Section 13. Stormwater Management Plan

CIVIL ENGINEERING - SURVEYING - LANDSCAPE ARCHITECTURE

STORMWATER MANAGEMENT PLAN

For

Valet Parking Lot Portland, Maine

Prepared for

Toye Realty Holdings III, LLC P.O. Box 6285 Cape Elizabeth, ME 04107

April 2017

Contents

Execu	tive SummaryI
I.	Introduction1
II.	Existing Conditions1
III.	Proposed Development 2
IV.	Downstream Ponds and Waterbodies 2
V.	Regulatory Requirements 2
A.	City of Portland, Maine 2
VI.	Stormwater Management BMPs 3
A.	Underdrained Subsurface Sand Filter 3
В.	Grassed Underdrained Soil Filter 3
VII.	Peak Flow Analysis 4
A.	Modeling Technique 4
D.	Post-Development
E.	Comparison 6
VIII.	Water Quality Analysis
IX.	Urban Impaired Stream Standard7
Х.	Conclusions

Attachments

Attachment A: Stormwater Quality Calculations Attachment B: HydroCAD Output-Pre-Development / Post Development TR-20 Model Attachment C: Inspection, Maintenance, and Housekeeping Plan Attachment D: Application for Stormwater Fee Credits

STORMWATER MANAGEMENT PLAN

Valet Parking Plan Jetport Boulevard Portland, Maine

Executive Summary

Toye Realty Holdings III, LLC has submitted plans to develop within a 1.97 acre property of undeveloped land off Jetport Boulevard; the project will be utilized as an extension of the parking for an existing valet service at the Portland Jetport. The property is shown as Lot A006 on City of Portland Tax Map 210A.

The development will create 1.06 acres of new non-vegetated surface and 1.84 acres of new developed area as defined by the Maine Department of Environmental Protection (MDEP).

The site is tributary to the Fore River and Casco Bay via culverts and drainage ways of the Portland Jetport. As the proposed development is classified by the City of Portland as a Level III development as well as a Site Law of Development Act (SLODA) project, the site is required to comply with Maine DEP Chapter 500 Standards, per Chapter 5 of City of Portland Technical Manual.

The project has been designed to provide treatment for 95.8% of the new non-vegetated area and 93.3% of the new developed area, which exceeds the required treatment level of Table 1 contained in Maine DEP Chapter 500, Section 4.C.(2)(a)(iii) amended date August 12, 2015. Treatment is achieved utilizing a grassed underdrained soil filter. Best Management Practices (BMPs) have been designed and sized in accordance with criteria published in Chapter 500 BMP's Technical Design Manual.

STORMWATER MANAGEMENT PLAN

Valet Parking Lot Jetport Boulevard Portland, Maine

I. <u>Introduction</u>

This Stormwater Management Plan has been prepared to address the potential impacts associated with this project due to the proposed modification in stormwater runoff characteristics. The stormwater management controls that are outlined in this plan have been designed to best suit the proposed development and to comply with applicable regulatory requirements.

II. <u>Existing Conditions</u>

The project site is currently undeveloped land with woods land cover comprising of 2.0 acres in Portland.

<u>Land Cover</u>: The site is undeveloped land consisting of wooded land cover. The development site abuts Jetport Boulevard to the north, Embassy Suites and Westbrook Street to the east, gravel parking area to the south, and undeveloped land to the west.

<u>Site Topography</u>: The majority of the site drains in a southwesterly direction towards existing drainage structure DH-86 in the internal loop road for the Jetport. Topography varies from 5.0% - 10.0 % from the northwest corner towards the southeast with a turn to the southwest and slopes flattening out to approximately 2.0%.

<u>Surface Water Features</u>: There are no surface water features on the site. Runoff drains to the conveyance systems of the adjacent properties/rights-of-way and continues on to discharge to the Fore River and Casco Bay.

<u>Soils</u>: Soil characteristics were obtained from the Soil Conservation Service (SCS) Medium Intensity Soil Survey of Cumberland County. Soils identified on the site (or within close proximity) are identified below in Table 1. These soil boundaries are identified on the attached watershed maps.

Table 1 – Proximity Soil Typ	es and Char	acteristics	
Soil Type	Symbol	HSG	K Factor
Lamoine Silt Loam, 3-8% Slopes	BuB	C/D	0.37
Paxton Fine Sandy Loam, 3-8% Slopes	PbB	С	0.28
Scantic Silt Loam, 0-3% Slopes	Sn	D	0.28

88125

The K factor is an erodibility index that relates each soil family based on a slight erosion potential of 0.20 to a high erosion potential of 0.69. An index number, greater than 0.32, indicates that a high level of erosion control measures must be taken in order to control erosion of this soil. The Hydrologic Soil Group (HSG) designation is based on a rating of the relative permeability of a soil, with Group "A" being extremely permeable such as coarse sand, to Group "D" having low permeability such as clay.

<u>Historic Flooding</u>: The Federal Emergency Management Agency (FEMA) lists the project site as Zone X, "Areas of 500 year flood based on the published Flood Insurance Rate Map (FEMA Community Panel Number 230051 0012C, dated December 8, 1998).

III. <u>Proposed Development</u>

The Applicant is proposing a milled parking lot, consisting of 134 parking spaces.

<u>Alterations to Land Cover</u>: Completion of the proposed project will result in the creation of 1.06 acres of impervious, non-vegetated area and 1.84 acres of developed area.

IV. Downstream Ponds and Waterbodies

The project site is tributary to Fore River and Casco Bay, which are not listed by the Maine Department of Environmental Protection as impaired or threatened.

V. <u>Regulatory Requirements</u>

A. <u>City of Portland, Maine</u>

The proposed development is classified as a Level III development due to the addition of a permanent parking lot of more than seventy-five (75) vehicles. Level III development must comply with Section 5 of the City of Portland's Technical Manual stating that this development "shall be required to submit a Stormwater Management Plan pursuant to the regulations of the MDEP Chapter 500 Stormwater Management Rules, including Basic, General and Flooding Standards. The MDEP Chapter 500 rules describe stormwater management requirements for new development projects.

The following sections describe how this project will address these stormwater management performance standards.

<u>Basic Standards</u>: These standards include various erosion and sedimentation controls, inspection and maintenance procedures, and general housekeeping requirements. These performance standards are addressed on the Erosion and Sedimentation Control Plan Sheet and in the Inspection, Maintenance, and Housekeeping Plan attached in Attachment 3. Please refer to these documents for more detailed information.

<u>General Standards</u>: This standard presents minimum treatment thresholds for new non-vegetated areas and new developed areas to be treated by stormwater Best Management Practices (BMPs). General Standard BMPs have been defined by the MDEP and are described thoroughly in their publication "Stormwater Management for Maine: Best Management Practices Manual". Volume III of this manual contains additional information and sizing requirements for the treatment measures proposed for the proposed development.

<u>Flooding Standards:</u> The MDEP requires that projects creating impervious areas greater than three (3) acres, or developed areas greater than twenty (20) acres address various flooding standards. The proposed project will not exceed the MDEP thresholds, but is required to meet the flooding standards for the City of Portland. The development will be designed to "detain, retain or result in the infiltration of stormwater from 24-hour storms of the 2-year, 10-year, and 25-year frequencies such that the peak flows of stormwater from the project site do not exceed the peak flows of stormwater prior to undertaking the project." A detailed stormwater model has been provided to demonstrate compliance with these standards.

VI. <u>Stormwater Management BMPs</u>

In order to meet the applicable regulations, the project will utilize a grassed underdrained soil filter located adjacent to proposed valet parking lot. The location is indicated on the attached plans.

A. Grassed Underdrained Soil Filter

A grassed underdrained soil filter must detail a runoff volume equal to 1" times the tributary impervious area and 0.4" times the tributary landscaped areas. The surface area of the system must be at least equal to 5% the impervious area and 2% of the landscaped area. Pre-treatment of the runoff must be provided by a sediment forebay, adequately sized to retain the anticipated winter sanding load. The runoff volume shall be discharged over a period of time not less than 24 hours and not greater than 48 hours. The areas treated by this BMP are summarized in the stormwater treatment calculations attached in Attachment 1: *Stormwater Quality Calculations*.

VII. <u>Peak Flow Analysis</u>

This section has been prepared to discuss the proposed modifications to peak flow rates as a result of the development.

A. Modeling Technique

In order to evaluate drainage characteristics in pre and post-development conditions, a quantitative analysis was performed to determine peak rates of runoff for the 2, 10, and 25-year storm events. Runoff calculations were performed following the methodology outlined in the USDA Soil Conservation Service's "Urban Hydrology for Small Watersheds, Technical Release #55" and HydroCAD Stormwater Modeling System Software. A 24-hour, SCS Type III storm distribution for the 2, 10, and 25-year storm frequencies were used for analysis.

The 24-hour rainfall values utilized in the hydrologic model for Southeast Cumberland County are as follows:

Table 2 - Storm Frequenc	y Precipitation (in./24hr)
2-year	3.1
10-year	4.6
25-year	5.8

*Appendix H, MDEP Chapter 500, amended date Aug 12, 2015

B. Drainage Characteristics (Pre and Post-Development Watershed Delineation)

A majority of the runoff from the site discharges to the southwest corner of the site and into the stormwater system of the adjacent internal loop road of the Jetport, Study Point 1 (SP1). A second subcatchment includes a small area of the project site that drains easterly onto the adjacent hotel property. This area discharges to a detention pond to the north along Westbrook Street (SP2).

C. <u>Pre-Development</u>

SP1: The drainage system of the internal loop road of the Jetport. This analysis point includes stormwater from Watersheds 1S and 3S, as they enter the same drainage system.

Subcatchment Area 1S consists of 1.54 acres of the project site. Runoff starts in sheet flow in the northwest corner of the site flowing to the southeast. The runoff transitions to shallow concentrated flow and turns towards the southwest and eventually discharges from the site in the southwest corner via existing closed drainage system of the internal loop road.

