STORMWATER MANAGEMENT REPORT

FOR: THE PARK DANFORTH EXPANSION PROJECT PORTLAND, MAINE

FOR MITCHELL & ASSOCIATES PORTLAND, MAINE

> October 2014 Revised November 2014

Prepared By:

Berry Huff McDonald Milligan, Inc. Engineers Surveyors Planners 28 State Street Gorham, ME 04038 207-839-2771 FAX 207-839-8250 lberry@bh2m.com

TABLE OF CONTENTS

INTRODUCTION

EXISTING SITES

PROPOSED EXPANSION

STORMWATER STANDARDS

1997 STORMWATER REPORT

SOILS

PREDEVELOPMENT DRAINAGE CONDITIONS
PARK DANFORTH SITE
GOODWILL SITE

POST-DEVELOPMENT DRAINAGE CALCULATIONS
PARK DANFORTH MODEL I (POST)
PARK DANFORTH MODEL II (POST-GOODWILL SITE)
PARK DANFORTH MODEL III (POST-GOODWILL SITE)

TREATMENT PLAN

APPENDIX A – MAPS

APPENDIX B – PARK DANFORTH SITE PRE-DEVELOPMENT CALCULATIONS

APPENDIX C - GOODWILL SITE PREDEVELOPMENT CALCULATIONS

APPENDIX D - PARK DANFORTH SITE - Post-Development Calculations - Model I

APPENDIX E – GOODWILL SITE - Post Development Calculations – Models II & III

APPENDIX F - O&M PLAN

APPENDIX G - 1997 STORMWATER REPORT

APPENDIX H – S.W. COLE GEOTECHNICAL REPORT

APPENDIX I – TEST PITS BY ALBERT FRICK ASSOCIATES INC.

APPENDIX J – TREATMENT CALCULATIONS

PLANS: See Mitchell & Associates Project Plans

Sheet D1-0 - Predevelopment Plan Sheet D2-0 - Development Plan Sheet D3-0- Treatment Plan

STORMWATER MANAGEMENT REPORT

FOR: THE PARK DANFORTH PORTLAND, MAINE

The November 2014 Revisions include changing the drywells proposed in the October 2014 Report to standard catchbasins and leaching galleys.

INTRODUCTION

The Park Danforth is an elderly housing project located between east side of Stevens Avenue, the westside of Forest Avenue, the north side of Poland Street and the south side of Arbor Street. The project was originally approved and constructed in 1983 and underwent a major expansion in 1997. The site currently consists of 4.16 acres of land which includes the Goodwill site and three former house sites. Attached in Appendix A is a USGS Location Map.

The Park Danforth has purchased the Goodwill site which is their abutter to the north. The intention is to demolish the Goodwill facilities and expand the elderly housing building, access drives and parking lots. This will require a Subdivision and Site Plan approval from the City of Portland. The project will also "disturb" and reconstruct more than 1 acre of land so a DEP Stormwater Permit-by-Rule will be required for which the City probably does not have delegated authority. Therefore the purpose of this Report is to present a Stormwater Plan for the project which complies with "Chapter 500" which fortunately is the same standard for both the City of Portland and the Maine DEP. No "Site Law" Permit is required.

EXISTING SITES

For purposes of this Report the "existing site" or "predevelopment conditions" consists of two sites:

- 1. Existing Park Danforth Site 2.56 acres
 This site is occupied by the existing elderly housing building and associated pavement/parking.
- 2. Existing Goodwill Site (and 3 house lots) 1.60 acres
 This site currently has the old Goodwill building, small one story building (old bank building), 2 houses, and associated pavement/parking.

PROPOSED EXPANSION

The intent is to demolish the Goodwill site and existing houses and add a new building wing and parking/access to the site. The proposed layout is shown on the Post-development Drainage Plan and is detailed in the Project Plans by Mitchell & Associates.

STORMWATER STANDARDS

The total or new site is currently (both sites) a 4.16 acre site with 3.22 acres of existing impervious area. The reconstructed proposed site will be 4.16 acres with 3.05 acres of impervious area. This will represent a decrease from 3.27 acres to 3.05 acres or 0.17 acres. This is good.

The portion of the project (Goodwill site) which will represent the "redevelopment" portion of the work is not counted in the "impervious" calculations since the new use "is not likely to increase stormwater impacts" (Chapter 500, page7). The "disturbed" area does count.

Therefore, the project is not a "Site Law" project and only subject to Stormwater Law Standards for a "Permit-by-Rule". No "General" Standards or "Flooding" Standards apply. However, from a practical perspective, the new stormwater plan needs to fit within the existing capacity of the City drainage systems and treatment is a positive addition if the City adopts the proposed stormwater fees.

1997 STORMWATER REPORT

The City of Portland approved the Park Danforth expansion project in 1997 which included a "Stormwater Report" (copy in Appendix G).

Per the 1997 Stormwater Report most of the site runoff (from the 2.56 acre Park Danforth site) was collected in an on-site stormdrain system and discharged to the municipal stormdrain in Forest Avenue. Calculations were as follows:

<u> Pre (before 1997)</u>	<u>Post (after 1997)</u>
4.26 cfs	3.89 cfs
5.99 cfs	5.81 cfs
7.01 cfs	6.80 cfs
	4.26 cfs 5.99 cfs

The "Post" flowrates should be our current "Pre" flowrates.

However, a close inspection of the report calculations are concerning. The calculations were done using HydroCAD but with the "rational" method. It is our opinion that stormwater calculations since 1985 should have been performed by the TR-55 or TR-20 methodology. It is also our opinion that the 1997 report as a result of methodology and technical inputs has

significantly under estimated the peak flow rates based upon using methodologies per accepted engineering practice. Hence, we will not be referring to or using the existing report as a basis for the proposed project.

No reports or calculations were found for the Goodwill site.

SOILS

The Predevelopment Drainage Plan and Post-development Plan have soils plotted per the Cumberland County Medium Intensive Soils Mapping. Soils are:

```
WmB - Adams – Hydrologic Soils Group ADe - Croghan – Hydrologic Soils Group B
```

Additional Soils Data is also available.

- 1. Geotechnical Engineering Services by S.W. Cole, June 18, 2014. This report (Appendix H) confirms that the site is generally consisting of a thin layer of uncontrolled granular fill overlying native outwash sands overlying refusal surfaces (probably bedrock). Groundwater varied in depth from 18 feet to 21 feet. The findings were for the geotechnical design of the new structures but it did lead us to believe "infiltration" may be an option for Stormwater Management (see #2 below).
- 2. Test Pits by Albert Frick Associates are including in Appendix I. The first report dated September 16, 2014 by James Logan, CSS #213, consisted of hand dug test pits. A restrictive layer was recorded at 21" to 38". These results were not satisfactory so the test pits were redone using a backhoe. See Report dated September 27, 2014. These results indicated that the restrictive layer found initially was a loosely cemented sand layer that was 15" to 18" thick. Below this layer was free draining sand with no further evidence of groundwater. Hence, it was concluded that infiltration is a viable option as long as the infiltration surface is below the cemented sand layer. Using infiltration will require inspection by a CSS to insure all infiltration surface are below the cemented layer.

PRE-DEVELOPMENT DRAINAGE CONDITIONS

The total proposed site (4.16 acres) or one city block is essentially the "top" of a minor hill. All runoff either flows overland to the street or via pipes to city stormdrain in Forest Avenue. It is our understanding that the city stormdrain is a "separated" stormdrain, although the outlet location is unknown. Old plans seem to indicate an 8" or 10" vitrified clay pipe from 1907.

The first week of August 2014, the City had a freak storm that dumped 6+ inches of rain in a short time frame. This exceeded the 25 year design storm, so the question we had for the Park

Danforth staff and City of Portland was "was there any flooding?" The answer has been consistently "no". Our opinion was that the storm overwhelmed the on-site and City stormdrains and runoff then flooded the curb lines and continued downhill. Since the site was at the top of a hill there was no damage or consequences. It is suspected that since most of the rain occurred during the night that nobody was around to observe any flooding.

The Predevelopment Plan shows the existing drainage subareas, roads and ponds. The HydroCAD models (2) have been set-up as follows:

- 1. "Park Danforth Predevelopment"

 This model includes most of the existing Park Danforth site that drains to the onsite stormdrain system and then discharges to the Forest Avenue municipal
 stormdrain (AP #1).
- 2. "Goodwill Site Predevelopment"

 This model includes most of the existing Goodwill site that drains to the on-site stormdrain system and then discharges to the Forest Avenue municipal stormdrain (AP #2).

Both AP's discharge to the same 8" or 10" municipal stormdrain that also receives runoff from Forest Avenue and Poland Street. The municipal stormdrain was not modelled or any of the other downstream pipes. It is our opinion that the municipal pipe is too small to handle the larger design storms. It is suspected that catchbasins flood and some runoff probably just bypasses the system via the curb line flow. If this results in any flooding issues they are all downstream and not at the Park Danforth site or the immediate area.

As noted above, the predevelopment calculations are presented as if they were two separate projects.

PARK DANFORTH PREDEVELOPMENT

The Park Danforth predevelopment calculations are included in Appendix B and the layout is shown on the "Predevelopment Plan".

The total existing Park Danforth site includes 2.56 acres of land and the model includes 2.08 acres. Therefore 0.48 acres of land just drains to the streets and has not been included in the calculations.

The catchbasins have the same structure numbers as the 1997 Stormwater Report. CB #1 starts on the easterly side of the northerly wing and the stormwater system wraps around the building and connects to the Forest Avenue stormdrain. After Reach 1 and the "Reaches/Pipes" were modelled as Ponds since the peak flows exceeded the pipe capacities and caused surcharging. The roof subareas are an estimate of the area that may drain to each roof drain.

DMH1 is a 6' diameter structure with a 6" orifice plate that regulates flow into the municipal stormdrain. Therefore, the structure was modelled as a "Pond" with storage in the 24" inlet pipes to the structure. The CB #7 and CB #8 rims were modelled as overflow weirs.

Results @ DMH#1 (Pond 9)								
Storm	<u>Total</u>	To City SD	Discarded*					
2 Year	3.73 cfs	2.12 cfs	1.60 cfs					
10 Year	5.57 cfs	2.16 cfs	3.40 cfs					
25 Year	6.00 cfs	2.17 cfs	3.83 cfs					

^{*} Discarded flow is flow to the street curblines via the overflows.

The 6" orifice limits flow to 2+ cfs to the municipal stormdrain but allows the upstream CB's to overflow to the street.

Peak flows to AP #1 include the above peak flow rates plus runoff from the maintenance area.

Results @ AP #1	(Reach 11)
Storm	<u>Peak</u>
2 Year Storm	2.77 cfs
10 Year Storm	3.28 cfs
25 Year Storm	3.52 cfs

The "Total" flows originating on-site are similar to the post-development flows approved in 1997 but the actual flows to the city system are less.

GOODWILL PREDEVELOPMENT

The Goodwill predevelopment calculations are included in Appendix C and the layout is shown on the Predevelopment Plan.

The total existing Goodwill (and house lots) site includes 1.60 acres of land and the model includes 1.42 acres. Therefore, 0.18 acres of land just drains to the streets and may not have been included.

Results @ AP #2 (Pond 31)

<u>Storm</u>	Peak Flowrate to City stormdrain
2 Year	2.94 cfs
10 Year	5.00 cfs
25 Year	5.59 cfs

The model assumes that the municipal stormdrain has plenty of capacity and does not cause a backwater condition. Based upon our field observations after the August storm it appears that CB# 31 could not accept the runoff and surface runoff simply flowed out the parking lot entrance onto Forest Avenue. There was no obvious damage or consequence of the overflow.

PREDEVELOPMENT SUMMARY

The current peak flows for the design storms exceed the on-site and municipal stormdrains capacity. However, this does not appear to result in any negative consequences other than perhaps an increase in flooding in some other downstream part of the City. The goal of the post-development plan should be to devise a plan to reduce peak flow so that flooding can be minimized.

POST-DEVELOPMENT DRAINAGE CONDITIONS

The post-development stormwater is similar to the predevelopment except a new Analysis Point #3 was added.

- 1. Park Danforth Model I Post to AP #1
- 2. Park Danforth Model II- to AP #2
- 3. Park Danforth Model III to AP #3

PARK DANFORTH MODEL I POST

This area drains to AP #1 and is identical to the predevelopment model except the following have been deleted or modified

```
CB #1 – R-1 & SA-1 DELETED
CB #2 – Pond 2 & SA-2 – DELETED
CB #3 – Pond 3 & SA-3 – MODIFIED
CB #9 & #10 – R-10 & R-9 – DELETED and MODIFIED
```

The areas included in SA-1, SA-2, SA-3 (modified) and SA-9 and SA-10, will now be in the other model to AP #2. This is an opportunity to reduce peak flows to AP #1.

The post-development calculations for The Park Danforth side are include in Appendix D. DMH #1 (Pond 9) is the same as the predevelopment condition.

Results @ DMH #1 (Pond 9)							
<u>Total</u>	to City SD	<u>Discarded</u>					
3.35 cfs	2.12 cfs	1.70 cfs					
5.39 cfs	2.16 cfs	3.30 cfs					
6.06 cfs	2.17 cfs	3.88 cfs					
	Total 3.35 cfs 5.39 cfs	Total to City SD 3.35 cfs 2.12 cfs 5.39 cfs 2.16 cfs					

Reducing some of the upstream subareas had almost no impact.

Peak Flows to AP #1 are as follows:

Results @ AP #1 (R Storm	Reach 11) Peak	(Pre)
2 Year Storm	2.19 cfs	(2.77 cfs)
10 Year Storm	2.32 cfs	(3.28 cfs)
25 Year Storm	2.39 cfs	(3.32 cfs)

The results show a significant reduction (in percent) of the revised stormwater layout.

PARK DANFORTH MODEL II (OLD GOODWILL SITE)

This model is new since all the old Goodwill site stormwater facilities will be removed. The intent was to provide catchbasins that drain to several leaching galleys for infiltration. Using the DEP Standard of an infiltration rate of 2.41 inches per hour is very slow. Therefore, full infiltration is not possible although is highly probable. Actual infiltration rates would be between 12"- 20" per hour (typical of most sandy sites). The infiltration is primarily for the treatment volume (DEP = 1" per storm). This will be discussed in the "Treatment Section" of this Report. The infiltration slows runoff so that hopefully peak flows at

Results @ AP #2 (Pond 100 – Model II)						
Storm	Peak Flowrate to City stormdrain	<u>(Pre)</u>				
2 Year Storm	1.55 cfs	(2.94 cfs)				
10 Year Storm	2.33 cfs	(5.00 cfs)				
25 Year Storm	2.66 cfs	(5.59 cfs)				

The Post peak flow represents a significant decrease in peak flows.

PARK DANFORTH MODEL III (OLD GOODWILL SITE)

This model is new and it represents the portion of the Old Goodwill Site that will be connected to an existing municipal drain manhole located in Arbor Street. This is the newer municipal system that flows down Read Street.

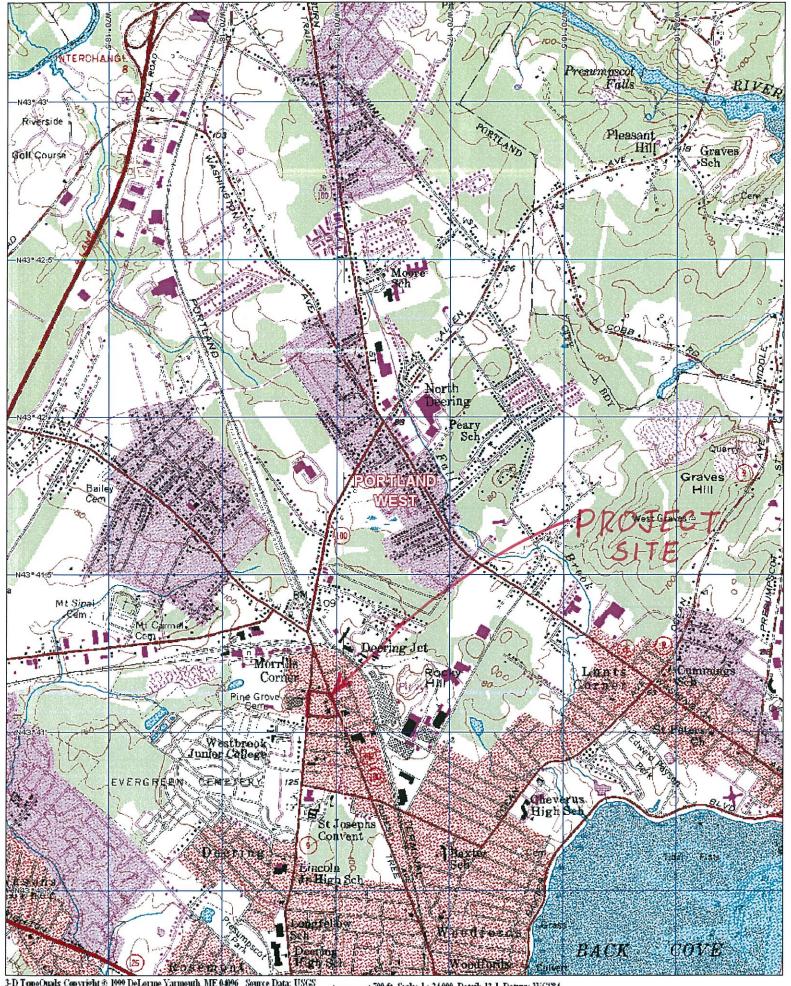
Results @ AP #3 (Pond 112 Model III)					
Storm	Peak Flowrate to City stormdrain				
2 Year Storm	2.35 cfs				
10 Year Storm	4.04 cfs				

10 Year Storm 4.04 cfs 25 Year Storm 4.16 cfs

TREATMENT

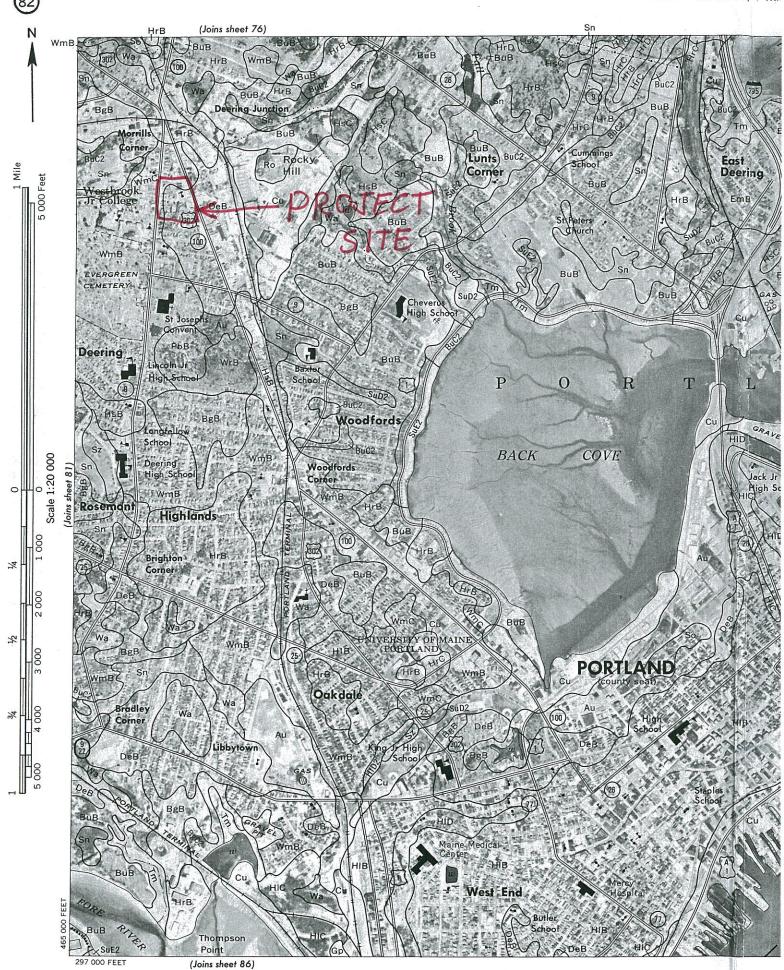
"Treatment" is not required per the "Chapter 500" standards. However, treatment (infiltration) has been provided for two purposes:

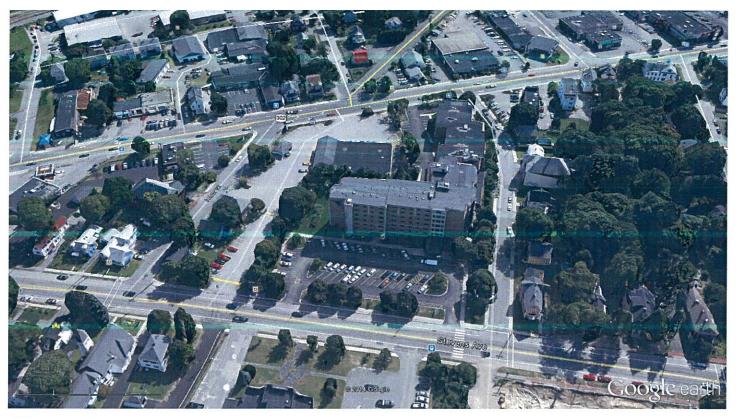
- 1. The infiltration of the treatment volume reduces peak flow rates at AP #2 and AP #3.
- 2. In the near future the City of Portland will probably enact a stormwater fee based upon impervious area with a reduction for "treated surfaces".


