

General Building Permit Application

If you or the property owner owes real estate or personal property taxes or user charges on Property within the City, payment arrangements must be made before permits of any kind are accepted

Location/Address of Construction: 138 C	AUCC ROM	90						
Total Square Footage of Proposed Structure/A 874 SF ADDITION	rea	Square Footage of Lot 308, 500 SF						
Tax Assessor's Chart, Block & Lot	Applicant * <u>n</u>	nist be owner, Lessee or Buye	*	Telephone:				
Chart# Block# Lot#	Name CEN	TRAL MAINE POWER CO	.	(207)623-3521				
148 A006 001	Address B3	BEDISCU DRIVE		EXE 2390				
	City, State &	Zip Augusta, ME 043	36	BOB Monoch				
Lessce/DBA (If Applicable)	Owner (if dif	fferent from Applicant)		st Of				
	Name		1 22	ork: 5_350 000				
NIA	Address	NIA	Co	of O Fee: \$				
	City, State & Zip			tal Fee: \$				
Current local use (i.e. single family) Russ in	ose le lore	alway Cine	13.5	HINS THE PERC				
Current legal use (i.e. single family) <u>Bosto</u> If vacant, what was the previous use? <u>N/A</u>)	-						
Proposed Specific use: ADDITION OF EAS	T TRUCK S	TURAGE BAYS TO ALLO	4 5	STONAGE CI= LINGER				
Is property part of a subdivision?/ C								
THE DOLLAT WHILL RE MI AND	TION OF	5-6" DEEP X = 160 LC	14	C' MHE EXISTING				
EAST TRUCK BAYS THE ADDITION	N IS RECK	silled to Allow ives		inp choc i				
WHICH ARE NOW LOWIGH TO CONT	TINUE TO E	BE STORED IN THE EI	35 7	TRUCK BAIS				
Contractor's name: PRASET IS CURRE	NTLY OUT	TO BIO.						
Address:								
City, State & Zip		T	elepl	ione:				
Who should we contact when the permit is read	ty: DAN S	PAULOINS	elept	none: (207) 961 -9923				
Mailing address: SPAULOING ENGINER	ING, 24	Mailing address: SPAULDING ENGINE OLING, 24 Common ST, WATERVILLE, ME 04901						

Please submit all of the information outlined on the applicable Checklist. Failure to do so will result in the automatic denial of your permit.

In order to be sure the City fully understands the full scope of the project, the Planning and Development Department may request additional information prior to the issuance of a permit. For further information or to download copies of this form and other applications visit the Inspections Division on-line at <u>www.portlandmaine.gov</u>, or stop by the Inspections Division office, room 315 City Hall or call 874-8703.

I hereby certify that I ain the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized by the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued, I certify that the Code Official's authorized representative shall have the authority to enter all areas covered by this permit at any reasonable hour to enforce the provisions of the codes applicable to this permit.

	• • •		
Signature:	Rabert J Mender Date:	7/27/11	
		'/ /	

This is not a permit; you may not commence ANY work until the permit is issue

Certificate of Design

Date:	JULY 27,2011	

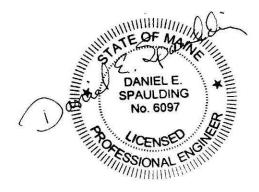
From: <u>SPAULDING ENGINEERING É CONSTRUCTION</u> SERVICES, INC.

These plans and / or specifications covering construction work on:

874 SQUARE FOUT ADDITION (5-6"DEEP X= 60 LONG) TO THE EXISTING EAST TRUCK BAYS AT CMP'S PORTLAWD SERVICE BUILDING

Have been designed and drawn up by the undersigned, a Maine registered Architect / Engineer according to the *2003 International Building Code* and local amendments.

TE OF MAIN		
DANIEL E. SPAULDING No. 6097	Signature	Daniel E. Spaulding
CENSED MULTIN	Title:	CIVIL ENGINEER
(SEAL)	Firm:	SPAULDING ENGINEETRING & CONSR. SVC. FAC.
	Address:	24 COMMON STREET
		WATERVILLE, MAINE 04901
	Phone:	(207) 861-9923


For more information or to download this form and other permit applications visit the Inspections Division on our website at www.portlandmaine.gov

CENTRAL MAINE POWER COMPANY

NEW 874 SQUARE FOOT EAST TRUCK BAYS ADDITION TO THE EXISTING SERVICE BUILDING LOCATED AT 138 CANCO ROAD IN PORTLAND, MAINE

CERTIFICATE OF DESIGN APPLICATION

07/27/11

Prepared By: Daniel E. Spaulding P.E. Spaulding Engineering and Construction Services, Inc. 24 Common Street Waterville, Maine 04901 (207) 861-9923 Central Maine Power Company East Truck Bay Addition/Extension Certificate of Design Application July 27, 2011 2 of 5

CERTIFICATE OF DESIGN APPLICATION

From Designer:

Daniel E. Spaulding P.E. State of Maine PE Number: 6097 Spaulding Engineering and Construction Services, Inc. 24 Common Street Waterville, Maine 04901 Tel. (207) 861-9923 Email: dan@spauldingengineering.com

Date: July 27, 2011

- Job Name:Central Maine Power Company
2011 East Truck Bay Extension
- Address of Construction: 138 Canco Road, Portland, Maine Chart/Block/Lot: 148 A006001

Owner's Name and Address:

Central Maine Power Company 83 Edison Drive Augusta, Maine 04336 Contact person: Mr. Robert Meader, Project Manager Tel. (207) 623-3521 ext. 2390 Fax: (207) 621-4737 Cell: 458-3262 Email: robert.meader@cmpco.com

Project Data:

- 1. The total site area is 308,640 square feet.
- 2. The total disturb area for the new addition would be approximately 2685 square feet which would be represented by the 874 square feet for the building footprint and approximately 1811 square feet of repaying in front and on the sides of the new addition.
- 3. Proposed Paved Area: 218,500 square feet
- 4. Existing total impervious area: 284,510 square feet
- 5. Proposed total impervious area: 284,510 square feet
- 6. Proposed Impervious net change: 0 square feet

Central Maine Power Company East Truck Bay Addition/Extension Certificate of Design Application July 27, 2011 3 of 5

- 7. Proposed Building Foot Print: 53,242 square feet
- 8. Proposed Building footprint net change: 854 square feet
- 9. Existing Total Building Floor Area: 103,375 square feet
- 10. Proposed Total Building Floor Area: 104,249 square feet.
- 11. Proposed Building Floor Area Net change: 874 square feet

The existing building is a Mixed Use Group consisting of IBC Use groups B (business), S1 (moderate hazard storage) and S2 (low hazard storage). The structure is a separated mixed use. NFPA classifies the Classification of Occupancy as Business, Low Hazard Storage (Vehicle Parking) and Ordinary Hazard Storage for Maintenance Garage Portion of building.

The new truck bay addition will be an extension of the existing truck bay used to store vehicles only in IBC Use Group S2.

The new 874 square foot addition/extension will have the existing sprinkler system extended from the existing truck bays into the new addition/extension. The Sprinkler system modifications will be completed by Eastern Fire Systems in accordance with the 2009 IBC and NFPA 13.

The existing building is equipped with a supervisory alarm system.

No geotechnical/soils report was performed as the new addition loads are very small. Test pits were performed by Maine Test Borings to determine distance to rock. All test pits indicated that the structure foundations will be founded on rock or on gravel. A copy of the Maine Test Borings information is attached as Appendix A.

Photos of the existing east truck bay along Canco Road are attached in Appendix B.

Structure Design Calculations are included in Appendix C.

New 874 square foot truck bay addition/extension has been designed in accordance with the 2009 International Building Code (IBC) and the American Society of Civil Engineers (ASCE) "2010 Minimum Design Loads for Buildings and Other Structures" ASCE/SEI 7-10.

Use Group Classification(s): The new addition/extension will be attached to the existing S2 low hazard storage east truck bays. The truck bays are used for CMP line truck service only. No vehicle service is performed in this area.