Subcatchment Area 3S consists of 0.31 acres of the project site. Runoff starts in a sheet flow in the southeast portion of the site, flowing westerly. The runoff transitions to shallow concentrated flow as it continues westerly, and ultimately enters the drainage system of the internal loop road.

It should be noted that a portion of Subcatchment Area 3S also includes area previously conveyed to the City of Portland per deed, book 16971, page 190.

SP2: The detention pond along Westbrook Street.

Subcatchment Area 2S consists of 0.15 acres of the project site that discharges easterly onto the adjacent hotel property. Runoff starts in sheet flow in the southeast corner of the site flowing easterly. The runoff transitions to shallow concentrated flow and exits the site, ultimately discharging to the detention pond along Westbrook Street.

For the purpose of this analysis, the site is considered to be woodland with exception to a small paved entrance to the site; the conditions that existed prior to the clearing activities from two years ago. The three subcatchments and their respective flow paths are depicted on a pre-development watershed plan.

D. Post-Development

SP1: The drainage system of the internal loop road of the Jetport.

This analysis point includes stormwater from Watersheds 1S and 3S, as they enter the same drainage system. Watershed 1S is treated and outlets to existing catch basin DH86, and Watershed 3S enters at the system at the next downstream catch basin. It should be noted that a portion of Subcatchment Area 3S also includes area previously conveyed to the City of Portland per deed, book 16971, page 190.

The post condition will compare to the pre-development runoff rates for these watersheds. The site primarily consists of Watershed 1S which consists of proposed parking area designed to sheet flow to a stormwater treatment area where it will enter a pre-treatment swale. Runoff will then discharge to the

grassed underdrained soil filter. The post development model depicts the site as a mixture of pavement and grass.

SP2: The detention pond along Westbrook Street.

Subcatchment Area 2S is a small portion of the site that drains easterly onto the adjacent hotel property. Runoff is sheet flow in the southeast corner of the site flowing easterly, ultimately discharging to the detention pond along Westbrook Street. The site was regraded to minimize the amount of runoff discharging to SP2.

E. <u>Comparison</u>

The watershed areas and times of concentration of the post-development watersheds vary from the existing conditions based on the proposed site development and grading. Table 3 summarizes the results of the hydrologic analysis of the project under pre-development and post-development conditions.

			Table 3 – Pre-De	Stormwat velopmen	ter Runof It vs. Pos	f Summa t-Develo	iry Table oment			
Study	То	tal	Per	Percent Peak Rates of Runoff					(cfs)	
Point	Wate Area	rshed (Ac)	Impe	rvious	2-у	ear	10-у	vear	25-year	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post
SP1	1.54	1.91	1%	53%	1.44	0.65	3.06	1.63	4.47	2.90
SP2	0.15	0.09	0%	5%	0.17	0.16	0.37	0.32	0.54	0.45

As depicted in the above table, post-development peak runoff rates at the study point will be below pre-development levels for the 2-year, 10-year and 25-year storm events.

VIII. <u>Water Quality Analysis</u>

To achieve the required water quality treatment, a grassed underdrained soil filter was utilized to provide treatment for the proposed project site. This treatment measure has been designed and sized in accordance with the current Maine DEP Stormwater Best Management Practices handbook.

The development has been designed to provide water quality treatment through implementation of approved BMP's which provide for an impervious area treatment percentage of 95.8% and a developed area treatment percentage of 93.3%, which

exceeds the required treatment levels of 95% and 80%, respectively, in accordance with MaineDEP Chapter 500, Section 4.C.(2)(a)(i) amended date August 12, 2015.

Water Quality Volumes, BMP sizing volume calculations, and other supporting calculations are attached to this report.

IX. Urban Impaired Stream Standard

The project is not tributary to an Urban Impaired Stream.

X. <u>Conclusions</u>

The proposed development has been designed to meet the requirements of the City of Portland's Stormwater Technical Standards. The stormwater management system will treat 95.8 % of the created impervious surface and 93.3% of the total developed area. The peak flow rates have been controlled to the greatest extent practical to be below pre-development levels. Additionally, erosion and sedimentation controls have been outlined to prevent unreasonable impacts on the site and to the surrounding environment.

Prepared by,

SEBAGO TECHNICS, INC.

(arah04fan

Sarah A. Hanf Project Engineer

SAH/RAM:sf/llg April 26, 2017

Robert A. McSorley, P.E. Senior Project Manager

Date: 4/26/17

Attachment A

Stormwater Quality Calculations

# dol	88125								*			
		EXISTING ONSITE			NEW ONSITE	NET NEW	NET EXISTING		IMPERVIOUS	LANDSCAPED	DEVELOPED	
		IMPERVIOUS	NEW ONSITE	EXISTING ONSITE	LANDSCAPED	DEVELOPED	DEVELOPED	TREATMENT	AREA	AREA	AREA	TREATMENT
AREA ID	WATERSHED SIZE	AREA	IMPERVIOUS AREA	LANDSCAPED AREA	AREA	AREA	AREAS	PROVIDED ?	TREATED	TREATED*	TREATED	BMP
	(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)	(S.F.)		(S.F.)	(S.F.)	(S.F.)	
1	74,272	0	44,188	4,862	25,222	69,410	4,862	YES	44,188	30,084	74,272	
2	4,045	0	216	2,219	1,610	1,826	2,219	ON	0	0	0	
3	8,806	470	1,703	0	6,633	8,336	0	ON	0	0	0	
4						0		ON	0	0	0	
5						0		ON	0	0	0	
9						0		ON	0	0	0	
7						0		ON	0	0	0	
8						0	0	ON	0	0	0	
6						0	0	ON	0	0	0	
10						0	0	ON	0	0	0	
11						0	0	ON	0	0	0	
12						0	0	ON	0	0	0	
13						0	0	ON	0	0	0	
14						0	0	ON	0	0	0	
15						0	0	ON	0	0	0	
16						0	0	ON	0	0	0	
TOTAL (S.F.)	87,123	470	46,107	7,081	33,465	79,572	7,081		44,188	30,084	74,272	

TOTAL NEW IMPERVIOUS AREA (S.F.)	46,107	TOTAL DEVELOPED AREA (S.F.)	79,572
TOTAL IMPERVIOUS AREA RECEIVING TREATMENT (S.F.)	44,188	TOTAL DEV. AREA RECEIVING TREATMENT (S.F.)	74,272
% OF IMPERVIOUS AREA RECEIVING TREATMENT	95.84%	% OF DEV. AREA RECEIVING TREATMENT	93.34%

Table 1: MDEP GENERAL STANDARD CALCULATIONS

SEBAGO TECHNICS, INC.							JOB	Valet Parking	g Lot				
		75 Johr	n Roberts Roa	ad Suite 1A			SHEET NO.	1			OF	1	
		South	Portland, Ma	ine 04106			CALCULATED BY		SAH		DATE	4/19/	/2017
		Tel	. (207) 200-	2100			FILE NAME	88125	1		PRNT DATE	4/26/	/2017
<u> </u>					UNDERDRAIN	IED SOIL FIL	TER						
Task:		Calculate	water qua	ality volume p	per MDEP chap	ter 500 regu	ulations						
					- (3)(1)								
		1. Maine	DEP Chap	iter 500, Sect	ion 4.C.(3)(b)						<u> </u>		
Retere	ences	<u> </u>	"t do	· · · · · · · · · · · · · · · · · · ·		i d O iach ti	·					\square	
		a.	"must de	tain a runon	volume equal	to 1.0 inch u	mes	wheetchm	antic lands		- 11	\square	l
					ipervious area	plus 0.4 inci	in times the	SUDCALCIIII		scaped are	a 		
		2 Maine		Management	t Practices Sto	rmwater Ma	nual Section	on 7 1					
		2. Maine	"surface	should renres	sent 5% of imn	ervious area	and 2% of	landscaped	l 1 area"				
		<u>u.</u>	Surface										
Tribut	ary to U	nderdrain	ed Filter										
	Landsca	aped Area		30,084.00	SF								
		[
	Impervi	ous Area		44,188.00	SF		<u> </u>				<u> </u>		<u> </u>
Minim	um Surf	ace Area											
		Ē											
	Require	d	(2% X Lar	ndscaped + 5%	%" X Impervioι	ls)							
		L									ļ		
	Total La	indscaped	Area	30,084.00	SF	Area	601.7	SF			 		
		L					ļ						
	Total In	pervious /	Area	44,188.00	SF	Area	2,209.4	SF					
		├────									 		
		 	Requi	red Minimum	i Surface Area		2,811.1	SF				\square	
		 		Dravidor	1 Conference Arros		2 000 0	6F					l
		 		Provided	I Surface Area		3,000.0	SF			+	\vdash	
Troatr	mont Vo												
HEau												\vdash	
	Require	 м	(0 4" X La	ndscaped + 1	I O" X Impervic	(אויר)					+		
	licquire												
	Landsca	aped Area		30,084.00	SF	Volume	1,002.8						
		[
	Impervi	ous Area		44,188.00	SF	Volume	3,682.3						
			Tr	reatment Volu	ume Required		4,685.1	CF	0.108	AF			
		L											
		<u> </u>	P	rovided Treat	ment Volume		5,520.0	CF	0.127	AF			
Sedim	ent Pre-	Treatment	t										
		L											
	Per Refe	erence 2, 0	Chapter 7.	.1	"Pretreatmen	t devices sha	all be provi	ded to mini	mize disch	arge of sec	liment to t	he so	vil filter"
		L					L				<u> </u>		
	Annual	Sediment	Load:	55 cubic feet	: per acre per y	/ear of sande	ed area				<u> </u>		
		Ļ <u> </u>			65								
	Area to	be sanded	1:	44,188.00	SF								
	Codimo	nt Volume		ГС	CT						-		
	Seame			00	CF								
	Provide			581	CF	0.75	Inch Deen	Forebay	with area	of	775	cf	
	TTOVIAC	<u> </u>		501		0.75		loicouy	with a cu				