Per Chapter 500, (page 6, (c), Infiltration, the system must infiltrate 1.0" times the impervious area and 0.4" times the landscape area. For calculation purposes a 1" rainstorm was used. The results show all runoff was retained in the system.

The proposed project will have 2.79 acres (121,532 sf). As shown on the "Treatment Plan", the total "treated" impervious area equals 76,237 sf. This will leave 58,351 sf as untreated.

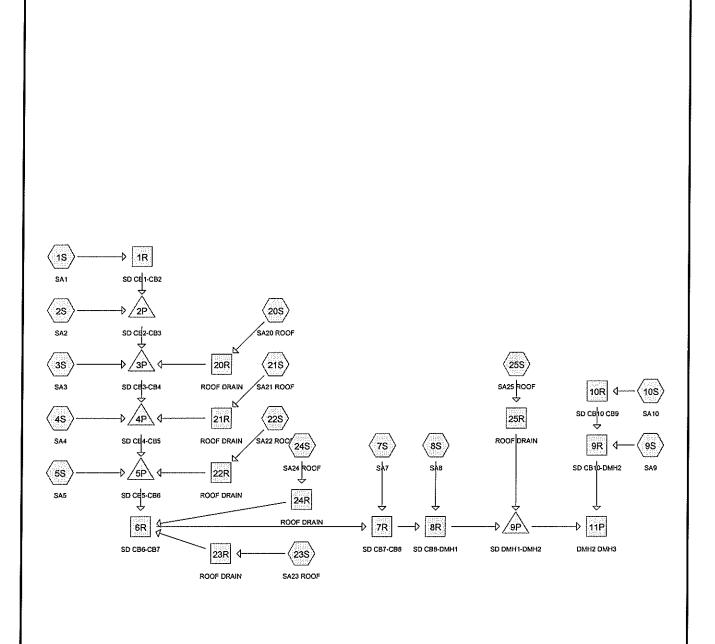
APPENDIX A


MAPS


USGS SOILS MAP AERIAL PHOTOGRAPHY

3-D TopoQuads Copyright @ 1999 DeLorme Yarmouth, ME 04096 Source Data: USGS

4 700 ft Scale: 1 : 24,000 Detail: 13-1 Datum: WGS84



Google earth

feet 400 meters 100

$\frac{\text{APPENDIX B}}{\text{PARK DANFORTH PREDEVELOPMENT CALCULATIONS}}$

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.022	39	>75% Grass cover, Good, HSG A (3S, 4S)
0.413	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 7S, 8S, 9S, 10S)
0.905	98	Paved parking, HSG D (1S, 3S, 4S, 5S, 9S, 10S)
0.715	98	Roofs, HSG D (20S, 21S, 22S, 23S, 24S, 25S)
0.023	98	Unconnected pavement, HSG D (2S)
2.078	90	TOTAL AREA

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 3

Soil Listing (all nodes)

Are	ea Soil	Subcatchment
(acre	s) Group	Numbers
0.0	22 HSG A	3S, 4S
0.4	13 HSG B	1S, 2S, 3S, 4S, 5S, 7S, 8S, 9S, 10S
0.00	00 HSG C	
1.64	43 HSG D	15, 25, 35, 45, 55, 95, 105, 205, 215, 225, 235, 245, 255
0.00	00 Other	
2.0	78	TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014

Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.022	0.413	0.000	0.000	0.000	0.435	>75% Grass cover, Good	1S, 2S,
							3S, 4S,
							5S, 7S,
							8S, 9S,
							10S
0.000	0.000	0.000	0.905	0.000	0.905	Paved parking	1S, 3S,
							4S, 5S,
							9S, 10S
0.000	0.000	0.000	0.023	0.000	0.023	Unconnected pavement	28
0.000	0.000	0.000	0.715	0.000	0.715	Roofs	20S,
							21S,
							22S,
							23\$,
							24S,
							25S
0.022	0.413	0.000	1.643	0.000	2.078	TOTAL AREA	

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 5

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	118.60	118.00	110.0	0.0055	0.010	6.0	0.0	0.0
2	6R	116.00	115.10	253.0	0.0036	0.010	15.0	0.0	0.0
3	7R	115.10	115.00	88.0	0.0011	0.010	24.0	0.0	0.0
4	8R	115.00	114.70	35.0	0.0086	0.010	24.0	0.0	0.0
5	9R	115.20	115.00	72.0	0.0028	0.010	12.0	0.0	0.0
6	10R	115.30	115.20	70.0	0.0014	0.010	12.0	0.0	0.0
7	11P	115.00	114.80	24.0	0.0083	0.010	15.0	0.0	0.0
8	20R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
9	21R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
10	22R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
11	23R	0.00	-0.20	20.0	0.0100	0.010	6.0	0.0	0.0
12	24R	0.00	-0.15	15.0	0.0100	0.010	6.0	0.0	0.0
13	25R	0.00	-0.30	30.0	0.0100	0.010	6.0	0.0	0.0
14	2P	118.00	117.60	136.0	0.0029	0.010	8.0	0.0	0.0
15	3P	117.50	117.50	73.0	0.0000	0.010	12.0	0.0	0.0
16	4P	117.40	117.00	54.0	0.0074	0.010	12.0	0.0	0.0
17	5P	116.90	116.00	70.0	0.0129	0.010	12.0	0.0	0.0
18	9P	114.70	114.50	24.0	0.0083	0.010	15.0	0.0	0.0

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 1S: SA1

Runoff

0.06 cfs @ 12.22 hrs, Volume=

0.006 af, Depth> 0.48"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

 Α	rea (sf)	CN	Description					
	910	98	Paved parking, HSG D					
	5,562	61	>75% Grass cover, Good, HSG B					
	6,472	66	Weighted A	Veighted Average				
	5,562		85.94% Pervious Area					
	910		14.06% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
 (min)	(feet)	(ft/ft)	,	(cfs)	Description			
 12.9	60	0.0100	0.08		Sheet Flow, LAWN			
					Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 2S: SA2

Runoff

0.05 cfs @ 12.20 hrs, Volume=

0.005 af, Depth> 0.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description						
	1,000	98 l	Jnconnected pavement, HSG D						
	6,421	61 >	>75% Grass cover, Good, HSG B						
	7,421	66 V	Veighted Average, UI Adjusted CN = 63						
	6,421			vious Area					
	1,000	1	3.48% Imp	pervious Ar	ea				
	1,000	1	00.00% Ui	nconnected	1				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
9.8	60	0.0200	0.10		Sheet Flow, LAWN Grass: Dense n= 0.240 P2= 3.00"				

Summary for Subcatchment 3S: SA3

Runoff

0.73 cfs @ 12.14 hrs, Volume=

0.059 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 7

	Area (sf)	CN	Description							
	12,414	98	Paved park	aved parking, HSG D						
	1,116	61	>75% Gras	75% Grass cover, Good, HSG B						
	350	39	>75% Gras	75% Grass cover, Good, HSG A						
	13,880	94	Weighted A	Veighted Average						
	1,466		10.56% Per	rvious Area						
	12,414		89.44% Imp	pervious Ar	ea					
	.	0.1								
	c Length			Capacity	Description					
<u>(miı</u>	n) (feet)	(ft/ft) (ft/sec)	(cfs)						
8.	.4 35	0.010	0.07		Sheet Flow, LAWN					
					Grass: Dense n= 0.240 P2= 3.00"					
1.	.4 60	0.0050	0.69		Sheet Flow, PAVEMENT					
					Smooth surfaces n= 0.011 P2= 3.00"					
9.	.8 95	Total								

Summary for Subcatchment 4S: SA4

Runoff

0.72 cfs @ 12.09 hrs, Volume=

0.051 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN I	Description							
	800	61	>75% Gras	s cover, Go	ood, HSG B					
	600	39 >	>75% Gras	s cover, Go	ood, HSG A					
	11,043	98 F	Paved park	ing, HSG D)					
	12,443	93 \	Weighted A	verage						
	1,400	•	11.25% Per	vious Area						
	11,043	8	38.75% lmp	ervious Ar	ea					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
	(1000)	(IUIL)	(10360)	(013)	Discot Entry, Balbillatina					
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 5S: SA5

Runoff

0.34 cfs @ 12.09 hrs, Volume=

0.025 af, Depth> 2.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Area (sf)	CN	Description
5,100	98	Paved parking, HSG D
300	61	>75% Grass cover, Good, HSG B
5,400	96	Weighted Average
300		5.56% Pervious Area
5,100		94.44% Impervious Area

DADK	DANEORTH	I PREDEVEL	ODMENIT
PAKN	DANFURIE	7 PREIJEVE:	LIPIVIPIVI

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 8

6.0			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(6.6)	Direct Entry, MINIMUM	_ [
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
Ic	Length	Slope	Velocity	Capacity	Description	

Summary for Subcatchment 7S: SA7

Runoff :

0.01 cfs @ 12.15 hrs, Volume=

0.001 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	Description					
	1,000	61 >	75% Gras	s cover, Go	ood, HSG B			
	1,000	1	00.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 8S: SA8

Runoff =

0.00 cfs @ 12.15 hrs, Volume=

0.000 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN D	<u>Description</u>		
	500	61 >	75% Gras	s cover, Go	ood, HSG B
	500	1	00.00% Pe	ervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 9S: SA9

Runoff = 0.1

0.11 cfs @ 12.10 hrs, Volume=

0.007 af, Depth> 1.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

 Area (sf)	CN	Description
1,700 98 Paved parking, H		Paved parking, HSG D
 1,690	61	>75% Grass cover, Good, HSG B
 3,390	80	Weighted Average
1,690		49.85% Pervious Area
1,700		50.15% Impervious Area

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 9

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 10S: SA10

Runoff

0.60 cfs @ 12.04 hrs, Volume=

0.039 af, Depth> 2.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	A	rea (sf)	CN E	Description								
		8,272	98 F	aved park	ved parking, HSG D							
		600	61 >	75% Grass cover, Good, HSG B								
		8,872	95 V	Veighted A	verage							
		600	6	.76% Perv	ious Area							
		8,272	9	3.24% Imp	ervious Ar	ea						
	Tc	Length	Slope	Velocity	Capacity	Description						
_	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	2.3	150	0.0100	1.09		Sheet Flow, PAVEMENT						
						Smooth surfaces n= 0.011 P2= 3.00"						
	0.4	65	0.0200	2.87		Shallow Concentrated Flow, PAVEMENT						
_						Paved Kv= 20.3 fps						
	2.7	215	Total									

Summary for Subcatchment 20S: SA20 ROOF

Runoff

0.26 cfs @ 12.09 hrs, Volume=

0.020 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description							
	4,060	98 F	Roofs, HSG D							
	4,060	1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry, MINIMUM	_				

Summary for Subcatchment 21S: SA21 ROOF

Runoff

0.16 cfs @ 12.09 hrs, Volume=

0.012 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH PREDEVELOPMEN	PARK	DANFORT	'H PREDE\	/FI OPMENT
-----------------------------	------	---------	-----------	------------

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 10

A	rea (sf)	CN [Description			
	2,500	98 F	Roofs, HSC	D D		
	2,500	1	00.00% In	pervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 22S: SA22 ROOF

Runoff

0.25 cfs @ 12.09 hrs, Volume=

0.019 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description							
	3,900	98 F	Roofs, HSG D							
	3,900	1	100.00% Impervious Area							
Tc	Length	Slope			Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 23S: SA23 ROOF

Runoff

0.52 cfs @ 12.09 hrs, Volume=

0.040 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description							
	8,020	98 F	Roofs, HSG D							
	8,020	1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 24S: SA24 ROOF

Runoff

0.46 cfs @ 12.09 hrs, Volume=

0.035 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 11

 Α	rea (sf)	CN I	Description						
	7,100	98 I	Roofs, HSG D						
	7,100	,	100.00% Impervious Area						
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 25S: SA25 ROOF

Runoff

0.36 cfs @ 12.09 hrs, Volume=

0.028 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	Area (sf)	CN	Description						
	5,550	98	Roofs, HSG D						
	5,550		100.00% Impervious Area						
To (min		Slope (ft/ft)		Capacity (cfs)	Description				
6.0)				Direct Entry, MINIMUM				

Summary for Reach 1R: SD CB1-CB2

Inflow Area =

0.149 ac, 14.06% Impervious, Inflow Depth > 0.48" for 2 YEAR STORM event

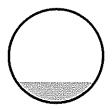
Inflow

0.06 cfs @ 12.22 hrs, Volume=

0.006 af

Outflow

0.06 cfs @ 12.26 hrs, Volume=


0.006 af, Atten= 2%, Lag= 2.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.78 fps, Min. Travel Time= 1.0 min

Avg. Velocity = 0.94 fps, Avg. Travel Time= 1.9 min

Peak Storage= 4 cf @ 12.24 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.54 cfs

6.0" Round Pipe n = 0.010Length= 110.0' Slope= 0.0055 '/' Inlet Invert= 118.60', Outlet Invert= 118.00'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 12

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.634 ac, 78.72% Impervious, Inflow Depth > 2.00" for 2 YEAR STORM event

Inflow = 3.45 cfs @ 12.10 hrs, Volume= 0.272 af

Outflow = 3.28 cfs @ 12.13 hrs, Volume= 0.272 af, Atten= 5%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.38 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 2.4 min

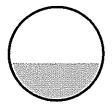
Peak Storage= 197 cf @ 12.11 hrs Average Depth at Peak Storage= 0.76' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n= 0.010 Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.657 ac, 77.63% Impervious, Inflow Depth > 1.97" for 2 YEAR STORM event

Inflow = 3.29 cfs @ 12.13 hrs, Volume= 0.273 af


Outflow = 3.25 cfs @ 12.15 hrs, Volume= 0.272 af, Atten= 1%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.83 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 1.3 min

Peak Storage= 102 cf @ 12.14 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs

24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

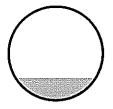
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 13

Summary for Reach 8R: SD CB8-DMH1

Inflow Area = 1.669 ac, 77.10% Impervious, Inflow Depth > 1.96" for 2 YEAR STORM event

Inflow = 3.25 cfs @ 12.15 hrs, Volume= 0.273 af


Outflow = 3.24 cfs @ 12.15 hrs, Volume= 0.273 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.84 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.25 fps, Avg. Travel Time= 0.3 min

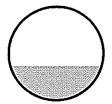
Peak Storage= 20 cf @ 12.15 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Siope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB10-DMH2

Inflow Area = 0.281 ac, 81.32% Impervious, Inflow Depth > 1.99" for 2 YEAR STORM event

Inflow = 0.68 cfs @ 12.06 hrs, Volume= 0.047 af


Outflow = 0.65 cfs @ 12.08 hrs, Volume= 0.047 af, Atten= 4%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.64 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 1.2 min

Peak Storage= 18 cf @ 12.07 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.44 cfs

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0028 '/' Inlet Invert= 115.20', Outlet Invert= 115.00'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

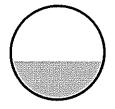
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 14

Summary for Reach 10R: SD CB10 CB9

Inflow Area = 0.204 ac, 93.24% Impervious, Inflow Depth > 2.32" for 2 YEAR STORM event

Inflow = 0.60 cfs @ 12.04 hrs, Volume= 0.039 af


Outflow = 0.58 cfs @ 12.06 hrs, Volume= 0.039 af, Atten= 4%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.02 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 1.6 min

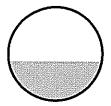
Peak Storage= 21 cf @ 12.05 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00' Flow Area= 0.8 sf. Capacity= 1.75 cfs

12.0" Round Pipe n= 0.010 Length= 70.0' Slope= 0.0014 '/' Inlet Invert= 115.30', Outlet Invert= 115.20'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 2.078 ac, 79.07% Impervious, Inflow Depth > 1.90" for 2 YEAR STORM event

Inflow = 2.76 cfs @ 12.10 hrs, Volume= 0.328 af


Outflow = 2.77 cfs @ 12.10 hrs, Volume= 0.328 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.75 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.54 fps, Avg. Travel Time= 0.2 min

Peak Storage= 12 cf @ 12.10 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

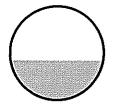
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 15

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af


Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.42 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.8 min

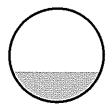
Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af


Outflow = 0.16 cfs @ 12.10 hrs, Volume= 0.012 af, Atten= 1%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.99 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 0.9 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

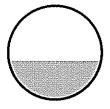
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 16

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.25 cfs @ 12.09 hrs, Volume= 0.019 af


Outflow = 0.25 cfs @ 12.09 hrs, Volume= 0.019 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.38 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 0.8 min

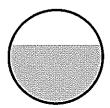
Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.52 cfs @ 12.09 hrs, Volume= 0.040 af


Outflow = 0.52 cfs @ 12.09 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.62 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

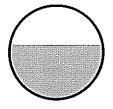
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 17

Summary for Reach 24R: ROOF DRAIN

Inflow Area = 0.163 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.46 cfs @ 12.09 hrs, Volume= 0.035 af


Outflow = 0.46 cfs @ 12.09 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.93 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 0.2 min

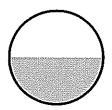
Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area = 0.127 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.36 cfs @ 12.09 hrs, Volume= 0.028 af


Outflow = 0.36 cfs @ 12.09 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.70 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.45 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 18

Summary for Pond 2P: SD CB2-CB3

Inflow Area = 0.319 ac, 13.75% Impervious, Inflow Depth > 0.43" for 2 YEAR STORM event

Inflow = 0.10 cfs @ 12.24 hrs, Volume= 0.011 af

Outflow = 0.10 cfs @ 12.24 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.3 min

Primary = 0.10 cfs @ 12.24 hrs, Volume = 0.011 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.21' @ 12.24 hrs Surf.Area= 12 sf Storage= 2 cf

Plug-Flow detention time= 0.9 min calculated for 0.011 af (100% of inflow)

Center-of-Mass det. time= 0.5 min (854.7 - 854.2)

Volume	Inv	ert Avail.Sto	orage	Storage Description				
#1	118.0	00'	98 cf	Custom S	tage Data (Prisma	ttic) Listed below (Recalc)		
Elevatio		Surf.Area (sg-ft)		.Store c-feet)	Cum.Store (cubic-feet)			
118.0		12		Ó	Ó			
122.6	0	12		55	55			
123.0	0	200		42	98			
Device	Routing	Invert	Outle	et Devices				
#1	Primary	118.00'		8.0" Round Culvert L= 136.0' Ke= 0.500				
					ert= 118.00' / 117.	60' S= 0.0029 '/' Cc= 0.900		

n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.10 cfs @ 12.24 hrs HW=118.21' (Free Discharge) 1=Culvert (Barrel Controls 0.10 cfs @ 1.62 fps)

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.731 ac, 57.75% Impervious, Inflow Depth > 1.48" for 2 YEAR STORM event

Inflow = 1.04 cfs @ 12.13 hrs, Volume= 0.090 af

Outflow = 1.04 cfs @ 12.13 hrs, Volume= 0.090 af, Atten= 0%, Lag= 0.1 min

Primary = 1.04 cfs @ 12.13 hrs, Volume= 0.090 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.29' @ 12.13 hrs Surf.Area= 12 sf Storage= 9 cf

Plug-Flow detention time= 0.5 min calculated for 0.090 af (100% of inflow)

Center-of-Mass det. time= 0.4 min (769.5 - 769.1)

200

126.00

Volume	Invert	Avail.	Storage	Storage	Description	
#1	117.50'		119 cf	Custon	n Stage Data (Pris	matic) Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
117.50 125.82		12 12		0 100	0 100	

119

19

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 19

Device	Routing	Invert	Outlet Devices
#1	Primary	117.50'	12.0" Round Culvert L= 73.0' Ke= 0.500 Inlet / Outlet Invert= 117.50' / 117.50' S= 0.0000 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.02 cfs @ 12.13 hrs HW=118.28' (Free Discharge) 1=Culvert (Barrel Controls 1.02 cfs @ 2.15 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 1.074 ac, 68.26% Impervious, Inflow Depth > 1.71" for 2 YEAR STORM event

Inflow = 1.89 cfs @ 12.11 hrs, Volume= 0.153 af

Outflow = 1.89 cfs @ 12.11 hrs, Volume= 0.153 af, Atten= 0%, Lag= 0.1 min

Primary = 1.89 cfs @ 12.11 hrs, Volume= 0.153 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.17' @ 12.11 hrs Surf.Area= 12 sf Storage= 9 cf

Plug-Flow detention time= 0.2 min calculated for 0.153 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (765.5 - 765.4)

Volume	Inve	ert Avail.Sto	orage St	orage De	escription		
#1	117.4	.0' 3	50 cf C ı	ustom Si	tage Data (Pr	ismatic) Listed belo	w (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Inc.Sto		Cum.Store (cubic-feet)		
117.40		12		0	0		
125.50		12		97	97		
126.00		1,000	2	253	350		
Device R	louting	Invert	Outlet D)evices			
#1 P	rimary	117.40'			ulvert L= 54. ert= 117 40' /	.0' Ke= 0.500 117.00' S= 0.0074	- '/' Cc= 0.900

Inlet / Outlet Invert= 117.40' / 117.00' S= 0.0074 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.86 cfs @ 12.11 hrs HW=118.17' (Free Discharge) —1=Culvert (Barrel Controls 1.86 cfs @ 3.98 fps)