Central Maine Power Company East Truck Bay Addition/Extension Certificate of Design Application July 27, 2011 4 of 5

Type of Construction: Type III.	
Building Frame: Wall construction:	Steel beams and columns. Exterior walls will be 3 inch thick insulated wall panels.
	Interior walls will be finished with $\frac{1}{2}$ " fire rated plywood.
	Roof: 22 steel gauge deck with isocyanurate insulation and low slope fire rated (LSFR) EPDM membrane.

Wind Loads:

Wind loads were determined based on ASCE 7-10 Part 1: Enclosed, Partially Enclosed and Open Building of All Heights. The building while classified as an Enclosed structure when overhead doors are closed was also evaluated as a Partially Enclosed structure if doors are left open.

Basic Wind Speed for a Category IV is V=130 mph from ASCE 7-10 Figure 26.5-1B.

Building Category: Building is a Category IV from IBC Table 1604.5

Wind Exposure Category: Exposure B IBC 1609.4.3

Internal Wind Pressure: ASSCE 7-10 Enclosed Buildings: GCpi = +/- 0.18 Table 26.11-1

Partially Enclosed Building: GCpi = +/- 0.55 Table 26.11-1

Component and Cladding pressures: ASCE 7-10

Main Force Wind Pressures: Enclosed Building: Windward = 18.1 psf Leeward = -7.4 psf Sidewall = -16.3 psf

Partially Enclosed Building: Windward = 25.8 psf Leeward = -15.1 psf Sidewall = -24.0 psf Central Maine Power Company East Truck Bay Addition/Extension Certificate of Design Application July 27, 2011 5 of 5

Earth Design Data: Design Option Utilized: Allowable Stress Design Seismic Use Group Category: C Spectral Response Coefficients: SDs = 0.267SD1= 0.128Site Class: D

Roof Snow Load: ASCE 7-10

Roof Design Snow load: 50 psf Roof Design Snow Load w/Drift: 110 psf Ground Snow Load: 60 psf Figure 7-1 Flat Roof Snow Load: 50 psf Snow Exposure Factor (Ce) = 1.0 Table 7-2., 26.7.3 Snow Importance Factor (Is) = 1.2 Table 1.5-2 Roof Thermal Factor (Ct) = 1.0 Table 7-3 Seismic Design Category: C Basis Seismic Force Resisting System: Cantilevered Columns Response Modification Coefficient (R): R= 1.25 Deflection Amplification factor (Cd): Cd=1.25 Analysis Procedure: ASCE Section 12.0 – Equivalent Lateral Force Procedure Design Total Base Shear (V): V= 14,518 pounds

APPENDIX A

MAINE TEST BORINGS –SITE TEST PROBES

MAINE TEST BORINGS INC. BREWER, ME 04412		Spaulding Engineering & Construction Dan Spaulding 24 Common St Waterville				PROBE LOG		
RILLER:		Alonzo Francis		PO#		A.,	ger 4"	
RILLER:		Alonzo Francis	Ref#:	ME and LOCATI		Au	ger 4" ze O.D.	
TB JOB N	0.	2011-096			JN:	0		
IB JOB N	0:	2011-096	CMP Bldg, 162	ME				
DOD			Portland			D 0		
	NG NO.	P-5			RING NO.			
NE and ST				LINE and	STATION:			
		6 ft off bldg				6 ft off bldg		
ELE\	ATION:			E	EVATION:			
	DATE:	06/21/2011				06/21/2011		
DEPTH		STRATUM DESCRIP	TION	DEPTI		STRATUM	I DESCRIPTION	
0.4	Tar			0.4	Tar			
	Brown	Sandy Gravel			Brown	Sandy Gravel		
3.2		-,		3.7				
0.2				5.7				
6.2		rown Sand w/Trace of Gravel		6.0		Brown Sand w/Gravel	0.11	
6.5	Weath	ered Rock		7.1		Brown Sand w/Trace of		
	ļ			7.5		Brown Fine Sand w/Gra	avel	
	Auger	Refusal @ 6.5'		7.7	Weath	nered Rock		
	Open a	& Dry						
					Auger	Refusal @ 7.7		
						& Dry @ 6.2'		
	1							
	1							
				<u> </u>				
	ļ							
REMARKS				REMAR	S:			
					-			
				1				

MAINE TEST BORINGS INC. BREWER, ME 04412		Spaulding Engineering & Construction Dan Spaulding 24 Common St					
		24 Common S		P	ROBE LOG		
			Waterville	ME			
RILLER:		Alonzo Francis	Ref#:	PO#:		Auger	4"
				ME and LOCATION		Size O.E	·.
ITB JOB N	O :	2011-096	CMP Bldg, 162				
			Portland	ME			
BOR	NG NO.	P-3			NG NO.	P-4	
INE and ST	TATION:			LINE and S	TATION:		
C	FFSET:	6 ft off bldg		C	FFSET:	6 ft off bldg	
	ATION:				ATION:		
		06/21/2011				06/21/2011	
DEPTH		STRATUM DESCRIP	ΤΙΟΝ	DEPTH		STRATUM DES	CRIPTION
	-				-	0111110111020	
0.4	Tar			0.4	Tar		
3.5		Sandy Gravel		3.6		Sandy Gravel	
3.8	Weath	ered Rock		4.2	Light E	Brown Fine Sand	
				4.5	Weath	ered Rock	
	Auger	Refusal @ 3.8'					
	Open a				Augor	Refusal @ 4.5'	
	Openo				-		
					Open	Συгу	
	ļ						
	ļ						
	1						
	ļ						
				<u> </u>			
]						
REMARKS				REMARKS:			
		ED BY DRILLER VISUALLY					

	IES	T BORINGS INC.		ineering & Cons			
BREWER, ME 04412		Dan Spaulding					
		24 Common St				PROBE LOG	
			Waterville	ME	1		
ORILLER:		Alonzo Francis	Ref#:	PO#			Auger 4"
				ME and LOCAT	ON:		Size O.D.
ITB JOB NO	0:	2011-096	CMP Bldg, 162	2 Canco Rd			
			Portland	ME			
BORI	NG NO.	P-1			ORING NO	P-2	
INE and ST					STATION		
		6 ft off bldg				6 ft off bldg	
	ATION:			F	LEVATION		
		06/21/2011				06/21/2011	
DEPTH	DATE.	STRATUM DESCRIP		DEPT			ATUM DESCRIPTION
		STRATOM DESCRIP				5117	
0.4	Tar			0.4	Tar		
3.0	Brown	Sandy Gravel		2.8	Browr	sandy Gravel	
3.2		ered Rock		3.3	Weat	nered Rock	
	Augor	Pofusal @ 2.2			۸	Potucal @ 2.2	
		Refusal @ 3.2'				Refusal @ 3.3'	
	Open a	& Dry			Open	& Dry	
				<u> </u>			
				ļ			
]							
				DEMAS			
REMARKS:				REMAR	3:		

MAINE TEST BORINGS INC. BREWER, ME 04412		Spaulding Engine	0			
		24 Common St				
						PROBE LOG
			Waterville	ME		
RILLER:		Alonzo Francis	Ref#:	PO#:		Auger 4"
				E and LOCATION:		Size O.D.
ITB JOB N	O :	2011-096	CMP Bldg, 162 C			
			Portland	ME		
BOR	NG NO.	P-7		BORIN	G NO.	
INE and ST	ATION:			LINE and STA	TION:	
		6 ft off bldg			FSET:	
	ATION:	5		ELEVA		
		06/21/2011			DATE:	
DEPTH	B/(12)	STRATUM DESCRIP	τιον	DEPTH	Bitte.	STRATUM DESCRIPTION
0.4	Tar					
	Brown	Sandy Gravel				
	DIGWII	Canay Cravol				
7.3						
9.1	Light B	Brown Fine Sand w/Trace of Grave				
9.2		ered Rock				
	Augor	Refusal @ 9.2'				
	1					
	Caved	& Dry @ 7.1'				
	ļ					
	ļ					
	1					
	ļ					
REMARKS	:			REMARKS:		
		ED BY DRILLER VISUALLY		1		

APPENDIX B

PHOTOS –EXISTING EAST TRUCK BAYS ALONG CANCO ROAD LOCATION OF NEW ADDITION

138 Canco Road Portland. Existing East Truck with 12 overhead doors facing Canco Road. New addition will be out 5'-6" toward Canco Road to provide storage space for new longer line trucks.

138 Canco Road Portland. Existing East Truck with 12 overhead doors facing Canco Road. New addition will be out 5'-6" toward Canco Road to provide storage space for new longer line trucks.

138 Canco Road Portland. Existing landscaping to the north of the east truck bays that will remain.

138 Canco Road Portland. Existing landscaping to the north of the east truck bays that will remain.

APPENDIX C

STRUCTURE DESIGN CALCULATIONS

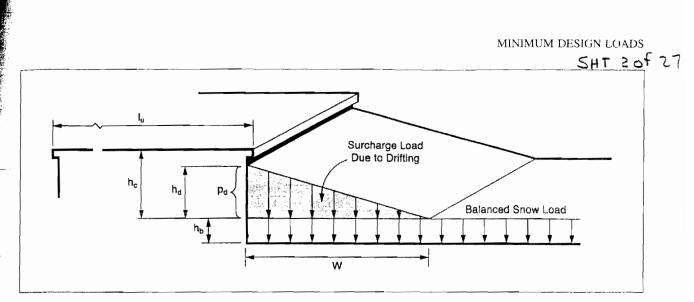


FIGURE 7-8 Configuration of Snow Drifts on Lower Roofs.

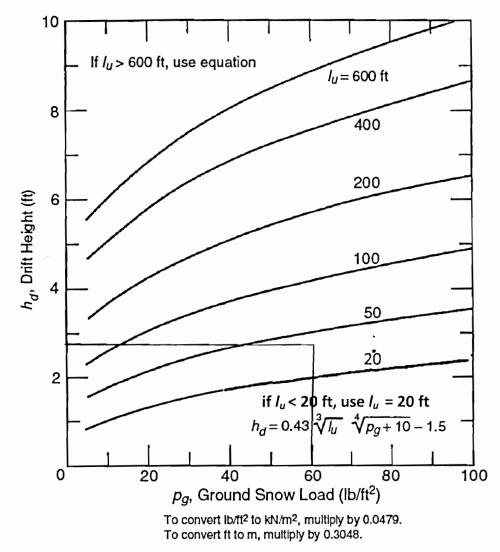
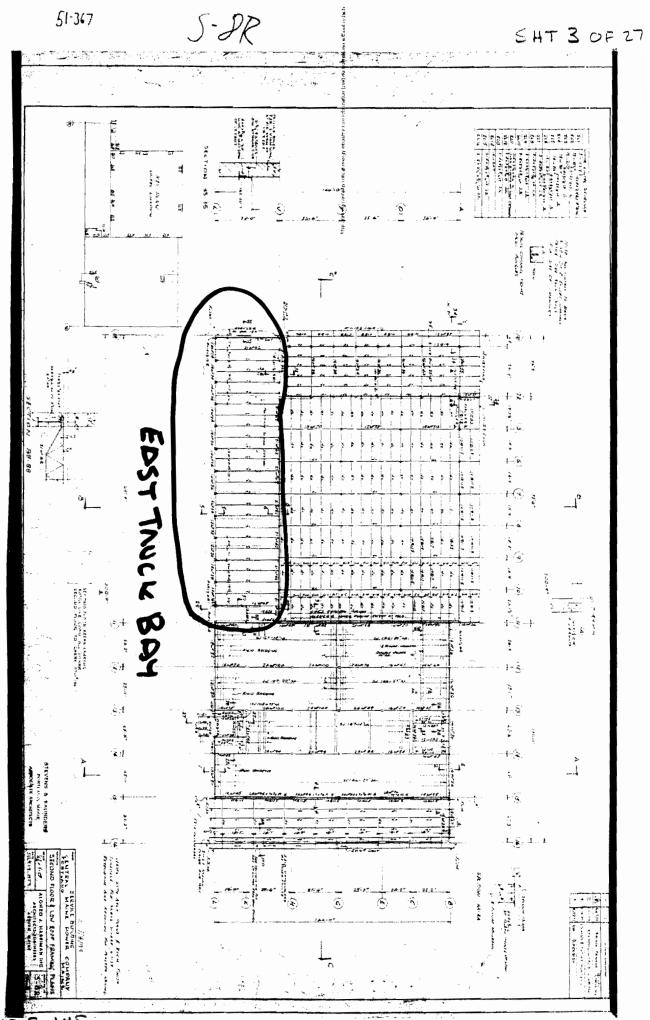
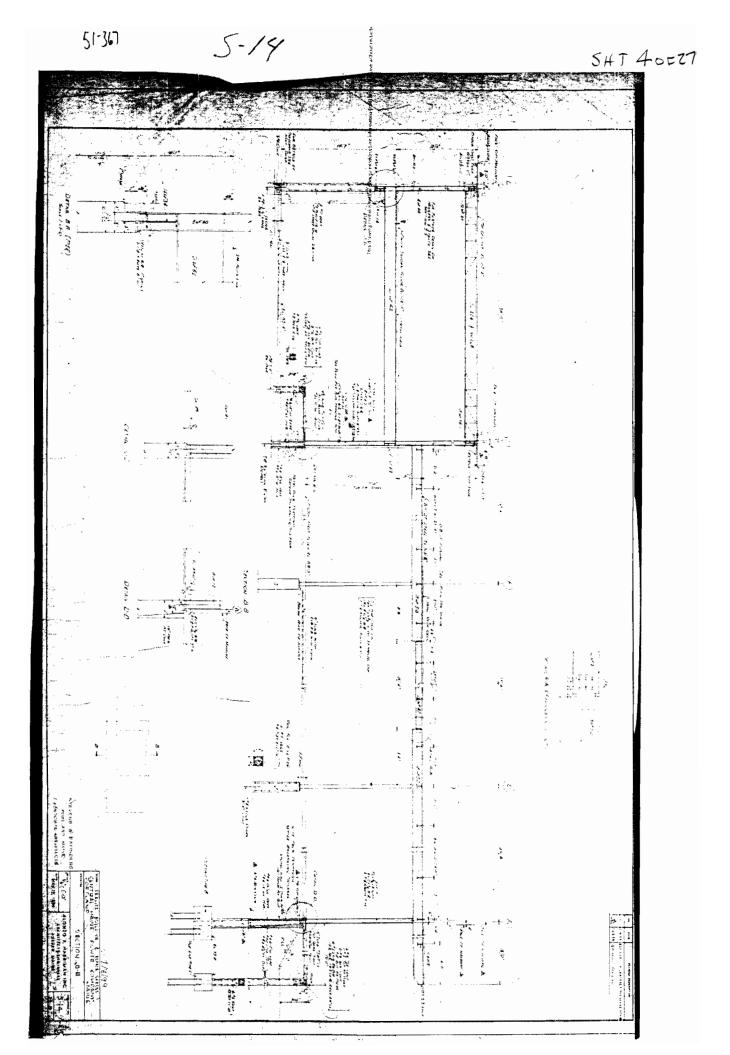




FIGURE 7-9 Graph and Equation for Determining Drift Height, h_d .