Attachment B

HydroCAD Output- Pre-Development/Post Development TR-2- Model

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.011	98	Paved parking, HSG C (1S, 3S)
1.989	76	Woods/grass comb., Fair, HSG C (1S, 2S, 3S)
2.000	76	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.000	HSG C	1S, 2S, 3S
0.000	HSG D	
0.000	Other	
2.000		TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Existing Site	Runoff Area=66,921 sf 0.67% Impervious Runoff Depth>0.98" Flow Length=590' Tc=22.4 min CN=76 Runoff=1.19 cfs 0.126 af
Subcatchment 2S: Existing Site	Runoff Area=6,728 sf 0.00% Impervious Runoff Depth>0.99" Flow Length=55' Tc=7.7 min CN=76 Runoff=0.17 cfs 0.013 af
Subcatchment 3S: Existing Site	Runoff Area=13,474 sf 0.16% Impervious Runoff Depth>0.99" Flow Length=175' Tc=15.5 min CN=76 Runoff=0.28 cfs 0.025 af
Reach SP1: Exist CB7	Inflow=1.44 cfs 0.151 af Outflow=1.44 cfs 0.151 af
Reach SP2: To Detention Pond	Inflow=0.17 cfs 0.013 af
	Outflow=0.17 cfs 0.013 af
Pond DH86: Exist CB	Peak Elev=64.68' Inflow=1.19 cfs 0.126 af
12.0" F	Round Culvert n=0.011 L=62.0' S=0.0150 '/' Outflow=1.19 cfs 0.126 af
Total Duraff Area - 2	000 as Dunoff Volume = 0.464 of Average Dunoff Donth = 0.00"

Total Runoff Area = 2.000 ac Runoff Volume = 0.164 af Average Runoff Depth = 0.98" 99.46% Pervious = 1.989 ac 0.54% Impervious = 0.011 ac

Summary for Subcatchment 1S: Existing Site

Runoff = 1.19 cfs @ 12.33 hrs, Volume= 0.126 af, Depth> 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN E	Description		
	66,473	76 V	Voods/gras	ss comb., F	air, HSG C
	448	98 F	Paved park	ing, HSG C	
	66,921	76 V	Veighted A	verage	
	66,473	9	9.33% Per	vious Area	
	448	0	.67% Impe	ervious Area	3
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.7	50	0.0300	0.08		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
3.3	185	0.0350	0.94		Shallow Concentrated Flow, B to C
					Woodland Kv= 5.0 fps
8.4	355	0.0200	0.71		Shallow Concentrated Flow, C to D
					Woodland Kv= 5.0 fps
22.4	590	Total			

Subcatchment 1S: Existing Site

Summary for Subcatchment 2S: Existing Site

Runoff = 0.17 cfs @ 12.12 hrs, Volume= 0.013 af, Depth> 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN D	Description		
	6,728	76 V	Voods/gras	ss comb., F	air, HSG C
	6,728	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.6	50	0.0700	0.11	. ,	Sheet Flow, A to B
0.1	5	0.0350	0.94		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B to C Woodland Kv= 5.0 fps
7.7	55	Total			

Subcatchment 2S: Existing Site

Summary for Subcatchment 3S: Existing Site

Runoff = 0.28 cfs @ 12.23 hrs, Volume= 0.025 af, Depth> 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN [Description		
	13,452	76 \	Noods/gras	ss comb., F	air, HSG C
	22	98 F	Paved park	ing, HSG C	
	13,474	76 \	Veighted A	verage	
	13,452	ç	99.84% Per	vious Area	
	22	().16% Impe	ervious Area	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.5	50	0.0200	0.07		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
2.9	115	0.0180	0.67		Shallow Concentrated Flow, B To C
					Woodland Kv= 5.0 fps
0.1	10	0.0180	2.72		Shallow Concentrated Flow, C To D
					Paved Kv= 20.3 fps
15.5	175	Total			

Subcatchment 3S: Existing Site

Summary for Reach SP1: Exist CB7

Inflow A	Area	=	1.846 ac,	0.58% Impervious,	Inflow Depth > 0	.98" for 2-Year event
Inflow		=	1.44 cfs @	12.32 hrs, Volume	= 0.151 al	f
Outflow	v	=	1.44 cfs @	12.32 hrs, Volume	= 0.151 af	² , Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow A	Area	=	0.154 ac,	0.00% Impervious,	Inflow Depth > 0	.99" for 2-Year event
Inflow	:	=	0.17 cfs @	12.12 hrs, Volume	e 0.013 af	:
Outflow	v :	=	0.17 cfs @	12.12 hrs, Volume	e= 0.013 af	, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist CB

Inflow Area =		1.536 ac, (0.67% Impervious, Inflow Depth > 0.98" for 2-Year event
Inflow	=	1.19 cfs @	12.33 hrs, Volume= 0.126 af
Outflow	=	1.19 cfs @	12.33 hrs, Volume= 0.126 af, Atten= 0%, Lag= 0.0 min
Primary	=	1.19 cfs @	12.33 hrs, Volume= 0.126 af
Routing b Peak Elev Flood Elev	y Stor-Ind /= 64.68' (v= 71.80'	l method, Tim @ 12.33 hrs	e Span= 5.00-20.00 hrs, dt= 0.05 hrs
Device	Routing	Inver	t Outlet Devices
#1	Primary	64.11	 12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.19 cfs @ 12.33 hrs HW=64.68' (Free Discharge) **1=Culvert** (Inlet Controls 1.19 cfs @ 2.57 fps)

Pond DH86: Exist CB

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Page 11

Subcatchment 1S: Existing Site	Runoff Area=66,921 sf 0.67% Impervious Runoff Depth>2.04" Flow Length=590' Tc=22.4 min CN=76 Runoff=2.54 cfs 0.261 af
Subcatchment 2S: Existing Site	Runoff Area=6,728 sf 0.00% Impervious Runoff Depth>2.05" Flow Length=55' Tc=7.7 min CN=76 Runoff=0.37 cfs 0.026 af
Subcatchment 3S: Existing Site	Runoff Area=13,474 sf 0.16% Impervious Runoff Depth>2.04" Flow Length=175' Tc=15.5 min CN=76 Runoff=0.59 cfs 0.053 af
Reach SP1: Exist CB7	Inflow=3.06 cfs 0.313 af Outflow=3.06 cfs 0.313 af
Reach SP2: To Detention Pond	Inflow=0.37 cfs 0.026 af Outflow=0.37 cfs 0.026 af
Pond DH86: Exist CB 12.0" Ro	Peak Elev=65.06' Inflow=2.54 cfs 0.261 af ound Culvert n=0.011 L=62.0' S=0.0150 '/' Outflow=2.54 cfs 0.261 af
Total Runoff Area = 2.0	000 ac Runoff Volume = 0.340 af Average Runoff Depth = 2.04"

99.46% Pervious = 1.989 ac 0.54% Impervious = 0.011 ac

Summary for Subcatchment 1S: Existing Site

Runoff = 2.54 cfs @ 12.32 hrs, Volume= 0.261 af, Depth> 2.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.60"

A	rea (sf)	CN E	Description		
	66,473	76 V	Voods/gras	ss comb., F	air, HSG C
	448	98 F	Paved park	ing, HSG C	
	66,921	76 V	Veighted A	verage	
	66,473	9	9.33% Per	vious Area	
	448	0	.67% Impe	ervious Area	3
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.7	50	0.0300	0.08		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
3.3	185	0.0350	0.94		Shallow Concentrated Flow, B to C
					Woodland Kv= 5.0 fps
8.4	355	0.0200	0.71		Shallow Concentrated Flow, C to D
					Woodland Kv= 5.0 fps
22.4	590	Total			

Subcatchment 1S: Existing Site

Summary for Subcatchment 2S: Existing Site

Runoff = 0.37 cfs @ 12.11 hrs, Volume= 0.026 af, Depth> 2.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.60"

A	rea (sf)	CN E	Description					
	6,728	76 V	76 Woods/grass comb., Fair, HSG C					
	6,728	1	00.00% Pe	ervious Are	a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.6	50	0.0700	0.11		Sheet Flow, A to B			
0.1	5	0.0350	0.94		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B to C Woodland Kv= 5.0 fps			
77	FF	Tatal						

7.7 55 Total

Subcatchment 2S: Existing Site

Summary for Subcatchment 3S: Existing Site

Runoff = 0.59 cfs @ 12.22 hrs, Volume= 0.053 af, Depth> 2.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.60"

A	rea (sf)	CN [Description		
	13,452	76 \	Noods/gras	ss comb., F	air, HSG C
	22	98 F	Paved park	ing, HSG C	
	13,474	76 \	Neighted A	verage	
	13,452	ę	99.84% Per	vious Area	
	22	().16% Impe	ervious Area	а
_		~			–
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.5	50	0.0200	0.07		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.10"
2.9	115	0.0180	0.67		Shallow Concentrated Flow, B To C
					Woodland Kv= 5.0 fps
0.1	10	0.0180	2.72		Shallow Concentrated Flow, C To D
					Paved Kv= 20.3 fps
15.5	175	Total			

Subcatchment 3S: Existing Site

Summary for Reach SP1: Exist CB7

Inflow A	Area	=	1.846 ac,	0.58% Impervious,	Inflow Depth > 2.	04" for 10-Year event
Inflow	=	=	3.06 cfs @	12.30 hrs, Volume	= 0.313 af	
Outflow	/ =	=	3.06 cfs @	12.30 hrs, Volume	= 0.313 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow A	\rea =	0.154 ac,	0.00% Impervious,	Inflow Depth > 2.0	05" for 10-Year event
Inflow	=	0.37 cfs @	12.11 hrs, Volume	= 0.026 af	
Outflow	/ =	0.37 cfs @	12.11 hrs, Volume	= 0.026 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist CB

Inflow Are	ea =	1.536 ac, C	0.67% Impervious, Inflow Depth > 2.04" for 10-Year event
Inflow	=	2.54 cfs @ '	12.32 hrs, Volume= 0.261 af
Outflow	=	2.54 cfs @ '	12.32 hrs, Volume= 0.261 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.54 cfs @	12.32 hrs, Volume= 0.261 af
Routing b Peak Ele Flood Ele	oy Stor-Inc v= 65.06' ev= 71.80'	l method, Tim @ 12.32 hrs	e Span= 5.00-20.00 hrs, dt= 0.05 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	64.11'	12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.53 cfs @ 12.32 hrs HW=65.05' (Free Discharge) ☐ 1=Culvert (Inlet Controls 2.53 cfs @ 3.30 fps)