Summary for Pond 5P: SD CB5-CB6

Inflow Area = 1.287 ac, 72.98% Impervious, Inflow Depth > 1.84" for 2 YEAR STORM event

Inflow = 2.47 cfs @ 12.10 hrs, Volume= 0.198 af

Outflow = 2.47 cfs @ 12.11 hrs, Volume= 0.197 af, Atten= 0%, Lag= 0.1 min

Primary = 2.47 cfs @ 12.11 hrs, Volume= 0.197 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.82' @ 12.10 hrs Surf.Area= 12 sf Storage= 11 cf

Plug-Flow detention time= 0.2 min calculated for 0.197 af (100% of inflow) Center-of-Mass det. time= 0.1 min (761.2 - 761.1)

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 20

Volume	Inv	ert Avail.Sto	orage Sto	rage De	escription		
#1	116.9	90' 1	87 cf Cu	stom S	tage Data (Pr	ismatic) Listed below (Recalc)	
Elevation (feet)		Surf.Area (sq-ft)	Inc.Sto (cubic-fee		Cum.Store (cubic-feet)		
116.90		12		0	0		
126.00)	12	10)9	109		
126.50	l	300	ī	78	187		
Device I	Routing	Invert	Outlet D	evices			
#1 F	Primary	116.90'	12.0" Round Culvert L= 70.0' Ke= 0.500 Inlet / Outlet Invert= 116.90' / 116.00' S= 0.0129 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf				

Primary OutFlow Max=2.45 cfs @ 12.11 hrs HW=117.82' (Free Discharge) 1=Culvert (Inlet Controls 2.45 cfs @ 3.26 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.796 ac, 78.72% Impervious, Inflow D	epth > 2.01" for 2 YEAR STORM event
Inflow =	3.54 cfs @ 12.14 hrs, Volume=	0.300 af
Outflow =	3.73 cfs @ 12.11 hrs, Volume=	0.300 af, Atten= 0%, Lag= 0.0 min
Discarded =	1.60 cfs @ 12.11 hrs, Volume=	0.018 af
Primary =	2.12 cfs @ 12.10 hrs, Volume=	0.282 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.98' @ 12.10 hrs Surf.Area= 28 sf Storage= 536 cf

Plug-Flow detention time= 2.6 min calculated for 0.300 af (100% of inflow) Center-of-Mass det. time= 2.4 min (759.8 - 757.4)

Volume	Invert	Avail.Storage	Storage Description
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage
,		660 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
			Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014

Page 21

Discarded OutFlow Max=1.38 cfs @ 12.11 hrs HW=119.96' (Free Discharge)

3=Sharp-Crested Rectangular Weir (Weir Controls 1.38 cfs @ 1.69 fps)

4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=2.12 cfs @ 12.10 hrs HW=119.98' (Free Discharge)

—2=Culvert (Passes 2.12 cfs of 12.75 cfs potential flow)

—1=Orifice/Grate (Orifice Controls 2.12 cfs @ 10.80 fps)

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment 1S: SA1

Runoff

0.20 cfs @ 12.20 hrs, Volume=

0.017 af, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN I	Description					
	910	98 I	Paved parking, HSG D					
	5,562	61 :	>75% Grass cover, Good, HSG B					
	6,472	66 \	Veighted Average					
	5,562	{	85.94% Pervious Area					
	910	•	14.06% lmp	pervious Ar	ea			
 -	t th-	01	Mata M.	0	December 1999			
Tc	Length	Slope	•	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.9	60	0.0100	0.08		Sheet Flow, LAWN			
					Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 2S: SA2

Runoff

0.21 cfs @ 12.16 hrs, Volume=

0.017 af, Depth> 1.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

_	Α	rea (sf)	CN I	Description						
		1,000	98 l	Jnconnecte	nconnected pavement, HSG D					
_		6,421	61 >	>75% Gras	75% Grass cover, Good, HSG B					
		7,421	66 \	Weighted A	eighted Average, UI Adjusted CN = 63					
		6,421	8	36.52% Per	.52% Pervious Area					
		1,000			ervious Ar					
		1,000	•	100.00% Ui	nconnected	1				
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	9.8	60	0.0200	0.10		Sheet Flow, LAWN				
						Grass: Dense n= 0.240 P2= 3.00"				

Summary for Subcatchment 3S: SA3

Runoff

1.22 cfs @ 12.13 hrs, Volume=

0.100 af, Depth> 3.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 23

	А	rea (sf)	CN I	Description							
		12,414	98	Paved parking, HSG D							
		1,116	61	>75% Ġras	s cover, Go	ood, HSG B					
_		350	39 :	>75% Gras							
		13,880	94 \	Weighted Average 10.56% Pervious Area							
		1,466	•	10.5 <mark>6% Pe</mark> i	vious Area						
		12,414	;	39.44% Imp	pervious Ar	ea					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	8.4	35	0.0100	0.07		Sheet Flow, LAWN					
	1.4	60	0.0050	0.69		Grass: Dense n= 0.240 P2= 3.00" Sheet Flow, PAVEMENT Smooth surfaces n= 0.011 P2= 3.00"					
	9.8	95	Total								

Summary for Subcatchment 4S: SA4

Runoff = 1.21

1.21 cfs @ 12.09 hrs, Volume=

0.088 af, Depth> 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Area	a (sf)	CN I	Description		Description Control NOC P							
	800	61 :	>75% Grass cover, Good, HSG B									
	600	39 :	>75% Gras	s cover, Go	ood, HSG A							
11	,043	98 I	Paved park	ing, HSG D)							
12	2,443	93 \	Neighted A	verage								
1	,400		11.25% Per									
11	,043	8	38.75% lmp	ervious Ar	ea							
	ength	Slope		Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
6.0					Direct Entry	RAINIBAEIRA						

6.0

Direct Entry, MINIMUM

Summary for Subcatchment 5S: SA5

Runoff =

0.55 cfs @ 12.09 hrs, Volume=

0.041 af, Depth> 3.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Are	ea (sf)	CN	Description
-	5,100	98	Paved parking, HSG D
	300	61	>75% Grass cover, Good, HSG B
	5,400	96	Weighted Average
	300		5.56% Pervious Area
	5,100		94.44% Impervious Area

DADK DA	MEADTH	PREDEVEL	ODMENT
PARNU	ANFURIA	PREDEVEL	LUPIVIENT

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 24

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 7S: SA7

Runoff =

0.03 cfs @ 12.10 hrs, Volume=

0.002 af, Depth> 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description			
	1,000	61 >	75% Gras	s cover, Go	ood, HSG B	
	1,000	1	00.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 8S: SA8

Runoff =

0.01 cfs @ 12.10 hrs, Volume=

0.001 af, Depth> 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description					
500 61 >75% Grass cover, Good, HSG B								
	500	1	00.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 9S: SA9

Runoff = 0.24 cfs @ 12.09 hrs, Volume=

0.016 af, Depth> 2.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Area	(sf)	CN	Description
1,7	700	98	Paved parking, HSG D
1,6	390	61	>75% Grass cover, Good, HSG B
3,3	390	80	Weighted Average
1,6	390		49.85% Pervious Area
1,7	700		50.15% Impervious Area

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 25

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry, MINIMUM

Summary for Subcatchment 10S: SA10

Runoff

0.99 cfs @ 12.04 hrs, Volume=

0.066 af, Depth> 3.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

_	Α	rea (sf)	CN E	escription			
		8,272			ing, HSG D		
		600	61 >	<u>75% Gras</u>	s cover, Go	ood, HSG B	
		8,872	95 V	Veighted A	verage		
	600 6.76% Pervious Area						
		8,272	9	3.24% lmp	ervious Ar	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	2.3	150	0.0100	1.09		Sheet Flow, PAVEMENT	
						Smooth surfaces n= 0.011 P2= 3.00"	
	0.4	65	0.0200	2.87		Shallow Concentrated Flow, PAVEMENT	
						Paved Kv= 20.3 fps	
	2.7	215	Total				

Summary for Subcatchment 20S: SA20 ROOF

Runoff

0.42 cfs @ 12.09 hrs, Volume=

0.032 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description		
	4,060	98 F	Roofs, HSC	D D	
	4,060	1	100.00% Im	npervious A	rea
Tc	Length	Slope	•		Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 21S: SA21 ROOF

Runoff

0.26 cfs @ 12.09 hrs, Volume=

0.020 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 26

 А	rea (sf)	CN I	Description		
 	2,500	98 I	Roofs, HSC	D	
	2,500		100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 6.0					Direct Entry, MINIMUM

Summary for Subcatchment 22S: SA22 ROOF

Runoff

0.40 cfs @ 12.09 hrs, Volume=

0.031 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description		
	3,900	98 F	Roofs, HSC	D D	
	3,900	1	00.00% In	npervious A	Area
	Length	Slope	•	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 23S: SA23 ROOF

Runoff

0.83 cfs @ 12.09 hrs, Volume=

0.064 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description						
	8,020	98 F	Roofs, HSG D						
•	8,020	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 24S: SA24 ROOF

Runoff

0.73 cfs @ 12.09 hrs, Volume=

0.056 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 27

	Ar	ea (sf)	CN I	Description		
		7,100	98 I	Roofs, HSC) D	
		7,100		100.00% In	npervious A	Area
	Tc in)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
(6.0					Direct Entry, MINIMUM

Summary for Subcatchment 25S: SA25 ROOF

Runoff =

0.57 cfs @ 12.09 hrs, Volume=

0.044 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description		
	5,550	98 F	Roofs, HSC	D	
	5,550	1	00.00% In	pervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 1R: SD CB1-CB2

Inflow Area =

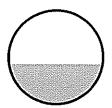
0.149 ac, 14.06% Impervious, Inflow Depth > 1.39" for 10 YEAR STORM event

Inflow =

Outflow

0.20 cfs @ 12.20 hrs, Volume=

0.20 cfs @ 12.22 hrs, Volume=


0.017 af 0.017 af, Atten= 1%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.54 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 1.5 min

Peak Storage= 9 cf @ 12.21 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.54 cfs

6.0" Round Pipe n= 0.010 Length= 110.0' Slope= 0.0055 '/' Inlet Invert= 118.60', Outlet Invert= 118.00'

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

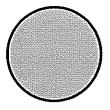
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 28

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.634 ac, 78.72% Impervious, Inflow Depth > 3.42" for 10 YEAR STORM event

Inflow = 5.71 cfs @ 12.10 hrs, Volume= 0.466 af


Outflow = 5.15 cfs @ 12.18 hrs, Volume= 0.466 af, Atten= 10%, Lag= 4.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.65 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.07 fps, Avg. Travel Time= 2.0 min

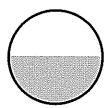
Peak Storage= 318 cf @ 12.13 hrs Average Depth at Peak Storage= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n= 0.010 Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.657 ac, 77.63% Impervious, Inflow Depth > 3.39" for 10 YEAR STORM event

Inflow = 5.17 cfs @ 12.18 hrs, Volume= 0.468 af


Outflow = 5.12 cfs @ 12.18 hrs, Volume= 0.467 af, Atten= 1%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.17 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 1.1 min

Peak Storage= 142 cf @ 12.18 hrs Average Depth at Peak Storage= 1.02' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs

24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

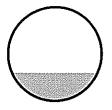
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 29

Summary for Reach 8R: SD CB8-DMH1

Inflow Area = 1.669 ac, 77.10% Impervious, Inflow Depth > 3.37" for 10 YEAR STORM event

Inflow = 5.13 cfs @ 12.18 hrs, Volume= 0.469 af


Outflow = 5.12 cfs @ 12.18 hrs, Volume= 0.468 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.63 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.66 fps, Avg. Travel Time= 0.2 min

Peak Storage= 27 cf @ 12.18 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Slope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB10-DMH2

Inflow Area = 0.281 ac, 81.32% Impervious, Inflow Depth > 3.49" for 10 YEAR STORM event

inflow = 1.17 cfs @ 12.06 hrs, Volume= 0.082 af

Outflow = 1.13 cfs @ 12.07 hrs, Volume= 0.082 af, Atten= 3%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.05 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 1.0 min

Peak Storage= 27 cf @ 12.07 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.44 cfs

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0028 '/' Inlet Invert= 115.20', Outlet Invert= 115.00'

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

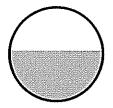
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 30

Summary for Reach 10R: SD CB10 CB9

Inflow Area = 0.204 ac, 93.24% Impervious, Inflow Depth > 3.89" for 10 YEAR STORM event

Inflow = 0.99 cfs @ 12.04 hrs, Volume= 0.066 af


Outflow = 0.95 cfs @ 12.06 hrs, Volume= 0.066 af, Atten= 4%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.29 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 1.4 min

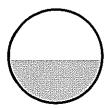
Peak Storage= 30 cf @ 12.05 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.75 cfs

12.0" Round Pipe n= 0.010 Length= 70.0' Slope= 0.0014 '/' Inlet Invert= 115.30', Outlet Invert= 115.20'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 2.078 ac, 79.07% Impervious, Inflow Depth > 2.96" for 10 YEAR STORM event

inflow = 3.27 cfs @ 12.08 hrs, Volume= 0.513 af


Outflow = 3.28 cfs @ 12.07 hrs, Volume= 0.513 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.99 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.98 fps, Avg. Travel Time= 0.1 min

Peak Storage= 13 cf @ 12.07 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

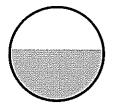
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 31

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.42 cfs @ 12.09 hrs, Volume= 0.032 af


Outflow = 0.41 cfs @ 12.09 hrs, Volume= 0.032 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.84 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.53 fps, Avg. Travel Time= 0.7 min

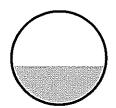
Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af


Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.39 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.8 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

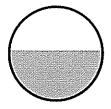
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 32

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af


Outflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.80 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 0.7 min

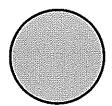
Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.83 cfs @ 12.09 hrs, Volume= 0.064 af


Outflow = 0.75 cfs @ 12.05 hrs, Volume= 0.064 af, Atten= 9%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.23 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.87 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

<u>Page 33</u>

Summary for Reach 24R: ROOF DRAIN

Inflow Area = 0.163 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.73 cfs @ 12.09 hrs, Volume= 0.056 af


Outflow = $0.73 \text{ cfs } \bigcirc 0.12.09 \text{ hrs, Volume} = 0.056 \text{ af, Atten} = 0\%$, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs. dt= 0.05 hrs.

Max. Velocity= 4.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 0.1 min

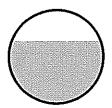
Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area = 0.127 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.044 af


Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.11 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 34

Summary for Pond 2P: SD CB2-CB3

Inflow Area = 0.319 ac, 13.75% Impervious, Inflow Depth > 1.28" for 10 YEAR STORM event

Inflow 0.39 cfs @ 12.18 hrs, Volume= 0.034 af

Outflow 0.39 cfs @ 12.19 hrs, Volume= 0.034 af, Atten= 0%, Lag= 0.2 min

0.39 cfs @ 12.19 hrs, Volume= Primary = 0.034 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 118.43' @ 12.19 hrs Surf.Area= 12 sf Storage= 5 cf

Plug-Flow detention time= 0.5 min calculated for 0.034 af (100% of inflow)

Center-of-Mass det. time= 0.3 min (826.5 - 826.2)

Volume	Inv	ert Avail.Sto	orage Storage	e Description		
#1	118.	00'	98 cf Custor	n Stage Data (Prisn	matic) Listed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
118.0	00	12	0	0		
122.6	30	12	55	55		
123.0	00	200	42	98		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	118.00'	Inlet / Outlet		Ke= 0.500 7.60' S= 0.0029 '/' Cc= 0.900 Flow Area= 0.35 sf	

n= 0.010 PVC, smooth interior, Flow Area= 0.35 st

Primary OutFlow Max=0.39 cfs @ 12.19 hrs HW=118.43' (Free Discharge) T-1=Culvert (Barrel Controls 0.39 cfs @ 2.33 fps)

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.731 ac, 57.75% Impervious, Inflow Depth > 2.74" for 10 YEAR STORM event

Inflow 1.95 cfs @ 12.13 hrs, Volume= 0.167 af

1.95 cfs @ 12.13 hrs, Volume= Outflow = 0.167 af, Atten= 0%, Lag= 0.1 min

1.95 cfs @ 12.13 hrs, Volume= Primary 0.167 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.65' @ 12.13 hrs Surf.Area= 12 sf Storage= 14 cf

Plug-Flow detention time= 0.4 min calculated for 0.167 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (764.7 - 764.4)

Volume	Invert	Avail.	Storage	Storage	e Description		
#1	117.50'		119 cf	Custon	n Stage Data (Prisma	itic) Listed be	elow (Recalc)
Elevation (feet)		Area sq-ft)		Store :-feet)	Cum.Store (cubic-feet)		
117.50		12		0	0		
125.82		12		100	100		
126.00		200		19	119		

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 35

Device	Routing	Invert	Outlet Devices
#1	Primary	117.50'	12.0" Round Culvert L= 73.0' Ke= 0.500 Inlet / Outlet Invert= 117.50' / 117.50' S= 0.0000 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.92 cfs @ 12.13 hrs HW=118.64' (Free Discharge) T-1=Culvert (Barrel Controls 1.92 cfs @ 2.68 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 1.074 ac, 68.26% Impervious, Inflow Depth > 3.07" for 10 YEAR STORM event

Inflow 3.34 cfs @ 12.11 hrs, Volume= 0.274 af

3.33 cfs @ 12.11 hrs, Volume= Outflow 0.274 af, Atten= 0%, Lag= 0.1 min =

Primary 3.33 cfs @ 12.11 hrs, Volume= 0.274 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.68' @ 12.11 hrs Surf.Area= 12 sf Storage= 15 cf

Plug-Flow detention time= 0.2 min calculated for 0.273 af (100% of inflow) Center-of-Mass det. time= 0.1 min (758.9 - 758.8)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	117.40'		350 cf	Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)		.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
117.40		12		0	0	
125.50 126.00		12 1.000		97 253	97 350	
	outing	lnve	0	ot Dovie		

Routing Invert Outlet Devices Device 12.0" Round Culvert L= 54.0' Ke= 0.500 #1 117.40' Primary Inlet / Outlet Invert= 117.40' / 117.00' S= 0.0074 '/' Cc= 0.900

n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=3.27 cfs @ 12.11 hrs HW=118.65' (Free Discharge) T-1=Culvert (Inlet Controls 3.27 cfs @ 4.17 fps)

Summary for Pond 5P: SD CB5-CB6

Inflow Area = 1.287 ac, 72.98% Impervious, Inflow Depth > 3.23" for 10 YEAR STORM event

Inflow 4.26 cfs @ 12.11 hrs, Volume= 0.346 af

Outflow 4.26 cfs @ 12.11 hrs, Volume= 0.346 af, Atten= 0%, Lag= 0.1 min

0.346 af Primary 4.26 cfs @ 12.11 hrs, Volume=

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.67' @ 12.11 hrs Surf.Area= 12 sf Storage= 21 cf

Plug-Flow detention time= 0.2 min calculated for 0.345 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (755.1 - 755.0)

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 9/8/2014

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 36

Volume	Inver			Storage D		· · · · · · · · · · · · · · · · · · ·
#1	116.90)' 18	37 cf	Custom S	tage Data (Pr	rismatic) Listed below (Recalc)
Elevation (feet)	8	Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
116.90		12		0	0	
126.00		12		109	109	
126.50		300		78	187	
Device R	outing	Invert	Outle	et Devices		
#1 Pi	rimary	116.90'	Inlet	/ Outlet Inv		i.0' Ke= 0.500 116.00' S= 0.0129 '/' Cc= 0.900 f

Primary OutFlow Max=4.20 cfs @ 12.11 hrs HW=118.63' (Free Discharge) 1=Culvert (Inlet Controls 4.20 cfs @ 5.35 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.796 ac, 78.72% Impervious, Inflow	Depth > 3.42" for 10 YEAR STORM event
Inflow =	5.47 cfs @ 12.16 hrs, Volume=	0.512 af
Outflow =	5.57 cfs @ 12.15 hrs, Volume=	0.512 af, Atten= 0%, Lag= 0.0 min
Discarded =	3,40 cfs @ 12.15 hrs, Volume=	0.081 af
Primary =	2.16 cfs @ 12.15 hrs, Volume=	0.431 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.18' @ 12.15 hrs Surf.Area= 28 sf Storage= 541 cf

Plug-Flow detention time= 2.3 min calculated for 0.512 af (100% of inflow) Center-of-Mass det. time= 2.1 min (754.5 - 752.4)

Volume	Invert	Avail.Storage	Storage Description	
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder	
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'	
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage	
· · ·		660 cf	Total Available Storage	

Invert Outlet Devices Device Routing 6.0" Vert. Orifice/Grate C= 0.600 #1 Device 2 114.70 15.0" Round Culvert L= 24.0' Ke= 0.500 114.70' #2 Primary Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf 3.1' long x 1.00' rise Sharp-Crested Rectangular Weir #3 Discarded 119.70 0 End Contraction(s) 5.0' Crest Height 3.1' long x 1.00' rise Sharp-Crested Rectangular Weir #4 Discarded 121.00' 0 End Contraction(s) 7.0' Crest Height

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 37

Discarded OutFlow Max=3.37 cfs @ 12.15 hrs HW=120.18' (Free Discharge)

—3=Sharp-Crested Rectangular Weir (Weir Controls 3.37 cfs @ 2.28 fps)

