

Tighe&Bond

Proposed Neighborhood Center 1342 Congress Street Portland, ME

Drainage Study

Prepared For:

Jewish Community Alliance of Southern Maine

April 3, 2015

Section 1 Narrative

1.1 On Site Soil Description1-	1.1	On Site Soil Description	1-1
--------------------------------	-----	--------------------------	-----

Section 2 Drainage Analysis

2.1	Calculation Methods2-2						
2.2	Pre-Development Conditions	2-22					
	2.2.1 Pre-Development Calculations	. 2-3					
	2.2.2 Pre-Development Watershed Plan, WS-1	. 2-3					
2.3	Post-Development Conditions	2-44					
	2.3.1 Post-Development Calculations	2-44					
	2.3.2 Post-Development Watershed Plan, WS-2	2-44					
2.4	Peak Rate Comparisons	2-55					
2.5	Mitigation Description and Best Management Practices	. 2-6					

Section 3 Long Term Operation & Maintenance Plan

3.1	Contact/Responsible Party 2	-1
3.2	Maintenance Items 2	-1
3.3	Overall Site Operation & Maintenance Schedule 2	-2
	3.3.1 Disposal Requirements 2	-4
	3.3.2 Snow & Ice Management for Standard Asphalt and Walkways 2	-4
	3.3.3 Annual Updates and Log Requirements 2	-4

Appendices

- A Plans Bound Separately
- B Precipitation Table
- C Boring Logs

J:\J\J0096 Jewish Community Alliance\DRAINAGE\DRAINAGE STUDIES\J0096-Drainage Study.doc

Section 1 Narrative

The proposed project consists on the construction of a one (1) story Neighborhood Center on a 2.16 acre lot in the R-5 Residential Zone There will also be associated site improvements that include surface parking lot, utilities, site lighting, landscaping, and stormwater management system.

The site is currently developed with a 14,960 SF Church that includes associated parking lot and driveways. The existing building and parking lot will be demolished as part of the proposed project. Currently, the runoff from the majority of the site including the parking lot and roof flows to the south of the property where it enters an existing drainage swale. Due to the lack of any stormwater treatment infrastructure, all runoff leaves the site untreated.

The proposed project includes substantial improvements to manage and treat runoff through the use of Stormtech Chambers and an underdrained soil filter bed. The proposed redevelopment will increase impervious area by approximately 12,500 SF. The proposed stormwater management system has been designed to mitigate additional impervious areas by decreasing peak runoff rates for the 2-year, 10-year, and 25-year design storms.

The proposed stormwater management system has been designed to meet the requirements and design principles outlined in the City of Portland Technical Manual and the Maine Stormwater Best Management Practices Manual.

1.1 On Site Soil Description

Section 7 of the City of Portland Technical Manual requires a Soil Survey be completed by a Maine Certified Soil Scientist for Level III Site Plan Submissions. We are requesting a waiver from this requirement as soil borings were completed as part of a Phase I/II Environmental Site Assessment at this site. The soils encountered consisted of Silt and Clay, which have low infiltration rates. Therefore, a conservative infiltration rate of 0.5 in/hr was used in this analysis. Based on the soil information the runoff analyzed within this study area has been modeled assuming Class C soils. The boring logs have been included in the Appendix of this report.

Section 2 Drainage Analysis

2.1 Calculation Methods

The design storms analyzed in this study are the 2-year, 10-year and 50-year 24-hour duration storm events. The stormwater modeling system, HydroCAD 10.0 was utilized to predict the peak runoff rates from these storm events. A Type III storm pattern was used in the model.

The time of concentration was computed using the TR-55 Method, which provides a means of determining the time for an entire watershed to contribute runoff to a specific location via sheet flows, shallow concentrated flow and channel flow. Runoff curve numbers were calculated by estimating the coverage areas and then summing the curve number for the coverage area as a percent of the entire watershed.

References:

1. HydroCAD Stormwater Modeling System, by HydroCAD Software Solutions LLC, Chocorua, New Hampshire.

2.2 Pre-Development Conditions

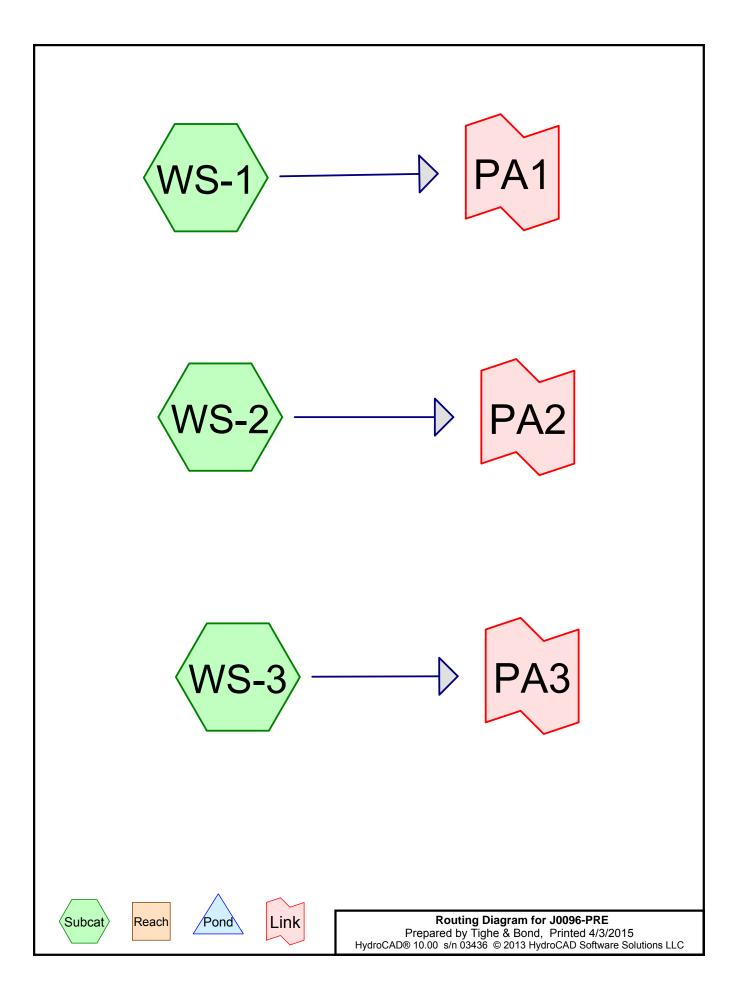
Pre-development conditions are considered, for this study, to be the conditions of the site prior to the start of the ongoing excavation operations. In order to analyze the pre-development condition, the site has been divided into three (3) contributing watershed areas modeled at three (3) points of analysis. These points of analysis and watersheds are depicted on the plan entitled "Pre-Development Watershed Plan", Sheet WS-1.

Each of the points of analysis and their contributing watershed areas are described below:

Point of Analysis (PA-1)

Point of Analysis One (PA-1) is comprised of Pre-Development Watershed 1 (WS-1), which accounts for approximately 75% of the total watershed area. WS-1 consists of runoff generated from a portion of the roof of the existing building, parking lot, driveway, and grass/wooded areas at the south side of the parcel. Runoff travels in a southwestern direction via overland flow where it enters an existing drainage swale at PA-1.

Point of Analysis (PA-2)


Point of Analysis Two (PA-2) is comprised of Pre-Development Watershed 2 (WS-2). WS-2 consists primarily of runoff generated from the roof of the existing building, sidewalks, and grass areas. Runoff travels west via overland flow onto the adjacent parking lot of Westgate Plaza at PA-2.

Point of Analysis (PA-3)

Point of Analysis Three (PA-3) is comprised of Pre-Development Watershed 3 (WS-3). WS-3 consists of runoff generated from the driveway and grass on the north side of the site. Runoff generated travels via overland flow north onto Congress Street and eventually into the City's closed drainage system.

2.2.1 Pre-Development Calculations

2.2.2 Pre-Development Watershed Plan, WS-1

Area Listing (all nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
1.106	74	>75% Grass cover, Good, HSG C (WS-1, WS-2, WS-3)	
0.490	98	Paved parking, HSG C (WS-1, WS-2, WS-3)	
0.355	98	Roofs, HSG C (WS-1, WS-2)	
0.227	72	Woods/grass comb., Good, HSG C (WS-1)	
2.179	83	TOTAL AREA	

Soil Listing (all nodes)

I Subcatchment
oup Numbers
G A
G B
G C WS-1, WS-2, WS-3
G D
ner
TOTAL AREA

J0096-PRE	Type III 24-hr 2-YR Rainfall=3.00"
Prepared by Tighe & Bond	Printed 4/3/2015
HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC	Page 4
Time span=0.00-24.00 hrs, dt=0.01 hrs, 2 Runoff by SCS TR-20 method, UH=SCS, V	•

Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Runoff Area=73,134 sf 34.73% Impervious Runoff Depth>1.38" Subcatchment WS-1: Flow Length=451' Tc=8.0 min CN=82 Runoff=2.51 cfs 0.193 af Subcatchment WS-2: Runoff Area=11,975 sf 66.91% Impervious Runoff Depth>1.98" Flow Length=44' Slope=0.0150 '/' Tc=5.9 min CN=90 Runoff=0.64 cfs 0.045 af Runoff Area=9,792 sf 34.74% Impervious Runoff Depth>1.38" Subcatchment WS-3: Flow Length=87' Tc=5.0 min CN=82 Runoff=0.37 cfs 0.026 af Inflow=2.51 cfs 0.193 af Link PA1: Primary=2.51 cfs 0.193 af Inflow=0.64 cfs 0.045 af Link PA2: Primary=0.64 cfs 0.045 af Inflow=0.37 cfs 0.026 af Link PA3: Primary=0.37 cfs 0.026 af

> Total Runoff Area = 2.179 ac Runoff Volume = 0.264 af Average Runoff Depth = 1.45" 61.20% Pervious = 1.333 ac 38.80% Impervious = 0.845 ac

Summary for Subcatchment WS-1:

Runoff = 2.51 cfs @ 12.12 hrs, Volume= 0.193 af, Depth> 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN E	Description					
	16,283	98 F	Paved parking, HSG C					
	9,120	98 F	Roofs, HSC	δČ				
	37,846	74 >	75% Gras	s cover, Go	bod, HSG C			
	9,885	72 V	Voods/gras	s comb., G	Good, HSG C			
	73,134	82 V	Veighted A	verage				
	47,731	6	5.27% Per	vious Area				
	25,403	3	4.73% Imp	pervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.4	50	0.0400	0.19		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.00"			
0.4	90	0.0350	3.80		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
3.2	311	0.0120	1.64		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
8.0	451	Total						

Summary for Subcatchment WS-2:

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 0.045 af, Depth> 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN	Description					
	1,663	98	Paved park	ing, HSG C	;			
	6,350	98	Roofs, HSC	δČ				
	3,962	74	>75% Gras	s cover, Go	ood, HSG C			
	11,975	90	Weighted A	verage				
	3,962		33.09% Per	vious Area				
	8,013		66.91% Imp	pervious Ar	ea			
_		~		• •				
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
5.9	44	0.0150	0.12		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	

Summary for Subcatchment WS-3:

Runoff = 0.37 cfs @ 12.08 hrs, Volume= 0.026 af, Depth> 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

	Area (sf)	CN D	Description					
	3,402	98 F	aved park	ing, HSG C				
	6,390	74 >	75% Gras	s cover, Go	bod, HSG C			
	9,792	82 V	82 Weighted Average					
	6,390 65.26% Pervious Area							
	3,402	3,402 34.74% Impervious Area						
_								
To	0	Slope	Velocity	Capacity	Description			
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)				
0.3	3 30	0.0500	1.51		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.00"			
0.3	3 57	0.0350	2.81		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
0.6	6 87	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Summary for Link PA1:

Inflow Area =		1.679 ac, 34.73% Impervious, Inflow Depth > 1.38" for 2-YR event	
Inflow	=	2.51 cfs @ 12.12 hrs, Volume= 0.193 af	
Primary	=	2.51 cfs @ 12.12 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.0 mi	n

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:

Inflow Area	a =	0.275 ac, 66.91% Impervious, Inflow Depth > 1.98" for 2-YR event	
Inflow	=	0.64 cfs @ 12.09 hrs, Volume= 0.045 af	
Primary	=	0.64 cfs @ 12.09 hrs, Volume= 0.045 af, Atten= 0%, Lag= 0.0 m	nin

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Area =		0.225 ac, 34.74% Impervious, Inflow Depth >	1.38" for 2-YR event
Inflow	=	0.37 cfs @ 12.08 hrs, Volume= 0.026 a	ıf
Primary	=	0.37 cfs @ 12.08 hrs, Volume= 0.026 a	af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

J0096-PRE Prepared by Tighe & Bond <u>HydroCAD® 10.00_s/n 03436_© 2013 HydroC</u>	Type III 24-hr 10-YR Rainfall=4.70" Printed 4/3/2015 CAD Software Solutions LLC Page 7						
Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
Subcatchment WS-1:	Runoff Area=73,134 sf 34.73% Impervious Runoff Depth>2.81" Flow Length=451' Tc=8.0 min CN=82 Runoff=5.16 cfs 0.393 af						
Subcatchment WS-2: Flow Length=4	Runoff Area=11,975 sf 66.91% Impervious Runoff Depth>3.58" 4' Slope=0.0150 '/' Tc=5.9 min CN=90 Runoff=1.12 cfs 0.082 af						
Subcatchment WS-3:	Runoff Area=9,792 sf 34.74% Impervious Runoff Depth>2.81" Flow Length=87' Tc=5.0 min CN=82 Runoff=0.77 cfs 0.053 af						
Link PA1:	Inflow=5.16 cfs 0.393 af Primary=5.16 cfs 0.393 af						
Link PA2:	Inflow=1.12 cfs 0.082 af Primary=1.12 cfs 0.082 af						
Link PA3:	Inflow=0.77 cfs 0.053 af Primary=0.77 cfs 0.053 af						

Total Runoff Area = 2.179 acRunoff Volume = 0.528 afAverage Runoff Depth = 2.91"61.20% Pervious = 1.333 ac38.80% Impervious = 0.845 ac