Pond DH86: Exist CB

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Existing Site	Runoff Area=66,921 sf 0.67% Impervious Runoff Depth>2.97" Flow Length=590' Tc=22.4 min CN=76 Runoff=3.71 cfs 0.381 af
Subcatchment 2S: Existing Site	Runoff Area=6,728 sf 0.00% Impervious Runoff Depth>2.99" Flow Length=55' Tc=7.7 min CN=76 Runoff=0.54 cfs 0.038 af
Subcatchment 3S: Existing Site	Runoff Area=13,474 sf 0.16% Impervious Runoff Depth>2.98" Flow Length=175' Tc=15.5 min CN=76 Runoff=0.87 cfs 0.077 af
Reach SP1: Exist CB7	Inflow=4.47 cfs 0.458 af Outflow=4.47 cfs 0.458 af
Reach SP2: To Detention Pond	Inflow=0.54 cfs 0.038 af
	Outflow=0.54 cfs 0.038 af
Pond DH86: Exist CB	Peak Elev=65.57' Inflow=3.71 cfs 0.381 af
12.0" F	Round Culvert n=0.011 L=62.0' S=0.0150 '/' Outflow=3.71 cfs 0.381 af
Total Bunoff Area = 2	000 ac Bunoff Volume = 0.496 af Average Bunoff Depth = 2.98"

Total Runoff Area = 2.000 ac Runoff Volume = 0.496 af Average Runoff Depth = 2.98" 99.46% Pervious = 1.989 ac 0.54% Impervious = 0.011 ac

Summary for Subcatchment 1S: Existing Site

Runoff = 3.71 cfs @ 12.31 hrs, Volume= 0.381 af, Depth> 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN D	escription					
66,473 76 Woods/grass comb., Fa			Voods/gras	ss comb., F	air, HSG C			
448 98 F		Paved parking, HSG C						
66,921		76 V	Weighted Average					
66,473		9	99.33% Pervious Area					
448		0	.67% Impe	ervious Area	3			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.7	50	0.0300	0.08		Sheet Flow, A to B			
					Woods: Light underbrush n= 0.400 P2= 3.10"			
3.3	185	0.0350	0.94		Shallow Concentrated Flow, B to C			
					Woodland Kv= 5.0 fps			
8.4	355	0.0200	0.71		Shallow Concentrated Flow, C to D			
					Woodland Kv= 5.0 fps			
22.4	590	Total						

Subcatchment 1S: Existing Site

Summary for Subcatchment 2S: Existing Site

Runoff = 0.54 cfs @ 12.11 hrs, Volume= 0.038 af, Depth> 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN D	Description					
	6,728	76 Woods/grass comb., Fair, HSG C						
	6,728	1	00.00% Pe	ervious Are	a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.6	50	0.0700	0.11		Sheet Flow, A to B			
0.1	5	0.0350	0.94		Woods: Light underbrush n= 0.400 P2= 3.10" Shallow Concentrated Flow, B to C Woodland Kv= 5.0 fps			
7.7	55	Total						

Summary for Subcatchment 3S: Existing Site

Runoff = 0.87 cfs @ 12.22 hrs, Volume= 0.077 af, Depth> 2.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN I	Description				
13,452 76 Woods/grass comb., Fa				ss comb., F	air, HSG C		
22 98 Paved parking, HSG C			Paved park	ing, HSG C			
13,474		76 \	Weighted Average				
13,452		ę	99.84% Pervious Area				
22		(0.16% Impervious Area				
_							
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
12.5	50	0.0200	0.07		Sheet Flow, A to B		
					Woods: Light underbrush n= 0.400 P2= 3.10"		
2.9	115	0.0180	0.67		Shallow Concentrated Flow, B To C		
					Woodland Kv= 5.0 fps		
0.1	10	0.0180	2.72		Shallow Concentrated Flow, C To D		
					Paved Kv= 20.3 fps		
15.5	175	Total					

Subcatchment 3S: Existing Site

Summary for Reach SP1: Exist CB7

Inflow A	Area	=	1.846 ac,	0.58% Impervious,	Inflow Depth > 2	.98" for 25-Year event
Inflow	=	=	4.47 cfs @	12.29 hrs, Volume	= 0.458 at	-
Outflow	' =	=	4.47 cfs @	12.29 hrs, Volume	= 0.458 at	, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow A	Area =	:	0.154 ac,	0.00% Impervious,	Inflow Depth > 2	.99" for 25-Year event
Inflow	=		0.54 cfs @	12.11 hrs, Volume	= 0.038 af	
Outflow	/ =		0.54 cfs @	12.11 hrs, Volume	= 0.038 af	, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist CB

Inflow Area =		1.536 ac, (0.67% Impervious, Inflow Depth > 2.97" for 25-Year event
Inflow	=	3.71 cfs @	12.31 hrs, Volume= 0.381 af
Outflow	=	3.71 cfs @	12.31 hrs, Volume= 0.381 af, Atten= 0%, Lag= 0.0 min
Primary	=	3.71 cfs @	12.31 hrs, Volume= 0.381 af
Routing by Peak Elev Flood Elev	/ Stor-Inc = 65.57' /= 71.80'	l method, Tim @ 12.31 hrs	e Span= 5.00-20.00 hrs, dt= 0.05 hrs
Device F	Routing	Inver	t Outlet Devices
#1 F	Primary	64.11	 12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=3.69 cfs @ 12.31 hrs HW=65.56' (Free Discharge) ☐ 1=Culvert (Inlet Controls 3.69 cfs @ 4.70 fps)

Pond DH86: Exist CB

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.931	79	50-75% Grass cover, Fair, HSG C (1S, 2S, 3S)
1.069	98	Paved parking, HSG C (1S, 2S, 3S)
2.000	89	TOTAL AREA

88125-Post April 2017

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.000	HSG C	1S, 2S, 3S
0.000	HSG D	
0.000	Other	
2.000		TOTAL AREA

88125-Post April 2017	Type III 24-hr 2-Year Rainfall=3.10"
Prepared by {enter your company name	here} Printed 4/26/2017
HydroCAD® 10.00-15 s/n 01856 © 2015 Hydro	roCAD Software Solutions LLC Page 4
Time span=5.00 Runoff by SCS TF Reach routing by Stor-Ind+T)-20.00 hrs, dt=0.01 hrs, 1501 points R-20 method, UH=SCS, Weighted-CN ⁻ rans method - Pond routing by Stor-Ind method
Subcatchment 1S: Valet Parking Site	Runoff Area=74,272 sf 59.49% Impervious Runoff Depth>1.95" Flow Length=488' Tc=9.5 min CN=90 Runoff=3.66 cfs 0.277 af
Subcatchment 2S: Valet Parking Site Flow Length=20	Runoff Area=4,045 sf 5.34% Impervious Runoff Depth>1.22")' Slope=0.1200 '/' Tc=2.0 min CN=80 Runoff=0.16 cfs 0.009 af
Subcatchment 3S: Valet Parking Site Flow Length=60	Runoff Area=8,806 sf 24.68% Impervious Runoff Depth>1.49")' Slope=0.0330 '/' Tc=0.5 min CN=84 Runoff=0.46 cfs 0.025 af
Reach SP1: Exist CB7	Inflow=0.65 cfs 0.225 af Outflow=0.65 cfs 0.225 af
Reach SP2: To Detention Pond	Inflow=0.16 cfs 0.009 af Outflow=0.16 cfs 0.009 af
Pond DH86: Exist DH86 12.0" Round	Peak Elev=64.39' Inflow=0.32 cfs 0.200 af d Culvert n=0.011 L=62.0' S=0.0150 '/' Outflow=0.32 cfs 0.200 af
Pond SF1: Soil Filter 1	Peak Elev=71.61' Storage=5,942 cf Inflow=3.66 cfs 0.277 af Outflow=0.32 cfs 0.200 af
Total Runoff Area = 2.000	ac Runoff Volume = 0.311 af Average Runoff Depth = 1.87"

46.54% Pervious = 0.931 ac 53.46% Impervious = 1.069 ac

Summary for Subcatchment 1S: Valet Parking Site

Runoff = 3.66 cfs @ 12.13 hrs, Volume= 0.277 af, Depth> 1.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN E	Description		
	44,188	98 F	Paved park	ing, HSG C	
	30,084	79 5	50-75% Gra	ass cover, F	Fair, HSG C
	74,272	90 V	Veighted A	verage	
	30,084	4	0.51% Per	vious Area	
	44,188	5	59.49% Imp	pervious Ar	ea
		~		.	— • • •
	c Length	Slope	Velocity	Capacity	Description
(mir) (feet)	(ft/ft)	(ft/sec)	(Cts)	
7.	1 50	0.0300	0.12		Sheet Flow, A to B
					Grass: Dense n= 0.240 P2= 3.10"
1.	1 185	0.0350	2.81		Shallow Concentrated Flow, B to C
					Grassed Waterway Kv= 15.0 fps
0.	1 20	0.0300	2.60		Shallow Concentrated Flow, C to D
					Grassed Waterway Kv= 15.0 fps
1.	2 215	0.0220	3.01		Shallow Concentrated Flow, D to E
•			0 = 1		Paved Kv= 20.3 fps
0.	0 18	0.1900	6.54		Shallow Concentrated Flow, E to F
					Grassed waterway KV= 15.0 fps
9.	5 488	Total			

Subcatchment 1S: Valet Parking Site

Summary for Subcatchment 2S: Valet Parking Site

Runoff = 0.16 cfs @ 12.03 hrs, Volume= 0.009 af, Depth> 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN	Description					
	216	98	Paved park	ing, HSG C				
	3,829	79	50-75% Gra	D-75% Grass cover, Fair, HSG C				
	4,045	80	Weighted A	verage				
	3,829		94.66% Per	rvious Area				
	216		5.34% Impe	ervious Area	а			
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)				
2.0	20	0.1200	0.17		Sheet Flow, A to B			
					Grass: Dense n= 0.240 P2= 3.10"			

