Form # P 04	DISPLAY						OF WOF	RK
Please Read Application An Notes, If Any,	d					Dormit N		
Attached						Permit N		1
I his is to certify	y that <u>SCALI</u>	HELEN M &	WIL MEE	BRUCE ITS /property	er			
has permission	to Replace	existing additi	on (1) 29) w/	le energeneticien	t cture (24	<u>'8" x 20') - re</u>	elocating kitch	en and addin
AT 24 Bradley	St					A019001		
the constr this depar	ruction, main truction, main	ntenance a	and e of l	o of insp. on n	nances o uctures	, and of t	he applic	ation on file in
Apply to Pu and grade such inform	ublic Works for if nature of wor nation.	street line k requires	en and ore thi red of UR No	en permission p silding of ult the portuine closed	orod d bere s d-in 4 ED	A certif procure ing or pa	icate of occi d by owner t art thereof is	upancy must be before this build- occupied.
OTHE		HOVALSULU	_					
Fire Dept.								
Health Dept		- 1 0000						
Appeal Board	JUN	- 4 2008			J/I			20
Other					1M	mis n.	Mark	le 6/4/08
	CITY OF	PORTLAN			THIS CAR	Director - E	Building & Inspection	Services / '

City of Portland, I	Aaine - Building or Use	e Permit Applicat	tion Pe	rmit No:	Issue Date:		CBL:			
889 Congress Street,	04101 Tel: (207) 874-870	03, Fax: (207) 874-8	3716	08-0511			188 A0	9001		
Location of Construction:	Owner Name:		Owne	er Address:			Phone:			
24 Bradley St	SCALIA HE	LEN M & WILLIAM	1 24 E	BRADLEY ST						
Business Name:	Contractor Na	ne:	Conti	ractor Address:			Phone			
	property own	ner								
Lessee/Buyer's Name	Phone:		Perm Ade	it Type: ditions - Dwell	lings			Zone: P-3		
Past Use:	Proposed Use:		Perm	nit Fee:	Cost of Work	CI	EO District:]		
Single Family Home	y Home - Replace		\$810.00	\$79,000	0.00	3	1			
existing additio efficient structu and adding ³ / ₄ b new entry –		tion w/larger energy cture relocating kitche 4 bathroom & adding 1 Story cdelikon	en FIRE	E DEPT:	Approved I Denied	NSPECT	RCZ	Type: 5B		
Proposed Project Descript Replace existing addit (24'8" x 29 ') - relocati	efficient structure room & adding new	Signa	ature: ESTRIAN ACTIV	VITIES DISTR	Signature:	In 6/	4/08			
entry 24'			Actio	Action: Approved Approved w/Conditions Denied						
			Signa	ature:		D	ate:			
Permit Taken By:	Date Applied For:			Zoning	Approval					
Idobson	05/15/2008									
1. This permit applic	ation does not preclude the	Special Zone or R	eviews	Zonin	g Appeal		Historic Press	ervation		
Applicant(s) from Federal Rules.	meeting applicable State and	Shoreland					Not in District or Landma			
2. Building permits of septic or electrica	lo not include plumbing, work.	Wetland		Miscellaneous			Does Not Require Review			
 Building permits a within six (6) mor 	re void if work is not started ths of the date of issuance.	Flood Zone		Conditional Use		Ľ.	[] Requires Review			
False information permit and stop al	may invalidate a building l work	Subdivision		Interpreta	ition		Approved			
		Site Plan			1		Approved w/C	Conditions		
PER	MIT ISSUED	Maj Minor No OK w Currel, His	MM []	Denied			Denied APM			
	V - 4 2003	Date: 5/28/08	Atu	Date:	<u> </u>	Date:				

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

SIGNATURE OF APPLICANT	ADDRESS	DATE	PHONE
RESPONSIBLE PERSON IN CHARGE OF WORK, TITLE		DATE	PHONE

General Building Permit Application

If you or the property owner owes real estate or personal property taxes or user charges on any property within the City, payment arrangements must be made before permits of any kind are accepted.

Location/Address of Construction: 24	Bradley St.							
Total Square Footage of Proposed Structure/A	rea Square Footage of Lot							
Tax Assessor's Chart, Block & Lot	Applicant *must be owner, Lessee or Buye	er* Telephone:						
Chart# . Block# Lot#	Name William E. Bruch	e 207.838-7846						
100 A. 10 0A	Address 24 Bradley S							
188 - 7 - 19-20	City, State & Zip Port and Me. o.	4102						
Lessee/DBA (If Applicable)	Owner (if different from Applicant)	Cost Of 70 mat						
	Name	Work: \$_19,000						
	Address	C of O Fee: \$						
	City, State & Zip	Total Fee: \$_8/0						
Current legal use (i.e. single family)	iste Fanily							
If vacant, what was the previous use?	1							
Proposed Specific use:	Family							
Is property part of a subdivision?	ff ves. please name	DIAG MA LA						
Project description: Replace exis	ting gaartion with	Larger energy						
efficient offacture re	locating Risonen aud	a a a a ing						
3/4 Bathroom		,						
Contractor's name: 4/1/1/an. E. Bruce								
Address: 24 Bradley St								
City, State & Zip_Fattald , M	<u>e 04/02</u>	Telephone: <u>207858-784</u> 6						
Who should we contact when the permit is rea	dy William E. Bruch	Telephone: 207858.7840						
Mailing address: 24 Stadley SI	. Portland, Me.							

Please submit all of the information outlined on the applicable Checklist. Failure to do so will result in the automatic denial of your permit.

In order to be sure the City fully understands the full scope of the project, the Planning and Development Department may request additional information prior to the issuance of a permit. For further information or to download copies of this form and other applications visit the Inspections Division on-line at <u>www.portlandmaine.gov</u>, or stop by the Inspections Division office, room 315 City Hall or call 874-8703.

I hereby certify that I am the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized by the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued, I certify that the Code Official's authorized representative shall have the authority to enter all areas covered by this permit at any reasonable hour to enforce the provisions of the codes applicable to this permit.

Signature: Date: -00

This is not a permit; you may not commence ANY work until the permit is issue

City of Portland, Maine - Buil	ding or Use Permi	t		Permit No:	Date Applied For:	CBL:
389 Congress Street, 04101 Tel: (2	207) 874-8703, Fax: ((207) 87	4 -8 716	08-0511	05/15/2008	188 A019001
Location of Construction:	Owner Name:			Owner Address:		Phone:
24 Bradley St	SCALIA HELEN M &	& WILLI	AM E	24 BRADLEY ST		
Business Name:	Contractor Name:			Contractor Address:		Phone
	property owner					
Lessee/Buyer's Name	Phone:]	Permit Type:		
				Additions - Dwell	ings	
Proposed Use:			Propose	d Project Description:		
Single Family Home - Replace existin	g addition w/larger ene	ergy	Replac	e existing addition	(10' x 29) w/larger e	energy efficient one
efficient one story addition relocating	kitchen and adding ³ / ₄		story a	ddition (24'8" x 29	') - relocating kitcher	n and adding ³ / ₄
bathroom & adding new entry			bathro	om & adding new e	entry	
Dept: Zoning Status: A	pproved with Condition	ns Re	viewer:	Ann Machado	Approval D	ate: 05/28/2008
Note:						Ok to Issue: 🗹
 As discussed during the review pro- required setbacks must be establis located by a surveyor. 	ocess, the property mus hed. Due to the proxim	t be clean ity of the	rly ident setback	ified prior to pourin s of the proposed a	ng concrete and com ddition, it may be rea	pliance with the quired to be
 This property shall remain a single approval. 	e family dwelling. Any	change o	f use sha	all require a separat	e permit application	for review and
 This permit is being approved on twork. 	the basis of plans submi	itted. An	iy deviat	tions shall require a	separate approval b	efore starting that
Dept: Building Status: A	pproved with Condition	ns Re	viewer:	Tom Markley	Approval D	ate: 06/04/2008
Note:						Ok to Issue: 🗹
 Separate permits are required for a Separate plans may need to be sub 	any electrical, plumbing mitted for approval as	, or HVA a part of	AC syste this proo	ems. cess.		
2) Application approval based upon and approval prior to work.	information provided by	y applica	nt. Any	deviation from app	roved plans requires	separate review

Comments:

5/20/2008-amachado: Spoke to the owner. Don't know dimensions of new side entry porch and it is not shown on the plot plan.

5/23/2008-gg: Owner added dimensions of side entry to plot plan, gave back to Ann. /gg

5/23/2008-amachado: Called owner. Need to know the front setback and more specific on the dimensions of the side entry.

5/28/2008-amachado: 3333333

BUILDING PERMIT INSPECTION PROCEDURES

Please call 874-8703 or 874-8693 (ONLY) to schedule your inspections as agreed upon Permits expire in 6 months, if the project is not started or ceases for 6 months.

The Owner or their designee is required to notify the inspections office for the following inspections and provide adequate notice. Notice must be called in 48-72 hours in advance in order to schedule an inspection:

By initializing at each inspection time, you are agreeing that you understand the inspection procedure and additional fees from a "Stop Work Order" and "Stop Work Order Release" will be incurred if the procedure is not followed as stated below.

A Pre-construction Meeting will take place upon receipt of your building permit.

- X Footing/Building Location Inspection: Prior to pouring concrete or setting precast piers
- X Foundation Inspection: Prior to placing ANY backfill for below grade occupiable space
- X Framing/Rough Plumbing/Electrical: Prior to Any Insulating or drywalling
- **X** Final inspection required at completion of work.

Certificate of Occupancy is not required for certain projects. Your inspector can advise you if your project requires a Certificate of Occupancy. All projects <u>DO</u> require a final inspection.

If any of the inspections do not occur, the project cannot go on to the next phase, REGARDLESS OF THE NOTICE OR CIRCUMSTANCES.

CERIFICATE OF OCCUPANICES MUST BE ISSUED AND PAID FOR, BEFORE THE SPACE MAY BE OCCUPIED.

Signature of Applicant/Designee

Date

Signature of Inspections Official

Date

WIND	OW TYPES	<u>S</u>			
symbol	mfr.	model #	type	quanity	rough openings (w x h)
$\langle \mathbf{A} \rangle$	ANDERSEN	244GW4020	Gliding Window	(9)	(4'-0" x 2'-0")
B	ANDERSEN	244GW4016	Gliding Window	(1)	(4'-0" x 1'-6")
$\langle c \rangle$	ANDERSEN	CXW15	Inoperable Casement	(2)	(3'-0 1/2" x 5'-0 3/8")
$\langle \mathbf{D} \rangle$	ANDERSEN	CN16	Inoperable Casement	(3)	(1'-9" x 6'-0 3/8")
102	ANDERSEN	FWH2968AL	Frenchwood Hinged Patio Door	(1)	(2'-9" x 6'-8")
(10)	Prose	810123/	Entry Door .	(l)	2'6" X 6'6"

ADDITION TO: SCALIA / BRUCE RESIDENCE 24 BRADLEY STREET PORTLAND, ME

.

DAVID HEMBRE-ARCHITECT, INC. 45 CASCO STREET PORTLAND, ME (207) 699-2688

DHA PROJ. # 20706

Job	Truss	Truss Type	Qty	Ply	HILLSIDE/BRUCE/J	IORDAN	
531351	301	HIPSYSGIRDER	1	2	lah Dafaranan (anti-	1)	
Wood Structures,	Inc., Biddeford, ME 0400		7.000 s May 29	2007 Mi	Tek Industries, Inc.	Tue Apr 29 10:19:3	37 2008 Page 1
₁ 1-0-0	5-8-13 9	-3-0 14-6-0	19-9-0		23-3-3	29-0-0	30-0-0
1-0-0	5-8-13 3	-6-3 5-3-0	5-3-0		3-6-3	5-8-13	1-0-0
							Scale = 1:54.6
			PRELIM	INARY	PLOT ONLY		
	4.00 [42]	5x10 MT18H ≍	3x8 =	5×10 MT	18H≈		
	4.00 12	4 14	5	15 6			
	1.5x4 ≈ 3 13				1.5x4 ≠ 716		Ī
4-15	×				8		-4-15
e 91 2							3 6 8
	04/						
5X 14 M11 1		12 10×10 —	11 8	10 10×10		5X 14 IVI 1	
				10210			
L	9-3-0	14-6-0	19-9-0		29-0)-0	
	9-3-0	5-3-0	5-3-0	·	9-3-	-0	·
Plate Offsets (X,Y	<u>/): [2:0-5-5,0-3-0], [4:0-5-</u>	<u>-12,0-2-4], [6:0-5-12,0-2-4],</u>	[8:0-5-5,0-3-0], [11:0-	<u>5-0,0-5-0</u>	<u></u>		
TCLL 60.(0 SPACING Plates increase	2-0-0 CSI 1.15 TC 0.96	DEFL Vert(LL) -0.	in (loc) 62 10-11) l/defl L/d >556 240	PLATES MT20	GRIP 197/144
(Roof Snow=60.0 TCDL 10.() Lumber Increase	e 1.15 BC 0.70	Vert(TL) -0.	92 10-11	>371 180	MT20H	148/108
BCLL 0.0 BCDL 10.0	Code IRC2006/1	PI2002 (Matrix)		22 0) 11/a 11/a	Weight: 271	lb
LUMBER	·	<u>-</u>	BRACING				
TOP CHORD 2> BOT CHORD 2>	X 4 SPF 2400F 2.0E X 6 SYP M 23		TOP CHORD	Struc purlin	tural wood sheathin Is.	ig directly applied o	or 2-2-14 oc
WEBS 2)	K 4 SPF 1650F 1.5E		BOT CHORD	Rigid	ceiling directly appli	ied or 6-0-0 oc bra	cing.
REACTIONS (Ib/	/size) 2=6147/0-5-8, 8=	6147/0-5-8					
Ma Ma	ax Uplift2=-2368(LC 5) ax Uplift2=-2368(LC 5), 8:	=-2368(LC 6)					
Ma	ax Grav2=6439(LC 17), 8	=6439(LC 17)					
FORCES (lb) - M TOP CHORD 1	laximum Compression/Ma -2=0/78. 2-3=-17316/649	aximum Tension 97, 3-13=-16590/6279, 4-1;	3=-16466/6292.4-14=	-15914/6	6099		
5	5-14=-15913/6099, 5-15= 8 = 17316/6498 8 9-0/2	-15899/6099, 6-15=-15900	/6099, 6-16=-16466/6	292, 7-1	6=-16539/6280,		
3OT CHORD 2	2-12=-6122/16210, 11-12	=-6765/18489, 10-11=-676	5/18489, 8-10=-6020	/16210			
NEBS 3 6	3-12=-1050/305, 4-12=-15 3-10=-1516/4245, 7-10=-1	516/4245, 5-12=-3013/113 1333/306	7, 5-11=-512/1389, 5-	10=-3013	3/1137,		
N OTES (16)							
1) 2-ply truss to be Top chords con	e connected together with	10d (0.148"x3") nails as fol 1 row at $0-9-0$ oc	lows:				
Bottom chords (connected as follows: 2 X 4	6 - 2 rows at 0-9-0 oc.					
X 4 - 1 row at 0-	d as follows: 2 X 4 - 1 row -4-0 oc.	/ at 0-9-0 oc, Except memb	er 12-4 2 X 4 - 1 row a	t 0-4-0 oc	c, member 10-6 2		
 All loads are cor CASE(S) section otherwise indication 	nsidered equally applied to n. Ply to ply connections l	o all plies, except if noted as have been provided to distri	s front (F) or back (B) f ibute only loads noted	ace in the as (F) or	e LOAD (B), unless		
	ited						
3) Wind: ASCE 7-(ited. 05; 120mph; h=35ft; TCD	L=6.0psf; BCDL=6.0psf; C	ategory II; Exp C; encl	osed; MV	VFRS gable end		
3) Wind: ASCE 7-(zone; cantilever) TCLL: ASCE 7-(nted. 05; 120mph; h=35ft; TCD left and right exposed ; L 05; Pf=60.0 psf (flat roof s	L=6.0psf; BCDL=6.0psf; C umber DOL=1.60 plate grip snow); Category II; Exp C;	ategory II; Exp C; encl o DOL=1.60. Fully Exp.; Ct=1.1, Lu:	osed; MV =50-0-0	VFRS gable end		
 Wind: ASCE 7-(zone; cantilever TCLL: ASCE 7-() Unbalanced sno This truss has b 	ated. 05; 120mph; h=35ft; TCD left and right exposed; L 05; Pf=60.0 psf (flat roof s ow loads have been consi een designed for greater	L=6.0psf; BCDL=6.0psf; C Lumber DOL=1.60 plate grip snow); Category II; Exp C; dered for this design. of min roof live load of 16.0	ategory II; Exp C; encl b DOL=1.60. Fully Exp.; Ct=1.1, Lu- psf or 1.00 times flat r	osed; MV =50-0-0 oof load o	VFRS gable end		
 Wind: ASCE 7-(zone; cantilever TCLL: ASCE 7-() Unbalanced snc This truss has be overhangs non-coverhangs non-coverh	ated. 05; 120mph; h=35ft; TCD 1eft and right exposed; L 05; Pf=60.0 psf (flat roof some bow loads have been consi- een designed for greater concurrent with other live the drainage to prevent weth	L=6.0psf; BCDL=6.0psf; C umber DOL=1.60 plate grip snow); Category II; Exp C; dered for this design. of min roof live load of 16.0 loads. ier ponding	ategory II; Exp C; encl o DOL=1.60. Fully Exp.; Ct=1.1, Lu psf or 1.00 times flat r	osed; MV =50-0-0 oof load o	WFRS gable end of 60.0 psf on		

Jop	Truss	Truss Type	Qty	Ply	HILLSIDE/BRUCE/JORDAN
531351	301	HIPSYSGIRDER	1	2	Job Reference (ontional)
Wood Structures, Inc.,	Biddeford, ME 04005	7.000	s May 29	2007 M	iTek Industries, Inc. Tue Apr 29 10:19:37 2008 Page 2

Wood Structures, Inc., Biddeford, ME 04005

NOTES (16)

9) All plates are MT20 plates unless otherwise indicated.

10) This truss requires plate inspection per the Tooth Count Method when this truss is chosen for quality assurance inspection.

11)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2368 lb uplift at joint 2 and 2368 lb uplift at joint 8.

13) This truss is designed in accordance with the 2006 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Girder carries hip end with 9-3-0 right side setback, 9-3-0 left side setback, and 10-0-0 end setback.

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2097 lb down and 1048 lb up at 19-9-0. and 2097 Ib down and 1048 lb up at 9-3-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 16) Drawing prepared exclusively for manufacturing by Wood Structures Inc.

LOAD CASE(S) Standard

1) Snow: Lurriber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-140, 4-6=-237(F=-97), 6-9=-140, 2-12=-20, 10-12=-233(F=-213), 8-10=-20

Concentrated Loads (lb) Vert: 12=-2097(F) 10=-2097(F)

Job	Truss	Truss Type		Qty	Ply	HILLSIDE/BRUCE/JORDAN
531351	302	MONO GIRDER		2	1	
Wood Structures	s, Inc., Biddeford, ME	04005	7.000 s	May 29	2007 N	Job Reference (optional) /iTek Industries, Inc. Tue Apr 29 10:19:40 2008 Page
				-		
DAD CASE(S) 1) Snow: Lumbe Uniform Load Vert: Trapezoidal L Vert:) Standard er Increase=1.15, Pla ds (plf) 1-7=-140 .oads (plf) 2=-13(F=3, B=3)-to-	ate Increase=1.15 5=-518(F=-249, B=-249)				

Job	Truss	Truss Type		Qty	Ply	HILLSIDE/BRUC	CE/JORDAN
531351	001	MONO TRUSS		7	1		
Wood Structures, Inc.	, Biddeford, ME 04005		7.000 s	May 29	2007 M	Job Reference (ITek Industries, In	optional) nc. Tue Apr 29 10:19:21 2008 Pao
11) Drawing prepare	d exclusively for manufa	cturing by Wood Structures Inc					
T) Drawing prepare			•				
OAD CASE(S) Star	ndard						
			•				

Job	Truss	Truss T	уре	Qty	Ply	HILLSIDE/BRUCE/	JORDAN
531351	002	JACK		4	1	lab Deferrer (anal)
Wood Structures,	Inc., Biddeford, ME	04005		7.000 s May 2	9 2007 N	JOD Reference (opti ITek Industries, Inc.	onal) Tue Apr 29 10:19:23 2008 Page 1
	-1-0-0		4-3-9			7-1-1	5
	1-0-0	··	4-3-9			2-10-	6
							Scale = 1:15 1.5x4
J							4
	PRELIMIN	ARY PLOT C	DNLY			9	
			4.00 1	2	1.5x4 <>		
				3			
б ж			o		\sum	\langle	
2-1			7		1		
		6					
	2						
3-15							
1 a							/
							5
	2.5x6 =						3x6 =
	<u>├</u>			7-1-15			
			7	7-1-15	—		
TCLL 60.0	0 SPACING Plates incre	2-0-0 ase 1.15	CSI TC 0.37	DEFL Vert(LL) -0	in (lo 1.12 2:	c) I/defi L/d -5 >686 240	PLATES GRIP MT20 197/144
(Roof Snow=60.0 TCDL 10.0	0 Lumber Incr	ease 1.15	BC 0.41	Vert(TL) -0	.30 2	-5 >274 180	
BCLL 0.0 BCDL 10.0	$\begin{bmatrix} 0 & * \\ 0 & \\ \end{bmatrix}$ Code IRC20	06/TPI2002	(Matrix)	102(12)	.01		Weight: 24 lb
LUMBER				BRACING			
BOT CHORD 22	X 4 SPF 1650F 1.5E X 4 SPF 1650F 1.5E			TOP CHORD	Stru purli	ctural wood sheathi ns, except end vert	ng directly applied or 6-0-0 oc icals.
WEBS 22	X 4 SPF 1650F 1.5E			BOT CHORD	Rigi	d ceiling directly app	lied or 10-0-0 oc bracing.
REACTIONS (Ib	/size) 5=527/Mecha ax Horz 2=222(LC 6)	anical, 2=731/0	-5-8				
Ma	ax Uplift5=-209(LC 6)	, 2=-290(LC 8)					
		2-009(LC 2)					
TOP CHORD	1-2=0/41, 2-6=-957/3	n/maximum Te 23, 6-7=-867/3	nsion 25, 7-8=-864/325, 3-	-8=-821/334, 3-9=	103/0,	4-9=-43/42,	
BOT CHORD 2	4-5=-185/125 2-5=-488/813						
WEBS 3	3-5=-901/541						
NOTES (11) 1) Wind: ASCE 7-	-05: 120mph: h=35ff:	TCDI =6 0psf: I	BCDI =6 0nsf: Cater	ion/II: Evn C: en	olosod: N	M/ERS gable	
end zone and (C-C Exterior(2) -1-0-0	to 2-0-0, Interio	or(1) 2-0-0 to 2-9-4, E	Exterior(2) 2-9-4 to	o 7-0-3 z	one; cantilever left	
and for MWFR	S for reactions specif	ed.	JL=1.60. This truss	is designed for C-	C for me	mbers and forces,	
 TCLL: ASCE 7- Unbalanced sni 	-05; Pf=60.0 psf (flat ow loads have been o	roof snow); Cat considered for th	egory II; Exp C; Fully nis design.	y Exp.; Ct=1.1			
 This truss has to overhangs non- 	peen designed for gre -concurrent with othe	ater of min roof	live load of 16.0 psf	or 1.00 times flat	roof load	of 60.0 psf on	
5) This truss has b	peen designed for a 1	0.0 psf bottom (chord live load nonco	oncurrent with any	other liv	e loads.	
inspection.				no truos is choser	i ui qual		
by 1-0-0 wide w	ill fit between the bott	iive load of 20.0 om chord and a	pst on the bottom ch ny other members.	nord in all areas w	here a re	ectangle 3-6-0 tall	
8) Refer to girder(9) Provide mechar	s) for truss to truss co nical connection (by c	nnections. thers) of truss t	o bearing plate capa	ble of withstandin	g 209 ib	uplift at ioint 5 and	
290 lb uplift at jo 10) This trues is de	oint 2.	e with the 2006	International Decide	Intial Code socia	DE DE00	11.1 and	
R802.10.2 and	referenced standard	ANSI/TPI 1.	Mood Official Colle		13 1302.	11. I allU	
Continued on page	e 2	anulacturing by	wood Structures Ind	C			

381 02 JACK 4 1 Joh Roternores (pojoral) xod Structures, Inc., Eledeford, ME 04005 7.000 a May 29 2007 MTek Industries, Inc. Tue Apr 29 10:19:23 2008 Pai AD CASE(\$) Standard	lob	Truss	Truss Type	Qty		Ply	HILLSIDE/BRUCE/JORDAN
ood Structures, Inc., Biddeford, ME 04005 7.000 s May 29 2007 MTek Industries, Inc. Tue Apr 29 10:19:23 2008 Pat AD CASE(S) Standard	531351	002	JACK	4	[1	
AD CASE(S) Slandard	Wood Structures	Ino Biddoford ME	24005	7.000 a May	. 20	2007 M	Job Reference (optional)
AD CASE(S) Standard	wood Structures,	INC., BIDDEIORU, ME	J4005	7.000 S May	29.	2007 100	Trek muusules, mc. Tue Api 29 10.19.29 2000 Fage 2
		Standard					
	LOAD CASE(S)	Stanuaru					
							· · · · · · · · · · · · · · · · · · ·

Job	Truss	Truss T	уре	Q	ty	Ply	HILLSIDE/BRUCE/	IORDAN	
531351	005	HIPSYS	6	8		1			
Wood Structures, In	c., Biddeford, ME 0	4005		7.000 s M	av 29	2007 M	Job Reference (option iTek Industries Inc.	onal) Tue Anr 29 10:19:	31 2008 Page 1
	,				.,	2007 10		1007012010.10.	01 2000 1 ugo 1
<u>1-0-0</u>	5-8-13	9-3-0	14-6-0	1	<u>9-9-0</u>		23-3-3	29-0-0	30-0-0
1-0-0	5-8-13	3-6-3	5-3-0	Į	5-3-0		3-6-3	5-8-13	1-0-0 Scale = 1:53.4
						-, ,,,,,,			
					PH	LIMIN	IARY PLOT ON	LY	
		5x10 M	Г18H=	2-4-		5x10	MT18H=		
	4.00 12	4	16 17	5 18		19	6		
1	2x4 -						2x4 =	-	I
Ω	14 ³ ¹⁵			\frown		Ţ	7	20 21	2
13					\geq			22	3-4-1
1 2 F 1 2						\searrow			15 6 8
4x12 ⇒		1	2	11			10	4	ix12 <=
		Зx	3 =	8x8 WB=		3)	a ==		
<u> </u>	9-3-0	+	1	9-9-0			+2	9-0-0	
	9-3-0		1	0-6-0				9-3-0	
Plate Offsets (X,Y):	[2:0-5-5,0-2-0], [4:	0-5-0,0-1-13],	<u>6:0-5-0,0-1-13], [8:0</u>	-5-5,0-2-0]					
LOADING (psf)	SPACING	2-0-0	CSI	DEFL	-	in (lo	c) l/defl L/d	PLATES	GRIP
(Roof Snow=60.0)	Plates Increa	se 1.15 ase 1.15	TC 0.79 BC 0.77	Vert(LL) Vert(TL)	-0 -0	44 10-1 70 10-1	2 >781 240 2 >487 180	MT20 MT18H	197/144 197/144
TCDL 10.0	* Rep Stress In	nor YES	WB 0.49	Horz(TL)	0.	17	8 n/a n/a		
BCDL 10.0	Code IRC20	06/TPI2002	(Matrix)					Weight: 117	b
				BRACING	i	~			
BOT CHORD 2X	SPF 2100F 1.8E			TOP CHC	RD	purli	ctural wood sneathir ns.	ig directly applied	or 2-2-0 oc
WEBS 2X4	SPF 1650F 1.5E			BOT CHC	RD	Rigio	d ceiling directly appl	lied or 6-8-9 oc bra	acing.
REACTIONS (lb/siz	ze) 2=2455/0-5-8,	8=2455/0-5-8							
Max	Horz 2=103(LC 6)	8876(IC7)							
Max	Grav 2=2747(LC 18	6), 8=2747(LC	18)]
FORCES (lb) - May	cimum Compression	Maximum Tei	sion						ļ
TOP CHORD 1-2	=0/78, 2-13=-5996	2007, 13-14=-	5811/2024, 3-14=-50	641/2026, 3-	15=-	5080/17	37,		
4-1	5=-4939/1/50, 4-10 ·19=-4791/1723, 6-1	5=-4/92/1/22, 19=-4792/1723	16-1/=-4/91/1/23, 3. 6-20=-4939/1750.	5-1/=-4/91/ 7-20=-5080/	1723 1737	, 5-18=- . 7-21=-	4791/1723, 5641/2026		
21-	22=-5811/2024, 8-2	22=-5996/2007	, 8-9=0/78	0.40.470		,			
WEBS 3-1	2=-1789/5506, 11- 2=-1334/430, 4-12:	=-220/938, 5-1	2=-1171/439, 5-10=-	, 8-10=-1780 1171/438, 6	,∕550 -10≃-	6 220/938	3,		
7-1	0=-1334/431			-					
NOTES (12)									
1) Wind: ASCE 7-05	; 120mph; h=35ft; 1 ; Exterior(2) -1-0-0-4	CDL=6.0psf; I	3CDL=6.0psf; Categ	ory II; Exp C		osed; N	IWFRS gable		
to 15-6-1, Exterior	(2) 19-9-0 to 30-0-0	zone; cantilev	er left and right expos	sed; Lumbe	r DO	L=1.60	plate grip		
DOL=1.60. This tr	uss is designed for	C-C for memb	ers and forces, and forces, and forces	or MWFRS fo		tions s	specified.		
3) Unbalanced snow	loads have been α	onsidered for th	is design.	LAP., UC 1.	, Lu-	-0-0-0			{
(4) This truss has been overhands non-conditioned and the second seco	en designed for great incurrent with other	iter of min roof ive loads	live load of 16.0 psf o	or 1.00 times	flat r	oof load	of 60.0 psf on		
5) Provide adequate	drainage to prevent	water ponding							
 6) This truss has bee 7) All plates are MT2 	en designed for a 10 0 plates unless othe	.0 psf bottom o rwise indicated	hord live load noncoi t.	ncurrent with	any	other live	e loads.		
8) This truss requires	plate inspection pe	r the Tooth Co	unt Method when thi	s truss is cho	sent	for quali	ty assurance		
 inspection. 9) * This truss has be 	en designed for a li	ve load of 20.0	psf on the bottom ch	ord in all area	as wh	ere a re	ctangle 3-6-0 tall		
Cominted owide wild	it between the botto	m chord and a	ny other members.						

Jop	Truss	Truss Type	Qty	Ply	HILLSIDE/BRUCE/JORDAN
531351	005	HIPSYS	8	1	Job Reference (optional)
Wood Structures, Inc	., Biddeford, ME 04005	j	7.000 s May 29	2007 N	liTek Industries, Inc. Tue Apr 29 10:19:32 2008 Pa
NOTES (12) 10) Provide mechar 11) This truss is des ANSI/TPI 1. 12) Drawing prepare	ical connection (by othe igned in accordance wi ed exclusively for manu	ers) of truss to bearing plate c ith the 2006 International Resi facturing by Wood Structures	apable of withstand dential Code sectio Inc.	ing 876 ns R502	Ib uplift at joint 2 and 876 lb uplift at joint 8. 2.11.1 and R802.10.2 and referenced standard
LOAD CASE(S) Sta	andard				
,					

	Truss	Truss Type	Qty	Ply	HILLSIDE/BRUCE/	JORDAN
351	006	GESTR	1	1		
ood Structures, I	Inc., Biddeford, ME	04005	7.000 s May 3	29 2007 N	Job Reference (opt fiTek Industries, Inc.	ional) Tue Apr 29 10:19:34 2008 Pag
) Drawing prepa	ared exclusively for I	nanufacturing by Wood Structu	res Inc.			
	New dead	,				
AD CASE(S) S	standard					

ADDITION TO: SCALIA / BRUCE RESIDENCE 24 BRADLEY STREET PORTLAND, MAINE