Summary for Subcatchment WS-1:

Runoff = 5.16 cfs @ 12.11 hrs, Volume= 0.393 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN E	Description						
	16,283	98 F	Paved parking, HSG C						
	9,120	98 F	Roofs, HSC	δČ					
	37,846	74 >	75% Gras	s cover, Go	bod, HSG C				
	9,885	72 V	Voods/gras	ss comb., G	Good, HSG C				
	73,134	82 V	2 Weighted Average						
	47,731	-		vious Area					
	25,403	3	4.73% Imp	pervious Ar	ea				
_									
TC	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.4	50	0.0400	0.19		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.00"				
0.4	90	0.0350	3.80		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
3.2	311	0.0120	1.64		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
8.0	451	Total							

Summary for Subcatchment WS-2:

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 0.082 af, Depth> 3.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN	Description						
	1,663	98	Paved park	ing, HSG C	;				
	6,350	98	Roofs, HSC	S Č					
	3,962	74	>75% Gras	s cover, Go	ood, HSG C				
	11,975	90	Weighted Average						
	3,962		33.09% Per	vious Area					
	8,013		66.91% Impervious Area						
Тс	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.9	44	0.0150	0.12		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.00"		

Summary for Subcatchment WS-3:

Runoff = 0.77 cfs @ 12.07 hrs, Volume= 0.053 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

	A	rea (sf)	CN D	CN Description						
		3,402	98 P	98 Paved parking, HSG C						
		6,390	74 >	75% Gras	s cover, Go	bod, HSG C				
		9,792	82 V							
		6,390	6	5.26% Per	vious Area					
		3,402	3	4.74% Imp	pervious Are	ea				
	_									
	Тс	Length	Slope	Velocity	Capacity	Description				
<u>(n</u>	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.3	30	0.0500	1.51		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.00"				
	0.3	57	0.0350	2.81		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	0.6	87	Total, I	ncreased t	o minimum	Tc = 5.0 min				

Summary for Link PA1:

Inflow Area	a =	1.679 ac, 34.73% Impervious, Inflow Depth > 2.81" for 10-YR event	
Inflow	=	5.16 cfs @ 12.11 hrs, Volume= 0.393 af	
Primary	=	5.16 cfs @ 12.11 hrs, Volume= 0.393 af, Atten= 0%, Lag= 0.0 mi	n

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:

Inflow Area	a =	0.275 ac, 66.91% Impervious, Inflow Depth > 3.58" for 10-YR even	t
Inflow	=	1.12 cfs @ 12.08 hrs, Volume= 0.082 af	
Primary	=	1.12 cfs @ 12.08 hrs, Volume= 0.082 af, Atten= 0%, Lag= 0.0	0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Are	a =	0.225 ac, 34.74% Impervious, Inflow Depth > 2.81" for 10-YR event
Inflow	=	0.77 cfs @ 12.07 hrs, Volume= 0.053 af
Primary	=	0.77 cfs @ 12.07 hrs, Volume= 0.053 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

J0096-PRE Prepared by Tighe & Bond <u>HydroCAD® 10.00_s/n 03436_© 2013 Hydro</u>	Type III 24-hr 25-YR Rainfall=5.50" Printed 4/3/2015 OCAD Software Solutions LLC Page 10
Runoff by SCS	00-24.00 hrs, dt=0.01 hrs, 2401 points TR-20 method, UH=SCS, Weighted-CN Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment WS-1:	Runoff Area=73,134 sf 34.73% Impervious Runoff Depth>3.52" Flow Length=451' Tc=8.0 min CN=82 Runoff=6.45 cfs 0.493 af
Subcatchment WS-2: Flow Length	Runoff Area=11,975 sf 66.91% Impervious Runoff Depth>4.36" =44' Slope=0.0150 '/' Tc=5.9 min CN=90 Runoff=1.35 cfs 0.100 af
Subcatchment WS-3:	Runoff Area=9,792 sf 34.74% Impervious Runoff Depth>3.53" Flow Length=87' Tc=5.0 min CN=82 Runoff=0.96 cfs 0.066 af
Link PA1:	Inflow=6.45 cfs 0.493 af Primary=6.45 cfs 0.493 af
Link PA2:	Inflow=1.35 cfs 0.100 af Primary=1.35 cfs 0.100 af
Link PA3:	Inflow=0.96 cfs 0.066 af Primary=0.96 cfs 0.066 af

Total Runoff Area = 2.179 ac	Runoff Volume = 0.659 af	Average Runoff Depth = 3.63"
61.	.20% Pervious = 1.333 ac	38.80% Impervious = 0.845 ac

Summary for Subcatchment WS-1:

Runoff = 6.45 cfs @ 12.11 hrs, Volume= 0.493 af, Depth> 3.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

A	rea (sf)	CN E	Description						
	16,283	98 F	Paved parking, HSG C						
	9,120	98 F	Roofs, HSC	S Č					
	37,846	74 >	75% Gras	s cover, Go	bod, HSG C				
	9,885	72 V	Voods/gras	ss comb., G	Good, HSG C				
	73,134	82 V	2 Weighted Average						
	47,731	-		vious Area					
	25,403	3	4.73% Imp	pervious Ar	ea				
_									
TC	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.4	50	0.0400	0.19		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.00"				
0.4	90	0.0350	3.80		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
3.2	311	0.0120	1.64		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
8.0	451	Total							

Summary for Subcatchment WS-2:

Runoff = 1.35 cfs @ 12.08 hrs, Volume= 0.100 af, Depth> 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

A	rea (sf)	CN	Description						
	1,663	98	Paved park	ing, HSG C	;				
	6,350	98	Roofs, HSC	δČ					
	3,962	74	>75% Gras	s cover, Go	ood, HSG C				
	11,975	90	Weighted Average						
	3,962		33.09% Per	vious Area					
	8,013		66.91% Impervious Area						
_		~		• •					
Тс	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
5.9	44	0.0150	0.12		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.00"		

Summary for Subcatchment WS-3:

Runoff = 0.96 cfs @ 12.07 hrs, Volume= 0.066 af, Depth> 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

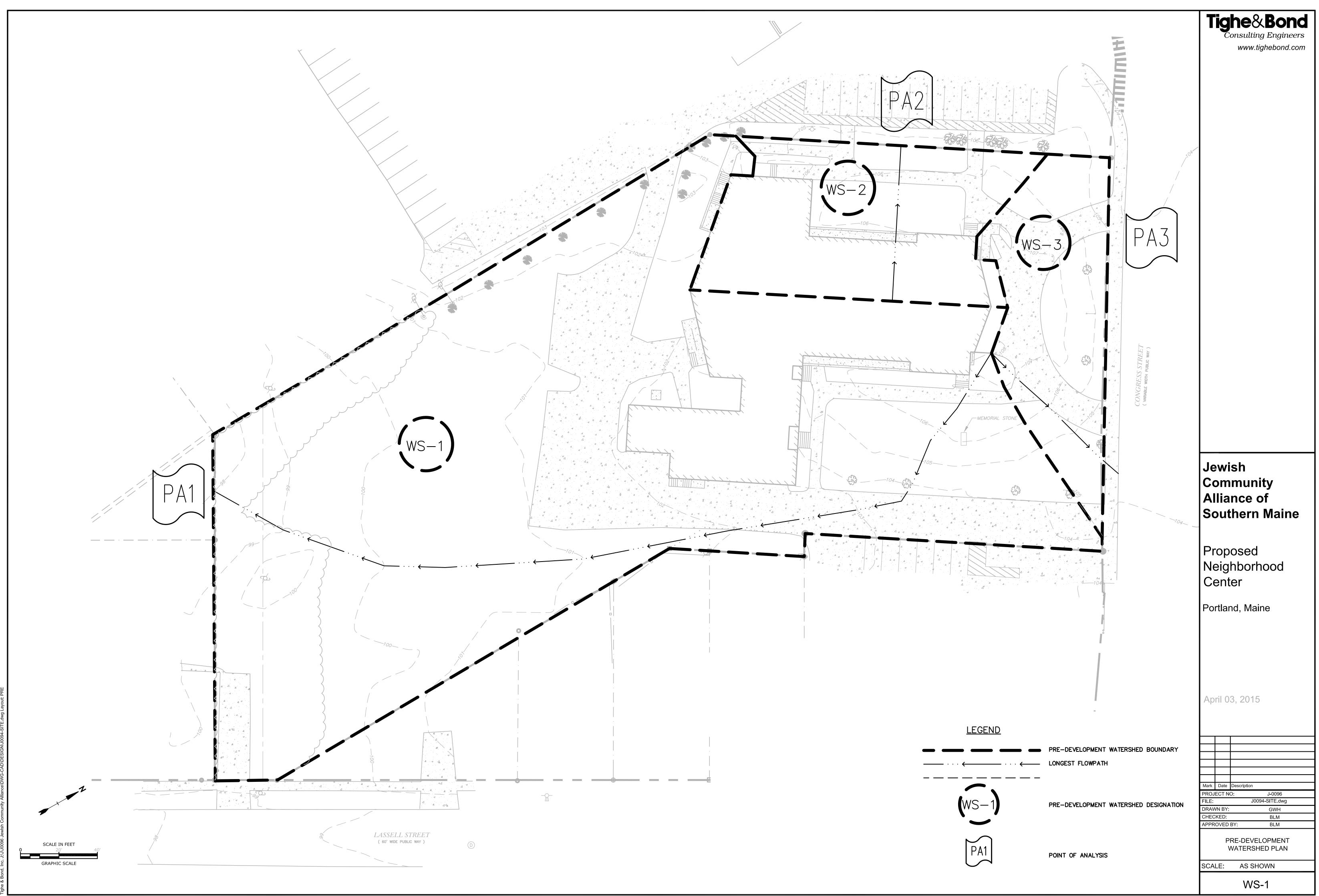
	A	rea (sf)	CN D	CN Description						
		3,402	98 P	98 Paved parking, HSG C						
		6,390	74 >	75% Gras	s cover, Go	bod, HSG C				
		9,792	82 V							
		6,390	6	5.26% Per	vious Area					
		3,402	3	4.74% Imp	pervious Are	ea				
	_									
	Тс	Length	Slope	Velocity	Capacity	Description				
<u>(n</u>	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.3	30	0.0500	1.51		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.00"				
	0.3	57	0.0350	2.81		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	0.6	87	Total, I	ncreased t	o minimum	Tc = 5.0 min				

Summary for Link PA1:

Inflow Area	a =	1.679 ac, 34.73% Impervious, Inflow Depth > 3.52" for 25-YR event	
Inflow	=	6.45 cfs @ 12.11 hrs, Volume= 0.493 af	
Primary	=	6.45 cfs @ 12.11 hrs, Volume= 0.493 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:


Inflow Area	a =	0.275 ac, 66.92	1% Impervious, In	flow Depth > 4.36"	for 25-YR event
Inflow	=	1.35 cfs @ 12.	08 hrs, Volume=	0.100 af	
Primary	=	1.35 cfs @ 12.	08 hrs, Volume=	0.100 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Are	a =	0.225 ac, 34.74% Impervious, Inflow Depth > 3.53" for 25-YR event
Inflow	=	0.96 cfs @ 12.07 hrs, Volume= 0.066 af
Primary	=	0.96 cfs @ 12.07 hrs, Volume= 0.066 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

2.3 Post-Development Conditions

The post-development drainage condition is also characterized by three (3) watershed areas modeled at the same three (3) points of analysis as the pre-development condition. These three (3) watershed areas are depicted on the Post-Development Watershed Plan, WS-2.

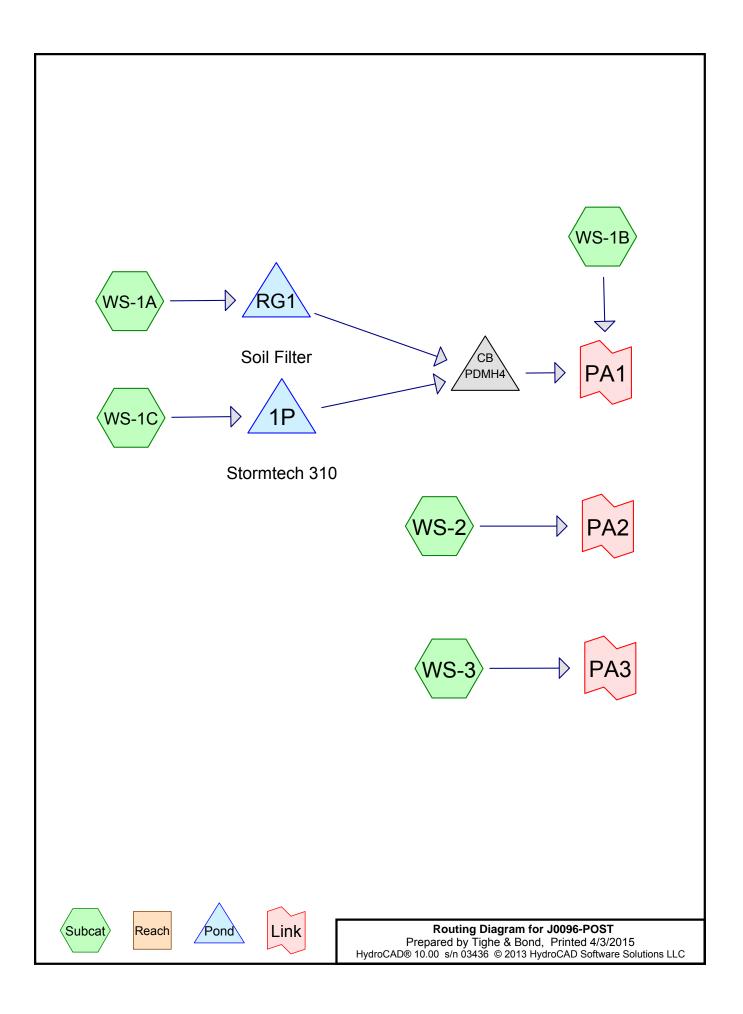
Point of Analysis (PA-1)

Point of Analysis One (PA-1) is comprised Post-Development Watershed 1A (WS-1A), Watershed 1B (WS-1B), and Watershed 1C (WS-1C). WS-1A consists of the proposed parking lot, sidewalks, and landscaped areas in the southwestern side of the site. Runoff from WS-1A travels via sheetflow into the underdrained soil filter bed to the rear of the parking lot.