Subcatchment 2S: Valet Parking Site

Summary for Subcatchment 3S: Valet Parking Site

Runoff = 0.46 cfs @ 12.01 hrs, Volume= 0.025 af, Depth> 1.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=3.10"

A	rea (sf)	CN	Description				
	2,173	98	Paved park	ing, HSG C			
	6,633	79	50-75% Gra	ass cover, F	Fair, HSG C		
	8,806	84	84 Weighted Average				
	6,633		75.32% Pe	rvious Area			
	2,173		24.68% Imp	pervious Are	ea		
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
0.3	25	0.0330) 1.25		Sheet Flow, A to B		
0.2	35	0.0330) 3.69		Smooth surfaces n= 0.011 P2= 3.10" Shallow Concentrated Flow, B to C Paved Kv= 20.3 fps		
0.5	60	Total					

Subcatchment 3S: Valet Parking Site

Summary for Reach SP1: Exist CB7

Inflow Ar	rea =	1.907 ac, 5	55.80% Impervious,	Inflow Depth > 1.4	41" for 2-Year event
Inflow	=	0.65 cfs @	12.01 hrs, Volume	= 0.225 af	
Outflow	=	0.65 cfs @	12.01 hrs, Volume	= 0.225 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow A	rea =	0.093 ac,	5.34% Impervious,	Inflow Depth > 1.2	22" for 2-Year event
Inflow	=	0.16 cfs @	12.03 hrs, Volume	= 0.009 af	
Outflow	=	0.16 cfs @	12.03 hrs, Volume	= 0.009 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist DH86

Inflow Area = 1.705 ac, 59.49% Impervious, Inflow Depth > 1.40" for 2-Year event Inflow 0.32 cfs @ 13.36 hrs, Volume= 0.200 af = Outflow 0.32 cfs @ 13.36 hrs, Volume= 0.200 af, Atten= 0%, Lag= 0.0 min = Primary = 0.32 cfs @ 13.36 hrs, Volume= 0.200 af Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 64.39' @ 13.36 hrs Flood Elev= 71.80' Device Invert Routing Outlet Devices 64.11' #1 Primary 12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900

Primary OutFlow Max=0.32 cfs @ 13.36 hrs HW=64.39' (Free Discharge) **1=Culvert** (Inlet Controls 0.32 cfs @ 1.79 fps)

Pond DH86: Exist DH86

n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Summary for Pond SF1: Soil Filter 1

Inflow Area	a =	1.705 ac, 5	59.49% Impe	ervious,	Inflow	Depth >	1.95"	for 2-Ye	ar event	
Inflow	=	3.66 cfs @	12.13 hrs,	Volume	=	0.277	af			
Outflow	=	0.32 cfs @	13.36 hrs,	Volume	=	0.200	af, Atte	en= 91%,	Lag= 73.7 r	min
Primary	=	0.32 cfs @	13.36 hrs,	Volume	=	0.200	af			

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 71.61' @ 13.36 hrs Surf.Area= 4,509 sf Storage= 5,942 cf Flood Elev= 73.50' Surf.Area= 5,254 sf Storage= 11,678 cf

Plug-Flow detention time= 177.1 min calculated for 0.199 af (72% of inflow) Center-of-Mass det. time= 113.6 min (891.9 - 778.3)

Volume	Inve	rt Avail.Sto	rage Storage E	Description	
#1	70.00	D' 11,6 ⁻	78 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
70.0	00	2,997	0	0	
71.0	00	3,857	3,427	3,427	
71.5	50	4,309	2,042	5,469	
71.7	75	4,774	1,135	6,604	
72.5	50	5,254	3,761	10,364	
72.7	75	5,254	1,314	11,678	
Device	Routing	Invert	Outlet Devices		
#1	Primary	67.33'	12.0" Round (L= 80.0' CPP Inlet / Outlet In n= 0.013 Corr	Culvert , square edge h vert= 67.33' / 6 ugated PE, smo	eadwall, Ke= 0.500 6.93' S= 0.0050 '/' Cc= 0.900 poth interior, Flow Area= 0.79 sf
#2	Device 1	67.66'	6.0" Vert. Und	erdrain C= 0.	600
#3	Device 2	70.00'	2.400 in/hr Ext	filtration over S	Surface area
#4	Device 1	71.50'	6.0" Vert. Orifi	ces X 2.00 C	= 0.600
#5	Device 1	72.50'	18.0" Horiz. Ny Limited to weir	yloplast Grate flow at low hea	X 0.65 C= 0.600 ds
Primary	[,] OutFlow Ilvert (Pas	Max=0.32 cfs (ses 0.32 cfs of	@ 13.36 hrs HW 6.03 cfs potentia	/=71.61' (Free al flow)	Discharge)

-2=Underdrain (Passes 0.25 cfs of 1.82 cfs potential flow) -3=Exfiltration (Exfiltration Controls 0.25 cfs)

-4=Orifices (Orifice Controls 0.07 cfs @ 1.12 fps)

-5=Nyloplast Grate (Controls 0.00 cfs)

Pond SF1: Soil Filter 1

88125-Post April 2017		Type III 24-hr	10-Year Rainfall=4.60"
Prepared by {enter your company name	here}		Printed 4/26/2017
HydroCAD® 10.00-15 s/n 01856 © 2015 Hyd	OCAD Software Solutions	S LLC	Page 14
Time span=5.00	-20 00 brs_dt=0 01 brs	1501 points	
Runoff by SCS T	R-20 method. UH=SCS.	Weighted-CN	
Reach routing by Stor-Ind+T	rans method - Pond ro	uting by Stor-Ir	nd method
Subcatchment 1S: Valet Parking Site	Runoff Area=74,272 sf	59.49% Imperv	vious Runoff Depth>3.29"
.......	Flow Length=488' Tc=9	.5 min CN=90	Runoff=6.03 cfs 0.468 af
Subcatchment 2S: Valet Parking Site	Runoff Area=4,045 s	f 5.34% Imperv	vious Runoff Depth>2.38"
Flow Length=20	' Slope=0.1200 '/' Tc=2	.0 min CN=80	Runoff=0.32 cfs 0.018 af
Subcatchment 3S: Valet Parking Site	Runoff Area=8,806 sf	24.68% Imperv	vious Runoff Depth>2.73"
Flow Length=60	' Slope=0.0330 '/' Tc=0	.5 min CN=84	Runoff=0.83 cfs 0.046 af
Reach SP1: Exist CB7			Inflow=1.63 cfs 0.414 af
			Outflow=1.63 cfs 0.414 af
Reach SP2: To Detention Pond			Inflow=0.32 cfs 0.018 af
			Outflow=0.32 cfs 0.018 af
Pond DH86: Exist DH86	Р	eak Elev=64.77'	Inflow=1.53 cfs 0.368 af
12.0" Round	d Culvert n=0.011 L=62.0)' S=0.0150 '/'	Outflow=1.53 cfs 0.368 af
Pond SF1: Soil Filter 1	Peak Elev=72.18' S	torage=8,733 cf	Inflow=6.03 cfs 0.468 af
			Outflow=1.53 cfs 0.368 af
Total Runoff Area = 2.000	ac Runoff Volume = 0	.532 af Avera	ge Runoff Depth = 3.19"
	46.54% Pervious = 0.9	31 ac 53.46°	% Impervious = 1.069 ac

Summary for Subcatchment 1S: Valet Parking Site

Runoff = 6.03 cfs @ 12.13 hrs, Volume= 0.468 af, Depth> 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.60"

	Area (sf)	CN E	Description						
	44,188	98 F	98 Paved parking, HSG C						
	30,084	79 5	50-75% Gra	ass cover, F	Fair, HSG C				
	74,272	90 V	Veighted A	verage					
	30,084	4	0.51% Per	vious Area					
	44,188	5	59.49% Imp	pervious Ar	ea				
		~		.	— • • •				
	c Length	Slope	Velocity	Capacity	Description				
(mir) (feet)	(ft/ft)	(ft/sec)	(Cts)					
7.	1 50	0.0300	0.12		Sheet Flow, A to B				
					Grass: Dense n= 0.240 P2= 3.10"				
1.	1 185	0.0350	2.81		Shallow Concentrated Flow, B to C				
					Grassed Waterway Kv= 15.0 fps				
0.	1 20	0.0300	2.60		Shallow Concentrated Flow, C to D				
					Grassed Waterway Kv= 15.0 fps				
1.	2 215	0.0220	3.01		Shallow Concentrated Flow, D to E				
•			0 = 1		Paved Kv= 20.3 fps				
0.	0 18	0.1900	6.54		Shallow Concentrated Flow, E to F				
					Grassed waterway KV= 15.0 fps				
9.	5 488	Total							

Subcatchment 1S: Valet Parking Site

Summary for Subcatchment 2S: Valet Parking Site

Runoff = 0.32 cfs @ 12.03 hrs, Volume= 0.018 af, Depth> 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.60"

A	rea (sf)	CN	Description				
	216	98	Paved park	ing, HSG C			
	3,829	79	50-75% Gra	ass cover, F	Fair, HSG C		
	4,045	80	Weighted A	verage			
	3,829		94.66% Per	04.66% Pervious Area			
	216		5.34% Impervious Area				
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)			
2.0	20	0.1200	0.17		Sheet Flow, A to B		
					Grass: Dense n= 0.240 P2= 3.10"		

Subcatchment 2S: Valet Parking Site

Summary for Subcatchment 3S: Valet Parking Site

0.83 cfs @ 12.01 hrs, Volume= 0.046 af, Depth> 2.73" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.60"