SHT 301

SHT 50527

$$p_{g} = 60 \text{ psF}$$

$$lu = 39'$$

$$he = 116.0' - [04.25' = 11.75'$$

$$hd = 0.43 \sqrt{38.0'} \sqrt{60+10} - 1.5$$

$$(1.446)(2.893) - 1.5 = 2.68$$

$$V = 0.13(60 \text{ ps} =) + 14 = 21.8 \text{ pcf}$$

$$h_{b} = 50.4 \text{ ps} f / 21.9 \text{ pcf} = 2.31'$$

$$h_{d} = 2.66' \text{ pd} = 2.66'(21.8 \text{ pcf}) = 58 \text{ psf}$$

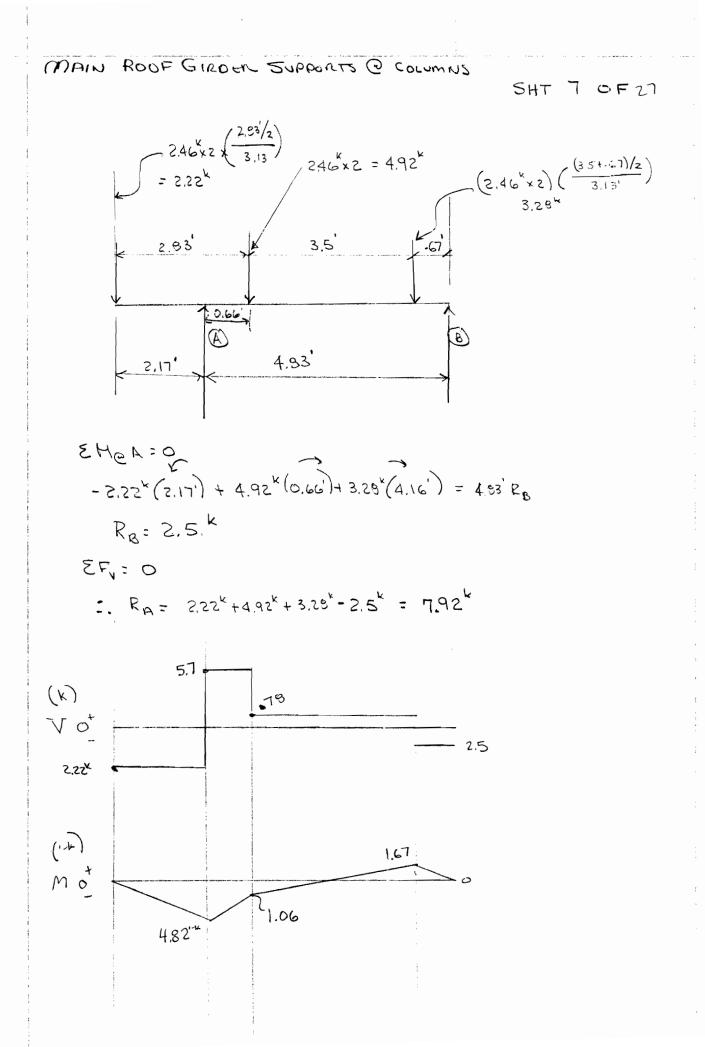
DESIGN ENTIRE ROOF FOR 50,4 PSE + 58 = 109,4 PSE USE 103 PSF

$$h_d = 2.66'$$

 $h_c = 11.75'$
 $W = 4(h_d) = 4(2.66') = 10.64' 77'$. Design For 109 PSF
 $USE 1100 PSF ACROSSIENTRE RODE REAMS$

$$\frac{CROSS BERM SUPPORT STEEL}{SHT 6 of 27}$$

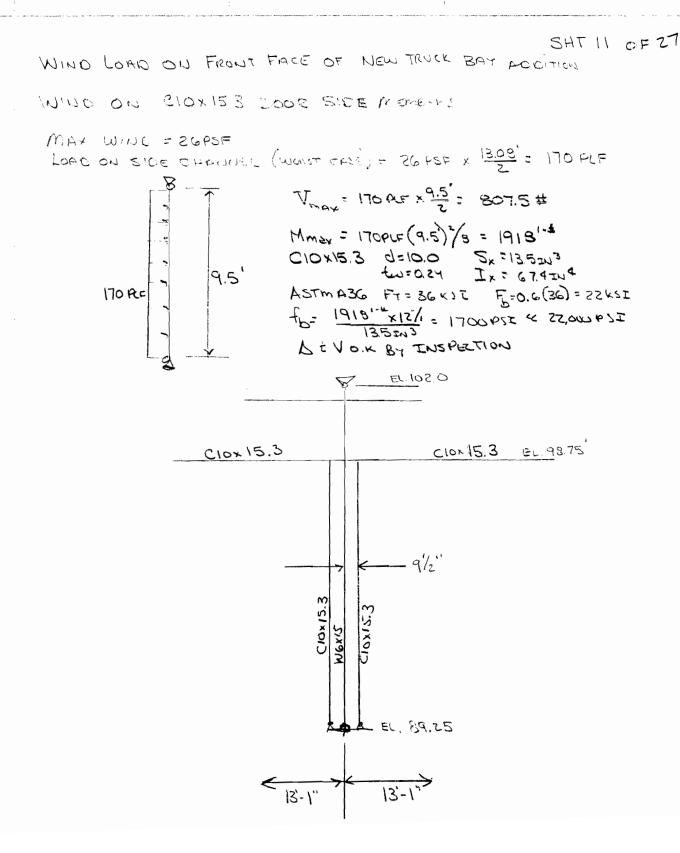
$$\frac{\int CROSS BERM SUPPORT STEEL}{\int CHORSE}$$

