighted Average                 |
| 464          |      | 6.12% Pervious Area              |
| 7,115        |      | 93.88% Impervious Area           |
|              |      |                                  |
| Tc Length    | Slop | pe Velocity Capacity Description |
| (min) (feet) | (ft/ | /ft) (ft/sec) (cfs)              |
| 5.0          |      | Direct Entry,                    |
|              |      |                                  |

#### Summary for Subcatchment \$105: \$105

Runoff = 3.48 cfs @ 12.14 hrs, Volume= 0.309 af, Depth= 4.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (s | sf) CN | Description                     |
|---------|--------|---------------------------------|
| 2,13    | 37 84  | 50-75% Grass cover, Fair, HSG D |
| 6,29    | 97 79  | 50-75% Grass cover, Fair, HSG C |
| 13,21   | 18 98  | Paved parking, HSG D            |
| 10,73   | 36 98  | Paved parking, HSG C            |
| 32,38   | 38 93  | Weighted Average                |
| 8,43    | 34     | 26.04% Pervious Area            |
| 23,95   | 54     | 73.96% Impervious Area          |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - | 7.5         | 50               | 0.0100           | 0.11                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |
| _ |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |
|   | 10.2        | 470              | Total            |                      |                   |                                   |

# Summary for Subcatchment S106: S106

Runoff = 1.08 cfs @ 12.12 hrs, Volume= 0.085 af, Depth= 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| A     | rea (sf) | CN I   | Description             |              |                                   |
|-------|----------|--------|-------------------------|--------------|-----------------------------------|
|       | 1,431    | 98 I   | 98 Paved parking, HSG D |              |                                   |
|       | 210      | 77 \   | Noods, Goo              | d, HSG D     |                                   |
|       | 10,099   | 80 :   | >75% Grass (            | cover, Good  | d, HSG D                          |
|       | 11,740   | 82 V   | Neighted A              | verage       |                                   |
|       | 10,309   | 8      | 37.81% Pervi            | ous Ārea     |                                   |
|       | 1,431    |        | 12.19% Impe             | ervious Area |                                   |
|       |          |        |                         |              |                                   |
| TC    | Length   | Slope  | 5                       |              | Description                       |
| (min) | (feet)   | (ft/ft | ) (ft/sec)              | (cfs)        |                                   |
| 4.3   | 50       | 0.040  | 0 0.19                  |              | Sheet Flow, A to B                |
|       |          |        |                         |              | Grass: Short n= 0.150 P2= 3.10"   |
| 3.9   | 165      | 0.010  | 0 0.70                  |              | Shallow Concentrated Flow, B to C |
|       |          |        |                         |              | Short Grass Pasture Kv= 7.0 fps   |
| 0.1   | 18       | 0.040  | 0 4.06                  |              | Shallow Concentrated Flow, C to D |
|       |          |        |                         |              | Paved Kv= 20.3 fps                |
| 0.3   | 25       | 0.040  | 0 1.40                  |              | Shallow Concentrated Flow, D to E |
|       |          |        |                         |              | Short Grass Pasture Kv= 7.0 fps   |
| 8.6   | 258      | Total  |                         |              |                                   |

# Summary for Subcatchment \$107: \$107

Runoff = 3.96 cfs @ 12.10 hrs, Volume= 0.296 af, Depth= 3.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| <br>Area (sf) | CN | Description                   |
|---------------|----|-------------------------------|
| 33,773        | 80 | >75% Grass cover, Good, HSG D |
| 7,381         | 74 | >75% Grass cover, Good, HSG C |
| 2,860         | 70 | Woods, Good, HSG C            |
| <br>1,518     | 77 | Woods, Good, HSG D            |
| 45,532        | 78 | Weighted Average              |
| 45,532        |    | 100.00% Pervious Area         |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - |             | (ieel)           | (10,10)          | (11/300)             | (CIS)             |                                   |
|   | 4.9         | 50               | 0.0300           | 0.17                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 1.8         | 145              | 0.0370           | 1.35                 |                   | Shallow Concentrated Flow, B to C |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps   |
|   | 0.4         | 20               | 0.0300           | 0.87                 |                   | Shallow Concentrated Flow, C to D |
| _ |             |                  |                  |                      |                   | Woodland Kv= 5.0 fps              |
|   | 7.1         | 215              | Total            |                      |                   |                                   |

#### Summary for Subcatchment S108: S108

Runoff = 1.75 cfs @ 12.07 hrs, Volume= 0.133 af, Depth= 4.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

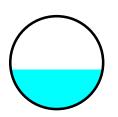
| Area (sf)                | CN | Description                                             |
|--------------------------|----|---------------------------------------------------------|
| 10,119                   | 98 | Paved parking, HSG D                                    |
| 330                      | 98 | Paved parking, HSG C                                    |
| 2,951                    | 80 | >75% Grass cover, Good, HSG D                           |
| 506                      | 74 | >75% Grass cover, Good, HSG C                           |
| 13,906                   | 93 | Weighted Average                                        |
| 3,457                    |    | 24.86% Pervious Area                                    |
| 10,449                   |    | 75.14% Impervious Area                                  |
| Tc Length                |    |                                                         |
| Tc Length<br>(min) (feet |    | pe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |

(min) (feet) (ft/ft) (ft/sec) 5.0

Direct Entry,

#### Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.174 ac, 93.88% Impervious, Inflow Depth = 5.44" for 25-Yr event


 Inflow =
 0.99 cfs @ 12.07 hrs, Volume=
 0.079 af

 Outflow =
 0.96 cfs @ 12.09 hrs, Volume=
 0.079 af, Atten= 3%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.07 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.02 fps, Avg. Travel Time= 1.5 min

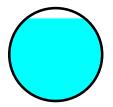
Peak Storage= 30 cf @ 12.08 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



# Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.465 ac,100.00% Impervious, Inflow Depth = 5.56" for 25-Yr event


 Inflow =
 2.66 cfs @ 12.07 hrs, Volume=
 0.216 af

 Outflow =
 2.61 cfs @ 12.08 hrs, Volume=
 0.216 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.56 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 0.8 min

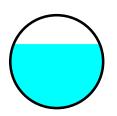
Peak Storage= 47 cf @ 12.08 hrs Average Depth at Peak Storage= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



# Summary for Reach 3R: Ex. SD

 Inflow Area =
 1.515 ac, 87.09% Impervious, Inflow Depth = 5.26" for 25-Yr event


 Inflow =
 2.06 cfs @ 12.45 hrs, Volume=
 0.664 af

 Outflow =
 2.06 cfs @ 12.46 hrs, Volume=
 0.664 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.58 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 0.9 min

Peak Storage= 54 cf @ 12.46 hrs Average Depth at Peak Storage= 0.69' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



# Summary for Pond 1P: Ex. CB

| Inflow Are | a = | 1.784 ac, 7  | 5.78% Impervious  | , Inflow Depth = 5 | .04" for 25-Yr event    |
|------------|-----|--------------|-------------------|--------------------|-------------------------|
| Inflow     | =   | 2.62 cfs @ 7 | 12.20 hrs, Volume | e= 0.749 af        |                         |
| Outflow    | =   | 2.62 cfs @ 7 | 12.20 hrs, Volume | e= 0.749 af,       | Atten= 0%, Lag= 0.0 min |
| Primary    | =   | 2.62 cfs @ 7 | 12.20 hrs, Volume | e= 0.749 af        |                         |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 63.67' @ 12.20 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                   |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary |        | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= $62.40' / 61.70'$ S= $0.0700' / Cc = 0.900$<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=2.62 cfs @ 12.20 hrs HW=63.67' (Free Discharge) **1=Culvert** (Inlet Controls 2.62 cfs @ 3.33 fps)

# Summary for Pond 2P: Ex. VUSF

| Inflow Are | a = | 1.515 ac, 87.09% Impervious, Inflow Depth = 5.26" for 25-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 8.34 cfs @ 12.08 hrs, Volume= 0.664 af                            |
| Outflow    | =   | 2.06 cfs @ 12.45 hrs, Volume= 0.664 af, Atten= 75%, Lag= 22.4 min |
| Primary    | =   | 2.06 cfs @ 12.45 hrs, Volume= 0.664 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.85'@ 12.45 hrs Surf.Area= 6,645 sf Storage= 12,013 cf

Plug-Flow detention time= 213.0 min calculated for 0.663 af (100% of inflow) Center-of-Mass det. time= 213.3 min (973.4 - 760.2)

| Volume              | Invert A         | vail.Storage | Storag         | ge Description            |                                  |
|---------------------|------------------|--------------|----------------|---------------------------|----------------------------------|
| #1                  | 66.50'           | 13,049 cf    | Custo          | m Stage Data (I           | Prismatic) Listed below (Recalc) |
| Elevation<br>(feet) | Surf.Are<br>(sq- |              | Store<br>feet) | Cum.Store<br>(cubic-feet) |                                  |
| 66.50               | 3,6              | 70           | 0              | 0                         |                                  |
| 67.00               | 4,2              | 61           | 1,983          | 1,983                     |                                  |
| 68.00               | 5,5              | 10           | 4,886          | 6,868                     |                                  |
| 69.00               | 6,8              | 51           | 6,181          | 13,049                    |                                  |

Type III 24-hr 25-Yr Rainfall=5.80" Printed 7/2/2018 Page 29

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n = 0.013 Corrugated PE, smooth interior, Flow Area = 0.79 sf  |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate C= 0.600                              |
| #3     | Device 2 | 67.85' | 15.0" Vert. Orifice/Grate C= 0.600                             |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=2.06 cfs@12.45 hrs HW=68.85' (Free Discharge)

-1=Culvert (Passes 2.06 cfs of 4.34 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 1.84 cfs @ 3.73 fps) **3=Orifice/Grate** (Passes 1.84 cfs of 3.56 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.23 cfs @ 10.44 fps)

**5=Exfiltration** (Passes 0.23 cfs of 0.37 cfs potential flow)

# Summary for Pond 3P: Ex. CB

| Inflow Area = |   | 0.448 ac, 84.88% Impervious, Inflo | w Depth = 5.23" for 25-Yr event   |
|---------------|---|------------------------------------|-----------------------------------|
| Inflow        | = | 2.46 cfs @ 12.08 hrs, Volume=      | 0.196 af                          |
| Outflow       | = | 2.46 cfs @ 12.08 hrs, Volume=      | 0.196 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 2.46 cfs @ 12.08 hrs, Volume=      | 0.196 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.41'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=2.38 cfs @ 12.08 hrs HW=67.39' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 2.38 cfs @ 3.22 fps)

# Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Area = |   | 1.067 ac, 88.02% Impervious, Inflov | w Depth = 5.27" for 25-Yr event   |
|---------------|---|-------------------------------------|-----------------------------------|
| Inflow        | = | 5.88 cfs @ 12.08 hrs, Volume=       | 0.468 af                          |
| Outflow       | = | 5.88 cfs @ 12.08 hrs, Volume=       | 0.468 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 5.88 cfs @ 12.08 hrs, Volume=       | 0.468 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 70.95'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= 30.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.60' / 66.50' S= 0.0033 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |
|        |         |        | n= 0.013 Conagateur E, smoothintenol, 110W Alea- 0.77 si                                                                                                                                                     |

Primary OutFlow Max=5.70 cfs@12.08 hrs HW=70.74' (Free Discharge) **1=Culvert** (Inlet Controls 5.70 cfs @ 7.25 fps)

# Summary for Pond 5P: Ex. CB

Inflow Area =0.174 ac, 93.88% Impervious, Inflow Depth = 5.44" for 25-Yr eventInflow =0.99 cfs @12.07 hrs, Volume=0.079 afOutflow =0.99 cfs @12.07 hrs, Volume=0.079 af, Atten= 0%, Lag= 0.0 minPrimary =0.99 cfs @12.07 hrs, Volume=0.079 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.13' @ 12.07 hrs

| Device Routing Invert Outlet Devices                                                                                                                                                                                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| #1 Primary 68.54' <b>12.0" Round Culvert</b> L= 78.0' CPP, projecting, no headwall,<br>Inlet / Outlet Invert= 68.54' / 67.21' S= 0.0171 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf | Ke= 0.900 |

**Primary OutFlow** Max=0.95 cfs @ 12.07 hrs HW=69.12' (Free Discharge) **1=Culvert** (Inlet Controls 0.95 cfs @ 2.04 fps)

# Summary for Pond 6P: Ex. CB

| Inflow Area = |   | 0.282 ac, 82.85% Impervious, Inflov | v Depth = 5.10" for 25-Yr event   |
|---------------|---|-------------------------------------|-----------------------------------|
| Inflow        | = | 1.56 cfs @ 12.07 hrs, Volume=       | 0.120 af                          |
| Outflow       | = | 1.56 cfs @ 12.07 hrs, Volume=       | 0.120 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 1.56 cfs @ 12.07 hrs, Volume=       | 0.120 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.71'@ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                             |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.80' | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $66.80' / 66.60' = 0.0028' / Cc = 0.900$<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=1.51 cfs @ 12.07 hrs HW=67.69' (Free Discharge) **1=Culvert** (Barrel Controls 1.51 cfs @ 2.70 fps)

#### Summary for Pond 7P: Ex. CB

| Inflow Area = |   | 0.784 ac, 89.88% Impervious, Inflow Depth = 5.33" for 25-Yr event |     |
|---------------|---|-------------------------------------------------------------------|-----|
| Inflow        | = | 4.33 cfs @ 12.08 hrs, Volume= 0.348 af                            |     |
| Outflow       | = | 4.33 cfs @ 12.08 hrs, Volume= 0.348 af, Atten= 0%, Lag= 0.0 n     | nin |
| Primary       | = | 4.33 cfs @ 12.08 hrs, Volume= 0.348 af                            |     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 70.61'@ 12.08 hrs

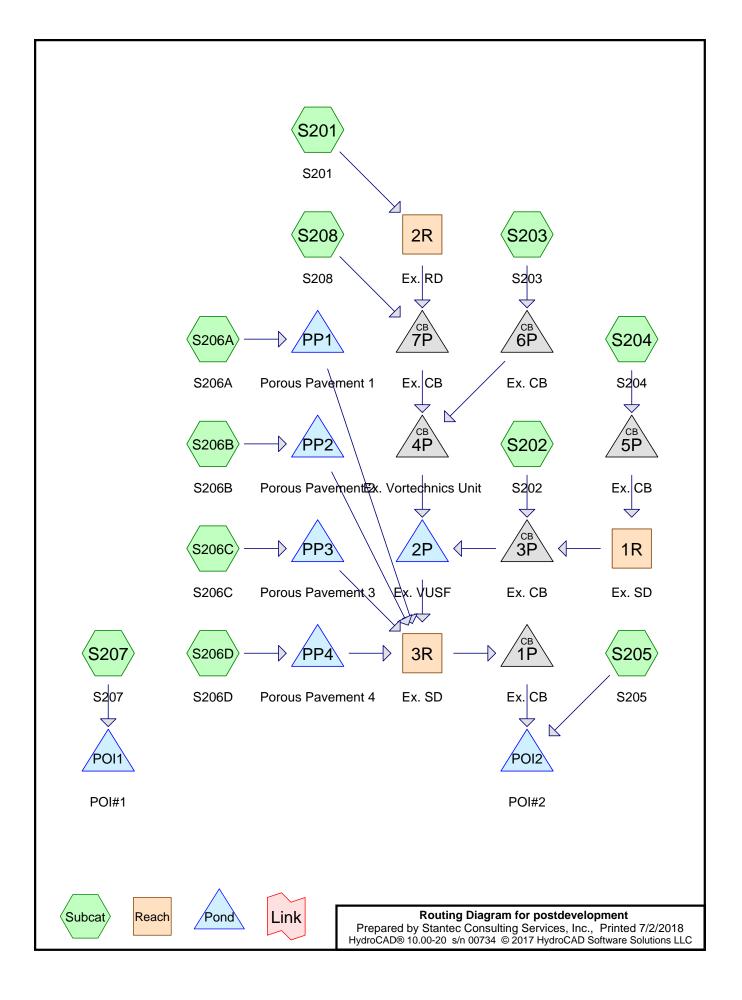
| Device | Routing | Invert | Outlet Devices                                                 |
|--------|---------|--------|----------------------------------------------------------------|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |
|        |         |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |

**Primary OutFlow** Max=4.20 cfs @ 12.08 hrs HW=70.45' (Free Discharge) **1=Culvert** (Barrel Controls 4.20 cfs @ 5.34 fps)

# Summary for Pond POI1: POI#1

| Inflow Are | a = | 1.045 ac,  | 0.00% Impervious, Inflow | Depth = 3.40" for 25-Yr event     |
|------------|-----|------------|--------------------------|-----------------------------------|
| Inflow     | =   | 3.96 cfs@  | 12.10 hrs, Volume=       | 0.296 af                          |
| Primary    | =   | 3.96 cfs @ | 12.10 hrs, Volume=       | 0.296 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


# Summary for Pond POI2: POI#2

| Inflow Are | a = | 2.528 ac, 7 | 75.24% Impervious, Inflo | pw Depth = 5.02" | for 25-Yr event      |
|------------|-----|-------------|--------------------------|------------------|----------------------|
| Inflow     | =   | 6.04 cfs@   | 12.16 hrs, Volume=       | 1.058 af         |                      |
| Primary    | =   | 6.04 cfs@   | 12.16 hrs, Volume=       | 1.058 af, Atte   | en= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# ATTACHMENT D

# POST DEVELOPMENT HYDROCAD COMPUTATIONS



# Area Listing (all nodes)

| Area    | CN | Description                                                                        |
|---------|----|------------------------------------------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                                                             |
| 0.254   | 74 | >75% Grass cover, Good, HSG C (S202, S203, S204, S205, S206A, S206D, S207, S208)   |
| 0.366   | 80 | >75% Grass cover, Good, HSG D (S202, S203, S205, S206A, S206B, S206C, S206D, S207, |
|         |    | S208)                                                                              |
| 0.802   | 98 | Paved parking, HSG C (S202, S203, S204, S205, S206A, S206D, S208)                  |
| 1.640   | 98 | Paved parking, HSG D (S202, S203, S205, S206A, S206B, S206C, S206D, S208)          |
| 0.210   | 98 | Roofs, HSG C (S201)                                                                |
| 0.282   | 98 | Roofs, HSG D (S201)                                                                |
| 0.014   | 70 | Woods, Good, HSG C (S207)                                                          |
| 0.005   | 77 | Woods, Good, HSG D (S207)                                                          |
| 3.573   | 94 | TOTAL AREA                                                                         |

# Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                                                   |
|---------|-------|----------------------------------------------------------------|
| (acres) | Group | Numbers                                                        |
| 0.000   | hsg a |                                                                |
| 0.000   | HSG B |                                                                |
| 1.280   | HSG C | S201, S202, S203, S204, S205, S206A, S206D, S207, S208         |
| 2.294   | HSG D | S201, S202, S203, S205, S206A, S206B, S206C, S206D, S207, S208 |
| 0.000   | Other |                                                                |
| 3.573   |       | TOTAL AREA                                                     |

**postdevelopment** Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

Printed 7/2/2018 Page 4

Ground Covers (all nodes)

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other<br>(acres) | Total<br>(acres) | Ground<br>Cover        | Subcatchment<br>Numbers                                                    |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|----------------------------------------------------------------------------|
| 0.000            | 0.000            | 0.254            | 0.366            | 0.000            | 0.621            | >75% Grass cover, Good | S202, S203,<br>S204, S205,<br>S206A, S206B,<br>S206C, S206D,<br>S207, S208 |
| 0.000            | 0.000            | 0.802            | 1.640            | 0.000            | 2.442            | Paved parking          | S202, S203,<br>S204, S205,<br>S206A, S206B,<br>S206C, S206D,<br>S208       |
| 0.000            | 0.000            | 0.210            | 0.282            | 0.000            | 0.491            | Roofs                  | S201                                                                       |
| 0.000            | 0.000            | 0.014            | 0.005            | 0.000            | 0.019            | Woods, Good            | S207                                                                       |
| 0.000            | 0.000            | 1.280            | 2.294            | 0.000            | 3.573            | TOTAL AREA             |                                                                            |

# Summary for Subcatchment S201: S201

Runoff = 1.49 cfs @ 12.07 hrs, Volume= 0.117 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (s          | ) CN    | Description                       |
|------------------|---------|-----------------------------------|
| 12,27            | 1 98    | Roofs, HSG D                      |
| 9,12             | 7 98    | Roofs, HSG C                      |
| 21,39            | 8 98    | Weighted Average                  |
| 21,39            | 8       | 100.00% Impervious Area           |
|                  |         |                                   |
| Tc Leng          | yth Sic | ppe Velocity Capacity Description |
| <u>(min)</u> (fe | et) (ft | t/ft) (ft/sec) (cfs)              |
| 5.0              |         | Direct Entry,                     |

# Summary for Subcatchment S202: S202

Runoff = 0.56 cfs @ 12.07 hrs, Volume= 0.040 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Ar          | ea (sf)                             | CN                       | Description                                             |  |  |  |
|-------------|-------------------------------------|--------------------------|---------------------------------------------------------|--|--|--|
|             | 3,185                               | 98                       | Paved parking, HSG D                                    |  |  |  |
|             | 3,505                               | 98                       | Paved parking, HSG C                                    |  |  |  |
|             | 1,579                               | 80                       | >75% Grass cover, Good, HSG D                           |  |  |  |
|             | 1,053                               | 74                       | >75% Grass cover, Good, HSG C                           |  |  |  |
|             | 9,322                               | 92                       | Weighted Average                                        |  |  |  |
|             | 2,632                               |                          | 28.23% Pervious Area                                    |  |  |  |
|             | 6,690                               | 0 71.77% Impervious Area |                                                         |  |  |  |
| Tc<br>(min) | Length<br>(feet)                    |                          | pe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |  |  |  |
| 5.0         |                                     |                          | Direct Entry,                                           |  |  |  |
|             | Summary for Subcatchment S203: S203 |                          |                                                         |  |  |  |

Runoff = 0.86 cfs @ 12.07 hrs, Volume= 0.067 af, Depth= 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| CN     | Description                      |
|--------|----------------------------------|
| 98     | Paved parking, HSG C             |
| 98     | Paved parking, HSG D             |
| 74     | >75% Grass cover, Good, HSG C    |
| 80     | >75% Grass cover, Good, HSG D    |
| 97     | Weighted Average                 |
|        | 4.22% Pervious Area              |
|        | 95.78% Impervious Area           |
|        |                                  |
| i Slo  | pe Velocity Capacity Description |
| ) (ft. | (ft) (ft/sec) (cfs)              |
|        | Direct Entry,                    |
|        | 98<br>98<br>74<br>80             |

# Summary for Subcatchment S204: S204

Runoff = 0.40 cfs @ 12.07 hrs, Volume= 0.030 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Ar    | ea (sf) | CN   | Description   |              |               |
|-------|---------|------|---------------|--------------|---------------|
|       | 1,038   | 74   | >75% Grass    | cover, Good  | d, HSG C      |
|       | 5,313   | 98   | Paved parki   | ng, HSG C    |               |
|       | 6,351   | 94   | Weighted A    | verage       |               |
|       | 1,038   |      | 16.34% Pervi  | ous Área     |               |
|       | 5,313   |      | 83.66% Impe   | ervious Area | а             |
|       |         |      |               |              |               |
| Tc    | Length  | Slop | J             |              | •             |
| (min) | (feet)  | (ft/ | 'ft) (ft/sec) | (cfs)        |               |
| 5.0   |         |      |               |              | Direct Entry, |
|       |         |      |               |              | -             |

#### Summary for Subcatchment S205: S205

Runoff = 1.78 cfs @ 12.14 hrs, Volume= 0.150 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

|                                        | Area (sf) | CN                                     | Description            |  |  |
|----------------------------------------|-----------|----------------------------------------|------------------------|--|--|
|                                        | 5,415     | 5,415 80 >75% Grass cover, Good, HSG D |                        |  |  |
| 4,992 74 >75% Grass cover, Good, HSG C |           |                                        |                        |  |  |
| 12,697 98 Paved parking, HSG D         |           |                                        |                        |  |  |
|                                        | 11,718    | 98                                     | Paved parking, HSG C   |  |  |
|                                        | 34,822    | 92                                     | Weighted Average       |  |  |
|                                        | 10,407    |                                        | 29.89% Pervious Area   |  |  |
|                                        | 24,415    |                                        | 70.11% Impervious Area |  |  |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - | 7.5         |                  | 0.0100           | 0.11                 | (013)             | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |
| _ |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |
|   | 10.2        | 470              | Total            |                      |                   |                                   |

# Summary for Subcatchment S206A: S206A

Runoff = 1.64 cfs @ 12.07 hrs, Volume= 0.123 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (sf)    | CN   | Description                      |
|--------------|------|----------------------------------|
| 14,994       | 98   | Paved parking, HSG D             |
| 2,860        | 80   | >75% Grass cover, Good, HSG D    |
| 5,893        | 98   | Paved parking, HSG C             |
| 1,403        | 74   | >75% Grass cover, Good, HSG C    |
| 25,150       | 95   | Weighted Average                 |
| 4,263        |      | 16.95% Pervious Area             |
| 20,887       |      | 83.05% Impervious Area           |
|              |      |                                  |
| Tc Length    | Slo  | pe Velocity Capacity Description |
| (min) (feet) | (ft/ | /ft) (ft/sec) (cfs)              |
| 5.0          |      | Direct Entry,                    |
|              |      |                                  |

# Summary for Subcatchment S206B: S206B

Runoff = 1.69 cfs @ 12.07 hrs, Volume= 0.128 af, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| A     | rea (sf)                   | CN   | Description   |              |               |
|-------|----------------------------|------|---------------|--------------|---------------|
|       | 3,346                      | 80   | >75% Grass of | cover, Good  | od, HSG D     |
|       | 21,909                     | 98   | Paved parki   | ng, HSG D    |               |
|       | 25,255                     | 96   | Weighted A    | verage       |               |
|       | 3,346 13.25% Pervious Area |      |               |              |               |
|       | 21,909                     |      | 86.75% Impe   | ervious Area | a             |
|       |                            |      |               |              |               |
| Tc    | Length                     | Slop | be Velocity   | Capacity     | y Description |
| (min) | (feet)                     | (ft/ | 'ft) (ft/sec) | (cfs)        |               |
| 5.0   |                            |      |               |              | Direct Entry, |
|       |                            |      |               |              |               |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

# Summary for Subcatchment S206C: S206C

Runoff = 0.31 cfs @ 12.07 hrs, Volume= 0.024 af, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (sf) CN    | Description                                              |  |  |  |  |  |
|-----------------|----------------------------------------------------------|--|--|--|--|--|
| 517 80          | >75% Grass cover, Good, HSG D                            |  |  |  |  |  |
| 4,184 98        | Paved parking, HSG D                                     |  |  |  |  |  |
| 4,701 96        | Weighted Average                                         |  |  |  |  |  |
| 517             | 5 5 5                                                    |  |  |  |  |  |
| 4,184           | 89.00% Impervious Area                                   |  |  |  |  |  |
|                 |                                                          |  |  |  |  |  |
| 5               | ope Velocity Capacity Description                        |  |  |  |  |  |
| (min) (feet) (f | t/ft) (ft/sec) (cfs)                                     |  |  |  |  |  |
| 5.0             | Direct Entry,                                            |  |  |  |  |  |
|                 | Summer and four Such a set a house and SOO / D. SOO / D. |  |  |  |  |  |

#### Summary for Subcatchment S206D: S206D

| Runoff = 0.18 cfs @ 12.07 hrs, Volume= | 0.014 af, Depth= 2.55" |
|----------------------------------------|------------------------|
|----------------------------------------|------------------------|

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

| Area (sf)  | CN                       | Description                      |  |  |  |
|------------|--------------------------|----------------------------------|--|--|--|
| 327        | 80                       | >75% Grass cover, Good, HSG D    |  |  |  |
| 82         | 74                       | >75% Grass cover, Good, HSG C    |  |  |  |
| 2,180      | 98                       | Paved parking, HSG D             |  |  |  |
| 239        | 98                       | Paved parking, HSG C             |  |  |  |
| 2,828      | 95                       | Weighted Average                 |  |  |  |
| 409        | 409 14.46% Pervious Area |                                  |  |  |  |
| 2,419      |                          | 85.54% Impervious Area           |  |  |  |
|            |                          |                                  |  |  |  |
| Tc Lengt   | h Slo                    | pe Velocity Capacity Description |  |  |  |
| (min) (fee | t) (ft                   | /ft) (ft/sec) (cfs)              |  |  |  |
| 5.0        |                          | Direct Entry,                    |  |  |  |

# Summary for Subcatchment S207: S207

Runoff = 0.09 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)    | CN   | Description                      |
|--------------|------|----------------------------------|
| 686          | 80   | >75% Grass cover, Good, HSG D    |
| 1,738        | 74   | >75% Grass cover, Good, HSG C    |
| 596          | 70   | Woods, Good, HSG C               |
| 222          | 77   | Woods, Good, HSG D               |
| 3,242        | 75   | Weighted Average                 |
| 3,242        |      | 100.00% Pervious Area            |
|              |      |                                  |
| Tc Length    | Slo  | pe Velocity Capacity Description |
| (min) (feet) | (ft/ | ft) (ft/sec) (cfs)               |
| 5.0          |      | Direct Entry,                    |
|              |      |                                  |

# Summary for Subcatchment S208: S208

Runoff = 0.65 cfs @ 12.07 hrs, Volume= 0.048 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Yr Rainfall=3.10"

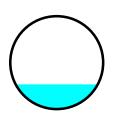
| Area (s   | f) CN   | Description                       |
|-----------|---------|-----------------------------------|
| 8,13      | 9 98    | Paved parking, HSG D              |
| 33        | 8 98    | Paved parking, HSG C              |
| 89        | 1 80    | >75% Grass cover, Good, HSG D     |
| 58        | 5 74    | >75% Grass cover, Good, HSG C     |
| 9,95      | 3 95    | Weighted Average                  |
| 1,47      | 6       | 14.83% Pervious Area              |
| 8,47      | 7       | 85.17% Impervious Area            |
|           |         |                                   |
| Tc Leng   | gth Slo | ope Velocity Capacity Description |
| (min) (fe | et) (f  | /ft) (ft/sec) (Cfs)               |

5.0

Direct Entry,

#### Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 2.45" for 2-Yr event


 Inflow =
 0.40 cfs @ 12.07 hrs, Volume=
 0.030 af

 Outflow =
 0.39 cfs @ 12.09 hrs, Volume=
 0.030 af, Atten= 3%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.40 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.79 fps, Avg. Travel Time= 2.0 min

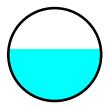
Peak Storage= 16 cf @ 12.08 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



# Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.491 ac,100.00% Impervious, Inflow Depth = 2.87" for 2-Yr event


 Inflow =
 1.49 cfs @ 12.07 hrs, Volume=
 0.117 af

 Outflow =
 1.46 cfs @ 12.08 hrs, Volume=
 0.117 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.25 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 0.9 min

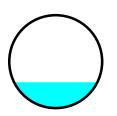
Peak Storage= 28 cf @ 12.08 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



# Summary for Reach 3R: Ex. SD

 Inflow Area =
 2.699 ac, 87.91% Impervious, Inflow Depth > 2.60" for 2-Yr event


 Inflow =
 0.42 cfs @ 12.80 hrs, Volume=
 0.586 af

 Outflow =
 0.42 cfs @ 12.80 hrs, Volume=
 0.585 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.38 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.61 fps, Avg. Travel Time= 1.0 min

Peak Storage= 17 cf @ 12.80 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



# Summary for Pond 1P: Ex. CB

| Inflow Area = |   | 2.699 ac, 87.91% Impervious, Inflow Depth > 2.60" for 2-Yr event |     |
|---------------|---|------------------------------------------------------------------|-----|
| Inflow        | = | 0.42 cfs @ 12.80 hrs, Volume= 0.585 af                           |     |
| Outflow       | = | 0.42 cfs @ 12.80 hrs, Volume= 0.585 af, Atten= 0%, Lag= 0.0 r    | min |
| Primary       | = | 0.42 cfs @ 12.80 hrs, Volume= 0.585 af                           |     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 62.77' @ 12.80 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 62.40' | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 62.40' / 61.70' S= 0.0700 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=0.42 cfs @ 12.80 hrs HW=62.77' (Free Discharge) **1=Culvert** (Inlet Controls 0.42 cfs @ 1.63 fps)

# Summary for Pond 2P: Ex. VUSF

| Inflow Area = |   | 1.369 ac, 90.48% Impervious, Inflow Depth = 2.65" for 2-Yr event   |
|---------------|---|--------------------------------------------------------------------|
| Inflow        | = | 3.89 cfs @ 12.08 hrs, Volume= 0.302 af                             |
| Outflow       | = | 0.21 cfs @ 14.00 hrs, Volume= 0.302 af, Atten= 95%, Lag= 115.4 min |
| Primary       | = | 0.21 cfs @ 14.00 hrs, Volume= 0.302 af                             |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.90'@ 14.00 hrs Surf.Area= 5,381 sf Storage= 6,305 cf

Plug-Flow detention time= 283.6 min calculated for 0.302 af (100% of inflow) Center-of-Mass det. time= 283.6 min (1,055.1 - 771.5)

| Volume    | Invert A | vail.Storage | Storac | ge Description |                                  |
|-----------|----------|--------------|--------|----------------|----------------------------------|
| #1        | 66.50'   | 13,049 cf    | Custo  | m Stage Data ( | Prismatic) Listed below (Recalc) |
| Elevation | Surf.Are | a Inc.       | Store  | Cum.Store      |                                  |
| (feet)    | (sq-f    |              |        | (cubic-feet)   |                                  |
| 66.50     | 3,67     | 0            | 0      | 0              |                                  |
| 67.00     | 4,26     | 1            | 1,983  | 1,983          |                                  |
| 68.00     | 5,51     | 0            | 4,886  | 6,868          |                                  |
| 69.00     | 6,85     | 1            | 6,181  | 13,049         |                                  |

Type III 24-hr 2-Yr Rainfall=3.10" Printed 7/2/2018 Page 12

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate C= 0.600                              |
| #3     | Device 2 | 67.85' | 15.0" Vert. Orifice/Grate C= 0.600                             |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=0.21 cfs@14.00 hrs HW=67.90' (Free Discharge)

-1=Culvert (Passes 0.21 cfs of 3.89 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 0.01 cfs @ 0.74 fps) **3=Orifice/Grate** (Passes 0.01 cfs of 0.01 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.20 cfs @ 9.33 fps)

**5=Exfiltration** (Passes 0.20 cfs of 0.30 cfs potential flow)

# Summary for Pond 3P: Ex. CB

| Inflow Area = 0.360 a |   | 0.360 ac,  | 76.58% Impervious, Ir | nflow Depth = 2.33" | for 2-Yr event       |
|-----------------------|---|------------|-----------------------|---------------------|----------------------|
| Inflow                | = | 0.94 cfs @ | 12.08 hrs, Volume=    | 0.070 af            |                      |
| Outflow               | = | 0.94 cfs @ | 12.08 hrs, Volume=    | 0.070 af, Atte      | en= 0%, Lag= 0.0 min |
| Primary               | = | 0.94 cfs @ | 12.08 hrs, Volume=    | 0.070 af            |                      |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.00'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=0.91 cfs @ 12.08 hrs HW=66.99' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.91 cfs @ 2.38 fps)

# Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Are | a = | 1.010 ac, 95.43% Impervious, Inflo | w Depth = 2.76" for 2-Yr event    |
|------------|-----|------------------------------------|-----------------------------------|
| Inflow     | =   | 2.95 cfs @ 12.08 hrs, Volume=      | 0.233 af                          |
| Outflow    | =   | 2.95 cfs @ 12.08 hrs, Volume=      | 0.233 af, Atten= 0%, Lag= 0.0 min |
| Primary    | =   | 2.95 cfs @ 12.08 hrs, Volume=      | 0.233 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.13'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                                                          |
|--------|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= $30.0^{\circ}$ CPP, projecting, no headwall, Ke= $0.900$<br>Inlet / Outlet Invert= $66.60^{\circ}$ / $66.50^{\circ}$ S= $0.0033^{\circ}$ / Cc= $0.900$<br>n= $0.013$ Corrugated PE, smooth interior, Flow Area= $0.79$ sf |