A	rea (sf)	CN	Description					
	2,173	98	Paved park	ing, HSG C				
	6,633	79	50-75% Gra	ass cover, F	Fair, HSG C			
	8,806	84	Weighted A	verage				
	6,633		75.32% Pe	rvious Area				
	2,173		24.68% Imp	pervious Are	ea			
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
0.3	25	0.0330) 1.25		Sheet Flow, A to B			
0.2	35	0.0330) 3.69		Smooth surfaces n= 0.011 P2= 3.10" Shallow Concentrated Flow, B to C Paved Kv= 20.3 fps			
0.5	60	Total						

Subcatchment 3S: Valet Parking Site

Hydrograph

Summary for Reach SP1: Exist CB7

Inflow /	Area =	1.907 ac,	55.80% Impe	ervious,	Inflow Dep	oth > 2.6	61" for 10-	Year event
Inflow	=	1.63 cfs @	12.45 hrs,	Volume	= 0).414 af		
Outflov	v =	1.63 cfs @	12.45 hrs,	Volume	= ().414 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow A	Area	=	0.093 ac,	5.34% Impervious,	Inflow Depth > 2	.38" for 10-Year event
Inflow	:	=	0.32 cfs @	12.03 hrs, Volume	e= 0.018 af	
Outflow	V	=	0.32 cfs @	12.03 hrs, Volume	e= 0.018 af	, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist DH86

Inflow Area = 1.705 ac, 59.49% Impervious, Inflow Depth > 2.59" for 10-Year event Inflow 1.53 cfs @ 12.55 hrs, Volume= 0.368 af = Outflow 1.53 cfs @ 12.55 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.0 min = Primary = 1.53 cfs @ 12.55 hrs, Volume= 0.368 af Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 64.77' @ 12.55 hrs Flood Elev= 71.80' Device Routing Invert **Outlet Devices** #1 Primary 64.11' 12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=1.52 cfs @ 12.55 hrs HW=64.77' (Free Discharge) —1=Culvert (Inlet Controls 1.52 cfs @ 2.77 fps)

Pond DH86: Exist DH86

Summary for Pond SF1: Soil Filter 1

Inflow Area	a =	1.705 ac,	59.49% Impe	ervious,	Inflow Depth >	3.29"	for 10-	Year event	
Inflow	=	6.03 cfs @	12.13 hrs,	Volume	= 0.468	af			
Outflow	=	1.53 cfs @	12.55 hrs,	Volume	= 0.368	af, Att	en= 75%	, Lag= 25.0	min
Primary	=	1.53 cfs @	12.55 hrs,	Volume	= 0.368	af			

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 72.18' @ 12.55 hrs Surf.Area= 5,051 sf Storage= 8,733 cf Flood Elev= 73.50' Surf.Area= 5,254 sf Storage= 11,678 cf

Plug-Flow detention time= 122.5 min calculated for 0.368 af (79% of inflow) Center-of-Mass det. time= 67.7 min (833.5 - 765.8)

Volume	Inve	rt Avail.Sto	rage Storage D	Description	
#1	#1 70.00' 11,678 c		78 cf Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
70.0	00	2,997	0	0	
71.0	00	3,857	3,427	3,427	
71.5	71.50 4,309		2,042	5,469	
71.7	75	4,774	1,135	6,604	
72.5	50	5,254	3,761	10,364	
72.7	75	5,254	1,314	11,678	
Device	Routing	Invert	Outlet Devices		
#1	Primary	67.33'	12.0" Round C L= 80.0' CPP, Inlet / Outlet Inv n= 0.013 Corru	Culvert square edge h vert= 67.33' / 6 ugated PE, smo	neadwall, Ke= 0.500 6.93' S= 0.0050 '/' Cc= 0.900 poth interior, Flow Area= 0.79 sf
#2	Device 1	67.66'	6.0" Vert. Unde	erdrain C= 0.	600
#3	Device 2	70.00'	2.400 in/hr Exf	iltration over S	Surface area
#4 #5	Device 1	71.50 [°]	6.0" Vert. Orifi	ces X 2.00 C	
#5	Device	72.50	Limited to weir	flow at low hea	x 0.65 C= 0.600 ids
Primary	OutFlow Ilvert (Pas	Max=1.53 cfs (ses 1.53 cfs of	@ 12.55 hrs HW 6.49 cfs potentia	'=72.18' (Free al flow)	Discharge)

2=Underdrain (Passes 0.28 cfs of 1.95 cfs potential flow)

1-3=Exfiltration (Exfiltration Controls 0.28 cfs)

-4=Orifices (Orifice Controls 1.24 cfs @ 3.17 fps)

-5=Nyloplast Grate (Controls 0.00 cfs)

Pond SF1: Soil Filter 1

88125-Post April 2017	Type III 24-hr 25-Year Rainfall=5.80"
Prepared by {enter your company name here}	Printed 4/26/2017
HydroCAD® 10.00-15 s/n 01856 © 2015 HydroCAD Software Sol	utions LLC Page 24
Time span=5.00-20.00 hrs, dt=0.07	1 hrs, 1501 points
Runoff by SCS TR-20 method, UH=	SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Po	nd routing by Stor-Ind method
Subcatchment 1S: Valet Parking Site Runoff Area=74,2	72 sf 59.49% Impervious Runoff Depth>4.39"
Flow Length=488'	Tc=9.5 min CN=90 Runoff=7.91 cfs 0.624 af
Subcatchment 2S: Valet Parking Site Runoff Area=4.	045 sf 5.34% Impervious Runoff Depth>3.38"
Flow Length=20' Slope=0.1200 '/'	Tc=2.0 min CN=80 Runoff=0.45 cfs 0.026 af
Subcatchment 3S: Valet Parking Site Runoff Area=8 8	06 sf 24 68% Impervious Runoff Depth>3 78"
Flow Length=60' Slope=0.0330 '/'	Tc=0.5 min CN=84 Runoff=1.14 cfs 0.064 af
Posch SD1. Exist CB7	Inflow=2.90 cfc 0.576 af
	Outflow=2.90 cfs 0.576 af
Reach SP2: To Detention Pond	Inflow=0.45 cfs 0.026 af
	Outflow=0.45 cfs 0.026 at
Pond DH86: Exist DH86	Peak Elev=65.13' Inflow=2.72 cfs 0.513 af
12.0" Round Culvert n=0.011 L	_=62.0' S=0.0150 '/' Outflow=2.72 cfs 0.513 af
Pond SE1: Soil Filter 1 Peak Elev=72 6	6' Storage=11 194 cf Inflow=7 91 cfs 0 624 af
	Outflow=2.72 cfs 0.513 af
i otal Runoπ Area = 2.000 ac Runoff Volum 46.54% Pervious	= 0.714 at Average Runoff Depth = 4.28" = 0.931 ac 53.46% Impervious = 1.069 ac

Summary for Subcatchment 1S: Valet Parking Site

Runoff = 7.91 cfs @ 12.13 hrs, Volume= 0.624 af, Depth> 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.80"

_	A	rea (sf)	CN E	Description						
		44,188	98 F	98 Paved parking, HSG C						
_		30,084	79 5	50-75% Gra	ass cover, F	Fair, HSG C				
		74,272	90 V	Veighted A	verage					
		30,084	4	0.51% Per	vious Area					
		44,188	5	59.49% Imp	pervious Ar	ea				
	-				o					
	IC	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(CTS)					
	7.1	50	0.0300	0.12		Sheet Flow, A to B				
						Grass: Dense n= 0.240 P2= 3.10"				
	1.1	185	0.0350	2.81		Shallow Concentrated Flow, B to C				
						Grassed Waterway Kv= 15.0 fps				
	0.1	20	0.0300	2.60		Shallow Concentrated Flow, C to D				
		- · -				Grassed Waterway Kv= 15.0 fps				
	1.2	215	0.0220	3.01		Shallow Concentrated Flow, D to E				
				<i>i</i>		Paved Kv= 20.3 fps				
	0.0	18	0.1900	6.54		Shallow Concentrated Flow, E to F				
						Grassed Waterway Kv= 15.0 fps				
	9.5	488	Total							

Subcatchment 1S: Valet Parking Site

Summary for Subcatchment 2S: Valet Parking Site

Runoff = 0.45 cfs @ 12.03 hrs, Volume= 0.026 af, Depth> 3.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN	Description				
	216	98	Paved park	ing, HSG C			
	3,829	79	50-75% Gra	ass cover, F	Fair, HSG C		
	4,045	80	Weighted A	Veighted Average			
	3,829		94.66% Per	4.66% Pervious Area			
	216		5.34% Impe	ervious Area	а		
_							
Tc	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)			
2.0	20	0.1200	0.17		Sheet Flow, A to B		
					Grass: Dense n= 0.240 P2= 3.10"		

Subcatchment 2S: Valet Parking Site

Summary for Subcatchment 3S: Valet Parking Site

Runoff = 1.14 cfs @ 12.01 hrs, Volume= 0.064 af, Depth> 3.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=5.80"

A	rea (sf)	CN	Description					
	2,173	98	Paved parking, HSG C					
	6,633	79	50-75% Grass cover, Fair, HSG C					
	8,806	84	Weighted A	verage				
	6,633	75.32% Pervious Area						
	2,173	24.68% Impervious Area						
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	•			
0.3	25	0.0330) 1.25		Sheet Flow, A to B			
					Smooth surfaces n= 0.011 P2= 3.10"			
0.2	35	0.0330) 3.69		Shallow Concentrated Flow, B to C			
					Paved Kv= 20.3 fps			
0.5	60	Total						

Subcatchment 3S: Valet Parking Site

Summary for Reach SP1: Exist CB7

Inflow A	rea =	1.907 ac, 5	5.80% Impervious,	Inflow Depth > 3.	63" for 25-Year event
Inflow	=	2.90 cfs @	12.44 hrs, Volume	= 0.576 af	
Outflow	=	2.90 cfs @	12.44 hrs, Volume	= 0.576 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP1: Exist CB7

Summary for Reach SP2: To Detention Pond

Inflow /	Area	=	0.093 ac,	5.34% Impervious,	Inflow Depth > 3	3.38" for 25-Year event
Inflow		=	0.45 cfs @	12.03 hrs, Volume	e= 0.026 at	F
Outflov	v	=	0.45 cfs @	12.03 hrs, Volume	e= 0.026 at	f, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Reach SP2: To Detention Pond

