R. W. Gillespie & Associates, Inc.

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244

City of Portland, Portand Int. Jetport

1001 Westbrook Street

Portland, Maine 04102

LETTER OF TRANSMITTAL

	Date:		Project No.:	
		29 November 2010	557-14	
	Attention:			
		Mr. Cuyler Feag	gles (cmf@portlandmaine.gov)	
	Re:			
-		Concrete Testin	•	
		Terminal Enhan	cement, Portland Int. Jetport	
		Portland, Maine	;	

We are sending you attached concrete cylinder test results.									
Cylinder No. (s)	Age (Days)								
67627	31								
67628	31								
67631	31								
67632	31								
67635	31								
67636	31								
67639	31								
67640	31								
67643	31								
67644	31								
67647	31								
67648	31								

Remarks:

Copy To:

Roy Williams: rsw@portlandmaine.gov
Jim Stanislaski: jim_stanislaski@gensler.com
Cliff Takara: clifford_takara@gensler.com
Lacey Fogg: Lacey.Fogg@amec.com
Mike Fusco: mfusco@tcco.com
Shaun Winner: swinner@tcco.com
Phil Coleman: pcoleman@tcco.com
Elizabeth O'Toole: eotoole@tcco.com

TMM@portlandmaine.gov ldobson@portlandmaine.gov

rdixon@tcco.com gemitchell@tcco.com

Remi Delcourt (remi@auburnconcrete.com)
Jeff Evans, Amec (jeff.evans@amec.com)

Signed: Bertha Dawn

If enclosures are not as noted, kindly notify us at once.

Page 1 of 6

29-Oct-10

Auburn

Turner

3,500 3/8

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244 CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

Weather Conditions:

Overcast with periods of Light Rain

Method of Placement: Pump

Admixtures: Placement Location: Mid Range Water Reducer

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Test Cylinder Location: Slab on Deck 5-1, See Attached Sketch

Date Report Issued:

Date Cylinders Cast:

Concrete Supplier:

General Contractor:

Design Strength:

Max Agg. Size:

4x8 Cylinders	4	Cast by Micha	el J. Kramlich	Time		
Load No.	2	Slump (in) ASTM C 143	7.0		Batched @	6:57
Ticket No.	179982	Air (°F)	44		Arrived @	7:20
Truck No.	99	Concrete (°F) ASTM C 1064	62		Total Time	40±
Cubic Yds.	10	Air Content (%) ASTM C 231	3.25			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67626	05-Nov-10	4.020	12.69	7	49,520	3900	2
67627	29-Nov-10	4.007	12.61	31	67,820	5380	2
67628	29-Nov-10	4.007	12.61	31	62,460	4950	5
67629	HOLD			HOLD			

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
1	179981	94	10	6.50				45±
3	179984	116	10					***
4	179985	96	10	5.75				
5	179986	107	10					40±
6	179988	94	10					40±
7	179989	99	10					35±
								de de

Remarks:

Total loads = 31

Unit weight = 124.0 pcf

Cylinders were moved at approximately 9:00am by the concrete contractor.

Checked by:

29-Oct-10

Auburn

Turner

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244 CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

Weather Conditions:

Overcast with periods of Light Rain

Method of Placement: Admixtures:

Pump

Mid Range Water Reducer

Placement Location:

Test Cylinder Location: Slab on Deck 5-1, See Attached Sketch

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Design Strength:

Date Cylinders Cast:

Concrete Supplier:

General Contractor:

Max Agg. Size:

3,500

3/8

Date Report Issued:

4x8 Cylinders	4 .	Cast by Mic	hael J. Kramlich	Time		
Load No.	8	Slump (in) ASTM C 143	4.0		Batched @	8:21
Ticket No.	179990	Air (°F)	44		Arrived @	8:41
Truck No.	116	Concrete (°F) ASTM C 1064	63		Total Time	30±
Cubic Yds.	10	Air Content (%) ASTM C 231	3.0			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67630	05-Nov-10	4.020	12.69	7	44,500	3510	5
67631	29-Nov-10	4.007	12.61	31	65,900	5230	2 /
67632	29-Nov-10	4.007	12.61	31	71,380	5660	5
67633	HOLD			HOLD		·	

