Please Read Application And Notes, If Any, Attached

This is to certify that \qquad Portland Assisted Living LLC. Ison and Colson-General Contracor PERMIT ISSUED has permission to Construct new 864 sq.ft garage AT 217 Ganco Rd \qquad provided that the person or persons, firm or corparation accepting this permitshall fomply with all of the provisions of the Statutes of Maine and of the-ardinances of the City of Portlandfegulating the construction, maintenance and use of buildings and structures, and of the application on file in this department.

> Apply to Public Works for street line and grade if nature of work requires such information.

OTHER REQUIRED APPROVALS
Fire Dept. CPSP. A. A fulvez-
Health Dept.
Appeal Board
Other \qquad

Notfication of inspection must be given and written permission procured before this building or part thereof is lathed or otherwise closed-in. 24 HOURINOTICE IS REQUIRED.

A certificate of occupancy must be procured by owner before this building or part thereof is occupied.

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

Proposed Use:
Proposed Project Description:
Commercial / Assisted Living Facility - Construct new 864 sq. ft .
Construct new 864 sq. ft. garage. garage.

Dept: Zoning
Status: Approved with Conditions
Reviewer: Marge Schmuckal
Approval Date: $10 / 26 / 2010$
Note:
Ok to Issue:

1) This permit is being approved on the basis of plans submitted. Any deviations shall require a separate approval before starting that work.

Dept: Building Status: Approved with Conditions Reviewer: Jeanine Bourke Approval Date:
Note:
Ok to Issue:

1) Separate permits are required for any electrical, plumbing, sprinkler, fire alarm HVAC systems, heating appliances, including pellet/wood stoves, commercial kitchen exhaust hood systems and fuel tanks. Separate plans may need to be submitted for approval as a part of this process.
2) Application approval based upon information provided by applicant. Any deviation from approved plans requires separate review and approrval prior to work.

Dept: Fire
Status: Approved with Conditions
Reviewer: Capt Keith Gautreau
Approval Date:
10/27/2010
Note:
Ok to Issue:

1) All construction shall comply with City Code Chapter 10.

Comments:

10/22/20 10-gg: Mail check \# 1656 for $\$ 1,390.00$ back, Lenity Group will send another for $\$ 420.00$.
Lenity Group, LLc
471 High Street Se. Suite 10
Salem, OR 09301
10/22/2010-amachado: Permit is on hold in Marge's basket pending site plan application \& review.
10/26/2010-gg: received electronic plans,entered in the system. /gg
10/26/2010-mes: Planning received the site plan exemption - wait for planning sign off
11/10/2010-gg: received ck\# 1696 for $\$ 420.00$.
11/17/2010-jmb: Spoke to Joe W. For geotechnical report, will email Sebago Tech
12/9/2010-jmb: Received geotech report vial email pdf from Sebago Technics performed in 2004, printed applicable pages for the file.
Waiting for SPE approval.
4/5/2011-jmb: Received planning/DRC approval

BUILDING PERMIT INSPECTION PROCEDURES
 Please call 874-8703 or 874-8693 (ONLY)
 or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the City of Portland Inspection Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in $\mathbf{6}$ months, if the project is not started or ceases for $\mathbf{6}$ months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue with construction.
\qquad Footing/Building Location Inspection: Prior to pouring concrete or setting precast piers
\qquad Framing/Rough Plumbing/Electrical: Prior to Any Insulating, drywalling or covering.
\qquad Underground electrical or plumbing inspection prior to pouring concrete
\qquad Final inspection required at completion of work.

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OR CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUPIED.

General Building Permit Application

If you or the property owner owes real estate or personal property taxes or user charges on any property within the City, payment arrangements must be made before permits of any kind are accepted.

City, State \& Zip_Eddington, Maine 04428 Telephone:
Who should we contact when the permit is ready:__Joe White_Telephone:_7135513963
Mailing address:

Please submit all of the information outlined on the applicable Checklist. Failure to do so will result in the automatic denial of your permit.

In order to be sure the City fully understands the full scope of the project, the Planning and Development Department may request additional information prior to the issuance of a permit. For further information or to download copies of this form and other applications visit the Inspections Division on-line at www.portlandmaine.gov, or stop by the Inspections Division office, room 315 City Hall or call 874-8703.
I hereby certify that I am the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized by the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued, I certify that the Code Official's authorized representative shall have the authority to enter all areas covered by this permit at any reasonable hour to enforce the provisions of the codes applicable to this permit.