Primary OutFlow Max=2.86 cfs@12.08 hrs HW=68.08' (Free Discharge) **1=Culvert** (Barrel Controls 2.86 cfs @ 3.64 fps)

# Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

# Summary for Pond 5P: Ex. CB

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 2.45" for 2-Yr event

 Inflow =
 0.40 cfs @ 12.07 hrs, Volume=
 0.030 af

 Outflow =
 0.40 cfs @ 12.07 hrs, Volume=
 0.030 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.40 cfs @ 12.07 hrs, Volume=
 0.030 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.90'@ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                |
|--------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 68.54' | <b>12.0" Round Culvert</b> L= 78.0' CPP, projecting, no headwall, Ke= 0.900                                                   |
|        |         |        | Inlet / Outlet Invert= 68.54' / 67.21' S= 0.0171 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |
|        |         |        |                                                                                                                               |

**Primary OutFlow** Max=0.39 cfs @ 12.07 hrs HW=68.89' (Free Discharge) **1=Culvert** (Inlet Controls 0.39 cfs @ 1.59 fps)

# Summary for Pond 6P: Ex. CB

| Inflow Area = |   | 0.290 ac, 95.78% Impervious, Inflo | w Depth = 2.76" for 2-Yr event    |
|---------------|---|------------------------------------|-----------------------------------|
| Inflow        | = | 0.86 cfs @ 12.07 hrs, Volume=      | 0.067 af                          |
| Outflow       | = | 0.86 cfs @ 12.07 hrs, Volume=      | 0.067 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 0.86 cfs @ 12.07 hrs, Volume=      | 0.067 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.44' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                            |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.80' | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $66.80' / 66.60'$ S= $0.0028' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

Primary OutFlow Max=0.83 cfs @ 12.07 hrs HW=67.42' (Free Discharge)

# Summary for Pond 7P: Ex. CB

| Inflow Are | a = | 0.720 ac, 95.29% Impervious, Inflow Depth = 2.77" for 2-Yr event |     |
|------------|-----|------------------------------------------------------------------|-----|
| Inflow     | =   | 2.10 cfs @ 12.08 hrs, Volume= 0.166 af                           |     |
| Outflow    | =   | 2.10 cfs @ 12.08 hrs, Volume= 0.166 af, Atten= 0%, Lag= 0.0 m    | nin |
| Primary    | =   | 2.10 cfs @ 12.08 hrs, Volume= 0.166 af                           |     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.32' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                 |  |
|--------|---------|--------|----------------------------------------------------------------|--|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |  |
|        |         |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |  |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |  |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |  |

**Primary OutFlow** Max=2.03 cfs @ 12.08 hrs HW=68.27' (Free Discharge) **1=Culvert** (Barrel Controls 2.03 cfs @ 2.59 fps)

# Summary for Pond POI1: POI#1

| Inflow Area | a = | 0.074 ac,  | 0.00% Impervious, Inflow | Depth = 1.03" for 2-Yr event      |
|-------------|-----|------------|--------------------------|-----------------------------------|
| Inflow      | =   | 0.09 cfs@  | 12.09 hrs, Volume=       | 0.006 af                          |
| Primary     | =   | 0.09 cfs @ | 12.09 hrs, Volume=       | 0.006 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# Summary for Pond POI2: POI#2

| Inflow Are | a = | 3.499 ac, 83.85% Impervious, Inflow Depth > 2.52" for 2-Yr eve | nt      |
|------------|-----|----------------------------------------------------------------|---------|
| Inflow     | =   | 2.19 cfs @ 12.14 hrs, Volume= 0.736 af                         |         |
| Primary    | =   | 2.19 cfs @ 12.14 hrs, Volume= 0.736 af, Atten= 0%, Lag=        | 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

# Summary for Pond PP1: Porous Pavement 1

| Inflow Are | a = | 0.577 ac, 83.05% Impervious, Inflow Depth = 2.55" for 2-Yr event   |
|------------|-----|--------------------------------------------------------------------|
| Inflow     | =   | 1.64 cfs @ 12.07 hrs, Volume= 0.123 af                             |
| Outflow    | =   | 0.04 cfs @ 17.10 hrs, Volume= 0.117 af, Atten= 98%, Lag= 301.7 min |
| Primary    | =   | 0.04 cfs @ 17.10 hrs, Volume= 0.117 af                             |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.24'@ 17.10 hrs Surf.Area= 20,887 sf Storage= 3,548 cf

Plug-Flow detention time= 891.1 min calculated for 0.117 af (96% of inflow) Center-of-Mass det. time= 867.6 min (1,648.6 - 781.0)

| Volume   | Inver               | t Avail.Sto    | rage Stora  | ge Description                                   |                                  |
|----------|---------------------|----------------|-------------|--------------------------------------------------|----------------------------------|
| #1       | 67.82               | 8,3            |             |                                                  | Prismatic) Listed below (Recalc) |
|          |                     |                | 20,88       | 7 cf Overall x 4                                 | J.0% VOIDS                       |
| Elevatio | n Su                | rf.Area        | Inc.Store   | Cum.Store                                        |                                  |
| (feet    | t)                  | (sq-ft) (      | cubic-feet) | (cubic-feet)                                     |                                  |
| 67.8     | 2                   | 20,887         | 0           | 0                                                |                                  |
| 68.8     | 2                   | 20,887         | 20,887      | 20,887                                           |                                  |
| Device   | Routing             | Inver          | t Outlet De | evices                                           |                                  |
| #1       | Primary             | 66.25          | 1.0" Vert.  | Orifice/Grate                                    | C= 0.600                         |
| #2       | Device 4            | 67.82          |             |                                                  | er Surface area above 66.65'     |
| #3<br>#4 | Primary<br>Device 1 | 68.32<br>66.65 | 6.0" Vert.  | Surface area =<br>Orifice/Grate<br>Orifice/Grate | C= 0.600                         |

Primary OutFlow Max=0.04 cfs @ 17.10 hrs HW=68.24' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.04 cfs @ 6.73 fps) 4=Orifice/Grate (Passes 0.04 cfs of 1.10 cfs potential flow) 2=Exfiltration (Passes 0.04 cfs of 1.45 cfs potential flow) 3=Orifice/Grate (Controls 0.00 cfs)

# Summary for Pond PP2: Porous Pavement 2

| Inflow Are | a = | 0.580 ac, 86.75% Impervious, Inflow Depth = 2.65" for 2-Yr event   |
|------------|-----|--------------------------------------------------------------------|
| Inflow     | =   | 1.69 cfs @ 12.07 hrs, Volume= 0.128 af                             |
| Outflow    | =   | 0.05 cfs @ 15.75 hrs, Volume= 0.128 af, Atten= 97%, Lag= 221.0 min |
| Primary    | =   | 0.05 cfs @ 15.75 hrs, Volume= 0.128 af                             |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.75'@ 15.75 hrs Surf.Area= 20,435 sf Storage= 3,291 cf

Plug-Flow detention time= 585.8 min calculated for 0.128 af (100% of inflow) Center-of-Mass det. time= 586.1 min (1,360.2 - 774.0)

| Volume             | Invert   | Avail.Storage     | e Storage Description                                  |
|--------------------|----------|-------------------|--------------------------------------------------------|
| #1                 | 69.35'   | 8,174 cf          | f Custom Stage Data (Prismatic) Listed below (Recalc)  |
|                    |          |                   | 20,435 cf Overall x 40.0% Voids                        |
| Elevation<br>(feet |          |                   | c.Store Cum.Store<br>c-feet) (cubic-feet)              |
| 69.3               | 5 20,    | 435               | 0 0                                                    |
| 70.3               | 5 20,    | 435 2             | 20,435 20,435                                          |
| Device             | Routing  | Invert O          | Dutlet Devices                                         |
| #1                 | Primary  | 67.75' <b>1.2</b> | .2" Vert. Orifice/Grate C= 0.600                       |
| #2                 | Device 4 | 69.35' <b>3.0</b> | .000 in/hr Exfiltration over Surface area above 68.18' |
|                    |          | Ex                | xcluded Surface area = 0 sf                            |
| #3                 | Primary  | 69.85' <b>6.0</b> | .0" Vert. Orifice/Grate C= 0.600                       |
| #4                 | Device 1 | 68.18' <b>6.0</b> | .0" Vert. Orifice/Grate C= 0.600                       |
|                    |          |                   |                                                        |

Primary OutFlow Max=0.05 cfs @ 15.75 hrs HW=69.75' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.05 cfs @ 6.73 fps) 4=Orifice/Grate (Passes 0.05 cfs of 1.09 cfs potential flow) 2=Exfiltration (Passes 0.05 cfs of 1.42 cfs potential flow)

**3=Orifice/Grate** (Controls 0.00 cfs)

# Summary for Pond PP3: Porous Pavement 3

| Inflow Are | a = | 0.108 ac, 89.00% Impervious, Inflow Depth = 2.65" for 2-Yr event  |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 0.31 cfs @ 12.07 hrs, Volume= 0.024 af                            |
| Outflow    | =   | 0.06 cfs @ 12.50 hrs, Volume= 0.024 af, Atten= 80%, Lag= 25.6 min |
| Primary    | =   | 0.06 cfs @ 12.50 hrs, Volume= 0.024 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 70.50'@ 12.50 hrs Surf.Area= 5,149 sf Storage= 266 cf

Plug-Flow detention time= 25.8 min calculated for 0.024 af (100% of inflow) Center-of-Mass det. time= 25.8 min (799.8 - 774.0)

| Volume   | Invert   | Avail.Stora | rage Storage Description                                  |  |
|----------|----------|-------------|-----------------------------------------------------------|--|
| #1       | 70.37'   | 2,06        | 60 cf Custom Stage Data (Prismatic) Listed below (Recalc) |  |
|          |          |             | 5,149 cf Overall x 40.0% Voids                            |  |
| Elevatio | n Surf   | Area        | Inc.Store Cum.Store                                       |  |
| (feet    | )        | (sq-ft) (ci | cubic-feet) (cubic-feet)                                  |  |
| 70.3     | 7        | 5,149       | 0 0                                                       |  |
| 71.3     | 7        | 5,149       | 5,149 5,149                                               |  |
| Device   | Routina  | Invert      | Outlet Devices                                            |  |
| #1       |          | 67.75'      |                                                           |  |
|          | Primary  |             |                                                           |  |
| #2       | Device 4 | 70.37'      |                                                           |  |
|          |          |             | Excluded Surface area = 0 sf                              |  |
| #3       | Primary  | 70.87'      | 6.0" Vert. Orifice/Grate C= 0.600                         |  |
| #4       | Device 1 | 69.20'      | <b>6.0" Vert. Orifice/Grate</b> $C = 0.600$               |  |
|          |          |             |                                                           |  |

Primary OutFlow Max=0.06 cfs @ 12.50 hrs HW=70.50' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.06 cfs @ 7.91 fps) 4=Orifice/Grate (Passes 0.06 cfs of 0.97 cfs potential flow) 2=Exfiltration (Passes 0.06 cfs of 0.36 cfs potential flow) -3=Orifice/Grate (Controls 0.00 cfs)

#### Summary for Pond PP4: Porous Pavement 4

| Inflow Are | a = | 0.065 ac, 85.54% Impervious, Inflow Depth = 2.55" for 2-Yr event  |   |
|------------|-----|-------------------------------------------------------------------|---|
| Inflow     | =   | 0.18 cfs @ 12.07 hrs, Volume= 0.014 af                            |   |
| Outflow    | =   | 0.07 cfs @ 12.29 hrs, Volume= 0.014 af, Atten= 61%, Lag= 13.4 mir | ٦ |
| Primary    | =   | 0.07 cfs @ 12.29 hrs, Volume= 0.014 af                            |   |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 71.40'@ 12.29 hrs Surf.Area= 1,473 sf Storage= 73 cf

Plug-Flow detention time= 5.0 min calculated for 0.014 af (100% of inflow) Center-of-Mass det. time= 5.0 min (786.1 - 781.0)

| Volume    | Invert Av | ail.Storage | Storag | ge Description   |                                  |
|-----------|-----------|-------------|--------|------------------|----------------------------------|
| #1        | 71.28'    | 589 cf      | Custo  | m Stage Data (I  | Prismatic) Listed below (Recalc) |
|           |           |             | 1,473  | cf Overall x 40. | 0% Voids                         |
| Elevation | Surf.Area |             | Store  | Cum.Store        |                                  |
| (feet)    | (sq-ft)   | ) (cubic-   | feet)  | (cubic-feet)     |                                  |
| 71.28     | 1,473     | 3           | 0      | 0                |                                  |
| 72.28     | 1,473     | 3           | 1,473  | 1,473            |                                  |

Type III 24-hr 2-Yr Rainfall=3.10" Printed 7/2/2018 Page 17

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices              |                              |
|--------|----------|--------|-----------------------------|------------------------------|
| #1     | Primary  | 67.75' | 1.2" Vert. Orifice/Grate    | C= 0.600                     |
| #2     | Device 4 | 71.28' | 3.000 in/hr Exfiltration ov | er Surface area above 70.11' |
|        |          |        | Excluded Surface area =     | = 0 sf                       |
| #3     | Primary  | 71.78' | 6.0" Vert. Orifice/Grate    | C= 0.600                     |
| #4     | Device 1 | 70.11' | 6.0" Vert. Orifice/Grate    | C= 0.600                     |
|        |          |        |                             |                              |

**Primary OutFlow** Max=0.07 cfs@12.29 hrs HW=71.40' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.07 cfs @ 9.14 fps)

t

-4=Orifice/Grate (Passes 0.07 cfs of 0.97 cfs potential flow) -2=Exfiltration (Passes 0.07 cfs of 0.10 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

#### Summary for Subcatchment S201: S201

Runoff = 2.22 cfs @ 12.07 hrs, Volume= 0.179 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Area     | (sf) ( | CN [   | Description  |              |               |  |  |
|----------|--------|--------|--------------|--------------|---------------|--|--|
| 12,2     | 271    | 98 F   | Roofs, HSG E | )            |               |  |  |
| 9,7      | 127    | 98 F   | Roofs, HSG ( | 2            |               |  |  |
| 21,3     | 398    | 98 \   | Veighted A   | verage       |               |  |  |
| 21,3     | 398    | -      | 00.00% Imp   | ervious Area | а             |  |  |
|          |        |        |              |              |               |  |  |
|          | ngth   | Slope  | J            | Capacity     | Description   |  |  |
| (min) (i | feet)  | (ft/ft | ) (ft/sec)   | (cfs)        |               |  |  |
| 5.0      |        |        |              |              | Direct Entry, |  |  |

# Summary for Subcatchment S202: S202

Runoff = 0.89 cfs @ 12.07 hrs, Volume= 0.066 af, Depth= 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Are         | ea (sf)          | CN | Description                                               |
|-------------|------------------|----|-----------------------------------------------------------|
|             | 3,185            | 98 | Paved parking, HSG D                                      |
|             | 3,505            | 98 | Paved parking, HSG C                                      |
|             | 1,579            | 80 | >75% Grass cover, Good, HSG D                             |
|             | 1,053            | 74 | >75% Grass cover, Good, HSG C                             |
|             | 9,322            | 92 | Weighted Average                                          |
|             | 2,632            |    | 28.23% Pervious Area                                      |
|             | 6,690            |    | 71.77% Impervious Area                                    |
| Tc<br>(min) | Length<br>(feet) |    | ppe Velocity Capacity Description<br>:/ft) (ft/sec) (cfs) |
| 5.0         |                  |    | Direct Entry,                                             |
|             |                  |    | Summary for Subcatchment S203: S203                       |

Runoff = 1.30 cfs @ 12.07 hrs, Volume= 0.103 af, Depth= 4.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

Type III 24-hr 10-Yr Rainfall=4.60" Printed 7/2/2018 Page 19

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)    | CN  | Description                      |
|--------------|-----|----------------------------------|
| 7,931        | 98  | Paved parking, HSG C             |
| 4,162        | 98  | Paved parking, HSG D             |
| 191          | 74  | >75% Grass cover, Good, HSG C    |
| 342          | 80  | >75% Grass cover, Good, HSG D    |
| 12,626       | 97  | Weighted Average                 |
| 533          |     | 4.22% Pervious Area              |
| 12,093       |     | 95.78% Impervious Area           |
|              |     |                                  |
| Tc Length    | Slo | pe Velocity Capacity Description |
| (min) (feet) | (ft | (ft) (ft/sec) (cfs)              |
| 5.0          |     | Direct Entry,                    |

# Summary for Subcatchment S204: S204

Runoff = 0.63 cfs @ 12.07 hrs, Volume= 0.048 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Are   | ea (sf) | CN   | Description   |              |               |
|-------|---------|------|---------------|--------------|---------------|
|       | 1,038   | 74   | >75% Grass of | cover, Good  | d, HSG C      |
|       | 5,313   | 98   | Paved parki   | ng, HSG C    |               |
|       | 6,351   | 94   | Weighted Av   | verage       |               |
|       | 1,038   |      | 16.34% Pervi  | ous Area     |               |
|       | 5,313   |      | 83.66% Impe   | ervious Area | 3             |
|       |         |      |               |              |               |
|       | Length  |      | 5             | 1 5          | Description   |
| (min) | (feet)  | (ft/ | 'ft) (ft/sec) | (cfs)        |               |
| 5.0   |         |      |               |              | Direct Entry, |
|       |         |      |               |              |               |

#### Summary for Subcatchment S205: S205

Runoff = 2.85 cfs @ 12.14 hrs, Volume= 0.246 af, Depth= 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| <br>Area (sf) | CN | Description                   |
|---------------|----|-------------------------------|
| 5,415         | 80 | >75% Grass cover, Good, HSG D |
| 4,992         | 74 | >75% Grass cover, Good, HSG C |
| 12,697        | 98 | Paved parking, HSG D          |
| <br>11,718    | 98 | Paved parking, HSG C          |
| 34,822        | 92 | Weighted Average              |
| 10,407        |    | 29.89% Pervious Area          |
| 24,415        |    | 70.11% Impervious Area        |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| _ | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |  |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|--|
| _ | 7.5         | 50               | 0.0100           | 0.11                 |                   | Sheet Flow, A to B                |  |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |  |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |  |
| _ |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |  |
|   | 10.2        | 470              | Total            |                      |                   |                                   |  |

