Table of Contents

Ford ESG642 Gas Engine	1
Caterpillar Generator	11
Caterpillar Electronic Modular Control Panel	19
Quantity of one (1) Caterpillar Light Remote Annunciator Module	23
Quantity of one (1) Caterpillar Engine Battery Set	27
Quantity of one (1) Caterpillar 12 VDC Engine Battery Charger	30
Quantity of one (1) Caterpillar Weatherproof Enclosure	33
Quantity of one (1) ASCO Automatic Transfer Switch	36
Startup and Site Testing	45
Warranty	55
Installation Drawings	57

Ford ESG642 Gas Engine

LP & NATURAL GAS GENERATOR SETS

Exclusively from your Caterpillar® dealer

FEATURES

GENERATOR SET

- Complete system designed and built at ISO 9001
 certified facilities
- Factory tested to design specifications at full load conditions

ENGINE

- Governor, Isochronous Woodward electronic
- Electrical system, 12 VDC
- · Cartridge type filters
- · Battery, rack and cables
- · Coolant and lube oil drains piped to edge of base

GENERATOR

- Insulation system, class H
- Drip proof generator air intake (NEMA 2, IP23)
- Electrical design in accordance with BS5000 Part 99, IEC60034-1, EN61000-6, NEMA MG-1.33

AUTOMATIC VOLTAGE REGULATOR

- Voltage within ± 0.5% 3 Phase and ± 1.0% Single Phase at steady state from no load to full load
- Provides fast recovery from transient load changes

COOLING SYSTEM

- Radiator and cooling fan complete with protective guards
- Standard ambient temperatures up to 131° F (55° C)

MOUNTING ARRANGEMENT

- · Heavy-duty fabricated steel base with lifting points
- · Anti-vibration pads to ensure vibration isolation
- Complete OSHA guarding
- Stub-up pipe ready for connection to silencer pipework
- Weather protective enclosures are available
- · Flexible fuel lines to base with NPT connections

LEHF1093-08 (02-05)

STANDBY 30-50 kW PRIME 27-42.5 kW 60 Hz 27-42.5 kW

Model	Standby –	- kW (kVA)	Prime — kW (kVA)	
would	LP	Natural	LP	Natural
G30F3	30 (37.5)	30 (37.5)	27 (33.8)	27 (33.8)
G40F3	40 (50)	40 (50)	36 (45)	36 (45)
G50F3	50 (62.5)	45 (56.3)	42.5 (53.1)	37.5 (46.9)
G30F3S	30 (30)	30 (30)	27 (27)	27 (27)
G35F3S	35 (35)	35 (35)	31.5 (31.5)	31.5 (31.5)
G45F3S	45 (45)	42.5 (42.5)	40 (40)	36 (36)

CIRCUIT BREAKER

- UL/CSA listed
- · 3-pole with solid neutral
- NEMA 1 steel enclosure, vibration isolated
- · Electrical stub-up area directly below circuit breaker

CONTROL SYSTEM

- · 2001 Autostart control panel
- Vibration isolated NEMA 1 enclosure with lockable hinged door
- AC and DC wiring looms

EQUIPMENT FINISH

- All electroplated hardware
- Anticorrosive protection prior to painting
- High gloss polyurethane paint for durability and scuff resistance

QUALITY STANDARDS

 BS4999, BS5000, BS5514, EN61000-6, NEMA MG1-33, NFPA 110 (with optional equipment)

DOCUMENTATION

- Operation and maintenance manuals provided
- Wiring diagrams included

WARRANTY

Materials and specifications are subject to change without notice.

· All equipment carries full manufacturer's warranty

 $\bigwedge \bigwedge \bigwedge \bigwedge$ where the world turns for power

TANDBY 30-50 kW RIME 27-42.5 kW

60 H z

OLYMPIAN[™]

Exclusively from your Caterpillar[®] dealer

OPTIONAL EQUIPMENT*

ENCLOSURE

- Weatherproof enclosure (includes internal silencer system)
- Sound attenuated enclosure (includes internal silencer system)
- Panel viewing window
- External emergency stop pushbutton

SILENCER SYSTEM — OPEN UNIT

- Level 1 silencer
- Level 2 silencer
- Level 3 silencer
- Mounting kit
- Through-wall installation kits

ENGINE

- · Battery heater
- Lube oil drain pump
- · Lube oil sump heater

CIRCUIT BREAKER

- Auxiliary voltfree contacts
- Shunt trip (100+ amp breakers)

GENERATOR

- Anti-condensation heater
- AREP excitation system (3-Phase only)
- Generator upgrade 1 size (3-Phase only)
- Permanent magnet generator (except G30F3)

COOLING SYSTEM

· Coolant heater

- · Low coolant temperature alarm
- Low coolant level shutdown
- · Radiator transition flange

MOUNTING ACCESSORIES

- · Seismic (Zone 4) vibration isolators
- *Some options may not be available on all models. Not all options are listed.

GENERATOR SET DIMENSIONS AND WEIGHTS

Width in (mm) Weight lbs (kg)** Model Length in (mm) Height in (mm) G30F3 86.6 (2200) 39.4 (1000) 47.5 (1206) 1422 (645) G40F3 86.6 (2200) 39.4 (1000) 47.5 (1206) 1543 (700) G50F3 86.6 (2200) 39.4 (1000) 47.5 (1206) 1698 (770) G30F3S 86.6 (2200) 39.4 (1000) 47.5 (1206) 1543 (700) G35F3S 86.6 (2200) 39.4 (1000) 47.5 (1206) 1587 (720) 86.6 (2200) 39.4 (1000) 47.5 (1206) 1698 (770) G45F3S

CONTROL SYSTEM

- Control Panel Removal, AC and DC wiring looms terminated in sockets
- 4001 Autostart control panel
- 4001E Autostart control panel

FUEL SYSTEM

- LP gas (vapor)
- LP gas (liquid)
- Natural gas/LP gas (vapor) automatic changeover
- · Natural gas/LP gas (liquid) automatic changeover
- Low gas pressure alarm

REMOTE ANNUNCIATORS

- 8- and 16-channel remote annunciator panel (supplied loose)
- Remote annunciator upgrade normal/run control switch
- Remote annunciator upgrade lockdown emergency stop button

MISCELLANEOUS ACCESSORIES

- Toolkit
- Additional operator's manual pack
- Special enclosure color
- UL listing / CSA certification
- French Language labels
- EXTENDED SERVICE CONTRACTS
- Extended Service Coverage available

TESTING

 Factory witness test (restricted to 6 hours — full load, 1.0 pf)

NOTE: General configuration not to be used for installation. See specific dimensional drawings for detail.

**Includes oil and coolant

TANDBY RIME

Ηz

SPECIFICATIONS

0

6

30-50 k\ 27-42.5 k\

OLYMPIANTM

254 (1 2)

Exclusively from your Caterpillar® dealer

GENERATOR Voltage Regulation.... ±0.5% 3 Phase and 1.0 % Single Phase at steady state from no load to full load Frequency ±0.25% for constant load, no load to full load Radio Interference Compliance with BS800 and per NEMA MG 1-32.11 Telephone Harmonic Factor THF <2% Stator 2/3 pitch Type Brushless, self excited, self-regulated, drip proof, 4-pole, sealed bearings, direct coupled by flexible disk, 12 reconnectable leads Insulation Class H per NEMA MG1-1.66 Temperature Rise Within Class H limits Overspeed Capability 125% Available Voltages 1-Phase — 120/240, 110/220 3-Phase - 277/480, 120/240, 120/208, Deration..... Please consult factory for available outputs Ratings At 77° F (25° C), 500 ft. (152.4 m), 60% humidity, 1.0 pf (1-Phase), 0.8 pf (3-Phase)

ENGINE

Manufacturer	Ford Motor Co.
Model	ESG642
Туре	4-Cycle
Aspiration	Natural
Cylinder Configuration	V6

Dicplacement

cuin (L)

NEMA 1 steel enclosure with lockable hinged door Vibration isolated mounted Autostart control panel Single location customer connector point Electrical stub-up area directly below control panel

RATING DEFINITIONS

Standby — Applicable for supplying continuous electrical power (at variable load) in the event of a utility power failure. No overload is permitted on these ratings. The generator is peak rated (as defined in ISO8528-3).

Prime — Applicable for supplying continuous electrical power (at variable load) in lieu of commercially purchased power. There is no limitation to the annual hours of operation and the generator set can supply 10 percent overload power for 1 hour in 12 hours.

Consult your Olympian representative for more information.

www.CAT-ElectricPower.com

© 2005 Caterpillar All rights reserved. Printed in U.S.A.

STANDBY 30/30 kW PRIME 27/27 kW 60 Hz

OLYMPIAN[™]

G30F3 (3-Phase)

Exclusively from your Caterpillar® dealer

Materials and specifications are subject to change without notice.

Commenter Cotto haired Data 1900 mars/	co II-	LP	Gas	ias Natura	
Generator Set lechnical Data — 1800 rpm/		Standby	Prime	Standby	Prime
Power Rating	kW (kVA)	30.0 (37.5)	27.0 (33.8)	30.0 (37.5)	27.0 (33.8)
Lubricating System Type: Full Pressure Oil Filter: Spin-On, Full Flow Oil Type Required: API CF-4 Total Oil Capacity Oil Pan	U.S. gal (L) U.S. gal (L)	1.5 (5.7) 1.2 (4.7)	1.5 (5.7) 1.2 (4.7)	1.5 (5.7) 1.2 (4.7)	1.5 (5.7) 1.2 (4.7)
Fuel System Generator Set Fuel Consumption 100% Load 75% Load 50% Load	Cfh (m³/hr) Cfh (m³/hr) Cfh (m³/hr)	164 (4.7) 124 (3.5) 85 (2.4)	147 (4.2) 112 (3.2) 74 (2.1)	454 (12.9) 345 (9.8) 236 (6.7)	410 (11.6) 306 (8.7) 204 (5.8)
Engine Electrical System Ignition System: Electronic, Distributorless Voltage/Ground: 12/Negative Battery Charging Generator Ampere Rating	Amps	95	95	95	95
Cooling System Water Pump Type: Centrifugal Radiator System Capacity Incl. Engine Maximum Coolant Static Head Coolant Flow Rate Minimum Water Temperature to Engine Temperature Rise Across Engine (Air) Heat Rejected to Coolant at Rated Power Total Heat Radiated to Room at Rated Power Radiator Fan Load	U.S. gal (L) Ft H ₂ O (m H ₂ O) U.S. gal/hr (L/min) °F (°C) 8tu/min (kW) Btu/min (kW) Hp (kW)	5.3 (20) 32.4 (9.8) 1236 (79.5) 169 (76) 9 (5) 1182 (20.8) 932 (16.4) 1.88 (1.4)	5.3 (20) 32.4 (9.8) 1236 (79.5) 169 (76) 9 (5) 1069 (18.8) 847 (14.9) 1.88 (1.4)	5.3 (20) 32.4 (9.8) 1236 (79.5) 169 (76) 9 (5) 1182 (20.8) 932 (16.4) 1.88 (1.4)	5.3 (20) 32.4 (9.8) 1236 (79.5) 169 (76) 9 (5) 1069(18.8) 847 (14.9) 1.88 (1.4)
Air Requirements Combustion Air Flow Maximum Air Cleaner Restriction Radiator Cooling Air (zero restriction) Generator Cooling Air Allowable Air Flow Restriction (After radiator) Cooling Airflow (@ rated speed) Rate with restriction	Cfm (m ³ /min) In H ₂ O (kPa) Cfm (m ³ /min) Cfm (m ³ /min) In H ₂ O (kPa) Cfm (m ³ /min)	53 (1.5) 10.1 (2.5) 6356 (180) 381 (10.8) 0.5 (0.125) 4238 (120)	50 (1.4) 10.1 (2.5) 6356 (180) 381 (10.8) 0.5 (0.125) 4238 (120)	53 (1.5) 10.1 (2.5) 6356 (180) 381 (10.8) 0.5 (0.125) 4238 (120)	50 (1.4) 10.1 (2.5) 6356 (180) 381 (10.8) 0.5 (0.125) 4238 (120)
Exhaust System Maximum Allowable Backpressure Exhaust Flow at Rated kW Exhaust Temperature at Rated kW — Dry Exhaust	In Hg (kPa) Cfm (m³/min) °F (°C)	4.5 (15.3) 141 (4) 1080 (584)	4.5 (15.3) 131 (3.7) 1054 (570)	4.5 (15.3) 141 (4) 1080 (584)	4.5 (15.3) 131 (3.7) 1054 (570)
Generator Set Noise Rating* (Without Attenuation) at 3 ft (1 m)	dB(A)	88	88	88	88

Generator Technical Data		277/480V	120/240	V	120/208V
Motor Starting Capability (30% Voltage Dip)	: (kVA) Self Excited AREP Excited	72 85	54 64		54 64
Full Load Efficiencies (LPG):	Standby Prime	90.1 90.4	89.0 89.5		89.0 89.5
Reactances (per unit):	x _d	2.21	2.94		2.94
. .	x' _d	0.12	0.16		0.16
Reactances	X"d	0.058	0.078		0.078
applicable to the	Xa	1.10	1.47		1.47
LPG standby	X"'a	0.083	0.110		0.110
rating	X ₂	0.071	0.094		0.094
Ũ	x ₀	0.006	0.007		0.006
Time Constants:		t'd 25 ms	t"d 2.5 ms	^{t'} do 469 ms	t _a 4 ms

* dB(A) levels are for guidance only

OLYMPIAN[™]

LC50

The LC-50 is a fuel mixer standard on all Isuzu and Ford gas powered generator sets. It consists of a die-cast aluminum throttle body, integrated gas mixer featuring a venturi style annular ring mixer with no moving parts for superior mixing, plus a fully programmable; integrated digital speed control and bi-directional actuator. The actuator connects directly to the butterfly throttle valve which regulates the amount of air/fuel mix being supplied to the engine.