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
9	179992	107	10					45±
10	179993	76	10					70±
	A Constitution of the Cons							
	e de la companion de la compan					and the same of th		
	a a a a a a a a a a a a a a a a a a a							

Remarks:

Total loads = 31

Unit weight = 123.8 pcf

Curing Temperatures: Max = 65°, Min = 39°

Checked by:

Page 3 of 6

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244 CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

557-14

Weather Conditions:

Overcast with periods of Light Rain

Method of Placement: Admixtures:

Pump

Placement Location:

Mid Range Water Reducer

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Test Cylinder Location: Slab on Deck 4-7, See Attached Sketch

Date Cylinders Cast:

29-Oct-10

Concrete Supplier:
General Contractor:

Auburn Turner

Design Strength:

3,500

Max Agg. Size:

3/8

Date Report Issued:

4x8 Cylinders		4	Cast by M	ichael J. Kramlich	Time		
Load No.		12	Slump (in) ASTM C 143	2.75		Batched @	9:06
Ticket No.		179996	Air (°F)	50		Arrived @	10:02
Truck No.		99	Concrete (°F) ASTM C 106	4 63		Total Time	70±
Cubic Yds.	*	10	Air Content (%) ASTM C 23	1 3.5			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67634	05-Nov-10	4.020	12.69	7	43,920	3460	2
67635	29-Nov-10	4.007	12.61	31	63,060	5000	5
67636	29-Nov-10	4.007	12.61	31	58,520	4640	6
67637	HOLD			HOLD			

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
11	179995	99	10					35±
13	179999	107	10		NO AND			45±
14	180002	76	10	10 40				45±
15	180003	98	10					60±
***************************************				***************************************				

Remarks:

Total loads = 31

Curing Temperatures: Max = 65°, Min = 39°

Load #12 was sent away approximately half empty.

Unit weight = 123.8 pcf

Checked by: _

Page 4 of 6

29-Oct-10

Auburn

Turner

3,500

3/8

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244 CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

Weather Conditions:

Overcast with periods of Light Rain

Method of Placement:

Pump

Admixtures:

Mid Range Water Reducer

Placement Location:

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Test Cylinder Location: Slab on Deck 4-7, See Attached Sketch

Date Report Issued:

Date Cylinders Cast:

Concrete Supplier:

Design Strength:

Max Agg. Size:

General Contractor:

4x8 Cylinders	4	Cast by Mich	ael J. Kramlich	Time		
Load No.	16	Slump (in) ASTM C 143	4.0		Batched @	10:42
Ticket No.	180005	Air (°F)	48		Arrived @	11:25
Truck No. 116		Concrete (°F) ASTM C 1064	67		Total Time	100±
Cubic Yds.	10	Air Content (%) ASTM C 231	3.25			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67638	05-Nov-10	4.020	12.69	7	42,840	3380	5
67639	29-Nov-10	4.007	12.61	31	62,400	4950	2
67640	29-Nov-10	4.007	12.61	31	63,160	5010	5
67641	HOLD			HOLD			

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
·	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
17	180006	107	10					95±
18	180010	76	10					65±
19	180013	108	10		**			60±
20	180014	116	10					50±
21	180015	107	10					55±
22	180017	76	10					70±

Remarks:

Total loads = 31

Curing Temperatures: Max = 65°, Min = 39°

Load #17 was sent away approximately half empty.