# Summary for Subcatchment S206A: S206A

Runoff = 2.53 cfs @ 12.07 hrs, Volume= 0.194 af, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Area (sf)    | CN  | Description                      |
|--------------|-----|----------------------------------|
| 14,994       | 98  | Paved parking, HSG D             |
| 2,860        | 80  | >75% Grass cover, Good, HSG D    |
| 5,893        | 98  | Paved parking, HSG C             |
| 1,403        | 74  | >75% Grass cover, Good, HSG C    |
| 25,150       | 95  | Weighted Average                 |
| 4,263        |     | 16.95% Pervious Area             |
| 20,887       |     | 83.05% Impervious Area           |
|              |     |                                  |
| Tc Length    | Slo | pe Velocity Capacity Description |
| (min) (feet) | (ft | /ft) (ft/sec) (cfs)              |
| 5.0          |     | Direct Entry,                    |
|              |     |                                  |

# Summary for Subcatchment S206B: S206B

Runoff = 2.57 cfs @ 12.07 hrs, Volume= 0.200 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| A     | rea (sf) | CN   | Description   |              |               |
|-------|----------|------|---------------|--------------|---------------|
|       | 3,346    | 80   | >75% Grass of | cover, Good  | od, HSG D     |
|       | 21,909   | 98   | Paved parki   | ng, HSG D    |               |
|       | 25,255   | 96   | Weighted A    | verage       |               |
|       | 3,346    |      | 13.25% Pervi  | ous Ārea     |               |
|       | 21,909   |      | 86.75% Impe   | ervious Area | a             |
|       |          |      |               |              |               |
| Tc    | Length   | Slop | be Velocity   | Capacity     | y Description |
| (min) | (feet)   | (ft/ | 'ft) (ft/sec) | (cfs)        |               |
| 5.0   |          |      |               |              | Direct Entry, |
|       |          |      |               |              |               |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

# Summary for Subcatchment S206C: S206C

Runoff = 0.48 cfs @ 12.07 hrs, Volume= 0.037 af, Depth= 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Area (sf)    | CN                       | Description   |                               |               |  |  |  |  |
|--------------|--------------------------|---------------|-------------------------------|---------------|--|--|--|--|
| 517          | 80                       | >75% Grass of | >75% Grass cover, Good, HSG D |               |  |  |  |  |
| 4,184        | 98                       | Paved parki   | ng, HSG D                     |               |  |  |  |  |
| 4,701        | 96                       | Weighted Av   | verage                        |               |  |  |  |  |
| 517          | 517 11.00% Pervious Area |               |                               |               |  |  |  |  |
| 4,184        |                          | 89.00% Impe   | rvious Area                   | 3             |  |  |  |  |
|              |                          |               |                               |               |  |  |  |  |
| Tc Length    |                          |               | 1 5                           | Description   |  |  |  |  |
| (min) (feet) | ) (ft,                   | /ft) (ft/sec) | (cfs)                         |               |  |  |  |  |
| 5.0          |                          |               |                               | Direct Entry, |  |  |  |  |
|              |                          | _             |                               |               |  |  |  |  |

#### Summary for Subcatchment S206D: S206D

| Runoff = 0.28 cfs @ 12.07 hrs, Volume= 0.022 af, Depth= 4.02 | Runoff = | 0.28 cfs @ 12.07 | hrs, Volume= | 0.022 af, Depth= 4.02 |
|--------------------------------------------------------------|----------|------------------|--------------|-----------------------|
|--------------------------------------------------------------|----------|------------------|--------------|-----------------------|

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

| Area (s   | ) CN        | Description                      |
|-----------|-------------|----------------------------------|
| 32        | 7 80        | >75% Grass cover, Good, HSG D    |
| 8         | 2 74        | >75% Grass cover, Good, HSG C    |
| 2,18      | ) <u>98</u> | Paved parking, HSG D             |
| 23        | 9 98        | Paved parking, HSG C             |
| 2,82      | 8 95        | Weighted Average                 |
| 40        | 9           | 14.46% Pervious Area             |
| 2,41      | 9           | 85.54% Impervious Area           |
|           |             |                                  |
| Tc Leng   | jth Slo     | pe Velocity Capacity Description |
| (min) (fe | et) (ft     | /ft) (ft/sec) (cfs)              |
| 5.0       |             | Direct Entry,                    |

# Summary for Subcatchment S207: S207

Runoff = 0.19 cfs @ 12.08 hrs, Volume= 0.013 af, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)                 | CN | Description                                             |
|---------------------------|----|---------------------------------------------------------|
| 686                       | 80 | >75% Grass cover, Good, HSG D                           |
| 1,738                     | 74 | >75% Grass cover, Good, HSG C                           |
| 596                       | 70 | Woods, Good, HSG C                                      |
| 222                       | 77 | Woods, Good, HSG D                                      |
| 3,242                     | 75 | Weighted Average                                        |
| 3,242                     |    | 100.00% Pervious Area                                   |
| Tc Length<br>(min) (feet) |    | pe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |
| 5.0                       |    | Direct Entry,                                           |
|                           |    |                                                         |

# Summary for Subcatchment S208: S208

Runoff = 1.00 cfs @ 12.07 hrs, Volume= 0.077 af, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Yr Rainfall=4.60"

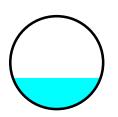
| Area (    | sf) CN  | Description                       |  |  |  |  |  |
|-----------|---------|-----------------------------------|--|--|--|--|--|
| 8,13      | 39 98   | Paved parking, HSG D              |  |  |  |  |  |
| 33        | 38 98   | Paved parking, HSG C              |  |  |  |  |  |
| 89        | 91 80   | >75% Grass cover, Good, HSG D     |  |  |  |  |  |
| 58        | 35 74   | >75% Grass cover, Good, HSG C     |  |  |  |  |  |
| 9,95      | 53 95   | Weighted Average                  |  |  |  |  |  |
| 1,47      | 76      | 14.83% Pervious Area              |  |  |  |  |  |
| 8,4       | 7       | 85.17% Impervious Area            |  |  |  |  |  |
|           |         |                                   |  |  |  |  |  |
| Tc Len    | gth SI  | ope Velocity Capacity Description |  |  |  |  |  |
| (min) (fe | eet) (t | t/ft) (ft/sec) (cfs)              |  |  |  |  |  |

5.0

Direct Entry,

# Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 3.91" for 10-Yr event


 Inflow =
 0.63 cfs @ 12.07 hrs, Volume=
 0.048 af

 Outflow =
 0.61 cfs @ 12.09 hrs, Volume=
 0.048 af, Atten= 3%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.72 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.89 fps, Avg. Travel Time= 1.8 min

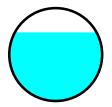
Peak Storage= 22 cf @ 12.08 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



# Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.491 ac,100.00% Impervious, Inflow Depth = 4.36" for 10-Yr event


 Inflow =
 2.22 cfs @ 12.07 hrs, Volume=
 0.179 af

 Outflow =
 2.18 cfs @ 12.08 hrs, Volume=
 0.179 af, Atten= 2%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.53 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.25 fps, Avg. Travel Time= 0.8 min

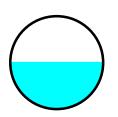
Peak Storage= 39 cf @ 12.08 hrs Average Depth at Peak Storage= 0.74' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



# Summary for Reach 3R: Ex. SD

 Inflow Area =
 2.699 ac, 87.91% Impervious, Inflow Depth > 3.96" for 10-Yr event


 Inflow =
 1.29 cfs @ 12.55 hrs, Volume=
 0.891 af

 Outflow =
 12.9 cfs @ 12.57 hrs, Volume=
 0.891 af, Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.23 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.82 fps, Avg. Travel Time= 0.9 min

Peak Storage= 38 cf @ 12.56 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



# Summary for Pond 1P: Ex. CB

| Inflow Are | a = | 2.699 ac, 87.91% Impervious, Inflow Depth > 3.96" for | or 10-Yr event   |
|------------|-----|-------------------------------------------------------|------------------|
| Inflow     | =   | 1.29 cfs @ 12.57 hrs, Volume= 0.891 af                |                  |
| Outflow    | =   | 1.29 cfs @ 12.57 hrs, Volume= 0.891 af, Atten=        | 0%, Lag= 0.0 min |
| Primary    | =   | 1.29 cfs @ 12.57 hrs, Volume= 0.891 af                |                  |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 63.09' @ 12.57 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                   |
|--------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 62.40' | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= $62.40' / 61.70'$ S= $0.0700' / Cc = 0.900$<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=1.29 cfs @ 12.57 hrs HW=63.09' (Free Discharge) **1=Culvert** (Inlet Controls 1.29 cfs @ 2.23 fps)

# Summary for Pond 2P: Ex. VUSF

| Inflow Are | a = | 1.369 ac, 90.48% Impervious, Inflow Depth = 4.13" for 10-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 5.94 cfs @ 12.08 hrs, Volume= 0.471 af                            |
| Outflow    | =   | 1.04 cfs @ 12.53 hrs, Volume= 0.471 af, Atten= 83%, Lag= 27.4 min |
| Primary    | =   | 1.04 cfs @ 12.53 hrs, Volume= 0.471 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.36'@ 12.53 hrs Surf.Area= 5,996 sf Storage= 8,954 cf

Plug-Flow detention time= 248.1 min calculated for 0.471 af (100% of inflow) Center-of-Mass det. time= 248.2 min (1,010.1 - 761.9)

| Volume    | Invert Av | vail.Storage | Storag | ge Description |                                  |
|-----------|-----------|--------------|--------|----------------|----------------------------------|
| #1        | 66.50'    | 13,049 cf    | Custo  | m Stage Data ( | Prismatic) Listed below (Recalc) |
| Elevation | Surf.Area | a Inc.       | Store  | Cum.Store      |                                  |
| (feet)    | (sq-fi    | ) (cubic-    | feet)  | (cubic-feet)   |                                  |
| 66.50     | 3,67      | 0            | 0      | 0              |                                  |
| 67.00     | 4,26      | 1            | 1,983  | 1,983          |                                  |
| 68.00     | 5,51      | 0            | 4,886  | 6,868          |                                  |
| 69.00     | 6,85      | 1            | 6,181  | 13,049         |                                  |

Type III 24-hr 10-Yr Rainfall=4.60" Printed 7/2/2018 Page 25

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate C= 0.600                              |
| #3     | Device 2 | 67.85' | <b>15.0" Vert. Orifice/Grate</b> C= 0.600                      |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=1.04 cfs@12.53 hrs HW=68.36' (Free Discharge)

-**1=Culvert** (Passes 1.04 cfs of 4.11 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 0.82 cfs @ 2.44 fps) **3=Orifice/Grate** (Passes 0.82 cfs of 1.15 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.22 cfs @ 9.89 fps)

**5=Exfiltration** (Passes 0.22 cfs of 0.33 cfs potential flow)

# Summary for Pond 3P: Ex. CB

| Inflow Area = |   | 0.360 ac, 76.58% Impervious, Inflo | w Depth = 3.79" for 10-Yr event   |
|---------------|---|------------------------------------|-----------------------------------|
| Inflow        | = | 1.49 cfs @ 12.08 hrs, Volume=      | 0.114 af                          |
| Outflow       | = | 1.49 cfs @ 12.08 hrs, Volume=      | 0.114 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 1.49 cfs @ 12.08 hrs, Volume=      | 0.114 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.15'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=1.44 cfs @ 12.08 hrs HW=67.14' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 1.44 cfs @ 2.72 fps)

#### Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Area = |   | 1.010 ac, 95.43% Impervious, Inflow De | epth = 4.25" for 10-Yr event      |
|---------------|---|----------------------------------------|-----------------------------------|
| Inflow        | = | 4.45 cfs @ 12.08 hrs, Volume= (        | 0.358 af                          |
| Outflow       | = | 4.45 cfs @ 12.08 hrs, Volume= (        | 0.358 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 4.45 cfs @ 12.08 hrs, Volume= (        | 0.358 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.31'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= 30.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.60' / 66.50' S= 0.0033 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |
|        |         |        | $\mathbf{C}$                                                                                                                                                                                                 |

Primary OutFlow Max=4.31 cfs@12.08 hrs HW=69.19' (Free Discharge) **1=Culvert** (Inlet Controls 4.31 cfs @ 5.49 fps)

# Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

# Summary for Pond 5P: Ex. CB

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 3.91" for 10-Yr event

 Inflow =
 0.63 cfs @ 12.07 hrs, Volume=
 0.048 af

 Outflow =
 0.63 cfs @ 12.07 hrs, Volume=
 0.048 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.63 cfs @ 12.07 hrs, Volume=
 0.048 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.00'@ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                            |
|--------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 68.54' | <b>12.0" Round Culvert</b> L= 78.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $68.54' / 67.21'$ S= $0.0171' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=0.61 cfs @ 12.07 hrs HW=68.99' (Free Discharge) **1=Culvert** (Inlet Controls 0.61 cfs @ 1.79 fps)

# Summary for Pond 6P: Ex. CB

| Inflow Area = |   | 0.290 ac, 95.78% Impervious, Inflow | Depth = 4.25" for 10-Yr event     |
|---------------|---|-------------------------------------|-----------------------------------|
| Inflow        | = | 1.30 cfs @ 12.07 hrs, Volume=       | 0.103 af                          |
| Outflow       | = | 1.30 cfs @ 12.07 hrs, Volume=       | 0.103 af, Atten= 0%, Lag= 0.0 min |
| Primary       | = | 1.30 cfs @ 12.07 hrs, Volume=       | 0.103 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.61' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary |        | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.80' / 66.60' S= 0.0028 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

Primary OutFlow Max=1.25 cfs @ 12.07 hrs HW=67.59' (Free Discharge) 1=Culvert (Barrel Controls 1.25 cfs @ 2.58 fps)

# Summary for Pond 7P: Ex. CB

| Inflow Area = |   | 0.720 ac, 95.29% Impervious, Inflow Depth = 4.26" for 10-Yr event |   |
|---------------|---|-------------------------------------------------------------------|---|
| Inflow        | = | 3.17 cfs @ 12.08 hrs, Volume= 0.255 af                            |   |
| Outflow       | = | 3.17 cfs @ 12.08 hrs, Volume= 0.255 af, Atten= 0%, Lag= 0.0 mi    | n |
| Primary       | = | 3.17 cfs @ 12.08 hrs, Volume= 0.255 af                            |   |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.21'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                 |
|--------|---------|--------|----------------------------------------------------------------|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |
|        | -       |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |

**Primary OutFlow** Max=3.07 cfs @ 12.08 hrs HW=69.12' (Free Discharge) **1=Culvert** (Barrel Controls 3.07 cfs @ 3.91 fps)

### Summary for Pond POI1: POI#1

| Inflow Are | a = | 0.074 ac,  | 0.00% Impervious, Inflow | Depth = 2.13" for 10-Yr event     |
|------------|-----|------------|--------------------------|-----------------------------------|
| Inflow     | =   | 0.19 cfs@  | 12.08 hrs, Volume=       | 0.013 af                          |
| Primary    | =   | 0.19 cfs @ | 12.08 hrs, Volume=       | 0.013 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

### Summary for Pond POI2: POI#2

| Inflow Are | a = | 3.499 ac, 83.85% Impervious, Inflow Depth > 3.90" for 10-Yr event |   |
|------------|-----|-------------------------------------------------------------------|---|
| Inflow     | =   | 3.35 cfs @ 12.15 hrs, Volume= 1.137 af                            |   |
| Primary    | =   | 3.35 cfs @ 12.15 hrs, Volume= 1.137 af, Atten= 0%, Lag= 0.0 mi    | n |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

### Summary for Pond PP1: Porous Pavement 1

| Inflow Are | a = | 0.577 ac, 83.05% Impervious, Inflow Depth = 4.02" for 10-Yr event  |
|------------|-----|--------------------------------------------------------------------|
| Inflow     | =   | 2.53 cfs @ 12.07 hrs, Volume= 0.194 af                             |
| Outflow    | =   | 0.10 cfs @ 14.97 hrs, Volume= 0.161 af, Atten= 96%, Lag= 174.0 min |
| Primary    | =   | 0.10 cfs @ 14.97 hrs, Volume= 0.161 af                             |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.47'@ 14.97 hrs Surf.Area= 20,887 sf Storage= 5,411 cf

Plug-Flow detention time= 780.7 min calculated for 0.160 af (83% of inflow) Center-of-Mass det. time= 712.8 min (1,482.3 - 769.5)

| Volume   | Inver    | t Avail.Sto | orage Stora         | age Description   |                                  |
|----------|----------|-------------|---------------------|-------------------|----------------------------------|
| #1       | 67.82    | ' 8,3       |                     |                   | Prismatic) Listed below (Recalc) |
|          |          |             | 20,8                | 87 cf Overall x 4 | 0.0% VOIDS                       |
| Elevatio | n Su     | rf.Area     | Inc.Store           | Cum.Store         |                                  |
| (feet    | t)       | (sq-ft)     | cubic-feet)         | (cubic-feet)      |                                  |
| 67.8     | 2        | 20,887      | 0                   | 0                 |                                  |
| 68.8     | 2        | 20,887      | 20,887              | 20,887            |                                  |
| Device   | Routina  | Inve        | rt Outlet D         |                   |                                  |
| #1       | Primary  | 66.2        |                     | Orifice/Grate     | C = 0.600                        |
| #2       | Device 4 | 67.8        |                     | •                 | er Surface area above 66.65'     |
|          |          |             | Excluded            | d Surface area =  | 0 sf                             |
| #3       | Primary  | 68.3        | 2' 6.0" Vert        | Orifice/Grate     | C= 0.600                         |
| #4       | Device 1 | 66.6        | 5' <b>6.0" Vert</b> | Orifice/Grate     | C= 0.600                         |

### Summary for Pond PP2: Porous Pavement 2

| Inflow Area | a = | 0.580 ac, 86.75% Impervious, Inflow Depth = 4.14" for 10-Yr even | nt       |
|-------------|-----|------------------------------------------------------------------|----------|
| Inflow      | =   | 2.57 cfs @ 12.07 hrs, Volume= 0.200 af                           |          |
| Outflow     | =   | 0.11 cfs @ 14.71 hrs, Volume= 0.200 af, Atten= 96%, Lag= 1       | 58.1 min |
| Primary     | =   | 0.11 cfs @ 14.71 hrs, Volume= 0.200 af                           |          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.99'@ 14.71 hrs Surf.Area= 20,435 sf Storage= 5,209 cf