When the engine is cranked, the flow of air through the venturi ring mixer draws in gas. As the airflow increases, more gas is drawn in, maintaining the air/fuel ratio under all load conditions. This system requires that the pressure of the gas be regulated to zero pressure and that the flow of gas can be metered as required. For this reason, a Zero Pressure Regulator (ZPR) is incorporated between the gas supply and the LC50 unit, during running the gas flow to the LC50 is metered by means of the main adjustment screw (MAS), which is adjusted to give good air/fuel ratio for all load conditions.

The system operates using a tailored software configuration for the specific engine to which it is fitted and can operate using both natural gas (NG) and LPG.

When using LP liquid, the regulator is replaced with a vaporizer, which uses the heat from the engine coolant to assist in vaporizing the fuel before reaching the LC50 unit.

www.CAT-ElectricPower.com

© 2003 Caterpillar All rights reserved. Printed in U.S.A.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

LEHF1867-03 (08-03)

OLYMPIAN[™]

COOLANT HEATER WHH

Appropriate when the generator set is to be sited in a low ambient environment, the heater maintains the engine coolant at a temperature (typically 100°F (38°C)) which facilitates rapid starting and load acceptance. The heater assembly uses UL compliant components (to UL1030) and has CSA certification which is to both CSA & UL standards.

The heater itself is powered by a 110/120 (VAC 120) volt or 208/240 volt (VAC 240) AC auxiliary supply protected by a safeguard breaker inside the main control panel. A thermostatic controller is included to regulate the output temperature to within safe limits. When the generator set is not running, the heater is automatically connected to the AC supply through a power relay mounted in the control panel. Upon receiving a start signal, the AC supply is automatically disconnected by the power relay and automatically reconnected when the start signal is removed and the engine has stopped.

FEATURES

LEHX0484-05 (02-05)

- Molded from Polyphenylene Sulfide
- Rust free, corrosion resistant with exceptional tensile strength
- Vibration and shock tested to extreme limits to ensure durability
- Compatible with all coolant additives
- Incoloy element for longer service life

AAAA WHERE THE WORLD TURNS FOR

POWER

OLYMPIAN[™]

VAC 120

3 Phase	3 Phase	Nominal Coolant
Generator Set Models	Generator Set Models	Heater Power
Diesel	Gas	Consumption (Watts)
D13P2-D20P4, D20P1-D75P3	G12U3-G50F3	1000
D90P1 – D150P1, D125P2	G60F3-G125G1	1500
D200P3	NA	1800
Single Phase	Single Phase	Nominal Coolant
Generator Set Models	Generator Set Models	Heater Power
Diesel	Gas	Consumption (Watts)
Single Phase	Single Phase	Nominal Coolant
Generator Set Models	Generator Set Models	Heater Power
Diesel	Gas	Consumption (Watts)
D13P2S - D20P4S	G10U3S – G25UH3S	1000
Single Phase	Single Phase	Nominal Coolant
Generator Set Models	Generator Set Models	Heater Power
Diesel	Gas	Consumption (Watts)
D13P2S – D20P4S	G10U3S – G25UH3S	1000
D20P1S – D60P3S, D25P4S-D100P4S	G20F3S-G45F3S	1000

VAC 240

3 Phase 3 Phase Generator Set Models Generator Set Models		Nominal Coolant Heater Power Consumption (Watts)	
Diesel	Gas	208 Volts	240 Volts
D20P1 – D75P3, D25P4 – D100P4	G30F3-G50F3	750	1000
D90P1 – D150P1, D125P2	G60F3-G125G1	1125	1500
D200P3	NA	1500	2000
Single Phase Generator Set Models	Single Phase Generator Set Models	Nominal Coolant Heater Power Consumption (Watts)	
Diesel	Gas	208 Volts	240 Volts
D20P1S - D60P3S, D25P4S - D100P4S	G30F3-G45F3S	750	1000
D75P1S - D100P1S,	G55F3S-G100F3S	1125	1500

www.CAT-ElectricPower.com

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

OLYMPIAN™

ULCERT UL2200 LISTING

Includes the following:

ALTERNATOR

An alternator manufactured by Leroy Somer with UL Recognized insulation system (UL1446).

PMG Alternators are available. The automatic voltage regulators used on Olympian sets are UL Recognized.

ELECTRONICS

The AC and DC wiring harnesses are made with UL Listed cable. The power wiring harnesses are made with UL Listed cable and UL Recognized lugs, and Circuit breakers are UL Listed.

CONTROL PANEL

The control panel wiring is made with UL Listed cable. Control Panel components are UL Listed and used in line with UL Listed or Recognized approval (UL508A).

NOTE: UL Listing is applicable to the 2001C, 4001C, 4001EC, EMCP 3.1 and EMCP 3.2 control panels.

TESTING

All UL Listed sets are rigorously tested in line with UL certification requirements.

LABELING

Labeling meets UL requirements. UL listing on Rating Plate, generally affixed to the alternator, example below.

MANUFACTURED IN THE UNITED KINGDOM EXCLUSIVELY FOR CATERPILLAR DEALERS

OLYMPIAN POWER SYSTEMS 114 MAWSONS WAY NEWBERRY SOUTH CAROLINA 29108

LEHF1263-10 (02-05)

WHERE THE WORLD TURNS FOR POWER

OLYMPIAN™

Exclusively from your Caterpillar® dealer

LUBV1 LUBE OIL DRAIN

The engine lubrication oil sump is piped to the edge of the generating set skidbase using a heavy duty non-hydroscopic flexible hosing.

A manual shutoff valve is installed between the engine lubrication oil sump and the flexible hosing. By ensuring the valve remains shut when not in use, the risk of oil leaks due to typical wear and tear of the hosing is removed. This arrangement provides access for the convenient drainage of the lubrication oil at the edge of the generating set skidbase, and therefore removing the need to place specially designed trays under the engine sump.

The LUBV1 is installed as standard on all generating sets fitted with sound attenuated or super sound attenuated enclosures.

www.CAT-ElectricPower.com

© 2003 Caterpillar All rights reserved. Printed in U.S.A.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

European Sourced LEHF1164-02 (07/03) Caterpillar Generator

GENERATORS

OLYMPIAN[™]

Exclusively from your Caterpillar® dealer

AUTOMATIC VOLTAGE REGULATOR – R230

The circuitry of the R230 Automatic Voltage Regulator (AVR) provides closed loop control of the generator output voltage by regulating the exciter field current. The R230 is powered by the shunt field excitation system and is fitted as standard on :

- 1000 Series generators
- 2000 Series generators
- 3000 Series generators

SPECIFICATION

- Steady state voltage regulation ± 0.5%
- Voltage supply and sensing 85 to 139 volts (50/60 Hz)
- Rapid response time (500ms) for a transient voltage variation amplitude of ±20%
- Capable of remote voltage adjustment: ± 5%

ADJUSTMENT CAPABILITY

The R230 AVR features the following adjustment capabilities. (Please note that no adjustments should be made prior to careful consultation of the generator installation and maintainence manual)

- Generator output voltage adjustment
- Stability adjustment
- · Underspeed threshold adjustment
- 50Hz or 60Hz frequency option
- Remote voltage adjustment option

www.CAT-ElectricPower.com

© 2003 Caterpillar All rights reserved. Printed in U.S.A.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

Global Sourced LEHX0479-04 (05/03)

S1 100A Standard thermal-magnetic

General

The S1 breaker family ranges from 15 through 100 amperes. The S1 trip mechanisms are non-interchangeable and use sensitive electromagnetic relays for overcurrent trip protection. Heat sensitive bimetals are used for thermal rating of the breaker. Lugs are included with the S1 breaker.

Number of poles

The S1 is available in three pole or four pole versions. The four pole version is IEC only. For price estimate of a four pole device, add 35% to list price of selected version three pole breaker, contact ABB Control for details.

Accessory mounting Shunt trips or undervoltage releases mount in the left cavity. Auxiliary or bell alarm switches mount in the right cavity.

Reverse feeding All versions of the S1 family are suitable for reverse feed applications.

S1N

UL489 / CSA	C22.2 Interrupting	capacity (kA	RMS)

Voltage	Continuous rating	N
240VAC	15 – 100A	50kA
277/480VAC	15A 20 – 100A	14kA 20kA

IEC-947 Interrupting capacity (kA RMS)

Voltage	Continuous rating	N
230VAC 380/400/415VAC 440VAC 500VAC	15 – 100A	40kA 25kA 16kA 12kA

Breaker	IC at 480 VAC	Rating	Magnetic	3 pole catalog number
*	14kA	15A	500A	S1N015TL
S1N	20kA	20A 25A 30A 40A 50A 60A	500A 500A 500A 500A 500A 500A 600A	\$1N020TL \$1N025TL \$1N030TL \$1N040TL \$1N050TL \$1N050TL \$1N060TL
		70A 80A 90A 100A	700A 800A 900A 1000A	S1N070TL S1N080TL S1N090TL S1N100TL

GENERATORS

GAS GENERATOR SET ENGINE/GENERATOR CORRELATION TABLES

OLYMPIAN[™]

GAS FUELED THREE PHASE									
		STAND	ARD GENERA	TOR	OVERS	SIZE GENERA	TOR		
MODEL	ENGINE	SHUNT	AREP	PMG	SHUNT	AREP	PMG		
G12U3	4ZB1	LUA1014HX	None	None	None	None	None		
G15U3	4ZB1	LUA1014NX	None	None	None	None	None		
G20UH3	4ZB1	LUA1012JX	None	None	None	None	None		
G25UH3	4ZB1	LUA1012NX	None	None	None	None	None		
G20F3	LRG425	LF1014NX	None	None	LF1014Q	None	None		
G25F3	LRG425	LF1014QX	None	None	LL1014S	None	None		
G30F3	ESG642	LL1014S	LL1024S	None	LL2014B	LL2024B	LL2034B		
G40F3	ESG642	LL2014B	LL2024B	LL2034B	LL2014D	LL2024D	LL2034D		
G50F3	ESG642	LL2014D	LL2024D	LL2034D	LL2014H	LL2024H	LL2034H		
G60F3	WSG1068	LL2014H	LL2024H	LL2034H	LL2014J	LL2024J	LL2034J		
G80F3	WSG1068	LL3014B	LL3024B	LL3034B	LL3014F	LL3024F	LL3034F		
G100F3	WSG1068T	LL3014B	LL3024B	LL3034B	LL3014F	LL3024F	LL3034F		
G125G1	GM8100	LL3014F	LL3014F	LL3024F	LL3014H	LL3024H	LL3034H		

GAS FUELED SINGLE PHASE									
		STAND	ARD GENERA	TOR	OVER	SIZE GENERA	TOR		
MODEL	ENGINE	SHUNT	AREP	PMG	SHUNT	AREP	PMG		
G10U3S	4ZB1	LUB1014HX	None	None	None	None	None		
G15U3S	4ZB1	LUB1014NX	None	None	None	None	None		
G17.5UH3S	4ZB1	LUB1012JX	None	None	None	None	None		
G25UH3S	4ZB1	LUB1012NX	None	None	None	None	None		
G20F3S	LRG425	LF1014QX	None	None	None	None	None		
G25F3S	LRG425	LFB1014SX	None	None	None	None	None		
G30F3S	ESG642	LL2014B	None	LL2034B	None	None	None		
G35F3S	ESG642	LL2014D	None	LL2034D	None	None	None		
G45F3S	ESG642	LL2014H	None	LL2034H	None	None	None		
G55F3S	WSG1068	LL2014J	None	LL2034J	None	None	None		
G75F3S	WSG1068	LL3014B	None	LL3034B	None	None	None		
G100F3S	WSG1068T	LL3014H	None	LL3034H	None	None	None		

None- not in pricebrook

LEHX0647-04 (10-03)

WHERE THE WORLD TURNS FOR POWER

FRAME 101

1014S / 1024S

WINDING

6

OLYMPIAN GENERATOR SETS

AUGUST 2002

MODELS

LL1014S(X) / LL1024S(X) (inc LF)

WINDING DETAILS							
Code	6	Insulation class	Н				
Phase	3	Leads	12				
Pole number	4	Pitch	2/3				

EXCITATION DETAILS							
Excitation system	SHUNT	AREP					
AVR model	R230	R438					
Sustained short-circuit current	1 <u>2</u> 1	300%:10s					
Steady state voltage regulation	±0.5%	±0.5%					

 MECHANICAL DETAILS

 Standard protection
 IP23

 Overspeed
 rpm
 2250

 Air flow 50Hz/60Hz
 m³/s
 0.15 / 0.18

F1004SW6-0

REF;

WAVEFORM	
Line voltage on no load or balanced linear rated load	
Total harmonic content THC	<4%
Telephone influence factor TIF (NEMA)	<50
Telephone harmonic factor THF (IEC)	<2%

LINE VOLTAGE	No over	voltage lolerance fo	440V 50H	z excitat	ion level	1						
Frequency / spee	d		60Hz / 1800rpm									
Series star		V	380	400	415	440	380	400	416	440	460	480
Series delta		V	220	230	240		220	230	240			
Parallel star		V		200	208	220		200	208	220	230	240
RATING	Powerf	actor 0.8, Altitude <=	=1000m									
Class H rise BR	125/40	kVA	30.0	30.0	30.0	30.0	34.0	35.0	36.0	37.0	38.0	39.0
		kW	24.0	24.0	24.0	24.0	27.2	28.0	28.8	29.6	30.4	31.2
Class H rise PR	150/40	kVA	31.8	31.8	31.8	31.8	36.0	37.1	38.2	39.2	40.3	41.3
		кW	25.4	25.4	25.4	25.4	28.8	29.7	30.6	31.4	32.2	33.0
Class H rise PR	163/27	kVA	33.0	33.0	33.0	33.0	37.0	39.0	40.0	41.0	42.0	43.0
		kW	26.4	26.4	26.4	26.4	29.6	31.2	32.0	32.8	33.6	34.4
Class F rise BR	105/40	kVA	27.3	27.3	27.3	27.3	30.9	31.9	32.8	33.7	34.6	35.5
		κW	21.8	21.8	21.8	21.8	24.8	25.5	26.2	26.9	27.7	28.4
EFFICIENCIES	Powerf	actor 0.8										
110% Class H BR		%	88.9	89.3	89.4	89.4	88.4	88.88	89.1	89.5	89.7	89.9
100% Close LI DD		c/	00.0	00 C	00.7	90 C	000	00.2	00 E	00.0	00.0	00.0