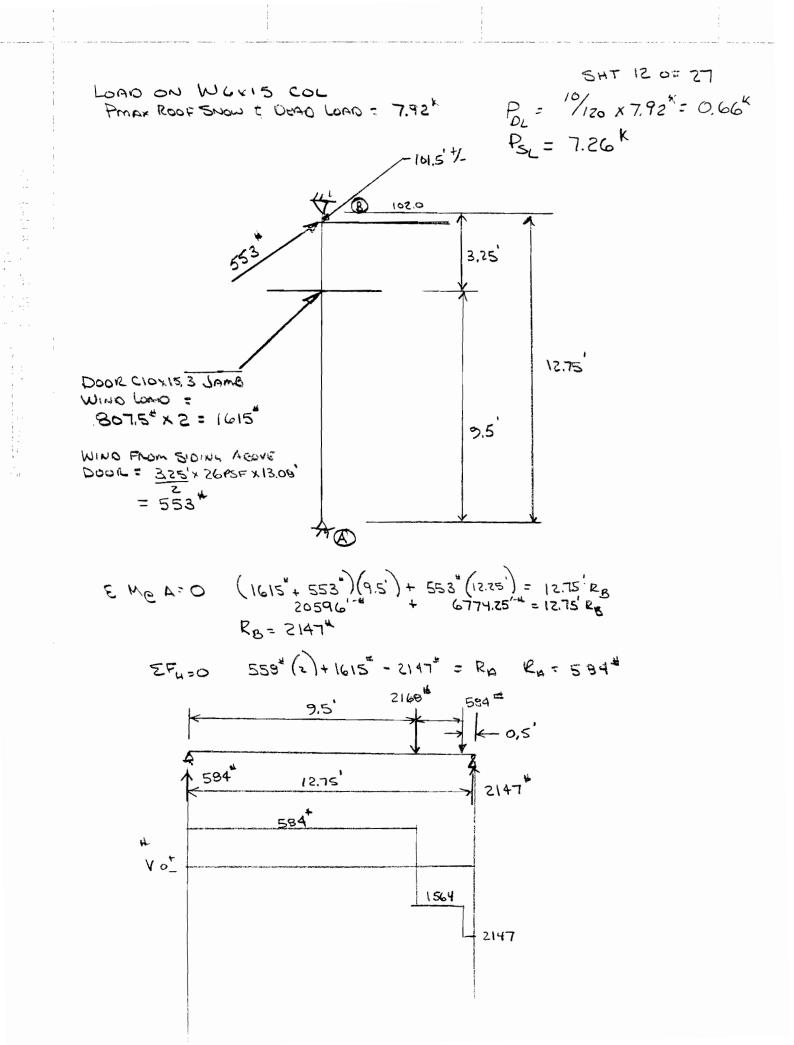

$$\frac{\int CROSS BERM SUPPORT STEEL}{\int CHORSE}$$

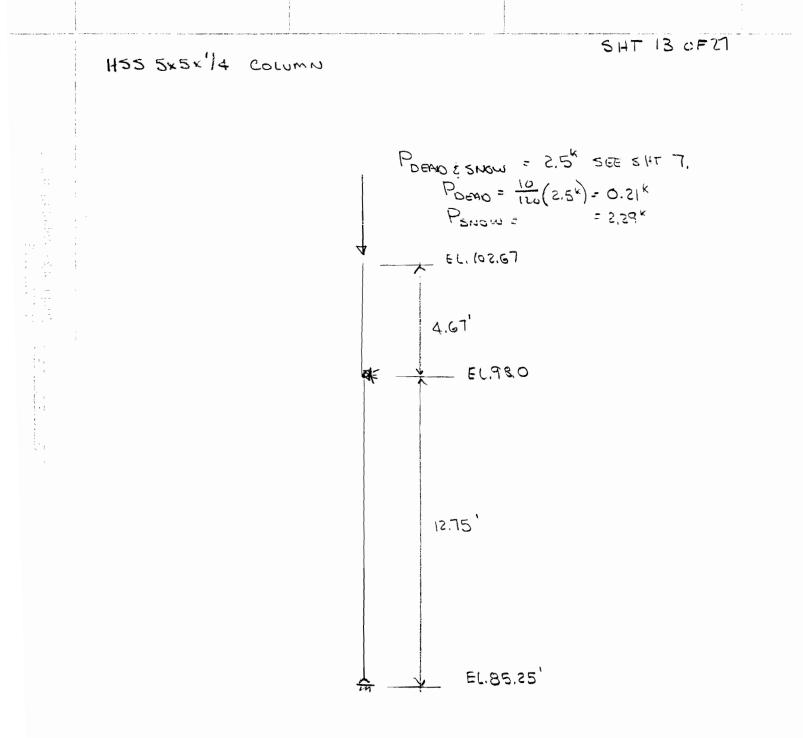
$$\frac{\int CROSS CONSTRUCTION (CONSTRUCTION)}{\int CHORSE CONSTRUCTION (CONSTRUCTION)}$$

$$\frac{\int CROSS CONSTRUCTION (CONSTRUCTION)}{\int CROSS CONSTRUCTION}$$

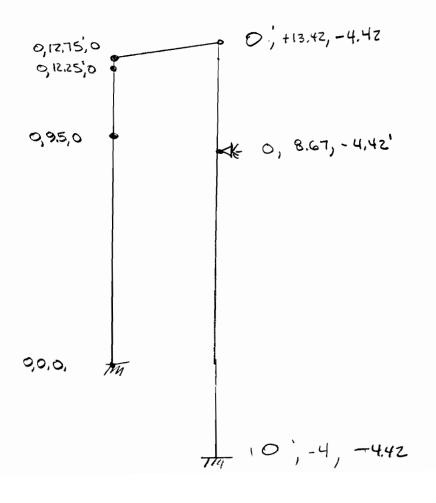
$$\frac{\int CROSS CONSTRUCTION (CONSTRUCTION)}{\int CROSS CONSTRUCTION}$$


$$\frac{\int CROSS CONSTRUCTION}{CROSS CONSTRUCTION}$$

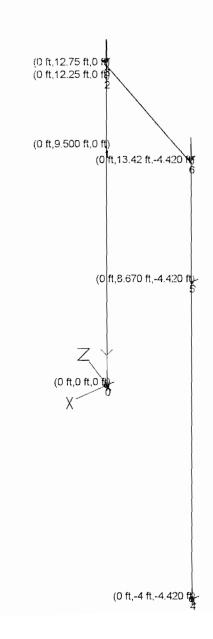



 $W_{6\times15} = 7.92$ HSS5×5 = 2.5 WIND LOAD CHAPTER 26/27 54190127 BUILDING RISK CATEGORY IV TABLE 1.5-2 V = 130MPH FIGURE 26.5-18 KJ TABLE 26.6-1 BUILDINGE Kd = 0.95 EXPOSURE CONEGONY 26.7 EXPOSURE B Kz topographic factor Tracle 27.3-1 Z= 19 Exposure B use 20=2 Kz= 1.0 GUST EFFECT FACTOR G SECTION 26.9 G=0.85 ENCLOSURE CLASSIFICATION 26.10 PARTIALLY ENCLOSED G_Pi= - 0.55 ENCLOSED BCpi = -0,18 OPEU GCpi = 0,00 VELOCITY PRESSURE EXPOSURE COEFFICIENT Kz or Kh = 0.57 TABLE 27.3-1 g2 = 0.00256 K2 K2t K3 V2 = 0.00256(0.57)(1.0)(0.95)(130mpr) = 21 PSF ENCLOSED & PONTIALLY ENCLUSED D= gGCp - gi (GCpi) Bi = 21PSF = ZIPSF (0.95) (0.8) = ZIPSF (0.16) g = 21PSF G = 0.85 Cp: 0,8 WIND WALL Bi = 21 PSF 8cn: = 10.19 D= (21 PSF) (0.95) (0.9) 1/2 21 psf (0.18) = 18.06 psf

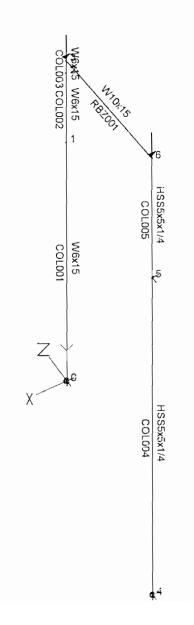
SHT. 10 WE 27


MORET CALE DOOR LEFT OPEN MIND BLOWING IN Z DIRECTION PARTIALLY ENCLOSED: 0 = (21 psc) (0.95) (0.9) +/ 21 pzf (0.55) = 0. 14.28 pzf -/ 129 25.93 pzf = 25.93 pzf = 0. Leeward walls L= 5 L/B = 5/160= 32 : Cp=-0.5 9= (21psf)(0.95)(-05) +/. 21psf(0.55) = -8.93 - 11.55 = -20.4 psf Sidemarks Cp=.0.7 B = (2185f) (0.05) (-0.7) +/- 2185 (0.05) = -12.5.11 55 = -240EF WING BLOWING IN X DIRECTION Windward p= 25. ps? Sidewall D= $B = 4.10^{\circ}$ $L/B = \frac{160}{4.10} = Cp = -0.2$ L= 160' JD= (21psf) (0.55) (-0.2) +/- 21psf (0.55) - 3.57 - 11.55 = -15.12 psf

LOAD COMB: ALLOWABLE STRESS DESTAN! SHT 14 OF 27 1 D+5 2 D+0.6W 3 D+0.7E 4 D+ 0.75(0.6W) + 0.755 5 D+ 0.75(0.7E) + 0.755 6 0.6D + 0.6W 7 0.6D + 0.7E



SHT 150F27


0123 JTS O O O FILED 0 9.50 0 12.25 0 0 12750 J110 0 - 4, - 4.42 FIXED 0 8.67, -4.42 PINNED 0 13.42, -4.42 Mondons 0-1 WEXIS 2-3 WEXIS WGKIS 4-5 HSS 5×5×10 5-6 HSS 5×5×14 3-6 WIOXIS

5HT 160F27 COLUMN W6X15 LOADS HS5 5x5x14 $Dead load = 0.66^{k}$ DEAD LOAD = 0.21 K SNOW LUMPO = 7.26 SUBW LUBRO = 2.29 K WINDIN Z DIRETTON 553" () 12.5' 1615" +553" = 2168" () 9.5' EANTLOUAKE E+x, E-x = 502 @ 12,75 $F_{+2}, E_{-2} = 502^* @ 13.42'$ V= CSW $W_{ROOF} = (1075F Deno LOAD + 0.20 (11075F SNOW LOAD))$ (13.09' × 7.5') = 3139.2[#] C5 = 0.32 V = 0.32 (3139.2") = 1004.5" / 2000 MNS = 502 ON FRONT WIG COL = 502 ON HSS 5×5 COL Ta= Cthx Ct= 0.02 X=0.75 Mn = 12.75 Ta = 0.02 (12.75)0.75 = 0.135 W6x15 Ta = 0.02 (17.42)0.75 = 0.171 H655x5 7 K=1.0 $F_{x} = \frac{(3139.2^{*})(12.75)^{1.0}}{(31392^{*})(2.75)(1.0)} = 1.0$ F. = 1.0 (3139.2*) = 3139.2*/2 col = 1540* \$