Plug-Flow detention time= 727.0 min calculated for 0.200 af (100% of inflow) Center-of-Mass det. time= 726.8 min (1,490.3 - 763.5)

| Volume             | Inver    | t Avail.Sto                     | rage Stora                    | age Description                                 |
|--------------------|----------|---------------------------------|-------------------------------|-------------------------------------------------|
| #1                 | 69.35    | 8,1                             | 74 cf Custo                   | om Stage Data (Prismatic) Listed below (Recalc) |
|                    |          |                                 | 20,43                         | 35 cf Overall x 40.0% Voids                     |
| Elevation<br>(feet | t)       | rf.Area<br>(sq-ft) (c<br>20,435 | Inc.Store<br>cubic-feet)<br>0 | Cum.Store<br>(cubic-feet)<br>0                  |
| 70.3               | -        | 20,435                          | 20,435                        | 20.435                                          |
| 70.5               | 5        | 20,433                          | 20,433                        | 20,433                                          |
| Device             | Routing  | Invert                          | Outlet De                     | evices                                          |
| #1                 | Primary  | 67.75                           | 1.2" Vert.                    | Orifice/Grate C= 0.600                          |
| #2                 | Device 4 | 69.35                           | 3.000 in/h                    | hr Exfiltration over Surface area above 68.18'  |
|                    |          |                                 |                               | d Surface area = 0 sf                           |
| #3                 | Primary  | 69.85                           |                               | Orifice/Grate C= 0.600                          |
| #4                 | Device 1 | 68.18                           | 6.0" Vert.                    | Orifice/Grate C= 0.600                          |
|                    |          |                                 |                               |                                                 |

Primary OutFlow Max=0.11 cfs @ 14.71 hrs HW=69.99' (Free Discharge)1=Orifice/Grate (Orifice Controls 0.06 cfs @ 7.12 fps)4=Orifice/Grate (Passes 0.06 cfs of 1.18 cfs potential flow)

**2=Exfiltration** (Passes 0.06 cfs of 1.42 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.06 cfs @ 1.26 fps)

### Summary for Pond PP3: Porous Pavement 3

| Inflow Are | a = | 0.108 ac, 89.00% Impervious, Inflow Depth = 4.14" for 10-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 0.48 cfs @ 12.07 hrs, Volume= 0.037 af                            |
| Outflow    | =   | 0.06 cfs @ 12.59 hrs, Volume= 0.037 af, Atten= 87%, Lag= 31.4 min |
| Primary    | =   | 0.06 cfs @ 12.59 hrs, Volume= 0.037 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 70.61'@ 12.59 hrs Surf.Area= 5,149 sf Storage= 501 cf

Plug-Flow detention time= 51.6 min calculated for 0.037 af (100% of inflow) Center-of-Mass det. time= 51.6 min (815.1 - 763.5)

| Volume   | Invert   | Avail.Stora | age Storage Description                                   |
|----------|----------|-------------|-----------------------------------------------------------|
| #1       | 70.37'   | 2,06        | 50 cf Custom Stage Data (Prismatic) Listed below (Recalc) |
|          |          |             | 5,149 cf Overall x 40.0% Voids                            |
| Elevatio | n Surf   | Area        | Inc.Store Cum.Store                                       |
| (feet    | )        | (sq-ft) (ci | cubic-feet) (cubic-feet)                                  |
| 70.3     | 7        | 5,149       | 0 0                                                       |
| 71.3     | 7        | 5,149       | 5,149 5,149                                               |
|          |          |             |                                                           |
| Device   | Routing  | Invert      | Outlet Devices                                            |
| #1       | Primary  | 67.75'      | <b>1.2" Vert. Orifice/Grate</b> C= 0.600                  |
| #2       | Device 4 | 70.37'      | 3.000 in/hr Exfiltration over Surface area above 69.20'   |
|          |          |             | Excluded Surface area = 0 sf                              |
| #3       | Primary  | 70.87'      | 6.0" Vert. Orifice/Grate C= 0.600                         |
| #4       | Device 1 | 69.20'      | 6.0" Vert. Orifice/Grate C= 0.600                         |
|          |          |             |                                                           |

Primary OutFlow Max=0.06 cfs @ 12.59 hrs HW=70.61' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.06 cfs @ 8.08 fps) 4=Orifice/Grate (Passes 0.06 cfs of 1.02 cfs potential flow) 2=Exfiltration (Passes 0.06 cfs of 0.36 cfs potential flow) -3=Orifice/Grate (Controls 0.00 cfs)

### Summary for Pond PP4: Porous Pavement 4

| Inflow Are | a = | 0.065 ac, 85.54% Impervious, Inflow Depth = 4.02" for 10-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 0.28 cfs @ 12.07 hrs, Volume= 0.022 af                            |
| Outflow    | =   | 0.07 cfs @ 12.43 hrs, Volume= 0.022 af, Atten= 74%, Lag= 21.4 min |
| Primary    | =   | 0.07 cfs @ 12.43 hrs, Volume= 0.022 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 71.59'@ 12.43 hrs Surf.Area= 1,473 sf Storage= 184 cf

Plug-Flow detention time= 12.5 min calculated for 0.022 af (100% of inflow) Center-of-Mass det. time= 12.5 min ( 782.0 - 769.5 )

| Volume    | Invert Av | ail.Storage | Storag | ge Description   |                                  |
|-----------|-----------|-------------|--------|------------------|----------------------------------|
| #1        | 71.28'    | 589 cf      | Custo  | m Stage Data (I  | Prismatic) Listed below (Recalc) |
|           |           |             | 1,473  | cf Overall x 40. | 0% Voids                         |
| Elevation | Surf.Area | a Inc.      | Store  | Cum.Store        |                                  |
| (feet)    | (sq-ft    | ) (cubic-   | feet)  | (cubic-feet)     |                                  |
| 71.28     | 1,473     | 3           | 0      | 0                |                                  |
| 72.28     | 1,473     | 3 .         | 1,473  | 1,473            |                                  |

Type III 24-hr 10-Yr Rainfall=4.60" Printed 7/2/2018 Page 30

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device     | Routing  | Invert    | Outlet Devices                                          |
|------------|----------|-----------|---------------------------------------------------------|
| #1         | Primary  | 67.75'    | <b>1.2" Vert. Orifice/Grate</b> C= 0.600                |
| #2         | Device 4 | 71.28'    | 3.000 in/hr Exfiltration over Surface area above 70.11' |
|            |          |           | Excluded Surface area = $0 \text{ sf}$                  |
| #3         | Primary  | 71.78'    | 6.0" Vert. Orifice/Grate C= 0.600                       |
| #4         | Device 1 | 70.11'    | 6.0" Vert. Orifice/Grate C= 0.600                       |
|            |          |           |                                                         |
| During and |          | 07 - 6- 0 | 12.42 hrs $LWA = 71.50$ (Free Discharges)               |

**Primary OutFlow** Max=0.07 cfs@12.43 hrs HW=71.59' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.07 cfs @ 9.38 fps)

-4=Orifice/Grate (Passes 0.07 cfs of 1.05 cfs potential flow) -2=Exfiltration (Passes 0.07 cfs of 0.10 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

#### Summary for Subcatchment S201: S201

Runoff = 2.81 cfs @ 12.07 hrs, Volume= 0.228 af, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (sf)    | CN                             | Description                      |  |  |  |  |
|--------------|--------------------------------|----------------------------------|--|--|--|--|
| 12,271       | 98                             | Roofs, HSG D                     |  |  |  |  |
| 9,127        | 98                             | Roofs, HSG C                     |  |  |  |  |
| 21,398       | 98                             | Weighted Average                 |  |  |  |  |
| 21,398       | 21,398 100.00% Impervious Area |                                  |  |  |  |  |
|              |                                |                                  |  |  |  |  |
| Tc Length    |                                | pe Velocity Capacity Description |  |  |  |  |
| (min) (feet) | (ft/                           | /ft) (ft/sec) (Cfs)              |  |  |  |  |
| 5.0          |                                | Direct Entry,                    |  |  |  |  |

### Summary for Subcatchment S202: S202

Runoff = 1.16 cfs @ 12.07 hrs, Volume= 0.087 af, Depth= 4.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Ar          | ea (sf)                             | CN                           | Description                   |  |  |  |
|-------------|-------------------------------------|------------------------------|-------------------------------|--|--|--|
|             | 3,185                               | 98                           | Paved parking, HSG D          |  |  |  |
|             | 3,505                               | 98                           | Paved parking, HSG C          |  |  |  |
|             | 1,579                               | 80                           | >75% Grass cover, Good, HSG D |  |  |  |
|             | 1,053                               | 74                           | >75% Grass cover, Good, HSG C |  |  |  |
|             | 9,322                               | 92                           | Weighted Average              |  |  |  |
|             | 2,632                               | 2,632 28.23% Pervious Area   |                               |  |  |  |
|             | 6,690                               | o,690 71.77% Impervious Area |                               |  |  |  |
| Tc<br>(min) | Length<br>(feet)                    | Slo<br>(ft/                  | 5 1 5 1                       |  |  |  |
| 5.0         |                                     |                              | Direct Entry,                 |  |  |  |
|             | Summary for Subcatchment S203: S203 |                              |                               |  |  |  |

Runoff = 1.65 cfs @ 12.07 hrs, Volume= 0.132 af, Depth= 5.44"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| CN   | Description                   |  |  |  |
|------|-------------------------------|--|--|--|
| 98   | Paved parking, HSG C          |  |  |  |
| 98   | Paved parking, HSG D          |  |  |  |
| 74   | >75% Grass cover, Good, HSG C |  |  |  |
| 80   | >75% Grass cover, Good, HSG D |  |  |  |
| 97   | Weighted Average              |  |  |  |
|      | 4.22% Pervious Area           |  |  |  |
|      | 95.78% Impervious Area        |  |  |  |
|      |                               |  |  |  |
|      |                               |  |  |  |
| (ft, | /ft) (ft/sec) (Cfs)           |  |  |  |
|      | Direct Entry,                 |  |  |  |
|      | 98<br>98<br>74<br>80<br>97    |  |  |  |

### Summary for Subcatchment S204: S204

Runoff = 0.81 cfs @ 12.07 hrs, Volume= 0.062 af, Depth= 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Ar    | ea (sf) | CN   | CN Description |              |               |  |  |  |
|-------|---------|------|----------------|--------------|---------------|--|--|--|
|       | 1,038   | 74   | >75% Grass of  | cover, Good  | d, HSG C      |  |  |  |
|       | 5,313   | 98   | Paved parki    | ng, HSG C    |               |  |  |  |
|       | 6,351   | 94   | Weighted A     | verage       |               |  |  |  |
|       | 1,038   |      | 16.34% Pervi   | ous Area     |               |  |  |  |
|       | 5,313   |      | 83.66% Impe    | ervious Area | 3             |  |  |  |
| _     |         |      |                |              |               |  |  |  |
| Tc    | Length  | Slop | 5              | Capacity     | Description   |  |  |  |
| (min) | (feet)  | (ft/ | 'ft) (ft/sec)  | (cfs)        |               |  |  |  |
| 5.0   |         |      |                |              | Direct Entry, |  |  |  |
|       |         |      |                |              |               |  |  |  |

#### Summary for Subcatchment S205: S205

Runoff = 3.69 cfs @ 12.14 hrs, Volume= 0.325 af, Depth= 4.87"

| Area | (sf) | CN | Description                   |  |
|------|------|----|-------------------------------|--|
| 5,4  | 415  | 80 | 75% Grass cover, Good, HSG D  |  |
| 4,9  | 992  | 74 | >75% Grass cover, Good, HSG C |  |
| 12,0 | 697  | 98 | Paved parking, HSG D          |  |
| 11,7 | 718  | 98 | Paved parking, HSG C          |  |
| 34,8 | 822  | 92 | Weighted Average              |  |
| 10,4 | 407  |    | 29.89% Pervious Area          |  |
| 24,4 | 415  |    | 70.11% Impervious Area        |  |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

|                   | Type III 24-hr | 25-Yr Rainf | all=5.80" |
|-------------------|----------------|-------------|-----------|
|                   |                | Printed     | 7/2/2018  |
| are Solutions LLC |                |             | Page 33   |
|                   |                |             |           |

|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                       |
|---|-------------|------------------|------------------|----------------------|-------------------|-----------------------------------|
| - | 7.5         | 50               | 0.0100           | 0.11                 |                   | Sheet Flow, A to B                |
|   |             |                  |                  |                      |                   | Grass: Short n= 0.150 P2= 3.10"   |
|   | 2.7         | 420              | 0.0167           | 2.62                 |                   | Shallow Concentrated Flow, B to C |
| _ |             |                  |                  |                      |                   | Paved Kv= 20.3 fps                |
| _ | 10.2        | 470              | Total            |                      |                   |                                   |

### Summary for Subcatchment S206A: S206A

Runoff = 3.23 cfs @ 12.07 hrs, Volume= 0.251 af, Depth= 5.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Area (sf)    | CN   | Description                      |
|--------------|------|----------------------------------|
| 14,994       | 98   | Paved parking, HSG D             |
| 2,860        | 80   | >75% Grass cover, Good, HSG D    |
| 5,893        | 98   | Paved parking, HSG C             |
| 1,403        | 74   | >75% Grass cover, Good, HSG C    |
| 25,150       | 95   | Weighted Average                 |
| 4,263        |      | 16.95% Pervious Area             |
| 20,887       |      | 83.05% Impervious Area           |
|              |      |                                  |
| Tc Length    | Slo  | pe Velocity Capacity Description |
| (min) (feet) | (ft, | /ft) (ft/sec) (cfs)              |
| 5.0          |      | Direct Entry,                    |
|              |      |                                  |

### Summary for Subcatchment S206B: S206B

Runoff = 3.27 cfs @ 12.07 hrs, Volume= 0.257 af, Depth= 5.33"

| Paved parking, HSG D |  |  |  |
|----------------------|--|--|--|
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
| _                    |  |  |  |

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

### Summary for Subcatchment S206C: S206C

Runoff = 0.61 cfs @ 12.07 hrs, Volume= 0.048 af, Depth= 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| A     | rea (sf) | CN   | Description   |             |               |
|-------|----------|------|---------------|-------------|---------------|
|       | 517      | 80   | >75% Grass (  | cover, Good | d, HSG D      |
|       | 4,184    | 98   | Paved parki   | ng, HSG D   |               |
|       | 4,701    | 96   | Weighted Av   | verage      |               |
|       | 517      |      | 11.00% Pervi  | ous Ārea    |               |
|       | 4,184    |      | 89.00% Impe   | rvious Area | а             |
|       |          |      |               |             |               |
| Tc    | Length   |      |               | Capacity    | •             |
| (min) | (feet)   | (ft/ | /ft) (ft/sec) | (cfs)       |               |
| 5.0   |          |      |               |             | Direct Entry, |
|       |          |      |               |             |               |
|       |          |      | <b>6</b>      |             |               |

#### Summary for Subcatchment S206D: S206D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

| Ar    | rea (sf) | CN                       | Description                      |  |  |  |
|-------|----------|--------------------------|----------------------------------|--|--|--|
|       | 327      | 80                       | >75% Grass cover, Good, HSG D    |  |  |  |
|       | 82       | 74                       | >75% Grass cover, Good, HSG C    |  |  |  |
|       | 2,180    | 98                       | Paved parking, HSG D             |  |  |  |
|       | 239      | 98                       | Paved parking, HSG C             |  |  |  |
|       | 2,828    | ,828 95 Weighted Average |                                  |  |  |  |
|       | 409      | 14.46% Pervious Area     |                                  |  |  |  |
|       | 2,419    |                          | 85.54% Impervious Area           |  |  |  |
|       |          |                          |                                  |  |  |  |
| Tc    | Length   | Slo                      | pe Velocity Capacity Description |  |  |  |
| (min) | (feet)   | (ft/                     | /ft) (ft/sec) (Cfs)              |  |  |  |
| 5.0   |          |                          | Direct Entry,                    |  |  |  |

### Summary for Subcatchment S207: S207

Runoff = 0.27 cfs @ 12.08 hrs, Volume= 0.019 af, Depth= 3.11"

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Area (sf)                 | CN | Description                                             |
|---------------------------|----|---------------------------------------------------------|
| 686                       | 80 | >75% Grass cover, Good, HSG D                           |
| 1,738                     | 74 | >75% Grass cover, Good, HSG C                           |
| 596                       | 70 | Woods, Good, HSG C                                      |
| 222                       | 77 | Woods, Good, HSG D                                      |
| 3,242                     | 75 | Weighted Average                                        |
| 3,242                     |    | 100.00% Pervious Area                                   |
| Tc Length<br>(min) (feet) |    | pe Velocity Capacity Description<br>/ft) (ft/sec) (cfs) |
| 5.0                       |    | Direct Entry,                                           |
|                           |    |                                                         |

### Summary for Subcatchment S208: S208

Runoff = 1.28 cfs @ 12.07 hrs, Volume= 0.099 af, Depth= 5.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Yr Rainfall=5.80"

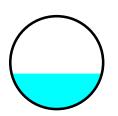
| A     | rea (sf) | CN  | Description                      |
|-------|----------|-----|----------------------------------|
|       | 8,139    | 98  | Paved parking, HSG D             |
|       | 338      | 98  | Paved parking, HSG C             |
|       | 891      | 80  | >75% Grass cover, Good, HSG D    |
|       | 585      | 74  | >75% Grass cover, Good, HSG C    |
|       | 9,953    | 95  | Weighted Average                 |
|       | 1,476    |     | 14.83% Pervious Area             |
|       | 8,477    |     | 85.17% Impervious Area           |
|       |          |     |                                  |
| Tc    | Length   | Slo | pe Velocity Capacity Description |
| (min) | (feet)   | (ft | /ft) (ft/sec) (cfs)              |

5.0

Direct Entry,

#### Summary for Reach 1R: Ex. SD

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 5.10" for 25-Yr event


 Inflow =
 0.81 cfs @ 12.07 hrs, Volume=
 0.062 af

 Outflow =
 0.79 cfs @ 12.09 hrs, Volume=
 0.062 af, Atten= 3%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 2.91 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 1.7 min

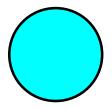
Peak Storage= 26 cf @ 12.08 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.61 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 95.0' Slope= 0.0054 '/' Inlet Invert= 67.11', Outlet Invert= 66.60'