AND REPORTS		1153		14	Contraction 7							
25%	Class H BR	%	87.8	87.1	86.3	84.7	88.6	88.4	88.2	87.7	87.3	86.8
50%	Class H BR	%	90.4	90.1	89.8	89.0	90.6	90.5	90.6	90.6	90.4	90.3
75%	Class H BR	%	90.2	90.3	90.2	89.9	90.0	90.3	90.4	90.6	90.7	90.7
100%	Class H BR	%	89.3	89.6	89.7	89.6	88.9	89.3	89.5	89.9	90.0	90.2
110%	Class H BR	%	88.9	89.3	89.4	89.4	88.4	88.8	89.1	89.5	89.7	89.9

RACILAISTIC FARABLILINS		Reactance basi	e crass r	1 DR Tal	ing						
Short-circuit ratio		0.49	0.54	0.65	0.74	0.35	0.37	0.38	0.42	0.49	0.54
D-Axis synchronous reactance (unsaturated)	pu	2.14	1.93	1.79	1.59	2.91	2.70	2.57	2.36	2.22	2.09
D-Axis transient reactance (saturated)	pu	0.11	0.10	0.10	0.08	0.15	0.14	0.14	0.13	0.12	0.11
D-Axis sub-transient reactance (saturated)	pu	0.057	0.051	0.048	0.042	0.077	0.072	0.068	0.063	0.059	0.055
Q-Axis synchronous reactance (unsaturated)	pu	1.07	0.96	0.90	0.80	1.45	1.35	1.28	1.18	1.11	1.04
Q-Axis sub-transient reactance (saturated)	pu	0.079	0.072	0.067	0.059	0.108	0.100	0.095	0.088	0.082	0.078
Negative-sequence reactance (saturated)	pu	0.068	0.061	0.057	0.051	0.093	0.086	0.082	0.075	0.071	0.067
Zero-sequence reactance (independent)	pu	0.005	0.005	0.004	0.004	0.007	0.006	0.006	0.006	0.005	0.005
D-Axis transient time constant	ms		2	25				2	:5		
D-Axis sub-transient time constant	ms		2	.5				2	.5		
D-Axis open-circuit time constant	ms	469					4	69			
Armature time constant	ms	4					9	4			
Voltage recovery time	ms	< 500			< 500						
	Short-circuit ratio D-Axis synchronous reactance (unsaturated) D-Axis transient reactance (saturated) D-Axis sub-transient reactance (saturated) O-Axis sub-transient reactance (saturated) O-Axis sub-transient reactance (unsaturated) Negative-sequence reactance (saturated) Zero-sequence reactance (independent) D-Axis transient time constant D-Axis sub-transient time constant D-Axis open-circuit time constant Armature time constant Voltage recovery time	Short-circuit ratio D-Axis synchronous reactance (unsaturated) pu D-Axis transient reactance (saturated) pu D-Axis sub-transient reactance (saturated) pu D-Axis sub-transient reactance (saturated) pu Q-Axis synchronous reactance (unsaturated) pu Q-Axis sub-transient reactance (saturated) pu Q-Axis sub-transient reactance (saturated) pu Q-Axis sub-transient reactance (saturated) pu Zero-sequence reactance (independent) pu D-Axis transient time constant ms D-Axis sub-transient time constant ms D-Axis open-circuit time constant ms Voltage recovery time ms	Short-circuit ratio 0.49 D-Axis synchronous reactance (unsaturated) pu 2.14 D-Axis synchronous reactance (saturated) pu 0.11 D-Axis sub-transient reactance (saturated) pu 0.057 Q-Axis synchronous reactance (unsaturated) pu 0.057 Q-Axis sub-transient reactance (saturated) pu 1.07 Q-Axis sub-transient reactance (saturated) pu 0.079 Negative-sequence reactance (saturated) pu 0.068 Zero-sequence reactance (independent) pu 0.005 D-Axis sub-transient time constant ms D-Axis sub-transient time constant D-Axis spen-circuit time constant ms Valtage recovery time	Short-circuit ratio 0.49 0.54 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 D-Axis synchronous reactance (saturated) pu 0.11 0.10 D-Axis sub-transient reactance (saturated) pu 0.057 0.051 D-Axis synchronous reactance (unsaturated) pu 0.077 0.051 D-Axis sub-transient reactance (unsaturated) pu 0.079 0.072 Q-Axis sub-transient reactance (saturated) pu 0.068 0.061 Zero-sequence reactance (independent) pu 0.005 0.0055 D-Axis sub-transient time constant ms 2 2 D-Axis sub-transient time constant ms 4 Armature time constant ms 4 Voltage recovery time ms <5	Short-circuit ratio0.490.540.65D-Axis synchronous reactance (unsaturated)pu2.141.931.79D-Axis transient reactance (saturated)pu0.110.100.10D-Axis sub-transient reactance (saturated)pu0.0570.0510.048Q-Axis synchronous reactance (unsaturated)pu0.0570.0510.048Q-Axis sub-transient reactance (saturated)pu1.070.960.90Q-Axis sub-transient reactance (saturated)pu0.0790.0720.067Negative-sequence reactance (saturated)pu0.0680.0610.057Zero-sequence reactance (independent)pu0.0050.0050.004D-Axis transient time constantms250.043D-Axis sub-transient time constantms469Armature time constantms4Voltage recovery timems< 500	Short-circuit ratio0.490.540.650.74D-Axis synchronous reactance (unsaturated)pu2.141.931.791.59D-Axis synchronous reactance (saturated)pu0.110.100.100.08D-Axis sub-transient reactance (saturated)pu0.0570.0510.0480.042Q-Axis synchronous reactance (unsaturated)pu0.0570.0510.0480.042Q-Axis sub-transient reactance (unsaturated)pu1.070.960.900.80Q-Axis sub-transient reactance (saturated)pu0.0790.0720.0670.059Negative-sequence reactance (saturated)pu0.0680.0610.0570.051Zero-sequence reactance (independent)pu0.0050.0050.0040.004D-Axis transient time constantms25D-Axis open-circuit time constantms469Armature time constantms4Voltage recovery timems<	Short-circuit ratio 0.49 0.54 0.65 0.74 0.35 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 1.79 1.59 2.91 D-Axis synchronous reactance (saturated) pu 0.11 0.10 0.08 0.15 D-Axis synchronous reactance (saturated) pu 0.057 0.051 0.048 0.042 0.077 Q-Axis sub-transient reactance (saturated) pu 0.077 0.96 0.90 0.80 1.45 Q-Axis sub-transient reactance (saturated) pu 0.079 0.072 0.067 0.059 0.108 Negative-sequence reactance (saturated) pu 0.068 0.061 0.057 0.051 0.093 Zero-sequence reactance (independent) pu 0.005 0.004 0.007 D-Axis sub-transient time constant ms 25 - - D-Axis sub-transient time constant ms 469 - - Armature time constant ms 4 - Voltage recovery time 500 <td>Short-circuit ratio 0.49 0.54 0.65 0.74 0.35 0.37 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 1.79 1.59 2.91 2.70 D-Axis synchronous reactance (saturated) pu 0.11 0.10 0.08 0.15 0.14 D-Axis synchronous reactance (saturated) pu 0.011 0.10 0.08 0.15 0.14 D-Axis sub-transient reactance (saturated) pu 0.057 0.051 0.048 0.042 0.077 0.072 Q-Axis synchronous reactance (unsaturated) pu 1.07 0.96 0.90 0.80 1.45 1.35 Q-Axis sub-transient reactance (saturated) pu 0.079 0.072 0.067 0.059 0.108 0.100 Negative-sequence reactance (saturated) pu 0.068 0.061 0.057 0.051 0.093 0.086 Zero-sequence reactance (independent) pu 0.005 0.004 0.004 0.007 0.006 D-Axis sub-transient time constant</td> <td>Short-circuit ratio 0.49 0.54 0.65 0.74 0.35 0.37 0.38 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 1.79 1.59 2.91 2.70 2.57 D-Axis synchronous reactance (saturated) pu 0.11 0.10 0.10 0.08 0.15 0.14 0.14 D-Axis sub-transient reactance (saturated) pu 0.057 0.051 0.048 0.042 0.077 0.072 0.068 Q-Axis sub-transient reactance (unsaturated) pu 0.071 0.96 0.90 0.80 1.45 1.35 1.28 Q-Axis sub-transient reactance (unsaturated) pu 0.079 0.072 0.067 0.059 0.108 0.100 0.095 Negative-sequence reactance (saturated) pu 0.068 0.061 0.057 0.051 0.093 0.086 0.082 Zero-sequence reactance (independent) pu 0.005 0.004 0.007 0.006 0.006 D-Axis transient time constant ms <</td> <td>Net curve the curve of the</td> <td>Short-circuit ratio0.490.540.650.740.350.370.380.420.49D-Axis synchronous reactance (unsaturated)pu2.141.931.791.592.912.702.572.362.22D-Axis synchronous reactance (saturated)pu0.110.100.100.080.150.140.140.130.12D-Axis sub-transient reactance (saturated)pu0.0570.0510.0480.0420.0770.0720.0680.0630.059Q-Axis sub-transient reactance (unsaturated)pu0.0570.0510.0480.0420.0770.0720.0680.0630.059Q-Axis sub-transient reactance (unsaturated)pu0.0790.0720.0670.0590.1080.1000.0950.0880.082Q-Axis sub-transient reactance (saturated)pu0.0790.0720.0670.0590.1080.1000.0950.0880.082Negative-sequence reactance (saturated)pu0.0680.0610.0570.0510.0930.0860.0820.0750.071Zero-sequence reactance (independent)pu0.0050.0050.0040.0070.0060.0060.0060.005D-Axis sub-transient time constantms25252525252525D-Axis sub-transient time constantms469469469469469Armature time constantms4444<</td>	Short-circuit ratio 0.49 0.54 0.65 0.74 0.35 0.37 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 1.79 1.59 2.91 2.70 D-Axis synchronous reactance (saturated) pu 0.11 0.10 0.08 0.15 0.14 D-Axis synchronous reactance (saturated) pu 0.011 0.10 0.08 0.15 0.14 D-Axis sub-transient reactance (saturated) pu 0.057 0.051 0.048 0.042 0.077 0.072 Q-Axis synchronous reactance (unsaturated) pu 1.07 0.96 0.90 0.80 1.45 1.35 Q-Axis sub-transient reactance (saturated) pu 0.079 0.072 0.067 0.059 0.108 0.100 Negative-sequence reactance (saturated) pu 0.068 0.061 0.057 0.051 0.093 0.086 Zero-sequence reactance (independent) pu 0.005 0.004 0.004 0.007 0.006 D-Axis sub-transient time constant	Short-circuit ratio 0.49 0.54 0.65 0.74 0.35 0.37 0.38 D-Axis synchronous reactance (unsaturated) pu 2.14 1.93 1.79 1.59 2.91 2.70 2.57 D-Axis synchronous reactance (saturated) pu 0.11 0.10 0.10 0.08 0.15 0.14 0.14 D-Axis sub-transient reactance (saturated) pu 0.057 0.051 0.048 0.042 0.077 0.072 0.068 Q-Axis sub-transient reactance (unsaturated) pu 0.071 0.96 0.90 0.80 1.45 1.35 1.28 Q-Axis sub-transient reactance (unsaturated) pu 0.079 0.072 0.067 0.059 0.108 0.100 0.095 Negative-sequence reactance (saturated) pu 0.068 0.061 0.057 0.051 0.093 0.086 0.082 Zero-sequence reactance (independent) pu 0.005 0.004 0.007 0.006 0.006 D-Axis transient time constant ms <	Net curve the curve of the	Short-circuit ratio0.490.540.650.740.350.370.380.420.49D-Axis synchronous reactance (unsaturated)pu2.141.931.791.592.912.702.572.362.22D-Axis synchronous reactance (saturated)pu0.110.100.100.080.150.140.140.130.12D-Axis sub-transient reactance (saturated)pu0.0570.0510.0480.0420.0770.0720.0680.0630.059Q-Axis sub-transient reactance (unsaturated)pu0.0570.0510.0480.0420.0770.0720.0680.0630.059Q-Axis sub-transient reactance (unsaturated)pu0.0790.0720.0670.0590.1080.1000.0950.0880.082Q-Axis sub-transient reactance (saturated)pu0.0790.0720.0670.0590.1080.1000.0950.0880.082Negative-sequence reactance (saturated)pu0.0680.0610.0570.0510.0930.0860.0820.0750.071Zero-sequence reactance (independent)pu0.0050.0050.0040.0070.0060.0060.0060.005D-Axis sub-transient time constantms25252525252525D-Axis sub-transient time constantms469469469469469Armature time constantms4444<

EXCITATION VOLTAGE AND CURRENT												
Quoted for SHUNT. For AREP mul	ltiply voltage t	y 0.5 and	multiply currer	nt by 2								
No load excitation voltage		V	10.6	11.6	12.5	14.2	8.3	8.7	9.2	9.9	10.6	11.6
No load excitation current		A	0.45	0.49	0.53	0.60	0.35	0.37	0.39	0.42	0.45	0.49
Class H BR excitation voltage		V	32.3	32.5	32.7	33.9	32.1	31.8	32.2	32.3	32.8	33.3
Class H BR excitation current		A	1.37	1.38	1.39	1.44	1.36	1.35	1.36	1.37	1.39	1.41
WINDING RESISTANCE	At 20° C)										
Stator line-to-line (series star)	0	0.381		1	-voiter fi	eld (series r	onnection -S	SHUNT)			0	23.60

Stator line-to-line (series star)	77	0.381	Exciter field (series connection -SHUNT)	\$2	23.60
Main field	Ω	3.70	Exciter field (parallel connection -AREP)	Ω	5.90

According to: IEC 60034, UTE NFC51.111, VDE 0530, BS 4999/5000, NEMA MG 1-33

50 Hz AREP

According to: IEC 60034, UTE NFC51.111, VDE 0530, BS 4999/5000, NEMA MG 1-33

60 Hz AREP

According to: IEC 60034, UTE NFC51.111, VDE 0530, BS 4999/5000, NEMA MG 1-33

Multiplication Factors

50Hz Voltages	380	400	415	440		
Multiplication Factor	0.95	1.00	1.04	1.10		
	Apply factor (up to 2xT'd, re	mainder of curve	unchanged		
60Hz Voltages	380	400	416	440	460	480
Multiplication Factor	0.79	0.83	0.87	0.92	0.96	1.00
	Apply factor (up to 2xT'd, re	mainder of curve	unchanged		
Winding Connection	Series Star		Parallel Star		Series Delta	
Multiplication Factor	1.00		2.00		1.73	

Apply factor to the complete curve

According to: IEC 60034, UTE NFC51.111, VDE 0530, BS 4999/5000, NEMA MG 1-33

Caterpillar Electronic Modular Control Panel

OLYMPIAN[™]

EMCP 3.2

EMCP 3.2 GENSET CONTROLLER

The EMCP 3.2 control panel is a feature packed solution to control, monitor and communicate with your generator set. It includes both manual and automatic start / stop and an engine cool down timer. The 32-bit microprocessor-based system eliminates individual meters, gauges and switches, reduces wiring and results in a highly durable and robust system.