WS-1B is a redeveloped area as the characteristics of this watershed remain largely unchanged from the pre-development condition. This watershed consists of the driveway that provides access to Congress Street, a small portion of sidewalk near the proposed building, and lawn at the south side of the site. Runoff generated travels via overland flow in the same pattern as the pre-development condition to PA-1.

WS-1C consists of the roof of the proposed building and the designated play area directly adjacent to the building. Runoff generated from the roof and play area is collected and conveyed to an underground detention area in the parking lot. Detained stormwater is conveyed via closed drainage to PA-1.

Point of Analysis (PA-2)


Point of Analysis Two (PA-2) is comprised of Post-Development Watershed 2 (WS-2A). WS-2 consists of runoff generated from the lawn and landscaping on the west side of the building. The runoff travels via overland flow in the same pattern as the pre-development condition.

Point of Analysis (PA-3)

Point of Analysis Three (PA-3) is comprised of Post Development Watershed 3 (WS-3). WS-3 is comprised of the sidewalk and landscaped areas along Congress Street. The runoff generated travels via overland flow in the same pattern as the pre-development condition.

2.3.1 Post-Development Calculations

2.3.2 Post-Development Watershed Plan, WS-2

Area Listing (all nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
1.04	46 74	>75% Grass cover, Good, HSG C (WS-1A, WS-1B, WS-1C, WS-2, WS-3)
0.68	39 98	Paved parking, HSG C (WS-1A, WS-1B, WS-2, WS-3)
0.44	43 98	Roofs, HSG C (WS-1C)
2.17	79 86	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.179	HSG C	WS-1A, WS-1B, WS-1C, WS-2, WS-3
0.000	HSG D	
0.000	Other	
2.179		TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=33,120 sf 59.06% Impervious Runoff Depth>1.82" Flow Length=261' Tc=5.0 min CN=88 Runoff=1.68 cfs 0.115 af
SubcatchmentWS-1B:	Runoff Area=27,100 sf 34.17% Impervious Runoff Depth>1.38" Flow Length=456' Tc=5.0 min CN=82 Runoff=1.04 cfs 0.071 af
SubcatchmentWS-1C:	Runoff Area=26,500 sf 72.83% Impervious Runoff Depth>2.07" Flow Length=261' Tc=5.0 min CN=91 Runoff=1.51 cfs 0.105 af
Subcatchment WS-2:	Runoff Area=3,505 sf 17.12% Impervious Runoff Depth>1.13" Flow Length=22' Slope=0.0150 '/' Tc=5.0 min CN=78 Runoff=0.11 cfs 0.008 af
Subcatchment WS-3:	Runoff Area=4,685 sf 13.06% Impervious Runoff Depth>1.07" Flow Length=30' Slope=0.0200 '/' Tc=5.0 min CN=77 Runoff=0.14 cfs 0.010 af
Pond 1P: Stormtech 310	Peak Elev=100.54' Storage=1,115 cf Inflow=1.51 cfs 0.105 af Outflow=0.78 cfs 0.097 af
Pond PDMH4:	Peak Elev=98.15' Inflow=1.36 cfs 0.185 af 15.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=1.36 cfs 0.185 af
Pond RG1: Soil Filter	Peak Elev=100.07' Storage=1,361 cf Inflow=1.68 cfs 0.115 af Discarded=0.05 cfs 0.021 af Primary=0.58 cfs 0.087 af Outflow=0.63 cfs 0.109 af
Link PA1:	Inflow=2.20 cfs 0.256 af Primary=2.20 cfs 0.256 af
Link PA2:	Inflow=0.11 cfs 0.008 af Primary=0.11 cfs 0.008 af
Link PA3:	Inflow=0.14 cfs 0.010 af Primary=0.14 cfs 0.010 af
Total Runo	off Area = 2.179 ac Runoff Volume = 0.309 af Average Runoff Depth = 1.70"

48.02% Pervious = 1.046 ac 51.98% Impervious = 1.133 ac

Summary for Subcatchment WS-1A:

Runoff = 1.68 cfs @ 12.07 hrs, Volume= 0.115 af, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

_	A	rea (sf)	CN E	Description					
		19,560	98 F	Paved parking, HSG C					
_		13,560	74 >	75% Gras	s cover, Go	bod, HSG C			
		33,120	88 V	88 Weighted Average					
13,560 40.94% Pervious Area									
		19,560	5	9.06% Imp	ervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.5	30	0.0200	1.05		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.00"			
	2.3	231	0.0120	1.64		Shallow Concentrated Flow,			
_						Grassed Waterway Kv= 15.0 fps			
	2.8	261	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment WS-1B:

Runoff = 1.04 cfs @ 12.08 hrs, Volume= 0.071 af, Depth> 1.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

_	A	rea (sf)	CN E	Description		
		9,260	98 F	aved parki	ing, HSG C	
		17,840	74 >	75% Grass	s cover, Go	ood, HSG C
		27,100	82 V	Veighted A	verage	
		17,840	6	5.83% Per	vious Area	
		9,260	3	4.17% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.8	50	0.0150	1.03		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.00"
	0.8	115	0.0150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.0	291	0.0120	1.64		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	4.6	456	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment WS-1C:

Runoff = 1.51 cfs @ 12.07 hrs, Volume= 0.105 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

	A	rea (sf)	CN E	Description				
		19,300	98 F	Roofs, HSG	6 C			
		7,200	74 >	75% Gras	s cover, Go	od, HSG C		
		26,500	91 V	01 Weighted Average				
		7,200	2	27.17% Per	vious Area			
		19,300	7	'2.83% Imp	ervious Are	ea		
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.5	30	0.0200	1.05		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.00"		
	2.3	231	0.0120	1.64		Shallow Concentrated Flow,		
_						Grassed Waterway Kv= 15.0 fps		
	2.8	261	Total, I	ncreased t	o minimum	Tc = 5.0 min		

Summary for Subcatchment WS-2:

Runoff = 0.11 cfs @ 12.08 hrs, Volume= 0.008 af, Depth> 1.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

A	rea (sf)	CN [Description					
	2,905	74 >	>75% Gras	s cover, Go	ood, HSG C			
	600	98 F	Paved park	ing, HSG C				
	3,505	78 \	Veighted A	verage				
	2,905	8	32.88% Per	vious Area				
	600		17.12% Impervious Area					
Тс	Length	Slope	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.4	22	0.0150	0.11		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	
3.4	22	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment WS-3:

Runoff = 0.14 cfs @ 12.08 hrs, Volume= 0.010 af, Depth> 1.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.00"

J0096-POST

Type III 24-hr 2-YR Rainfall=3.00" Printed 4/3/2015 Page 7

Prepared by Tighe & Bond HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN E	Description					
	612	98 F	Paved parki	ing, HSG C	, ,			
	4,073	74 >	75% Grass	s cover, Go	od, HSG C			
	4,685	77 V	Weighted Average					
	4,073	8	86.94% Per	vious Area				
	612	1	3.06% Imp	ervious Are	ea			
	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.9	30	0.0200	0.13		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	
3.9	30	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Summary for Pond 1P: Stormtech 310

Inflow Area = 0.6	.608 ac, 72.83% Impervious, Inflow D	epth > 2.07" for 2-YR event
Inflow = 1.5	51 cfs @ 12.07 hrs, Volume=	0.105 af
Outflow = 0.7	78 cfs @ 12.20 hrs, Volume=	0.097 af, Atten= 48%, Lag= 7.4 min
Primary = 0.7	78 cfs @ 12.20 hrs, Volume=	0.097 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 100.54' @ 12.20 hrs Surf.Area= 1,272 sf Storage= 1,115 cf Flood Elev= 101.50' Surf.Area= 1,272 sf Storage= 1,616 cf

Plug-Flow detention time= 71.9 min calculated for 0.097 af (93% of inflow) Center-of-Mass det. time= 34.6 min (838.1 - 803.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.10'	901 cf	28.17'W x 45.16'L x 2.33'H Field A
			2,968 cf Overall - 715 cf Embedded = 2,253 cf x 40.0% Voids
#2A	99.60'	715 cf	ADS_StormTech SC-310 x 48 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 2.07 sf x 8 rows
		1,616 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	99.50'	12.0" Round Culvert
			L= 145.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 99.50' / 97.55' S= 0.0134 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	99.60'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	101.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.78 cfs @ 12.20 hrs HW=100.54' TW=98.15' (Dynamic Tailwater) **1=Culvert** (Passes 0.78 cfs of 2.77 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.78 cfs @ 3.99 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond PDMH4:

 Inflow Area =
 1.369 ac, 65.18% Impervious, Inflow Depth > 1.62" for 2-YR event

 Inflow =
 1.36 cfs @ 12.21 hrs, Volume=
 0.185 af

 Outflow =
 1.36 cfs @ 12.21 hrs, Volume=
 0.185 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.36 cfs @ 12.21 hrs, Volume=
 0.185 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 98.15' @ 12.21 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	97.50'	15.0" Round Culvert L= 10.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 97.50' / 97.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.36 cfs @ 12.21 hrs HW=98.15' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.36 cfs @ 3.07 fps)

Summary for Pond RG1: Soil Filter

Inflow Area =	0.760 ac, 59.06% Impervious, Inflow De	epth > 1.82" for 2-YR event
Inflow =	1.68 cfs @ 12.07 hrs, Volume=	0.115 af
Outflow =	0.63 cfs @ 12.36 hrs, Volume=	0.109 af, Atten= 63%, Lag= 17.2 min
Discarded =	0.05 cfs @ 12.32 hrs, Volume=	0.021 af
Primary =	0.58 cfs @ 12.36 hrs, Volume=	0.087 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 100.07' @ 12.32 hrs Surf.Area= 3,899 sf Storage= 1,361 cf Flood Elev= 101.50' Surf.Area= 4,623 sf Storage= 3,767 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 28.4 min (844.6 - 816.2)

Volume	Invert	Avail.Storage	Storag	ge Description
#1	100.00'	2,491 cf	Pond	Storage (Prismatic)Listed below (Recalc)
#2	98.50'	580 cf		Filter (Prismatic)Listed below (Recalc)
			,	cf Overall x 30.0% Voids
#3	97.15'	696 cf		Resevoir (Prismatic)Listed below (Recalc)
			1,740	cf Overall x 40.0% Voids
		3,767 cf	Total A	Available Storage
Elevation	Surf./	Area In	c.Store	Cum.Store
(feet)			ic-feet)	(cubic-feet)
/	· · · ·			
100.00	1	,289	0	0
101.00	1	,780	1.535	1,535
101.50	2	,045	956	2,491

J0096-POST

Type III 24-hr	2-YR Rainfall=3.00"
	Printed 4/3/2015
	Page 9

Prepared by Tigl	he & Bon	d				
HydroCAD® 10.00	s/n 03436	© 2013 H	ydroCAD	Software \$	Solutions	LLC

Elevatio	on	Surf.Area	Inc.Store	Cum.Store
(fee	st)	(sq-ft)	(cubic-feet)	(cubic-feet)
	-1	· · · ·		
98.5	50	1,289	0	0
100.0	00	1,289	1,934	1,934
		,	•	,
Elevatio	on	Surf.Area	Inc.Store	Cum.Store
(fee	at)	(sq-ft)	(cubic-feet)	(cubic-feet)
	-1		(cubic=icct)	
97.1	5	1,289	0	0
98.5	50	1,289	1,740	1,740
	-	,	,	.,
Device	Routing	Invert	Outlet Devices	
#1	Primary	97.55'	12.0" Round C	ulvert
	·····	01.00		nd-section co
			L-0.0 UPP. 6	nu-section co

	-		L= 5.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 97.55' / 97.50' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	101.00'	16.0" x 16.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#3	Device 1	97.65'	4.0" Vert. Orifice/Grate C= 0.600
#4	Discarded	97.15'	0.500 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 12.32 hrs HW=100.06' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.58 cfs @ 12.36 hrs HW=100.06' TW=98.13' (Dynamic Tailwater) **1=Culvert** (Passes 0.58 cfs of 5.25 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Orifice Controls 0.58 cfs @ 6.68 fps)

Summary for Link PA1:

Inflow Area	a =	1.991 ac, 55.49% Im	pervious, Inflow D	epth > 1.54"	for 2-YR event
Inflow	=	2.20 cfs @ 12.10 hrs	, Volume=	0.256 af	
Primary	=	2.20 cfs @ 12.10 hrs	, Volume=	0.256 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:

Inflow Are	a =	0.080 ac, 17.12% Impervious, Inflow Depth > 1.13" for 2-YR event	
Inflow	=	0.11 cfs @ 12.08 hrs, Volume= 0.008 af	
Primary	=	0.11 cfs @ 12.08 hrs, Volume= 0.008 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Area	a =	0.108 ac, 13.06% Impervious, Inflow Depth > 1.07" for 2-YR eve	nt
Inflow	=	0.14 cfs @ 12.08 hrs, Volume= 0.010 af	
Primary	=	0.14 cfs @ 12.08 hrs, Volume= 0.010 af, Atten= 0%, Lag=	0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=33,120 sf 59.06% Impervious Runoff Depth>3.38" Flow Length=261' Tc=5.0 min CN=88 Runoff=3.07 cfs 0.214 af
SubcatchmentWS-1B:	Runoff Area=27,100 sf 34.17% Impervious Runoff Depth>2.81" Flow Length=456' Tc=5.0 min CN=82 Runoff=2.12 cfs 0.146 af
SubcatchmentWS-1C:	Runoff Area=26,500 sf 72.83% Impervious Runoff Depth>3.69" Flow Length=261' Tc=5.0 min CN=91 Runoff=2.62 cfs 0.187 af
Subcatchment WS-2:	Runoff Area=3,505 sf 17.12% Impervious Runoff Depth>2.46" Flow Length=22' Slope=0.0150 '/' Tc=5.0 min CN=78 Runoff=0.24 cfs 0.016 af
Subcatchment WS-3:	Runoff Area=4,685 sf 13.06% Impervious Runoff Depth>2.37" Flow Length=30' Slope=0.0200 '/' Tc=5.0 min CN=77 Runoff=0.31 cfs 0.021 af
Pond 1P: Stormtech 310	Peak Elev=101.21' Storage=1,501 cf Inflow=2.62 cfs 0.187 af Outflow=2.32 cfs 0.179 af
Pond PDMH4:	Peak Elev=98.53' Inflow=2.92 cfs 0.359 af 15.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=2.92 cfs 0.359 af
Pond RG1: Soil Filter	Peak Elev=101.02' Storage=2,852 cf Inflow=3.07 cfs 0.214 af Discarded=0.05 cfs 0.027 af Primary=0.76 cfs 0.180 af Outflow=0.81 cfs 0.207 af
Link PA1:	Inflow=4.87 cfs 0.505 af Primary=4.87 cfs 0.505 af
Link PA2:	Inflow=0.24 cfs 0.016 af Primary=0.24 cfs 0.016 af
Link PA3:	Inflow=0.31 cfs 0.021 af Primary=0.31 cfs 0.021 af
Total Runo	off Area = 2.179 ac Runoff Volume = 0.585 af Average Runoff Depth = 3.22"

48.02% Pervious = 1.046 ac 51.98% Impervious = 1.133 ac

Summary for Subcatchment WS-1A:

Runoff = 3.07 cfs @ 12.07 hrs, Volume= 0.214 af, Depth> 3.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

_	A	rea (sf)	CN E	Description		
		19,560	98 F	aved park	ing, HSG C	<u>}</u>
_		13,560	74 >	75% Gras	s cover, Go	bod, HSG C
		33,120	88 V	Veighted A	verage	
		13,560	4	0.94% Per	vious Area	
		19,560	5	9.06% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	30	0.0200	1.05		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.00"
	2.3	231	0.0120	1.64		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	2.8	261	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment WS-1B:

Runoff = 2.12 cfs @ 12.07 hrs, Volume= 0.146 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN D	escription		
	9,260	98 P	aved parki	ing, HSG C	
	17,840	74 >	75% Grass	s cover, Go	bod, HSG C
	27,100	82 V	Veighted A	verage	
	17,840			vious Area	
	9,260	3	4.17% Imp	ervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.8	50	0.0150	1.03		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
0.8	115	0.0150	2.49		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.0	291	0.0120	1.64		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
4.6	456	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment WS-1C:

Runoff = 2.62 cfs @ 12.07 hrs, Volume= 0.187 af, Depth> 3.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

Are	ea (sf)	CN D	escription		
1	9,300	98 F	loofs, HSG	C	
	7,200	74 >	75% Grass	s cover, Go	od, HSG C
2	6,500	91 V	Veighted A	verage	
	7,200	2	7.17% Per	vious Area	
1	9,300	7	2.83% Imp	ervious Are	ea
		-			
	_ength	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.5	30	0.0200	1.05		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.00"
2.3	231	0.0120	1.64		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
2.8	261	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment WS-2:

Runoff = 0.24 cfs @ 12.08 hrs, Volume= 0.016 af, Depth> 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

A	rea (sf)	CN [Description					
	2,905	74 >	>75% Gras	s cover, Go	ood, HSG C			
	600	98 F	Paved park	ing, HSG C				
	3,505	78 \	8 Weighted Average					
	2,905	8	32.88% Per	vious Area				
	600		17.12% Imp	pervious Ar	ea			
Тс	Length	Slope	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.4	22	0.0150	0.11		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	
3.4	22	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment WS-3:

Runoff = 0.31 cfs @ 12.08 hrs, Volume= 0.021 af, Depth> 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.70"

J0096-POST

Type III 24-hr 10-YR Rainfall=4.70" Printed 4/3/2015 C Page 13

Prepared by Tighe & Bond HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN [Description						
	612	98 F	Paved parki	ing, HSG C	;				
	4,073	74 >	>75% Grass	s cover, Go	ood, HSG C				
	4,685	77 \	Weighted Average						
	4,073	8	36.94% Per	vious Area					
	612	-	13.06% Imp	pervious Are	ea				
_									
	Length	Slope	,	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.9	30	0.0200	0.13		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.00"		
3.9	30	Total,	ncreased t	o minimum	Tc = 5.0 min				

Summary for Pond 1P: Stormtech 310

Inflow Area =	0.608 ac, 72.83% Impervious, Inflow	Depth > 3.69" for 10-YR event
Inflow =	2.62 cfs @ 12.07 hrs, Volume=	0.187 af
Outflow =	2.32 cfs @ 12.11 hrs, Volume=	0.179 af, Atten= 12%, Lag= 2.5 min
Primary =	2.32 cfs @ 12.11 hrs, Volume=	0.179 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.21' @ 12.11 hrs Surf.Area= 1,272 sf Storage= 1,501 cf Flood Elev= 101.50' Surf.Area= 1,272 sf Storage= 1,616 cf

Plug-Flow detention time= 52.8 min calculated for 0.179 af (96% of inflow) Center-of-Mass det. time= 28.6 min (816.0 - 787.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.10'	901 cf	28.17'W x 45.16'L x 2.33'H Field A
			2,968 cf Overall - 715 cf Embedded = 2,253 cf x 40.0% Voids
#2A	99.60'	715 cf	ADS_StormTech SC-310 x 48 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 2.07 sf x 8 rows
		1,616 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	99.50'	12.0" Round Culvert
			L= 145.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 99.50' / 97.55' S= 0.0134 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	99.60'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	101.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=2.31 cfs @ 12.11 hrs HW=101.21' TW=98.53' (Dynamic Tailwater)

2=Orifice/Grate (Orifice Controls 1.10 cfs @ 5.61 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.21 cfs @ 1.48 fps)

Summary for Pond PDMH4:

 Inflow Area =
 1.369 ac, 65.18% Impervious, Inflow Depth > 3.15" for 10-YR event

 Inflow =
 2.92 cfs @ 12.11 hrs, Volume=
 0.359 af

 Outflow =
 2.92 cfs @ 12.11 hrs, Volume=
 0.359 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.92 cfs @ 12.11 hrs, Volume=
 0.359 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 98.53' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	97.50'	15.0" Round Culvert L= 10.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 97.50' / 97.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.91 cfs @ 12.11 hrs HW=98.53' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.91 cfs @ 3.68 fps)

Summary for Pond RG1: Soil Filter

Inflow Area =	0.760 ac, 59.06% Impervious, Inflow De	epth > 3.38" for 10-YR event
Inflow =	3.07 cfs @ 12.07 hrs, Volume=	0.214 af
Outflow =	0.81 cfs @ 12.43 hrs, Volume=	0.207 af, Atten= 73%, Lag= 21.3 min
Discarded =	0.05 cfs @ 12.43 hrs, Volume=	0.027 af
Primary =	0.76 cfs @ 12.43 hrs, Volume=	0.180 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.02' @ 12.43 hrs Surf.Area= 4,370 sf Storage= 2,852 cf Flood Elev= 101.50' Surf.Area= 4,623 sf Storage= 3,767 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 35.0 min (833.7 - 798.7)

Volume	Invert	Avail.Storage	Storag	ge Description
#1	100.00'	2,491 cf	Pond	Storage (Prismatic)Listed below (Recalc)
#2	98.50'	580 cf		Filter (Prismatic)Listed below (Recalc)
			,	cf Overall x 30.0% Voids
#3	97.15'	696 cf		Resevoir (Prismatic)Listed below (Recalc)
			1,740	cf Overall x 40.0% Voids
		3,767 cf	Total A	Available Storage
Elevation	Surf./	Area In	c.Store	Cum.Store
(feet)			ic-feet)	(cubic-feet)
/	· · · ·			
100.00	1	,289	0	0
101.00	1	,780	1.535	1,535
101.50	2	,045	956	2,491

J0096-POST

Prepared by Tighe & Bond

Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
`	,		-					
98.5		1,289	0	0				
100.0	00	1,289	1,934	1,934				
Elevatio	on	Surf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
97.1	15	1,289	0	0				
98.5		1,289	1,740	1,740				
		-,	.,	-,				
Device	Routing	Invert	Outlet Devices					
#1	Primary	97.55'	12.0" Round (Culvert				
	- 5				nforming to fill, Ke= 0.500			
					7.50' S= 0.0100 '/' Cc= 0.900			
					ooth interior, Flow Area= 0.79 sf			
#2	Device 1	101.00'	o					
#2	Device	101.00						
#0 Devices		07 65	Limited to weir flow at low heads					
#3 Device		97.65'						
#4	Discarde	d 97.15'	5 0.500 in/hr Exfiltration over Surface area					

Discarded OutFlow Max=0.05 cfs @ 12.43 hrs HW=101.02' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.76 cfs @ 12.43 hrs HW=101.02' TW=98.24' (Dynamic Tailwater) **1=Culvert** (Passes 0.76 cfs of 6.30 cfs potential flow)

-2=Orifice/Grate (Weir Controls 0.06 cfs @ 0.50 fps)

-3=Orifice/Grate (Orifice Controls 0.70 cfs @ 8.03 fps)

Summary for Link PA1:

Inflow Are	a =	1.991 ac, 5	5.49% Impe	rvious,	Inflow De	epth > 3	.04" fo	r 10-	YR event
Inflow	=	4.87 cfs @	12.10 hrs, \	Volume=	=	0.505 af	:		
Primary	=	4.87 cfs @	12.10 hrs, \	Volume=	=	0.505 af	, Atten=	• 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:

Inflow Are	a =	0.080 ac, 1	7.12% Impe	ervious,	Inflow De	pth > 2	.46" f	or 10-	YR event
Inflow	=	0.24 cfs @	12.08 hrs,	Volume	=	0.016 af			
Primary	=	0.24 cfs @	12.08 hrs,	Volume	=	0.016 af	, Atten	= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Area	a =	0.108 ac, 13.06% Impervious, Inflow Depth > 2.37" for 10-YR event	
Inflow	=	0.31 cfs @ 12.08 hrs, Volume= 0.021 af	
Primary	=	0.31 cfs @ 12.08 hrs, Volume= 0.021 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment WS-1A:	Runoff Area=33,120 sf 59.06% Impervious Runoff Depth>4.14" Flow Length=261' Tc=5.0 min CN=88 Runoff=3.72 cfs 0.262 af
Subcatchment WS-1B:	Runoff Area=27,100 sf 34.17% Impervious Runoff Depth>3.53" Flow Length=456' Tc=5.0 min CN=82 Runoff=2.65 cfs 0.183 af
Subcatchment WS-1C:	Runoff Area=26,500 sf 72.83% Impervious Runoff Depth>4.47" Flow Length=261' Tc=5.0 min CN=91 Runoff=3.14 cfs 0.226 af
Subcatchment WS-2:	Runoff Area=3,505 sf 17.12% Impervious Runoff Depth>3.14" Flow Length=22' Slope=0.0150 '/' Tc=5.0 min CN=78 Runoff=0.31 cfs 0.021 af
Subcatchment WS-3:	Runoff Area=4,685 sf 13.06% Impervious Runoff Depth>3.04" Flow Length=30' Slope=0.0200 '/' Tc=5.0 min CN=77 Runoff=0.40 cfs 0.027 af
Pond 1P: Stormtech 310	Peak Elev=101.28' Storage=1,538 cf Inflow=3.14 cfs 0.226 af Outflow=3.04 cfs 0.218 af
Pond PDMH4:	Peak Elev=98.69' Inflow=3.65 cfs 0.445 af 15.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=3.65 cfs 0.445 af
Pond RG1: Soil Filter	Peak Elev=101.14' Storage=3,073 cf Inflow=3.72 cfs 0.262 af Discarded=0.05 cfs 0.029 af Primary=1.63 cfs 0.227 af Outflow=1.68 cfs 0.255 af
Link PA1:	Inflow=6.25 cfs 0.628 af Primary=6.25 cfs 0.628 af
Link PA2:	Inflow=0.31 cfs 0.021 af Primary=0.31 cfs 0.021 af
Link PA3:	Inflow=0.40 cfs 0.027 af Primary=0.40 cfs 0.027 af
Total Runo	off Area = 2.179 ac Runoff Volume = 0.720 af Average Runoff Depth = 3.97"

48.02% Pervious = 1.046 ac 51.98\% Impervious = 1.133 ac

Summary for Subcatchment WS-1A:

Runoff = 3.72 cfs @ 12.07 hrs, Volume= 0.262 af, Depth> 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

Area (sf) CN Description							
19,560 98 Paved parking, HSG C	Paved parking, HSG C						
13,560 74 >75% Grass cover, Good, HSG C							
33,120 88 Weighted Average	20 88 Weighted Average						
13,560 40.94% Pervious Area							
19,560 59.06% Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
0.5 30 0.0200 1.05 Sheet Flow,							
Smooth surfaces n= 0.011 P2= 3.00"							
2.3 231 0.0120 1.64 Shallow Concentrated Flow,							
Grassed Waterway Kv= 15.0 fps							
2.8 261 Total, Increased to minimum Tc = 5.0 min							

Summary for Subcatchment WS-1B:

Runoff = 2.65 cfs @ 12.07 hrs, Volume= 0.183 af, Depth> 3.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

_	A	rea (sf)	CN E	Description							
		9,260	98 F	8 Paved parking, HSG C							
		17,840	74 >								
		27,100	82 V	Veighted A	verage						
		17,840	6	5.83% Per	vious Area						
		9,260	3	4.17% Imp	ervious Are	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.8	50	0.0150	1.03		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.00"					
	0.8	115	0.0150	2.49		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
	3.0	291	0.0120	1.64		Shallow Concentrated Flow,					
_						Grassed Waterway Kv= 15.0 fps					
	4.6	456	Total, I	ncreased t	o minimum	Tc = 5.0 min					