Certificate of Design Application

From Designer:	Daniel Reach
Date:	$10 / 6 / 2010$
Job Name:	Birchwoods at Canco
Address of Construction:	86 Holiday Drive

2003 International Building Code

Construction project was designed to the building code criteria listed below:
\qquad Use Group Classification (s) U
Type of Construction \qquad V

Will the Structure have a Fire suppression system in Accordance with Section 903.3.1 of the 2003 IRC \qquad Is the Structure mixed use? No I If yes, separated or non separated or non separated (section 302.3) \qquad Supervisory alarm System? No__Geotechnical/Soils report required? (See Section 1802.2) provided from 2004

Structural Design Calculations

Live load reduction	
Roof live loads (1603.1.2, 1607.11)	
Roof snow loads (1603.7.3, 1608)	
Ground snow load, P_{S} (1608.2)	
If $\mathrm{P}_{g}>10 \mathrm{psf}$, flat-roof snow load $P f$	
If $P_{g}>10 \mathrm{psf}$, snow exposure factor, Q_{L}	
If $\mathrm{Pg}>10 \mathrm{psf}$, snow load importance factor, L	
Roof thermal factor, $G_{6}(1608.4)$	
Sloped roof snowload, $\mathrm{ps}_{s}(1608.4)$	
Seismic design category (1616.3)	
Basic scismic force resisting system (1617.6.2)	
Response modification cocfficient, P , and	
deflection amplification factor ${ }_{C l}(1617.6 .2)$	
Analysis procedure (1616.6, 1617.5)	
Dcsign base shear (1617.4, 16175.5.1)	
Flood loads (18	03.1.6, 1612)

——_ Flood Hazard arca (1612.3)

Other loads

\ldots	Concentrated loads (1607.4)
Partition loads (1607.5)	
	Misc. Joads (Table 1607.8, 1607.6.1, 1607.7,
	$1607.12,1607.13,1610,1611,2404$

Jeanie Bourke - 217 Canco Road, Assisted Living Facility - Garage Building Permit

From: Philip DiPierro
To: \quad Code Enforcement $\&$ Inspections
Date: $\quad 4 / 5 / 2011$ 8:38 AM
Subject: 217 Canco Road, Assisted Living Facility - Garage Building Permit

Hi all, this project, site plan \#10-79900035, the assisted living facility at 217 Canco Road, meets minimum DRC site plan requirements for the issuance of the building permit.

Please contact me with any questions. Thanks.

Phil

TRANSMITIAL

PROJECT: Portland, ME (Van Garage): 10-086
TO: \quad City of Portland
389 Congress Street
Portland, ME 04101

ATTENTION: Building Department
Phone: (207) 874-8716
Fax:
We are Transmitting: 10/7/2010

	\square Herewith	\square Under Separate Cover	
ISSUED FOR:			
	\square Information	\square Construction	\square Approval
	\square Estimate	\square Record	\square Review
VIA:	\square Mail	\square Courier	\square Overnight
	\square Fax	\square By Hand	

Quantity	Identification	Description
1	Building Permit submittal	1 set of plans, application, fee

REMARKS:

CC:

Sent by: Jacquie Zeller

Applicant:
Adclress:

CAnco

Date: 10/26/10
C-B-I: $\quad 160-E+$ CFIECK-IISTAGAINST ZONING ORIDINANCE

Date -

Proposed Use/Work -
$864+\quad 2 \mathrm{CAR}(\mathrm{HAn})$
slab
Seruage Disposal -
Lot Street Frontage -

Rearr Yurri. $25^{\prime} \mathrm{min}$ - Towad Nearby bldg - 50^{\prime} + Shom
Side Yurd - S
Projections -
Hitidle of Lot -

Lot Coveragel Intpervious Surfuce -
Areaper Fantily -
Off-street Parking -
Loading Bays -

Shoreland Zoning/Stream Protection -

Flood Plains - N/A

Sebago Technics

$$
\begin{aligned}
& 96592 \\
& \text { Do wot un sind }
\end{aligned}
$$

Foundation Investigation Proposed Portland Assisted Living Facility Phase II Portland, Maine

for
Curry Brandaw Architects 2260 McGilchrist Street SE, Suite 100 Salem, OR 97302

February 9, 2004
RECEIVED
DEC -9 2010
Dept. of Building Inspections
City of Portland Maine

Groundwater was not encountered in the test pits. However, test pits were made over a short period of time and may not represent the stabilized groundwater level. It is likely that groundwater flows along the soil/bedrock interface, in the weathered portions of bedrock and upper bedrock, following the trend of the top of rock. In addition, water levels at the site will vary with precipitation, season, temperature and construction activity in the area. Therefore, groundwater levels during and following construction may differ from that observed /in the explorations.

Recommendations for Foundation Design

Recommended Foundation Type and Design Criteria

The forest mat and topsoil are not considered suitable for support of the buildings. All forest mat and topsoil should be removed from within the limits of foundations. It is our opinion that the buildings may be supported on spread footings bearing on the undisturbed, naturallydeposited marine deposit and glacial till or bedrock or on compacted structural fill placed after removal of unsuitable soil (forest mat and topsoil).

We recommend that, for uniformity, the footings be proportioned for an allowable bearing stress, in pounds per square foot (psf), equal to 1,500 multiplied by the least lateral dimension of the footing in feet, up to a maximum of $4,500 \mathrm{psf}$. All footings should be at least 1.5 feet wide. In some areas, bedrock will likely be at or near the proposed bottom of footing. For footings bearing on bedrock, the maximum slope of the bedrock surface should not be steeper than 4 horizontal to 1 vertical. Steeper slopes should be benched or tapered to the above criteria.

Individual footings should be founded either on soil or bedrock. Continuous footings may span both soil and rock provided a transition from soil to rock is provided. Tapering the bedrock surface to a slope of 4 horizontal to 1 vertical and backfiliing with structural fill to a minimum depth of 1 foot would be acceptable.

Exterior footings bearing on soil should be founded at least 4.5 feet below the lowest adjacent ground surface exposed to freezing. Interior footings, if required, should be founded a minimum of 1.5 feet below the ground floor slab. Exterior footings bearing on sound bedrock may be founded at least 2 feet below the lowest adjacent ground surface exposed to freezing.

Bedrock may be encountered above the proposed floor level and bearing level for foundations. Therefore, rock cuts may be required for foundation construction in some areas. Figure 3 of the Haley \& Aldrich report may be used to estimate the required volume of rock excavation. The contours shown on Figure 3 are based on information from the explorations referenced therein. Actual top of rock between exploration locations will vary from the indicated contours.

Rock should be defined as "any material that is geologically classified as rock and requires drilling and blasting to excavate." Boulders and cobbles should not be classified as bedrock. Provisions should be made in the contract plans and payment items for adjusting bearing levels in the field to accommodate actual bedrock surface grades.

Compacted structural fill supporting footings should extend laterally from the footings to at least the limits defined by 1 horizontal to 1 vertical lines sloped outward and downward from points located at least 2 feet horizontally beyond the bottom edges of the footings.

At the recommended bearing stress, we anticipate that foundation settlement will be on the order of one inch, or less. We anticipate that more than 50 percent of this settement will occur during the construction period. We anticipate that settlement of this magnitude is acceptable. However, the structural engineer should determine the final aceeptability of settlement.

Ground Floor Slabs

We recommend that the lowest level floor slabs be designed as earth-supported slabs-on-grade bearing on a minimum 6 -inch thickness of compacted structural fill. All forest mat and topsoils should be removed from within the building limits prior to placing fill. All fill placed below the floor slabs for raises-in-grade should consist of compacted structural fill. Normal dampproofing and vapor barriers should be used below floor slabs.

Seismic Design Considerations

We recommend that the buildings be designed according to the seismic requirements of the latest edition of the International Building Code. The site classification is Class C; the site response coefficient F_{a}, is 1.2 for short period spectral response acceleration Ss of 0.37 g ; the site response coefficient F_{v}, is 1.7 for the one-second period spectral response acceleration S_{1} of 0.10 g . The soils are not considered liquefaction susceptible.

Lateral Foundation Loads

We recommend that lateral loads be resisted by bottom friction on footings. We recommend that a coefficient of friction equal to 0.40 be used for footings bearing on soil and a coefficient of friction equal to 0.70 for footings bearing on sound bedrock.

Lateral Soil Pressure

We recommend that foundation walls which are restrained at the top and backfilled be designed to resist a lateral earth pressure calculated on the basis of an equivalent fluid unit weight of 55 pounds per cubic foot. This fluid unit weight assumes an at rest earth pressure coefficient of 0.45 and a free-draining granular backfill. If any buildings will have below grade space, we recommend that a perimeter foundation drain consisting of a perforated pipe surrounded by crushed stone and filter fabric be constructed at the exterior base of the wall. Gravity drainage should be provided.

Retaining walls, if required, should be designed for an equivalent fluid unit weight of 40 pounds per cubic foot. Walls should be backfilled with free-draining structural fill, and gravity drainage should be provided.

Structural Calculations

Portland (ME) Van Garage

DAN GREEN
ENGINEERING, INC.
SALEM, OREGON
(503) 391-2309

FILE NO. \qquad DESIGNER SHEET NO. $\quad 1.0$

CLIENT
PROJECT
\qquad DATE $\quad 9 / 30 / 10$
\qquad
\qquad
\qquad

Gravity Loads Roof Dead Ld:	Sheathing	3.0 psf
	3-ply Felt	1.5
	Asphalt Shingles	3.0
	Gyp. Ceiling	5.0
	Trusses	2.0
	Elec/Mech	1.5
	Insulation	1.0
	Total Dead Load	17 psf
Roof Live Load:	Roof Snow Load	30 psf
Exterior Walls	Dead Load	12 psf
Interior Walls	Dead Load	7 psf
Lateral Loads	Seismic category: Wind:	B $100 \mathrm{mph}(3-\mathrm{sec}$ gust) $\exp \mathrm{B}$
Foundation	Soil Bearing:	2250 psf
	Concrete Strength	2500 psi
Code Used	2006 Internationa	ilding Code
Soils Report by:	Sebago Technics	
	Project \#96592	
	Dated February 9,	

DAN GREEN ENGINEERING, INC.
SALEM, OREGON
\qquad SHEET NO. \qquad 056 DATE \qquad CLIENT Lewray PROJECT Ponimad (mé) Jaw Game

ASCE 7-05 (IBC 2006) WIND: BUILDING DATA: Basic wind speed (3 sec gust) $=100 \mathrm{MPH}$

Exposure	B
Roof Pitch $=$	$4.00: 12$
Mean Roof Height $\mathrm{h}=$	13.25 ft
Importance factor I_{w}	$=$
	1.00

6.4 METHOD 1- SIMPLIFIED PROCEDURE (LOW-RISE, 60 FT) Height Adjustment factor $\mathrm{A}=1.00$

Fig 6-2

Load Direction	Roof Angle	Horizontal Loads				Vertical Loads					
		End Zone		Interior zone		End Zone		Interior zone		Overhang	
		Wall (A)	Roof (B)	Wall (C)	Roof (D)	WW (E)	LW (F)	WW (G)	LW (H)	E_{OH}	G_{OH}
Transverse	18.4	21.32	-6.07	14.23	-3.36	-19.01	-12.98	-13.21	-9.85	-26.67	-20.86
Longitudinal	All	15.8025	-8.2716	10.4938	-4.93827	-19.01235	-10.864	-13.21	-8.3951	-26.667	-20.8642

* If roof pressure under horizontal loads is less than zero, use zero

Plus and minus signs signify pressures acting loward and away from projected surfaces, respectively.
For the design of the longitudinal MWFRS use $\theta=0^{\circ}$, and locate the zone E / F, G / H boundary at lie mid-length of the building

DAN GREEN
ENGINEERING, INC.
SALEM, OREGON
(503) 391-2309

FILE NO. 100915 SHEET NO. 1.2
DESIGNER DS6 _
CLIENT levimy
PROJECT Ponituna (ME) $U_{A M} G_{\text {AMK }}$

IBC2006 (1613), ASCE $7-05$ CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Response Spectrat Acc. $(0.2 \mathrm{sec}) \mathrm{S}_{\mathbf{3}}=37.00 \% \mathrm{~g}$	$=0.370 \mathrm{~g}$	Figure 22-1 through 22-14
Response Spectral Acc. $(1.0 \mathrm{sec}) \mathrm{S}_{1} \equiv 10.00 \% \mathrm{~g}$	$=0.100 \mathrm{~g}$	Figure 22-1 through 22-14
Soil Site Class C -	Table 20	fault $=$ D
Site Coefficient $F_{\mathrm{a}}=1.200$		Table 11.4-1
Site Coefficient $F_{v}=1.700$		Table 11.4-2
Max Considered Earthquake Acc. $S_{\text {MS }}=F_{3} \cdot S_{s}$	$=0.444$	(11.4-1)
Max Considered Earthquake Acc. $S_{M 1}=F_{V} . S_{1}$	$=0.170$	(11.4-2)
@ 5% Damped Design $S_{\text {DS }}=2 / 3\left(S_{\text {: } / s}\right)$	$=0.296$	(11.4-3)
$S_{01}=2 / 3\left(S_{311}\right)$	$=0.113$	(11.44)
Building Occupancy Categories II, Standard	-	Table 1-

Design Category Consideration:
Flexible Diaphragm
*
with dist between seismic resisting system $>40 \mathrm{f}$
Table 11.6-1
Table 11.6-2
Section 11.6
Seismic Design Category for 0.1 sec
Seismic Design Category for $1.0 \mathrm{sec} \quad$ B
S1<.75g NA
Since $\mathrm{Ta}<.8 \mathrm{Ts}$ (see below), $\mathrm{SDC}=\quad \mathrm{B} \quad$ Control (exception of Section 11.6 does not apply)
Comply with Seismic Design Category B
IRC, Seismic Design Category $=\mathrm{B} \quad$ T-R301.2.2.1.1
12.8 Equivalent lateral force procedure

DAN GREEN FILE NO. 100915 SHEET NO. 1.3.3.

ENGINEERING, INC. DESIGNER DS6 DATE $9 / 30 / 10$
SALEM, OREGON
CLIENT Levitoy PROJECT Pontunch (MOB) VAN GManie

DAN GREEN
ENGINEERING, INC.
SALEM, OREGON
(503) 391-2309

FILE NO. 100915
DESIGNER 056
SHEET NO. \qquad 1.4 CLIENT LE
PROJECT
\qquad DATE $\quad 9 / 30 / 10$
\qquad P Pritivad.

```
GARASE DOUR HEADER
```


$P(6$ roder imuss $)=(30+17)(6 / 2)(27 / 2)=1904^{\mathrm{ji}}$

$$
\omega=(30+17)(4 / 2+2)=188 \text { pf } \quad \omega_{1}=(30+17)(22 / 2+2)=729 \mathrm{pff}
$$

$$
R=V_{M}=6139^{t} \quad m_{m}=27370^{1 *} \quad \Delta E I=1.32 \ldots 0^{9} 112^{3}
$$

f $(3)-13 / 4+11^{2 / e} \quad V_{a}=13628^{\prime} \quad M_{a=} 35410^{1 \%}$ I. $732 \mathrm{NH}^{4}$
Trus $5^{1 / 8} \times 13^{1 / 2}$
Ua. 1273!"

3° HDr's AT SIDE WAUS $\left[55^{1 / 8} \times 13^{1 / 2}(245-14) 60\right)$

Spaits $3^{\prime}-\omega^{-} \quad \omega=(30+17)(6 / 2+2)=2.35 \mathrm{pf}$

$$
V_{M}=353^{\#} \quad M_{m}=264^{1.4} \quad \text { OF } 2-4.3 \times 10^{5} \# . \omega^{3}
$$

$(3)-2 \times 10 \quad J_{a}=4310^{b} \quad M a=5919^{1.1} \quad I=297 \operatorname{wa}^{4} \quad 0=.001^{\prime \prime} \mathrm{ck}$

$$
\left[(3)-2 \times 10^{\# 1 / 1 / 2} \text { spf }\right]
$$

HTo" Sivas

110
TMy 2×6 sivo gnase spf e $16 \ldots / \mathrm{m}$
Vermin woss
$P_{S L}=30(27 / 2+2)(4 / 3)=620^{H}$
$P_{\text {Du }}=[17(27 / 2+2)+12(11 / 25])(4 / 3)=439$
Honizowial wats
$\downarrow^{-\operatorname{Sen}}$ Sit 1.2
Wh. $21.32(.8 / 1.3)(4 / 3)=17.5$ pt

Sow Next $\xrightarrow{\text { SHeer }}$

FILE NO
. 100915
DESIGNER $\triangle S 6$ DATE $9 / 30 / 10$
2

CLIENT Leviry
PROJECT Purinad rME
\qquad Garige

Genoral information

| Analysis Method: | Allowable Stress Design | |
| :--- | :--- | :--- | ---: |
| End Fixities | Top \& Bottom Pinned | |

Code Ref : 2006 IBC, ANSI / AF\&PA NDS-2005

2×6

Graded Lumber
Sawn

1,60 in	Allowable Stress Modification Factors	
5.50 in	Cf or Cv for Bending	1.0
$8.250 \mathrm{in}^{\wedge} 2$	Cf or Cv for Compression	1.0
$20.797 \mathrm{in}^{\wedge} 4$	Cf or Cv for Tension	1.0
1.547 in ${ }^{\text {4 }}$	Cm: Wet Use Factor	1.0
	Ct : Temperature Factor	1.0
	Cfu : Flat Use Factor	1.0
	Kf : Built-up columns	1.0 NOS 15.3 .2
	Use Cr : Repetitive?	Yes (non-gli only)

Brace condition for deflection (buckling) along columns :
$X-X$ (width) axis: Unbraced Length for X - X Axls buckling $=0$ ft, $K=1.0$
Y-Y (depth) axis: Unbraced Length for Y - Y Axis bucking $=11 \mathrm{ft}, \mathrm{K}=1.0$

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
AXIAL LOADS
Axial Load at $11.0 \mathrm{ft}, \mathrm{D}=0.4390, \mathrm{~S}=0.620 \mathrm{k}$
BENDING LOADS .
Lat. Uniform Load creating $M x-x, W=0.0180 \mathrm{k} / \mathrm{ft}$

DESIGN SUMMARY

Bending \& Shear Check Results

PASS Max. Axial+Bending Stress Ratio =

Max. Axial+Bending Stress Ratio	0.6215:1
Load Combination	$+\mathrm{D}+\mathrm{W}+\mathrm{H}$
Governing NDS Formla Comp	Eq. 3.9-3
Location of max.above base	5.463 H
At maximum location values are . .	
Applied Axial	0.4390 k
Applied Mx	-0.2722 k-tt
Applied My	0.0 k-tt
Fc: Allowable	462.55 psi

PASS Maximum Shear Stress Ratio $=$ Load Combination Location of max.above base Applied Design Shear Allowable Shear
0.6215 : 1 $+\mathrm{D}+\mathrm{W}+\mathrm{H}$

Maximum SERVICE Lateral Load Reactions..

Top along Y-Y	0.0990 k	Bottom along Y-Y	0.0990 k
Top along X-X	0.0 k	Bottom along X-X	0.0 k

Maximum SERVICE Load Lateral Deflections ...
Along Y-Y $\quad-0.2402$ in at 5.537 Ht above base for load combination. WOnly
Along X-X $\quad 0.0$ in at $\quad 0.0 \mathrm{ft}$ above base for load combination: n/a
Other Factors used to calculate allowable stresses . . .

Cf or Cv : Size based factors	$\frac{\text { Bending }}{1.000}$	$\frac{\text { Compression }}{1.000}$	Tension

Load Combination Results

Load Combination	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios			
	Stress Ratio	Status	Location	Stress Ratio	Status	Location	
+	0.1150	PASS	0.0 ft	0.0	PASS	11.0	ft
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$	0.2775	PASS	0.0 ft	0.0	PASS	11.0 f	H
+ D $+0.750 L+0.750 S+H$	0.2369	PASS	0.0 ft	0.0	PASS	11.0	
$+\mathrm{D}+\mathrm{W}+\mathrm{H}$	0.6215	PASS	5.463 ft	0.08889	PASS	0.0	
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.750 \mathrm{~W}+\mathrm{H}$	0.4694	PASS	5.537 H	0.06667	PASS	0.0	
$+D+0.750 L+0.750 S+0.750 \mathrm{~W}+\mathrm{H}$	0.5621	PASS	5.537 H	0.06667	PASS	0.0	
$+D+0.750 L+0.750 S+0.5250 \mathrm{E}+\mathrm{H}$	0.2369	PASS	0.0 f	0.0	PASS	11.0	
$+0.60 \mathrm{D}+\mathrm{W}+\mathrm{H}$	0.5912	PASS	5.463 tt	0.08889	PASS	0.0 f	

Dañ Green Engineering, Inc.
3230 Triangle Drive SE
Salem, OR 97302
503-391-2309

Title: Portland (ME) Van Garage Job\# 100915
Dsgnr: DSG
Project Desc.:
Project Notes:

Maximum Reactions - Unfactored				

Maximum Deflections for Load Combinations - Unfactored Loads

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Defiection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
W Only	0.0000 in	0.000 ft	-0.005 in	11.000 ft
D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
D+W	0.0000 in	0.000 ft	-0.010 in	10.926 ft

Sketches

Foot. 1 SS

maximum line was. $(30+17)(27 / 2+2)+12(11)=861$ pf

PAD frond of at on d EDGes

$$
P t=6139^{*} \quad A R E A \text { ROSS }=\frac{6139}{2250}=2,73 \mathrm{fE}^{2} \quad \sqrt{=}=1.65^{1}
$$

$$
\left[\begin{array}{l}
u s e \\
w /\left(24^{2} \times 24^{2} \times 4\right. \text { sans EAu cain }
\end{array}\right]
$$

SALEM, OREGON

FILE NO.
DESIGNER 100915
-

CLIENT
PROJECT
Levin
P
\qquad Punt units.

LAIBML DESICN

- See sheets 1.2 ard 1.3 fon luss asd 1.4 fon layour refeneurce

LOASIN on simocinne.

- In Fnout-Back Dine non
wh:

$$
\omega=14.23(6)=85 \mathrm{pH}
$$

$\omega_{1}, 14.23(4.5)=104 p .5$

$A_{1}=B 5(22 / 2)=935^{4}$
$R_{2}=935+320=1255^{k}$

$$
R_{3}=64(10)=1=320 \underline{4}
$$

selsume

SAME WAA DIA as WU.
DIA as LUL.
$W=.149(17(31)+12(1 / 2)(2))(1 / 1,4)=70 \mathrm{pf}$ $W_{1}=145(17(31)+12(0 / 2)(21)(1 / 14)=61$ pf Less DHeN we a cer convows,

- ln RT-LT DINETION

$$
\begin{aligned}
& w=85 N F=J_{S}=14 \theta[(17(36)+12(5.5+5.5+4)](1 / 1.4)=8410 \\
& R_{A}=R_{B}=85(27 / 2)=1148
\end{aligned}
$$

SHEANWAUS t HONDOWNS

- Gmi 1

$$
\begin{aligned}
& R_{1}=935 \text { pavers } \rightarrow\left(11-22^{\prime}-0^{\circ}\right. \\
& V_{s w}=935 / 22=43 \mathrm{pl} \leqslant \text { Type B Sw) } \\
& M_{\text {Ot }}=935(11)_{=}<102851.4 M_{L_{1}}, \frac{2}{3}[(10(6)+110)(22 \% 21+90(=2))=287471.6 \\
& \text { No Has peas }
\end{aligned}
$$

- cona 2
- Gnia 3

$$
\begin{aligned}
R_{3} \cdot 320^{\circ} & (1)-22^{1} 0^{\circ} \\
& \text { SANC AS GMA } 1
\end{aligned}
$$

- GMA A

$$
R_{A}=114 e^{*} \quad \text { pawes-1 } \rightarrow \quad(1)-321-0^{\circ}
$$

$$
V_{S_{w}}=114 E / 32=36 \mathrm{pt}+\text { Type B sw }
$$

$$
M_{0}=114 B(111)=12628 M_{1}=\frac{2}{3}[(10(61+110)(322 / 2)+384(325)=662191 \cdot \%
$$

- Gria B

FILE NO. $1009 / 5$ SHEET NO. _ 3.2
DESIGNER DSL_DATE $9 / 30 / 10$
CLIENT Leviry
PROJECT. PonTuach / MEI Vav GndAjo

$$
\begin{aligned}
& R_{B}=1148^{\beta} \quad \text { proses } \rightarrow \quad 12610^{\circ} \\
& U_{\text {bw }} 1148 / 12.83=89 \mathrm{ps}=\text {-Tyse is } 5 \omega \text {) } \\
& M_{G}=114 \theta(11)=126281 . \% \quad M_{\text {B }}=\frac{2}{3}[(10(6)+96)(12.83 \% / 2)+384(12.23))=11844^{\prime} \% \\
& \text { Ner OT, } 783^{. \%} \quad R=61^{*} \text { NOMWM-N NAH + ANGARASAS } \\
& \text { w Mosín ra's Meedsal }
\end{aligned}
$$

$$
\begin{aligned}
& R_{2} \text {. } 1255^{*} \quad \text { Pavers } \rightarrow \text { (11-2610 } \\
& V_{S \omega}=1255 / 26=40 \text { put \&Type B SW] } \\
& M_{0 T}=10285+320(5)=128451.4<M_{4}-\frac{2}{3}[(10(10)+110)(2672)+768(26))=60632 \\
& \text { wo thas mes, }
\end{aligned}
$$

Map

Assesser's Office | 389 Congress Street | Portand, Maine 04101 | Room 115 | (207) 874-8486
City Home Departments City Councll E-Services Calendar Jobs

This page contalns a detalled description of the Parcel ID you selected. Press the New Search button at the bottom of the screen to submit a new query.