Summary for Pond DH86: Exist DH86

Inflow Area = 1.705 ac, 59.49% Impervious, Inflow Depth > 3.61" for 25-Year event Inflow 2.72 cfs @ 12.46 hrs, Volume= 0.513 af = Outflow 2.72 cfs @ 12.46 hrs, Volume= 0.513 af, Atten= 0%, Lag= 0.0 min = Primary = 2.72 cfs @ 12.46 hrs, Volume= 0.513 af Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 65.13' @ 12.46 hrs Flood Elev= 71.80' Device Routing Invert **Outlet Devices** #1 64.11' Primary 12.0" Round Culvert L= 62.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 64.11' / 63.18' S= 0.0150 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.79 sf

Primary OutFlow Max=2.72 cfs @ 12.46 hrs HW=65.13' (Free Discharge) **1=Culvert** (Inlet Controls 2.72 cfs @ 3.47 fps)

Pond DH86: Exist DH86

Summary for Pond SF1: Soil Filter 1

Inflow Area	ı =	1.705 ac, 5	59.49% Impe	ervious,	Inflow Depth >	4.3	9" for	25-Y	ear event	
Inflow	=	7.91 cfs @	12.13 hrs,	Volume	= 0.624	af				
Outflow	=	2.72 cfs @	12.46 hrs,	Volume	= 0.513	af,	Atten= 6	6%,	Lag= 19.7	7 min
Primary	=	2.72 cfs @	12.46 hrs,	Volume	= 0.513	af				

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 72.66' @ 12.46 hrs Surf.Area= 5,254 sf Storage= 11,194 cf Flood Elev= 73.50' Surf.Area= 5,254 sf Storage= 11,678 cf

Plug-Flow detention time= 105.9 min calculated for 0.513 af (82% of inflow) Center-of-Mass det. time= 56.7 min (816.2 - 759.6)

Volume	Inve	rt Avail.Sto	rage Storage D	Description				
#1	70.0	0' 11,67	78 cf Custom S	Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
70.0	00	2,997	0	0				
71.0	00	3,857	3,427	3,427				
71.5	50	4,309	2,042	5,469				
71.7	75	4,774	1,135	6,604				
72.5	50	5,254	3,761	10,364				
72.7	75	5,254	1,314	11,678				
Device	Routing	Invert	Outlet Devices					
#1	Primary	67.33'	12.0" Round (L= 80.0' CPP	Culvert , square edge he	adwall, Ke= 0.500			
			n= 0.013 Corr	ugated PE, smoo	93' S= 0.0050 7' Cc= 0.900 oth interior, Flow Area= 0.79 sf			
#2	#2 Device 1 67.66'		6.0" Vert. Underdrain C= 0.600					
#3	Device 2	70.00'	2.400 in/hr Exf	filtration over Su	irface area			
#4	Device 1	71.50'	6.0" Vert. Orifi	ces X 2.00 C=	0.600			
#5	Device 1	72.50'	18.0" Horiz. Ny Limited to weir	3.0" Horiz. Nyloplast Grate X 0.65 C= 0.600 mited to weir flow at low heads				
Primary	OutFlow	Max=2.72 cfs (2 12.46 hrs HW	/=72.66' (Free [Discharge)			

-1=Culvert (Passes 2.72 cfs of 6.84 cfs potential flow)

2=Underdrain (Passes 0.29 cfs of 2.06 cfs potential flow)

-3=Exfiltration (Exfiltration Controls 0.29 cfs)

-4=Orifices (Orifice Controls 1.80 cfs @ 4.59 fps)

-5=Nyloplast Grate (Weir Controls 0.63 cfs @ 0.84 fps)

Pond SF1: Soil Filter 1
Attachment C

Inspection, Maintenance and Housekeeping Plan

INSPECTION, MAINTENANCE, AND HOUSEKEEPING PLAN

Valet Parking Lot Portland, ME

Introduction

Upon completion of the proposed development, Toye Realty Holdings III, LLC (or a subsidiary of) will be the responsible party for maintaining the stormwater management system. Until such time as the parking lot is established, such as during construction, the contractor shall be responsible for maintaining the stormwater management system. The responsible party shall schedule maintenance of all stormwater management structures, the establishment of any contract services required to implement the program, and the keeping of records and maintenance logbook.

Records of all inspections and maintenance work accomplished must be kept on file and retained for a minimum 5-year time span. The maintenance logbook will be made available to the Maine Department of Environmental Protection (MDEP) and the City of Portland upon request. At a minimum, the appropriate and relevant activities for each of the stormwater management systems will be performed on the prescribed schedule.

The following plan outlines the anticipated inspection, maintenance, and housekeeping procedures for the erosion and sedimentation controls as well as stormwater management devices for the project site. Also, this plan outlines several housekeeping requirements that shall be followed during and after construction. These procedures should be followed in order to ensure the intended function of the designed measures and to prevent unreasonable adverse impacts to the surrounding environment.

The procedures outlined in the Inspection, Maintenance, and Housekeeping Plan is provided as an overview of the anticipated practices to be used on this site. In some instances, additional measures may be required due to unexpected conditions. For additional details on any of the erosion and sedimentation control measures or stormwater management devices to be utilized on this project, refer to the most recently revised edition of the "Maine Erosion and Sedimentation Control BMP" manual and/or the "Stormwater Management for Maine: Best Management Practices" manual as published by the MDEP.

During Construction

1. **Inspection:** During the construction process, it is the Contractor's responsibility to comply with the inspection and maintenance procedures outlined in this section. These responsibilities include

inspecting disturbed and impervious areas, erosion control measures, materials storage areas that are exposed to precipitation, and locations where vehicles enter or exit the site. These areas shall be inspected at least once a week as well as before and after a storm event, and prior to completing permanent stabilization measures. A person with knowledge of erosion and stormwater control, including the standards and conditions in any applicable permits, shall conduct the inspections.

- 2. **Maintenance:** All measures shall be maintained in an effective operating condition until areas are permanently stabilized. If Best Management Practices (BMPs) need to be maintained or modified, additional BMPs are necessary, or other corrective action is needed, implementation must be completed within seven (7) calendar days and prior to any storm event (rainfall).
- 3. **Documentation:** A log summarizing the inspections and any corrective action taken must be maintained on-site. The log must include the name(s) and qualifications of the person making the inspections, the date(s) of the inspections, and major observations about the operation and maintenance of erosion and sedimentation controls, material storage areas, and vehicle access points to the site. Major observations must include BMPs that need maintenance, BMPs that failed to operate as designed or proved inadequate for a particular location, and locations where additional BMPs are needed. For each BMP requiring maintenance, BMP needing replacement, and location needing additional BMPs, note in the log the corrective action taken and when it was taken.

The log must be made accessible to the appropriate regulatory agency upon request. The permittee shall retain a copy of the log for a period of at least three (3) years from the completion of permanent stabilization.

4. **Specific Inspection and Maintenance Tasks:** The following is a list of erosion control and stormwater management measures and the specific inspection and maintenance tasks to be performed during construction.

A. Sediment Barriers:

- Hay bale barriers, silt fences, and filter berms shall be inspected immediately after each rainfall and at least daily during prolonged rainfall.
- If the fabric on silt fence or filter barrier should decompose or become ineffective prior to the end of the expected usable life and the barrier is still necessary, it shall be replaced.
- Sediment deposits should be removed after each storm event. They must be removed before deposits reach approximately one-half the height of the barrier.
- Filter berms shall be reshaped as needed.
- Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required should be dressed to conform to the existing grade, prepared, and seeded.

B. <u>Riprap Materials:</u>

• Once a riprap installation has been completed, it should require very little maintenance. It shall, however, be inspected periodically to determine if high flows have caused scour beneath the riprap or dislodged any of the stone.

C. Erosion Control Blankets:

- Inspect these reinforced areas semi-annually and after significant rainfall events for slumping, sliding, seepage, and scour. Pay close attention to unreinforced areas adjacent to the erosion control blankets, which may experience accelerated erosion.
- Review all applicable inspection and maintenance procedures recommended by the specific blanket manufacturer. These tasks shall be included in addition to this plan.

D. <u>Temporary Storm Drain Inlet Protection:</u>

- The inlet protection structure shall be inspected before each rain event and repaired as necessary.
- Sediment shall be removed and the storm drain sediment barrier restored to its original dimensions when the sediment has accumulated to half of the design depth of the trap.
- Structures shall be removed upon permanent stabilization of the tributary area.
- Upon removal of the structure, all accumulated sediments downstream of the structure shall be cleaned from the storm drain system.

E. <u>Stabilized Construction Entrances/Exits:</u>

- The exit shall be maintained in a condition that will prevent tracking of sediment onto public rights-of-way.
- When the control pad becomes ineffective, the stone shall be removed along with the collected soil material. The entrance should then be reconstructed.
- Areas that have received mud-tracking or sediment deposits shall be swept or washed. Washing shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device (not into storm drains, ditches, or waterways).

F. <u>Temporary Seed and Mulch:</u>

- Mulched areas should be inspected after rain events to check for rill erosion.
- If less than 90% of the soil surface is covered by mulch, additional mulch shall be applied in bare areas.
- In applications where seeding and mulch have been applied in conjunction with erosion

control blankets, the blankets must be inspected after rain events for dislocation or undercutting.

• Mulch shall continue to be reapplied until 95% of the soil surface has established temporary vegetative cover.