Summary for Subcatchment WS-1C:

Runoff = 3.14 cfs @ 12.07 hrs, Volume= 0.226 af, Depth> 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

	A	rea (sf)	CN E	Description		
		19,300	98 F	Roofs, HSG	6 C	
		7,200	74 >	75% Gras	s cover, Go	od, HSG C
		26,500	91 V	Veighted A	verage	
		7,200	2	27.17% Per	vious Area	
		19,300	7	'2.83% Imp	ervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.5	30	0.0200	1.05		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.00"
	2.3	231	0.0120	1.64		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	2.8	261	Total, I	ncreased t	o minimum	Tc = 5.0 min

Summary for Subcatchment WS-2:

Runoff = 0.31 cfs @ 12.07 hrs, Volume= 0.021 af, Depth> 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

A	rea (sf)	CN I	Description					
	2,905	74 :	>75% Gras	s cover, Go	od, HSG C			
	600	98	Paved park	ing, HSG C				
	3,505	78	Weighted Average					
	2,905	8	82.88% Pervious Area					
	600		17.12% Imp	pervious Are	ea			
Тс	Length	Slope	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.4	22	0.0150	0.11		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	
3.4	22	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment WS-3:

Runoff = 0.40 cfs @ 12.07 hrs, Volume= 0.027 af, Depth> 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.50"

J0096-POST

Type III 24-hr 25-YR Rainfall=5.50" Printed 4/3/2015 C Page 19

Prepared by Tighe & Bond HydroCAD® 10.00 s/n 03436 © 2013 HydroCAD Software Solutions LLC

Α	rea (sf)	CN I	Description					
	612	98 I	Paved parki	ing, HSG C	;			
	4,073	74 >	>75% Grass	s cover, Go	ood, HSG C			
	4,685	77 \	Weighted Average					
	4,073	8	36.94% Per	vious Area				
	612		13.06% Imp	ervious Are	ea			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.9	30	0.0200	0.13		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.00"	
3.9	30	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Pond 1P: Stormtech 310

Inflow Area =	0.608 ac, 72.83% Impervious, Inflow	Depth > 4.47" for 25-YR event
Inflow =	3.14 cfs @ 12.07 hrs, Volume=	0.226 af
Outflow =	3.04 cfs @ 12.09 hrs, Volume=	0.218 af, Atten= 3%, Lag= 1.2 min
Primary =	3.04 cfs @ 12.09 hrs, Volume=	0.218 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.28' @ 12.09 hrs Surf.Area= 1,272 sf Storage= 1,538 cf Flood Elev= 101.50' Surf.Area= 1,272 sf Storage= 1,616 cf

Plug-Flow detention time= 47.3 min calculated for 0.218 af (96% of inflow) Center-of-Mass det. time= 26.3 min (808.7 - 782.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.10'	901 cf	28.17'W x 45.16'L x 2.33'H Field A
			2,968 cf Overall - 715 cf Embedded = 2,253 cf x 40.0% Voids
#2A	99.60'	715 cf	ADS_StormTech SC-310 x 48 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 2.07 sf x 8 rows
		1,616 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Primary	99.50'	12.0" Round Culvert
-		L= 145.0' CPP, end-section conforming to fill, Ke= 0.500
		Inlet / Outlet Invert= 99.50' / 97.55' S= 0.0134 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
Device 1	99.60'	6.0" Vert. Orifice/Grate C= 0.600
Device 1	101.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
	Primary Device 1	Primary 99.50' Device 1 99.60'

Primary OutFlow Max=3.04 cfs @ 12.09 hrs HW=101.28' TW=98.69' (Dynamic Tailwater) **1=Culvert** (Passes 3.04 cfs of 4.12 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.13 cfs @ 5.76 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.91 cfs @ 1.73 fps)

Summary for Pond PDMH4:

 Inflow Area =
 1.369 ac, 65.18% Impervious, Inflow Depth > 3.90" for 25-YR event

 Inflow =
 3.65 cfs @ 12.09 hrs, Volume=
 0.445 af

 Outflow =
 3.65 cfs @ 12.09 hrs, Volume=
 0.445 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.65 cfs @ 12.09 hrs, Volume=
 0.445 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 98.69' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	97.50'	15.0" Round Culvert L= 10.0' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 97.50' / 97.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.64 cfs @ 12.09 hrs HW=98.69' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.64 cfs @ 3.90 fps)

Summary for Pond RG1: Soil Filter

Inflow Area =	0.760 ac, 59.06% Impervious, Inflow De	epth > 4.14" for 25-YR event
Inflow =	3.72 cfs @ 12.07 hrs, Volume=	0.262 af
Outflow =	1.68 cfs @ 12.23 hrs, Volume=	0.255 af, Atten= 55%, Lag= 9.7 min
Discarded =	0.05 cfs @ 12.23 hrs, Volume=	0.029 af
Primary =	1.63 cfs @ 12.23 hrs, Volume=	0.227 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.14' @ 12.23 hrs Surf.Area= 4,434 sf Storage= 3,073 cf Flood Elev= 101.50' Surf.Area= 4,623 sf Storage= 3,767 cf

Plug-Flow detention time= 48.8 min calculated for 0.255 af (97% of inflow) Center-of-Mass det. time= 32.8 min (825.9 - 793.1)

Volume	Invert	Avail.Storage	Storag	ge Description
#1	100.00'	2,491 cf	Pond	Storage (Prismatic)Listed below (Recalc)
#2	98.50'	580 cf		ilter (Prismatic)Listed below (Recalc)
			,	cf Overall x 30.0% Voids
#3	97.15'	696 cf		Resevoir (Prismatic)Listed below (Recalc)
			1,740	cf Overall x 40.0% Voids
		3,767 cf	Total A	Available Storage
Elevation	Surf.A	Area Inc	.Store	Cum.Store
(feet)	(s	q-ft) (cubi	c-feet)	(cubic-feet)
100.00	1,	,289	0	0
101.00	1,	,780	1,535	1,535
101.50	2,	,045	956	2,491

J0096-POST

Prepared by Tighe & Bond

1			j				
Elevatio	าท	Surf.Area	Inc.Store	Cum.Store			
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)			
98.5	50	1,289	0	0			
100.0	00	1,289	1,934	1,934			
Elevatio	on	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
97.1	15	1,289	0	0			
98.5	50	1,289	1,740	1,740			
Device	Routing	Invert	Outlet Devices				
#1	Primary	97.55'	12.0" Round C	Culvert			
					nforming to fill, Ke= 0.500		
					7.50' S= 0.0100 '/' Cc= 0.900		
		404.00		•	both interior, Flow Area= 0.79 sf		
#2	Device 1	101.00'			Grate C= 0.600		
#3	Device 1	97.65'	Limited to weir flow at low heads 4.0" Vert. Orifice/Grate C= 0.600				
#3 #4	Device		0.500 in/hr Exf				
#4	Discarde	u 97.15	0.300 IN/Nr EXT	intration over	Suilace alea		

Discarded OutFlow Max=0.05 cfs @ 12.23 hrs HW=101.14' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.63 cfs @ 12.23 hrs HW=101.14' TW=98.57' (Dynamic Tailwater) **1=Culvert** (Passes 1.63 cfs of 6.06 cfs potential flow)

-2=Orifice/Grate (Weir Controls 0.95 cfs @ 1.24 fps)

-3=Orifice/Grate (Orifice Controls 0.67 cfs @ 7.72 fps)

Summary for Link PA1:

Inflow Are	a =	1.991 ac, 5	55.49% Imperviou	is, Inflow Depth >	3.79"	for 25-Y	'R event
Inflow	=	6.25 cfs @	12.09 hrs, Volu	me= 0.628	3 af		
Primary	=	6.25 cfs @	12.09 hrs, Volu	me= 0.628	3 af, Att	en= 0%, L	_ag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA2:

Inflow Are	a =	0.080 ac, 17	7.12% Impervious	, Inflow Depth > 3.	.14" for 25-YR event
Inflow	=	0.31 cfs @	12.07 hrs, Volum	e= 0.021 af	
Primary	=	0.31 cfs @ 1	12.07 hrs, Volum	e= 0.021 af,	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link PA3:

Inflow Area	a =	0.108 ac, 13.06% Impervious, Inflow Depth > 3.04" for 25-YR ever	nt
Inflow	=	0.40 cfs @ 12.07 hrs, Volume= 0.027 af	
Primary	=	0.40 cfs @ 12.07 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.	.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

J0096-POST

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
97.15	1,289	0	99.80	2,578	1,199	
97.20	1,289	26	99.85	2,578	1,218	
97.25	1,289	52	99.90	2,578	1,237	
97.30	1,289	77	99.95	2,578	1,257	
97.35	1,289	103	100.00	3,867	1,276	
97.40	1,289	129	100.05	3,892	1,341	
97.45	1,289	155	100.10	3,916	1,407	
97.50	1,289	180	100.15	3,941	1,475	
97.55	1,289	206	100.20	3,965	1,544	
97.60	1,289	232	100.25	3,990	1,614	
97.65	1,289	258 284	100.30	4,014	1,685	
97.70 97.75	1,289	204 309	100.35 100.40	4,039 4,063	1,757 1,831	
97.80	1,289 1,289	335	100.40	4,088	1,906	
97.85	1,289	361	100.50	4,113	1,982	
97.90	1,289	387	100.55	4,137	2,059	
97.95	1,289	412	100.60	4,162	2,138	
98.00	1,289	438	100.65	4,186	2,218	
98.05	1,289	464	100.70	4,211	2,299	
98.10	1,289	490	100.75	4,235	2,381	
98.15	1,289	516	100.80	4,260	2,464	
98.20	1,289	541	100.85	4,284	2,549	
98.25	1,289	567	100.90	4,309	2,635	
98.30	1,289	593	100.95	4,333	2,722	
98.35	1,289	619	101.00	4,358	2,811	Overflow Rim Elev=101.00
98.40	1,289	645	101.05	4,385	2,900	
98.45	1,289	670 696	101.10 101.15	4,411	2,991	
98.50 98.55	2,578 2,578	715	101.13	4,438 4,464	3,084 3,177	
98.60	2,578	735	101.25	4,491	3,272	
98.65	2,578	754	101.30	4,517	3,368	
98.70	2,578	773	101.35	4,544	3,466	
98.75	2,578	793	101.40	4,570	3,565	
98.80	2,578	812	101.45	4,597	3,665	
98.85	2,578	831	101.50	4,623	3,767	
98.90	2,578	851				
98.95	2,578	870				
99.00	2,578	889				
99.05	2,578	909				
99.10	2,578	928				
99.15	2,578	947				
99.20	2,578	967				
99.25	2,578	986				
99.30 99.35	2,578	1,005				
99.35 99.40	2,578 2,578	1,025 1,044				
99.40 99.45	2,578	1,044				
99.45 99.50	2,578	1,083				
99.55	2,578	1,102				
99.60	2,578	1,102				
99.65	2,578	1,141				
99.70	2,578	1,160				
99.75	2,578	1,179				
		I				

Stage-Area-Storage for Pond RG1: Soil Filter

Summary for Pond 1P: Stormtech 310

Inflow Area =	0.608 ac, 72.83% Impervious,	Inflow Depth > 5.64" for 100-YR event
Inflow =	3.92 cfs @ 12.07 hrs, Volume	= 0.286 af
Outflow =	3.86 cfs @ 12.08 hrs, Volume	= 0.278 af, Atten= 1%, Lag= 0.8 min
Primary =	3.86 cfs @ 12.08 hrs, Volume	= 0.278 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.35' @ 12.08 hrs Surf.Area= 1,272 sf Storage= 1,576 cf Flood Elev= 101.50' Surf.Area= 1,272 sf Storage= 1,616 cf

Plug-Flow detention time= 41.4 min calculated for 0.278 af (97% of inflow) Center-of-Mass det. time= 23.8 min (800.0 - 776.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	99.10'	901 cf	28.17'W x 45.16'L x 2.33'H Field A
			2,968 cf Overall - 715 cf Embedded = 2,253 cf x 40.0% Voids
#2A	99.60'	715 cf	ADS_StormTech SC-310 x 48 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 2.07 sf x 8 rows
		1 616 cf	Total Available Storage

1,616 CT TOTAL AVAIIABLE STORAGE

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	99.50'	12.0" Round Culvert
	-		L= 145.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 99.50' / 97.55' S= 0.0134 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	99.60'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	101.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=3.85 cfs @ 12.08 hrs HW=101.35' TW=99.09' (Dynamic Tailwater)

-1=Culvert (Outlet Controls 3.85 cfs @ 4.90 fps)

2=Orifice/Grate (Passes < 1.16 cfs potential flow)