### Summary for Reach 2R: Ex. RD

 Inflow Area =
 0.491 ac,100.00% Impervious, Inflow Depth = 5.56" for 25-Yr event


 Inflow =
 2.81 cfs @ 12.07 hrs, Volume=
 0.228 af

 Outflow =
 2.46 cfs @ 12.10 hrs, Volume=
 0.228 af, Atten= 12%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.57 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.8 min

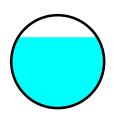
Peak Storage= 51 cf @ 12.08 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.46 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 63.0' Slope= 0.0048 '/' Inlet Invert= 67.20', Outlet Invert= 66.90'



### Summary for Reach 3R: Ex. SD

 Inflow Area =
 2.699 ac, 87.91% Impervious, Inflow Depth > 5.13" for 25-Yr event


 Inflow =
 2.34 cfs @ 12.52 hrs, Volume=
 1.155 af

 Outflow =
 2.34 cfs @ 12.53 hrs, Volume=
 1.155 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Max. Velocity= 3.64 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 0.8 min

Peak Storage= 60 cf @ 12.52 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.52 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 94.0' Slope= 0.0050 '/' Inlet Invert= 62.97', Outlet Invert= 62.50'



### Summary for Pond 1P: Ex. CB

| Inflow Are | a = | 2.699 ac, 87.91% Impervious, Inflow Dept | h > 5.13" for 25-Yr event      |
|------------|-----|------------------------------------------|--------------------------------|
| Inflow     | =   | 2.34 cfs @ 12.53 hrs, Volume= 1.15       | 55 af                          |
| Outflow    | =   | 2.34 cfs @ 12.53 hrs, Volume= 1.15       | 55 af, Atten= 0%, Lag= 0.0 min |
| Primary    | =   | 2.34 cfs @ 12.53 hrs, Volume= 1.15       | 5 af                           |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 63.51'@ 12.53 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 62.40' | <b>12.0" Round Culvert</b> L= 10.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 62.40' / 61.70' S= 0.0700 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=2.34 cfs @ 12.53 hrs HW=63.51' (Free Discharge) **1=Culvert** (Inlet Controls 2.34 cfs @ 2.97 fps)

### Summary for Pond 2P: Ex. VUSF

| Inflow Are | a = | 1.369 ac, 90.48% Impervious, Inflow Depth = 5.32" for 25-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 7.26 cfs @ 12.08 hrs, Volume= 0.607 af                            |
| Outflow    | =   | 1.81 cfs @ 12.46 hrs, Volume= 0.607 af, Atten= 75%, Lag= 22.9 min |
| Primary    | =   | 1.81 cfs @ 12.46 hrs, Volume= 0.607 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.70'@ 12.46 hrs Surf.Area= 6,443 sf Storage= 11,029 cf

Plug-Flow detention time= 220.5 min calculated for 0.607 af (100% of inflow) Center-of-Mass det. time= 220.7 min (977.6 - 756.9)

| Volume              | Invert Av            | ail.Storage | Storag         | ge Description            |                                  |
|---------------------|----------------------|-------------|----------------|---------------------------|----------------------------------|
| #1                  | 66.50'               | 13,049 cf   | Custo          | m Stage Data (            | Prismatic) Listed below (Recalc) |
| Elevation<br>(feet) | Surf.Area<br>(sq-ft) |             | Store<br>feet) | Cum.Store<br>(cubic-feet) |                                  |
| 66.50               | 3,670                | )           | 0              | 0                         |                                  |
| 67.00               | 4,261                |             | 1,983          | 1,983                     |                                  |
| 68.00               | 5,510                | )           | 4,886          | 6,868                     |                                  |
| 69.00               | 6,851                | (           | 5,181          | 13,049                    |                                  |

Type III 24-hr 25-Yr Rainfall=5.80" Printed 7/2/2018 Page 38

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device | Routing  | Invert | Outlet Devices                                                 |
|--------|----------|--------|----------------------------------------------------------------|
| #1     | Primary  | 64.01' | 12.0" Round Culvert                                            |
|        |          |        | L= 273.0' CPP, square edge headwall, Ke= 0.500                 |
|        |          |        | Inlet / Outlet Invert= 64.01' / 63.07' S= 0.0034 '/' Cc= 0.900 |
|        |          |        | n = 0.013 Corrugated PE, smooth interior, Flow Area = 0.79 sf  |
| #2     | Device 1 | 67.85' | 9.5" Vert. Orifice/Grate C= 0.600                              |
| #3     | Device 2 | 67.85' | 15.0" Vert. Orifice/Grate C= 0.600                             |
| #4     | Device 1 | 64.06' | 2.0" Vert. Orifice/Grate C= 0.600                              |
| #5     | Device 4 | 66.50' | 2.410 in/hr Exfiltration over Surface area above 64.06'        |
|        |          |        | Excluded Surface area = 0 sf                                   |

Primary OutFlow Max=1.81 cfs@12.46 hrs HW=68.70' (Free Discharge)

-1=Culvert (Passes 1.81 cfs of 4.27 cfs potential flow)

**2=Orifice/Grate** (Orifice Controls 1.59 cfs @ 3.23 fps) **3=Orifice/Grate** (Passes 1.59 cfs of 2.77 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.22 cfs @ 10.27 fps)

**5=Exfiltration** (Passes 0.22 cfs of 0.36 cfs potential flow)

### Summary for Pond 3P: Ex. CB

| Inflow Are | a = | 0.360 ac, 76.58% Impervious, Inflov | <i>w</i> Depth = 4.96" for 25-Yr event |
|------------|-----|-------------------------------------|----------------------------------------|
| Inflow     | =   | 1.92 cfs @ 12.08 hrs, Volume=       | 0.149 af                               |
| Outflow    | =   | 1.92 cfs @ 12.08 hrs, Volume=       | 0.149 af, Atten= 0%, Lag= 0.0 min      |
| Primary    | =   | 1.92 cfs @ 12.08 hrs, Volume=       | 0.149 af                               |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.27'@ 12.08 hrs

| Device | Routing | Invert | Outlet Devices            |          |
|--------|---------|--------|---------------------------|----------|
| #1     | Primary | 66.50' | 12.0" Vert. Orifice/Grate | C= 0.600 |

**Primary OutFlow** Max=1.86 cfs @ 12.08 hrs HW=67.25' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 1.86 cfs @ 2.95 fps)

#### Summary for Pond 4P: Ex. Vortechnics Unit

| Inflow Are | a = | 1.010 ac, 95.43% Impervious, Inflo | w Depth = 5.45" for 25-Yr event   |
|------------|-----|------------------------------------|-----------------------------------|
| Inflow     | =   | 5.42 cfs @ 12.07 hrs, Volume=      | 0.458 af                          |
| Outflow    | =   | 5.42 cfs @ 12.07 hrs, Volume=      | 0.458 af, Atten= 0%, Lag= 0.0 min |
| Primary    | =   | 5.42 cfs @ 12.07 hrs, Volume=      | 0.458 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 70.37'@ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                                                                          |
|--------|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.60' | <b>12.0" Round Culvert</b> L= $30.0^{\circ}$ CPP, projecting, no headwall, Ke= $0.900$<br>Inlet / Outlet Invert= $66.60^{\circ}$ / $66.50^{\circ}$ S= $0.0033^{\circ}$ / Cc= $0.900$<br>n= $0.013$ Corrugated PE, smooth interior, Flow Area= $0.79$ sf |

Primary OutFlow Max=5.24 cfs@12.07 hrs HW=70.19' (Free Discharge) **1=Culvert** (Inlet Controls 5.24 cfs @ 6.68 fps)

### Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

### Summary for Pond 5P: Ex. CB

 Inflow Area =
 0.146 ac, 83.66% Impervious, Inflow Depth = 5.10" for 25-Yr event

 Inflow =
 0.81 cfs @ 12.07 hrs, Volume=
 0.062 af

 Outflow =
 0.81 cfs @ 12.07 hrs, Volume=
 0.062 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.81 cfs @ 12.07 hrs, Volume=
 0.062 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.06'@ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 68.54' | <b>12.0" Round Culvert</b> L= 78.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 68.54' / 67.21' S= 0.0171 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |
|        |         |        | n= 0.013 Conductor E, shootmintenol, now Alea- 0.773                                                                                                                                                         |

**Primary OutFlow** Max=0.78 cfs @ 12.07 hrs HW=69.05' (Free Discharge) **1=Culvert** (Inlet Controls 0.78 cfs @ 1.92 fps)

### Summary for Pond 6P: Ex. CB

| Inflow Area | a = | 0.290 ac, 95.78% Impervious, Inflov | w Depth = 5.44" for 25-Yr event   |
|-------------|-----|-------------------------------------|-----------------------------------|
| Inflow      | =   | 1.65 cfs @ 12.07 hrs, Volume=       | 0.132 af                          |
| Outflow     | =   | 1.65 cfs @ 12.07 hrs, Volume=       | 0.132 af, Atten= 0%, Lag= 0.0 min |
| Primary     | =   | 1.65 cfs @ 12.07 hrs, Volume=       | 0.132 af                          |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 67.75' @ 12.07 hrs

| Device | Routing | Invert | Outlet Devices                                                                                                                                                                                               |
|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 66.80' | <b>12.0" Round Culvert</b> L= 71.0' CPP, projecting, no headwall, Ke= 0.900<br>Inlet / Outlet Invert= 66.80' / 66.60' S= 0.0028 '/' Cc= 0.900<br>n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf |

**Primary OutFlow** Max=1.59 cfs @ 12.07 hrs HW=67.72' (Free Discharge) **1=Culvert** (Barrel Controls 1.59 cfs @ 2.74 fps)

### Summary for Pond 7P: Ex. CB

| Inflow Are | a = | 0.720 ac, 95.29% Impervious, Inflow Depth = 5.45" for 25-Yr event |     |
|------------|-----|-------------------------------------------------------------------|-----|
| Inflow     | =   | 3.71 cfs @ 12.08 hrs, Volume= 0.327 af                            |     |
| Outflow    | =   | 3.71 cfs @ 12.08 hrs, Volume= 0.327 af, Atten= 0%, Lag= 0.0 n     | nin |
| Primary    | =   | 3.71 cfs @ 12.08 hrs, Volume= 0.327 af                            |     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 69.82' @ 12.08 hrs

| Device | Routing | Invert | Outlet Devices                                                 |
|--------|---------|--------|----------------------------------------------------------------|
| #1     | Primary | 66.70' | 12.0" Round Culvert                                            |
|        | -       |        | L= 144.0' CPP, projecting, no headwall, Ke= 0.900              |
|        |         |        | Inlet / Outlet Invert= 66.70' / 66.60' S= 0.0007 '/' Cc= 0.900 |
|        |         |        | n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf    |

**Primary OutFlow** Max=3.66 cfs @ 12.08 hrs HW=69.77' (Free Discharge) **1=Culvert** (Barrel Controls 3.66 cfs @ 4.66 fps)

### Summary for Pond POI1: POI#1

| Inflow Are | a = | 0.074 ac, | 0.00% Impervious, Inflow | Depth = 3.11" for 25-Yr event     |
|------------|-----|-----------|--------------------------|-----------------------------------|
| Inflow     | =   | 0.27 cfs@ | 12.08 hrs, Volume=       | 0.019 af                          |
| Primary    | =   | 0.27 cfs@ | 12.08 hrs, Volume=       | 0.019 af, Atten= 0%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

### Summary for Pond POI2: POI#2

| Inflow Are | a = | 3.499 ac, 83.85% Impervious, Inflow Depth > 5.07" for | 25-Yr event      |
|------------|-----|-------------------------------------------------------|------------------|
| Inflow     | =   | 5.11 cfs @ 12.17 hrs, Volume= 1.479 af                |                  |
| Primary    | =   | 5.11 cfs @ 12.17 hrs, Volume= 1.479 af, Atten= 0      | )%, Lag= 0.0 min |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

### Summary for Pond PP1: Porous Pavement 1

| Inflow Are | a = | 0.577 ac, 83.05% Impervious, Inflow Depth = 5.21" for 25-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 3.23 cfs @ 12.07 hrs, Volume= 0.251 af                            |
| Outflow    | =   | 0.23 cfs @ 13.27 hrs, Volume= 0.215 af, Atten= 93%, Lag= 71.8 min |
| Primary    | =   | 0.23 cfs @ 13.27 hrs, Volume= 0.215 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 68.59'@ 13.27 hrs Surf.Area= 20,887 sf Storage= 6,415 cf

Plug-Flow detention time= 635.6 min calculated for 0.215 af (86% of inflow) Center-of-Mass det. time= 573.1 min (1,336.6 - 763.5)

| Volume   | Invert   | Avail.Sto | rage Storag  | ge Description                            |                                         |
|----------|----------|-----------|--------------|-------------------------------------------|-----------------------------------------|
| #1       | 67.82'   | 8,3       |              | <b>m Stage Data (</b><br>7 cf Overall x 4 | <b>Prismatic)</b> Listed below (Recalc) |
|          |          |           | 20,00        |                                           | 0.0% VOIUS                              |
| Elevatio | n Sur    | f.Area    | Inc.Store    | Cum.Store                                 |                                         |
| (feet    | .)       | (sq-ft) ( | cubic-feet)  | (cubic-feet)                              |                                         |
| 67.8     | 2        | 20,887    | 0            | 0                                         |                                         |
| 68.8     | 2        | 20,887    | 20,887       | 20,887                                    |                                         |
| Device   | Routina  | Inver     | t Outlet De  | vices                                     |                                         |
| #1       | Primary  | 66.25     |              | Orifice/Grate                             | C= 0.600                                |
| #2       | Device 4 | 67.82     |              | •                                         | er Surface area above 66.65'            |
|          |          |           | Excluded     | Surface area =                            | 0 sf                                    |
| #3       | Primary  | 68.32     | 6.0" Vert. 6 | Orifice/Grate                             | C= 0.600                                |
| #4       | Device 1 | 66.65     | 6.0" Vert. 6 | Orifice/Grate                             | C= 0.600                                |

### Summary for Pond PP2: Porous Pavement 2

| Inflow Are | a = | 0.580 ac, 86.75% Impervious, Inflow Depth = 5.33" for 25-Yr event |   |
|------------|-----|-------------------------------------------------------------------|---|
| Inflow     | =   | 3.27 cfs @ 12.07 hrs, Volume= 0.257 af                            |   |
| Outflow    | =   | 0.24 cfs @ 13.14 hrs, Volume= 0.257 af, Atten= 93%, Lag= 64.4 mir | ٦ |
| Primary    | =   | 0.24 cfs @ 13.14 hrs, Volume= 0.257 af                            |   |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 70.11'@ 13.14 hrs Surf.Area= 20,435 sf Storage= 6,241 cf

Plug-Flow detention time= 629.7 min calculated for 0.257 af (100% of inflow) Center-of-Mass det. time= 627.8 min (1,385.9 - 758.0)

| Volume                             | Inver    | t Avail.Stor                              | age Stora                                     | age Description                                                         |
|------------------------------------|----------|-------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| #1                                 | 69.35    | ' 8,17                                    |                                               | om Stage Data (Prismatic) Listed below (Recalc)                         |
|                                    |          |                                           | 20,43                                         | 35 cf Overall x 40.0% Voids                                             |
| Elevation<br>(feet<br>69.3<br>70.3 | t)<br>5  | rf.Area<br>(sq-ft) (c<br>20,435<br>20,435 | Inc.Store<br><u>ubic-feet)</u><br>0<br>20,435 | Cum.Store<br>(cubic-feet)<br>0<br>20,435                                |
| Device                             | Routing  | Invert                                    | Outlet De                                     | evices                                                                  |
| #1                                 | Primary  | 67.75'                                    | 1.2" Vert.                                    | Orifice/Grate C= 0.600                                                  |
| #2                                 | Device 4 | 69.35'                                    | •                                             | hr Exfiltration over Surface area above 68.18'<br>1 Surface area = 0 sf |
| #3                                 | Primary  | 69.85'                                    | 6.0" Vert. (                                  | Orifice/Grate C= 0.600                                                  |
| #4                                 | Device 1 | 68.18'                                    | 6.0" Vert. (                                  | Orifice/Grate C= 0.600                                                  |
|                                    |          |                                           |                                               |                                                                         |

 Primary OutFlow Max=0.24 cfs @ 13.14 hrs HW=70.11' (Free Discharge)

 1=Orifice/Grate (Orifice Controls 0.06 cfs @ 7.32 fps)

 4=Orifice/Grate (Passes 0.06 cfs of 1.23 cfs potential flow)

 2=Exfiltration (Passes 0.06 cfs of 1.42 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.18 cfs @ 1.75 fps)

### Summary for Pond PP3: Porous Pavement 3

| Inflow Are | a = | 0.108 ac, 89.00% Impervious, Inflow Depth = 5.33" for 25-Yr event |
|------------|-----|-------------------------------------------------------------------|
| Inflow     | =   | 0.61 cfs @ 12.07 hrs, Volume= 0.048 af                            |
| Outflow    | =   | 0.06 cfs @ 12.75 hrs, Volume= 0.048 af, Atten= 89%, Lag= 40.8 min |
| Primary    | =   | 0.06 cfs @ 12.75 hrs, Volume= 0.048 af                            |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 70.71'@ 12.75 hrs Surf.Area= 5,149 sf Storage= 701 cf

Plug-Flow detention time= 75.6 min calculated for 0.048 af (100% of inflow) Center-of-Mass det. time= 75.6 min (833.6 - 758.0)

| Volume   | Invert   | Avail.Stora | rage Storage Description                                  |  |
|----------|----------|-------------|-----------------------------------------------------------|--|
| #1       | 70.37'   | 2,06        | 60 cf Custom Stage Data (Prismatic) Listed below (Recalc) |  |
|          |          |             | 5,149 cf Overall x 40.0% Voids                            |  |
| Elevatio | n Surf   | Area        | Inc.Store Cum.Store                                       |  |
| (feet    | )        | (sq-ft) (ci | cubic-feet) (cubic-feet)                                  |  |
| 70.3     | 7        | 5,149       | 0 0                                                       |  |
| 71.3     | 7        | 5,149       | 5,149 5,149                                               |  |
| Device   | Routina  | Invert      | Outlet Devices                                            |  |
| #1       |          | 67.75'      |                                                           |  |
|          | Primary  |             |                                                           |  |
| #2       | Device 4 | 70.37'      |                                                           |  |
|          |          |             | Excluded Surface area = 0 sf                              |  |
| #3       | Primary  | 70.87'      | 6.0" Vert. Orifice/Grate C= 0.600                         |  |
| #4       | Device 1 | 69.20'      | <b>6.0" Vert. Orifice/Grate</b> $C = 0.600$               |  |
|          |          |             |                                                           |  |