G. <u>Stabilized Drainage Swales:</u>

- Sediment accumulation in the swale shall be removed once the cross section of the swale is reduced by 25%.
- The swales shall be inspected after rainfall events. Any evidence of sloughing of the side slopes or channel erosion shall be repaired and corrective action should be taken to prevent reoccurrence of the problem.
- In addition to the stabilized lining of the channel (i.e. erosion control blankets), stone check dams may be needed to further reduce channel velocity.
- 5. Housekeeping: The following general performance standards apply to the proposed project.
 - A. <u>Spill Prevention</u>: Controls must be used to prevent pollutants from being discharged from materials on-site, including storage practices to minimize exposure of the materials to stormwater, and appropriate spill prevention, containment, and response planning and implementation.
 - B. <u>Groundwater Protection</u>: During construction, liquid petroleum products and other hazardous materials with the potential to contaminate groundwater may not be stored or handled in areas of the site draining to an infiltration area. An "infiltration area" is any area of the site that by design or as a result of soils, topography and other relevant factors, accumulates runoff that infiltrates into the soil. Dikes, berms, sumps, and other forms of secondary containment that prevent discharge to groundwater may be used to isolate portions of the site for the purposes of storage and handling of these materials.
 - C. <u>Fugitive Sediment and Dust</u>: Actions must be taken to insure that activities do not result in noticeable erosion of soils or fugitive dust emissions during or after construction. Oil may not be used for dust control.
 - D. <u>Debris and Other Materials</u>: Litter, construction debris, and chemicals exposed to stormwater must be prevented from becoming a pollutant source.
 - E. <u>Trench or Foundation Dewatering</u>: Trench dewatering is the removal of water from trenches, foundations, cofferdams, ponds, and other areas within the construction area that retain water after excavation. In most cases, the collected water is heavily silted and hinders correct and safe construction practices. The collected water must be removed from the ponded area, either through gravity or pumping, and must be spread through natural wooded buffers or removed to areas that are specifically designed to collect the maximum amount of sediment possible, like a cofferdam sedimentation basin. Avoid allowing the water to flow over

disturbed areas of the site. Equivalent measures may be taken if approved.

After Construction

- 1. **Inspection:** After construction, the owner or operator shall hire a qualified post-construction stormwater inspector to at least annually, inspect the BMPs, in accordance with all municipal and state inspection, cleaning and maintenance requirements of the approved post-construction stormwater management plan.
- 2. **Maintenance, and repair:** If a BMP requires maintenance, repair or replacement to function as intended by the approved post-construction stormwater management plan, the owner or operator shall take corrective actions to address the deficiency or deficiencies as soon as possible after the deficiency is discovered and shall provide a record of the deficiency and corrective actions to the Department of Public Services (DPS). The following is a list of permanent erosion control and stormwater management measures and the inspection, maintenance, and housekeeping tasks to be performed after construction.

A. Vegetated Areas:

- Inspect vegetated areas, particularly slopes and embankments, early in the growing season or after heavy rains to identify active or potential erosion problems.
- Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.

B. Ditches, Swales and Other Open Channels:

- Inspect ditches, swales, and other open stormwater channels in the spring, in the late fall, and after heavy rains to remove any obstructions to the flow. Remove accumulated sediments and debris, remove woody vegetative growth that could obstruct flow and repair any erosion of the ditch lining.
- Vegetated ditches must be mowed at least annually or otherwise maintained to control the growth of woody vegetation and maintain flow capacity.
- Any woody vegetation growing through riprap linings must also be removed. Repair any slumping side slopes as soon as practicable.
- Replace riprap in areas where any underlying filter fabric or underlying gravel is showing through the stone or where stones have dislodged.

C. Level Lip Spreaders/Ditch Turnouts:

- The level lip spreader pool shall be inspected after significant rainfall events for sediment accumulation and debris that may reduce its capacity. Sediment and debris buildup shall be removed once the volume of the pool has been reduced by 25%.
- The level lip must be constructed so that runoff flows slowly over the lip to a sheet flow

condition through the receiving area. Repair or reconstruction of the level lip is required when the flow from the spreader becomes channelized.

- Do not store snow removed from the street/parking lot within the area of the level spreader.
- D. <u>Winter Sanding:</u>
 - Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.
 - Accumulations on pavement may be removed by pavement sweeping.
 - Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader or other acceptable method.

E. Underdrained Grass Filter

- The inlet and outlet of the BMP shall be checked periodically to ensure that flow structures are not blocked by debris. Inspections should be conducted monthly during wet weather conditions from March to November.
- Debris and sediment buildup shall be removed from the forebay and basin upon reaching a 6-inch accumulation within the forebay and 2 inches within the basin, but not less than annually.
- Mowing of grass may be conducted semiannually to a height of no less than 6-inches, with hand held trimmers or push mowers
- Grass filters shall be inspected annually for erosion, destabilization of sideslopes, embankment settling and other signs of structural failure. Corrective action should be taken immediately upon identification of problems.
- Rototill top of filter bed when ponding exceeds 48 hours
- Replace top several inches of filter material when ponding exceeds 72 hours

F. <u>Catch Basins:</u>

- Inspect and, if required, clean-out catch basins at least once a year, preferably in early spring.
- Clean out must include the removal and legal disposal of accumulated sediments and debris at the bottom of the basin, at any inlet grates, at any inflow channels to the basin, and at any pipes between basins.
- G. <u>Culverts:</u>
 - Inspect culverts in the spring, in the late fall, and after heavy rains to remove any obstructions to flow.
 - Remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit.
 - Inspect and repair any erosion damage at the culvert's inlet and outlet.

- Inspect embankment for erosion, settling, and structural failure.
- 3. **Annual Report:** The owner or operator or a qualified post-construction stormwater inspector hired by that person, shall, on or by June 30 of each year, provide a completed and signed certification that the person has inspected the BMPs and that they are adequately maintained and functioning as intended by the approved post-construction stormwater management plan, or that they require maintenance or repair, including the record of the deficiency and corrective actions taken.
- 4. **Duration of Maintenance:** Perform maintenance as described and required for any associated permits unless and until the system is formally accepted by a municipality or quasi-municipal district, or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system. If a municipality or quasi-municipal district chooses to accept a stormwater management system, or a component of a stormwater system, it must provide a letter to the MDEP stating that it assumes responsibility for the system. The letter must specify the components of the system for which the municipality or district will assume responsibility, and that the municipality or district agrees to maintain those components of the system in compliance with MDEP standards. Upon such assumption of responsibility, and approval by the MDEP, the municipality, quasi-municipal district, or association becomes a co-permittee for this purpose only and must comply with all terms and conditions of the permit.

Attachments

Attachment 1 – Sample Stormwater Inspection and Maintenance Form

Sample Stormwater Inspection and Maintenance Form

Valet Parking Lot; Portland, ME Attachment 1

This log is intended to accompany the stormwater Inspection, Maintenance and Housekeeping Plan for the Valet Parking Lot. The following items shall be checked, cleaned and maintained on a regular basis as specified in the Maintenance Plan and as described in the table below. This log shall be kept on file for a minimum of five (5) years and shall be available for review. Qualified personnel familiar with drainage systems and soils shall perform all inspections. Attached is a copy of the construction and post-construction maintenance logs.

	Maintenance Required	Date	Maintenance	
Item	& Frequency	Completed	Personnel	Comments
Ditches and	Inspect after major rainfall event			
Swales	producing greater than 3" of rain			
	in 2 hours.			
	Repair erosion or damage			
	immediately.			
Catch Basins	Remove accumulated sediment			
and Culverts	and debris			
	Sump depth			
Vegetated	Inspect Slopes			
Areas	Replant Bare Areas			
	Check after Major Storms			
Winter	Clean annually (Spring)			
Sanding	Remove sand and sediment from			
	roadway shoulders			
Level Lip	Inspect after significant rainfall			
Spreaders	Remove sediment if pool volume			
	reduced by 25%			
	Repair the riprap if flow become			
	s channelized			
Underdrained	Inspect inlets/outlets to ensure			
Grass Filter	no blockage from debris			
	Inspect sideslopes annually for			
	erosion, destabilization, and			
	embankment settling.			

Attachment D

Application for Stormwater Fee Credits

	(2	She rian Keview Kequireu)	PORTLAN
		Project Site Information	
Address:			
	Street Address		Zip Code
Parcel ID	(Chart, Block, Lot	t # + 3-digit ID):	
Project ID	• (if assigned):		
		Contact Information	
Applican [®]	t (must be owner,	lessee or buyer)	
Iname.	Last	First	M.I.
Business I	Name (if Applicab	le):	
Relation t	o Owner (lessee, b	uyer, etc, if Applicable):	
Mailing			
Address:	Street Address		Apartment/Unit #
	City	State	Zin Code
Dhana Hu		E mail Address	Lip code
O (1)		E-mail Address:	
Owner (II Nomo:	anierent from A	(ppiicant)	
iname.	I ast	First	M I
Mailing	Last	1 1130	
Address:	Street Address		Apartment/Unit #
			- r
	City	State	Zip Code
Phone #: ((E-mail Address:	
Agent/Re	presentative		
Name:	•		
	Last	First	M.I.
Mailing			
Address:	Street Address		Apartment/Unit #
	City	State	Zip Code

FORM 2

Non-Residential Stormwater Credits: New Development/Re-Development

Credit Information									
Final Total Impervious Area:	square feet								
The credit options and their corresponding credit values are listed in columns A and B, respectively. Indicate in column C the amount of impervious area that is eligible for each credit option, and note the product of columns B and C in column D. <i>The billable impervious area equal to the Total Impervious Area minus the sum of column D</i> .									
Α	В		С		D				
Minimum Water Quality Credit:	0.25	x	square feet	=	square feet				
Minimum Water Quantity Credit:	0.05	x	square feet	=	square feet				
Basic Water Quality Credit:	0.50	x	square feet	=	square feet				
Basic Water Quantity Credit:	0.10	x	square feet	=	square feet				
Extra Water Quality Credit:	0.75	x	square feet	=	square feet				
Extra Water Quantity Credit:	0.25	x	square feet	=	square feet				
			Total	=	square feet				
Billable Impervious Area (Total IA minus Sum of Column D):									
		Apj	olicant Signature	, .					
I hereby certify that I am the owner of record of the named property, or that the owner of record has authorized me to submit this application on his or her behalf. I agree to conform to all applicable laws of the City of Portland. In addition, I understand that the City of Portland Department of Public Services has the authority to enter and inspect all areas that pertain to this application at any reasonable hour to verify that the information contained in this form is accurate.									