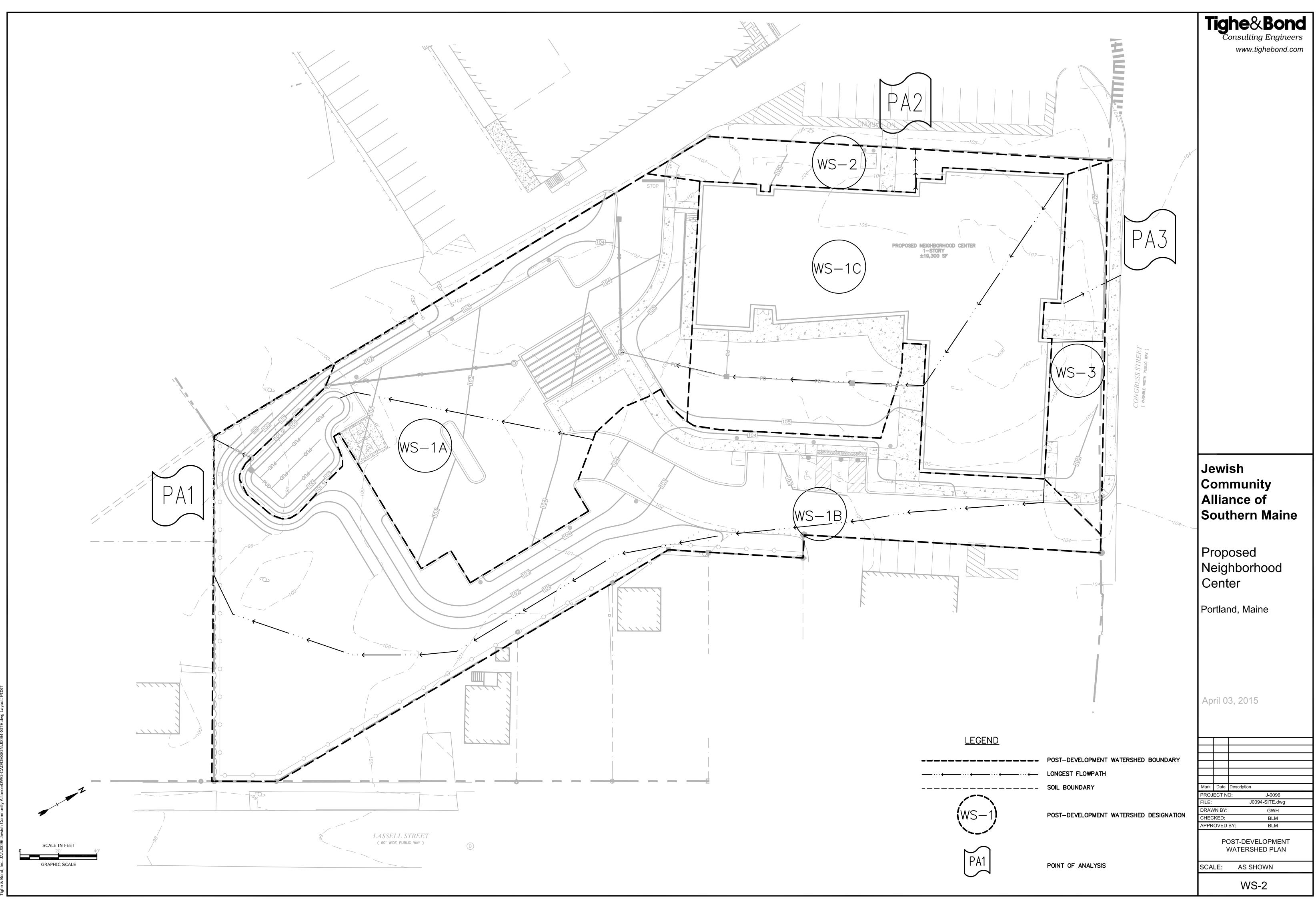
-3=Sharp-Crested Rectangular Weir (Passes < 2.70 cfs potential flow)

Summary for Pond RG1: Soil Filter

Inflow Area =	0.760 ac, 59.06% Impervious, Inflow De	epth > 5.30" for 100-YR event
Inflow =	4.70 cfs @ 12.07 hrs, Volume=	0.336 af
Outflow =	3.29 cfs @ 12.15 hrs, Volume=	0.328 af, Atten= 30%, Lag= 4.5 min
Discarded =	0.05 cfs @ 12.15 hrs, Volume=	0.031 af
Primary =	3.23 cfs @ 12.15 hrs, Volume=	0.298 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 101.28' @ 12.15 hrs Surf.Area= 4,509 sf Storage= 3,339 cf Flood Elev= 101.50' Surf.Area= 4,623 sf Storage= 3,767 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 30.1 min (816.5 - 786.4)


Volume	Invert	Avail.Sto	rage 3	Storag	e Description	
#1	100.00'	2,49				tic)Listed below (Recalc)
#2	98.50'	5				isted below (Recalc)
					cf Overall x 30.0%	
#3	97.15'	69				atic)Listed below (Recalc)
				1,740	cf Overall x 40.0%	% Voids
		3,70	67 cf	Total A	vailable Storage	
					-	
Elevatio		ırf.Area		Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-	feet)	(cubic-feet)	
100.0	0	1,289		0	0	
101.0		1,780	1	,535	1,535	
101.5	60	2,045		956	2,491	
	-					
Elevatio		Irf.Area		Store	Cum.Store	
(fee	,	(sq-ft)	(cubic-	/	(cubic-feet)	
98.5		1,289		0	0	
100.0	0	1,289	1	,934	1,934	
Elevetia			lin a C	74	Ourse Otens	
Elevatio		Irf.Area		Store	Cum.Store	
(fee	1	(sq-ft)	(cubic-	- /	(cubic-feet)	
97.1		1,289	4	0	0	
98.5	0	1,289	I	,740	1,740	
Device	Routing	Invert	Outlet	t Devic	es	
#1	Primary	97.55'	12.0"	Rour	d Culvert	
	,		L= 5.0)' CP	P, end-section co	nforming to fill, Ke= 0.500
			Inlet /	Outlet	Invert= 97.55' / 9	7.50' Š= 0.0100 '/' Cc= 0.900
						ooth interior, Flow Area= 0.79 sf
#2	Device 1	101.00'				
					eir flow at low hea	
#3	Device 1	97.65'			rifice/Grate C=	
#4	Discarded	97.15'	0.500	in/hr	Exfiltration over	Surface area

Discarded OutFlow Max=0.05 cfs @ 12.15 hrs HW=101.28' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=3.23 cfs @ 12.15 hrs HW=101.28' TW=99.34' (Dynamic Tailwater) **1=Culvert** (Passes 3.23 cfs of 5.28 cfs potential flow)

2=Orifice/Grate (Weir Controls 2.65 cfs @ 1.74 fps)

-3=Orifice/Grate (Orifice Controls 2.03 cfs @ 6.72 fps)

2.4 Peak Rate Comparisons

The following table summarizes and compares the pre- and post-development peak runoff rates for the 2-year, 10-year, and 50-year storm events. The post-development peak rate of runoff for each discharge point has been determined to be less than the peak runoff rate generated during the pre-development condition.

Point of Analysis	Pre/ Post 2-Year Storm (cfs)	Pre/ Post 10-Year Storm (cfs)	Pre/ Post 25-Year Storm (cfs)
PA1	2.51/ 2.20	5.16/ 4.87	6.45/ 6.25
PA2	0.64/ 0.11	1.12/ 0.24	1.35/ 0.31
PA3	0.37/ 0.14	0.77/ 0.31	0.96/ 0.40

2.5 Mitigation Description and Best Management Practices

In order to mitigate the increase in impervious area required for the proposed project, a stormwater system has been designed for this project utilizing low impact development measures.

The intent of the stormwater management system design is for runoff to be collected, detained, and treated, where possible. The redevelopment of this site presented topographic and geometric constraints that will require a waiver request to seek relief from the pretreatment requirements for runoff that flows into the underdrained soil filter, which is designated as watershed WS-1A on the Post-Development Watershed Plan enclosed with this report. To mitigate potential impacts from the waiver request, the underdrained soil filter has been designed to detain and treat the entire runoff volume from the 2 and 10-year 24 hour storms. The treatment volume provided is greater than the volume required by the stormwater regulations.

The underground detention basin, which consists of Stormtech SC-310 chambers, has been designed to detain and mitigate peak flows generated by the roof and grass play area. Runoff generated from the roof will not be treated as it is inherently clean. Deep sump catch basins with Casco traps will provide pre-treatment for stormwater that is collected within the play area adjacent to the building prior to discharge into the detention basin.

All soil erosion and sediment control measures shall be in accordance with regulations and principles as outlined in the Stormwater Management for Maine: Best Management Practices and Maine Erosion and Sediment Control Handbook for Construction. The intent of the outlined measures is to minimize erosion and sedimentation during construction, stabilize and protect the site from erosion after construction is complete and improve stormwater quality from the site. Best Management Practices for this project include:

- Temporary practices to be implemented during construction.
- Permanent practices to be implemented after construction.
- Stormwater treatment devices.

TEMPORARY PRACTICES

Sequencing:

- 1. Construct temporary and permanent sediment, erosion and detention control facilities. Erosion, sediment and detention measures shall be installed prior to any earth moving operations that will influence stormwater runoff such as:
 - New construction
 - Development of borrow pit areas
 - Disposal of sediment spoil, stump and other solid waste
 - Control of dust
- 2. All permanent ditches, swales, detention, retention and sedimentation basins to be stabilized using the vegetative and nonstructural BMPs prior to directing runoff to them.
- 3. Clear and dispose of debris.
- 4. Construct temporary culverts and diversion channels as required.
- 5. Begin permanent and temporary seeding and mulching. All cut and fill slopes shall be seeded and mulched immediately after their construction.
- 6. Daily, or as required, construct temporary berms, drains, ditches, silt fences, sediment traps etc., mulch and seed as required.
- 7. Finish pave all roadways and parking lots.
- 8. Inspect and maintain all erosion and sediment control measures.
- 9. Complete permanent seeding and landscaping.
- 10. Remove trapped sediment from collection devices as appropriate and then remove temporary erosion control measures.

Stabilization Practices:

- 1. Install stabilized construction entrance at the location shown on plans.
- 2. Loam stockpiles shall be mulched, seeded and contained by a silt fence barrier.
- 3. All erosion control devices, including silt fences and storm drain inlet filters, shall be inspected at least once per week and following any rainfall of 1/4 inch or greater. All necessary maintenance shall be completed within 48 hours. A Maintenance Inspection Report shall be kept on site and made available by the contractor at the city's request.

- 4. Inactivity: Area of the site which has been disturbed, where construction activity will not occur for more than twenty-one (21) days, shall be temporarily stabilized by mulching and seeding.
- 5. Waste Disposal/Spill Prevention: The Erosion Control Notes and Details Sheet of the Site Plans fully detail the waste disposal and spill prevention procedures. All waste from construction activities shall be collected and stored in receptacles. No construction materials shall be buried on site. The Spill Prevention Plan focuses on personnel training, housekeeping, storage and standard practices for use and disposal of materials.

PERMANENT PRACTICES

The objectives for developing permanent Best Management Practices for this site include the following:

- Develop a plan that provides the best hydrologic condition both on site and downstream.
- Provide a higher level of removal of pollutants from stormwater runoff.
- Minimize impact on the natural environment.
- Minimize future maintenance.

Section 3 Long Term Operation & Maintenance Plan

It is the intent of this Operation and Maintenance Plan to identify the areas of this site that need special attention and consideration, as well as implementing a plan to assure routine maintenance. By identifying the areas of concern as well as implementing a frequent and routine maintenance schedule the site will maintain a high quality stormwater runoff.

3.1 Contact/Responsible Party

Steve Brinn Jewish Community Alliance of Southern Maine 57 Ashmont Street Portland, Maine

(Note: The contact information for the Contact/Responsible Party shall be kept current. If ownership changes, the Operation and Maintenance Plan must be transferred to the new party.)

3.2 Maintenance Items

Maintenance of the following items shall be recorded:

- Litter/Debris Removal
- Landscaping
- Catch basin/Yard drain Cleaning
- Pavement Sweeping
- Stormtech Chamber Cleaning
- Underdrained Soil Filter Cleaning and Maintenance

The following maintenance items and schedule represent the minimum action required. Periodic site inspections shall be conducted and all measures must be maintained in effective operating condition. The following items shall be observed during site inspection and maintenance:

- Inspect vegetated areas, particularly slopes and embankments for areas of erosion. Replant and restore as necessary
- Inspect catch basins for sediment buildup
- Inspect site for trash and debris

Ī

3.3 Overall Site Operation & Maintenance Schedule

Overall Site Operation and Maintenance Schedule				
Maintenance Item	Frequency of Maintenance	Operation		
Litter/Debris Removal	Weekly	Management Company		
Pavement Sweeping - Sweep impervious areas to remove sand and litter.	2 - 4 times annually	Parking Lot Sweeper		
Underdrain Soil Filter - Trash and debris to be removed. - Any required maintenance shall be addressed.	Two (2) times annually and after any rainfall event exceeding 2.5" in a 24-hr period	Management Company		
Stormtech Chambers - Visual inspection and cleaning.	Twice Yearly	Management Company / Vacuum Truck		
Rip Rap Aprons - Trash and debris to be removed. - Any required maintenance shall be addressed.	Annually	Management Company		
Catch Basin (CB) / Yard Drain (YD) Cleaning - CBs/YDs to be cleaned of solids and oils.	Annually	Vacuum Truck		
Landscaping - Landscaped islands to be maintained and mulched.	Maintained as required and mulched each Spring	Management Company		

Underdrained Soil Filter Inspection/Maintenance Requirements				
Inspection/	Frequency	Action		
Maintenance				
Monitor to ensure that Rain Gardens function effectively after storms	Four (4) times annually (quarterly) and after any rainfall event exceeding 2.5" in a 24-hr period	 Trash and debris to be removed Any required maintenance shall be addressed 		
Inspect Vegetation	Annually	 Inspect the condition of all Rain Garden vegetation Prune back overgrowth Replace dead vegetation Remove any invasive species 		
Inspect Drawdown Time - The system shall drawdown within 48- hours following a rainfall event.	Annually	- Assess the condition of the facility to determine measures required to restore the filtration function, including but not limited to removal of accumulated sediments or reconstruction of the filter.		

StormTech Inspection/Maintenance Requirements				
Inspection/	Frequency	Action		
Maintenance				
Inspection with maintenance following as warranted	Twice Yearly	 Trash and debris to be removed Any required maintenance shall be addressed. 		

Rip Rap Inspection/Maintenance Requirements				
Inspection/ Maintenance	Frequency	Action		
Visual Inspection	Annually	 Visually inspect for damage and deterioration Repair damages immediately 		

3.3.1 Disposal Requirements

Disposal of debris, trash, sediment and other waste material should be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations.

3.3.2 Snow & Ice Management for Standard Asphalt and Walkways

Snow storage areas shall be located such that no direct untreated discharges are possible to receiving waters from the storage site (snow storage areas have been shown on the Site Plan). Curb cuts shown on the plan shall remain free of snow and ice buildup. Salt storage areas shall be covered or located such that no direct untreated discharges are possible to receiving waters from the storage site.