—4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=2.16 cfs @ 12.15 hrs HW=120.18' (Free Discharge)
2=Culvert (Passes 2.16 cfs of 13.01 cfs potential flow)
1=Orifice/Grate (Orifice Controls 2.16 cfs @ 11.01 fps)

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 38

Summary for Subcatchment 1S: SA1

Runoff

0.28 cfs @ 12.19 hrs, Volume=

0.024 af, Depth> 1.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	rea (sf)	CN	Description							
	910	98	Paved parking, HSG D							
	5,562	61	>75% Gras	s cover, Go	ood, HSG B					
	6,472	66	Weighted Average							
	5,562		85.94% Pervious Area							
	910		14.06% Impervious Area							
_		01			P					
Tc		Slope		Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
12.9	60	0.0100	80.0		Sheet Flow, LAWN					
					Grass: Dense n= 0.240	P2= 3.00"				

Summary for Subcatchment 2S: SA2

Runoff

0.30 cfs @ 12.15 hrs, Volume=

0.024 af, Depth> 1.67"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN I	Description					
	1,000	98 l	Jnconnecte	ed pavemei	nt, HSG D			
	6,421	61 :	>75% Gras	s cover, Go	ood, HSG B			
	7,421	66 \	Weighted Average, UI Adjusted CN = 63					
	6,421		86.52% Pervious Área					
	1,000	•	13.48% lmp	pervious Ar	rea			
	1,000	•	100.00% Ui	nconnected	d			
Tc (min)	Length (feet)	Slope (ft/ft)	-	Capacity (cfs)	Description			
9.8	60	0.0200	0.10		Sheet Flow, LAWN Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 3S: SA3

Runoff

1.44 cfs @ 12.13 hrs, Volume=

0.120 af, Depth> 4.52"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 39

	rea (sf)	CN I	Description								
	12,414	98 I	98 Paved parking, HSG D								
	1,116				ood, HSG B						
	350	39 :	>75% Gras	s cover, Go	ood, HSG A						
	13,880	94 \	Neighted A	verage							
	1,466	•	10.56% Per	vious Area							
	12,414	3	39.44% Imp	ervious Ar	ea						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description						
8.4	35	0.0100	0.07		Sheet Flow, LAWN						
1.4	60	0.0050	0.69		Grass: Dense n= 0.240 P2= 3.00" Sheet Flow, PAVEMENT Smooth surfaces n= 0.011 P2= 3.00"						
9.8	95	Total									

Summary for Subcatchment 4S: SA4

Runoff = 1.43 cfs @ 12.09 hrs, Volume=

0.105 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

 Α	rea (sf)	CN	Description								
	800	61	>75% Grass cover, Good, HSG B								
	600	39	>75% Gras	s cover, Go	ood, HSG A						
	11,043	98	Paved park	ing, HSG D	D						
 	12,443	93	Weighted Average								
	1,400		11.25% Pei	vious Area	a						
	11,043		88.75% Imp	pervious Ar	rea						
Тс	Length	Slope	Velocity	Capacity	Description						
 (min)	(feet)	(ft/ft	(ft/sec)	(cfs)							
6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 5S: SA5

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 0.049 af, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Area (sf)	CN	Description
5,100	98	Paved parking, HSG D
300	61	>75% Grass cover, Good, HSG B
5,400	96	Weighted Average
300		5.56% Pervious Area
5,100		94.44% Impervious Area

PARK	DANE	ORTH	PREDE	VFI C	PMENT
LWLV	LANIE	ORITI	FREDE	$v = L \setminus$	/

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 40

Tc	Length	Slope	 Velocity 	Capacity	/ Description
(min)	(feet)	(ft/ft)) (ft/sec) (cfs))

6.0

Direct Entry, MINIMUM

Summary for Subcatchment 7S: SA7

Runoff =

0.04 cfs @ 12.10 hrs, Volume=

0.003 af, Depth> 1.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

_	Α	rea (sf)	CN [Description								
		1,000	61 >	>75% Grass cover, Good, HSG B								
		1,000	1,000 100.00% Pervious Area									
	-		0.1									
		•	Slope	•		Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
_	6.0	_		_		Direct Entry, MINIMUM						

Direct Entry, minutes on

Summary for Subcatchment 8S: SA8

Runoff = 0.02 cfs @ 12.10 hrs, Volume=

0.001 af, Depth> 1.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Ar	ea (sf)	CN	Description								
		500	61	>75% Grass cover, Good, HSG B								
		500		100.00% Pervious Area								
- (mi		Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
6	0.					Direct Entry, MINIMUM						

Summary for Subcatchment 9S: SA9

Runoff = 0.30 cfs @ 12.09 hrs, Volume=

0.020 af, Depth> 3.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

***************************************	Area (sf)	CN	Description
	1,700	98	Paved parking, HSG D
	1,690	61	>75% Grass cover, Good, HSG B
	3,390	80	Weighted Average
	1,690		49.85% Pervious Area
	1,700		50.15% Impervious Area

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 9/8/2014

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 41

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 10S: SA10

Runoff = 1.16 cfs @ 12.04 hrs, Volume=

0.078 af, Depth> 4.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

А	rea (sf)	CN_D	escription							
	8,272	98 P	Paved parking, HSG D							
	600	61 >	>75% Grass cover, Good, HSG B							
	8,872		5 Weighted Average							
	600	_	.76% Perv							
	8,272	9	3.24% lmp	ervious Ar	ea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
2.3	150	0.0100	1.09		Sheet Flow, PAVEMENT					
0.4	65	0.0200	2.87		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, PAVEMENT Paved Kv= 20.3 fps					
2.7	215	Total								

Summary for Subcatchment 20S: SA20 ROOF

Runoff = 0.49 cfs @ 12.09 hrs, Volume=

0.038 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN [Description			
	4,060	98 F	Roofs, HSG	D		
	4,060	1	100.00% lm	pervious A	ırea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 21S: SA21 ROOF

Runoff = 0.30 cfs @ 12.09 hrs, Volume= 0.02

0.023 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

PARK	DANFORTH	PREDEVEL	OPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 42

	Area (sf)	CN I	Description					
	2,500	98 I	Roofs, HSG D					
	2,500	•	100.00% In	npervious A	Area			
- (mi	Гс Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6	.0				Direct Entry, MINIMUM			

Summary for Subcatchment 22S: SA22 ROOF

Runoff

0.47 cfs @ 12.09 hrs, Volume=

0.036 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

-	A	rea (sf)	CN	Description		
		3,900	98	Roofs, HSG	D D	
		3,900		100.00% Im	npervious A	rea
	Tc	•	Slope	•		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Discord Control Mainting that
	6.0					Direct Entry, MINIMUM

Summary for Subcatchment 23S: SA23 ROOF

Runoff

0.97 cfs @ 12.09 hrs, Volume=

0.075 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Α	rea (sf)	CN [Description						
		8,020	98 F	Roofs, HSG D						
		8,020	1	00.00% In	npervious A	rea				
		Length	Slope	-		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 24S: SA24 ROOF

Runoff

0.86 cfs @ 12.09 hrs, Volume=

0.066 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 43

_	Α	rea (sf)	CN	Description					
		7,100	98	Roofs, HSG D					
		7,100		100.00% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	-	Capacity (cfs)	Description			
	6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 25S: SA25 ROOF

Runoff =

0.67 cfs @ 12.09 hrs, Volume=

0.052 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN [Description			
	5,550	98 F	Roofs, HSG	D D		
	5,550	1	100.00% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0			-		Direct Entry, MINIMUM	

Summary for Reach 1R: SD CB1-CB2

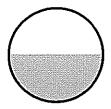
Inflow Area =

0.149 ac, 14.06% Impervious, Inflow Depth > 1.90" for 25YEAR STORM event

Inflow =

Outflow

0.28 cfs @ 12.19 hrs, Volume= 0.27 cfs @ 12.21 hrs, Volume=


0.024 af 0.024 af, Atten= 1%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.77 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 1.4 min

Peak Storage= 11 cf @ 12.20 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.54 cfs

6.0" Round Pipe n= 0.010 Length= 110.0' Slope= 0.0055 '/' Inlet Invert= 118.60', Outlet Invert= 118.00'

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

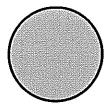
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 44

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.634 ac, 78.72% Impervious, Inflow Depth > 4.11" for 25YEAR STORM event

Inflow = 6.57 cfs @ 12.11 hrs, Volume= 0.560 af


Outflow = 5.10 cfs @ 12.11 hrs, Volume= 0.559 af, Atten= 22%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.61 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.18 fps, Avg. Travel Time= 1.9 min

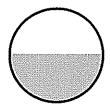
Peak Storage= 310 cf @ 12.10 hrs Average Depth at Peak Storage= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n= 0.010 Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.657 ac, 77.63% Impervious, Inflow Depth > 4.07" for 25YEAR STORM event

Inflow = 5.14 cfs @ 12.11 hrs, Volume= 0.562 af


Outflow = 5.13 cfs @ 12.10 hrs, Volume= 0.562 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.19 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 1.1 min

Peak Storage= 144 cf @ 12.11 hrs Average Depth at Peak Storage= 1.03' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs

24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 45

Summary for Reach 8R: SD CB8-DMH1

Inflow Area =

1.669 ac, 77.10% Impervious, Inflow Depth > 4.05" for 25YEAR STORM event

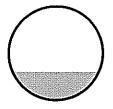
Inflow =

5.20 cfs @ 12.12 hrs, Volume=

0.563 af

Outflow =

5.14 cfs @ 12.10 hrs, Volume=


0.563 af, Atten= 1%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.66 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.82 fps, Avg. Travel Time= 0.2 min

Peak Storage= 27 cf @ 12.12 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Slope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB10-DMH2

Inflow Area =

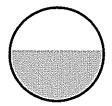
0.281 ac, 81.32% Impervious, Inflow Depth > 4.21" for 25YEAR STORM event

Inflow =

1.40 cfs @ 12.06 hrs, Volume=

0.099 af

Outflow = 1.36 cfs @ 12.07 hrs, Volume=


0.099 af, Atten= 3%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.20 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 1.0 min

Peak Storage= 31 cf @ 12.07 hrs Average Depth at Peak Storage= 0.54' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 2.44 cfs

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0028 '/' Inlet Invert= 115.20', Outlet Invert= 115.00'

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 9/8/2014

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

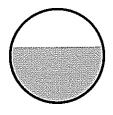
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 46

Summary for Reach 10R: SD CB10 CB9

Inflow Area = 0.204 ac, 93.24% Impervious, Inflow Depth > 4.62" for 25YEAR STORM event

Inflow = 1.16 cfs @ 12.04 hrs, Volume= 0.078 af


Outflow = 1.12 cfs @ 12.06 hrs, Volume= 0.078 af, Atten= 3%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.38 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.91 fps, Avg. Travel Time= 1.3 min

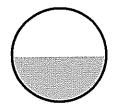
Peak Storage= 34 cf @ 12.05 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 1.75 cfs

12.0" Round Pipe n= 0.010 Length= 70.0' Slope= 0.0014 '/' Inlet Invert= 115.30', Outlet Invert= 115.20'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 2.078 ac, 79.07% Impervious, Inflow Depth > 3.43" for 25YEAR STORM event

Inflow = 3.52 cfs @ 12.07 hrs, Volume= 0.594 af


Outflow = 3.52 cfs @ 12.08 hrs, Volume= 0.594 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.10 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.14 fps, Avg. Travel Time= 0.1 min

Peak Storage= 14 cf @ 12.08 hrs Average Depth at Peak Storage= 0.59' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

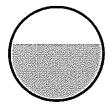
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 47

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.093 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.49 cfs @ 12.09 hrs, Volume= 0.038 af


Outflow = 0.49 cfs @ 12.09 hrs, Volume= 0.038 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.98 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.61 fps, Avg. Travel Time= 0.6 min

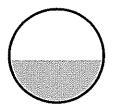
Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af


Outflow = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.54 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 0.7 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

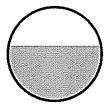
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 48

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.47 cfs @ 12.09 hrs, Volume= 0.036 af


Outflow = 0.47 cfs @ 12.09 hrs, Volume= 0.036 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.95 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 0.6 min

Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.97 cfs @ 12.09 hrs, Volume= 0.075 af


Outflow = 0.73 cfs @ 12.10 hrs, Volume= 0.075 af, Atten= 25%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.23 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.95 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

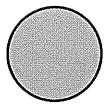
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 49

Summary for Reach 24R: ROOF DRAIN

Inflow Area = 0.163 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.86 cfs @ 12.09 hrs, Volume= 0.066 af


Outflow = 0.73 cfs @ 12.13 hrs, Volume= 0.066 af, Atten= 15%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.17 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 0.1 min

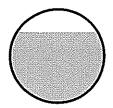
Peak Storage= 3 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area = 0.127 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.67 cfs @ 12.09 hrs, Volume= 0.052 af


Outflow = $0.67 \text{ cfs } \overline{\textcircled{0}}$ 12.09 hrs, Volume= 0.052 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 0.3 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 50

Summary for Pond 2P: SD CB2-CB3

Inflow Area = 0.319 ac, 13.75% Impervious, Inflow Depth > 1.78" for 25YEAR STORM event

Inflow = 0.56 cfs @ 12.17 hrs, Volume= 0.047 af

Outflow = 0.56 cfs @ 12.18 hrs, Volume= 0.047 af, Atten= 1%, Lag= 0.2 min

Primary = 0.56 cfs @ 12.18 hrs, Volume= 0.047 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.53' @ 12.18 hrs Surf.Area= 12 sf Storage= 6 cf

Plug-Flow detention time= 0.5 min calculated for 0.047 af (100% of inflow)

Center-of-Mass det. time= 0.3 min (819.2 - 818.9)

Volume	Inver	rt Avail.Sto	orage	Storage D	escription	
#1	118.00)'	98 cf	Custom S	tage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)	8	Surf.Area (sg-ft)	Inc.	Store	Cum.Store (cubic-feet)	
			(Cubic			
118.00		12		0	0	
122.60		12		55	55	
123.00		200		42	98	
Device Ro	outing	invert	Outle	t Devices		
#1 Pr	imary	118.00'				.0' Ke= 0.500

Inlet / Outlet Invert= 118.00' / 117.60' S= 0.0029 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.55 cfs @ 12.18 hrs HW=118.53' (Free Discharge)

1=Culvert (Barrel Controls 0.55 cfs @ 2.54 fps)

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.731 ac, 57.75% Impervious, Inflow Depth > 3.37" for 25YEAR STORM event

Inflow = 2.40 cfs @ 12.13 hrs, Volume= 0.205 af

Outflow = 2.41 cfs @ 12.14 hrs, Volume= 0.205 af, Atten= 0%, Lag= 0.2 min

Primary = 2.41 cfs @ 12.14 hrs, Volume= 0.205 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.93' @ 12.13 hrs Surf.Area= 12 sf Storage= 17 cf

Plug-Flow detention time= 0.4 min calculated for 0.205 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (763.1 - 762.9)

Volume	Invert	Avail.	Storage	Storage	e Description		
#1	117.50'		119 cf	Custor	n Stage Data (Pris	matic) Listed below (Recalc)	
Elevation	Surf	f.Area	Inc	.Store	Cum.Store		
(feet)	((sq-ft)	(cubic	c-feet)	(cubic-feet)		
117.50		12		0	0		
125.82		12		100	100		
126.00		200		19	119		

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 51

Device	Routing	Invert	Outlet Devices
#1	Primary	117.50'	12.0" Round Culvert L= 73.0' Ke= 0.500 Inlet / Outlet Invert= 117.50' / 117.50' S= 0.0000 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.37 cfs @ 12.14 hrs HW=118.90' (Free Discharge) 1=Culvert (Barrel Controls 2.37 cfs @ 3.02 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 1.074 ac, 68.26% Impervious, Inflow Depth > 3.73" for 25YEAR STORM event 4.04 cfs @ 12.11 hrs, Volume= 0.334 af
Outflow = 4.03 cfs @ 12.11 hrs, Volume= 0.334 af, Atten= 0%, Lag= 0.1 min
Primary = 4.03 cfs @ 12.11 hrs, Volume= 0.334 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.04' @ 12.11 hrs Surf.Area= 12 sf Storage= 20 cf

Plug-Flow detention time= 0.2 min calculated for 0.334 af (100% of inflow) Center-of-Mass det. time= 0.1 min (757.0 - 756.9)

Volume	Inv	<u>ert Avail.Sto</u>	orage Storage	Description	
#1	117.	40' 3	350 cf Custom	Stage Data (Pris	smatic) Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
117.4	10	12	0	0	
125.5	50	12	97	97	
126.0	00	1,000	253	350	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	117.40'		Culvert L= 54.0	
					17.00' S= 0.0074 '/' Cc= 0.900
			n=0.010, Flow	w Area= 0.79 sf	

Primary OutFlow Max=3.96 cfs @ 12.11 hrs HW=118.99' (Free Discharge) 1=Culvert (Inlet Controls 3.96 cfs @ 5.04 fps)

Summary for Pond 5P: SD CB5-CB6

Inflow Area = 1.287 ac, 72.98% Impervious, Inflow Depth > 3.90" for 25YEAR STORM event
Inflow = 5.12 cfs @ 12.11 hrs, Volume= 0.419 af
Outflow = 5.12 cfs @ 12.11 hrs, Volume= 0.419 af, Atten= 0%, Lag= 0.1 min
Primary = 5.12 cfs @ 12.11 hrs, Volume= 0.419 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.23' @ 12.11 hrs Surf.Area= 12 sf Storage= 28 cf

Plug-Flow detention time= 0.2 min calculated for 0.419 af (100% of inflow) Center-of-Mass det. time= 0.1 min (753.3 - 753.2)

PARK DANFORTH PREDEVELOPMENT

Prepared by BH2M ENGINEERS

Printed 9/8/2014

Page 52

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

<u>Volume</u>	lnv	ert Avail.S	torage	Storage D	escription	
#1	116.	90'	187 cf	Custom S	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	• •	Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)	
116.9		12	(cupi	0	(cubic-leet)	
126.0	_	12		109	109	
126.5	0	300		78	187	
Device	Routing	Inver	t Outle	et Devices		
#1	Primary	116.90	Inlet	/ Outlet In	Culvert L= 70.0 /ert= 116.90' / 7 / Area= 0.79 sf	0' Ke= 0.500 116.00' S= 0.0129 '/' Cc= 0.900

Primary OutFlow Max=5.03 cfs @ 12.11 hrs HW=119.17' (Free Discharge) —1=Culvert (Inlet Controls 5.03 cfs @ 6.41 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.796 ac, 78.72% Impervious, Inflow Depth > 4.11" fc	or 25YEAR STORM event
Inflow =	5.83 cfs @ 12.11 hrs, Volume= 0.615 af	
Outflow =	6.00 cfs @ 12.11 hrs, Volume= 0.615 af, Atten=	= 0%, Lag= 0.0 min
Discarded =	3.83 cfs @ 12.11 hrs, Volume= 0.119 af	
Primary =	2.17 cfs @ 12.11 hrs, Volume= 0.496 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.22' @ 12.11 hrs Surf.Area= 28 sf Storage= 542 cf

Plug-Flow detention time= 2.2 min calculated for 0.613 af (100% of inflow) Center-of-Mass det. time= 2.1 min (753.3 - 751.2)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage
		660 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
	-		Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 52

Volume	Inv	ert Avail.St	orage Storag	e Description		
#1	116.	90' 1	87 cf Custo	m Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
116.9	90	12	0	0		
126.0	00	12	109	109		
126.5	50	300	78	187		
Device	Routing	Invert	Outlet Devic	ces		
#1	Primary	116.90'	Inlet / Outlet	d Culvert L= 70.4 t Invert= 116.90' / 6 low Area= 0.79 sf	0' Ke= 0.500 116.00' S= 0.0129 '/'	Cc= 0.900

Primary OutFlow Max=5.03 cfs @ 12.11 hrs HW=119.17' (Free Discharge) 1=Culvert (Inlet Controls 5.03 cfs @ 6.41 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.796 ac, 78.72% Impervious, Inflow Dep	oth > 4.11" for 25YEAR STORM event
Inflow =	5.83 cfs @ 12.11 hrs, Volume= 0).615 af
Outflow =	6.00 cfs @ 12.11 hrs, Volume= 0	0.615 af, Atten= 0%, Lag= 0.0 min
Discarded =	3.83 cfs @ 12.11 hrs, Volume= 0).119 af
Primary =	2.17 cfs @ 12.11 hrs, Volume= 0).496 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.22' @ 12.11 hrs Surf.Area= 28 sf Storage= 542 cf

Plug-Flow detention time= 2.2 min calculated for 0.613 af (100% of inflow) Center-of-Mass det. time= 2.1 min (753.3 - 751.2)

<u>Volume</u>	Invert	Avail.Storage	Storage Description	
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder	
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'	
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage	
		660 cf	Total Available Storage	

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
	•		Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 9/8/2014