Unit weight = 124.0 pcf

Checked by: __

Page 5 of 6

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244

CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

Admixtures:

557-14

Weather Conditions: Over

Overcast with periods of Light Rain

Method of Placement:

Pump

Placement Location:

Mid Range Water Reducer

t Cylinder Legation:

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Test Cylinder Location: Slab on Deck 3-3, See Attached Sketch

Date Cylinders Cast:

29-Oct-10

Concrete Supplier:

Auburn

General Contractor: Design Strength:

Turner 3,500

Max Agg. Size:

3/8

Date Report Issued

Date Report Issued:	
---------------------	--

4x8 Cylinders	4	Cast by Micha	el J. Kramlich	Time		
Load No.	23	Slump (in) ASTM C 143	4.0		Batched @	1:19
Ticket No.	180018	Air (°F)	48		Arrived @	2:20
Truck No.	108	Concrete (°F) ASTM C 1064	66		Total Time	90
Cubic Yds.	10	Air Content (%) ASTM C 231	3.0			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67642	05-Nov-10	4.020	12.69	7	43,240	3410	5
67643	29-Nov-10	4.007	12.61	31	56,540	4480	2
67644	29-Nov-10	4.007	12.61	31	60,300	4780	6
67645	HOLD			HOLD			

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture 5

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
·	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
24	180228	76	10					40±
25	180229	108	10					60±
26	180230	107	10	NA cor				
							VIII 110 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
							personal in the second	
					-		And a second	

Remarks:

Total loads = 31

Pump had to relocate.

Load #23 was sent away with approximately 7 yards left.

Unit weight = 123.4 pcf

Checked by: .

Page 6 of 6

29-Oct-10

Auburn

Turner

3,500

3/8

86 Industrial Park Road, Suite 4, Saco, ME 04072 207-286-8008 200 International Drive, Suite 170, Portsmouth, NH 03801 603-427-0244 CONCRETE TEST/PLACEMENT REPORT

Project Name:

Terminal Enhancement, Portland Int. Jetport

Project No:

557-14

Weather Conditions:

Overcast with periods of Light Rain

Method of Placement:

Pump

Admixtures:

Mid Range Water Reducer

Placement Location:
Test Cylinder Location:

Slabs on Deck: 5-1, 4-7, & portions of 3-3

Test Cylinder Location: Slab on Deck 3-3, See Attached Sketch

Date Report Issued:

Date Cylinders Cast:

Concrete Supplier:

General Contractor:

Design Strength:

Max Agg. Size:

4x8 Cylinders	4	Cast by Mich	ael J. Kramlich	Time		
Load No.	27	Slump (in) ASTM C 143	6.5		Batched @	4:13
Ticket No.	180231	Air (°F)	46		Arrived @	4:38
Truck No.	76	Concrete (°F) ASTM C 1064	65		Total Time	80±
Cubic Yds.	10	Air Content (%) ASTM C 231	3.0			

^{*}Concrete sampled by ASTM C 172

Specimen Storage ASTM C 31: Field cure days: 3

Date received 01-Nov-10 Condition of Cylinders: Good

Lab No.	Test Date	Avg Dia (in)	Area (in²)	Age (Days)	Load (lbs)	Compressive Strength (psi)	Break type
67646	05-Nov-10	4.020	12.69	7	48,340	3810	2
67647	29-Nov-10	4.007	12.61	31	64,400	5110	2
67648	29-Nov-10	4.007	12.61	31	60,800	4820	5
67649	HOLD	O CONTRACTOR OF THE CONTRACTOR		HOLD			

^{*}Concrete compressive strength by ASTM C 39

Types of Breaks

Cone

Cone & Split

Columnar

Shear

Side Fracture

Double Side Fracture

Load	Ticket	Truck	Cubic Yds	Slump	Air Temp	Conc Temp	(%) Air	Time
	Number	Number		(inches)	(°F)	(°F)	Content	(min.)
28	180233	82	10					50±
29		**	10			!		
30			10					
31			10					

Remarks:

Total loads = 31

Unit weight = 123.4 pcf

Curing Temperatures: Max = 57°, Min = 34°

Checked by: