This is to certify that \qquad has permission to \qquad Install Bleacher Stands in Me AT 404 Steyens Aye
provided that the person or persons, of the provisions of the Statutes of \mathbb{N} the construction, maintenanceand u this department.

Apply to Public Works for street line and grade if nature of work requires such information.

OTHER REQUIRED APPROVALS

Appeal Board
Other \qquad

 ne and of th

N of buildings and si. tures, and of the application on file in
> ication and w e this d or 0 R NOTICE IS REQUIRED.

175 B002001

epting this permit shall comply with all nces of the City of Portland regulating tures, and of the application on file in

PENALTY FOR REMOVING THIS CARD

City of Portland, Maine - Building or Use Permit Application 389 Congress Street, 04101 Tel: (207) 874-8703, Fax: (207) 874-8716

Proposed Project Description:

Install Bleacher Stands in Memorial Field

?ermit Taken By:

dmartin	$05 / 18 / 2005$

1. This permit application does not preclude the Applicant(s) from meeting applicable State and Federal Rules.
2. Building permits do not include plumbing, septic or electrical work.
3. Building permits are void if work is not started within six (6) months of the date of issuance. False information may invalidate a building permit and stop all work..

Zoning Approval

CERTIFICATION

1 hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

'payperybiac

सfryctix

- fixyzeny 09 pesodx

swopapunoz pranprerif

E \& D SPECIALTY STANDS, INC.
manufacturers cr ouality stands and seating 2081 FRANKLIN STREET. P.O SOX 700-NORTH COLLNS, NEW YORK 14111

FAX TRANSMITTAL COVER SHEET

DATE: June 13. 2005
PAGES: 22 (Inciuding Cover)
TO: Mike Nigent - Enforcement Office:
AT: \quad City of Portland
FAX \#: (207) 756-8090
FROM: Gerry Sullivan
Professional Ergineer
E\& D Specialty Stands, Inc.

HE: Memorial Field - Portland, ME
Please review the attached Memorandum from Ken Recker arid the 2002 ICC-300 standards.

Call me with any questions
(The page numbers that are missing from the standards were actually blank.)
(05-1013-L1/12)

All Purpose Building Permit Applicatlon

If you or the property owner owes real estate or personal property taxes or user charges on ony property．within the Cliy，payment arrangement8 must be made belore permilts of any kind are accepled．

Location／Address of Constructton：MEMORIAL FIELD，DCering htar Schtool		
ittal＂Square Footage of Proposed Structure 6SOOSF（HOME）， 4500 SF（V／SITan）	Square Footage of Lot unknumi	
Tax Assessor＇s Chant，Block \＆Lot $\begin{array}{ccc}\text { Chart\＃} & \text { Block\＃} & \text { Lot\＃} \\ 175 & B & \text { OCQ }\end{array}$	Owner； city of porticano	Telephone： $207-874-8793$
Lessee／Buyer＇s Name（f Appllcable） MATI FITZGERALD	Appllcant name，address \＆ telephone： EAO SPECIALTY STANDS，INE 2LEBi FRANKUN STRECT	Cost Of Work： 313,905 Fe日：\＄
NOUTH COLUNS，NEW YOIN 14 ill Whe should we contact when the permit is ready：GERALD P．SuLLu，IN，PE Mailling address：E a D 万PECIALTY STANDS，INC ZOEV FRANKLIN $5 T$ NOROH COLCINS．HEW Y Y UKK， 14111 We will contact you by phone when the permit is recdy．You must come In and pick up the permilt．and revlew the requirements before starting any work，with a Plan Revewer．A stop work order will be lssued and a $\$ 100.00$ fee it any work starts before the permit is pleked up．PHONE：716－337－0iti		

IF THE REQUIRED INFORMATIONIS NOT INCLUDED INTHE SUBMISSIONS THE PERMIT WILL BE AUTOMATICALLY
DENIED AT THE DISCREIIONOF THE BUILDING／PLANNING DEPARIMENT，WE MAY REQUIRE ADDITIONAL
INFORMATION IffORDER TO APROVE THIS PERMIT．
1hereby certiy that I am the Owner of record of the namedproperty，or that the owner of record authortess tho propased work and thot 1
shall hove the arthorty to enter ofl areces covered by this perrit at any reazonable howto enforee the provitens of me coder applleabte
to the permit．

This Is NOT a permilt，you may not commence ANY work untll the permitis Issued， If you are In a Historic District you may be sublect to addilional permifting and fees with the Planning Department on the $4^{1 /}$ floor of Cliy Hil

CITY OF PORTLAND
BUILDING CODE CERTIFICATE
389 Congress St., Roam 315
Portland, Maine 04101

ACCESSIBILITY CERTIFICATE

> Designer: E\&D SPECIALTY STANDS, INC.

Address of Project: PORTLAND, MAINE SecRANG HGH Scitool Nature of Project: MEMORIAL FIELDS

The technical 'submissions covering the proposed construction work as described above have been designed in compliance with applicable referenced standards found in the Maine Human Rights Law and Federal Americans with Disability Act.

Phone: $\frac{716 \cdot 337-0161}{1800-5.25=8575}$
NOTE: If this project is a new Mult Family Structure of 4 units or more, this project must also be designed in compliance with the Federal Fair Housing Act. On a separate submission, please explain in narrative form the method of complitance.

CITY OF PORTLAND BUILDING CODECERTFICATE

389 Congress St., Room 315
Portland, Maine 04101

TO: Inspector of Buildings City of Portland, Maine Department of Planning \& Urban Development Division of Housing \& Community Service
FROM: E\&O SPECIALTY STANDS, IC.

RE: Certificate of Design

DATE: 5/13/05
These plans and/ or specifications covering construction work on:
Grandstands at Memorial fields at
DEERING Itint Scltool
Have been designed and drawn up by the undersigned, a Maine registered Architect/ Engineer according torthe 2003 International Building Code and local amendments.
(SEAL)
$\$ 50,000.00$ or more in new constructive, hep air expansion, addition, or modification for Building or Structured, shall be prepared by a registered design Professional,
 Firm: EXD SPCCIACRCY STANDS, inc Address: $\frac{\text { LOST. FRANKUN ST }}{\text { NORTH COLLiNS, NTW YoRk }}$ 14111

FROMDESIGNER:E\&D SPECIALTY STANDS,INC. (GERACDP SMMCDNN) DATE: 5/13/05

Job Name: MEMORIAL FIELOS

Address of Construction: Deering high Schtod (CORNER LEELANO \& $\angle U D C O W$)

2003 International Buildine Code

Construction project was designed according to the building code criteria listed below:
Building Code and Year TBC 2003 Use Group Classificarion(s) AssEmBCy -5 Type of Construction

Will the Structure have a Fire aupprossion aystem in Accordance with Section 903.3.1 of the 2003 IRC. NS Is the Strueturembxed use? $N \Delta$ Supervisory qlarm syatem? NO Grotechntcilisolls report requirod?(Seo Seetlon 1802.2) YES -SCC CACC'S if yes, separated or yon separated (aco Seetlon 302.3)___

$$
\begin{aligned}
& \text { Uniforitly disntioutid fibor live loads (7603.11, 1807) } \\
& \begin{array}{c}
\text { FioorArea Un } \\
\text { Assem Bu7 } \\
\hline \\
\square \\
\hline
\end{array} \\
& \begin{array}{l}
\substack{\text { Loadeshown } \\
\text { loopsf } \\
\hline \\
\hline}
\end{array} \\
& \begin{array}{l}
\frac{1}{\text { Wind loads } 11} \\
\frac{100}{1.15} \\
\frac{C}{0.55} \\
\hline N / A \\
\hline 0 \text { PSF }
\end{array} \\
& \text { (1800 1.1, 1007.s, 1607.10) } \\
& \text { Rool'ive loads (1mas, 1, } 2 \text { 1007,11) } \\
& \text { Foof smow loods (7000.7.3,1000) }
\end{aligned}
$$

> (rive toce.0. T)
> If $\mathrm{P}_{\mathrm{g}}>10$ pait anow load importances feitor, to mive read.s)

> Sloped roct anambed, Pi (teres.4)
> Eetomlo denlgn category (10.10.3)

> Thet 1017, $0,2 \mathrm{j}$
> Reaporsemoethantion ceatflelerti \boldsymbol{R}_{1} and defiectlonamplifiotition factor, Od (Tabie 1077.an)
> Simplifien Analyale procedure (1010, 5 , 10175)

$$
\begin{aligned}
& \text { Other loads }
\end{aligned}
$$

> Concontratedloads (180/A) (RAti POST Partition loads (10075) M/N) Inipect loads (toor.a)

> 1007.7, 1807.12,1007. 18, 1"10, 1011, exod)
> (RALCPOUT UNIFFOM LOAO) (12bls 18045 1616.2)
> Spectral responia coatudiente, Sop \& 801 (1615.1)
> D (ASSUME) 8he dasi (1E16,9,6)
> (BASED DN SOIC)

CHAPTER 4

EGRESS

SECTION 401
 GENERAL

491.1 General The meansofegress fornewbleachers, folding and telescopic sating, and grandstands shall comply with this chapter.

SECTION402 TRAVEL

402.1 Travel. Traval within tiered seatingshall be considered exitaccess. Exit access incluces aisles, crosswalks, vomitories, ounnets, sairs and sloped or level ramps comecting the tiered seating structure to other portions of a building, structure or grade.

SECTION 403
 OCCIUPANT LOAD

403.1 Occupant load. Where bench seating is used, the number of persons sball be based on one jerson for each 18 ipches (457 mma) of length of the bench. Where individual scats ant providad, the occupant load shall be based on one person per seat. The occuppath load of reviewing stands and press boxes shall be based on 5 square feet ($0.465 \mathrm{~m} \mathrm{~m}^{2}$) per person for slanding space and 7 squante freet ($0.65 \mathrm{~m}^{2}$) por person for movable chair scating space. The occupant load for security, audio and camera plarforms shall be based on the actual number or occupants.

SECTION 404

GENERAL MEANS OF ECRESS

404.1 Mindmam numbur of exits. The mininum number of exits shall be provided from the seating area based on the following occupani loads and in accordace with the calculated width requirement for egress caparity in Section 404.5 .

OCCIPANTLOAD	REOURKE MEANS OF EORESS
$0-250$	1
$251-750$	2
$751-2500$	3
Over 2,500	4

4042 Room or space means of egress, Rooms or spaces in which ticred seating is located shall be provided with the required mesnts of egress in actordance with the building code.
404.3 Exterior instaltations. For extecior installations wherc the means of egress converges, a minimum of two egress paths shatl be provided, sized to sccommodare the oceupant ioad served Where the exit discharge does not lead directy to a strect of public way, it shall lead to an area of refuge sized to contain the full capacity and bocated a minimum of 50 feet (15 240 mun) from the structure.
404.4 Travel distnoce. For installatiocs located inside a building, the travel distance from each seat to any exit shall comply with the building code. For exteriot installations, the travel distance from each scat to the perimetter of the seating stricturs shall rot exceed 400 feet (122 m). Where aisles ase provided for scating, the dilstance shall be measured along the aisles and aisle accessway without travel over or on the seats.
404.5 Required width. The clear widh of aisles and other means of egress for indoor smoke-propected assembly seating shall comply with Table 404.5(1). The clear width of aiskes and other mesmus of egress for indoor assembly seartag that is por smoke protepted shall comply with Table 404.5(2). The clear width of aislot and other mesums of egress for ourdonr smokeprotacted asserably seating shall comply with Table 404.5(3).

Aisies shall also comply with Section 405 . The clear width shall be measured to walls, edges of scating and treed ed ges excepr forpermitted projections. There shall be no obstructions in the tequired width of alsies except fcr handrails as provided in Section 409.7.

SECTION 405

AISLES

405. 1 Aisles. The minimum width of aisles shall be in accordance with Section 4045 , but not less than that required oy this section. An aislc is not required in seating facilites where all of the foliowing conditions exist.
406. Seats are without backrests.
407. The rise from row to row docs not exceed 6 inches (152 nuli) per row.
408. The row spacing does no: exceed 28 inches (711 mant unless the seat boards and foot boards are at the same clevaton.
409. The number of row does not exceed 16 rows in beight
410. The first seating board is not mone than 12 inches (305 mm) above the ground or floor below or a cross alsle.
411. Seat boards have a continuous flat surface.
412. Scat boards provide a walking surfuce with a minimum width of 11 inches (279 mm).
413. Egress from seeding is not resticted by rails, guards or other obstructions.

- E2ent os דeq yom anes jou seop
 thogdouxtr

- gies OS ury Aromi in tas mon seop alspe

ropt ype 00 zuyeos 90 ?

				910\%10 10000
	F60	5100	0×0	$666^{\circ}+20010$
8600		5600	9100	
2900	9500		9600	$000{ }^{\circ} 51910$
1200	0200	oteo	0 CLTO	0000 cos
0.10	0010	E910		000 0^{2} mit
	0510	0 cco	0060	$900^{6} \mathrm{z}$ -
910		SLEO	0050	
0260	 	-	sewril Ce vrap 	
codenatiluma				
		19510 405		

ssates

SAYMSSTOSG T75V

7rons

 рои! 'әрим (

'ISsIr गफ

 -

 T'9'90t

pue

 :suopdeary -wot

 -p xp jo

'पลึnory ssed on mon

- comes sici jo sucam
 "-

Sunts 77814
 907 NOLISES

 Gu* ppo-prep "

-Iupers Aqumasie propiond-zgous in smor

4p!
 ร! 88*

4072 Minimam width. Whene geating rows have 14 or fewer seats, the minimum ciletr aisle acocssway width shall not be less than 12 inches (305 mul) mossured as the clear horimontal distance from the back of the row ahead and the nemest pojection of the row behlind. Where chairs have sutomatic or self-rising seats, the measurement shail be made with ceats in the rised position. Where any chair in the row does nothave an automatic or eelf-rising seat, the mekurrements shall bc made with the seat in the dowa position. For seats with folding tablet arms, row spucing ahal be deciermined with the tablet arm down.

4073 Dusl access. For rows of seating served by aisies or doorwhys at tooth eads, there chatl not be mone than 100 gears per row. The minimum clear withth of 12 inches (305 mm) betwean rows shall be ingreased by 0.3 inch (7.6 mm) for every additional seat beyond 14, bat the minimum clear width is not required to exceed 22 inchers (559 mm).

Excepilons:

1. For smoke-protected assembly scating, the now length limits for 12 -inch-wide (305 mm) aisle accessway, beyond whioh the aisle accessonay minimom clear width ohall be increased in accordance With Section 407.5.
2. Where seats are without bickensts, 21 scats between aisles shall be permitted with a minimon clear width of 12 inches (305 man).
407.4 Single access. For rows of seating scrved by an aisle or doorway at only one end of the row, the minimum clear width of 12 inches (305 mm) bctween rows shall be incressed by 0.6 inch (15.2 mm) for every additiocai seat beyond sciven sears, but the minimum cleart width is not required to excead 22 inches (559 mm). The path of cgress travel, however, shall not exceed 30 feer (9144 momi) from any seat to a point where a person has a choice of two pathe of egress travel to two exits. Where one of the two paths of travel is across the aisle through a row of seats to anothax aisle, there shall nor be monery than 24 seats between the two aisles; and the minimum alear width be: tween rows for the row between the two aisies shall te 12
imelims (305 mm) plus 0.6 lnch (15.2 mm) for cach additional seat above seven in the row berwera aisies.

Exceptions:

1. For smoke-protecred assembly seatiog, the row length limits for a 12 -inch-wido (305 mm) nislo accessway, beyond which the aiclo acceasway minimom clear width shall be increatsed, are in Table 407.5.
2. Where seals are without backregts, a maximum of 10 seats to an aisle shall be perititued with a minimum clear wridth of 12 inches (305 min).
3. In smoke-protected assembly seating the path of egress travel shall not exceed 50 reet (15240 mm) from any seat to a point where a perbon has a choice of ewo paths of cgress travel to two axits.
407.5 Smoke-pratected algle accessways. The desigm of smoke-protected hisle accessways shall comply with Table 407.5.

SECTION 408 GUARDS

408.1 Required grards. Guards shall be provided in the followicg areas.

1. Along open-sided walking surfaces, cross aisles, stepped aisles, ramps and landings of tiered seating areas which are located more than 30 inches (762 mm) above the floor or grade belown. Such guards shall be not less that 42 inches (1067 mm) high, measured vertically above the leading edge of the tread, adjacent walking surface or antjacent bench stat.

Exception: A guard is not tequired where the tiered seating is located adjacent to a wall and the space between the wall and the tienod scating is less than 4 incher (102 mm).
2. Whete anclevation change of 30 inches (762 men) or less occurs between a cross alsle and the atjacent floor or

TABLE 407.5
GMOKE-PROTKCTIED ALSLE ACCESEWAYA

TOTAL HUMBER OF BEATS IN TME SMOKE: PROTECTD AEEENALY OCCUPANCY	MAXIMUM NUMBEA OF BEATE PER ROW PERWTTED TO HAVEA WHNHUM 12-NCH CLEAR WIDTH AESLE ACCESSWAY	
	Aislo or doarway at both ondts of row	Alche or doanwaty at ung cad of row only
Less than 4,000	14	7
4,000	15	7
7.000	16	8
10,000	17	8
13,000	18	9
16,000	19	9
19,000	20	10
22,000 and greascr	21	11

For SI: 1 inct $=\mathbf{2 5 . 4} \mathrm{mm}$

Tप्ञा？

 V＇（שس

parnhar

 semgns hu

> 'swoysunsqo sq of pox

 К［Ів

＇I＇I＇60\％
 ssungivaxt 8404
 －－

 \＄98）8 п！4\％ज5！
＂

 Gatsson

Butrer jo mar च

中109 00 priesol

STHFHONVH

60t NOLITES

＇ssud join Trys zapmep wi

 в
－Su！̣uado eq

：smogionst

 4901）seqpor $\tau \downarrow$ O4（

－

doje jisp qeamor

propinoda aq

（女x 099）spy

CHAPTER 6

EXISTING BLEACHERS, FOLDING AND TELESCOPIC SEATING, AND GRANDSTANDS

SECTION501

APPLICATION AND ADMNISTRATION

11.1General. Existing bleachers, folding and telescopic searing and grondetands that exist priar to the adoption of this standsrd shall comply with this chapter and the applicable provisions of Chapter 1.

Exception: Tiered seating when: the top of footbeards, searboards, aisles and cross aisles are not more then 30 inches (762 mm) above the floor or grade below, unless judged by the code offictal to represent a distinet hazard 501. 2 Inspection. All cxiscing dered seating shall be inspected and evaluated at least once a year by a qusiffied person for compliance with the provistons of this chaptes. All folding and uclescopic seating shall be inspexted to evaluatc compliance with the manufucurer's instailation and operational instructions, including an inspection curing the opcring and closing of such seacing.
501.3 Vidations. Where cieficiencies are idcatified, the owner shall have undil [DATE To be enserted ey ribisidiction] to abate the onsafe condition as demadnecessary by the code official
Se1.4 Alterations. Alterations to any tiered seattrg shall conform with the requiremenss of this standard for new construction. Portions of the stucture nct altered and not affected by the alteration are not required to comply with the requirementsin this standard for a new structure.

SECTION 502

MAINTENANCE AND REPAIRS

502.1 Structural. Existing ticred scaung shall be maminind structurally sound as follows.

1. Components or fusteners shall nol be broken, demnagod, badly deteriorated or missing.
2. Adequate bearing shall be provided. The structure shall bear unifomlly on the floot or ground in a manner so as to safely support the structure.
3. All cormponents and systems shall be in proper working condition.
502.2 Durability Materials used in ate construction of cutdoor instailations chall be weather resistant. Where wood is used, it shrill be naturally durable or preservative-treated wood as defined in the bullding code or other approved material. Where ferrous metal is used, it shall be protected from compsion. Fastemers shall consist of aluminum or other approved cono-sion-resistant materials or sthall be provided with approved-corrosion-resistant costings such as copperor zine.
502.3 Interior corrosive enviromment Installations located in interior corrosive environments, such as those located in conjunction with indoor pools, shatl be corrosion resistant.
502.4 Spaces bearath scats. Spaces bereath or adjacent to seating struclures sball comply with the fire code

SECTION 503

GUARDS

503.1 Required guards. Guards shall be provided in the following areas.

1. Along open-sided walking surfaces, cross sistes, stepped aislcs, ramps and landings of tiered seatirg areas which are located more than 30 inches (762 mm) above the floor or grade below. Such guards shall be not less than 36 inctes (1067 mm) high, mesured vertically above the lending edge of the remad, adjacent walking surfice or conter of artacent bench scat

Exceptions:

1. Where the uppermost seal is locutcd less than or equalto 55 Inches (1397 mm) above the Roar or ground below.
2. Where located adjacent to a wall and the space berween the wall and the biered sating is less than 4 inches (102 mm).
3. Unless subject to the requirements of Irm 3, a guand with a minimum height of $26 \mathrm{inches}(660 \mathrm{~mm}$) shall be provided where the floor or footboard elevation is more than 30 inches (762 mm) above the floor or grade below and the glard would otherwise julentere with the sighrines of imnadiately adjaetnt searing.
4. A guard shall be provided for the fill width of the aisle where the foot of the aisle is more than 30 inches (762 mm) above the floor or ground below. The guard shall be a mininum of 36 inches (914 mm) high.
503.2 Opening limitations. Open guads shall be constructed of materids such that a 4 -inch-diamecer (102 mmn) sphere cannot pass through any opening.

Exception: The triangular opening formed by the riser, tread and bottom rail at the open side of an sisle stair or tiemed senting shatl be of a maximum size such that a sphcre of 6 inches (152 mm) to diameter cannot pass through the opening.
503.3 Cuard deaign. Guards and thelr atachment shall be designedto misithe loads inclicared in Section 303.

SECTIDN 804

OPEN SPACES AT FCOTBOARDS AND SEATBOARDS
504.1 Open spraces at footboards and seathoards. Where an opening between the scatboard and foothoard is located more than 30 mehes (762 man) above the floor or ground below, the opening shall be closed with congtruction such that a 4inch-diameter (102 mm) sphcre cannot pass through.

Exception: Where the uppermost scat is located less than or equal to 55 inches (1397 mra) above the floor or ground below.

causes or forces. All material which might cause fumes or dust, or constitute a fire hazard if stored out-of-doors, shall be only in closed containers. Areas attracting large numbers of birds, rodents or insects are prohibited.

(Ord. No. 291-88, 4-4-88)

Sec. 14-152. Reserved.

DIVISION 8.5. R-OS RECREATION AND OPEN SPACE ZONE

Sec. 14-153. Purpose.

(a) The purpose of this division is:
(1) To preserve and protect open space as a limited 'and valuable resource;
(2) To permit the reasonable use of open 'space, while simultaneously preserving and protecting its inherent open space characteristics to assure its continued availability for public use as 'scenic, recreation, and conservation or natural resource area, and for the containment and structuring of urban development;
(3) To coordinate with and carry out federal, state, regional, and city recreation and open space plans; and
(4) To provide a suitable location for' large-scale regional sports and athletic facilities.
(b) The recreation open space zone may include major parcels (over two (2) acres) of public property, and private property legally restricted from intensive use or development through deed, covenant, or otherwise. (Ord. No. 232-81, § 602.9B.1, 11-16-81; Ord. No. 187-01/02, § 2, 4-17-02)

Sec. 14-154. Permitted uses.
The following uses are permitted uses within the recreation and open space zone, subject to the development standards contained herein:
(a) Municipal parks, public open spaces, picnic areas, playgrounds and playlots;
(b) Cemeteries;
(c) Arboretums;
(d) Golf courses, excluding miniature golf;
(e) Boat landings, beaches, and marinas for public uses;
(f). Outdoor ballfields and public athletic fields;
(g) Swimming pools and tennis courts;
(h) Picnic groves and areas;
(i) Natural parks and scenic overlooks;
(j) Hiking, walking, bicycling or cross-country ski trails;
(k) Community gardens for cultivation by and for city residents;
(1) Sewage pumping stations and sewage treatment facilities;
(m) Sports complexes;
(n) Accessory uses, including structures or buildings of less than two thousand five hundred $(2,500)$ square feet of floor area.
(Ord. No. 232-81, § 602.7B.2, 11-16-81; Ord. No. 60-91, § 1, 8-5-91; Ord. NO. 187-01/02, § 3, 4-17-02)

Sec. 14-155. Conditional uses.

The following uses are conditional uses in the recreation and open space zone, subject to approval by the board of appeals.
(a) Accessory uses with structures or buildings of two thousand five hundred (2,500) square feet or more of floor area;
(b) Other recreational facilities and uses that are open to the public;
(c) Water pumping stations.
(Ord. No. 232-81, § 602.7B.3, 11-16-81; Ord. No. 67-89, § 1, 8-7-89; Ord. No. 60-91, § 2, 8-5-91)

```
City of Portland, Maine
    Land U se
Code of Ordinances
Sec 14-156

Sec. 14-156. Standards for conditional uses.
In addition to the criteria listed in section 14-474(c), the board of appeals shall consider the following criteria when reviewing conditional uses in the recreation and open space zone:
(a) The use shall be in conformity with or satisfy a deficiency identified in a federal, state, regional, or city recreation and open space plan, including but not limited to the state comprehensive outdoor recreation plan, as such plans may from time to time be created or revised.
(b) Buildings and structures shall not obstruct significant scenic views presently enjoyed by nearby residents, passersby, or users of the site.
(c) Indoor recreation or nonrecreational uses shall serve a significant public purpose that cannot reasonably be accommodated outside of the recreation and open space zone.
(Ord. No. 232-81, s 602.7B.4, 11-16-81)
Sec. 14-157. Space and bulk requirements.
No building or structure of a permanent nature shall be erected, altered, enlarged, rebuilt, or used unless it meets the following requirements:
(a) Minimum front yard:
1. Principal buildings or structures: Twenty-five feet.
2. Accessory buildings or structures: Twenty-five.(25) feet.
(b) Minimum rear yard:
1. Principal buildings or structures: Twenty-five (25) feet.
2. Accessory buildings or structures: Twenty-five (25)
feet.
(c) Minimum side yard:
1. Principal buildings or structures: Twelve (12) feet.
2. Accessory buildings or structures: Twelve (12) feet.
(d) Minimum lot size: Two (2) acres, except that sewage treatment facilities are not required to meet this standard.
(e) Maximum building height: Thirty-five (35) feet, unless more than one thousand (1,000) feet from a shoreland zone. The maximum building height for buildings located more than one thousand \((1,000)\) feet from a shoreland zone shall be forty-five (45) feet.
(f) Maximum coverage of lot by buildings, structures and other impervious site improvements such as paved sidewalks, drives and parking lots:
1. Sewage treatment facilities: No limit on maximum coverage.
2. Sports complexes: Seventy-five (75) percent of lot area.
3. All other uses: Twenty-five (25) percent of lot area.
(g) Maximum floor area ratio: Five-tenths (0.5).
(Ord. No. 232-81, § 602.7B.5, 11-16-81; Ord. No. 67-89, § \(2,8-7-89\); Ord. No. 205-93, 2-2-93; ord. No. 187-01/02, §4, 4-17-02)

\author{
plan
}
(a) All ground areas not used for parking, loading, vehicular or pedestrian areas and not left in their natural state shall be suitably landscaped.
(b) Natural features, such as mature trees and natural surface drainageways, shall be preserved to the greatest possible extent consistent with the uses of the property.

SEBAGO TECHNICS, INC.
One Chabot Street P.O. Box 1339 WESTBROOK. ME 04098-1339

Phone (207) 856-0277 FAX (207) 856-2206


REMARKS
MARGE P\&D STANDS LULL BE SENBINY You A sine plan want TAF BLSACHKAS in THEIR FORmAE APPLICATION.
Manic then plaCative usk THESE FOR KFAFurret

chris dimateo

COPY TO \(\qquad\)
SIGNED:


\section*{E \& D SPECIALTY STANDS, INC.} MANUFACTURERSOF QUALITY STANDS AND SEATING 2081 FRANKLINSTREET • P.O. BOX 700 • NORTH COLLINS, NEWYORK 14111

\title{
CALCULATION PACKAGE
}

\author{
05-1013 \\ MEMORIAL FIELD \\ PORTLAND, MAINE
}

\section*{STRUCTURAL STEEL DESIGN}


MAY 132005


This map is informational only. No representation is made or warranty given as to its content. User assumes all risk of use. MapQuest and its suppliers assume no responsibility for any loss or delay resulting from such use.

\section*{LOAD PAGE}

\section*{E\&D JOB NO. 05-1013 MEMORIAL FIELD PORTLAND, MAINE ELEVATED BEAM}


Home SIDE
STRINGER DESIGN
memoriac ficas portano, he 5/11) 05 1 of 38


REFOR TO Pg. 2 To 4 to 7 for stringon Anncysis


WINO COAC: ON BOX

\[
\begin{array}{r}
R_{c}=R_{R}: \frac{\left.1.98^{\mathrm{k}} / 11 / 2\right)}{8^{\prime}} \cong 1.375^{\mathrm{k}} \text { ADPUED AT PB } \\
\text { STARGEN COCATIONS. }
\end{array}
\]
\(M_{x}=24.165^{\mathrm{K}-T \mathrm{~T}} \quad\) (SHT 4 \()\)
\(M=\frac{\omega l^{2}}{\varepsilon}=\frac{0.642 k /+(24)^{2}}{8}=46.22^{\mathrm{kTT}}\)
\[
\begin{aligned}
& S_{\text {ny }}=\frac{46.22^{k-F T} \forall 12^{\prime \prime} /}{0.66(50 \mathrm{kSI})}=1 / .81 \mathrm{in}^{3} \\
& S_{x(\text { Piovinon })}=17.1 / \mathrm{N}^{3}
\end{aligned}>_{\mathrm{k}} \text { ok! }
\]
\[
A_{A K}=\frac{24^{1} \times 12^{0}}{2 x}=1.441
\]

\section*{Project:}
```

Description:
05-1013
Memorial Field
Portland, ME
Home
Stringer at PB
Units: English
Properties - X = feet, E = ksi, I = in^4
X = 0; E = 29000; I = 103;
X = 45.3; E = 29000; I = 103;
Moment Releases - X = feet
X = 37.3;
Supports - X = feet, Displacement = inches, Rotation = radians
X = 8; Disp = 0;
X = 32; Disp = 0;
X = 41.3; Disp = 0;
Springs - X = feet, VSpring = kip/inch, RSpring = kip in/rad
Point Loads - X = feet, PLoad = kips, Moment = kip ft
X = 37.3; PLoad = -1.375;
X = 45.3; PLoad = 1.375;
Uniform Loads - XStart \& XEnd = feet, UStart \& UEnd = kip/ft
XStart = 0; XEnd = 37.3; UStart = -0.642; UEnd = -0.642;
XStart = 37.3; XEnd = 45.3; UStart = -1.14; UEnd = -1.14;

```

\section*{WinBeam}

Project:

By:
Date:
Checked:
Date:
Page: 3 of 38
Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Analysis Data:
Beam Length \(=45.3\) feet
Number of Nodes \(=203\)
Number of Elements \(=202\)
Number of Degrees of Freedom \(=406\)
Reactions:
\begin{tabular}{rrr} 
X & Vert & \begin{tabular}{r} 
Rot \\
feet
\end{tabular} \\
kips & kip ft \\
8.000 & 12.713 & \\
32.000 & 13.985 & \\
41.300 & 6.369 &
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & \multicolumn{1}{c}{ Diff } \\
\hline Vert & -33.067 & 33.067 & 0.000 kips \\
Rot & 812.260 & -812.260 & -0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Min Shear & \(=\) & -7.831 & kips & at & 32.000 & feet \\
\hline Max Shear & \(=\) & 7.577 & kips & at & 8.000 & feet \\
\hline Min Moment & - & -23.598 & kip it & at & 32.000 & feet \\
\hline Max Moment & - & 24.165 & kip ft & at & 19.774 & feet \\
\hline Min Rotation & \(=\) & -0.006654 & radians & at & 28.377 & feet \\
\hline Max Rotation & = & 0.006822 & radians & at & 11.170 & feet \\
\hline Min Deflection & \(=\) & -0.685185 & in & at & 19.774 & feet \\
\hline Max Deflection & \(=\) & 0.323780 & in & at & 0 & feet \\
\hline
\end{tabular}

\section*{Project:}
By: Date: Checked: Date: 5 of 38

Description:
05-1013
Memorial Field
Portland, ME
Home
Stringer away from PB
Units: English
Properties - \(X=\) feet, \(E=k s i, I=i n \wedge 4\)
\(X=0 ; E=29000 ; \quad \mathbf{I}=103 ;\)
\(X=37.3 ; E=29000 ; \quad I=103 ;\)
Moment Releases - \(\mathrm{X}=\) feet
Supports - X = feet, Displacement \(=\) inches, Rotation \(=\) radians
\(\mathrm{X}=8\); Disp \(=0\);
\(\mathrm{X}=32\); Disp \(=0\);
Springs - \(\mathrm{X}=\) feet, VSpring \(=\) kip/inch, RSpring \(=\) kip in/rad
Point Loads - X \(=\) feet, PLoad = kips, Moment \(=\) kip ft
Uniform Loads - XStart \& XEnd \(=\) feet, UStart \& UEnd \(=\) kip/ft XStart \(=0\); XEnd \(=37.3\); UStart \(=-0.642\); UEnd \(=-0.642\);

\section*{WinBeam}

Project:
By: Date: Checked: Date: Page: 6 of 38
```

Reactions - kips, kip ft

```


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches

By:
Date:
Checked:
Date:
Page: 7 of 38

Analysis Data:
Beam Length \(=37.3\) feet
Number of Nodes \(=202\)
Number of Elements = 201
Number of Degrees of Freedom \(=404\)
Reactions:
\begin{tabular}{rrr} 
X & \begin{tabular}{r} 
Vert \\
kips
\end{tabular} & \begin{tabular}{r} 
Rot \\
fip ft
\end{tabular} \\
\hline 8.000 & 13.320 & \\
32.000 & 10.626 &
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & Diff \\
\hline Vert & -23.947 & 23.947 & 0.000 kips \\
Rot & 446.604 & -446.604 & -0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Min Shear & & -7.224 & kips & at & 32.000 & feet \\
\hline Max Shear & \(=\) & 8.184 & kips & at & 8.000 & feet \\
\hline Min Moment & \(=\) & -20.544 & kip ft & at & 8.000 & feet \\
\hline Max Moment & \(=\) & 31.621 & kip ft & at & 20.837 & feet \\
\hline Min Rotation & = & -0.010670 & radians & at & 30.698 & feet \\
\hline Max Rotation & = & 0.009505 & radians & at & 10.791 & feet \\
\hline Min Deflection & \(=\) & -0.989963 & in & at & 20.279 & feet \\
\hline Max Deflection & - & 0.624051 & in & at & 37.300 & fee \\
\hline
\end{tabular}
\(\qquad\)


EA. Simengen CAnries \(3.78^{\mathrm{K}}\) of wino RESISTANE TO FHONT CROSS Bexm.

THE Toter resistances to Tate Pien
\[
3 \times 3.78^{k}=11.3 \pi^{k}
\]


REFEX TO SHT 9 TO II
\[
\begin{aligned}
& M_{y}=12.79^{k}\left(6^{\prime}\right): 76.68^{k-F T} \\
& M_{y}=3.78^{k}\left(6^{\prime}\right)=22.68^{k-155} \\
& \text { TRY Kl/4×43 } S_{x}=62.7 \mathrm{in}^{3} \\
& S_{y}=11.31 \mathrm{~N}^{3} \\
& \frac{f_{b x}(D c)}{F_{b x}}+\frac{f_{b x}(c c)}{F_{b y}}+\frac{f_{b y}(w c)}{F_{b y}} \leq 1.0 \\
& \text { Apply 25\% Reouctoun to LCO } \\
& \text { we, As गHEY ARE TRRNIEISN } \\
& \text { ConDs ( } 33 \% \text { inencosén } \\
& \text { AWO WABLE STMESS) }
\end{aligned}
\]
\[
\begin{aligned}
& 0.0299+0.3117 \quad+\quad 0.4817=0.823 \\
& \text { SO, USE Ull4×43 }
\end{aligned}
\]

\section*{Project:}

By:
Date:
Checked:
Date:
Page: 9 of 38

\section*{Description:}

05-1013
Memorial Field
Portland, ME
Home
CB-A AT PB
Units: English
```

Properties - $\mathrm{X}=$ feet, $\mathrm{E}=\mathrm{ksi}, \mathrm{I}=$ in^4
$X=0 ; E=29000 ; \quad I=428 ; / 14 \times 43$
$X=30 ; E=29000 ; \quad I=291$;

```

Moment Releases - X = feet
```

Supports - X = feet, Displacement $=$ inches, Rotation $=$ radians
$X=6 ;$ Disp $=0$;
$\mathrm{X}=24$; Disp $=0$;

```
Springs \(-\mathrm{X}=\) feet, VSpring \(=\) kip/inch, RSpring \(=\mathrm{kip}\) in/rad
Point Loads - X \(=\) feet, \(\mathrm{PLoad}=\mathrm{kips}\), Moment \(=\mathrm{kip} \mathrm{ft}\)
    \(X=0\); PLoad \(=-12.7\);
    \(X=6 ; \quad\) PLoad \(=-12.7\);
    \(X=12 ; \quad\) PLoad \(=-12.7 ;\)
    \(X=18 ; \quad\) PLoad \(=-12.7 ;\)
    \(\mathrm{X}=24 ; \mathrm{PLoad}=-12.7\);
    \(\mathrm{X}=30 ; \mathrm{PLoad}=-12.7\);
Uniform Loads - XStart \& XEnd \(=\) feet, UStart \& UEnd = kip/ft

WinBeam
Project:

By:
Date:
Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


\section*{Project:}

Analysis Data:
Beam Length \(=30\). feet
Number of Nodes \(=201\)
Number of Elements \(=200\)
Number of Degrees of Freedom \(=402\)
Reactions:
\begin{tabular}{rrr} 
X & Vert & Rot \\
feet & kips & kip ft \\
\hline
\end{tabular}
\begin{tabular}{rr}
6.000 & 38.100 \\
24.000 & 38.100
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & \multicolumn{1}{c}{ Diff } \\
\hline Vert & -76.200 & 76.200 & -0.000 kips \\
Rot & 1143.000 & -1143.000 & 0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{llrlrr} 
Min Shear & - & -12.700 kips & at & 4.950 & feet \\
Max Shear & - & 12.700 kips & at & 24.300 & feet \\
Min Moment & - & -76.200 kipft at & 24.000 feet \\
Max Moment & - & 0 kipft at & 0 feet \\
Min Rotation & \(=\) & -0.005304 & radians at & 0 feet \\
Max Rotation & \(=\) & 0.005304 radians at & 30.000 feet \\
Min Deflection & \(=\) & -0.318257 in & at & 30.000 & feet \\
Max Deflection & \(=\) & 0.063651 in & at & 15.300 feet
\end{tabular}

Home SIDE (Con'7)
CROSSBEAM AWAY FROM PB
Wino cand 10 ímencrúum 3opif \(=1.8 n\)


Refer to 13 to 15 For Cross seiom Amacysis
\[
\begin{aligned}
& M_{x}=82.2^{\mathrm{k}-\mathrm{FT}} \\
& M_{y}=1.8^{n}\left(6^{\prime}\right) \cdot 10.8 k-k T \quad \text { Tny } w / 4 \times 38 \quad \begin{array}{l}
S_{x}=54,6 i n 3 \\
S_{y}=7.8 \sin 3
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& 0.0358+0.3837+0.3289 \\
& =0.7485<1.0 \text { ok! }
\end{aligned}
\]

OSE KMI4×38 GR SO

\section*{Project:}

By:
Date:
Checked:
Date:
Page: 13 of 38
Description:
05-1013
Memorial Field
Portland, ME
Home
CB-A AWAY PB
Units: English
```

Properties - X = feet, E = ksi, I = in^4
X = 0; E = 29000; I = 385; /W14 x38
X = 30; E = 29000; I = 291;

```

Moment Releases - \(\mathrm{X}=\) feet
```

Supports - X = feet, Displacement = inches, Rotation = radians
$X=6 ;$ Lisp $=0$;
$\mathrm{X}=24 ;$ Lisp $=0$;
Springs - X $=$ feet, VSpring $=$ kip/inch, RSpring $=\mathrm{kip} \mathrm{in} / \mathrm{rad}$
Point Loads - X = feet, PLod = kips, Moment = kip ft
$X=0 ;$ Load $=-13.7$;
$\mathrm{X}=6 ; \mathrm{PLoad}=-13.7$;
$\mathrm{X}=12$; $\mathrm{PLoad}=-13.7$;
$\mathrm{X}=18 ; \mathrm{PLoad}=-13.7$;
$X=24 ; ~ P L o a d=-13.7 ;$
$\mathrm{X}=30$; $\mathrm{PLoad}=-13.7$;

```
Uniform Loads - XStart \& WEnd \(=\) feet, UStart \& WEnd = kip/ft

Project:
By: Date: Checked: Dage: 140 D 38

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.30 - Registered to E \& D SPECIALTY STANDS

Project:
By:
Date:
Checked:
Date:
Page: 15 of 38

Analysis Data:
Beam Length \(=30\). feet
Number of Nodes \(=201\)
Number of Elements \(=200\)
Number of Degrees of Freedom \(=402\)
Reactions:
\begin{tabular}{rrr} 
X & Vert & Rot \\
feet & kips & kip ft \\
\hline
\end{tabular}
\begin{tabular}{rr}
6.000 & 41.100 \\
24.000 & 41.100
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & \multicolumn{1}{c}{ Diff } \\
\hline Vert & -82.200 & 82.200 & -0.000 kips \\
Rot & 1233.000 & -1233.000 & 0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Min Shear & = & -13.700 & kips & at & 0.450 & feet \\
\hline Max Shear & - & 13.700 & kips & at & 28.950 & feet \\
\hline Min Moment & - & -82.200 & kip ft & at & 24.000 & feet \\
\hline Max Moment & = & 0 & kip ft & at & 30.000 & feet \\
\hline Min Rotation & = & -0.006361 & radians & at & & feet \\
\hline Max Rotation & \(=\) & 0.006361 & radians & at & 30.000 & feet \\
\hline Min Deflection & = & -0.381661 & in & at & 30.000 & feet \\
\hline Max Deflection & & 0.076332 & in & at & 16.500 & feet \\
\hline
\end{tabular}


\section*{Project:}

By:
Date:
Checked:
Date:
Page:
17 of 3P
```

Description:
05-1013
Memorial Field
Portland, ME
Home
CB-B AT PB
Units: English

```
```

Properties - X = feet, $\mathrm{E}=\mathrm{ksi}$, $\mathrm{I}=\mathrm{in} \mathrm{\wedge} 4$

```
Properties - X = feet, \(\mathrm{E}=\mathrm{ksi}\), \(\mathrm{I}=\mathrm{in} \mathrm{\wedge} 4\)
    \(X=0 ; E=29000 ; \quad I=385 ; / W 14 \times 38\)
    \(X=0 ; E=29000 ; \quad I=385 ; / W 14 \times 38\)
    \(X=30 ; E=29000 ; \quad I=245\);
    \(X=30 ; E=29000 ; \quad I=245\);
Moment Releases - X = feet
```

```
Supports - X = feet, Displacement \(=\) inches, Rotation \(=\) radians
```

Supports - X = feet, Displacement $=$ inches, Rotation $=$ radians
$X=6 ;$ Disp = 0;
$X=6 ;$ Disp = 0;
$X=24 ;$ Disp $=0$;
$X=24 ;$ Disp $=0$;
Springs - X = feet, VSpring = kip/inch, RSpring = kip in/rad
Point Loads - X = feet, PLoad = kips, Moment = kip ft
X = 0; PLoad = -14;
X = 6; PLoad = -14;
X = 12; PLoad = -14;
X = 18; PLoad = -14;
X = 24; PLoad = -14;
X = 30; PLoad = -14;

```
Uniform Loads - XStart \& XEnd \(=\) feet, UStart \& UEnd \(=\) kip/ft

Project:
By: Date: Checked: Date: Page: 18 of 38

Reactions - kips, kip ft


Shear - kips


Rotation - radians


Deflection - inches


Project:

By:
Date:
Checked:
Date:
Page: 19 of 38

Analysis Data:
Beam Length \(=30\). feet
Number of Nodes \(=201\)
Number of Elements \(=200\)
Number of Degrees of Freedom \(=402\)
Reactions:
\begin{tabular}{rrr} 
X & Vert & Rot \\
feet & kips & kip ft \\
\hline
\end{tabular}
\begin{tabular}{rr}
6.000 & 42.000 \\
24.000 & 42.000
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & \multicolumn{1}{c}{ Diff } \\
\hline Vert & -84.000 & 84.000 & -0.000 kips \\
Rot & 1260.000 & -1260.000 & 0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Min & Shear & & -14.000 & kips & at & 1.050 & feet \\
\hline Max & Shear & & 14.000 & kips & at & 29.700 & feet \\
\hline Min & Moment & & -84.000 & kip ft & at & 24.000 & feet \\
\hline Max & Moment & & 0 & kip ft & at & 0 & feet \\
\hline Min & Rotation & & -0.0065 & radians & at & 0 & feet \\
\hline Max & Rotation & \(=\) & 0.006500 & radians & at & 30.000 & feet \\
\hline Min & Deflection & \(=\) & -0.390019 & in & at & 30.000 & feet \\
\hline Max & Deflection & \(=\) & 0.078004 & in & at & 16.500 & feet \\
\hline
\end{tabular}

\section*{WinBeam}

\section*{Project:}

By:
Date:
Checked:
Date:
Page: 20 of 38
```

Description:
05-1013
Memorial Field
Portland, ME
Home
CB-B AWAY PB
Units: English
Properties - X = feet, E = ksi, I = in^4
X = 0; E = 29000; I = 291; /W14 *30
X = 30; E = 29000; I = 245;
Moment Releases - X = feet
Supports - X = feet, Displacement = inches, Rotation = radians
X = 6; Disp = 0;
X = 24; Disp = 0;
Springs - X = feet, VSpring = kip/inch, RSpring = kip in/rad
Point Loads - X = feet, PLoad = kips, Moment = kip ft
X = 0; PLoad = -11.5;
X = 6; PLoad = -11.5;
X = 12; PLoad = -11.5;
X = 18; PLoad = -11.5;
X = 24; PLoad = -11.5;
X = 30; PLoad = -11.5;
Uniform Loads - XStart \& XEnd $=$ feet, UStart \& UEnd $=$ kip/ft

```

Project:
By:
Date:
Checked:
Date:
Page: 21 of 38

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Project:
By:
Date:
Checked:
Date:
Page: 22 of 38

Analysis Data:
Beam Length \(=30\). feet
Number of Nodes \(=201\)
Number of Elements \(=200\)
Number of Degrees of Freedom \(=402\)
Reactions:
\begin{tabular}{rrr} 
X & Vert & Rot \\
feet & kips & kip ft \\
\hline
\end{tabular}
\begin{tabular}{rr}
6.000 & 34.500 \\
24.000 & 34.500
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & Diff \\
\hline Vert & -69.000 & 69.000 & 0.000 kips \\
Rot & 1035.000 & -1035.000 & 0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Min & Shear & - & -11.500 & kips & at & 23.550 & feet \\
\hline Max & Shear & _ & 11.500 & kips & at & 8.550 & feet \\
\hline Min & Moment & - & -69.000 & kip ft & at & 6.000 & feet \\
\hline Max & Moment & \(=\) & 9.977e-008 & kip ft & at & 16.200 & feet \\
\hline Min & Rotation & \(=\) & -0.007064 & radians & at & & feet \\
\hline Max & Rotation & = & 0.007064 & radians & at & 30.000 & feet \\
\hline Min & Deflection & \(=\) & -0.423861 & in & at & & feet \\
\hline Max & Deflection & \(=\) & 0.084772 & in & at & 12.000 & feet \\
\hline
\end{tabular}

Row 'C' ckoss Bexm
REFORTO SAT / FOn crossibena loans.



Refen to shtis 24 To 26
\(M_{y}=61.35\) BY OBSERUATION, USE WICY 3.0
\[
\begin{aligned}
& S_{x}=\frac{61.35^{k-1}+12^{1}}{\left.0.66 / 5 \delta^{105}\right)}-22.31 \mathrm{in}^{3} \\
& S_{x}\left(p R_{0}+\operatorname{von}\right)=42 \mathrm{in}^{3}
\end{aligned}>\text { ok }
\]

SWLAY LOADS

Row ' \(B\) ' TRIBUTARY \# OF SEATS * lemyTH of STAND \(\forall 24\) PCF of SEAT NUMBER OF \({ }^{*} X\) 'BRACES
\[
\frac{9 \text { SEATS } \times 175 C F Y 24 \text { PLF }}{5-^{\prime} X^{\prime} \text { BRANES }}=7.56^{\mathrm{K}}
\]

Row ' \(c\) ' EA. 6' PB STMABON TARES \(2.5^{K}\) (MFE)
\[
\frac{\text { Lsturgu } * 2.5 K}{2-\text { ' }^{\prime} \text { Bnaut }}=7.5 \mathrm{k}
\]

\section*{WinBeam}

Project:

Description:
05-1013
Memorial Field
Portland, ME
Home
CB-C AT PB
Units: English
Properties \(-X=\) feet, \(E=k s i, \quad I=i n^{\wedge} 4\)
\(\mathrm{X}=0 ; \mathrm{E}=29000 ; \mathbf{I}=291\);
\(X=42 ; \quad E=29000 ; \quad \mathbf{I}=291 ;\)
Moment Releases - \(\mathrm{X}=\) feet
\(X=21\);
Supports \(-X=\) feet, Displacement \(=\) inches, Rotation \(=\) radians
\(X=6 ; \quad\) Disp \(=0 ;\)
\(X=21 ; \quad\) Disp \(=0\);
\(X=36 ;\) Disp \(=0\);
Springs - X \(=\) feet, VSpring \(=\) kip/inch, \(R S\) pring \(=\mathrm{kip}\) in/rad
Point Loads \(-\mathrm{X}=\mathrm{feet}, \quad \mathrm{PLoad}=\mathrm{kips}, \quad\) Moment \(=\mathrm{kip} \mathrm{ft}\)
\(X=0 ; \quad\) PLoad \(=-1.5\);
\(\mathrm{X}=5.5 ;\) PLoad \(=-1.5\);
\(X=6 ;\) PLoad \(=-9\);
\(\mathrm{X}=12 ;\) PLoad \(=-14\);
\(X=18 ; \quad\) PLoad \(=-14 ;\)
\(\mathrm{X}=24 ; \quad\) PLoad \(=-14\);
\(\mathrm{X}=30 ; \quad\) PLoad \(=-14\);
\(X=36 ;\) PLoad \(=-9\);
\(X=36.5 ; \quad\) PLoad \(=-1.5\);
\(X=42 ; \quad\) PLoad \(=-1.5\);
Uniform Loads - XStart \& XEnd \(=\) feet, UStart \& UEnd \(=k i p / f t\)

Project:
By:
Date:
Checked:
Date:
Page: 25 of 38

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Project:
By:
Date:
Checked:
Date:
Page: Zb of 36

Analysis Data:
```

Beam Length = 42. feet
Number of Nodes = 207
Number of Elements = 206
Number of Degrees of Freedom = 414

```

Reactions:
\begin{tabular}{rr} 
X & \begin{tabular}{r} 
Vert \\
kips
\end{tabular} \\
\hline & \\
6.000 & 23.850 \\
21.000 & 32.300 \\
36.000 & 23.850
\end{tabular}

Equilibrium:
\begin{tabular}{rrrr} 
& Force & Reaction & \multicolumn{1}{c}{ Diff } \\
\hline Vert & -80.000 & 80.000 & -0.000 kips \\
Rot & 1680.000 & -1680.000 & 0.000 kip ft
\end{tabular}

Min \& Max values:
\begin{tabular}{llrllll} 
Min Shear & - & -16.150 & kips & at & 18.200 & feet \\
Max Shear & - & 16.150 & kips & at & 23.600 & feet \\
Min Moment & -9.750 & kip ft & at & 6.000 & feet \\
Max Moment & - & 61.350 & kip ft at & 30.000 & feet \\
Min Rotation & \(=\) & -0.005169 & radians at & 20.800 & feet \\
Max Rotation \(=\) & 0.005174 & radians at & 21.000 & feet \\
Min Deflection \(=\) & -0.276841 & in & at & 28.345 & feet \\
Max Deflection \(=\) & 0.289291 & in & at & 42.000 & feet
\end{tabular}


CROS, BRAUE DOSLG \(N\)
Row' \(B^{\prime}\)

LENGTH of ' \(x\) '-BRALE =
\[
\sqrt{(18)^{2}+(8+1)^{2}}=19.7^{1}
\]


TENSION FORuE \(: \frac{19.7}{13^{1}}\left(7.56^{k}\right)=8.27^{\mathrm{m}}\)
TENSINN
\[
\frac{K L}{r_{y}} \leq 300 \quad r_{y} \geq \frac{19.7 \times 12^{\prime \prime}}{300}=0.788^{\prime \prime}
\]


Gross Atno

SHECK WEAR DIRELTION:
\[
\begin{aligned}
& \frac{L}{2}=\frac{19.7^{\prime}}{2}=9.6^{\prime} \quad \frac{k L}{r} \leq 300 r \frac{9.6^{\prime} \times 12}{300}=0.384 \mathrm{~N} \\
& \quad r_{y}(L 3 \times 2 \times 1 / 4)=0.574 \mathrm{in}>0.384 \mathrm{in} 0 k!
\end{aligned}
\]

\[
\begin{aligned}
& P=42^{k} \quad(P 9(6) \\
& 1=8-0 \\
& P_{C \Delta D}=102^{k} \gg 42^{n} \quad \text { ok! }
\end{aligned}
\]

Bow 'c'
\[
\begin{array}{ll}
P=32.3^{k} & \\
L=11.75^{\prime} & \text { Tny } 46 \times 5
\end{array}
\]
\(P_{\text {CAP }} \Rightarrow\) INTERPACATE
\(\left.\begin{array}{ll}\frac{1}{11}, & \frac{P_{C A D}}{74} \\ 11.75 \\ 12, & \times \\ 66^{k}\end{array}\right\}\)
BY inspectian, \(P_{\text {CAP }}>32.3^{\mathrm{K}}\) so, USE W6415

Foundation Design Alwwable soil Bry prossume USOD in dESIGN 15300 PSF PER MEMORANDUM DATED \(12 / 3 / 0\) \&

Row 'A' FROM SEBAGO TECHNISS. (SEE SAT 30)

AT PRESS BOX
WIND
\[
\begin{aligned}
& D=7 \text { PSF/107psf }\left(38.34^{k}\right)=2.51 \mathrm{k} \\
& L=100 / 107 \text { pif }\left(38.34^{n}\right)=35.83^{\mathrm{n}}
\end{aligned}
\]


Awsy Frow \(P B\)

\(6 \times 4\)

Row 'B' (Ausy From PB)

\(6 \times 4\)
Dow 'C'

REFER TO SHTS 31 TO 35 Fon FOOTIT SIzEs:



This memorandum presents our recommendation for allowable bering stress for new grandscaad foundations.

In ftrmary, we recommuexd that the new grandstands be supported on spread footings bearing on the undisturbed, naturally deposited sand, or on compacted structural fill placed after tomoval of unsuitable soil.

\section*{Infrodection}

Memorial Eield is located at me northwest corner of the intersecrion of Ludlow and Leland Surets in Portland, Maine: The fietu presenty consisus of a grassed multi-use fiejd, gravel track, and grandstands. Results of our subsurface investigation are presented in our memorandum dated November 29, 2004.

\section*{Dibcusaion}

The undisturbed, nanurally deposited sand encountered at the site is generally tnedium dense with Standard Penecration Resistance "N" values varying from approximately 5 to 75 . In our opinien, the grandstands may to supported on the undisturbed, naturally deposited sand, or on compacted structoral fill phaced after femoval of unsurituble soifh.

Footings should be proportioned for an allowabte bearing stress in pounds per square fert (psf) equal to 1.000 multeplited ty the fexse lateral dimension of the fooring in feer up io a maximum of 3.000 psf . All footings should be at least 1.5 feet wide.

Footings should be founded a minimum of 4.5 feet below the lowest adjacent ground surface exposed to freezing.

KLRMKind.



Q- \(\frac{10 L+L]}{L^{2}}[1+6(\mathrm{e} / \mathrm{C})]\)

ES \(=M_{\text {mand }} / M_{\text {ovetmina }}\)

and
CUCCUATE FACTORED SOU BEARMC PRESSIRE
TOREO LOADS UNTS XAP FT

mals \(2 \quad u=1.4 R+1 . \pi L\)





L2x2x3/16


FRONT RAIL POST (6-0" cc)


SIDE RAIL POST (4'-0" \(\mathrm{c} / \mathrm{c}\) )


REAR RAIL POST ( \(6-0 \mathrm{c} / \mathrm{c}\) ) \({ }^{\bullet}\) INCREASE IN ALLOWABLE STRESS \(1 / 3\)

\(\qquad\)
Row \(A^{\prime}\) CHECK wINO AT PDESS BoX


Anton Bunt A193 B-7
\[
\begin{aligned}
& T_{A K} \Rightarrow F_{y}=105 \mathrm{kII} \quad F_{L}=125^{\mathrm{kSI}} \\
& F_{t}=0.33 F_{4}=0.33\left(125^{\mathrm{ksI})}=41.25^{\mathrm{k}}\right. \\
& T_{A U}=F_{t} A=41.25^{k}\left[\frac{1}{4} \pi(3 / 4)^{2}\right]=18.22^{\mathrm{k}} \\
& T_{\text {ACe }}=18.22^{\mathrm{k}}>T_{\text {ACt }}: 12.91^{\mathrm{k}} \text { ok! }
\end{aligned}
\]

SEISmiC Antysis (IBC 2003)
\[
\begin{aligned}
& S_{s}=0.30 \quad(\text { Fg } 1615(1)) \\
& S_{1}=0.10 \quad(\text { Fig } 1615(2))
\end{aligned}
\]

ASSume SITE CeASS' D' (TABCE 1615.1.)
\[
\begin{aligned}
& F_{a}=1.6 \text { (TABCE } 1615.1 .2(1) \text { ) } \\
& F v=2.4 \quad(\text { TADSE } 1415.1 .2(21) \\
& \left.\begin{array}{l}
S_{m s}=F_{g} S_{s}=(1.6)(0.3)=0.48 \\
S_{m 1}=F_{v} S_{1}=(2.4)(0.1)=0.24
\end{array}\right\} \text { Aorusten } \\
& S_{\text {os }}=2 / 3 S_{\text {ms }}=2 / 3(0.48)=0.32 \\
& S_{0_{1}}=2 / 3 S_{m 1}=2 / 3(0.2 A)=0.16
\end{aligned}
\]

SEISmic USE GROW \(\mathbb{I}\), FALUDE WACCO DESCKT in SURSTAmTIDC PUBCiC HAzme SEISmiC DESEGN CATC (TABCE \(1616,3(1)\) ) (TABCE 16/6.3(2)) Minimum latenal FORCE \(\Rightarrow\)

THE CATIUN LAAD IS APPIED TO TAE FOUNDATTON.
\(F_{x}=0.01 w_{x} \quad w_{x}=W\) APPIED TO STRUTRNE AT LEVECX
\(W=D\) USE LANGEST PIER REACTION \(=42 K\)
\[
\begin{aligned}
& D=7 \text { p5F/copesf }(42 k)=2.75^{k} \\
& W=100 / 107\left(42^{k}=39.25 x\right. \text { (As5ume sTonme) } \\
& W=2.75^{x}+0.25\left(39.25^{4}\right)=26.986^{k}
\end{aligned}
\]
\(F_{x}=0.01\left(26.986^{\mathrm{k}}\right)=0.27^{\mathrm{k}} \quad\) BY INSPECTION, TATS LOAD is Smare AUD NeGuararle!```