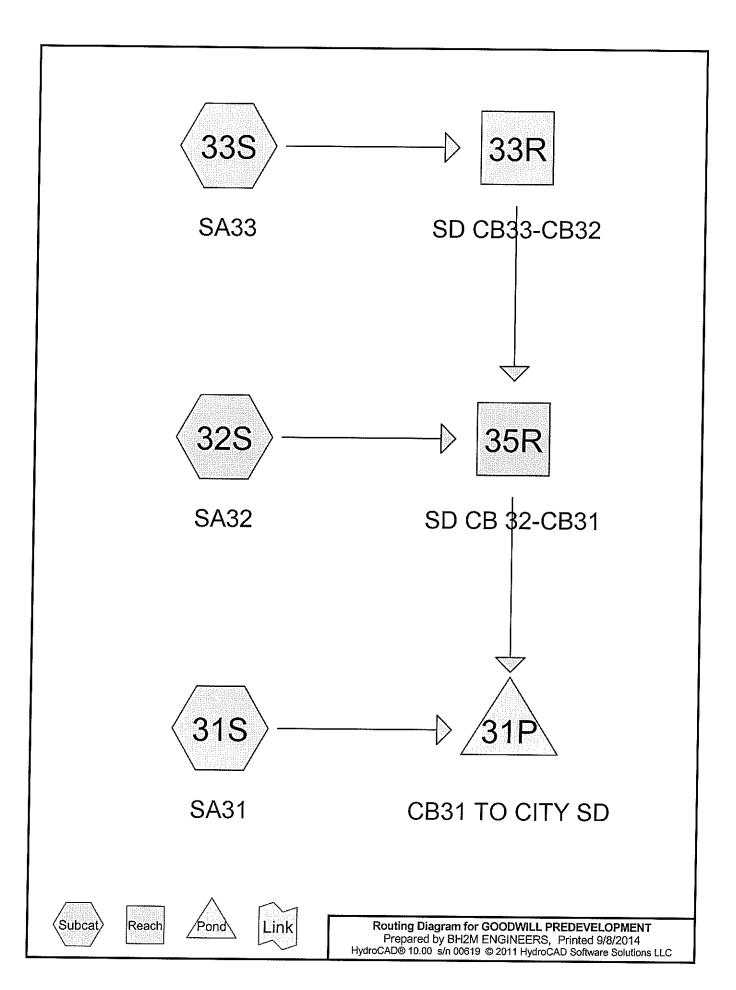
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 53

Discarded OutFlow Max=3.71 cfs @ 12.11 hrs HW=120.21' (Free Discharge)

-3=Sharp-Crested Rectangular Weir (Weir Controls 3.71 cfs @ 2.36 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)


Primary OutFlow Max=2.17 cfs @ 12.11 hrs HW=120.21' (Free Discharge)

2=Culvert (Passes 2.17 cfs of 13.06 cfs potential flow)

1=Orifice/Grate (Orifice Controls 2.17 cfs @ 11.04 fps)

APPENDIX C

GOODWILL SITE PREDEVELOPMENT CALCULATIONS

GOODWILL PREDEVELOPMENT

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.091	39	>75% Grass cover, Good, HSG A (33S)
0.140	61	>75% Grass cover, Good, HSG B (31S, 32S, 33S)
0.124	98	Paved parking, HSG D (32S)
1.065	98	Unconnected roofs, HSG D (31S, 33S)
1.421	91	TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.091	HSG A	33S
0.140	HSG B	31S, 32S, 33S
0.000	HSG C	
1.190	HSG D	31S, 32S, 33S
0.000	Other	
1.421		TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014

Page 4

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.091	0.140	0.000	0.000	0.000	0.231	>75% Grass cover, Good	31S,
							32S,
							33S
0.000	0.000	0.000	0.124	0.000	0.124	Paved parking	32S
0.000	0.000	0.000	1.065	0.000	1.065	Unconnected roofs	31S,
							33S
0.091	0.140	0.000	1.190	0.000	1.421	TOTAL AREA	

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014 Page 5

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	33R	120.10	117.40	178.0	0.0152	0.010	6.0	0.0	0.0
2	35R	117.10	115.00	140.0	0.0150	0.010	10.0	0.0	0.0
3	31P	115.00	114.00	65.0	0.0154	0.010	10.0	0.0	0.0

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 31S: SA31

Runoff

2.62 cfs @ 12.06 hrs, Volume=

0.173 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

_	Α	rea (sf)	CN E	Description		
		36,200			ed roofs, H	
		4,550	61 >	<u> 75% Gras</u>	s cover, Go	ood, HSG B
		40,750	94 V	Veighted A	verage	
		4,550	1	1.17% Per	vious Area	
		36,200	8	8.83% Imp	pervious Ar	ea
		36,200	1	00.00% Ui	nconnected	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.9	150	0.0150	1.29		Sheet Flow, PAVEMENT
	1.9	230	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, PAVEMENT Paved Kv= 20.3 fps
	3.8	380	Total		·	

Summary for Subcatchment 32S: SA32

Runoff

0.29 cfs @ 12.18 hrs, Volume=

0.025 af, Depth> 1.94"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	vrea (sf)	CN [Description							
	1,170	61 >	>75% Gras	75% Grass cover, Good, HSG B						
	5,415	98 F	Paved park	ing, HSG D)					
	6,585	91 \	Neighted A	verage						
	1,170	1	17.77% Pei	∿ious Area	l e e e e e e e e e e e e e e e e e e e					
	5,415	8	32.23% lmp	pervious Ar	ea					
_										
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
12.1	55	0.0100	0.08		Sheet Flow, LAWN					
					Grass: Dense n= 0.240 P2= 3.00"					
0.9	160	0.0200	2.87		Shallow Concentrated Flow, PAVEMENT					
					Paved Kv= 20.3 fps					
13.0	215	Total		•						

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment 33S: SA33

Runoff = 0.38 cfs @ 12.22 hrs, Volume= 0

0.034 af, Depth> 1.21"

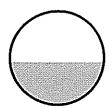
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

_	Α	rea (sf)	CN I	Description							
		10,200	98 l	Unconnected roofs, HSG D							
		400	61 >	>75% Gras	s cover, Go	ood, HSG B					
_		3,950	39 >	75% Gras	s cover, Go	ood, HSG A					
		14,550	81 \	Veighted A	verage						
		4,350	2	29.90% Per	vious Area						
		10,200	7	70.10% lmp	ervious Ar	ea					
		10,200	1	100.00% Ui	nconnected	1					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	14.6	70	0.0100	0.08		Sheet Flow, LAWN					
	0.9	105	0.0100	2.03		Grass: Dense n= 0.240 P2= 3.00" Shallow Concentrated Flow, PAVEMENT Paved Kv= 20.3 fps					
	15.5	175	Total								

Summary for Reach 33R: SD CB33-CB32

Inflow Area = 0.334 ac, 70.10% Impervious, Inflow Depth > 1.21" for 2 YEAR STORM event

Inflow = 0.38 cfs @ 12.22 hrs, Volume= 0.034 af


Outflow = 0.37 cfs @ 12.25 hrs, Volume= 0.034 af, Atten= 1%, Lag= 1.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.36 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.96 fps, Avg. Travel Time= 1.5 min

Peak Storage= 15 cf @ 12.23 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.90 cfs

6.0" Round Pipe n= 0.010 Length= 178.0' Slope= 0.0152 '/' Inlet Invert= 120.10', Outlet Invert= 117.40'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 8

Summary for Reach 35R: SD CB 32-CB31

Inflow Area = 0.485 ac, 73.88% Impervious, Inflow Depth > 1.44" for 2 YEAR STORM event

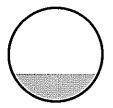
Inflow = 0.64 cfs @ 12.21 hrs, Volume= 0.058 af

Outflow = 0.64 cfs @ 12.23 hrs, Volume= 0.058 af, Atten= 1%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.87 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 1.3 min

Peak Storage= 18 of @ 12.22 hrs
Average Depth at Peak Storage= 0.24'


Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.49 cfs

10.0" Round Pipe

n = 0.010

Length= 140.0' Slope= 0.0150 '/'

Inlet Invert= 117.10', Outlet Invert= 115.00'

Summary for Pond 31P: CB31 TO CITY SD

Inflow Area = 1.421 ac, 83.73% Impervious, Inflow Depth > 1.95" for 2 YEAR STORM event

Inflow = 2.96 cfs @ 12.06 hrs, Volume= 0.231 af

Outflow = 2.94 cfs @ 12.06 hrs, Volume= 0.231 af, Atten= 1%, Lag= 0.2 min

Discarded = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary = 2.94 cfs @ 12.06 hrs, Volume= 0.231 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 116.67' @ 12.06 hrs Surf.Area= 13 sf Storage= 21 cf

Plug-Flow detention time= 0.2 min calculated for 0.230 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (768.4 - 768.3)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	115.00'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
#2	119.50'	502 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		558 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	6	0	0
120.00	500	127	127
120.50	1,000	375	502

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014

Page 9

Device	Routing	Invert	Outlet Devices
#1	Primary	115.00'	10.0" Round Culvert L= 65.0' Ke= 0.500
			Inlet / Outlet Invert= 115.00' / 114.00' S= 0.0154 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.55 sf
#2	Discarded	120.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=115.01' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=2.85 cfs @ 12.06 hrs HW=116.59' (Free Discharge) —1=Culvert (Inlet Controls 2.85 cfs @ 5.23 fps)

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 10

Summary for Subcatchment 31S: SA31

Runoff = 4.34 cfs @ 12.06 hrs, Volume=

0.295 af, Depth> 3.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Ar	ea (sf)	CN D	escription		
;	36,200			ed roofs, H	
	4,550	61 >	<u>75% Gras</u>	s cover, Go	ood, HSG B
4	40,750	94 V	Veighted A	verage	
	4,550	1	1.17% Per	vious Area	
,	36,200	8	8.83% Imp	pervious Ar	ea
;	36,200	1	00.00% Ui	nconnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	150	0.0150	1.29		Sheet Flow, PAVEMENT
					Smooth surfaces n= 0.011 P2= 3.00"
1.9	230	0.0100	2.03		Shallow Concentrated Flow, PAVEMENT
					Paved Kv= 20.3 fps
3.8	380	Total			

Summary for Subcatchment 32S: SA32

Runoff = 0.50 cfs @ 12.17 hrs, Volume=

0.044 af, Depth> 3.48"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

_	A	rea (sf)	CN [Description		
		1,170	61 >	75% Gras	s cover, Go	ood, HSG B
_		5,415	98 F	Paved park	ing, HSG D	
		6,585	91 V	Veighted A	verage	
		1,170	1	7.77% Per	vious Area	
		5,415	8	2.23% Imp	ervious Ar	ea
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.1	55	0.0100	0.08		Sheet Flow, LAWN
						Grass: Dense n= 0.240 P2= 3.00"
	0.9	160	0.0200	2.87		Shallow Concentrated Flow, PAVEMENT
						Paved Kv= 20.3 fps
	13.0	215	Total			

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment 33S: SA33

Runoff = 0.79 cfs @ 12.21 hrs, Volume= 0.07

0.071 af, Depth> 2.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description							
	10,200	98 L	Jnconnected roofs, HSG D							
	400	61 >	75% Gras	s cover, Go	ood, HSG B					
	3,950	39 >	75% Gras	s cover, Go	ood, HSG A					
·	14,550	81 V	Veighted A	verage						
	4,350	2	9.90% Per	າvious Area						
	10,200	7	0.10% lmp	pervious Ar	ea					
	10,200	1	00.00% Ui	nconnected	1					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
14.6	70	0.0100	0.08		Sheet Flow, LAWN					
					Grass: Dense n= 0.240 P2= 3.00"					
0.9	105	0.0100	2.03		Shallow Concentrated Flow, PAVEMENT					
					Paved Kv= 20.3 fps					
15.5	175	Total								

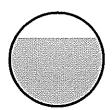
Summary for Reach 33R: SD CB33-CB32

Inflow Area = 0.334 ac, 70.10% Impervious, Inflow Depth > 2.53" for 10 YEAR STORM event

Inflow = 0.79 cfs @ 12.21 hrs, Volume= 0.071 af

Outflow = 0.78 cfs @ 12.23 hrs, Volume= 0.070 af, Atten= 1%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Max. Velocity = 5.16 fps, Min. Travel Time = 0.6 min

Avg. Velocity = 2.28 fps, Avg. Travel Time= 1.3 min

Peak Storage= 27 cf @ 12.22 hrs Average Depth at Peak Storage= 0.36'

Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.90 cfs

6.0" Round Pipe n= 0.010 Length= 178.0' Slope= 0.0152 '/' Inlet Invert= 120.10', Outlet Invert= 117.40'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

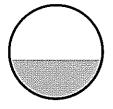
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 12

Summary for Reach 35R: SD CB 32-CB31

Inflow Area = 0.485 ac, 73.88% Impervious, Inflow Depth > 2.83" for 10 YEAR STORM event

Inflow = 1.26 cfs @ 12.21 hrs, Volume= 0.114 af


Outflow = 1.25 cfs @ 12.22 hrs, Volume= 0.114 af, Atten= 1%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.87 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.24 fps, Avg. Travel Time= 1.0 min

Peak Storage= 30 cf @ 12.21 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.49 cfs

10.0" Round Pipe n= 0.010 Length= 140.0' Slope= 0.0150 '/' Inlet Invert= 117.10', Outlet Invert= 115.00'

Summary for Pond 31P: CB31 TO CITY SD

Inflow Area = 1.421 ac, 83.73% Impervious, Inflow Depth > 3.46" for 10 YEAR STORM event

inflow = 5.05 cfs @ 12.06 hrs, Volume= 0.410 af

Outflow = 5.00 cfs @ 12.07 hrs, Volume= 0.410 af, Atten= 1%, Lag= 0.4 min

Discarded = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary = 5.00 cfs @ 12.07 hrs, Volume= 0.410 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.02' @ 12.07 hrs Surf.Area= 13 sf Storage= 50 cf

Plug-Flow detention time= 0.2 min calculated for 0.410 af (100% of inflow) Center-of-Mass det. time= 0.1 min (758.2 - 758.0)

Volume	Invert	Avail.Storage	Storage Description
#1	115.00'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
<u>#2</u>	119.50'	502 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		558 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
119.50	6	0	0
120.00	500	127	127
120.50	1.000	375	502

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 9/8/2014

Page 13

Device	Routing	Invert	Outlet Devices
#1	Primary	115.00'	10.0" Round Culvert L= 65.0' Ke= 0.500
			Inlet / Outlet Invert= 115.00' / 114.00' S= 0.0154 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.55 sf
#2	Discarded	120.00'	20.0' long x 20.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=115.06' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=4.84 cfs @ 12.07 hrs HW=118.81' (Free Discharge)
—1=Culvert (Inlet Controls 4.84 cfs @ 8.87 fps)

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 14

Printed 9/8/2014

Summary for Subcatchment 31S: SA31

Runoff = 5.15 cfs @ 12.06 hrs, Volume=

0.353 af, Depth> 4.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Area (sf)	CN	Description							
36,200	98	98 Unconnected roofs, HSG D							
4,550	61	>75% Gras	s cover, G	ood, HSG B					
40,750	94	Weighted A	Average						
4,550		11.17% Pe	rvious Area	1					
36,200		88.83% Imp	pervious Ar	rea					
36,200		100.00% U	nconnected	d					
Tc Length	•		Capacity	Description					
(min) (feet) (ft/ft) (ft/sec)	(cfs)						
1.9 150	0.0150	1.29		Sheet Flow, PAVEMENT					
				Smooth surfaces n= 0.011 P2= 3.00"					
1.9 230	0.0100	2.03		Shallow Concentrated Flow, PAVEMENT					
<u></u>				Paved Kv= 20.3 fps					
3.8 380) Total								

Summary for Subcatchment 32S: SA32

Runoff = 0.60 cfs @ 12.17 hrs, Volume=

0.053 af, Depth> 4.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

_	A	rea (sf)	CN E	Description									
		1,170	61 >	61 >75% Grass cover, Good, HSG B									
_		5,415	98 F	· · ·									
		6,585	91 V	91 Weighted Average									
		1,170											
		5,415	8	2.23% Imp	ervious Ar	ea							
	Tc	Length	Slope	Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	12.1	55	0.0100	0.08		Sheet Flow, LAWN							
						Grass: Dense n= 0.240 P2= 3.00"							
	0.9	160	0.0200	2.87		Shallow Concentrated Flow, PAVEMENT							
						Paved Kv= 20.3 fps							
	13.0	215	Total	•									

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 15

Summary for Subcatchment 33S: SA33

Runoff = 1.00 cfs @ 12.21 hrs, Volume=

0.089 af, Depth> 3.21"

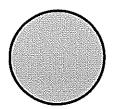
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

 F	rea (sf)	CN I	Description								
	10,200	98 l	98 Unconnected roofs, HSG D								
	400	61 >	>75% Gras	s cover, Go	ood, HSG B						
	3,950	39	>75% Gras	s cover, Go	ood, HSG A						
	14,550	81 \	Veighted A	verage							
	4,350	2	29.90% Pei	rvious Area							
	10,200	7	70.10% Imp	pervious Ar	ea						
	10,200	•	100.00% U	nconnected	j						
	•	01									
Tc	Length	Slope		Capacity	Description						
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
14.6	70	0.0100	0.08		Sheet Flow, LAWN						
					Grass: Dense n= 0.240 P2= 3.00"						
0.9	105	0.0100	2.03		Shallow Concentrated Flow, PAVEMENT						
 					Paved Kv= 20.3 fps						
15.5	175	Total									

Summary for Reach 33R: SD CB33-CB32

Inflow Area = 0.334 ac, 70.10% Impervious, Inflow Depth > 3.21" for 25YEAR STORM event

Inflow = 1.00 cfs @ 12.21 hrs, Volume= 0.089 af


Outflow = 0.94 cfs @ 12.33 hrs, Volume= 0.089 af, Atten= 6%, Lag= 7.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.21 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.37 fps, Avg. Travel Time= 1.3 min

Peak Storage= 35 cf @ 12.20 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.90 cfs

6.0" Round Pipe n= 0.010 Length= 178.0' Slope= 0.0152 '/' Inlet Invert= 120.10', Outlet Invert= 117.40'

Prepared by BH2M ENGINEERS

Printed 9/8/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 16

Summary for Reach 35R: SD CB 32-CB31

Inflow Area = 0.485 ac, 73.88% Impervious, Inflow Depth > 3.52" for 25YEAR STORM event

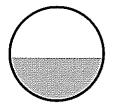
Inflow = 1.48 cfs @ 12.20 hrs, Volume= 0.142 af

Outflow = 1.48 cfs @ 12.21 hrs, Volume= 0.142 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.14 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.42 fps, Avg. Travel Time= 1.0 min

Peak Storage= 34 cf @ 12.20 hrs Average Depth at Peak Storage= 0.38'


Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.49 cfs

10.0" Round Pipe

n = 0.010

Length= 140.0' Slope= 0.0150 '/'

Inlet Invert= 117.10', Outlet Invert= 115.00'

Summary for Pond 31P: CB31 TO CITY SD

Inflow Area = 1.421 ac, 83.73% Impervious, Inflow Depth > 4.18" for 25YEAR STORM event

Inflow = 6.03 cfs @ 12.06 hrs, Volume= 0.495 af

Outflow = 5.59 cfs @ 12.08 hrs, Volume= 0.495 af, Atten= 7%, Lag= 1.2 min

Discarded = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af Primary = 5.59 cfs @ 12.08 hrs, Volume= 0.495 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.94' @ 12.08 hrs Surf.Area= 457 sf Storage= 156 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

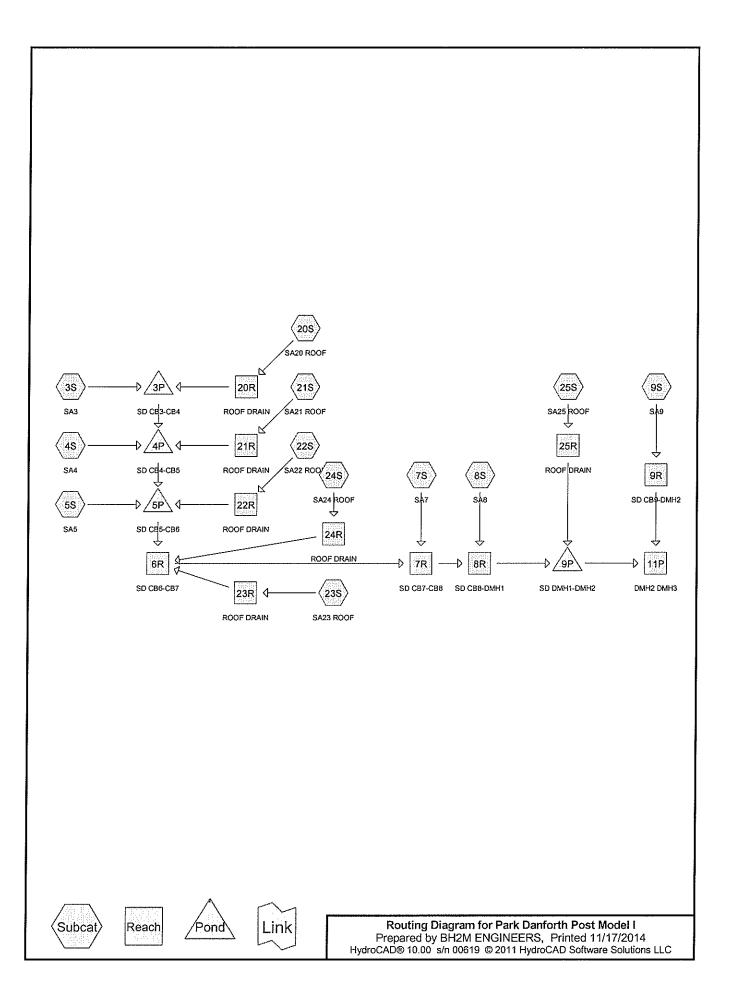
Center-of-Mass det. time= 0.2 min (755.1 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1	115.00'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
#2	119.50'	502 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		558 cf	Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
119.50	6	0	0
120.00	500	127	127
120.50	1,000	375	502

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC


Printed 9/8/2014 Page 17

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=115.07' (Free Discharge)
—2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=5.53 cfs @ 12.08 hrs HW=119.85' (Free Discharge) 1=Culvert (Inlet Controls 5.53 cfs @ 10.14 fps)

APPENDIX D

POST-DEVELOPMENT CALCULATIONS PARK DANFORTH MODEL I

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 2

Area Listing (all nodes)

Area	CN CN	Description
(acres))	(subcatchment-numbers)
0.022	39	>75% Grass cover, Good, HSG A (3S, 4S)
0.126	61	>75% Grass cover, Good, HSG B (3S, 4S, 5S, 7S, 8S, 9S)
0.523	98	Paved parking, HSG D (3S, 4S, 5S, 9S)
0.696	98	Roofs, HSG D (20S, 21S, 22S, 23S, 24S, 25S)
1.367	94	TOTAL AREA

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 3

Soil Listing (all nodes)

Area	a Soil	Subcatchment
(acres) Group	Numbers
0.022	2 HSG A	3S, 4S
0.126	HSG B	3S, 4S, 5S, 7S, 8S, 9S
0.000	HSG C	
1.219	HSG D	3S, 4S, 5S, 9S, 20S, 21S, 22S, 23S, 24S, 25S
0.000	Other	
1.367	7	TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 4

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.022	0.126	0.000	0.000	0.000	0.148	>75% Grass cover, Good	3S, 4S, 5S, 7S, 8S, 9S
0.000	0.000	0.000	0.523	0.000	0.523	Paved parking	3S, 4S, 5S, 9S
0.000	0.000	0.000	0.696	0.000	0.696	Roofs	20\$, 21\$, 22\$, 23\$, 24\$,
0.022	0.126	0.000	1.219	0.000	1.367	TOTAL AREA	

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 5

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	6R	116.00	115.10	253.0	0.0036	0.010	15.0	0.0	0.0
2	7R	115.10	115.00	88.0	0.0011	0.010	24.0	0.0	0.0
3	8R	115.00	114.70	35.0	0.0086	0.010	24.0	0.0	0.0
4	9R	115.80	115.00	72.0	0.0111	0.010	12.0	0.0	0.0
5	11P	115.00	114.80	24.0	0.0083	0.010	15.0	0.0	0.0
6	20R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
7	21R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
8	22R	0.00	-0.60	60.0	0.0100	0.010	6.0	0.0	0.0
9	23R	0.00	-0.20	20.0	0.0100	0.010	6.0	0.0	0.0
10	24R	0.00	-0.15	15.0	0.0100	0.010	6.0	0.0	0.0
1 1	25R	0.00	-0.30	30.0	0.0100	0.010	6.0	0.0	0.0
12	3P	117.50	117.50	73.0	0.0000	0.010	12.0	0.0	0.0
13	4P	117.40	117.00	54.0	0.0074	0.010	12.0	0.0	0.0
14	5P	116.90	116.00	70.0	0.0129	0.010	12.0	0.0	0.0
15	9P	114.70	114.50	24.0	0.0083	0.010	15.0	0.0	0.0

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 3S: SA3

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 0.025 a

0.025 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	A	rea (sf)	CN i	Description								
		5,486	98	98 Paved parking, HSG D								
		300	61	>75% Gras	s cover, Go	ood, HSG B						
_		350	39	>75% Gras	s cover, Go	ood, HSG A						
		6,136	93 \	93 Weighted Average								
		650	•	10.59% Per	vious Area							
		5,486	;	89.41% Imp	ervious Ar	ea						
	Tc	Length	Slope		Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	4.3	15	0.0100	0.06		Sheet Flow, LAWN						
						Grass: Dense n= 0.240 P2= 3.00"						
	1.6	70	0.0050	0.71		Sheet Flow, PAVEMENT						
_						Smooth surfaces n= 0.011 P2= 3.00"						
	5.9	85	Total	·	·							

Summary for Subcatchment 4S: SA4

Runoff = 0.72 cfs @ 12.09 hrs, Volume=

0.051 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	۹rea (sf)	CN	Description								
	800	61	>75% Gras	s cover, Go	ood, HSG B						
	600	39	>75% Gras	s cover, Go	ood, HSG A						
	11,043	98	Paved park	ing, HSG E)						
	12,443	93	Weighted A	verage							
	1,400		11.25% Pei	vious Area	a a company of the co						
	11,043		88.75% Imp	pervious Ar	rea						
Tc		Slope		Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 5S: SA5

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.025 af, Depth> 2.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 7

A	rea (sf)	CN	Description	Description						
	5,100	98	Paved park	Paved parking, HSG D						
	300	61	>75% Gras	75% Grass cover, Good, HSG B						
	5,400	96	Weighted A	Veighted Average						
	300		5.56% Perv	ious Area						
	5,100		94.44% Imp	ervious Ar	ea					
Тс	Length	Slope	•	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 7S: SA7

Runoff = 0.01 cfs @ 12.15 hrs, Volume=

0.001 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	rea (sf)	CN D	Description								
	1,000	61 >	>75% Grass cover, Good, HSG B								
	1,000	1	100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 8S: SA8

Runoff = 0.00 cfs @ 12.15 hrs, Volume=

0.000 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN Description							
	500	61 >	75% Gras	s cover, Go	ood, HSG B				
	500	1	00.00% Pe	ervious Are	a				
Tc (min)	Tc Length (min) (feet)		Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 9S: SA9

Runoff = 0.06 cfs @ 12.16 hrs, Volume=

0.005 af, Depth> 0.73"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 8

A	rea (sf)	CN	Description						
	2,600	61	>75% Gras	s cover, Go	ood, HSG B				
	1,150	98	Paved parking, HSG D						
	3,750	72	Weighted A	verage					
	2,600	(69.3 <mark>3</mark> % Per	viouš Area	l .				
	1,150	;	30.6 <mark>7% I</mark> mp	ervious Ar	rea				
Tc	Length	Slope	•	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.8	60	0.0200	0.10		Sheet Flow, GRASS				
					Grass: Dense n= 0.240 P2= 3.00"				

Summary for Subcatchment 20S: SA20 ROOF

Runoff = 0.21 cfs @ 12.09 hrs, Volume=

0.016 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	escription)						
	3,236	98 F	Roofs, HSG D						
	3,236	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 21S: SA21 ROOF

Runoff = 0.16 cfs @ 12.09 hrs, Volume=

0.012 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN D	Description		
	2,500	98 F	Roofs, HSG	G D	
	2,500	1	00.00% Im	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 22S: SA22 ROOF

Runoff = 0.25 cfs @ 12.09 hrs, Volume= 0.0

0.019 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 9

Α	rea (sf)	CN I	Description							
	3,900	98 I	Roofs, HSG	Roofs, HSG D						
	3,900		100.00% In	npervious A	rea					
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
 6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 23S: SA23 ROOF

Runoff

0.52 cfs @ 12.09 hrs, Volume=

0.040 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	Description					
	8,020	98 F	Roofs, HSG	B D				
	8,020	1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 24S: SA24 ROOF

Runoff

0.46 cfs @ 12.09 hrs, Volume=

0.035 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description					
	7,100	98 F	Roofs, HSC	SD .				
	7,100	1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 25S: SA25 ROOF

Runoff

0.36 cfs @ 12.09 hrs, Volume=

0.028 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 10

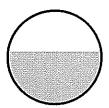
A	rea (sf)	CN [Description		
	5,550	98 F	Roofs, HSC	D D	
	5,550	,	100.00% In	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.119 ac, 95.18% Impervious, Inflow Depth > 2.39" for 2 YEAR STORM event

Inflow = 3.03 cfs @ 12.09 hrs, Volume= 0.223 af

Outflow = 3.00 cfs @ 12.10 hrs, Volume= 0.223 af, Atten= 1%, Lag= 0.8 min


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.27 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 2.5 min

Peak Storage= 178 cf @ 12.10 hrs Average Depth at Peak Storage= 0.70'

Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n= 0.010 Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.142 ac, 93.26% Impervious, Inflow Depth > 2.35" for 2 YEAR STORM event

Inflow = 3.01 cfs @ 12.10 hrs, Volume= 0.223 af

Outflow = 2.99 cfs @ 12.11 hrs, Volume= 0.223 af, Atten= 0%, Lag= 0.4 min

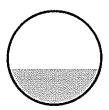
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.76 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 1.4 min

Peak Storage= 95 cf @ 12.11 hrs Average Depth at Peak Storage= 0.75'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs

Type III 24-hr 2 YEAR STORM Rainfall=3.00"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

<u>Page 11</u>

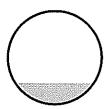
24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

Summary for Reach 8R: SD CB8-DMH1

Inflow Area = 1.153 ac, 92.34% Impervious, Inflow Depth > 2.33" for 2 YEAR STORM event

Inflow = 3.00 cfs @ 12.11 hrs, Volume= 0.224 af

Outflow = 3.00 cfs @ 12.11 hrs, Volume= 0.224 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.69 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.12 fps, Avg. Travel Time= 0.3 min

Peak Storage= 18 of @ 12.11 hrs Average Depth at Peak Storage= 0.45'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Slope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB9-DMH2

Inflow Area = 0.086 ac, 30.67% Impervious, Inflow Depth > 0.73" for 2 YEAR STORM event

Inflow = 0.06 cfs @ 12.16 hrs, Volume= 0.005 af

Outflow = 0.06 cfs @ 12.16 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.4 min

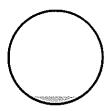
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.16 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.02 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2 cf @ 12.16 hrs Average Depth at Peak Storage= 0.08'

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.88 cfs

Type III 24-hr 2 YEAR STORM Rainfall=3.00"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

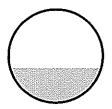
Page 12

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0111 '/' Inlet Invert= 115.80', Outlet Invert= 115.00'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 1.367 ac, 89.17% Impervious, Inflow Depth > 2.15" for 2 YEAR STORM event

Inflow = 2.18 cfs @ 12.10 hrs, Volume= 0.245 af


Outflow = 2.19 cfs @ 12.10 hrs, Volume= 0.245 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.39 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.32 fps, Avg. Travel Time= 0.2 min

Peak Storage= 10 cf @ 12.10 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.074 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.21 cfs @ 12.09 hrs, Volume= 0.016 af

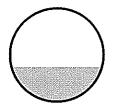
Outflow = 0.21 cfs @ 12.09 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.21 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 0.8 min

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

<u>Page 13</u>

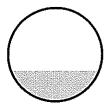
Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

inflow = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af


Outflow = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.99 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 0.9 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

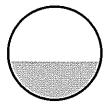
Inflow = 0.25 cfs @ 12.09 hrs, Volume= 0.019 af

Outflow = 0.25 cfs @ 12.09 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.3 min

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Park Danforth Post Model I

Prepared by BH2M ENGINEERS


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 14

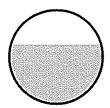
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.38 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 0.8 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event


Inflow = 0.52 cfs @ 12.09 hrs, Volume= 0.040 af

Outflow = 0.52 cfs @ 12.09 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.62 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Park Danforth Post Model I

Prepared by BH2M ENGINEERS

Printed 11/17/2014

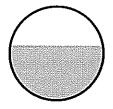
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 15

Summary for Reach 24R: ROOF DRAIN

Inflow Area = 0.163 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.46 cfs @ 12.09 hrs, Volume= 0.035 af


Outflow = 0.46 cfs @ 12.09 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.93 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 0.2 min

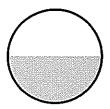
Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area = 0.127 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.36 cfs @ 12.09 hrs, Volume= 0.028 af


Outflow = 0.36 cfs @ 12.09 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.70 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.45 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 16

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.215 ac, 93.06% Impervious, Inflow Depth > 2.29" for 2 YEAR STORM event

Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.041 af

Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.1 min

Primary = 0.57 cfs @ 12.09 hrs, Volume= 0.041 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.08' @ 12.09 hrs Surf.Area= 12 sf Storage= 7 cf

Plug-Flow detention time= 0.8 min calculated for 0.041 af (100% of inflow)

Center-of-Mass det. time= 0.5 min (755.2 - 754.7)

Volume	Inv	ert Avail.St	orage	Storage D	escription			
#1	117.	50'	19 cf	Custom S	tage Data (Pri	ismatic) Listed below (Recalc)	_	
Elevatio (fee	t)	Surf.Area (sq-ft)		Store c-feet)	Cum.Store (cubic-feet)			
117.5	•	12		0	0			
125.8	2	12		100	100			
126.0	0	200		19	119			
Device	Routing	Invert	Outle	et Devices			_	
#1	Primary	Inl		2.0" Round Culvert L= 73.0' Ke= 0.500 nlet / Outlet Invert= 117.50' / 117.50' S= 0.0000 '/' Cc= 0.900 = 0.010, Flow Area= 0.79 sf				

Primary OutFlow Max=0.55 cfs @ 12.09 hrs HW=118.07' (Free Discharge)
—1=Culvert (Barrel Controls 0.55 cfs @ 1.73 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 0.558 ac, 91.57% Impervious, Inflow Depth > 2.24" for 2 YEAR STORM event

Inflow = 1.45 cfs @ 12.09 hrs, Volume= 0.104 af

Outflow = 1.45 cfs @ 12.09 hrs, Volume= 0.104 af, Atten= 0%, Lag= 0.1 min

Primary = 1.45 cfs @ 12.09 hrs, Volume= 0.104 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.05' @ 12.09 hrs Surf.Area= 12 sf Storage= 8 cf

Plug-Flow detention time= 0.3 min calculated for 0.104 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (758.0 - 757.8)

<u>Volume</u>	Invert	Avail.	Storage	Storage	e Description		
#1	117.40'		350 cf	Custon	n Stage Data (Prisi	matic) Listed below (Recalc)	
Elevation (feet)		Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)		
117.40		12	(Cubi	0	0		
125.50		12		97	97		
126.00		1,000		253	350		

Park Danforth Post Model I Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 17

Device	Routing	Invert	Outlet Devices	
#1	Primary	117.40'	12.0" Round Culvert L= 54.0' Ke= 0.500 Inlet / Outlet Invert= 117.40' / 117.00' S= 0.0074 '/' Cc= 0.900	
			n= 0.010, Flow Area= 0.79 sf	

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=118.04' (Free Discharge) 1=Culvert (Barrel Controls 1.42 cfs @ 3.78 fps)

Summary for Pond 5P: SD CB5-CB6

Inflow Area = 0.772 ac, 93.01% Impervious, Inflow Depth > 2.30" for 2 YEAR STORM event 2.04 cfs @ 12.09 hrs, Volume= Inflow = 0.148 af 2.04 cfs @ 12.09 hrs, Volume= 2.04 cfs @ 12.09 hrs, Volume= Outflow 0.148 af, Atten= 0%, Lag= 0.1 min Primary = 0.148 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.70' @ 12.09 hrs Surf.Area= 12 sf Storage= 10 cf

Plug-Flow detention time= 0.2 min calculated for 0.148 af (100% of inflow) Center-of-Mass det. time= 0.2 min (754.4 - 754.2)

Volume	Inve	rt Avail.Sto	rage St	orage D	escription	
#1	116.9	0' 20	62 cf C (ustom S	tage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)	;	Surf.Area (sq-ft)	Inc.St (cubic-fe		Cum.Store (cubic-feet)	
116.90		12	•	0	0	
126.00		12	1	09	109	
126.50		600	1	53	262	
Device R	outing	Invert	Outlet [Devices		
#1 Pi	rimary	116.90'				.0' Ke= 0.500 116.00' S= 0.0129 '/' Cc= 0.900

n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.00 cfs @ 12.09 hrs HW=117.69' (Free Discharge) 1=Culvert (Inlet Controls 2.00 cfs @ 3.02 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.281 ac, 93.10% Impervious, Inflow	Depth > 2.35" for 2 YEAR STORM event
Inflow =	3.35 cfs @ 12.11 hrs, Volume=	0.251 af
Outflow =	3.83 cfs @ 12.11 hrs, Volume=	0.251 af, Atten= 0%, Lag= 0.0 min
Discarded =	1.70 cfs @ 12.10 hrs, Volume=	0.012 af
Primary =	2.12 cfs @ 12.10 hrs, Volume=	0.240 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.00' @ 12.10 hrs Surf.Area= 28 sf Storage= 536 cf

Plug-Flow detention time= 2.6 min calculated for 0.251 af (100% of inflow)

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 18

Center-of-Mass det. time= 2.4 min (753.3 - 750.9)

Volume	Invert	Avail.Storage	Storage Description
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage
		000 - 5	Total Assilable Office

660 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
			Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Discarded OutFlow Max=1.56 cfs @ 12.10 hrs HW=119.99' (Free Discharge)

3=Sharp-Crested Rectangular Weir (Weir Controls 1.56 cfs @ 1.76 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=2.12 cfs @ 12.10 hrs HW=120.00' (Free Discharge)

2=Culvert (Passes 2.12 cfs of 12.78 cfs potential flow)
1=Orifice/Grate (Orifice Controls 2.12 cfs @ 10.82 fps)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 19

Summary for Subcatchment 3S: SA3

Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.043 af, Depth> 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

	A	rea (sf)	CN	Description				
		5,486	98	Paved park	ing, HSG D)		
		300	61	>75% Ġras	s cover, Go	ood, HSG B		
_		350	39	>75% Gras	s cover, Go	ood, HSG A		
		6,136	93	93 Weighted Average				
		650		10.59% Pei	vious Area			
		5,486		89.41% lmp	ervious Ar	ea		
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	4.3	15	0.0100	0.06		Sheet Flow, LAWN		
						Grass: Dense n= 0.240 P2= 3.00"		
	1.6	70	0.0050	0.71		Sheet Flow, PAVEMENT		
						Smooth surfaces n= 0.011 P2= 3.00"		
	5.9	85	Total	·				

Summary for Subcatchment 4S: SA4

Runoff = 1.21 cfs @ 12.09 hrs, Volume= 0.088 af, Depth> 3.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description				
	800	61	>75% Gras	s cover, Go	ood, HSG B		
	600	39	>75% Gras	s cover, Go	ood, HSG A		
	11,043	98	⊃aved park	ing, HSG D)		
	12,443	93	Weighted A	verage			
	1,400		11.25% Pei	∿ious Area	3		
	11,043		38.75% Imp	pervious Ar	rea		
Tc	Length	Slope	•	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry, MINIMUM		

Summary for Subcatchment 5S: SA5

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.041 af, Depth> 3.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

-			
Park	Danto	rth Post	Model I

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619)© 2011 HydroCAl	D Software Solutions LLC
---------------------------	------------------	--------------------------

Page 20

A	rea (sf)	CN	Description				
	5,100	98	Paved park	ing, HSG D	D		
	300	61	>75% Gras	s cover, Go	ood, HSG B		
	5,400	96	Weighted Average				
	300	;	5.56% Perv	rious Ārea			
	5,100	;	94.44% lmp	pervious Ar	rea		
T -	1 41-	01	17-126.	0	Developmen		
Tc	Length	Slope	,	Capacity	·		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry MINIMIM		

Direct Entry, MINIMUM

Summary for Subcatchment 7S: SA7

Runoff

0.03 cfs @ 12.10 hrs, Volume=

0.002 af, Depth> 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN D	escription					
	1,000	61 >	>75% Grass cover, Good, HSG B					
	1,000	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,	MINIMUM		

Summary for Subcatchment 8S: SA8

0.01 cfs @ 12.10 hrs, Volume= Runoff

0.001 af, Depth> 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description						
	500	61 >	>75% Grass cover, Good, HSG B						
	500	100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 9S: SA9

Runoff 0.17 cfs @ 12.15 hrs, Volume=

0.013 af, Depth> 1.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 21

	Area (sf)	CN	Description						
	2,600	61	>75% Gras	75% Grass cover, Good, HSG B					
	1,150	98	Paved park	Paved parking, HSG D					
	3,750	72	Weighted A	/eighted Average					
	2,600	+	59.33% Pervious Area						
	1,150	;	30.67% Impervious Area						
Т	c Length	Slope	Velocity	Capacity	Description				
(min) (feet)	(ft/ft)	(ft/sec)						
9.	8 60	0.0200	0.10		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"				

Summary for Subcatchment 20S: SA20 ROOF

Runoff = 0.33 cfs @ 12.09 hrs, Volume=

0.026 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description					
	3,236	98 F	98 Roofs, HSG D					
	3,236	1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 21S: SA21 ROOF

Runoff = 0.26 cfs @ 12.09 hrs, Volume=

0.020 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description					
	2,500	98 F	Roofs, HSG D					
	2,500	1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 22S: SA22 ROOF

Runoff = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 22

_	Α	rea (sf)	CN	Description					
		3,900	98	Roofs, HSC					
-		3,900		100.00% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 23S: SA23 ROOF

Runoff = 0.83 cfs @ 12.09 hrs, Volume=

0.064 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description						
	8,020	98 F	98 Roofs, HSG D						
	8,020	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 24S: SA24 ROOF