The EMCP 3.2 panel combines generator set control and monitoring in one module for easy access to controls, metering, protection device settings and diagnostic information.

The EMCP 3.2 panel has an accessory data link allowing the connection of annunciator modules and a Modbus data link allowing remote customer monitoring.

FEATURES

- Fully featured power metering, protective relaying and expanded AC metering
- Real-time clock allows for time stamping of diagnostics & events in the control's logs
- Programmable protective relaying, available as alarm and shutdown, protects against undervoltage, overvoltage, underspeed, overspeed, underfrequency, overfrequency
- Expanded remote customer communications are supported by MODBUS protocol using RS-485, which easily interfaces with existing plant systems and equipment
- Digital, 32-bit microprocessor-based system eliminates the need for multiple switches, meters, transducers, relays, and sending units, which translates to less wiring and fewer opportunities for mechanical failures

- Simultaneous viewing of all AC L-L voltages, all AC L-N voltages, or all AC line currents saves time
- User-friendly, convenient, customer programmability directs the customer to logical parameter groups (Ex. AC metering, protective relaying, engine monitoring) for quick keypad access
- Set points & software are stored in nonvolatile memory, preventing loss during a power outage
- True RMS sensing ensures AC metering accuracy of 1% for AC voltage, current, and power parameters
- Five levels of security allow operators to have different access privileges
- Display available in English, French or Spanish, switchable to Technician English for Service

LEXF4914-01 (10-04)

WHERE THE WORLD TURNS FOR POWER

OLYMPIAN™

STANDARD FEATURES

	EMCP 3.2
	STANDARD FEATURES
Panel construction and finish	Components installed in a heavy duty sheet steel enclosure Phosphate chemical pre-coating of steel provides corrosion resistant surface Polyester composite powder topcoat forms high gloss and extremely durable finish
Mounting	Mounted to generating set baseframe on robust steel stand Vibration isolated from generating set
Instrumentation	LCD Display with adjustable contrast and backlight with auto power off AC metering: Volts 3-phase (L-L & L-N); Amps (per phase & average); Frequency; kW (total & per phase); kVA (total & per phase); kVAr (total & per phase); Power Factor (overall & per phase); kW hours; kVAr hours DC metering: Battery Volts; Engine Hours run; Engine Jacket Water Temperature (in °C or °F); Lube Oil Pressure (in psi, kPa or bar); Engine Speed (rpm); Crank attempt counter; Start counter
Protection	Fail to start shutdown Low oil pressure shutdown High engine temperature Approaching high coolant temperature alarm Approaching low oil pressure alarm Not in auto mode alarm Underspeed / Overspeed Loss of Engine Speed Detection Low / High battery voltage Battery charger failure (if fitted) Under volts, Over volts Under frequency, Over frequency Overcurrent 4 spare fault channels 20 Event fault log (name of event, engine hours at first occurrence of event, time stamp at first occurrence, engine hours at latest occurrence of event, time stamp at first occurrences of event)
Controls	2 LED status indicators (1 red shutdown, 1 amber warning) Run key and LED indicator Auto key and LED indicator Stop key and LED indicator Lamp test key Alarm acknowledge key Menu navigation keys Engine and AC metering shortcut keys All control module keys have tactile feedback Lock down emergency stop push button
Languages	English, French or Spanish
Other features	Real time clock Service interval counter CAN 2 accessory data link – for additional modules: remote annunciator, discrete input/output module Modbus communications on 2 wire half duplex RS485 connection for remote customer monitoring

OLYMPIAN[™]

OPTIONAL FEATURES

EMCP 3.2							
OPTIONAL FEATURES							
MCM5 Remote annunciator							
MCM2 Close remote monitoring and control, MCM3 Distance remote monitoring and control via telephone line							
Battery chargers: PBC5L 120V AC, PBC3UL UL 3A 120V AC, PBC10UL UL 10A 120V AC, PBC5 240V AC, PSB3 240V AC + Boost, PSB3L 110V AC + boost, PMBCUL5 UL 5A 120V AC							
WHL Engine coolant heater controls							
PAC1 Volt free contacts for common alarm							
PGR1 Volt free contact for genset running							
PAA1 Audible alarm							
PSB5 Lockdown emergency stop button with security key							
PSV1 Volts adjust potentiometer							
PSS1 Speed adjust potentiometer							
Spare shutdown/alarm channel can include FSS2 Low fuel level alarm, PFS2 Panel circuit for low fuel level alarm, FSS1 Low fuel level shutdown, PFS1 Panel circuitry for low fuel level shutdown, FSS5 High fuel level, PFS5 Panel circuitry for high fuel level alarm, LGA1 Low gas pressure alarm, LUBS1 High lube oil temperature shutdown, WCA1 Low coolant temperature alarm, WSS1 Low coolant level shutdown							

Note: All options are not available on all genset models.

NFPA 110 requirements include:

PFS2/FSS2 Low fuel level alarm

WSS1 Low coolant level shutdown

WCA1 Low coolant temperature alarm

PSV1 Volts adjust potentiometer

PAA1 Panel mounted audible alarm

A battery charger and battery charger ammeter, an engine heater or battery heater may be required depending on the application

www.CAT-ElectricPower.com

© 2004 Caterpillar All rights reserved. Printed in U.S.A.

Quantity of one (1) Caterpillar Light Remote Annunciator Module

OLYMPIANTM

ANNUNCIATOR

The EMCP Annunciator is a 16-channel display unit for remotely indicating the status of a generating set fitted with the EMCP3.2 panel. The annunciator communicates with the EMCP3.2 panel via the accessory J1939 data link and can be mounted up to 800 feet away from the generating set.

Each channel on the annunciator has two LED's and can be individually configured to read status and alarm signals from the EMCP3.2 panel using Electronic Technician (ET). An additional pair of LED's displays status indication of the J1939 data link.

The annunciator includes an audible alarm, an alarm acknowledge pushbutton and a lamp test pushbutton.

Configurable to NFPA 99/110 requirements for local and remote annunciation on Emergency Standby Generator Systems.

Provides a simple means to change the labels for the annunciation LED's for site specific requirements.

Annunciator Dimensions									
A mm (in)	B mm (in)	C mm (in)							
158 (6.22)	130 (5.12)	288 (11.34)							

© 2005 Caterpillar All rights reserved. Printed in U.S.A.

POWER

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

Market: N. America LEHX4915-02 (02-05)

WHERE THE WORLD TURNS FOR

MILTON CATERPILLAR TO BE SUPPLIED BY OTHERS

RAYCHEM J1939 DATA LINK ANNUNCIATOR CABLE

SPECIFICATIONS

Cable	2 CONDUCTOR WITH DRAIN AND SHIELD
Jacket Color	BLACK
Insulation Colors	YELLOW AND GREEN
Conductors	0.75 MM/SQ. (19 AWG 19 x 0.23MM)
	STRANDS TINNED COPPER
Wire Insulation	POLYALKENE
Wire insulation Diameter	3.18 MM NOMINAL
Jacket	MODIFIED POLYOLEFIN
Jacket Diameter	9.78 MM NOMINAL
Drain	0.75 MM/SQ. (19 AWG 19 x 0.23MM
	STRANDS TINNED COPPER UNDER SHIELD
Shield	ALUMINUM POLYESTER ALUMINUM

REMOTE ANNUNCIATOR CABLE SPEC - TO BE SUPPLIED BY OTHERS

SPECIFICATION CONTROL DRAWING

CHEMINAX

120 OHM, RADIO FREQUENCY, 0.75 mm², 19 STRANDS, TWIN CONDUCTOR CABLE

2019D0309 10-27-05

D

Date:

Revision:

THIS SPECIFICATION SHEET FORMS A PART OF THE LATEST ISSUE OF RAYCHEM SPECIFICATION 1200.

Quantity of one (1) Caterpillar Engine Battery Set

OLYMPIAN[™]

LEAD ACID STARTING BATTERIES

Maintenance-free batteries produced using hybrid technology. The batteries are manufactured using containers produced from high impact resistant polypropylene which is both durable and fully recyclable.

BATTERY SPECIFICATION GUIDE

Generator Set Models	Volts	Battery Type	No. of Batteries	Cell Assembly	Type of Terminal
D25P1, D25P4, D30P3, D30P6, D40P3, D40P4, D50P3, D50P4, D60P3, D60P4, D75P3, D80P4, D90P1, D100P1, D100P4, D125P1, D125P2, D150P1, D25P1S, D25P4S, D30P3S, D30P4S, D40P3S, D40P4S, D50P3S, D50P4S, D60P3S, D60P4S, D75P1S, D75P4S, D90P1S, D90P4S, D100P1S, D100P4S	12	SAE 780	1		O O
D200P3	24	SAE 780	2	<u>, , , , , , , , , , , , , , , , , , , </u>	Õ
G12U3, G15U3, G20UH3, G20F3, G25UH3, G25F3, G30F3, G40F3, G50F3, G60F3, G80F3, G100F3, G125G1, G10U3S, G15U3S, G17.5UH3S, G20F3S, G25UH3S, G25F3S, G30F3S, G35F3S, G45F3S, G55F3S, G75F3S, G100F3S	12	SAE 780	1	<u>, + + + + </u> , , + + + , +	©

LEHX0492-04 (02-05)

OLYMPIAN[™]

BATTERY SPECIFICATIONS (PER BATTERY)

		Dimen	sions					
Battery Type	Length (inch)	Width (inch)	Height (inch)	Weight (Ibs)	Cold Cranking Amps/Din	Amp Hours	Cold Crankin Amps/SAE	Reserve Capacity
SAE 780	13.9	6.9	7.5	52.9	440	92	780	170

CCA / SAE - Society of Automotive Engineers;

This is the High Current test carried out in line with the Society of Automotive Engineers specification in which the battery is cooled to -18°C (0°F) and discharged at the current indicated. The requirement is for the battery voltage after 30 seconds to be 7.2 volts or above.

RC - Reserve Capacity;

These capacity test shows the time in minutes, which the battery at 25°C can supply, a current of 25 amps before the voltage falls to 10.5 volts.

This is an indication of the period during which the battery can provide sufficient power to maintain the headlights and normal controls in the event of a failure of the alternator.

www.CAT-ElectricPower.com

© 2005 Caterpillar All rights reserved. Printed in U.S.A.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. Quantity of one (1) Caterpillar 12 VDC Engine Battery Charger

OLYMPIAN™

5A/12V, 5A/24V, 10A/12V Battery Charger

10A/24V Battery Charger

UL & CSA LISTED BATTERY CHARGERS PBC3UL (5 amps) PBC10UL (10 amps)

Olympian UL & CSA battery chargers (5 amp) and (10 amp) are factory mounted and offer accurate, fast automatic charging of batteries. The output voltage automatically adjusts to changing input, load and ambient conditions. This prevents battery over-charging and consequent loss of battery electrolyte.

FEATURES

- Automatic 2-rate float/ equalize charging without manual switching. Quickly restores charge after power failures and prevents over charging
- Temperature compensated to eliminate a major cause of premature battery failure
- Current limited to protect from charger overload
- Rugged stainless steel enclosure gives modern appearance and corrosion protection

SPECIFICATION

- 120 Volt, 60 Hz input
- 12 or 24 Volt DC output. Float voltage adjustable from 100% to 120%. Boost voltage is fixed at approximately 5% above float voltage for 5 amp chargers and adjusts to 15% above float voltage for 10 amp chargers

- Output Voltage Regulation ± 1% from no load to full load
- After battery discharge or AC failure, the charger operates in the high-rate constant current mode until the battery voltage rises to the pre-set Boost level. Once this level is reached, the charger operates in constant voltage boost mode until the battery's current acceptance falls to less than 80% (for 5 amp chargers) or 70% (for 10 amp chargers) of the charger's rated output. At this point, the charger reverts to the lower float voltage, where it remains until another battery discharge or AC failure
- Current Limiting and Overload Protection — Electronically current limited at 110% of rated output. AC and DC fuses

- Adjustment Internal adjustment for float voltage. Internal adjustment for boost voltage on 10 amp chargers (5 amp chargers have a boost voltage fixed at 5% above float voltage)
- Indicators DC ammeter DC voltmeter: (10 amp, 24V chargers only)
- Ambient Operating temperature: 14° F (–10° C) to 122° F (55° C). Humidity: 5% to 95% non-condensing
- Approvals UL listed, CSA listed

LEHX0439-08 (02-05)

UL & CSA LISTED BATTERY CHARGERS 5 AMPS & 10 AMPS DIMENSIONS AND WEIGHTS

Option	Out	tput	Input			Dimensions			
Code	Amps	Volts	Hz	Volts	Weight	Width	Depth	Height	
PBC3UL	5	12	60	120	11.9 lb (5.6 kg)	4.5" (115 mm)	5.5" (140 mm)	11.1" (281 mm)	
PBC3UL	5	24	60	120	11.9 lb (5.6 kg)	4.5" (115 mm)	5.5" (140 mm)	11.1" (281 mm)	
PBC10UL	10	12	60	120	20.9 lb (9.5 kg)	4.5" (115 mm)	5.5" (140 mm)	11.1" (281 mm)	
PBC10UL	10	24	60	120	18.5 lb (8.4 kg)	11.0" (280 mm)	4.7" (120 mm)	10.9" (278 mm)	

www.CAT-ElectricPower.com

Market: N. America LEHX0439-08 (02-05) Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. Quantity of one (1) Caterpillar Weatherproof Enclosure

ENCLOSURES

OLYMPIAN™

Photograph may show optional equipment

CAWB – WEATHERPROOF ENCLOSURES

These weatherproof, factory installed enclosures incorporate internally mounted critical level silencers, designed for safety and aesthetic value on fabricated steel skidbases on diesel models. Optional UL listed tanks are available. These enclosures are of extremely rugged construction to withstand exposure to the elements of weather and rough handling common on many construction sites. They are designed on modular principles with many interchangeable components permitting on-site repair.