Current Owner Information:

Services
Applications
Doing lusiness
Maps
Tax Relief
Tax Roll
Q a A
browse city
services a-z
browse facts and
tinks a-z

Best viewed at
800×600, with Internet Explorer

Assessors Office | 389 Congress Street | Portiand, Maine 04101 | Room 115 | (207) 874-8486

$$
\begin{aligned}
& \text { City Home Departments City Council E-Services Calendar Jobs } \\
& \text { This page contains a detalled description of the Parcel } 10 \text { you selected. Press the New } \\
& \text { Search button at the bottom of the screen to submit a new query. }
\end{aligned}
$$

Current Owner Information:

Services
Appllcations
Doing Business
Maps
Tan Relief
Tax Roll
Q a A
browse city
services a-z
browse tacts and
links a-x

CBL	160 E001001
Land Use Type	RETAIL \& PERSONAL. SERVICE
Property Location	217 CANCO RD
Owner Information	PORTLAND ASSISTED LIVING LLLC
	925 4TH AVE STE 3300
	SEATTLE WA 98104
Book and Page	$21983 / 326$
Legal Description	160-E-1 161-A-2
	CANCO RD
	442415 SF
	PARCEL. B
Acres	10.156
Current Assessed Valuation:	

TAX ACCT NO.	48898	OWNER OF RECORD AS OF APRIL 2010 PORTLANO ASSISTED LIVING LLC
LAND VALUE	$\$ 1,470,400.00$	925 ATH AVE STE 3300
BUILDING VALUE	$\$ 5,824,800.00$	SEATTLE WA 98104
NET TAXABLE - REAL ESTATE $\$ 7,295,200.00$		
TAX AMOUNT	$\$ 130,729.98$	

Any information concerning tax payments should be directed to the Treasury office at 874-8490 or e-mailed.

Building Information:

	Card 1 of 2
Year Built	2005
Style/Structure Type	APARTMENT-GARDEN
\%Units	80
Building Num/Name	1 - BIRCHWOOD
Square Feet	72726
View Sketch	View Man

	Card 2 of $\mathbf{2}$	
Year Built	2005	
Style/Structure Type	APARTMENT-GARDEN	
\%Units	2	
Square Feet	4878	
Vlewn Sketch	View MaR	View Picture

Exterior/Interior Information:

	Card 1
Levels	01/01
Size	36363
Use	APARTMENT
Height	8
Walls	FRAME
Heating	HW/STEAM
A/C	CENTRAL
	Card 1
Levels	02/02
Size	36363
Use	APARTMENT
Height	8
Walls	FRAME
Heating	HW/STEAM
A/C	CENTRAL
	Card 2
Levels	$01 / 01$
Sixe	1235
Use	APARTMENT
Height	8
Walls	FRAME

REVIS
\square
\square
\qquad
St

ERS

三NT SIDING)
T:/09F/NISH/980WOOD/09980010

BUILDING SECTION

(G,AR,AGE/STOR,AGE)
SCALE: $\quad \mid / 4^{\prime \prime}=1^{\prime}-\varnothing^{\prime \prime}$

2×4 SUPPORTS a $48^{\prime \prime}$ O.C EXTEND SUPPORT UF BESIDE TRUSS TO ROOF GHE ATHINE.
PT SILL PL_ATE, SHEATH
EXTERIOR WITH 7/16" SHT'G
NAIL Sd a 6"OC. EDGES. $12^{\prime \prime}$
OC/FIELD. (U.ON.)
OFENER
OVERHOCD STORAGE SHELF (2×4 OONST)
$2^{2}-\theta^{\prime \prime} \times$ PREMANUF WHEEL STOF

SLOPE PAVING $1 / 8^{\prime \prime}$ FER FOOT FROM BACK WALLTO FRON
-2×6 SILL P.T.

NOTE:
EXTERIOR FINISH TO MA OTHER EUILDINGS ON SI OVER 7/16" SHEATHING BUILDING PAPER

$$
7 / M / 2011
$$

Someane will corme XV To
CHance mensoremets on Pians (upDate)
Becmase of wate- line

Setbracks appiar ok

$$
B K
$$

$$
7.15-11
$$

\#4 Ribon par poon
30solsI from Dasytur olcoy to Poune pro