07-28-11 Cantilevered Bays Spaulding Engineering, Daniel E. Spaulding Jul 28, 2011; 04:57 PM Load Case: D IES VisualAnalysis 8.00 0009

07-28-11 Cantilevered Bays Spaulding Engineering, Daniel E. Spaulding Jul 28, 2011; 04:56 PM Load Case: D IES VisualAnalysis 8.00.0009

July 28, 2011

Member Unity Checks

Member	Unity Check	Model Shape	Design Shape	Material	Reference
COL001	0.155 Weak Flexure Check	W6x15	W6x15	ASTM A992 Grade 50	F6-2
COL002	0.155 Weak Flexure Check	W6x15	W6x15	ASTM A992 Grade 50	F6-2
COL003	0.148 Weak Flexure Check	W6x15	W6x15	ASTM A992 Grade 50	F6-2
COL004	0.117 Weak Flexure Check	HSS5x5x1/4	HSS5x5x1/4	ASTM A500 Grade B (Fy = 46ksi)	F7-1
COL005	0.234 Weak Flexure Check	HSS5x5x1/4	HSS5x5x1/4	ASTM A500 Grade B (Fy = 46ksi)	F7-1
RBZ001	0.109 Combined Check	W10x15	W10x15	ASTM A992 Grade 50	⊣1-1b

July 28, 2011

Load Cases

Load Case	Design Checks	Seismic Type	Results	Analyze?	Envelope?
(1)D	-NA-	-NA-	Yes (2 sets)	Yes	No
(2)E+X	-NA-	-NA-	None	No	No
(3)E+Y	-NA-	-NA-	None	No	No
(4)E+Z	-NA-	-NA-	None	No	No
(5)E-X	-NA-	-NA-	None	No	No
(6)E-Y	-NA-	-NA-	None	No	No
(7)E-Z	-NA-	-NA-	None	No	No
(16)S	-NA-	-NA-	None	No	No
(34)W-Z	-NA-	-NA-	None	No	No
(37)0.6D+0.6W »-Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(38)0.6D+0.7E »+X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(39)0.6D+0.7E »+Y	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(40)0.6D+0.7E »+Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	Nc
(41)0.6D+0.7E »-X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	Nc
(42)0.6D+0.7E »-Y	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	Nc
(43)0.6D+0.7E »-Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(44)D+0.6H	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(45)D+0.6W »-Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(46)D+0.75(L+0.6W+Lr)	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
»-Z			103 (2 3013)	100	
(47)D+0.75(L+0.6W+S)	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
»-Z			· · · · ·		
(48)D+0.75(L+0.7E+Lr) »+X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(49)D+0.75(L+0.7E+Lr)	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
»+Y (50)D+0.75(L+0.7E+Lr)	Allowable (ASD)		Yes (2 sets)	Ven	No
»+Z	Allowable (ASD)	-NA-	165 (2 5615)	Yes	No
(51)D+0.75(L+0.7E+Lr) »-X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(52)D+0.75(L+0.7E+Lr) »-Y		-NA-	Yes (2 sets)	Yes	No
(53)D+0.75(L+0.7E+Lr) »-Z		-NA-	Yes (2 sets)	Yes	No
(54)D+0.75(L+0.7E+S)	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
»+X					
(55)D+0.75(L+0.7E+S)	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
»+Y			,		
(56)D+0.75(L+0.7E+S) »+Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(57)D+0.75(L+0.7E+S) »-X		-NA-	Yes (2 sets)	Yes	No
(58)D+0.75(L+0.7E+S) »-Y		-NA-	Yes (2 sets)	Yes	No
(59)D+0.75(L+0.7E+S) »-Z		-NA-	Yes (2 sets)	Yes	No
(60)D+0.75L+0.75S	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(61)D+0.7E »+X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(62)D+0.7E »+Y	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(63)D+0.7E »+Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(64)D+0.7E »-X	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(65)D+0.7E »-Y	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(66)D+0.7E »-Z	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
(67)D+S	Allowable (ASD)	-NA-	Yes (2 sets)	Yes	No
	Allowable (ASD)	-11/7-	103 (2 5015)	165	INU

Member Extreme Results

Member	Fx (lc)	Vy (lc)	Vz (lc)	Mx (lc)	My (Ic)	Mz (lc)
	K	K	K	K-in	K-in	K-in
COL001	-8.123 (67)	-0.264 (64)	-0.055 (40)	-0.036 (64)	-19.113 (45)	-40.505 (61)
COL001	0.631 (39)	0.264 (61)	0.344 (45)	0.036 (61)	20.107 (45)	40.505 (64)
COL002	-7.980 (67)	-0.265 (64)	-0.958 (45)	-0.036 (64)	-11.511 (37)	-10.333 (61)
COL002	0.656 (39)	0.265 (61)	0.055 (66)	0.036 (61)	20.100 (45)	10.333 (64)
COL003	-7.938 (67)	-0.265 (64)	-1.289 (45)	-0.036 (64)	-19.246 (37)	-1.577 (61)

July 28, 2011

SHIZIOFZT

COL003	0.661 (39)	0.265 (61)	0.055 (43)	0.036 (61)	4.329 (66)	1.577 (64)
COL004	-0.093 (58)	-0.241 (61)	-0.243 (37)	-4.666 (64)	-24.612 (37)	-24.434 (61)
COL004	0.093 (1)	0.241 (64)	0.121 (63)	4.666 (61)	12.306 (37)	24.434 (64)
COL005	-2.867 (58)	-0.441 (64)	-0.649 (63)	-4.666 (64)	-24.746 (40)	-24.436 (61)
COL005	0.933 (39)	0.441 (61)	1.291 (45)	4.666 (61)	48.985 (45)	24.436 (64)
RBZ001	-1.225 (45)	-0.573 (63)	-0.089 (64)	-0.010 (61)	-4.718 (61)	-48.983 (45)
RBZ001	0.224 (63)	0.587 (45)	0.089 (61)	0.010 (64)	4.718 (64)	24.747 (40)

Nodal Extreme Displacements

Node	DX	DY	DZ
	in	in	in
1	-0.235 (64)	-0.007 (67)	-0.145 (37)
1	0.235 (61)	0.001 (39)	0.049 (63)
2	-0.353 (64)	-0.009 (67)	-0.119 (37)
2	0.353 (61)	0.001 (39)	0.057 (63)
3	-0.375 (64)	-0.010 (67)	-0.116 (37)
3	0.375 (61)	0.001 (39)	0.057 (63)
5	-NA-	-NA-	-NA-
5	-NA-	-NA-	-NA-
6	-0.170 (64)	-0.001 (58)	-0.115 (37)
6	0.170 (61)	0.000 (39)	0.057 (63)

Nodal Extreme Reactions

Node	FX	FY	FZ	MX	MY	MZ
	K	K	K	K-in	K-in	K-in
0	-0.263 (38)	-0.545 (39)	-0.054 (40)	-4.087 (63)	-0.036 (61)	-40.475 (64)
0	0.263 (41)	8.123 (67)	0.344 (37)	19.107 (45)	0.036 (64)	40.475 (61)
4	-0.241 (64)	0.056 (38)	-0.243 (37)	-12.306 (37)	-4.666 (61)	-12.217 (61)
4	0.241 (61)	0.093 (58)	0.121 (63)	6.123 (63)	4.666 (64)	12.217 (64)
5	-0.681 (61)	-0.835 (39)	-0.770 (63)	-NA-	-NA-	-NA-
5	0.681 (64)	2.960 (58)	1.532 (37)	-NA-	-NA-	-NA-