Note: Options FSS1, FSS2, FSS5 and FSS6 (fuel level alarms) are not available on non-UL "B Series" base tanks.

FEATURES

ROBUST/HIGHLY CORROSION RESISTANT CONSTRUCTION

- Black zinc die cast hinges tested and proven to withstand extreme conditions of corrosion
- Zinc plated or stainless steel fasteners
- Body made from steel components treated with polyester powder coating

EXCELLENT ACCESS

- Large cable entry area for installation ease
- Doors located convenient to controls and service areas
- Double doors on both sides
- Vertically hinged doors allow 180° opening rotation
- "Lift-off" doors, removable with 45° opening in confined locations
- Lube oil and coolant drains piped to exterior of enclosure and terminated with drain valves
- Radiator fill cover

SECURITY AND SAFETY

- Lockable access doors with standard key utilization
- Cooling fan and battery charging alternator fully guarded
- Fuel fill can only be reached via lockable access doors (only provided when optional fuel tank is ordered)
- Exhaust silencing system totally enclosed for operator safety
- Roof outlet exhaust with sealed roof aperture and rain cap
- Stub-up cover sheets for "rodent proofing"

TRANSPORTABILITY

- Lifting points on baseframe
- Optional tested and certified single point lifting facility

OPTIONS

- PVW2 Panel Viewing Window for CAWB
- CSB2 External Emergency stop push button (red) mounted flush on exterior enclosure wall
- FTP Integral metal fuel tank

LEHX0109-10 (02-05)

ENCLOSURES

OLYMPIAN[™]

CAWB — WEATHERPROOF ENCLOSURES DIMENSIONS AND WEIGHTS (with non-UL listed base tanks)

Generator Set Model	A in (mm)	B in (mm)	C in (mm)	D in (mm)	Fuel Capacity US Gal (L)	Weight* Ib (kg)
D20P1, D25P1	73.1 (1856)	36.3 (923)	61.4 (1560)	57.1 (1450)	28.8 (109)	1750 (794)
D25P4	86.9 (2208)	39.4 (1000)	63.3 (1608)	59.1 (1500)	43.6 (165)	2313 (1065)
D30P6	86.9 (2208)	39.4 (1000)	63.3 (1608)	59.1 (1500)	43.6 (165)	2365 (1075)
D30P3	85.5 (2171)	36.3 (923)	63.4 (1610)	59.1 (1502)	43.6 (165)	2321 (1053)
D40P3	85.5 (2171)	36.3 (923)	63.4 (1610)	59.1 (1502)	43.6 (165)	2366 (1073)
D40P4	86.9 (2208)	39.4 (1000)	63.3 (1608)	59.1 (1500)	43.6 (165)	2486 (1130)
D50P3	85.5 (2171)	36.3 (923)	63.4 (1610)	59.1 (1502)	43.6 (165)	2476 (1123)
D50P2	86.9 (2208)	39.4 (1000)	63.3 (1608)	59.1 (1500)	43.6 (165)	2563 (1165)
D60P3	85.5 (2171)	36.3 (923)	63.4 (1610)	59.1 (1502)	43.6 (165)	2564 (1163)
D60P4	86.9 (2208)	39.4 (1000)	63.3 (1608)	59.1 (1500)	43.6 (165)	2673 (1215)
D75P3	85.5 (2171)	36.3 (923)	63.4 (1610)	59.1 (1502)	43.6 (165)	2674 (1213)
D80P4, D100P4	102.4 (2600)	44.4 (1129)	63.8 (1637)	50.8 (1290)	79.3 (300)	3164 (1435)
D90P1, D100P1	115.5 (2934)	44.4 (1128)	73.2 (1859)	67.7 (1720)	77.9 (295)	4895 (2221)
D125P1, D125P2, D150P1	115.4 (2934)	44.4 (1128)	73.2 (1859)	67.7 (1720)	77.9 (295)	5182 (2351)
D200P3	129.5 (3290)	51.4 (1305)	78.0 (1978)	72.9 (1852)	145.3 (550)	5834 (2647)
G30F3, G40F3, G50F3	86.7 (2202)	39.4 (1000)	56.3 (1430)	60.6 (1540)	N/A	2028 (920)
G60F3	103 (2615)	43.3 (1100)	59.5 (1510)	64.4 (1635)	N/A	2716 (1232)
G80F3, G100F3	103 (2615)	43.3 (1100)	59.5 (1510)	64.4 (1635)	N/A	2939 (1333)
G125G1	103 (2615)	43.3 (1100)	59.5 (1510)	64.4 (1635)	N/A	3556 (1613)

* Net weight with lube oil and coolant, no fuel, quoted for the largest model in range.

Quantity of one (1) ASCO Automatic Transfer Switch

ASCO SERIES 300 Power Transfer Switches

ASCO[®] Series 300 Power Transfer Switches

Maximum Reliability & Excellent Value

With a Series 300 Transfer Switch, you get a product backed by ASCO Power Technologies, the industry leader responsible for virtually every major technological advance in the Transfer Switch industry.

The ASCO SERIES 300 was designed for one purpose-to automatically transfer critical loads in the event of a power outage. Each and every standard component was designed by ASCO engineers for this purpose.

The rugged construction and proven performance of the ASCO SERIES 300 assure the user of many years of complete reliability. The SERIES 300 is even designed to handle the extraordinary demands placed on the switch when starting or restarting stalled motors and switching high inrush loads.

ASCO's SERIES 300 modular, compact design makes it easy to install, inspect and maintain. All parts are accessible from the front so switch contacts can be easily inspected.

Features

- The SERIES 300 is listed to UL 1008 standard for Transfer Switch Equipment and CSA standard C22.2 for automatic transfer switches.
- Meets NFPA 110 for Emergency and Standby Power Systems and the National Electrical Code (NEC) Articles 700, 701 and 702.
- 30 through 3000 amps in a compact design.
- Available to 600 VAC, single or three phase.
- True double-throw operation: The single solenoid design is inherently inter locked and prevents contacts from stopping between sources or from being in contact with both sources at the same time.

UL Listed Withstand & Close-On Ratings

	Available Symmetrical Amperes RMS								
Switch Ratings amps	When Used With Current Limiting Fuses	Maximum Voltage	When Used With Specific Circuit Breakers						
30	100,000	480v/60Hz	10,000						
70 - 200	200,000	480v/60Hz	22,000						
230	100,000	480v/60Hz	42,000						
260, 400	200,000	480v/60Hz	42,000						
600	200,000	600v/60Hz	42,000						
600	200,000	480v/60Hz	50,000						
600	200,000	240v/60Hz	65,000						
800,1000,1200	200,000	600v/60Hz	65,000						
1600, 2000	200,000	600v/60Hz	85,000						
2600, 3000	200,000	600v/60Hz	100,000						

Notes: 1. Current – limiting fuse should be Class J type through 400 amps: use Class L type above 400 - amp fuse rating 2. Refer to publication 1128 for specific manufacturer's breakers

Fig. 1: ASCO Power Transfer Switch rated 200 amperes shown in Type 3R enclosure

- There's no danger of the Series 300 ATS transferring loads to a dead source because the unique ASCO single-solenoid operator derives power to operate from the source to which the load is being transferred.
- Easy-to-read flush-mounted control and display panel provides LED indicators for switch position and source availability. It also includes test and time-delay bypass switches as standard features.
- Standard engine exerciser for weekly automatic testing of engine generator set with or without load.
- Adjustable time-delay feature prevents switch from being activated due to momentary utility power outages and generator dips.
- Supplied with solid neutral termination.
- Optional switched neutral pole available.
- Accessory kits available.
- Available for immediate delivery.
- Now available for service entrance applications. Contact ASCO for assistance.

ASCO[®] Series 300 Power Transfer Switches

Designed to Fit Anywhere

The ASCO SERIES 300 product line represents the most compact design of automatic power transfer switches in the industry. With space in electrical closets being at a premium, the use of wall or floor-mounted ASCO Power Transfer Switches assures designers optimum utilization of space.

All transfer switches through 2000 amps are designed to be completely front accessible. This permits the enclosures to be installed flush to the wall and still allows installation of all power cabling and connections from the front of the switch. Cable entrance plates are also standard on the 1600 and 2000 amp units to install optional side-mounted pull boxes for additional cable bending space.

Fig. 2: ASCO Power Transfer Switch rated 200 amperes

Fig. 3: ASCO Power Transfer Switch rated 400 amperes

Fig. 4: ASCO Power Transfer Switch rated 600 Amperes

Fig. 5: ASCO Power Transfer Switch rated 1000 amperes

Fig. 6: ASCO Power Transfer Switch rated 2000 amperes shown in Type 3R enclosure

Fig. 7: ASCO Power Transfer Switch rated 3000 amperes

ASCO[®] Series 300 Microprocessor Controller

The ASCO Microprocessor Controller is used with all sizes of Power Transfer Switches. It represents the most reliable microprocessor controller in the industry and includes, as standard, all of the voltage, frequency, control, timing and connectivity functions required for most emergency and standby power applications.

Fig. 8: ASCO SERIES 300 Microprocessor Controller

Fig. 9: Door-Mounted Control & Display Panel

Control and Display Panel

• Easy-to-read flush-mounted control and display panel provides LED indicators for switch position and source availability. It also includes test and time-delay bypass switches.

Voltage & Frequency Sensing

- Adjustable three-phase, close-differential voltage sensing on normal source.
- Normal source pickup voltage is adjustable to 95% of nominal; drop-out is adjustable from 70% to 90% of nominal.
- Frequency sensing on emergency source. Pickup at 95% and dropout at 85% of nominal.

Time Delays

- Adjustable time delay to override momentary normal source outages to delay all transfer switch and enginestarting signals.
- Transfer to emergency time delay--Adjustable from 0 to 5 minutes for controlled timing of load transfer to emergency.
- Retransfer to normal time delay--Adjustable to 30 minutes.
- Five-minute unloaded running time delay for emergency engine generator cool down.
- Four-second time delay to ignore momentary voltage and frequency transients during initial genset loading.

Standard Selectable Features

- Inphase monitor to transfer motor loads, without any intentional off time, to prevent inrush currents from exceeding normal starting levels.
- Engine exerciser to automatically test backup generator each week—Includes control switch for testing with or without load.
- Selective load disconnect, double-throw contact to operate at an adjustable 0 to 20 second adjustable time delay prior to transfer and reset 0 to 20 seconds after transfer.
- 60 Hz or 50 Hz selectable switch. Three-phase/single-phase selectable switch.

Remote Control Features

Terminal provisions for connecting:

- Remote test switch.
- Remote contact for test or for peak shaving applications. Circuit will be automatically bypassed if emergency source fails.
 - Inhibit transfer to emergency.
 - Remote time-delay bypass switch.

ASCO[®] Series 300 Microprocessor Controller

Performance Features

- 600 volt spacing per UL and CSA standards.
- Interfacing relays are industrial grade, plug-in type with dust covers.
- Meets or exceeds the requirements for Electromagnetic Compatibility (EMC).
 - ANSI C37.90A/IEEE472 Voltage Surge Test
 - NEMA ICS-109.21 Impulse Withstand Test
 - Digital circuitry isolated from line voltages
 - IEC 801-2 Electrostatic discharge (ESD) immunity
 - ENV50140 and IEC 803-1: Radiated electromagnetic field immunity

- IEC 801-4 Electrical fast transient (EFT) immunity
- ENV50142 Surge transient immunity
- ENV50141: Conducted radio-frequency field immunity
- EN55011: Group 1, Class A conducted and radiated emissions
- Optically isolated RS-485 Serial Port
- EN61000- 4-11 voltage dips and interruptions immunity

ASCO[®] Series 300 ATS Optional Accessories

Accessory 11BG

A programmable engine exerciser that provides for weekly or bi-weekly operation, includes one form C contact for source availability of normal and one contact for availability of emergency (contact rating 2 amps @ 30 Vdc, 0.5 amp @ 125 Vac resistive). The programmable engine exerciser incorporates a 7 day or 14 day time base with a digital readout display. Includes "with or without" load control selection for exerciser period.

Accessory 14AA/14BA

Auxiliary contacts to indicate position of main contacts. Two (2) for normal and two (2) for emergency position (one set is standard).

Accessory 44A

Strip Heater with thermostat for extremely cold areas to prevent condensation and freezing of this condensation. External 120 volt power source required.

Accessory 44G

Strip Heater with thermostat, wired to load terminals: 208-240, 360-380, 460-480, 550-600 volts. Contains wiring harnesses for all transfer switch sizes.

Accessory 72A/72E

*See "Power Connectivity Products", Page 18

Accessory 123

A protective window that includes a polycarbonate frame and weather gasket to provide secure access to the membrane interface for the type 1 enclosures. This lockable cover is an alternative to providing 3R secure enclosures.