Runoff = 0.73 cfs @ 12.09 hrs, Volume=

0.056 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description				
	7,100	98 F	Roofs, HSC	D D			
	7,100	1	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0	'				Direct Entry, MINIMUM		

Summary for Subcatchment 25S: SA25 ROOF

Runoff = 0.57 cfs @ 12.09 hrs, Volume= 0.04

0.044 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

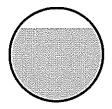
Page 23

A	rea (sf)	CN [Description			
	5,550	98 F	Roofs, HSC	S D	•	
	5,550	1	00.00% lm			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.119 ac, 95.18% Impervious, Inflow Depth > 3.95" for 10 YEAR STORM event

Inflow 4.81 cfs @ 12.09 hrs, Volume= 0.368 af


Outflow 4.79 cfs @ 12.10 hrs, Volume= 0.368 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.65 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.94 fps, Avg. Travel Time= 2.2 min

Peak Storage= 261 cf @ 12.10 hrs Average Depth at Peak Storage= 0.98' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n = 0.010Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.142 ac, 93.26% Impervious, Inflow Depth > 3.89" for 10 YEAR STORM event

4.82 cfs @ 12.10 hrs, Volume= inflow 0.370 af

4.81 cfs @ 12.11 hrs, Volume= Outflow 0.370 af, Atten= 0%, Lag= 0.4 min

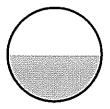
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.13 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 1.2 min

Peak Storage= 135 cf @ 12.11 hrs Average Depth at Peak Storage= 0.98'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs

Type III 24-hr 10 YEAR STORM Rainfall=4.70"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 24

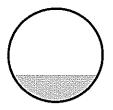
24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

Summary for Reach 8R: SD CB8-DMH1

Inflow Area = 1.153 ac, 92.34% Impervious, Inflow Depth > 3.86" for 10 YEAR STORM event

Inflow = 4.83 cfs @ 12.11 hrs, Volume= 0.371 af

Outflow = 4.83 cfs @ 12.11 hrs, Volume= 0.371 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.53 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.49 fps, Avg. Travel Time= 0.2 min

Peak Storage= 26 cf @ 12.11 hrs Average Depth at Peak Storage= 0.57'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Slope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB9-DMH2

Inflow Area = 0.086 ac, 30.67% Impervious, Inflow Depth > 1.81" for 10 YEAR STORM event

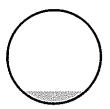
Inflow = 0.17 cfs @ 12.15 hrs, Volume= 0.013 af

Outflow = 0.17 cfs @ 12.15 hrs, Volume= 0.013 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.91 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 1.0 min

Peak Storage= 4 of @ 12.15 hrs Average Depth at Peak Storage= 0.13


Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.88 cfs

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

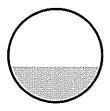
Page 25

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0111 '/' Inlet Invert= 115.80', Outlet Invert= 115.00'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 1.367 ac, 89.17% Impervious, Inflow Depth > 3.32" for 10 YEAR STORM event

Inflow = 2.32 cfs @ 12.13 hrs, Volume= 0.378 af


Outflow = 2.32 cfs @ 12.14 hrs, Volume= 0.378 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.47 fps, Min. Travel Time= 0.1 min

Avg. Velocity = 2.71 fps, Avg. Travel Time= 0.1 min

Peak Storage= 10 cf @ 12.14 hrs Average Depth at Peak Storage= 0.47' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.074 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.33 cfs @ 12.09 hrs, Volume= 0.026 af

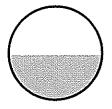
Outflow = 0.33 cfs @ 12.09 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.63 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.7 min

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 26

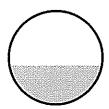
Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af


Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.39 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.8 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

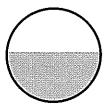
Inflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af

Outflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af, Atten= 0%, Lag= 0.2 min

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Park Danforth Post Model I

Prepared by BH2M ENGINEERS


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 27

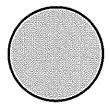
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.80 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 0.7 min

Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event


Inflow = 0.83 cfs @ 12.09 hrs, Volume= 0.064 af

Outflow = 0.78 cfs @ 12.07 hrs, Volume= 0.064 af, Atten= 6%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.23 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.87 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Park Danforth Post Model I

Prepared by BH2M ENGINEERS

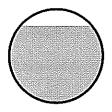
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 28

Summary for Reach 24R: ROOF DRAIN

Inflow Area = 0.163 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.73 cfs @ 12.09 hrs, Volume= 0.056 af


Outflow = 0.73 cfs @ 12.09 hrs, Volume= 0.056 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 0.1 min

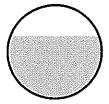
Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area = 0.127 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.044 af


Outflow = 0.57 cfs @ 12.09 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.11 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 29

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.215 ac, 93.06% Impervious, Inflow Depth > 3.85" for 10 YEAR STORM event

Inflow = 0.93 cfs @ 12.09 hrs, Volume= 0.069 af

Outflow = 0.93 cfs @ 12.09 hrs, Volume= 0.069 af, Atten= 0%, Lag= 0.1 min

Primary = 0.93 cfs @ 12.09 hrs, Volume= 0.069 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.24' @ 12.09 hrs Surf.Area= 12 sf Storage= 9 cf

Plug-Flow detention time= 0.7 min calculated for 0.069 af (100% of inflow)

Center-of-Mass det. time= 0.4 min (746.9 - 746.5)

Volume	lnv	ert Avail.	Storage	Storage D	Description		
#1	117.	50'	119 cf	Custom S	Stage Data (Pris	smatic) Listed below	/ (Recalc)
Elevatio		Surf.Area (sq-ft)		.Store :-feet)	Cum.Store (cubic-feet)		
117.5	50	12		Ó	Ō		
125.8	32	12		100	100		
126.0	00	200		19	119		
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	117.			Culvert L= 73.0 vert= 117.50' / 1	0' Ke= 0.500 117.50' S= 0.0000 '.	/' Cc= 0.900

n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.91 cfs @ 12.09 hrs HW=118.23' (Free Discharge) 1=Culvert (Barrel Controls 0.91 cfs @ 2.06 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 0.558 ac, 91.57% Impervious, Inflow Depth > 3.79" for 10 YEAR STORM event

Inflow = 2.39 cfs @ 12.09 hrs, Volume= 0.177 af

Outflow = 2.40 cfs @ 12.09 hrs, Volume= 0.176 af, Atten= 0%, Lag= 0.1 min

Primary = 2.40 cfs @ 12.09 hrs, Volume= 0.176 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.31' @ 12.09 hrs Surf.Area= 12 sf Storage= 11 cf

Plug-Flow detention time= 0.2 min calculated for 0.176 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (748.8 - 748.6)

Volume	Invert	Avail.Storage	Storage	Description
#1	117.40'	350 cf	Custom	Stage Data (Prismatic) Listed below (Recalc)
Elevation	Surf.A		Store	Cum.Store

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
117.40	12	0	0
125.50	12	97	97
126.00	1,000	253	350

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

<u>Page 30</u>

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	117.40'	12.0" Round Culvert L= 54.0' Ke= 0.500 Inlet / Outlet Invert= 117.40' / 117.00' S= 0.0074 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.34 cfs @ 12.09 hrs HW=118.30' (Free Discharge) 1=Culvert (Barrel Controls 2.34 cfs @ 4.17 fps)

Summary for Pond 5P: SD CB5-CB6

Inflow Area = 0.772 ac, 93.01% Impervious, Inflow Depth > 3.86" for 10 YEAR STORM event Inflow = 0.248 af

Outflow = 3.35 cfs @ 12.09 hrs, Volume= 0.248 af, Atten= 0%, Lag= 0.1 min

Primary = 3.35 cfs @ 12.09 hrs, Volume= 0.248 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.18' @ 12.09 hrs Surf.Area= 12 sf Storage= 15 cf

Plug-Flow detention time= 0.2 min calculated for 0.248 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (746.3 - 746.1)

<u>Volume</u>	Inv	<u>ert Avail.St</u>	orage	Storage D	escription		
#1	116.9	90' 2	262 cf	Custom S	tage Data (Prisr	natic) Listed below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	lnc. (cubic	Store -feet)	Cum.Store (cubic-feet)		
116.90)	12		0	0		
126.00	١	12	109		109		
126.50	1	600		153	262		
Device f	Routing	Invert	Outle	t Devices			
#1 F	Primary	116.90'			culvert L= 70.0'	Ke= 0.500 6.00' S= 0.0129 '/'	Cc= 0.900

Inlet / Outlet Invert= 116.90' / 116.00' S= 0.0129 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=3.28 cfs @ 12.09 hrs HW=118.15' (Free Discharge)
1=Culvert (Inlet Controls 3.28 cfs @ 4.18 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.281 ac, 93.10% Impervious, Inflow D	Depth > 3.89" for 10 YEAR STORM event
Inflow =	5.39 cfs @ 12.11 hrs, Volume=	0.415 af
Outflow =	5.45 cfs @ 12.11 hrs, Volume=	0.415 af, Atten= 0%, Lag= 0.0 min
Discarded =	3.30 cfs @ 12.11 hrs, Volume=	0.050 af
Primary =	2.16 cfs @ 12.11 hrs, Volume=	0.365 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.17' @ 12.11 hrs Surf.Area= 28 sf Storage= 541 cf

Plug-Flow detention time= 2.3 min calculated for 0.413 af (100% of inflow)

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Prepared by BH2M ENGINEERS HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 31

Center-of-Mass det. time= 2.2 min (746.8 - 744.6)

Volume	Invert	Avail.Storage	Storage Description
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage
		CCO of	Total Available Ctarage

660 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
	-		Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Discarded OutFlow Max=3.18 cfs @ 12.11 hrs HW=120.16' (Free Discharge)

-3=Sharp-Crested Rectangular Weir (Weir Controls 3.18 cfs @ 2.24 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Primary OutFlow Max=2.16 cfs @ 12.11 hrs HW=120.16' (Free Discharge)

-2=Culvert (Passes 2.16 cfs of 12.99 cfs potential flow)
-1=Orifice/Grate (Orifice Controls 2.16 cfs @ 10.99 fps)

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 11/17/2014

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 32

Summary for Subcatchment 3S: SA3

Runoff = 0.71 cfs @ 12.09 hrs, Volume= 0.052 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

<i>P</i>	rea (sf)	CN [Description							
	5,486	98 F	Paved parking, HSG D							
	300	61 >	75% Grass cover, Good, HSG B							
	350	39 >	75% Gras	s cover, Go	ood, HSG A					
	6,136	93 V	3 Weighted Average							
	650	1	0.59% Per	vious Area						
	5,486	8	9.41% Imp	ervious Ar	ea					
Tc	Length	Slope	Velocity	Capacity	Description					
	_		,							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
<u>(min)</u> 4.3	(feet) 15		(ft/sec) 0.06	(cfs)	Sheet Flow, LAWN					
	······································	(ft/ft)		(cfs)	Sheet Flow, LAWN Grass: Dense n= 0.240 P2= 3.00"					
	······································	(ft/ft)		(cfs)	·					
4.3	15	(ft/ft) 0.0100	0.06	(cfs)	Grass: Dense n= 0.240 P2= 3.00"					

Summary for Subcatchment 4S: SA4

Runoff = 1.43 cfs @ 12.09 hrs, Volume= 0.105 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Area (sf)	CN	Description							
	800	61	>75% Grass cover, Good, HSG B							
	600	39	>75% Gras	s cover, Go	ood, HSG A					
	11,043	98	Paved park	ing, HSG D)					
	12,443	93	Weighted A	verage						
	1,400		11.25% Pei	vious Area	a a constant of the constant o					
	11,043		88.75% Imp	ervious Ar	rea					
Tc	Length	Slope	-	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)						
6.0			Direct Entry, MINIMUM							

Summary for Subcatchment 5S: SA5

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 0.049 af, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Park	Danfo	rth	Doet	Mode	1.1
raik	Danie	H L I I	rusi.	WICH	? R . R .

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 33

A	rea (sf)	CN	Description							
-	5,100	98	Paved parking, HSG D							
	300	61	>75% Gras	s cover, Go	ood, HSG B					
_	5,400	96	Weighted A	Veighted Average						
	300		5.56% Perv	ious Ārea						
	5,100		94.44% lmp	pervious Ar	ea					
T .	Lawath	01	1 / = 1 = = 2 lo -	0	D					
Tc	Length	Slope	•	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, N	/INIMIIM				

Direct Entry, MINIMUM

Summary for Subcatchment 7S: SA7

Runoff

0.04 cfs @ 12.10 hrs, Volume=

0.003 af, Depth> 1.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

_	A	rea (sf)	CN [Description							
		1,000	61 >	>75% Grass cover, Good, HSG B							
•		1,000	1	100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_	6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 8S: SA8

Runoff

0.02 cfs @ 12.10 hrs, Volume=

0.001 af, Depth> 1.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Area (st)	<u>CN</u>	Description							
	500	61 >	>75% Grass cover, Good, HSG B							
	500	1	100.00% Pervious Area							
T (min	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0	0				Direct Entry,	MINIMUM				

Summary for Subcatchment 9S: SA9

Runoff

0.23 cfs @ 12.14 hrs, Volume=

0.017 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 34

A	rea (sf)	CN I	Description					
	2,600	61 >	>75% Gras	s cover, Go	ood, HSG B			
	1,150	98 I	Paved park	ing, HSG D				
	3,750	72 \	Weighted Average					
	2,600	6	39.33% Per	vious Area				
	1,150	3	30.67% lmp	ervious Ar	ea			
То	Longth	Slope	Volonity	Consoity	Description			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
<u></u>				(015)				
9.8	60	0.0200	0.10		Sheet Flow, GRASS			
					Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 20S: SA20 ROOF

Runoff

0.39 cfs @ 12.09 hrs, Volume=

0.030 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	A	rea (sf)	CN I	Description		
		3,236	98	Roofs, HSG	G D	
\		3,236		100.00% In	npervious A	rea
(1	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry, MINIMUM

Summary for Subcatchment 21S: SA21 ROOF

Runoff

0.30 cfs @ 12.09 hrs, Volume=

0.023 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN E	Description					
	2,500	98 F	Roofs, HSG D					
	2,500	1	00.00% In	pervious A	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 22S: SA22 ROOF

0.47 cfs @ 12.09 hrs, Volume= Runoff

0.036 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Dark	Danfo	rth l	Doct	Model	ı
Park	Danio	run I	Post	woaer	П

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00	s/n 00619 © 2011 HydroCAD	Software Solutions LLC

Page 35

_	Α	rea (sf)	CN I	Description		
_		3,900	98 I	Roofs, HSC	G D	
		3,900		100.00% Im	pervious A	Area
-	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry, MINIMUM

Summary for Subcatchment 23S: SA23 ROOF

Runoff

0.97 cfs @ 12.09 hrs, Volume=

0.075 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Aı	rea (sf)	CN [Description			
	8,020	98 F	Roofs, HSG	D D		
	8,020	1	100.00% lm	pervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 24S: SA24 ROOF

Runoff

0.86 cfs @ 12.09 hrs, Volume=

0.066 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

_	A	rea (sf)	CN I	Description		
		7,100	98 I	Roofs, HSG	D	
•		7,100	•	100.00% In	npervious A	Area
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry, MINIMUM

Summary for Subcatchment 25S: SA25 ROOF

Runoff

0.67 cfs @ 12.09 hrs, Volume=

0.052 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 11/17/2014

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

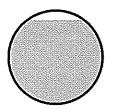
Page 36

	rea (sf)	CN [Description		
	5,550	98 F	Roofs, HSC	B D	
	5,550		100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 6R: SD CB6-CB7

Inflow Area = 1.119 ac, 95.18% Impervious, Inflow Depth > 4.68" for 25YEAR STORM event

Inflow = 5.42 cfs @ 12.09 hrs, Volume= 0.437 af


Outflow = 5.34 cfs @ 12.11 hrs, Volume= 0.436 af, Atten= 1%, Lag= 1.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.65 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.04 fps, Avg. Travel Time= 2.1 min

Peak Storage= 294 cf @ 12.11 hrs Average Depth at Peak Storage= 1.12' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.01 cfs

15.0" Round Pipe n= 0.010 Length= 253.0' Slope= 0.0036 '/' Inlet Invert= 116.00', Outlet Invert= 115.10'

Summary for Reach 7R: SD CB7-CB8

Inflow Area = 1.142 ac, 93.26% Impervious, Inflow Depth > 4.62" for 25YEAR STORM event

Inflow = 5.38 cfs @ 12.11 hrs, Volume= 0.439 af

Outflow = 5.39 cfs @ 12.11 hrs, Volume= 0.439 af, Atten= 0%, Lag= 0.3 min

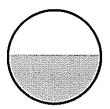
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.22 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 1.1 min

Peak Storage= 147 cf @ 12.11 hrs
Average Depth at Peak Storage= 1.05'

Park Full Depth= 2.00', Flow Area= 3.1 sf

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 9.91 cfs


Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

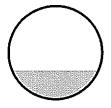
Page 37

24.0" Round Pipe n= 0.010 Length= 88.0' Slope= 0.0011 '/' Inlet Invert= 115.10', Outlet Invert= 115.00'

Summary for Reach 8R: SD CB8-DMH1

Inflow Area = 1.153 ac, 92.34% Impervious, Inflow Depth > 4.58" for 25YEAR STORM event

Inflow = 5.41 cfs @ 12.11 hrs, Volume= 0.441 af


Outflow = 5.41 cfs @ 12.11 hrs, Volume= 0.441 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.74 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.62 fps, Avg. Travel Time= 0.2 min

Peak Storage= 28 cf @ 12.11 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.23 cfs

24.0" Round Pipe n= 0.010 Length= 35.0' Slope= 0.0086 '/' Inlet Invert= 115.00', Outlet Invert= 114.70'

Summary for Reach 9R: SD CB9-DMH2

Inflow Area = 0.086 ac, 30.67% Impervious, Inflow Depth > 2.40" for 25YEAR STORM event

Inflow = 0.23 cfs @ 12.14 hrs, Volume= 0.017 af

Outflow = 0.23 cfs @ 12.15 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.17 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 0.9 min

Peak Storage= 5 cf @ 12.15 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.88 cfs

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 11/17/2014

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

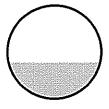
Page 38

12.0" Round Pipe n= 0.010 Length= 72.0' Slope= 0.0111 '/' Inlet Invert= 115.80', Outlet Invert= 115.00'

Summary for Reach 11P: DMH2 DMH3

Inflow Area = 1.367 ac, 89.17% Impervious, Inflow Depth > 3.82" for 25YEAR STORM event

Inflow = 2.39 cfs @ 12.14 hrs, Volume= 0.435 af


Outflow = 2.39 cfs @ 12.14 hrs, Volume= 0.435 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.52 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.85 fps, Avg. Travel Time= 0.1 min

Peak Storage= 10 cf @ 12.14 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.67 cfs

15.0" Round Pipe n= 0.010 Length= 24.0' Slope= 0.0083 '/' Inlet Invert= 115.00', Outlet Invert= 114.80'

Summary for Reach 20R: ROOF DRAIN

Inflow Area = 0.074 ac.100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

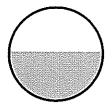
Inflow = 0.39 cfs @ 12.09 hrs, Volume= 0.030 af

Outflow = 0.39 cfs @ 12.09 hrs, Volume= 0.030 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.78 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 0.7 min

Type III 24-hr 25YEAR STORM Rainfall=5.50"


Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 39

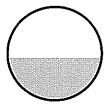
Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 PVC, smooth interior Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 21R: ROOF DRAIN

Inflow Area = 0.057 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af


Outflow = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.54 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 0.7 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 22R: ROOF DRAIN

Inflow Area = 0.090 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

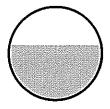
Inflow = 0.47 cfs @ 12.09 hrs, Volume= 0.036 af

Outflow = 0.47 cfs @ 12.09 hrs, Volume= 0.036 af, Atten= 0%, Lag= 0.2 min

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 11/17/2014

Park Danforth Post Model I

Prepared by BH2M ENGINEERS


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 40

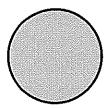
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.95 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 0.6 min

Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 60.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.60'

Summary for Reach 23R: ROOF DRAIN

Inflow Area = 0.184 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event


Inflow = 0.97 cfs @ 12.09 hrs, Volume= 0.075 af

Outflow = 0.73 cfs @ 12.05 hrs, Volume= 0.075 af, Atten= 25%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.23 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.95 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.20'

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Park Danforth Post Model I

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 41

Summary for Reach 24R: ROOF DRAIN

Inflow Area =

0.163 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

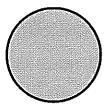
Inflow =

0.86 cfs @ 12.09 hrs, Volume=

0.066 af

Outflow =

0.73 cfs @ 12.05 hrs, Volume=


0.066 af, Atten= 15%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.17 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.15'

Summary for Reach 25R: ROOF DRAIN

Inflow Area =

0.127 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow =

0.67 cfs @ 12.09 hrs, Volume=

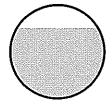
0.052 af

Outflow =

0.67 cfs @ 12.09 hrs, Volume=

0.052 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Max. Velocity= 4.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 0.3 min

Peak Storage= 5 of @ 12.09 hrs
Average Depth at Peak Storage= 0.38'

Peak Full Depth= 0.50' Flow Area= 0.3 of

Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.73 cfs

6.0" Round Pipe n= 0.010 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 42