Primary OutFlow Max=0.06 cfs@12.75 hrs HW=70.71' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.06 cfs @ 8.21 fps) -4=Orifice/Grate (Passes 0.06 cfs of 1.06 cfs potential flow) **2=Exfiltration** (Passes 0.06 cfs of 0.36 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

### Summary for Pond PP4: Porous Pavement 4

| Inflow Area | a = | 0.065 ac, 85.54% Impervious, Inflow Depth = 5.21" for 25-Yr event |     |
|-------------|-----|-------------------------------------------------------------------|-----|
| Inflow      | =   | 0.36 cfs @ 12.07 hrs, Volume= 0.028 af                            |     |
| Outflow     | =   | 0.08 cfs @ 12.48 hrs, Volume= 0.028 af, Atten= 79%, Lag= 24.8 m   | nin |
| Primary     | =   | 0.08 cfs @ 12.48 hrs, Volume= 0.028 af                            |     |

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 71.77'@ 12.48 hrs Surf.Area= 1,473 sf Storage= 287 cf

Plug-Flow detention time= 20.1 min calculated for 0.028 af (100% of inflow) Center-of-Mass det. time= 20.1 min (783.7 - 763.5)

| Volume                         | Invert Av | ail.Storage | Storag | ge Description  |                                  |  |
|--------------------------------|-----------|-------------|--------|-----------------|----------------------------------|--|
| #1                             | 71.28'    | 589 cf      | Custo  | m Stage Data (I | Prismatic) Listed below (Recalc) |  |
| 1,473 cf Overall x 40.0% Voids |           |             |        |                 |                                  |  |
| Elevation                      | Surf.Area | a Inc.      | Store  | Cum.Store       |                                  |  |
| (feet)                         | (sq-ft    | ) (cubic-   | feet)  | (cubic-feet)    |                                  |  |
| 71.28                          | 1,473     | 3           | 0      | 0               |                                  |  |
| 72.28                          | 1,473     | 3 .         | 1,473  | 1,473           |                                  |  |

Type III 24-hr 25-Yr Rainfall=5.80" Printed 7/2/2018 Page 43

Prepared by Stantec Consulting Services, Inc. HydroCAD® 10.00-20 s/n 00734 © 2017 HydroCAD Software Solutions LLC

| Device     | Routing        | Invert  | Outlet Devices                                          |
|------------|----------------|---------|---------------------------------------------------------|
| #1         | Primary        | 67.75'  | 1.2" Vert. Orifice/Grate C= 0.600                       |
| #2         | Device 4       | 71.28'  | 3.000 in/hr Exfiltration over Surface area above 70.11' |
|            |                |         | Excluded Surface area = $0 \text{ sf}$                  |
| #3         | Primary        | 71.78'  | 6.0" Vert. Orifice/Grate C= 0.600                       |
| #4         | Device 1       | 70.11'  | 6.0" Vert. Orifice/Grate C= 0.600                       |
|            |                |         |                                                         |
| During and | Autriana Man A | 00 of a | 10.40 hrs $                                    $        |

**Primary OutFlow** Max=0.08 cfs@12.48 hrs HW=71.77' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.08 cfs @ 9.59 fps)

-4=Orifice/Grate (Passes 0.08 cfs of 1.12 cfs potential flow) -2=Exfiltration (Passes 0.08 cfs of 0.10 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

## ATTACHMENT E

### WATER QUALITY TREATMENT SUMMARY

|            | 90 Johnson Road Stormwater Management Summary |                         |                              |                         |                         |                                |                         |                         |          |                             |  |
|------------|-----------------------------------------------|-------------------------|------------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|----------|-----------------------------|--|
|            |                                               | New Development         |                              |                         | Redevelopme             | nt                             | Treated New             | Treated New             | <b>.</b> | <b>T</b> ( 1 <b>D</b> 1 1 1 |  |
| Subarea ID | Impervious Area (sf)                          | Landscaped Area<br>(sf) | Total Developed<br>Area (sf) | Impervious Area<br>(sf) | Landscaped<br>Area (sf) | Total Redeveloped<br>Area (sf) | Impervious Area<br>(sf) | Landscaped Area<br>(sf) |          |                             |  |
| S201       | 0                                             | 0                       | 0                            | 21,396                  | 0                       | 21,396                         | 0                       | 0                       | 21,396   | 0                           |  |
| S202       | 0                                             | 0                       | 0                            | 1,320                   | 1,105                   | 2,425                          | 0                       | 0                       | 1,320    | 1,105                       |  |
| S203       | 0                                             | 0                       | 0                            | 12,093                  | 507                     | 12,600                         | 0                       | 0                       | 12,093   | 507                         |  |
| S204       | 0                                             | 0                       | 0                            | 1,993                   | 807                     | 2,800                          | 0                       | 0                       | 1,993    | 807                         |  |
| S208       | 0                                             | 0                       | 0                            | 8,477                   | 1,476                   | 9,953                          | 0                       | 0                       | 8,477    | 1,476                       |  |
| S205       | 478                                           | 0                       | 478                          | 5,999                   | 4,692                   | 10,691                         | 0                       | 0                       | 0        | 0                           |  |
| S206A      | 20,887                                        | 4,263                   | 25,150                       | 0                       | 0                       | 0                              | 20,887                  | 4,263                   | 0        | 0                           |  |
| S206B      | 16,595                                        | 2,382                   | 18,977                       | 5,529                   | 749                     | 6,278                          | 16,595                  | 2,382                   | 5,529    | 749                         |  |
| S206C      | 0                                             | 0                       | 0                            | 4,184                   | 517                     | 4,701                          | 0                       | 0                       | 4,184    | 517                         |  |
| S206D      | 0                                             | 0                       | 0                            | 2,419                   | 409                     | 2,828                          | 0                       | 0                       | 2,419    | 409                         |  |
| S207       | 0                                             | 2,424                   | 2,424                        | 0                       | 0                       | 0                              | 0                       | 0                       | 0        | 0                           |  |
| Total (sf) | 37,960                                        | 9,069                   | 47,029                       | 63,410                  | 10,262                  | 73,672                         | 37,482                  | 6,645                   | 57,411   | 5,570                       |  |
| Total (ac) | 0.87                                          | 0.21                    | 1.08                         | 1.46                    | 0.24                    | 1.69                           | 0.86                    | 0.15                    | 1.32     | 0.13                        |  |

|                                      | BMP Summary                               |                                          |                                          |                                      |                                      |  |  |  |  |
|--------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|
| Subarea ID                           | Treatment Method                          | Water Quality<br>Volume Required<br>(cf) | Water Quality<br>Volume Provided<br>(cf) | BMP Surface<br>Area Required<br>(sf) | BMP Surface<br>Area Provided<br>(sf) |  |  |  |  |
| S201<br>S202<br>S203<br>S204<br>S208 | Existing Vegetated<br>Underdrained Filter | 3,903                                    | 4,801                                    | 2,342                                | 3,670                                |  |  |  |  |
| S205                                 | Untreated                                 | N/A                                      | N/A                                      | N/A                                  | N/A                                  |  |  |  |  |
| S206A                                | Porous Pavement 1                         | 1,883                                    | 4,177                                    | N/A                                  | 20,887                               |  |  |  |  |
| S206B                                | Porous Pavement 2                         | 1,948                                    | 4,087                                    | N/A                                  | 20,435                               |  |  |  |  |
| S206C                                | Porous Pavement 3                         | 366                                      | 1,030                                    | N/A                                  | 5,149                                |  |  |  |  |
| S206D                                | Porous Pavement 4                         | 215                                      | 295                                      | N/A                                  | 1,473                                |  |  |  |  |

| Treatment Summary               |          |          |  |  |  |  |  |
|---------------------------------|----------|----------|--|--|--|--|--|
|                                 | Required | Provided |  |  |  |  |  |
| Treated New<br>Impervious (%)   | 95%      | 98.74%   |  |  |  |  |  |
| Treated New<br>Developed (%)    | 80%      | 93.83%   |  |  |  |  |  |
| Treated Redev<br>Impervious (%) | N/A      | 90.54%   |  |  |  |  |  |
| Treated Redev<br>Developed (%)  | 60%      | 85.49%   |  |  |  |  |  |

### ATTACHMENT F

### DRAWDOWN COMPUTATIONS

|               | Drawdown Calculation - Porous Pavement #1 |                         |                             |                                                                   |                                  |                   |                       |                            |                             |  |  |
|---------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------------------------------------|----------------------------------|-------------------|-----------------------|----------------------------|-----------------------------|--|--|
|               | Orifice Diameter =1 in                    |                         |                             |                                                                   |                                  |                   |                       |                            |                             |  |  |
| Elev.<br>(ft) | Depth (ft)                                | Surface Area<br>(sq.ft) | Ave. End<br>Area<br>(sq.ft) | End Area<br>Depth<br>(ft)                                         | Incremental<br>Volume<br>(cf)    | Head, h<br>(ft)   | Orifice Flow<br>(cfs) | Drawdown<br>Time<br>(secs) | Drawdown<br>Time<br>(hours) |  |  |
| 68.32         | 0.50                                      | 20,887                  | 20887.00                    | 0.25                                                              | 2088.70                          | 1.67              | 0.0339                | 61625.73                   | 17.118                      |  |  |
| 68.07         | 0.25                                      | 20,887                  | 20887.00                    | 0.25                                                              | 2088.70                          | 1.42              | 0.0312                | 66841.31                   | 18.567                      |  |  |
| 67.82         | 0.00                                      | 20,887                  | 0.00                        | 0.00                                                              | 0.00                             | 1.17              | 0.0284                | 0.00                       | 0.000                       |  |  |
|               |                                           |                         |                             |                                                                   |                                  |                   |                       | TOTAL                      | 35.685                      |  |  |
|               |                                           |                         | C                           | Drifice Formula                                                   | CA (2gh) <sup>1/2</sup>          |                   |                       |                            |                             |  |  |
|               |                                           |                         | Ori                         | fice Diameter:                                                    | 1                                | inch              |                       |                            |                             |  |  |
|               |                                           |                         |                             | A:                                                                | 0.005454                         | sq.ft             |                       |                            |                             |  |  |
|               |                                           |                         | F                           | ilter Thickness:                                                  | 1.167                            | feet              |                       |                            |                             |  |  |
|               |                                           |                         |                             | g:                                                                | 32.174                           | ft/s <sup>2</sup> |                       |                            |                             |  |  |
|               |                                           |                         |                             | C:                                                                | 0.6                              | Orifice/Grate     |                       |                            |                             |  |  |
|               |                                           | Drawd                   | own Calcu                   | ulation - Po                                                      | orous Paver                      | ment #2, #        | 3, & #4               |                            |                             |  |  |
|               |                                           |                         |                             | Orifice Diam                                                      | neter =1.25 in                   |                   |                       |                            |                             |  |  |
| Elev.<br>(ft) | Depth (ft)                                | Surface Area<br>(sq.ft) | Ave. End<br>Area<br>(sq.ft) | End Area<br>Depth<br>(ft)                                         | Incremental<br>Volume<br>(cf)    | Head, h<br>(ft)   | Orifice Flow<br>(cfs) | Drawdown<br>Time<br>(secs) | Drawdown<br>Time<br>(hours) |  |  |
| 69.85         | 0.50                                      | 27,057                  | 27057.00                    | 0.25                                                              | 2705.70                          | 1.67              | 0.0530                | 51091.15                   | 14.192                      |  |  |
| 69.60         | 0.25                                      | 27,057                  | 27057.00                    | 0.25                                                              | 2705.70                          | 1.42              | 0.0488                | 55415.15                   | 15.393                      |  |  |
| 69.35         | 0.00                                      | 27,057                  | 0.00                        | 0.00                                                              | 0.00                             | 1.17              | 0.0443                | 0.00                       | 0.000                       |  |  |
|               |                                           |                         |                             |                                                                   |                                  |                   |                       | TOTAL                      | 29.585                      |  |  |
|               |                                           |                         | Ori                         | Drifice Formula<br>fice Diameter:<br>A:<br>ilter Thickness:<br>g: | <b>1.25</b><br>0.008522<br>1.167 | sq.ft<br>feet     |                       |                            |                             |  |  |

## ATTACHMENT G

### **REDEVELOPMENT COMPUTATIONS**

|                      | Redevelopment Treatment Calculation |               |               |           |             |               |  |  |  |  |
|----------------------|-------------------------------------|---------------|---------------|-----------|-------------|---------------|--|--|--|--|
|                      | E                                   | Existing Cond | ition         | Pi        | roposed Con | dition        |  |  |  |  |
| Pollutant<br>Ranking | Area (sf)                           | Area (ac)     | Impact Rating | Area (sf) | Area (ac)   | Impact Rating |  |  |  |  |
| 0                    | 0                                   | 0             | 0             | 0         | 0           | 0             |  |  |  |  |
| 1                    | 0                                   | 0             | 0             | 0         | 0.00        | 0.00          |  |  |  |  |
| 2                    | 21,615                              | 0.50          | 0.99          | 18,240    | 0.42        | 0.84          |  |  |  |  |
| 3                    | 51,943                              | 1.19          | 3.58          | 55,318    | 1.27        | 3.81          |  |  |  |  |
| 4                    | 0                                   | 0.00          | 0.00          | 0         | 0.00        | 0.00          |  |  |  |  |
| 5                    | 0                                   | 0             | 0             | 0         | 0           | 0             |  |  |  |  |
| Total                | 73,558                              | 1.69          | 4.57          | 73,558    | 1.69        | 4.65          |  |  |  |  |

| Redevelopment Treatment Summary |      |  |  |  |  |
|---------------------------------|------|--|--|--|--|
| Total Redevelopment Area (ac)   | 1.69 |  |  |  |  |
| Existing Impact Rating          | 4.57 |  |  |  |  |
| Proposed Impact Rating          | 4.65 |  |  |  |  |
| Existing Ranked Impact          | 2.71 |  |  |  |  |
| Proposed Ranked Impact          | 2.75 |  |  |  |  |
| Resultant Ranked Impact Change  | 0.05 |  |  |  |  |
| Redeveloped Area Treatment      | 60%  |  |  |  |  |

## ATTACHMENT H

### STORMWATER OPERATIONS & MAINTENANCE MANUAL

OPERATION AND MAINTENANCE MANUAL FOR STORMWATER MANAGEMENT AND RELATED STORMWATER FACILITIES

# 90 JOHNSON ROAD PROPERTY 90 JOHNSON ROAD PORTLAND, MAINE

PREPARED FOR

# TRANSPORT LEASING CORP. 58 LOWELL JUNCTION ROAD ANDOVER, MA 01810

PREPARED BY

STANTEC CONSULTING SERVICES, INC. 482 PAYNE ROAD SCARBOROUGH, MAINE 04074 (207) 883-3355

**JULY 2018** 

### TABLE OF CONTENTS

| <b>S</b> ECTION | DESCRIPTION                                  | PAGE |
|-----------------|----------------------------------------------|------|
| ١.              | INTRODUCTION                                 | 1    |
|                 | A. Guidelines Overview                       | 1    |
|                 | B. RESPONSIBLE PARTY                         | 2    |
| Ш.              | PROJECT OVERVIEW                             | 2    |
| III.            | STANDARD INSPECTION/MAINTENANCE DESCRIPTIONS | 3    |
|                 | A. Stormwater Inlets                         | 3    |
|                 | B. Tributary Drainage System                 | 4    |
|                 | C. Porous Pavement                           |      |
|                 | D. Water Quality Filters (Above Ground)      | 6    |
|                 | E. Litter                                    | 8    |
|                 | F. Summary Checklist                         | 8    |
| IV.             | PROGRAM ADMINISTRATION                       | 8    |
|                 | A. General                                   | 8    |
|                 | B. Record Keeping                            | 9    |
|                 | C. Contract Services                         | 9    |

### **APPENDICES**

- Appendix A Sample Inspection Logs
- Appendix B Permits for Project
- Appendix C Summary Checklist for Inspection and Maintenance

### I. INTRODUCTION

Relatively complex stormwater management facilities are commonly installed in development projects including, commercial facilities, and many other developments. The complexity and goals of these systems vary with the nature of the receiving water, as well as the type of development. Runoff from developed areas of the project, including rooftops, paved, or lawn areas typically contain materials that can impact the receiving waters. Source control and the installation of bio-retention facilities and pervious surfaces are often combined with pretreatment measures or vegetated buffer strips. Other best management practices are also among the options that can significantly reduce the non-point pollution discharge from the developed area. These measures are particularly important to projects in the watersheds of sensitive water bodies, or projects with potential impacts to groundwater. With the increased cost of land and development, there is an increased tendency to construct portions of the stormwater management systems underground.

The effectiveness of water quality management provisions and other components of the stormwater management system are dependent on their design, upkeep, and maintenance to assure they meet their intended function over an extended period

of years. It is critical that the stormwater management facilities are regularly inspected, and that maintenance is performed on an asneeded basis. It must also be recognized that the effectiveness of these facilities, and their maintenance requirements, are related to the stormwater drainage facilities that collect and transport the flow to the ponds, infiltration galleries, and other treatment measures. Thus, maintenance should be directed to the total system, not just the collection system or primary stormwater management facility.



The purpose of this document is to define, in detail, the inspection and maintenance requirements deemed necessary to assure that the stormwater management facilities function as intended when they were designed. Subsequent sections identify individual maintenance items, give a brief commentary of the function and need for the item, a description of the work required, and a suggested frequency of accomplishment. While the suggested programs and schedules must be adapted to specific projects, the material presented should provide guidance for a successful long-term program for operation and maintenance. Certain facilities, specifically the potential water quality volume storage or treatment measures such as bioretention cells and pervious surfaces are not intended to be placed in service until the tributary catchment area has the permanent cover in place and any contributing turf areas have achieved a 90% catch of vegetation (i.e. established).