Field Conversion Kits for SERIES 300 Transfer Switches

Kit No.	Description
K629830	Engine Exerciser and source availability contacts (Acc. 11BG)
K613127-001	Strip Heater Kit (125 watt) 120 volt (Acc. 44A)
K613127-002	Strip Heater Kit (125 watt) 208-480 volt (Acc. 44G)
K609027	Cable Pull Box (1600-2000 amp)
K473872-001	6 FT Extension Harness ¹
K755257-001	Serial Module with or without power manager (Acc. 72A)
K754603-001	Connectivity Module with or without power manager (Acc. 72E)
K778330-001	Window Kit (Acc. 123)

1. For 30-200 Amp switches only, not available for 300SE, or 300L

Fig. 11: Programmable Engine Exerciser with Source Availability Contacts (Accessory 11BG)

Fig. 12: Strip Heater Kit (Accessory 44G)

Fig. 13: Window Kit (Accessory 123)

ASCO[®] Series 300 & 386 Transfer Switch Ordering Information

300	+ B +	- 3 -	+ 600 +	-	N -	+ 1 +	- Х -	ł	С -	+ 11CD ·	+ 480V 60Hz
Product	Neutral Code	Poles	Amperes	Vol Co	tage ode	Controller	Options	En Blank	closure Open Type	Optional Accessories	Specific Volt & Freq
300	Blank Solid Neutral B ¹ Switched Neutral	2 poles, 1Ø 3 poles, 3Ø	Continuous rating 30, 70, 104, 150, 200 ⁴ , 230 ⁴ , 260, 400, 600, 800, 1000, 1200, 1600, 2000 2600 ⁵ , 3000 ⁵	A ³ B ³ C D E F H J K L M N Q R	115 120 208 220 230 240 380 400 415 440 460 480 575 600	1	Insert "X" If optional accessories are required	C F H L M	Type 1 (Standard) Type 3R Enclosure Type 4 Enclosure ² Type 4X Enclosure Type 12 Enclosure ² Type 3R Secure Enclosure Type 4 Secure Enclosure	11BG Programmable Engine Exerciser 14AA/14BA Auxiliary Contacts (2 sets) 44A, 44G Strip Heater w/Thermostat 72A Serial Module 72E Connectivity Module 123 Window Kit	This information is necessary to allow correct control settings prior to shipment

To order an ASCO SERIES 300 Power Transfer Switch, complete the following catalog number:

To order an ASCO SERIES 386 Transfer Switch, complete the following catalog number:

386 -	⊦ B +	- 3 +	- 600 +	-	N -	F 1 -	+ Х -	+	C +	- 9C/9D +	- 480V 60Hz
Product	Neutral Code	Phase Poles	Amperes	Vol Co	ltage ode	Controller	Options	En Blank	closure Open Type	Optional Accessories	Specific Volt & Freq
386	A Solid Neutral B' Switched Neutral	2 poles, 1Ø 3 poles, 3Ø	Continuous rating $30, 70, 100, 150, 200^4, 230^4, 260, 400, 600, 800, 1000, 1200, 1600, 2000, 3000^5$	A ³ B ³ C D E F H J K L M N Q R	115 120 208 220 240 380 400 415 440 460 480 575 600	1	Insert "X" If optional accessories are required	C F G H L	Type 1 (Standard) Type 3R Enclosure Type 4 Enclosure ² Type 4X Enclosure Type 12 Enclosure ² Type 3R Secure Enclosure	6Q Key-Operated Control 9C/9D Source Availability Lights 14AA/14BA Auxiliary Contacts 72A Serial Module All Accessories 72E Connectivity Module	This information is necessary to allow correct control settings prior to shipment

Note: 1. Specify neutral code "C" for 260 and 400 amperes only.

2. Available 30-1000, and 1600 amps. Use Type 3R for 1200, 2000, 2600 and 3000 amp applications.

3. 115-120 volt available 30-400 amps only. For other voltages contact ASCO.

4. 200 and 230 amp rated switches for use with copper cable only.

5. Secure 3R type provided as standard for 2600-3000 amp when outdoor enclosure is required.

Extended Warranties for SERIES 300 Transfer Switches

Catalog No.	Description					
2EXW300	Two-Year Extended Warranty (Parts & Labor)					
3EXW300	Three-Year Extended Warranty (Parts & Labor)					
4EXW300	Four-Year Extended Warranty (Parts & Labor)					
5EXW300	Five-Year Extended Warranty (Parts & Labor)					

ASCO[®] Series 300 & 386 Transfer Switch Dimensions and Shipping Weights

Switch Rating	Phase	Neutral	Dir	nensions, In. (m	nm)3	Approx. Shipping
amps	Poles	Code	Width	Height	Depth	Weight Lb. (kg)4
30 70 100* 104	2	А	17 1/2 (445)	31 (787)	11 5/8 (295)	69 (32)
150, 70, 100, 104	2	В	17 1/2 (445)	31 (787)	11 5/8 (295)	73 (33)
150, 200	3	A	17 1/2 (445)	31 (787)	11 5/8 (295)	73 (33)
*Series 386 only	3	В	17 1/2 (445)	31 (787)	11 5/8 (295)	75 (34)
	2	A	18 (457)	48 (1219)	13 (330)	100 (45)
220 260 400	2	B ⁷ or C	18 (457)	48 (1219)	13 (330)	110 (50)
230, 200, 400	3	А	18 (457)	48 (1219)	13 (330)	100 (45)
	3	B ⁷ or C	18 (457)	48 (1219)	13 (330)	120 (55)
	2	А	24 (610)	63 (1600)	17 (432)	263 (119)
	2	В	24 (610)	63 (1600)	17 (432)	270 (122)
600	3	A	24 (610)	63 (1600)	17 (432)	270 (122)
	3	В	24 (610)	63 (1600)	17 (432)	277 (126)
	2	A	34 (864)	72 (1829)	20 (508)	450 (204)
800 1000	2	В	34 (864)	72 (1829)	20 (508)	475 (217)
800, 1000	3	A	34 (864)	72 (1829)	20 (508)	475 (217)
	3	В	34 (864)	72 (1829)	20 (508)	500 (228)
	2	A	38 (965)	87 (2210)	24 (610)	685 (312)
1200	2	В	38 (965)	87 (2210)	24 (610)	705 (321)
1200	3	А	38 (965)	87 (2210)	24 (610)	705 (321)
	3	В	38 (965)	87 (2210)	24 (610)	725 (328)
1600 200016	3	А	38 (965)	87 (2210)	24 (610)	925 (419)
1600, 2000	3	В	38 (965)	87 (2210)	24 (610)	975 (441)
	3	A	38 (965)	91 (2311)	60 (1524)	1700 (771)
2600, 3000 ²	3	В	38 (965)	91 (2311)	60 (1524)	2135 (969)

UL Type 1 Enclosure (See notes below for information on Type 3R, 4 & 12 Enclosures)

Notes:

- 1. Unit is designed for top cable entry of emergency & load and bottom entry of normal. A cable pull box is also available for all top or bottom cable access when required (optional accessory kit #K609027). Not required for type 3R, 4X & 12 enclosures where available.
- Enclosures for 2600, 3000 amps are free-standing with removable top, sides & back.
- 3. For type 3R, 4X & 12 dimensions, add the following
- values to the type 1 dimensions:
- a) 30, 70, 100, 104, 150, 200A–add 1.5 in (38 mm) to the height.
- b) 230, 260, 400A add 1.5 in (38 mm) to the depth.
- c) 1200A–type 4, 4X & 12 not available–use 1600 amp switch d) 1600A, 2000A–add 3 in (76 mm) to the height and 10 in to
- (253mm) to the width.
- e) 2600, 3000A–type 4X & 12 not available.
- (Consult ASCO) Type 3R add 4.68 in (118 mm) to the height add 2.0 in (51 mm) to the width and add 13 in (329 mm) to the depth.

- 4. For type 3R, 4X & 12 weights, add the following values to the type 1 weights:
 - a) 30, 70, 100, 104, 150, 200A-add 15 lbs. (6.8 kg).
 - b) 230, 260, 400, 600, 800, 1000A-add 40 lbs. (18.1 kg).
 - c) 1600A-add 60 lbs. (27 kg).
- d) 2000A–3000A Type 4 & 12 not available. (Consult ASCO)
 5. When temperatures below 32°F can be experienced, special precautions should be taken, such as the inclusion of space heaters, to prevent condensation and freezing of this condensation. This is particularly important when environmental enclosures (Type 3R, 4 & 12) are ordered for installation outdoors.
- Front connected design for 300's and 386's. Non secure enclosure for type 3R, 4X and 12 provided as standard.
- 7. Neutral Code "B" for 230 amperes only.

ASCO[®] Series 300 & 386 External Power Connections

Sizes UL-Listed Solderless Screw-Type Terminals

Switch Rating (amps)	Ranges of AL-CU Wire Sizes (Unless Specified Copper Only)
30 - 230 ²	One #14 to 4/0 AWG
260, 400	Two 1/0 AWG to 250 MCM or One #4 AWG to 600 MCM
600	Two 2/0 AWG to 600 MCM
800, 1000, 1200	Four 1/0 to 600 MCM
1600, 2000	Six 1/0 to 600 MCM
2600, 3000	Twelve 3/0 to 600 MCM

Note:

- 1. All SERIES 300 switches are furnished with a solid neutral plate (unless switched neutral configuration is specified) and terminal lugs. Specify "A" in catalog number to order a neutral plate on the series 386 switches.
- 2. 200 and 230 amp rated switches for use with copper cable only. Refer to paragraph 310.15 of the NEC for additional information.
- 3. Use wire rated 75°C minimum for all power connections.

Startup and Site Testing

Power Systems Division

101 Quarry Drive Milford, MA 01757 Tel: (508) 634.5559 Fax: (603) 746.4630

General Engine-Generation Installation Information and Guidelines

<u>General</u>

All connections must be flexible and self-supporting. No weight or strain may be applied to cast elbows.

All wiring must be a minimum of #14 THHN or equal. Wiring must be stranded. Solid-core wire must not be used.

The maximum allowable air temperature in the generator area is 125 F. Sufficient airflow through the engine area is required to dissipate heat from engine block radiation, generator radiation, and provide adequate combustion air. Engine roof louvers must not restrict airflow to an engine-mounted radiator by more than 1/2" of water column. As a rule of thumb, the air outlet "Free Air Area" must be I .5x the radiator core area, and the air inlet "Free Air Area" must be 2x the radiator core area.

All fuel and water piping must be thoroughly flushed and cleaned before final connections to the engine are made.

Any fire protection devices must be set for high enough temperatures to compensate for ambient temperature rises caused by engine-generator heat radiation. Likewise, engine room ventilation control thermostats must be mounted unconventionally to allow accurate readings of the temperatures affecting engine operation.

For remotely mounted cooling systems only, all external piping systems must rise continuously to the surge tank of the remote radiator or heat exchanger system. Standard heating system *diaphragm-type surge tanks will not function properly in the engine jacket water circuit.* In cases where piping cannot rise, bleed lines to the riser must be installed where air traps occur.

Fuel Systems

Diesel Engines Only:

Two fuel lines are required from the main tank: one supply and one return. Fuel lines must be separately run from the main tank to each unit or day tank. *Boiler feed lines may not be tapped for engine fuel supplies or returns.* Some concessions may be made for high-pressure fuel manifolds. Each supply line must have a foot valve, and return lines must not be restricted in any way.

Diesel Engines with Day Tanks:

The bottom of the main fuel tank must be less than 15' below the inlet to the day tank pumps, and less than 200' away from the day tank. *The top of the main tank must be below the level of the engine fuel injectors.* If either of these pose a problem, additional design work will be required to accommodate the physical configuration.

Natural Gas Engines Only:

Low Pressure Gas Engines and Olympian generator sets require gas pressure of at least 7 in. water column. If site gas pressure is below 7 in H2O, please contact your project manager for assistance. NG engines require one fuel supply line, as indicated on the installation drawing. For High Pressure Gas Engines consult your project manager for pressure requirements

 Milford, MA
 Cranston, RI
 Warner, NH
 Scarborough, ME
 Clifte

 508.634.3400
 401.946.6350
 603.746.4671
 207.883.9586
 518.

Clifton Park, NY 518.877.8000

Buffalo, NY 716.694.7200

Binghamton, NY 607.772.6500

Wareham, MA	Hopkinton, NH	Brewer, ME	Richmond, VT	Syracuse
508.291.1200	603.746.4611	207.989.1890	802.443.4228	315.426.

acuse, NY 5.426.1358

Power Systems Division

101 Quarry Drive Milford, MA 01757 Tel: (508) 634.5559 Fax: (603) 746.4630 Att:

Start-up and Testing Checklist – Outdoor Olympian Generator

Project Name:	Project Address:
Customer Name:	Project Contact:
Engine Serial Number	Project Telephone:
Model:	Date:

The following Checklist must be completed and returned to Milton CAT ten days prior to a Start-up being scheduled. Start-ups will not be scheduled until this completed checklist is returned.

Electrical

- _____Main AC power connections complete.
- ____Electrical conduit isolated with flexes.
- _____Jacket water heater and battery charger connected but not energized.
- _____Automatic transfer switch mounted, wired w/normal, emergency, & load connections.
- _____ATS stranded start wires pulled and connections made at generator and ATS.
- _____Remote annunciator panel mounted stranded wires pulled, marked, and connected at generator and annunciator.
- Automatic Exercise from ATS? Yes ____ No ____ Exercise with or without load? With ____ Without ____ Exercise Run time: _____minutes. •ASCO 300 Series w/out deluxe exerciser Day and time of weekly exercise: _____ •All others

Day and time of exercise: ____

Mechanical

_____Generator set mounted on concrete pad.

_____Diesel fuel in main tank or gaseous fuel available at a minimum pressure of 7 inches of water column.

Other

- _____Fuel is on site and available to engine.
 - _____Distance from generator to temporary load banks if applicable.
 - _____All system related equipment, material and components are installed and accounted for. List discrepancies below.

Weekly

Comments or Discrepancies

Customer Representative Name and Title

Customer Representative Signature

Date_

Every other week

CATERPILLAR®

Electric Power Application and Installation Guide

Mounting Systems

LEBX0045

WWW WHERE THE WORLD TURNS FOR POWER

Mounting Systems

Proper generator set installation is crucial to ensuring the efficient, long and dependable life of a system, as well as minimizing time spent on maintenance.