Nodal Reactions

Node	Result Case Name	FX	FY	FZ	MX	MY	MZ
		K	K	K	K-in	K-in	K-in
0	0.6D+0.6W »-Z Second Order	0.000	0.167	0.344	19.102	0.000	0.000
0	0.6D+0.7E »+X Second Order	-0.263	0.529	-0.000	-0.036	-0.036	40.400
0	0.6D+0.7E »+Y Second Order	0.000	-0.545	-0.000	-0.018	0.000	0.000
0	0.6D+0.7E »+Z Second Order	0.000	1.034	-0.054	-4.086	0.000	0.000
0	0.6D+0.7E »-X Second Order	0.263	0.529	-0.000	-0.036	0.036	-40.400
0	0.6D+0.7E »-Y Second Order	0.000	1.606	0.001	0.014	0.000	0.000
0	0.6D+0.7E »-Z Second Order	0.000	0.026	0.055	4.090	0.000	0.000
0	D Second Order	0.000	0.884	0.000	-0.004	0.000	0.000
0	D+0.6H Second Order	0.000	0.884	0.000	-0.004	0.000	0.000
0	D+0.6W »-Z Second Order	0.000	0.521	0.343	19.107	0.000	0.000
0	D+0.75(L+0.6W+Lr) »-Z Second Order	0.000	0.612	0.257	14.329	0.000	0.000
0	D+0.75(L+0.6W+S) »-Z Second Order	0.000	6.040	0.258	14.535	0.000	0.000
0	D+0.75(L+0.7E+Lr) »+X Second Order	-0.199	0.883	-0.000	-0.023	-0.028	30.645
0	D+0.75(L+0.7E+Lr) »+Y Second Order	0.000	0.069	-0.000	-0.016	0.000	0.000
0	D+0.75(L+0.7E+Lr) »+Z Second Order	0.000	1.265	-0.041	-3.096	0.000	0.000
0	D+0.75(L+0.7E+Lr) »-X Second Order	0.199	0.883	-0.000	-0.023	0.028	-30.645
0	D+0.75(L+0.7E+Lr) »-Y Second Order	0.000	1.698	0.001	0.008	0.000	0.000
0	D+0.75(L+0.7E+Lr) »-Z Second Order	0.000	0.502	0.042	3.093	0.000	0.000
0	D+0.75(L+0.7E+S) »+X Second Order	-0.195	6.312	0.004	0.094	-0.029	31.679
0	D+0.75(L+0.7E+S) »+Y Second Order	0.000	5.498	0.004	0.103	0.000	0.000
0	D+0.75(L+0.7E+S) »+Z Second Order	0.000	6.696	-0.035	-2.974	0.000	0.000
0	D+0.75(L+0.7E+S) »-X Second Order	0.195	6.312	0.004	0.094	0.029	-31.679
0	D+0.75(L+0.7E+S) »-Y Second Order	0.000	7.127	0.005	0.129	0.000	0.000

July 28, 2011

SHT 22 OF 27

0	D+0.75(L+0.7E+S) »-Z Second Order	0.000	5.930	0.044	3.211	0.000	0.000
0	D+0.75L+0.75S Second Order	0.000	6.313	0.004	0.116	0.000	0.000
0	D+0.7E »+X Second Order	-0.263	0.883	-0.000	-0.038	-0.036	40.475
0	D+0.7E »+Y Second Order	0.000	-0.192	-0.000	-0.020	0.000	0.000
0	D+0.7E »+Z Second Order	0.000	1.387	-0.054	-4.087	0.000	0.000
0	D+0.7E »-X Second Order	0.263	0.883	-0.000	-0.038	0.036	-40.475
0	D+0.7E »-Y Second Order	0.000	1.960	0.001	0.012	0.000	0.000
0	D+0.7E »-Z Second Order	0.000	0.380	0.055	4.088	0.000	0.000
0	D+S Second Order	0.000	8.123	0.006	0.158	0.000	0.000
4	0.6D+0.6W »-Z Second Order	0.000	0.056	-0.243	-12.306	0.000	0.000
4	0.6D+0.7E »+X Second Order	0.241	0.056	0.000	0.035	-4.652	-12.201
4	0.6D+0.7E »+Y Second Order	0.000	0.056	-0.000	-0.012	0.000	0.000
4	0.6D+0.7E »+Z Second Order	0.000	0.056	0.120	6.102	0.00.0	0.000
4	0.6D+0.7E »-X Second Order	-0.241	0.056	0.000	0.035	4.652	12.201
4	0.6D+0.7E »-Y Second Order	0.000	0.056	0.001	0.069	0.000	0.000
4	0.6D+0.7E »-Z Second Order	0.000	0.056	-0.119	-6.051	0.000	0.000
4	D Second Order	0.000	0.093	0.001	0.047	0.000	0.000
4	D+0.6H Second Order	0.000	0.093	0.001	0.047	0.000	0.000
4	D+0.6W »-Z Second Order	0.000	0.093	-0.243	-12.292	0.000	0.000
4	D+0.75(L+0.6W+Lr) »-Z Second Order	0.000	0.093	-0.243	-9.207	0.000	0.000
4	D+0.75(L+0.6W+S) »-Z Second Order	0.000	0.093	-0.182	-8.975	0.000	0.000
	D+0.75(L+0.7E+Lr) »+X Second Order	0.183	0.093	0.001	0.051	-3.533	-9.250
4		0.000	0.093	0.000	0.017	0.000	0.000
4	D+0.75(L+0.7E+Lr) »+Y Second Order D+0.75(L+0.7E+Lr) »+Z Second Order	0.000	0.093	0.000	4.648	0.000	0.000
4			0.093	0.092	0.051	3.533	9.250
4	D+0.75(L+0.7E+Lr) »-X Second Order	-0.183					
4	D+0.75(L+0.7E+Lr) »-Y Second Order	0.000	0.093	0.002	0.078	0.000	0.000
4	D+0.75(L+0.7E+Lr) »-Z Second Order	0.000	0.093	-0.090	-4.556	0.000	0.000
4	D+0.75(L+0.7E+S) »+X Second Order	0.187	0.093	0.007	0.346	-3.736	-9.459
4	D+0.75(L+0.7E+S) »+Y Second Order	0.000	0.093	0.006	0.310	0.000	0.000
4	D+0.75(L+0.7E+S) »+Z Second Order	0.000	0.093	0.098	4.971	0.000	0.000
4	D+0.75(L+0.7E+S) »-X Second Order	-0.187	0.093	0.007	0.346	3.736	9.459
4	D+0.75(L+0.7E+S) »-Y Second Order	0.000	0.093	0.007	0.374	0.000	0.000
4	D+0.75(L+0.7E+S) »-Z Second Order	0.000	0.093	-0.085	-4.290	0.000	0.000
4	D+0.75L+0.75S Second Order	0.000	0.093	0.007	0.342	0.000	0.000
4	D+0.7E »+X Second Order	0.241	0.093	0.001	0.054	-4.666	-12.217
4	D+0.7E »+Y Second Order	0.000	0.093	0.000	0.007	0.000	0.000
4	D+0.7E »+Z Second Order	0.000	0.093	0.121	6.123	0.000	0.000
4	D+0.7E »-X Second Order	-0.241	0.093	0.001	0.054	4.666	12.217
4	D+0.7E »-Y Second Order	0.000	0.093	0.002	0.088	0.000	0.000
4	D+0.7E »-Z Second Order	0.000	0.093	-0.119	-6.034	0.000	0.000
4	D+S Second Order	0.000	0.093	0.009	0.441	0.000	0.000
5	0.6D+0.6W »-Z Second Order	0.000	0.608	1.532	-NA-	-NA-	-NA-
5	0.6D+0.7E »+X Second Order	-0.681	0.246	-0.000	-NA-	-NA-	-NA-
5	0.6D+0.7E »+Y Second Order	0.000	-0.835	0.001	-NA-	-NA-	-NA-
5	0.6D+0.7E »+Z Second Order	0.000	-0.258	-0.769	-NA-	-NA-	-NA-
5	0.6D+0.7E »-X Second Order	0.681	0.246	-0.000	-NA-	-NA-	-NA-
5	0.6D+0.7E »-Y Second Order	0.000	1.325	-0.002	-NA-	-NA-	-NA-
5	0.6D+0.7E »-Z Second Order	0.000	0.749	0.767	-NA-	-NA-	-NA-
5	D Second Order	0.000	0.408	-0.001	-NA-	-NA-	-NA-
5	D+0.6H Second Order	0.000	0.408	-0.001	-NA-	-NA-	-NA-
5	D+0.6W »-Z Second Order	0.000	0.771	1.532	-NA-	-NA-	-NA-
5	D+0.75(L+0.6W+Lr) »-Z Second Order	0.000	0.680	1.149	-NA-	-NA-	-NA-
5	D+0.75(L+0.6W+S) »-Z Second Order	0.000	2.415	1.144	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »+X Second Order	-0.516	0.409	-0.001	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »+Y Second Order	0.000	-0.410	-0.000	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »+Z Second Order	0.000	0.027	-0.583	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »-X Second Order	0.516	0.409	-0.001	-NA-	-NA-	-NA-
		0.000	1.226	-0.001	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »-Y Second Order	0.000	0.790	0.580	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+Lr) »-Z Second Order	-0.524	2.142	-0.011	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+S) »+X Second Order	0.000	1.324	-0.011	-NA-	NA-	-NA-
5	D+0.75(L+0.7E+S) »+Y Second Order	() () () ()	1.3/4	-0.010	-INA-	~ N/A-	-INA-