### A. <u>GUIDELINES OVERVIEW</u>

A summary of the individual components of stormwater management facilities for this project has been prepared. The format used in the summary is as follows:

<u>Preface</u>: A general description of what function/benefit the element is intended to provide. This is a short summary and not intended to provide the design basis, which can be found in other sources.

Inspection: This section provides the inspection requirements for the individual component.

<u>Maintenance</u>: The section provides general information on the routine maintenance requirements of this element.

<u>Frequency</u>: This section outlines the best judgment of the designer on the system to the frequency of maintenance.

<u>Comments</u>: This section provides any particular comment on the site-specific features of this element. This is a summary only. The owner/operator should review the design drawings and documents carefully to understand the particular elements of the project. The end of this section should allow the owner/operator to make notes on the specific program. This may include the selected maintenance procedure, cross-references to applicable design drawings, etc.

A list of the individual inspection/maintenance elements is provided in the table of contents. The guidelines are proposed for initial use with adjustments made as appropriate based upon specific project experience.

This report includes the Operation and Maintenance requirements for any potential BMP identified in the Stormwater Management Report for this project.

### B. <u>RESPONSIBLE PARTY</u>

The responsible party for operation and maintenance of the stormwater and other site infrastructure will be Transport Leasing Corp., or their agents or assigns.

### II. **PROJECT OVERVIEW**

Key permits issued (or applied for) on the project include:

- MaineDEP Stormwater Permit through the City of Portland Delegated Authority
- City of Portland Level III Site plan and Subdivision Review

A copy of the permits and Stormwater Management Report should be appended to this manual as Appendix B. The Owner/Operator of the stormwater management system should review these permits for a general description and background of the project, as well as any specific permit conditions or requirements of the project.

The applicant has retained Stantec for civil engineering for the development project. Stantec has prepared the design for the stormwater management facilities and may be contacted at:

Stantec 482 Payne Road Scarborough, ME 04074 (207) 887.3478 It is recommended the preparer of the plan be contacted with any particular questions on the design intent or similar issues.

The applicable plans and design documents which apply to the project are:

- 1. Civil Site Plans Prepared by Stantec.
- 2. The Erosion Control/Sedimentation Control Plan for the project.
- 3. The Stormwater Management Plan for the project.

A copy of these documents should be retained with this manual.

The proposed design includes pervious pavement and stormwater conveyance lines. There are existing inlets, manholes, outlet control structures, conveyance lines, pretreatment devices, and a vegetated filter that will be utilized for stormwater management for the proposed project.

### III. STANDARD INSPECTION/MAINTENANCE DESCRIPTIONS

The following narratives describe the inspection/maintenance provisions for the Stormwater Management system. These O&M procedures will complement scheduled sweeping of the parking lots which is anticipated to occur at least twice per year. Proper O&M is necessary to make sure the system will provide its intended purpose of conveying runoff, removing a substantial amount of the suspended solids, and other contaminants in the stormwater runoff.

### A. <u>STORMWATER INLETS</u>

<u>Preface</u>: The success of any stormwater facility relies on the ability to intercept stormwater runoff at the design locations. Stormwater inlets may include catch basins, open culverts, culverts with bar screens, roof scuppers, plaza scuppers, trench drains, and field inlets. Inlets exist throughout the proposed systems.

Inspection: The inspection of inlet points will need to be coordinated with other maintenance items, these include:

- Landscape services
- Building maintenance areas
- Grounds maintenance

The key elements of the inspection are to assure the inlet entry point is clear of debris and will allow the intended water entry.

Maintenance: The key maintenance is the removal of



any blockage which restricts the entry of stormwater to the inlet. The removed material should be taken out of the area of the inlet and placed where it will not reenter the runoff collection system. Snow should be removed from inlets on parking lots or plaza areas. Grass clippings and leaves should be bagged and removed particularly near the yard inlets near the buildings.

<u>Frequency</u>: All inlets should be inspected on a quarterly basis, and after/during significant storm events.

<u>Maintenance Personnel</u>: The maintenance personnel will perform the normal maintenance/inspections of the inlets and tributary drainage system.



Comments: Maintenance of inlets is critical on this project.

### B. TRIBUTARY DRAINAGE SYSTEM

<u>Preface</u>: Stormwater from most of the project will be directed through a conveyance system which transports the flow to a public system within Johnson Road. This conveyance system will be principally overland flow and/or infiltration through porous pavement that discharges to piped drain systems. Most of the sediment is carried by the drainage system is intended to be trapped near the inlets or in pretreatment devices such as an existing Vortechnics hydrodynamic separator. Maintenance of this system can play a key role in the long-term maintenance costs and the effectiveness of the onsite systems.

Inspection: The tributary drainage system should be periodically inspected to assure that it is operating as intended, and that its carrying capacity has not been diminished by accumulations of debris and sediment or other hydraulic impediments. On piped systems, the inlets must be inspected to ensure the rims are set at the proper elevation to optimize flow entry and are not clogged with debris. The inlet catch basins will be equipped with sumps and hooded outlets which will remove gross floatables and large sediment particles from the flow stream. These must be cleaned on an as-needed basis.

The level of sediment in the sumps or hydrodynamic separator should be checked to assure their effectiveness. Pipelines connecting the inlets should be checked to determine if siltation is occurring. This will be most critical on drain lines laid at minimal slopes. This can usually be accomplished by a light and mirror procedure. <u>Maintenance</u>: Maintenance of the storm drainage system must assure that it continues to serve its design function on a long-term basis, and that its operation does not transport excessive sedimentation to any downstream BMP or the receiving waters. Elevations on the rim of catch basins should be adjusted as needed to assure optimal water entry. Depending on the frost susceptibility of the soil, the rims may become elevated over time causing flow to circumvent the inlet. If a temporary filter bag has been designated for the inlet during construction, silt or other deleterious materials, can significantly reduce capacity and the bags should be removed with the sediment and replaced during construction. Catch basin cleaning would normally be accomplished with vacuum trucks contracted as a maintenance service for the Development. The removed material must be disposed of at an approved site for such materials.

If sediment in the pipeline is observed, it should be removed. This may be accomplished by hydraulic flushing, or by mechanical means. If hydraulic flushing is used the downstream conditions should be analyzed.

<u>Frequency</u>: The piped drainage system should be inspected on an annual basis. Adjustment of inlet rim elevations should be on an as needed basis. Cleaning catch basin sumps, hydrodynamic separator, and pipelines will depend on the rate of accumulation.

### Maintenance/Inspection Responsibility:

<u>Maintenance Personnel</u>: A hired 3<sup>rd</sup> party maintenance crew as retained by the applicant, their agents or assigns.

<u>Special Services</u>: The owner may elect to contract with an independent agent for cleaning of catch basins, sumps, and pipelines. Remedial source control measures may be performed by the owner or an outside service depending upon the nature of the particular situation.

<u>Comments</u>: Maintenance of inlets and catch basins is of utmost importance to the project to avoid unintended release of sediments or related materials in the runoff flow stream.

### C. <u>POROUS PAVEMENT</u>

<u>Preface</u>: The porous pavement collects stormwater runoff from the surface before passing it through a treatment section and discharging into a closed drainage system.

Inspection: The pavement should be inspected regularly to ensure that the surface is not clogged, and that runoff can pass freely through the porous section. The asphalt surface must be inspected for integrity and to ensure rutting or deformation of the surface is minimized.

<u>Maintenance</u>: Any debris should be removed from the pavement surface. If the porous pavement area is holding water in excess of 48-72 hours corrective action is needed. To correct a standing water problem, the following remedial actions are recommended:

- 1. Vacuum any sediment or debris from the pavement surface on a semiannual basis
- 2. Ensure the underdrain system is not clogged with any silt or other materials.
- 3. Ensure that the porous pavement can pass water freely and drain quickly while handling large amounts of water.

<u>Frequency</u>: The porous pavement should be inspected and vacuumed semiannually and maintained as needed.

<u>Maintenance/Inspection Responsibility</u>: The Owner or an outside agent is responsible for inspection and maintenance of the porous pavement areas.

### D. WATER QUALITY FILTERS (ABOVE GROUND)

<u>Preface</u>: The soil filter is an underdrain system with multi-media aggregates. This section is applicable to the existing underdrained grass soil filter.

Inspection: The soil filter can be inspected visually. A good time for inspection is within one day of a substantial rain event.

Maintenance: The procedures for maintenance are as follows:

### <u>Inlets</u>

Inlets to each soil filter area should be kept open and in good working condition. This is particularly important around curb breaks and pavement edges. These locations should be marked on the roadway at the completion of construction to allow for winter snow dam removal. All eroded areas should be repaired.

### Initial Turf Maintenance (when applicable)

Grassed soil filters should be allowed to develop for one full growing season post-construction prior to their first mowing or replacement of vegetation. This allows for natural re-seeding of grass seed mixes and establishment of a healthy stand of grass or plant materials.

### Long-Term Turf Maintenance (when applicable)

It is preferable to only mow grassed soil filters two to three times per year. While grassed soil filters can be mown during routine lawn maintenance, excessive mowing reduces the viability of grasses and grass roots and can over-compact the surface layer of the soil filter media.

### Large Debris

Large debris, trash etc. within the ponding area should be removed on a routine basis.

### Erosion in the Soil Filter Area

Any eroded areas should be repaired as soon as practicable.

### Weeds in the Soil Filter Area

Periodic weeding of the soil filter area may be necessary, particularly in the landscaped soil filters. Hand weeding is required as the use of herbicides is not recommended.

### Surface Mulch Layer (when applicable)

Areas devoid of mulch should be re-mulched by hand. Every year, in the spring, a fresh layer of mulch should be added to the soil filter area.

### Sedimentation (or Clogging) of Soil Filter Area

If the soil filter area is holding water for a period longer than 48-72 hours, the soil mix has, more than likely, become clogged with sediment and/or the underdrains have clogged. To correct a standing water problem, the following remedial actions are recommended:

- 1. Evaluate the drainage area to the soil filter area to identify any potential sources of sediment, such as an erosive condition, that may be contributing to the clogging of the device. If a source is identified, it is recommended that that source be eliminated to the fullest extent practicable before proceeding with the remaining recommendations provided below.
- 2. Flush the underdrains. Use cleanouts to flush the underdrains. Sediment in the drains may be preventing the soil mix from draining. Make sure to provide a way to capture any flushed sediment before it enters the stream environment or storm drain system downstream of the device. If, after flushing the underdrains, the device continues to hold water, the soil mix may be contaminated. As such, following the guidelines provided below is recommended.
- 3. Gage the extent of soil contamination. To do this, it is recommended that one or more test pits be dug with a shovel and that the soil layer be evaluated for contamination. Once the levels of contamination have been determined (for example, the top 4" of soil appears to be contaminated), it is recommended that you proceed with the remaining remedial actions.
- 4. Harvest the plants (when applicable). Care should be taken in the removal and temporary storage of the plants so that as many as possible can be harvested for replanting in the soil filter area once the functioning of the device has been restored sufficiently.
- 5. Remove the mulch layer.
- 6. Remove the top few inches of contaminated soil plus an additional 2inch of soil and replace the removed soil with a clean soil mix in accordance with the soil mix specification applicable to the particular soil filter area.
- 7. Monitor the functioning of the soil filter area during the next two to three rain events. If the device appears to be draining as intended (e.g., there is no standing water 48-72 following a rain event), proceed with the remaining remedial actions. If the area continues to hold standing

water, then the entire soil filter area soil mix and the underdrains may need to be removed and replaced. Reuse of any undamaged underdrains may be possible once they have been cleaned thoroughly.

- 8. Replant the harvested plants and replace any plants that were rendered unusable during or following their removal from the soil filter area.
- 9. Replace the removed mulch layer with fresh mulch.
- 10. Water the plants in the soil filter for the next two or more weeks unless there is sufficient rainfall. This will help the plants to re-establish themselves.

<u>Frequency</u>: The water quality filter should be inspected semi-annually and maintained as needed.

Applicability: The development has one existing filter.

### Snow storage within the filters should be prohibited by Maintenance Personnel.

### E. <u>Litter</u>

Litter should be removed as a matter of course by workers and as part of the grounds maintenance contract.

### F. <u>SUMMARY CHECKLIST</u>

The above described inspection and maintenance items have been summarized on a checklist attached hereto as Appendix C.

### IV. <u>PROGRAM ADMINISTRATION</u>

### A. <u>General</u>

A reliable administrative structure must be established to assure implementation of the maintenance programs described in the foregoing section. Key factors that must be considered in establishing a responsive administrative structure include:

- 1. Administrative body must be responsible for long-term operation and maintenance of the facilities.
- 2. Administrative body must have the financial resources to accomplish the inspection and maintenance program over the life of the facility.
- 3. The administrative body must have a responsible administrator to manage the inspection and maintenance programs.
- 4. The administrative body must have the staff to accomplish the inspection and maintenance programs or must have authority to contract for the required services.

- 5. The administrative body must have a management information system sufficient to file, retain, and retrieve all inspection and maintenance records associated with the inspection and maintenance programs.
- 6. A qualified post construction inspector shall be retained by the Owner. His duties shall include preparing schedules for the Owner's maintenance, summarizing the results of this maintenance and preparing an annual report on the operation, maintenance, and repair of the stormwater system which must be copied to the City. (The Owner shall be responsible for retaining a separate entity to perform maintenance which cannot be performed by the management of building and property grounds.) This person shall also participate in troubleshooting of the stormwater management system if a problem develops.

If any of the above criteria cannot be met by the entity assigned inspection and maintenance responsibilities, it is likely that the system will fail to meet its water quality objectives at some point during its life. While each of the above criteria may be met by a variety of formats, it is critical to clearly establish the assigned administrative body in a responsible and sustainable manner.

### B. <u>RECORD KEEPING</u>

Records of all inspections and maintenance work accomplished must be kept and maintained to document facility operations. These records should be filed and retained for a minimum 5-year time span. The filing system should be capable of ready retrieval of data for periodic reviews by appropriate regulatory bodies. Where possible, copies of such records should also be filed with the designated primary regulatory agency for their review for compliance with permit conditions. Typical inspection and maintenance record forms are attached hereto as Appendix B.

### C. <u>CONTRACT SERVICES</u>

In some instances, or at specific times, the Maintenance Personnel may not have the staff to conduct the required inspection and/or maintenance programs as outlined in this document. In such cases, the work should be accomplished on a contractual basis with a firm or organization that has the staff and equipment to accomplish the required work.

The service contract for inspection and maintenance should be formal, well written legal document which clearly defines the services to be provided, the contractual conditions that will apply, and detailed payment schedules. Liability insurance should be required in all contracts.

# APPENDIX A

Sample Inspection Logs

### 90 JOHNSON ROAD PORTLAND, MAINE

### STORMWATER MANAGEMENT WATER QUALITY STORAGE OR WET POND ANNUAL INSPECTION & MAINTENANCE LOG

| FACILITY:           |                           | YEAR:                                       |  |  |  |
|---------------------|---------------------------|---------------------------------------------|--|--|--|
| LOCATION:           |                           | CONTRACTOR:                                 |  |  |  |
| FUNCTION:           |                           | INSPECTOR:                                  |  |  |  |
| DATE OF INSPECTION: |                           |                                             |  |  |  |
| ITEM IDENTIFICATION | DESCRIPTION OF CONDITIONS | MAINTENANCE ACCOMPLISHED DATE OF MAINTENANG |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
| GENERAL COMMENTS:   | 1                         |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |
|                     |                           |                                             |  |  |  |

# SAMPLE

### 90 JOHNSON ROAD PORTLAND, MAINE

### STORMWATER MANAGEMENT SEMI-ANNUAL INSPECTION & MAINTENANCE LOG

| SEMI-ANNUAL INSPECT 1.2 | FACILITY: |
|-------------------------|-----------|
| DATE:                   | LOCATION: |
| INSPECTOR:              | FUNCTION: |
| SURFACE CONDITION:      |           |
| OUTLET CONDITION        |           |

| DEVICE/STRUCTURE | EST. DEPTH SED. | REMOVED? Y/N | est. vol. cy | WHERE DISPOSED OF | STRUCTURAL CONDITION |
|------------------|-----------------|--------------|--------------|-------------------|----------------------|
|                  |                 |              |              |                   |                      |
|                  |                 |              |              |                   |                      |
|                  |                 |              |              |                   |                      |

| CONTROL STRUCTURE:                                    |  |
|-------------------------------------------------------|--|
|                                                       |  |
|                                                       |  |
| DESCRIBE CONDITIONS FOUND & MAINTENANCE ACCOMPLISHED: |  |
|                                                       |  |

# APPENDIX B

# Permits for Project

(To be Added at a Subsequent Time)

# APPENDIX C

Summary Checklist Inspection and Maintenance

| Stormwater Management System<br>Maintenance Program<br>Summary Checklist |                                                                                                                                                                                                                                                                                               |           |           |                 |               |              |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------|---------------|--------------|--|--|
|                                                                          |                                                                                                                                                                                                                                                                                               | Frequency |           |                 |               |              |  |  |
| ltem                                                                     | Commentary                                                                                                                                                                                                                                                                                    | Monthly   | Quarterly | Semi-<br>Annual | Annual        | Long<br>Term |  |  |
| Stormwater<br>Inlets                                                     | Stormwater inlets allow flow entry from a<br>surface swale to a piped system. Entry<br>may or may not be equipped with a bar<br>rack. Inspect entry for debris<br>accumulation. Remove debris to allow<br>unimpeded entry. Lawn clippings and<br>leaves should be removed from yard<br>areas. |           | Х         |                 | X<br>Clearing |              |  |  |
| Tributary<br>Drainage<br>System                                          | Inspect to assure that the carrying<br>capacity has not been diminished by<br>debris, sediment or other hydraulic<br>impediments.                                                                                                                                                             |           |           |                 | Х             |              |  |  |
| Porous<br>Pavement                                                       | Pavement areas should be inspected and vacuumed semi-annually and maintained as needed.                                                                                                                                                                                                       |           |           | Х               |               |              |  |  |
| Water Quality<br>Filters                                                 | Filters should be inspected semi-annually<br>and maintained as needed. <u>Snow storage</u><br>within the filter should be prohibited by<br><u>Maintenance Personnel.</u>                                                                                                                      |           |           | Х               |               |              |  |  |
| Litter                                                                   | Litter should be removed daily.                                                                                                                                                                                                                                                               |           |           |                 |               |              |  |  |