Caterpillar Gas Engines are rigid, self-contained structures which will operate and maintain inherent alignment unless subjected to extreme external stresses.

Due to the diversity of installation types, no one mounting system or method is universally acceptable. The engine must be mounted in a manner suited to the specific application, taking into account the characteristics of the engine, the driven loads, and the operating cycle of the machine. One or more of the following results will occur if mounting method is inadequate.

Foundations

Major functions of a foundation are to:

- Support the total weight of the generator set, which includes accessory equipment and liquids (coolant, oil and fuel)
- Maintain alignment between engine, generator and accessory equipment.
- Isolate generator set vibration from surrounding structures

The equipment foundation is not the responsibility of Caterpillar Inc., nor is the driven equipment attachment to the foundation. The customer or customer's agent familiar with local site conditions and application requirements bears foundation design responsibility. Foundation comments published herein are intended only as general guidelines for consideration. Further engine foundation general guidelines can be found in Engine Data Sheet 30.0, Form LEHQ1172.

Soil, Gravel, or Rock Mounting

Firm, level soil, gravel, or rock provides satisfactory support for single-bearing generator sets used in stationary or portable service. This support can be used where the weight-bearing capacity of the supporting material exceeds pressure exerted by the equipment package, and where alignment with external machinery is unimportant.

Soil, such as fine clay, loose sand, or sand near the ground water level, is particularly unstable under dynamic loads and requires substantially larger foundations. Information concerning bearing capacity of soils at the site may be available from local sources and must comply with local building codes.

Where support rails or mounting feet have insufficient bearing area, flotation pads can distribute the weight. The underside area and stiffness of the pad must be sufficient to support the equipment.

Seasonal and weather changes adversely affect mounting surfaces. Soil changes considerable while freezing and thawing. To avoid movement from seasonal changes, extend foundations below the frost line.

Concrete

Several basic foundations are applicable for generator sets. The foundation chosen will depend on factors previously outlined as well as limitations imposed by the specific location and application.

Massive concrete foundations are unnecessary for modern multicylinder medium speed generator sets. Avoid excessively thick, heavy bases to minimize subfloor or soil loading. Bases should be only thick enough to prevent deflection and torque reaction, while retaining sufficient surface area for support. Non-parallel units require no foundation anchoring. If a concrete foundation is required, minimum design guidelines include:

- Strength must support wet weight of units plus dynamic loads.
- Depth sufficient to attain a minimum weight equal to generator set wet weight (only if large mass, i.e. inertia block, is specified for vibration control).
- Outside dimensions exceed that of the generator set, a minimum of 304.8 mm (12 in.) on all sides.

Before calculating the depth of the concrete foundation, certain issues must be considered:

- When effective vibration isolation equipment is used, floor concrete must only be deep enough to provide structural support of the static load.
- If isolators are not used, dynamic loads transmit to the facility floor and require it to support 125 percent of the generator wet weight.
- If generator sets are paralleled, possible out-of-phase paralleling and resulting torque reactions demand foundations that are able to withstand twice the wet weight of the generator set.

Estimate foundation depth that will accommodate generator set weight using the formula:

$$FD = \frac{W}{D \times B \times L}$$

- FD = Foundation depth (m), (ft)
- W = Total wet weight of generator set (kg), (lb)
- D = Density of concrete (kg/m²), (lb/ft²) (2402.8 kg/m³), (150 lb/ft³)
- L = Foundation length (m), (ft)

Suggested concrete mixture by volume is 1:2:3 of cement, sand, aggregate, with maximum 100 mm (4 in.) slump and 28-day compressive strength of 20 MPa (3000 psi).

Ground Loading

Initial considerations include generator set weight and material supporting this weight.

The wet weight of the total package must be calculated. This includes accessory equipment and weight of all liquids (coolant, oil, and fuel) supported by the foundation. Engine and attachments dry weights can be found in the price list. Liquid densities are given in Table 1.

Liquid	kg/m³	lb/U.S. gal	lb/ft ³	Specific Gravity	
Water, Fresh	994.6	8.3	62.1	1.00	
Water, Sea	1018.3	8.5	63.6	1.02	
Water/Glycol	1024.4	8.55	64.0	1.03	
Diesel Fuel	850.7	7.1	53.1	0.855 0.916	
Lube Oil	909.7	7.6	56.8		
Kerosene	802.7	6.7	50.1	0.807	

Table 1. Densities of liquids [@ 16°C (60°F)].

Material supporting the foundation must carry the total weight (see Table 2) shows bearing load capabilities of common materials.

Material	Safe Bearing Load kPa (psi)
Rock, Hardpan	482.6 (70)
Hard Clay, Gravel and Coarse Sand	386 (56)
Loose Medium Sand and Medium Clay	193 (28)
Loose Fine Sand	96.5 (14)
Soft Clay	0-96.5 (0-14)

Table 2. Bearing load capability.

The area of load-bearing support is adjusted to accommodate surface material. To determine pressure (P) exerted by the generator set, divide total weight (W) by total surface area (A) of the rails, pads, or vibration mounts.

$$P = \frac{W}{A}$$

Where: P = pressure (kPa), (psi) W = weight (kg), (lb) A = area (m²), (in²)

Pressure imposed by the generator set weight must be less than the load-carrying capacity of supporting material. Where support rails or mounting feet have insufficient bearing area, flotation pads can distribute the weight. The underside area and stiffness of the pad must be sufficient to support the equipment.

With vibration isolation between the baseframe and the floor, if the load is equally distributed over all isolators, the floor loading is:

Floor Loading = $\frac{\text{Total Generating Set Weight}}{\text{Pad Area} \times \text{Number of Pads}}$

Thus, floor loading can be reduced by increasing the number of isolation pads.

If load is not equally distributed, the maximum floor pressure occurs under the pad supporting the greatest proportion of load (assuming all pads are the same size):

Max Floor Pressure =
$$\frac{\text{Load on Heaviest}}{\frac{\text{Loaded Pad}}{\text{Pad Area}}}$$

Seasonal and weather changes adversely affect mounting surfaces. Soil changes considerable while freezing and thawing. To avoid movement from seasonal change, extend foundations below the frost line.

Grounding

The generator set must be properly ground before operation startup. NEC recommends maximum 25 Ohm resistance to the ground (reference ANSI/IEEE C37-101-1985 "Guide for Generator Ground Protection").

Bases

The first design consideration for an engine base is its physical dimensions. The base must provide the proper mounting holes for the engine and all other base-mounted components. The holes must also make allowance for servicing of the engine and other components. They must provide clearance and provisions for proper alignment.

Design the base to maintain the original alignment between engine and driven equipment under all operational and environmental conditions. Misalignment between an engine and driven equipment can cause vibration and shorten the life of couplings and bearings. Bases designed and fabricated by dealers, or others, must meet design requirements of the Caterpillar supplied base to assure strength and vibration resistance.

The major cause of misalignment is flexing of the base due to lack of torsional rigidity. Other causes are poor installation methods and incorrect alignment procedures.

The base must offer rigidity adequate to oppose the twist due to torque reaction on drives where the driven equipment is mounted on the base assembly, but not bolted directly to the engine flywheel housing (see Figure 1).

Figure 1. Absorption of torque.

Caterpillar bases are designed to eliminate frequent, periodic realignment of the engine and driven unit. A properly installed Caterpillar base will meet the following criteria:

- Engine torque does not cause excessive misalignment.
- Flexing of the foundation or substructure under the base during operation does not cause bending of the base.

In larger multiple engine sites the normal 8.5° C (15° F) temperature rise guidelines for engine rooms require unobtainable or uncomfortable air velocities.

For larger sites, a ventilation system that gives priority to the five items listed above and provides a bottom to top air flow similar to that shown in Figure 4 can be designed for a temperature rise of 17° C (30° F).

Air Velocity for Personnel Comfort

Maintain air velocity of at least 1.5 m/s (5 ft/s) in working areas adjacent to sources of heat, or where air temperatures exceed 100°F (35°C). This does *not* mean that all the air in the engine room should be agitated so violently. High air velocity around engines and other heat sources is not good ventilation practice. High velocity air aimed at engines will hasten transfer of heat to the air, raising average engine room air temperature.

Table 1 lists typical air motions:

Air	Velocity					
m/min	(fpm)	Conditions				
15.2	50	Offices, seated worker				
30.5	100	Factory, standing worker				
45.7	150	Capture velocity, light dust				
61	200	Maximum continuous worker exposure				
396	1300	Capture velocity, rain				
306 – 610	1000-2000	Maximum intermittent exposure				

Table 1. Air velocity.

Radiators

Installations with engine-mounted radiators using engine room air for cooling (Figure 7), generally provide more air flow than is needed for adequate ventilation. The high air flow combined with low ambient temperatures, below 21°C (70°F), may cause water to condense inside exposed engine components, like valve covers. This can result in oil and maintenance problems. Therefore, special installation considerations must be made in cold climates.

There are two methods that can be used to overcome this problem.

• Remote mounted and specially ducted engine-mounted radiators do not require engine room air for cooling (see Figure 8). One advantage of such a system is that the air used to cool the radiator is not pre-heated by the engine, thus increasing the ambient capability (or reducing the size) of the unit. The disadvantage is that motor-driven fans must be installed to provide ventilation for the engine, generator and other equipment which increases the overall cost of the system. This system is suitable for continuous duty applications.

Figure 7. Engine driven fan arrangement.

OLYMPIAN GENERATOR SET WIRING PRIOR TO STARTUP

- 1. Run appropriate sized cables from generator set mainline circuit breaker(s) to automatic transfer switch(s) (ATS) emergency-side terminals. These cables must be in their own conduit, separate from items # 3 & # 4 below.
- 2. Run appropriate sized AC supply wires to auxiliary AC supply terminals on control panel (terminal #'s generally 12 & 13) to supply power to battery charger, coolant heater, & battery heater (if so equipped).
- 3. Run two wires from ATS (paralleled together for multi-ATS systems) to terminals 1 & 2 on control panel for genset start signal. No smaller than 18 ga., no larger than 12 ga. These wires must be in a separate conduit from those in # 1 above (to prevent unwanted genset startups). These wires can be in same conduit as # 4 below.
- 4. Run multistrand wiring for remote annunciator, if so equipped. No smaller than 16 ga., no larger than 12 ga. These wires must be in a separate conduit from those in #1 above. These wires can be in same conduit as # 3 above.
 - a. For 16-Channel Annunciator, run 4 wires with 2 spares:
 - 1. Battery Power Qty 2 positive/negative voltage –12 ga. wire:
 - a. Positive:
 - Control Panel (Pin #1) to Remote Annunciator (Pin #26)
 - b. Negative:
 - Control Panel (Pin #2) to Remote Annunciator (Pin #2)
 - 2. Control Wiring 16 ga. twisted shielded pair:
 - a. Control Panel to Remote Annunciator
 - 1. Both use (Pin #20 & Pin #21)

Warranty

OLYMPIAN WA	RRANTY STATEM	ENT (US and Canada Only)
This is a warranty which applies to Electric Power Generation Products sold by OLYMPIAN (nerein	The User's Responsibil ties	 Other miscellaneous costs including but not limited to courier travel. mileade tolls.
after referred to as "the Company"). The products	The User is responsible for:	lodcing, taxes, telephore calls, overtime, etc.,
are warranted against defects n material and	- Installing, operating and maintaining the	except as stated under "The Company's
workmanship for a period of 12 months* (24	generator set in accordance with the	Responsibilities."
months for standby application limited to 500 hrs	manufacturer's instructions.	 Completing any outstarding payments for the
perannum) from the date of delivery to first user.	 Keturning the Warranty Kegistration Form within one month of celiverv. 	purchase of equipment, parts or services relating to the equipment under warranty.
The Company's Responsibilities	- Ensuring initial startup is performed by an	
If a defect is material or workmanship arises	authorised representative of the Company or its dealers	LIMITAIIONS
during the warranty period the Company will	 Making the equipment available for repar as 	This warranty does not cover:
during norma working hours and through a place	scon as the defect has become apparent.	- Defects due to the user's improper
of business of a OLYMPIAN Dealer or other	- Accepting the Company's sole judgement as	installation, maintenance or use as adjudged
source approved by OLYMPIAN:	to whether the faulty part is defective in	by the Company
- Replace of at the Company's discretion repair the defective serves	material or workmanship. Labor costs account as stated under 'The	- Incidental costs such as tires, tuses and
Inteructive parts. - Provide for reasonable and customary labor	- Labur custs, except as stated under The Company's Responsibilities " including costs	attions. - Modifications or repairs not authorised by the
costs to correct the defect.	beyond these required to disconnect the	Company in writing.
 Provide for the cost of service supplies such 	product from and reconnect the product to it's	 Any operation in excess of the Company's
as coolart oil and filters which are made	atached equipment, mountings and support	rating or outside the stared site conditions.
unserviceable by the defect.	systems.	 Danage or costs caused through prolonged
- Provide travel labor, up to six hours and	 The costs and risks for transport/shipping and 	operation of equipment where a defect has
250miles/200km round trip, if the generator	otner charges associated with the	been, or ought reasonably to have been,
set is inoperative due to a defect and, in the	replacemen: of the repair parts.	discovered,
opinion of the Company, it cannot reasonably	- Any costs in excess of the purchase price of	- Normal wear and tear.
be transported to an appropriate service bcation.	the product.	 Danage to parts, fixtures, housings, attachments and accessory items that are not
		part of the to Electric Pcwer Generation
		- Any product specific hours limitations
* D8L1-D25LH1 and D8L1S-D24LH1S have a runri	ing hour limitation as follows: · Prime Power 5000 hrs at 150	0/1800rpm;
* Gas powered generating set models have an add	Standby 2000 hrs at 1500/1 litional running hour limitation as follows: – 1000 hrs at 3000	300/3000 rpm and 1000 nrs a: 3600 rpm. 3600 rpm.
	,	
Either the 12 months limitations or the running hour lin	mitation is applicable, whichever occurs 'irst.	
This warranty is expressly in lieu of all other warran: purpose. All warranties which exceed the aforementi under no circumstances, be held liable for any specia contacting your local dealer or the Company who will	ies, express or impled, including, but not limited to, any violed obligations are hereby disclaimed by the Ccmpany are I direct, incidental or consequential damages. All outline the administration and scope.	arranty o' merchantability or fitness for a particular d excluded from this warranty. The Company shall, alaims made under this warranty should be made by
276-973 Effective with s LEXF3074-0)	sales to first user on or after 1 September 2002.	ONAWARSTAT/2003

Installation Drawings

DIMENSIONS WITHOUT ARROWHEADS ARE LOCATED FROM PARALLEL ZERO PLANE.