Page 3 VisualAnalysis 8.00 (www.iesweb.com)

July 28, 2011

5	D+0.75(L+0.7E+S) »+Z Second Order	0.000	1.759	-0.595	-NA-	NA	-NA-
5	D+0.75(L+0.7E+S) »-X Second Order	0.524	2.142	-0.011	-NA-	-NA-	-NA-
5	D+0.75(L+0.7E+S) »-Y Second Order	0.000	2.960	-0.012	-NA-	-NA.	-NA-
5	D+0.75(L+0.7E+S) »-Z Second Order	0.000	2.525	0.573	-NA-	· NA:	-NA-
5	D+0.75L+0.75S Second Order	0.000	2.142	-0.011	-NA-	NA.	-NA-
5	D+0.7E »+X Second Order	-0.681	0.409	-0.001	-NA-	-NA-	-NA-
5	D+0.7E »+Y Second Order	0.000	-0.672	0.000	-NA-	-NA-	-NA-
5	D+0.7E »+Z Second Order	0.000	-0.095	-0.770	-NA-	NA-	-NA-
5	D+0.7E »-X Second Order	0.681	0.409	-0.001	-NA-	-NA-	-NA-
5	D+0.7E »-Y Second Order	0.000	1.489	-0.003	-NA-	-NA-	-NA-
5	D+0.7E »-Z Second Order	0.000	0.912	0.767	-NA-	-NA-	-NA-
5	D+S Second Order	0.000	2.720	-0.014	-NA-	-NA-	-NA-

SHT 24 0F 27 CIMP PORTLAND SUL BLOG TRUCK BAT ADDITIONS EARTHQUAKE IBC 2009 ASCE 7-10 SITE CLASS D' TABLE 1613.5.2 IBC p. 341 FIGURE 1613.5 (1) IBC P. 349 55= 0.25 SITE CLASS B FIGURE 1613.5(2) IBC P.351 51 = 0.08 512 CLASSE -TABLE 1613.5.3(1) 5, 0.25 Fa = 1.6 IBC p. 341 CLASS D TABLE 1613.5.3(2) 5,=0.08 Fy = 2,4 JBC p.341 CLASS 0" EQUATION 16.36 IBC P.340 $S_{M5} = F_a S_c = 1.6(0.25) = 0.4$ EQUATION 16-37 IBC p. 340 Sm1 = FVS1 = (2,4)(0.08) = 0.192 EQUATION 16-39 IBC P. 342 $S_{DS} = \frac{2}{3} 5 ms = \frac{2}{3} (0.4) = 0.267$ EDUATION 16-39 IBC p. 342 So1 = 2/3 Su1 = 2/3 (0.192) = 0.128

SITE CLASS IFICATION SITE CLASS D

SEIBMIC CATEGORY OCCUPANCY CATEGORY IV

TABLE 1613. 5.6 (1) IBC p.343 5DS=0.267 OCCUPANCY TV SEISMIC DESIGN CATEGORY "C"

TABLE 1613.5.6 (2) IBC p.343 SDI = 0.128 OCCUPANCY IV SESMIE DESIGN CATEGORY "C"

SHT 25 0F27

ASCE 7-10 DESIGN RESPONSE SPECTRUM 11.4.5 Equation 11.4.5 P.66 ASCE 7-10 $S_{a} \cdot S_{ps} \left(0.4 + 0.6 \frac{T}{T_{a}} \right)$ $T_0 = 0.2 \frac{501}{3_{N_0}} = 0.2 \left(\frac{0.12B}{0.26T}\right) = 0.0959$ $T_{s} = S_{D_{1}} \left(S_{D_{s}} = \left(\frac{0.128}{0.217} \right) = 0.4794 \right)$ 5200 = $5_{05} (0.4 + 0.6(\frac{0}{2})) = 0.4(0.267) = 0.1069$ 5@ ts Sa= 505= 0.267 TO Sa $500,25c. \frac{50}{4} = \frac{0.128}{0.2}$ 0.1068 0.48 Ts 0.267 50 1 = 501 = 0,128 ١s 0.128 Sez 50. = 128 = 0,064 0,064 25 IMPORTANKE FACTOR ASCE 7-10 TABLE 1.5-2 Ie=1.50 CATEGONY IV Pg 5

SHT 26 OF 27 BABIC SEISMIC FORCE REELETING SYSTEM MOMENT FRAME IN "X" DIRECTION TABLE 12.2.1 p.75 C.4. SEISMIC DESIGN CATEGORY "C" RESPONSE MODIFICATION COEFFICIENT: R= 3/2 OVERSTRENGTH FACTOR SL = 3 DEFLECTION AMPLIFICATION FACTOR = 3 DEISMIC DESIGN CATEGORY C BUILDING HEIGHT LIMIT HA = NL = OUIVVALOUT LATERAL FORCE PROCEDURE: 12.8-1 SEISMIC BASE SHEAR V = CW $\begin{array}{ccc} R = 3.5 \\ I = 1.5 \\ S_{DS} = 0.267 \end{array} \quad C_{S} = \frac{0.267}{\left(\frac{3.5}{1.5}\right)} = 0.114 \\ \end{array}$ W =DEAD LOAD = 10 PSF × 6.93×160' (ROOF) = 10,923 = 20 PSF × 3.25 ×160' (TOPWOW) = 10,400 * 0.20 SNOW LOAD = 0.20×110PSF×6.83×160' = 24,042* 45.370* BASE SHORE = 0.114 (45,370") = 5172" TOTAL OF 26 COLUMNS SHEAR / COLUMN = 5172/26 = 199 / COL ALTERWATE LOOK & COLUMNS AS FIXED ERSE CANTILOVERD: TABLE 12.2.1 p.77 G.2 RESPONSE MODIFICATION COEFFICIENT R= 1.25 OVENSTRENGTH FACTOR IL = 1.25 DEFLECTION AMPLIFICATION FACTOR Cd = 1.25

SHT 27 OF 27

SEISMIC DESIGN CATEGORY"C" BUILDING HEGHT LIMIT h.= 35

V= QW R = 1.25 I = 1.5 $S_{Q} = 0.267$ $C_{s} = \frac{0.267}{(1.25)} = 0.32$ W= 45,370 BASE SHERK V = 0.32 (45,370") = 14,519" TOTAL 26 COLUMNUS SHEAR/COLUM = 14,519 /26 : 553#