3.3.3 Annual Updates and Log Requirements

The Owner and/or Contact/Responsible Party shall review this Operation and Maintenance Plan once per year for its effectiveness and adjust the plan and deed as necessary.

A log of all preventative and corrective measures for the stormwater system shall be kept on-site and be made available upon request by any public entity with administrative, health environmental or safety authority over the site.

	Stormwater Management Report												
Project Name		Proposed (Proposed Community Center, 1342 Congress St, Portland, ME										
BMP Description	Date of Inspection	Inspector	BMP Installed and Operating Properly?	Cleaning / Corrective Action Needed	Date of Cleaning / Repair	Performed By							
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										
			□Yes □No										

J:\J\J0096 Jewish Community Alliance\DRAINAGE\DRAINAGE STUDIES\J0096-Drainage Study.doc

Table 2-124 Hour Duration Rainfalls for Various Return PeriodsNatural Resources Conservation Service County Rainfall Data

	Return Interval or Frequency									
County	Storm Type	1-Yr	2-Yr	5-Yr	10- Yr	25- Yr	100- Yr	500 -Yr	Annual	
Androscoggin		2.5	3.0	3.9	4.6	5.4	6.5	7.8	45.3	
Aroostook C		2.1	2.1	3.2	3.6	4.2	5.0	5.9	36.1	(Presque Isle Area)
Aroostook N	S	2.0	2.3	3.0	3.5	4.0	4.8	5.7	36.1	(Fort Kent Area)
Aroostook S	E	2.2	2.5	3.3	3.8	4.4	5.3	6.4	39.0	(Houlton Area)
Cumberland NW	Ε	2.8	3.3	4.3	5.0	5.8	6.9	8.3	43.4	(NW of St. Route 11)
Cumberland SE		2.5	3.0	4.0	4.7	5.5	6.7	8.1	44.4	(SE of St. Route 11)
Franklin	Ν	2.4	2.9	3.7	4.2	4.9	5.9	7.0	45.6	
Hancock	0	2.4	2.7	3.6	4.2	4.9	6.0	7.2	45.2	
Kennebec	Т	2.4	3.0	3.8	4.4	5.1	6.1	7.2	41.7	
Knox-Lincoln	Ε	2.5	2.9	3.8	4.4	5.1	6.2	7.4	46.1	
Oxford E	S	2.5	3.0	4.0	4.6	5.3	6.4	7.6	43.0	(E of St. Route 26)
Oxford W		3.0	3.5	4.5	5.2	6.0	7.1	8.4	43.8	(W of St. Route 26)
Penobscot N	1	2.2	2.5	3.3	3.8	4.4	5.4	6.4	41.5	(N of CanAtl. Rwy)
Penobscot S	1	2.4	2.7	3.5	4.1	4.8	5.8	6.9	39.5	(S of CanAtl. Rwy)
Piscataquis N		2.2	2.5	3.3	3.8	4.4	5.3	6.3	38.5	(N of Can Atl. Rwy)
Piscataquis S	A N	2.3	2.6	3.4	4.0	4.6	5.5	6.6	41.0	(S of Can Atl. Rwy)
Sagadahoc	D	2.5	3.0	3.9	4.6	5.4	6.5	7.8	45.3	
Somerset N		2.2	2.5	3.3	3.8	4.4	5.3	6.3	37.3	(N of Can Atl. Rwy)
Somerset S	2	2.4	2.7	3.5	4.1	4.7	5.7	6.8	39.5	(S of Can Atl. Rwy)
Waldo	2	2.5	2.8	3.7	4.3	4.9	6.0	7.1	47.2	
Washington		2.4	2.5	3.4	4.0	4.8	5.9	7.1	44.2	
York		2.5	3.0	4.0	4.6	5.4	6.6	7.8	46.7	

NOTES: REVISED 4/10/92 Lew P. Crosby 24-HR DURATION RAINFALL

SOURCES: 24-HR. DATA - TP 40 ANNUAL DATA - CDAN

- **Note 1:** ¹Use *Type II* for Oxford County (with the exception of towns listed below) and Penobscot County (with the exception of towns listed below) and all Main counties not listed below)
- **Note 2:** ²Use *Type III* for York, Cumberland, Androscoggin, Sagadahoc, Kennebec, Waldo, Knox, Piscataquis, Somerset, Franklin, Aroostook, Lincoln, Hancock, Washington Counties; the following Oxford County Towns: Porter, Brownfield, Hiram, Denmark, Oxford, Hebron, Buckfield and Hartford; and the following Penobscot County Towns: Dixmont, Newburgh, Hampden, Bangor, Veazie, Orono, Bradley, Clifton, Eddington, Holden, Brewer, Orrington, Plymouth, Etna, Carmel, Hermon, Glenburn, Old Town, Milford and Greenfield.

March 18, 2013

St.Germain - Collins

Karen Johnson Charter Realty & Development Corporation 800 Westchester Avenue, Suite S-632 Rye Brook, NY 10573

Re: Phase II Environmental Site Assessment St. Patrick's Church 1342 and 1348 Congress Street Portland, Maine St.Germain Collins File No.: 3410.2

Dear Ms. Johnson:

St.Germain Collins is providing you with the results of a Phase II Environmental Site Assessment (ESA) conducted at St. Patrick's Church in Portland, Maine (Site) (see **Figure 1 - Site Location**). This work was in response to our identification of a 3,000-gallon #2 fuel oil underground storage tank (UST) formerly present on the Site. During completion of a Phase I ESA, St.Germain Collins determined that contaminated soil was observed during removal of this UST in 1991, and it therefore was considered a Recognized Environmental Condition (REC). The purpose of the Phase II ESA was to determine if the REC represented a threat to human health or the environment, and in turn could limit Site redevelopment.

Background and Site Description

The Site is located at 1342 and 1348 Congress Street in Portland, Maine in a mixed residential and light commercial neighborhood (see Figure 1). It encompasses approximately 2.2 acres and is occupied by a church and rectory, surrounded by paved driveways, parking, and vegetated areas (see **Figure 2 – Site Plan**).

The church was built on the Site in 1964, and prior to its construction the Site was occupied by a farm and a small residence. The topography of the Site and surrounding area slopes gently to the south and west toward the Fore River. The Site and surrounding area are served by public water and sewer.

According to Maine Geological Survey maps, the Site is underlain by the Presumpscot Formation consisting of silt, clay and minor deposits of sand to unknown depth.

EXPERIENCE YOU CAN RELY ON

WHEN IT COUNTS

Phase II ESA Tasks

On March 4, 2013, St.Germain Collins supervised the advancement of four geoprobe soil borings in the area of the former UST located in a grassed area north of the Rectory (see Figure 2). All borings were continuously sampled and field screened with the Oil in Soil[®] shake test for petroleum hydrocarbons and a photoionization detector (PID) following Maine Department of Environmental Protection (MEDEP) Standard Operating Procedure TS-004 (Compendium of Field Testing of Soil Samples for Gasoline and Fuel Oil). One soil sample was collected for analysis of extractable petroleum hydrocarbons (EPH) by Analytics Environmental Laboratory (Analytics) in Portsmouth, New Hampshire. **Soil Boring Logs** are provided as **Attachment A** and the **Laboratory Report** is included as **Attachment B**.

Results

As shown on the boring logs in Attachment A, site geology consists of interbedded sand, silt, and clay. Boring SB-1 encountered refusal at a depth of 9.5 feet; the other borings did not reach refusal with the deepest boring SB-2 terminated at 24 feet. Groundwater was not encountered in any of the borings, though the low permeability clay may have limited groundwater flow into the borings.

No headspace readings exceeding the MEDEP notification limit of 40 parts per million (ppm) were recorded in the any of the borings; the highest PID reading was 6 ppm at 8 to 9 feet below grade in SB-1. One soil sample was collected from this interval for laboratory analysis of EPH. None of the samples showed the presence of free product based on the field tests.

The analyzed soil sample had detectable levels of three EPH constituents (C9-C18 Aliphatics, C19-C36 Aliphatics, and C11-C22 Aromatics. The detection of the aliphatic and aromatic hydrocarbons confirms that a petroleum release occurred. None of the detected constituents exceeded the 2009 MEDEP Petroleum Remediation Guidelines (PRGs), including the Residential PRG.

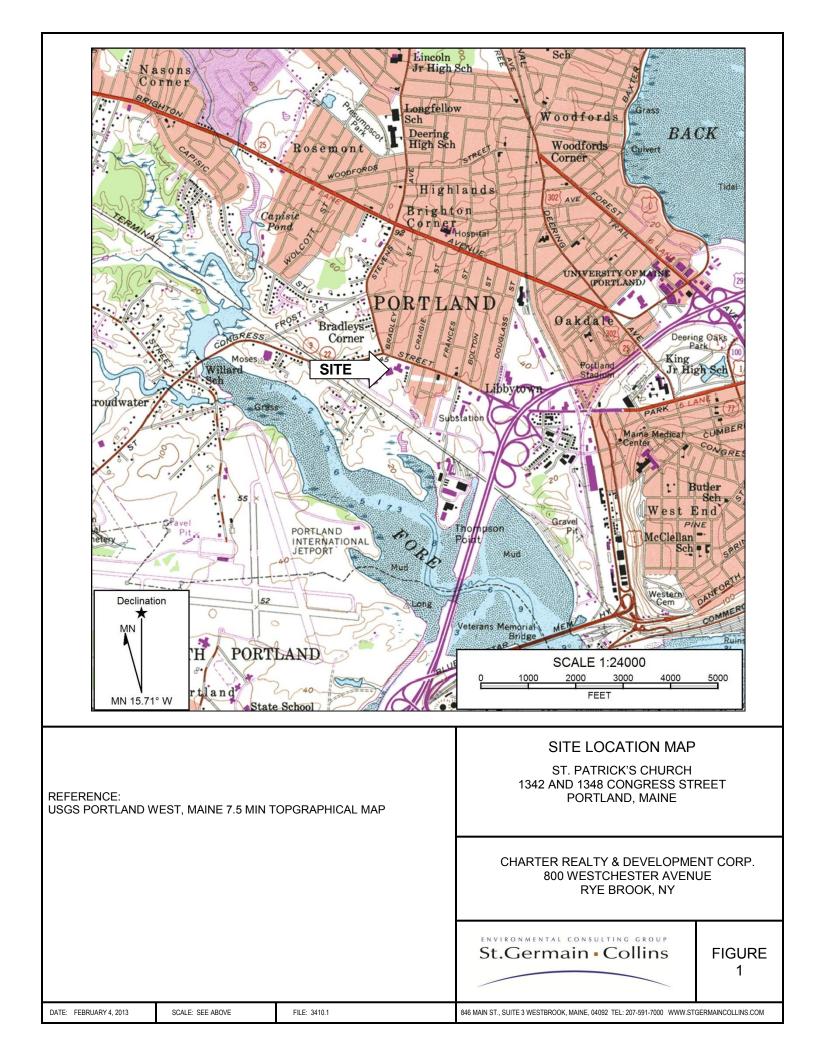
Dibenzo(a,h)anthracene was reported as non-detect, but had a practical quantization limit (PQL) above the Residential and Park User PRGs. This means that it is possible this compound is present about these two PRGs; the PQL is below the Construction/Excavation Worker and Outdoor Commercial Worker PRGs. With this soil being 8 to 9 feet below grade, it does not pose a risk under the Residential or Parker User PRGs unless brought to the surface.

Although the impacted soil at SB-1 does not currently pose a risk, if this soil is brought to the surface it must be managed appropriately. The MEDEP typically allows such soil to be reused on-site, especially if the soil remains below the ground surface. Otherwise, the soil would need to be disposed of or recycled at a MEDEP-approved facility.

Closure

Based upon the March 2013 subsurface investigation and sample results, St.Germain Collins does not recommend any additional actions be taken at this time. If you have any questions, please do not hesitate to contact us at (207) 591-7000.

ST.GERMAIN COLLINS


Brian Bachmann, C.G. Geologist

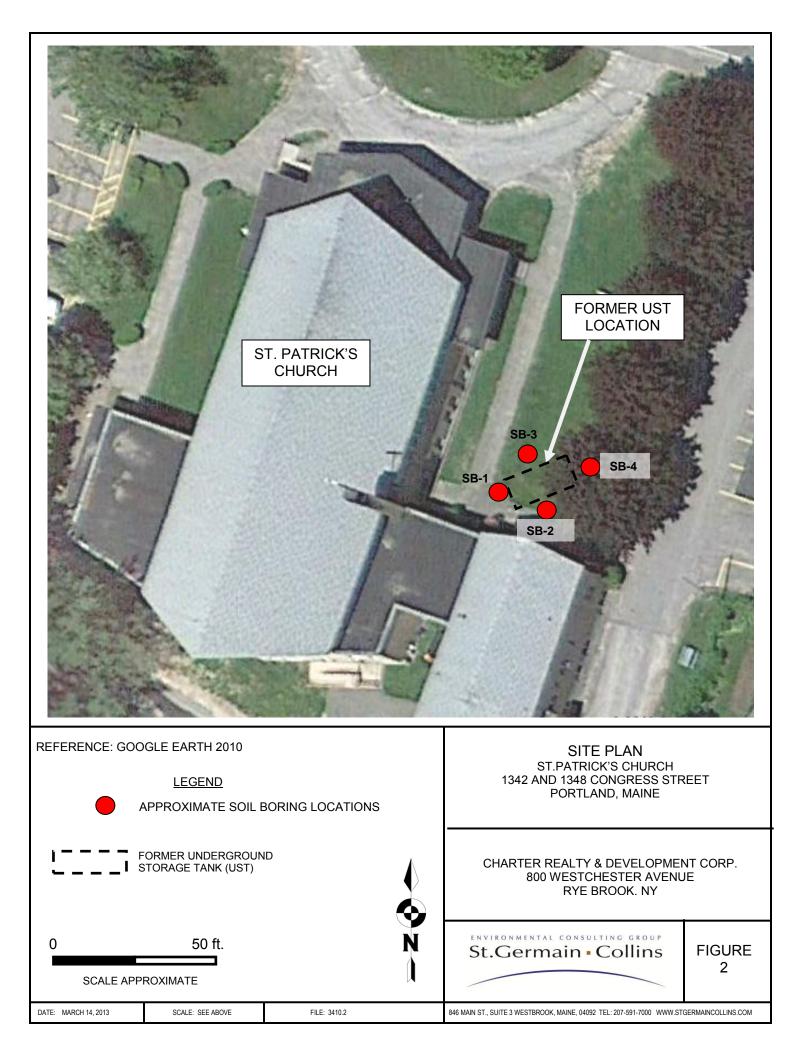

Attachments

Figure 1 - Site Location Figure 2 – Site Plan

Attachment ASoil Boring LogsAttachment BLaboratory Report

OF MAIN ATE BRIAN D. BACHMANN 528 GEOLOGIE

ATTACHMENT A

Soil Boring Logs

8 Vestt ww.s	46 Main	laine 040		Project Number: 3410.2 Date of Installation: 3/4/13 Total Depth of Boring: 9.5 feet Depth to Water: NA Depth of Well: NA	Client/Location: Representative: Drilling Company: Drilling Technology:	Brian Ba EPI	ichman		atricl	ks Church											
8 Vestt ww.s	46 Main prook, M	Street aine 040		Total Depth of Boring: 9.5 feet Depth to Water: NA	Drilling Company: Drilling Technology:	EPI		n													
8 Vestt ww.s	46 Main prook, M	Street aine 040		Depth to Water: NA	Drilling Technology:																
Vesta ww.s	prook, M	laine 040																			
Vesta ww.s	prook, M	laine 040		Depth of Well: NA		Direct pu	ush														
ww.s					Sampler:	Dual Tul	ре														
	tgermaiı)92	Well Screen Interval: NA	Well Screen Type:																
۶۲		ncollins.	com	Well Riser Interval: NA	Well Riser Type:	NA															
Sample number	Sample Interval	Blows	Rec/Driven (in.)	Description		Stratum Stratum Headspace Results (ppm) Saturation Test Result Depth (ft)															
S-1	0-2	NA	31/48	organic SILT with sand, 2.5Y 3/3 da				0													
				loose, slightly plastic, moist	SILT	0.4															
									1												
	0.4							0													
5-2	Z-4							2													
							1.7	Neg	3												
							<u>.</u>			Ŭ											
S-3	4-6	NA	24/48	same as above		CLAY			4	No well											
																			10		
							1.9		5	at this											
						 				location.											
5-4	6-8			clayey SAND, 5Y 5/1 gray, very soft	, very plastic, moist				6												
							4.2	Neg	7												
									1												
2.5	8 10	ΝΛ	40/48	same as above (8.0 to 0.5 interval s	SAND			Q													
5-5	0-10		+0/40																		
					yuroodroonoj	6.0 Neg 9															
				Refusal at 9.5 feet below ground su				12													
	5-1 5-2 5-3 5-4	5-1 0-2 5-2 2-4 5-3 4-6 5-4 6-8 5-5 8-10	S-1 0-2 NA S-2 2-4 S-3 4-6 NA S-4 6-8 S-5 8-10 NA	3-1 0-2 NA 31/48 3-2 2-4	31/48 organic SILT with sand, 2.5Y 3/3 da 0-2 NA 31/48 0-2 NA 31/48 0-2 NA 31/48 0-2 NA 31/48 0-3 2-4 CLAY with gravel, 2.5Y 4/2 dark grastiff, plastic, dry 0-3 4-6 NA 24/48 0-4 6-8 Clayey SAND, 5Y 5/1 gray, very soft 0-5 8-10 NA 40/48 0-4 A A 0-5 8-10 NA 40/48 0-5 9.5 1000000000000000000000000000000000000	3-1 0-2 NA 31/48 organic SILT with sand, 2.5Y 3/3 dark olive brown, loose, slightly plastic, moist 3-2 2-4 CLAY with gravel, 2.5Y 4/2 dark grayish brown, medium stiff, plastic, dry 3-2 2-4 CLAY with gravel, 2.5Y 4/2 dark grayish brown, medium stiff, plastic, dry 3-3 4-6 NA 24/48 3-4 6-8 clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist 3-5 8-10 NA 40/48 3-5 8-10 NA 40/48 3-4 6-8 clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist 3-5 8-10 NA 40/48 3-6 Refusal at 9.5 feet below ground surface. Refusal at 9.5 feet below ground surface.	3-1 0-2 NA 31/48 organic SILT with sand, 2.5Y 3/3 dark olive brown, loose, slightly plastic, moist SILT 3-2 2-4 CLAY with gravel, 2.5Y 4/2 dark grayish brown, medium stiff, plastic, dry CLAY 3-2 2-4 CLAY with gravel, 2.5Y 4/2 dark grayish brown, medium stiff, plastic, dry CLAY 3-3 4-6 NA 24/48 same as above CLAY 3-4 6-8 Clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist CLAY 3-4 6-8 Clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist SAND 3-5 8-10 NA 40/48 same as above (8.0 to 9.5 interval submitted for laboratory analysis of Extractable Petroleum Hydrocarbons) SAND 3-4 - - - - - 3-5 8-10 NA 40/48 same as above (8.0 to 9.5 interval submitted for laboratory analysis of Extractable Petroleum Hydrocarbons) SAND 3-4 - - - - - 3-4 - - - - - 3-4 - - - - - - 3-4 - -<	3-1 0-2 NA 31/48 organic SILT with sand, 2.5Y 3/3 dark olive brown, loose, slightly plastic, moist SILT 0.4 3-2 2-4 CLAY with gravel, 2.5Y 4/2 dark grayish brown, medium stiff, plastic, dry 1.7 3-3 4-6 NA 24/48 same as above 1.7 3-3 4-6 NA 24/48 same as above 1.9 3-4 6-8 Clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist 4.2 3-4 6-8 Clayey SAND, 5Y 5/1 gray, very soft, very plastic, moist 4.2 3-5 8-10 NA 40/48 same as above (8.0 to 9.5 interval submitted for laboratory analysis of Extractable Petroleum Hydrocarbons) 6.0	no no <th< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											

NA = not applicable. NS = not sampled.

ppm = parts per million.

Soil headspace screening completed with a MiniRae 3000 Photoionization Detector (PID). Neg = negative result using Oil in Soil shaker test kit as prescribed by MEDEP SOP TS 004

1				BORING	G AND MONITORING WE	LL LOG			BORIN	IG #:		SB-2		
					Project Number:		Client/Location:				atric	ks Church		
	St.Ge	ermain	Colli	ins	Date of Installation:		Representative:		nchman	n				
				_	Total Depth of Boring:		Drilling Company:							
	_		.		Depth to Water:		Drilling Technology:							
		846 Main		200	Depth of Well:		Sampler:		be					
		brook, M			Well Screen Interval:		Well Screen Type:							
		stgermair	ncollins.		Well Riser Interval:	NA	Well Riser Type:	NA	1					
Depth (ft)	Sample number	Sample Interval	Blows	Rec/Driven (in.)	Description				Headspace Results (ppm)	Saturation Test Result	Depth (ft)	Well Construction		
0	S-1	0-2	NA	48/48	organic SILT, 2.5Y 3/3 da	ark olive bro	wn, medium dense,				0			
					slightly plastic, dry				4.8					
1									_		1			
2	S-2	2.4			aama aa abaya			SILT			2			
2	3-2	2-4	1		same as above									
3					ł						4.8	Neg	3	
_					t									
4	S-3	4-6	NA	48/48	clayey SAND, 2.5Y 5/3 lig	ght olive bro	wn, stiff, plastic, dry				4			
										3.8				
5									0.0		5			
6	6.4	6.0			aama aa ahaya			SAND			6			
6	S-4	6-8			same as above						6			
7									3.2	Neg	7			
					+									
8	S-5	8-10	NA	48/48	CLAY,2.5Y 4/2 dark gray	ish brown, s	stiff, very plastic, dry				8			
					, , ,	,	, , , , ,		1.8					
9									1.0		9			
10	0.0	10.10										10		
10	S-6	10-12			same as above						10			
11									2.3		11			
												No well		
12	S-7	12-14	NA	48/48	CLAY, 2.5Y 4/2 dark grav	vish brown.	soft, verv plastic, drv				12	installed		
					CLAY, 2.5Y 4/2 dark grayish brown, soft, very plastic, dry							at this location.		
13											13			
								CLAY	CLAY					
14	S-8	14-16			CLAY, 2.5Y 5/0 gray, ver	y soft, very	plastic, moist				14			
15				ł	ł						15			
15				1	ł						15			
16	S-9	16-18	NA	48/48	same as above						16	l		
]									
17					1						17			
10	0 40	10.00							NIA	NI A	10			
18	S-10	18-20	1		same as above				NA	NA	18			
19			1		ł						19			
					+									
20	S-11	20-22	NA	48/48	clayey SAND, 2.5Y 3/0 v	ery dark gra	y, very soft, very		1		20			
					plastic, moist									
21					ļ						21			
	0.40	00.04			ł			CANE						
22	S-12	22-24			ł			SAND			22			
23				1	+						23			
20					ł						20			
24					Terminated boring at 24.0	0 feet below	ground surface				24			
Not							· · · · · ·				. · ·			

NA = not applicable.

NS = not sampled.

ppm = parts per million. Soil headspace screening completed with a MiniRae 3000 Photoionization Detector (PID). Neg = negative result using Oil in Soil shaker test kit as prescribed by MEDEP Standard Operating Procedure TS 004.

				BORING	G AND MONITORING WELL	LOG			BORIN	IG #:		SB-3								
	Project Number: 3410.2 Client/Location:								Realty,	St. P	atric	ks Church								
St.Germain Collins									: Brian Bachmann											
					Total Depth of Boring: 12.0 Drilling Company:															
					Depth to Water: NA		Drilling Technology:	Direct pu	ısh											
	8	346 Main	Street		Depth of Well: NA	4	Sampler:													
	West	brook, M	laine 040	092	Well Screen Interval: NA	4	Well Screen Type:	NA												
	www.s	stgermair	ncollins.	com	Well Riser Interval: NA	4	Well Riser Type:	NA												
Depth (ft)	Sample number	Sample Interval	Blows	Rec/Driven (in.)	Desc	cription		Stratum Stratum Headspace Results (ppm) Saturation Test Result Depth (ft)				Well Construction								
0	S-1	0-2	NA	48/48	organic SILT, 2.5Y 3/3 dark	olive brow	wn, medium dense,				0									
					slightly plastic, dry										1.7					
1											1									
~	0.0	2.4						SILT			~									
2	S-2	2-4			same as above						2									
3									1.8	Neg	3									
4	S-3	4-6	NA	24/48	clayey SAND, 2.5Y 5/3 light	olive brow	wn. stiff. plastic. drv				4									
					,.,.,,,,		,, p,,		1.5	Nog										
5									1.5	Neg	5	No well								
								SAND	SAND		installe	installed								
6	S-4	6-8			same as above					SAND	SAND	SAND	SAND	SAND	UAND	UAND			6	at this
_													2.9		_	location.				
7												7								
8	S-5	8-10	NA	40/48	CLAY,2.5Y 4/2 dark gravish	brown a	tiff very plastic dry	<u> </u>			8									
0	0-0	0-10		-+0/-+0	ULAT, 2.01 4/2 UNIN GIN	DIOWII, S	un, very plastic, dry													
9									3.6	Neg	9									
					1															
10	S-6	10-12			same as above			CLAY			10									
11															2.8		11			
10					T						10									
12	es:				Terminated boring at 12.0 fe	et below	ground surface				12									

NA = not applicable.

NS = not sampled.

ppm = parts per million.

Soil headspace screening completed with a MiniRae 3000 Photoionization Detector (PID). Neg = negative result using Oil in Soil shaker test kit as prescribed by MEDEP Standard Operating Procedure TS 004.

				BORING	AND MONITORING WELL LOG			BORIN	IG #:		SB-4										
	Project Number: 3410.2 Client/Location:										ks Church										
St.Germain Collins					Date of Installation: 3/4/13	: Brian Bachmann															
					Total Depth of Boring: 12.0	: EPI															
					Depth to Water: NA	Direct pu	ush														
	8	346 Main	Street		Depth of Well: NA	Dual Tu															
	West	brook, M	laine 040	092	Well Screen Interval: NA	Well Screen Type:	NA														
	www.s	stgermair	ncollins.	com	Well Riser Interval: NA	Well Riser Type:	NA														
Depth (ft)	Sample number	Sample Interval	Blows	Rec/Driven (in.)	Descriptio		Stratum Stratum Headspace Results (ppm) Saturation Test Result Depth (ft)				Well Construction										
0	S-1	0-2	NA	48/48	organic SILT, 2.5Y 3/3 dark olive b	rown, medium dense,				0											
					slightly plastic, dry			1.1													
1										1											
2	S-2	2-4					SILT			2											
2	3-2	Z-4			same as above																
3								1.5	Neg	3											
										-											
4	S-3	4-6	NA	24/48	clayey SAND, 2.5Y 5/3 light olive b	rown, stiff, plastic, dry	[4											
								1.0													
5								1.0		5	No well										
							SAND	SAND	SAND	SAND	SAND	SAND	SAND			installed					
6	S-4	6-8			same as above								-		-	-				6	at this
7										2.4	2.4	2.4	Neg	7	location.						
										1											
8	S-5	8-10	NA	40/48	CLAY,2.5Y 4/2 dark grayish brown	stiff very plastic dry	<u> </u>			8											
Ť		0.0		10,10						Ť											
9								0.9		9											
10	S-6	10-12			same as above		CLAY			10											
11								0.9	Neg	11											
10					Tompingtod begins at 40.0 for the sta		12														
12 Not					Terminated boring at 12.0 feet belo	w ground surface				12											

NA = not applicable.

NS = not sampled.

ppm = parts per million.

Soil headspace screening completed with a MiniRae 3000 Photoionization Detector (PID). Neg = negative result using Oil in Soil shaker test kit as prescribed by MEDEP Standard Operating Procedure TS 004.