POWEF SYSTEN DIVISIO

DRAWN BY:H. CHF CHECKED: H. CHF APPROVED:	ALL DIMENSIONS IN INCHES NOT TO SCALE DATE: 2-10-06 DWG No. XOXXXX
NCIATOR IEL	16 LIGHT REMOTE ANN EMCP 3.2 CONTROL PA
NEL REV 00 01 02 03	WIRE #64
	WIRE #7 WIRE #63
	NRE #5
	BATT A HI A LOW
	AUDIBLE ALARM
	ALARM ACKNOWLEDGE PUSHBUTTON
	LAMP TEST PUSHBUTTON

63

	OR ASCO	NTROL FEA	MAL SOURCE. MINAL. : 95% : 95%	.(coni	u DURCE SET AT TTH	PTABLE. RY NGS).	- ۵	ON COMMIT INUTES. IN THE OURCE FAILS. MITHIN 4 SECONDS.	GE A			D OR THE	ate Ansfer. When NG The F week at which with	т (V	E S	GE POSITION ON 7 TDBT) AND 3 TDBT) AND 3.10 OR 20 ULAL FURNISHED NCS). DC OR 120 VAC	NNSFER OF T NUISMACE MAGE TO ACTIVATED ET AS CH TRANSFER
2	SE WIRING F	CO	QUENCY SENSING VISING ON ALL PHASES OF NOF TO 90, 85, 80 OR 70% OF NO OUTAGE ADUSTABLE AT 90 OF TO PROPOUT IS SET TO 90%).	- CARUNG CONTROL FANEL SET 3 OF EMERGENCY SOURCE. INIG AT 75% OF NOMINAL. INIG AT 90% OF NOMINAL. ENCY SOURCE. TING AT 85% OF NOMINAL.	VATA 502 ST TOTATION AND ST TOTATION AND ST TOTATED WHEI TAGE DELAY - ACTIVATED WHEI TAGE DELAY - ACTIVATED WHEI TATATIE (1 OR 3 SECOND) STARTING SIGNALS. FACTORY RATORS MANUAL FURNISSED W	- ACTIVATED AFTER THE - ACTIVATED AFTER THE SENSED TO BE ACCEPTABLE MITTED TO ON INITIATION OF MATTED TO ON INITIATION OF FROM 0 TO 5 MINUTES. FACT FROM 0 TO 5 MINUTES. FACT PERATOR'S MANUAL FURNISHED PERATOR'S MANUAL FURNISHED	- ACTIVATED WHEN THE NORMUTED WHEN THE NORMAL ASUR ARAL. ALSO DEACTIVATED WHEN PHILE NORMAL SOURCE IS NORMAL. ADUUGTABLE DELAY ICHRAL. ADUUGTABLE DELAY FACTORY SET TO 30 MINUTES JAL FURNSHED MTH	UL DOWN) DELAY – ACTIVATED IORALD ELAY OR FOLLOWING SCE OUTAGE DELAY WITHOUT A COLTAGE DELAY WITHOUT A N-ADUUSTABLE DELAY OF 5 M OUTAGE DELAY-ACTIVATED WHI OUTAGE DELAY-ACTIVATED WHI STITON AND THE EMERGENOY SET IF EMERGENOY RESTORES	OL CONTACTS (1 N/O & 1 N/C) THAT CHAN NORMAL SOURCE OUTAGE DEL IE UNLODADED RUNNING PUT CONTACTS (NR) 28V DC OR 120V AC MAXIMU	ATORS & CONTROLS VE TYPE	NTARY PUSH-BUTTON TO RE SEQUENCE OF OPERATION. T5 SECONDS TO ALLOW TIME START.	AT PUSH-BULION TO BYPASS ELAY, ENGINE EXERCISER PERIC DEPENDING ON WHICH DELAY IS UTTON IS ACTIVATED.	VITARY PUSH-BUTTON TO ACTIV OMATIC WEEKLY TESTING OF RE WITH OW EKLKY TESTING OF RE WITH OW TLAOD TEA N-RECHARGEABLE DY BATTERY S. STECONDS SETS THE TIME O S. SECONDS SETS THE TIME O RE IS ACTIVATED THE TIME O RE IS ACTIVATED THE THE O ON THE CONTROL PANEL. ON THE ON THE ALL FURNISHED NO LOAD.	E WHEN THE TRANSFER SWITCI MAL SOURCE. WHEN THE TRANSFER SWITCH SOURCE.	E WHEN THE NORMAL SOURCE WHEN THE EMERGENCY SOURC CONNECT FEATURE	(1 N/O & 1 N/C) THAT CHAN E DELAY BEFORE TRANSFER (L WING TRANSFER OR FOR THA TRANSFER SELECTABLE AS D TRANSFER SELECTABLE AS D FFER TO THE OPERATOR'S MAN ARDING CONTROL PANEL SETT ARDING CONTROL PANEL SETT O 5 AMPS RESISTIVE AT 28 V	AD TRANSFER FEATURE (C TO INITIATE AN INPHASE TR. RCES: USED TO HELP PREVEN RCES: USED TO HELP PREVEN RCES: AND POSSIBLE D. TITH OUT OF PHASE TRANSFER, E CONTROL PANEL. PACTORY 5 & MANUAL FUNNSHED WITH EA EL SETTINGS).
	THREE PHA		VOLTAGE AND FREE DIFFERENTIAL TYPE VOLTAGE SEP DROPOUT SETTING SELECTABLE A FACTORY SET AT 85%. PICKUP V FACTORY SET AT 85%. UTCKUP V FACTORY SET AT 90%. (REFER T	WITH EACH TRANSERT SMICH RA SINGLE PHASE VOLTAGE SENSING NON-ADJUSTABLE DROPOUT SETTIN NON-ADJUSTABLE PICKUP SETTIN FREQUENCY SENSING OF EMERG NON-ADJUSTABLE DROPOUT SETTING NON-ADJUSTABLE PICKUP SETTING	MOMENTARY NORMAL SOUTION TIME DI MOMENTARY NORMAL SOUTION DEVICE OU THE NORMAL SOUTICE FAILS. DEAR S ACCEPTABLE. PROVIDES A SELE ELAY ON TRANSFER AND ENDINE 5 SECONDES (REFER TO THE OPE	TRANSFER TO EMERGENCY DELAY- TRANSFER TO EMERGENCY DELAY- MOMENTARY NORMAL SOURCE COLU- NUD THE EMERGENCY SOURCE IS REANSFER TO EMERGENCY IS COM ELAY: DEACTIVATED WHCH THE EI PROVIDES AN ADJUSTBALE DELAY READIES AN ADJUSTBALE DELAY SET AT O MNUTES. (REFER TO O SET AT O MNUTES. (REFER TO O	RETRANSFER TO NORMAL DELAY - SOURCE 18 ACCEPTABLE. DEAGTIVA ALLS WITH NO TRANSFER TO NOF HE RERGENCY SOURCE FALLS W COEFTABLE WITH TRANSFER TO A REOR 1 SECOND TO 30 MINUTES. REFER TO THE OFFLATOFY MANU	UNLOADED RUNNING (ENGINE COC XZPIRATION OF THE INARSTER TO IN XZPIRATION OF THE INARSTER TO OF THE INARSTER TO THE ENGLAVEN NO OF THANSTER TO EMERCENCY NO WOMENTERY EMERCENCY SOURCE WITCH IS IN THE EMERCENCY SOURCE ACTORY SET AT 4 SECONDS. REF	ENGINE CONTR DNE SET OF FORM C CONTACTS (OSTITON ON EXPIRATION OF THE WID RESET ON EXPIRATION OF THE ENGINE COOL DOWN) DELAY: OUT REIGNIE COOL DOWN) DELAY: OUT RE RATED 5 AMPS RESISTIVE AT	OPERATOR INTERFACE INDICA MEMBRAN	TRANSFER SWITCH TEST - MOMEN SIMULATE NORMAL SOURCE FAILUF PRESS AND HOLD FOR AT LEAST COR ENGINE-GENERATOR SET TO	BYPASS IIME DELAY - MOMENTAR HE TRANSFER TO EMERGENCY DE RETRANSFER TO NORMAL DELAY D ACTIVE AT THE TIME THE PUSH-B	SET ENGINE EXERCISER - MOME A SEVEN (7) DAY TIMER FOR AUT HE ENGINE GENERATIOR SET ETH HE TIMER IS POWERED BY A NOI ORMAL AND EMERENCY SOURCE OMMENTARY PUSH-BUTTON FOR E SETTING A DI SELECTOR SWITCH ANGINE START WITH OR WITCHOUT A SECOND DIP SELECTOR SWITCH CONTROL PANEL. FACTORY SET TO FACETER TO THE OPERATOR'S MANUCH CONTROL PANEL. FACTORY'S SATICH CONTROL PANEL FACTORY'S SATICH CONTROL PA	LOAD CONNECTED TO INDICATORS SREEN LED INDICATOR TO INDICAT SALESN LED INDICATOR TO INDICAT SALES TO ANNECTED TO THE NOR SED LED INDICATE SOUNECTED TO THE EMERGENCY :	SOURCE AVAILABLE INDICATORS SEEN LED INDICATOR TO INDICAT MAILABLE. RED LED INDICATOR TO INDICATE WAILABLE. LOAD DIS	NIE SET OF FORM C CONTACTS (CTIVATION OF A SELECTABLE TIMI RESET FETTHER IMMEDIATELY FOLLO IS SET FOR PRE-SIGNAL BEFORE SECONDS. FACTORY SET AT 0. (R WITH EACH TRANSFER SWITCH REC WITH EACH TRANSFER SWITCH REC JUTPUT CONTACTS (OP) ARE RATT DUFUT CONTACTS (OP) ARE RATT DUFUT.	MOTOR LO. NPHASE TRANSFER CONTROL LOG ADTOR UNDAS BETREN LUCE SOU TREPING OF DISTRIBUTION CIRCUL ACCHANICAL LOADS ASSOCIATED W AY SETTING A DIP SWITCH ON TH SY SETTING A DIP SWITCH ON TH SYMETCH REGARDING CONTROL PAN SWITCH REGARDING CONTROL PAN
			₹	ci ci	₹	۵.	о́ О́	ы ці сі ці	1		< 0	n	о С	۵ ۵	ш	<	64

	RUN I	0 - 230 / ss Locator 22 (P1,P2) h 350-230 AMH 17 17 17 17 12 19 10 10 10 10 10 10 10 10 10 10 10 10 10	89 11 11 11 11 11 11 11 11 11 11 11 11 11		
	LIST	AMPS AMPS AMPS AMPS AMPS	ୁ ଜୁ ଗୁ		
	ING		CLR AWG 16 16		
7					
	0				
	CONTE				

				Ш	\triangleleft
1 2 1	0, 100, 150, & 200 AMPERES	General notes Type 1 wall mounted enclosure. Standard Finish – Light Grey, ansi 61. Key Lockable Handle. Single Door Hinged on Right. Terminals – Screw Type Lugs For external power connections.	THREE POLE SWITCH WITH SOLID NEUTRAL SHOWN FOR REFERENCE. NEUTRAL CONFIGURATIONS: NEUTRAL CONFIGURATIONS: D300-A FULL RATED SOLID NEUTRAL CONFIGURATION FOR D300-A FULL RATED SOLID NEUTRAL CONFIGURATION FOR PTIONALLY A SWITCHED NEUTRAL POLE MAY BE PROVIDED AS PECIFIED BY THE CATALOG NUMBER: (B) SWITCHED NEUTRAL POLE MAY BE PROVIDED AS (C) OVERLAPPING NEUTRAL POLE (C) OVERLAPPING NEUTRAL POLE HEN EQUIPPED IT IS IN ONE OF THE FOLLOWING FORMATS AS PECIFIED BY THE CATALOG NUMBER NO. NEUTRAL TYPE: (A) SOLID NEUTRAL POLE (B) SWITCHED NEUTRAL POLE (C) OVERLAPPING NUMBER NO. NEUTRAL TYPE: (A) SOLID NEUTRAL POLE (C) OVERLAPPING NEUTRAL POLE	SWITCH RATING RANGE OF WIRE 30-150 (1) #14 TO 4/0 AMG AL-CU WIRE 200 (1) #14 TO 4/0 AMG COPPER WIRE 302 20 30-200 C2* 72 (33) 30-200 33 30-200 33 30-200 2 69 (32) 30 2 72 (33) 30-200 3 72 (33) 30 2 75 (34)	* ALPHA POLE PREFIX DESCRIBES OPTIONAL NEUTRAL POLE: B=SWITCHED TYPE NEUTRAL. B=SWITCHED TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. C=OVERLAPPING TYPE NEUTRAL. PROME. PROM. PROME.
	TS RATED 30, 70	નું છું મું છુ	0 11.62 1.	CERCUND LUG GROUND LUG MOUNTING S	М
4	ES, TYPES 7A		↓		4
-	SFER SWITCHE	MBINATION CK-OUTS, TOM	EXTERNAL UTING HOLES - 17.50 ENCLOSURE	FRONT VIEW	WITH DOOR
2	SERIES TRAN	- 7550 COI PILOT KNOI TOP & BOT	(4) .37-DIA. DIMPLED MOUN	SOLID SOLID NEUTRAL NORMAL	۵
9	(D300, D386)	6.75 6.75 6.75 6.75	TOP VIEW TYP TOP & BOTTOM = 17.50 = 11.50	INCY 10.84 14.50 FRONT VIEW	WITHOUT DOOR