Summary for Pond 3P: SD CB3-CB4

Inflow Area = 0.215 ac, 93.06% Impervious, Inflow Depth > 4.58" for 25YEAR STORM event

Inflow = 1.10 cfs @ 12.09 hrs, Volume= 0.082 af

Outflow = 1.10 cfs @ 12.09 hrs, Volume= 0.082 af, Atten= 0%, Lag= 0.1 min

Primary = 1.10 cfs @ 12.09 hrs, Volume= 0.082 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.31' @ 12.09 hrs Surf.Area= 12 sf Storage= 10 cf

Plug-Flow detention time= 0.6 min calculated for 0.082 af (100% of inflow)

Center-of-Mass det. time= 0.4 min (744.6 - 744.2)

Volume	Inv	ert Avail.St	orage Stora	ige Description	
#1	117.5	50'	119 cf Cust	om Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee 117.5 125.8 126.0	60 22	Surf.Area (sq-ft) 12 12 200	Inc.Store (cubic-feet) 0 100 19	(cubic-feet) 0 100	
Device #1	Routing Primary	Inver 117.50	12.0" Rou Inlet / Outl	nd Culvert L= 73	117.50' S= 0.0000 '/' Cc= 0.900

Primary OutFlow Max=1.07 cfs @ 12.09 hrs HW=118.30' (Free Discharge)
1=Culvert (Barrel Controls 1.07 cfs @ 2.19 fps)

Summary for Pond 4P: SD CB4-CB5

Inflow Area = 0.558 ac, 91.57% Impervious, Inflow Depth > 4.53" for 25YEAR STORM event

inflow = 2.84 cfs @ 12.09 hrs, Volume= 0.211 af

Outflow = 2.84 cfs @ 12.09 hrs, Volume= 0.211 af, Atten= 0%, Lag= 0.1 min

Primary = 2.84 cfs @ 12.09 hrs, Volume= 0.211 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.46' @ 12.09 hrs Surf.Area= 12 sf Storage= 13 cf

Plug-Flow detention time= 0.2 min calculated for 0.210 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (746.2 - 746.0)

12

1,000

125.50

126.00

<u>Volume</u>	Invert	Avail.	Storage	Storage	Description		
#1	117.40'		350 cf	Custom	Stage Data (Prisn	natic) Listed below (Red	calc)
Elevation (feet)	Surf	Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
117 40		12		Û	n		

97

350

97

253

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 43

Device	Routing	Invert	Outlet Devices
#1	Primary	117.40'	12.0" Round Culvert L= 54.0' Ke= 0.500 Inlet / Outlet Invert= 117.40' / 117.00' S= 0.0074 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.78 cfs @ 12.09 hrs HW=118.44' (Free Discharge) —1=Culvert (Inlet Controls 2.78 cfs @ 3.53 fps)

Summary for Pond 5P: SD CB5-CB6

 Inflow Area =
 0.772 ac, 93.01% Impervious, Inflow Depth > 4.60" for 25YEAR STORM event

 Inflow =
 3.95 cfs @ 12.09 hrs, Volume=
 0.296 af

 Outflow =
 3.96 cfs @ 12.09 hrs, Volume=
 0.296 af, Atten= 0%, Lag= 0.1 min

 Primary =
 3.96 cfs @ 12.09 hrs, Volume=
 0.296 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.49' @ 12.09 hrs Surf.Area= 12 sf Storage= 19 cf

Plug-Flow detention time= 0.2 min calculated for 0.295 af (100% of inflow) Center-of-Mass det. time= 0.1 min (744.0 - 743.9)

Volume	Inv	<u>ert Avail.S</u>	torage	Storage D	Description	
#1	116.9	90'	262 cf	Custom 9	Stage Data (Pris	matic) Listed below (Recalc)
Elevation (feet)		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
116.90		12		0	0	
126.00		12		109	109	
126.50		600		153	262	
Device F	Routing	Inver	t Outle	et Devices		
#1 F	Primary	116.90			Culvert L= 70.0	' Ke= 0.500

Inlet / Outlet Invert= 116.90' / 116.00' S= 0.0129 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=3.88 cfs @ 12.09 hrs HW=118.45' (Free Discharge) 1=Culvert (Inlet Controls 3.88 cfs @ 4.94 fps)

Summary for Pond 9P: SD DMH1-DMH2

Inflow Area =	1.281 ac, 93.10% Impervious, Inflow D	Depth > 4.61" for 25YEAR STORM event
Inflow =	6.06 cfs @ 12.11 hrs, Volume=	0.492 af
Outflow =	6.05 cfs @ 12.11 hrs, Volume=	0.492 af, Atten= 0%, Lag= 0.1 min
Discarded =	3.88 cfs @ 12.11 hrs, Volume=	0.074 af
Primary =	2.17 cfs @ 12.11 hrs, Volume=	0.418 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.22' @ 12.11 hrs Surf.Area= 28 sf Storage= 543 cf

Plug-Flow detention time= 2.3 min calculated for 0.492 af (100% of inflow)

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 44

Center-of-Mass det. time= 2.1 min (745.1 - 743.0)

Volume	Invert	Avail.Storage	Storage Description	
#1	114.70'	273 cf	6.00'D x 9.66'H Vertical Cone/Cylinder	
#2	114.70'	110 cf	24.0" D x 35.0'L Pipe Storage S= 0.0030 '/'	
#3	115.00'	276 cf	24.0" D x 88.0'L Pipe Storage	
<u> </u>		000 -1	T-4-1 A	

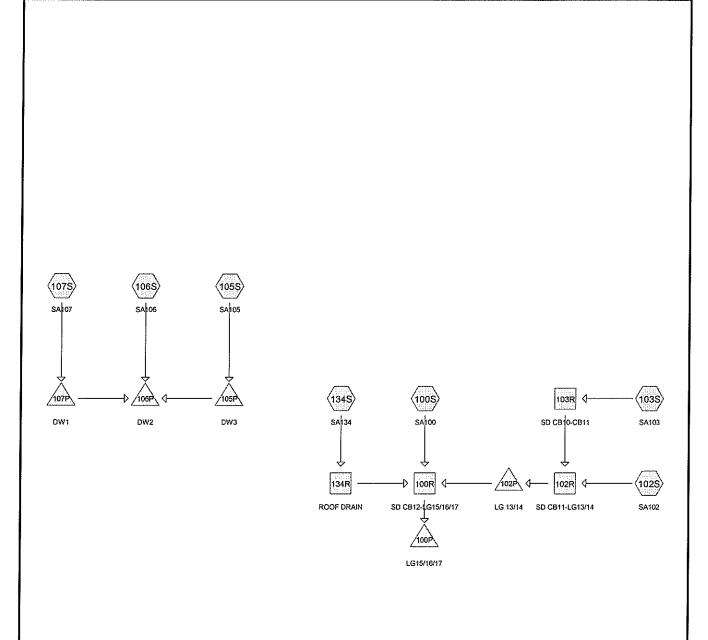
660 cf Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 2	114.70'	6.0" Vert. Orifice/Grate C= 0.600
#2	Primary	114.70'	15.0" Round Culvert L= 24.0' Ke= 0.500
			Inlet / Outlet Invert= 114.70' / 114.50' S= 0.0083 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf
#3	Discarded	119.70'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 5.0' Crest Height
#4	Discarded	121.00'	3.1' long x 1.00' rise Sharp-Crested Rectangular Weir
			0 End Contraction(s) 7.0' Crest Height

Discarded OutFlow Max=3.77 cfs @ 12.11 hrs HW=120.21' (Free Discharge)

-3=Sharp-Crested Rectangular Weir (Weir Controls 3.77 cfs @ 2.37 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)


Primary OutFlow Max=2.17 cfs @ 12.11 hrs HW=120.21' (Free Discharge)

2=Culvert (Passes 2.17 cfs of 13.06 cfs potential flow)

1=Orifice/Grate (Orifice Controls 2.17 cfs @ 11.05 fps)

APPENDIX E

GOODWILL SITE POST-DEVELOPMENT CALCULATIONS PARK DANFORTH MODELS II & III

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.327	61	>75% Grass cover, Good, HSG B (102S, 103S, 105S, 106S, 107S)
0.369	98	Paved parking, HSG D (100S, 102S, 103S)
0.192	98	Roofs, HSG D (134S)
0.033	98	Unconnected pavement, HSG D (106S, 107S)
0.025	98	Unconnected roofs, HSG D (105S)
0.946	85	TOTAL AREA

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.327	HSG B	102S, 103S, 105S, 106S, 107S
0.000	HSG C	
0.619	HSG D	100S, 102S, 103S, 105S, 106S, 107S, 134S
0.000	Other	
0.946		TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.327	0.000	0.000	0.000	0.327	>75% Grass cover, Good	102S,
							103S,
							105S,
							106S,
							107S
0.000	0.000	0.000	0.369	0.000	0.369	Paved parking	100S,
							102S,
							103S
0.000	0.000	0.000	0.033	0.000	0.033	Unconnected pavement	106S,
							107S
0.000	0.000	0.000	0.192	0.000	0.192	Roofs	1348
0.000	0.000	0.000	0.025	0.000	0.025	Unconnected roofs	105S
0.000	0.327	0.000	0.619	0.000	0.946	TOTAL AREA	

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 5

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	100R	115.12	115.08	4.0	0.0100	0.012	12.0	0.0	0.0
2	102R	115.68	115.53	15.0	0.0100	0.012	12.0	0.0	0.0
3	103R	116.25	115.78	47.0	0.0100	0.012	12.0	0.0	0.0
4	134R	0.00	-0.30	30.0	0.0100	0.012	6.0	0.0	0.0
5	100P	115.08	114.96	12.0	0.0100	0.012	12.0	0.0	0.0
6	102P	115.53	115.22	31.0	0.0100	0.012	12.0	0.0	0.0
7	105P	123.90	123.90	28.0	0.0000	0.012	6.0	0.0	0.0
8	107P	123.90	123.90	34.0	0.0000	0.012	6.0	0.0	0.0

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 100S: SA100

Runoff

=

0.45 cfs @ 12.09 hrs, Volume=

0.034 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	Α	rea (sf)	CN I	Description							
		6,877	98 I	Paved parking, HSG D							
	***************************************	6,877	•	100.00% Impervious Area							
(Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 102S: SA102

Runoff

=

0.16 cfs @ 12.09 hrs, Volume=

0.011 af, Depth> 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN	Description							
	1,495	61	>75% Grass cover, Good, HSG B							
	2,508	98	Paved parking, HSG D							
	4,003	84	Weighted Average							
	1,495	;	37.35% Per	vious Area						
	2,508	(62.65% lmp	ervious Ar	ea					
_										
Тс	Length	Slope	,	Capacity	Description					
(min)_	(feet)	(ft/ft)	(ft/sec) (cfs)							
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 103S: SA103

Runoff

:

0.45 cfs @ 12.09 hrs, Volume=

0.031 af, Depth> 2.04"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	Area (sf)	CN	Description
	1,344	61	>75% Grass cover, Good, HSG B
	6,677	98	Paved parking, HSG D
·	8,021	92	Weighted Average
	1,344		16.76% Pervious Area
	6,677		83.24% Impervious Area

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 7

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 105S: SA105

Runoff =

0.04 cfs @ 12.29 hrs, Volume=

0.005 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	A	rea (sf)	CN [Description						
		1,080	98 l	Unconnected roofs, HSG D						
_		<u>4,</u> 513	61 >	>75% Grass cover, Good, HSG B						
		5,593	68 V	Weighted Average, UI Adjusted CN = 65						
		4,513	8	30.69% Pervious Area						
		1,080	1	9.31% Imp	ervious Ar	ea				
		1,080	1	00.00% Ur	nconnected	1				
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	15.9	110	0.0200	0.12		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"				

Summary for Subcatchment 106S: SA106

Runoff

0.02 cfs @ 12.32 hrs, Volume=

0.003 af, Depth> 0.35"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	A	rea (sf)	CN [Description							
		4,300	61 >	>75% Grass cover, Good, HSG B							
		360	98 l	Unconnected pavement, HSG D							
		4,660	64 V	Weighted Average, UI Adjusted CN = 62							
		4,300	ξ	92.27% Pervious Area							
		360	7	'.73% Impe	ervious Area	a					
		360	1	00.00% Ui	nconnected	1					
	_										
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec) (cfs)							
	15.2	90	0.0150	0.10	O Sheet Flow, GRASS						

Grass: Dense n= 0.240 P2= 3.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 107S: SA107

Runoff

0.03 cfs @ 12.20 hrs, Volume=

0.003 af, Depth> 0.48"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description							
	1,088	98 l	Unconnected pavement, HSG D							
	2,594	61 >	>75% Grass cover, Good, HSG B							
	3,682	72 \	Weighted Average, UI Adjusted CN = 66							
	2,594	7	70.45% Pervious Area							
	1,088	2	29.55% lmp	ervious Ar	rea					
	1,088	1	00.00% Uı	nconnected	4					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
11.5	90	0.0300	0.13		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"					

Summary for Subcatchment 134S: SA134

Runoff

0.55 cfs @ 12.09 hrs, Volume=

0.041 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	Description		
	8,370	98 F	Roofs, HSG D		
	8,370	100.00% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 100R: SD CB12-LG15/16/17

Inflow Area =

0.626 ac, 89.59% Impervious, Inflow Depth > 1.89" for 2 YEAR STORM event

Inflow

1.57 cfs @ 12.09 hrs, Volume=

0.098 af

Outflow

1.57 cfs @ 12.10 hrs, Volume=

0.098 af, Atten= 0%, Lag= 0.0 min

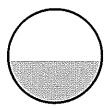
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.66 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.64 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.09 hrs

Average Depth at Peak Storage= 0.44'

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs


Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

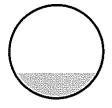
Printed 11/17/2014 Page 9

12.0" Round Pipe n= 0.012 Length= 4.0' Slope= 0.0100 '/' Inlet Invert= 115.12', Outlet Invert= 115.08'

Summary for Reach 102R: SD CB11-LG13/14

Inflow Area = 0.276 ac, 76.39% Impervious, Inflow Depth > 1.83" for 2 YEAR STORM event

Inflow = 0.60 cfs @ 12.10 hrs, Volume= 0.042 af


Outflow = 0.60 cfs @ 12.10 hrs, Volume= 0.042 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.58 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.26 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 115.68', Outlet Invert= 115.53'

Summary for Reach 103R: SD CB10-CB11

Inflow Area = 0.184 ac, 83.24% Impervious, Inflow Depth > 2.04" for 2 YEAR STORM event

Inflow = 0.45 cfs @ 12.09 hrs, Volume= 0.031 af

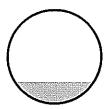
Outflow = 0.44 cfs @ 12.10 hrs, Volume= 0.031 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.28 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 0.7 min

Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 2 YEAR STORM Rainfall=3.00"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 10

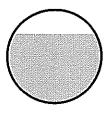
12.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0100 '/' Inlet Invert= 116.25', Outlet Invert= 115.78'

Summary for Reach 134R: ROOF DRAIN

Inflow Area = 0.192 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.55 cfs @ 12.09 hrs, Volume= 0.041 af

Outflow = 0.54 cfs @ 12.09 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.50 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 0.3 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.37'

Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Summary for Pond 100P: LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 1.89" for 2 YEAR STORM event

Inflow = 1.57 cfs @ 12.10 hrs, Volume= 0.098 af

Outflow = 1.58 cfs @ 12.10 hrs, Volume= 0.089 af, Atten= 0%, Lag= 0.5 min

Discarded = 0.03 cfs @ 12.10 hrs, Volume= 0.024 af Primary = 1.55 cfs @ 12.10 hrs, Volume= 0.065 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 115.84' @ 12.10 hrs Surf.Area= 162 sf Storage= 541 cf

Plug-Flow detention time= 54.6 min calculated for 0.089 af (90% of inflow)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 11

Center-of-Mass det. time= 26.5 min (770.3 - 743.8)

Volume	Invert	Avail.Sto	rage	Storage I	Description			
#1	109.00'	4	12 cf			nic) Listed below (Re		
#2	112.46'	10	98 cf			Embedded = 1,030 cf smatic) Listed below		
π2	112.40					siliatic) Listed Delow	(Necale) maide #1	
		6	10 cf	Total Ava	ailable Storage			
Elevation	Surf	.Area	Inc	.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)		(cubic-feet)		(cubic-feet)	(sq-ft)		
109.00		162		0	0	162		
116.58			1,228		1,228	504		
				•	•			
Elevation	Surf	.Area	inc.	Store	Cum.Store			
(feet)	(sq-ft)	(cubic	:-feet)	(cubic-feet)			
112.46		48		0	0			
116.58		48		198	198			
Device R	outing	Invert	Outle	et Devices				
#1 D	iscarded	109.00'	2.410) in/hr Ext	filtration over W	/etted area		
#2 P	rimary	115.08' 1		12.0" Round Culvert L= 12.0' Ke= 0.500				
	•		Inlet	/ Outlet In	vert= 115.08' / 1	14.96' S= 0.0100 '/'	Cc = 0.900	
			n= 0.	012, Flov	v Area= 0.79 sf			

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=115.84' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=1.53 cfs @ 12.10 hrs HW=115.84' (Free Discharge) 2=Culvert (Barrel Controls 1.53 cfs @ 3.33 fps)

Summary for Pond 102P: LG 13/14

Inflow Area =	0.276 ac, 76.39% Impervious, Inflow	Depth > 1.83" for 2 YEAR STORM event
Inflow =	0.60 cfs @ 12.10 hrs, Volume=	0.042 af
Outflow =	0.60 cfs @ 12.10 hrs, Volume=	0.037 af, Atten= 1%, Lag= 0.4 min
Discarded =	0.02 cfs @ 12.10 hrs, Volume=	0.014 af
Primary =	0.58 cfs @ 12.10 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 115.92' @ 12.10 hrs Surf.Area= 117 sf Storage= 296 cf

Plug-Flow detention time= 66.1 min calculated for 0.037 af (88% of inflow) Center-of-Mass det. time= 27.4 min (803.6 - 776.2)

Volume	Invert	Avail.Storage	Storage Description
#1	110.86'	235 cf	Custom Stage Data (Conic) Listed below (Recalc)
			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids
#2	112.86'	133 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		369 cf	Total Available Storage

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 12

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
110.8	_	117	0	0	117
117.0)3	117	722	722	354
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
112.8	36	32	0	0	
117.0)3	32	133	133	
Device	Routing	Invert	Outlet Devices		
11.4	. .	440.00	0 440 1 0 = 6		

#1 Discarded 110.86' 2.410 in/hr Exfiltration over Wetted area 115.53' Round Culvert L= 31.0' Ke= 0.500 Inlet / Outlet Invert= 115.53' / 115.22' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=115.92' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.57 cfs @ 12.10 hrs HW=115.92' (Free Discharge) —2=Culvert (Barrel Controls 0.57 cfs @ 3.00 fps)

Summary for Pond 105P: DW3

Inflow Area =	0.128 ac, 19.31% Impervious, Inflow I	Depth > 0.44" for 2 YEAR STORM event
Inflow =	0.04 cfs @ 12.29 hrs, Volume=	0.005 af
Outflow =	0.01 cfs @ 13.72 hrs, Volume=	0.005 af, Atten= 80%, Lag= 85.7 min
Discarded =	0.01 cfs @ 13.72 hrs, Volume=	0.005 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.84' @ 13.72 hrs Surf.Area= 81 sf Storage= 68 cf

Plug-Flow detention time= 104.7 min calculated for 0.005 af (96% of inflow) Center-of-Mass det. time= 92.0 min (946.7 - 854.7)

Volume	Invert	Avail.Storage	Storage	e Description		
#1	117.74'	205 cf	Custor	n Stage Data (Conic) Listed below (Re	ecalc)
				Overall - 67 cf Embe		
#2	120.74'	67 cf	Custor	n Stage Data (Prism	atic) Listed below	(Recalc) Inside #1
		272 cf	Total A	vailable Storage		
Elevation	Surf.Ar	rea Inc	.Store	Cum.Store	Wet.Area	
(feet)	pa)	-ft) (cubi	c-feet)	(cubic-feet)	(sq-ft)	
117.74		81	0	0	81	
124.90		81	580	580	309	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
120.74	16	0	0
124.90	16	67	67

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 13

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Primary	123.90'	6.0" Round Culvert L= 28.0' Ke= 0.500
			Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#2	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.72 hrs HW=119.84' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

Summary for Pond 106P: DW2

Inflow Area = 0.320 ac, 18.14% Impervious, Inflow Depth > 0.12" for 2 YEAR STORM event 0.02 cfs @ 12.32 hrs, Volume= 0.003 af 0.01 cfs @ 13.30 hrs, Volume= 0.003 af, Atten= 72%, Lag= 58.6 min 0.01 cfs @ 13.30 hrs, Volume= 0.003 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.77' @ 13.30 hrs Surf.Area= 81 sf Storage= 33 cf

Plug-Flow detention time= 56.5 min calculated for 0.003 af (99% of inflow) Center-of-Mass det. time= 54.5 min (919.9 - 865.5)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	117.74'	205 cf	Custom Stage Data (Conic) Listed below (Recalc)
			580 cf Overall - 67 cf Embedded = 513 cf x 40.0% Voids
#2	120.74'	67 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
#3	122.90'	762 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,904 cf Overall x 40.0% Voids
#4	123.90'	12 cf	6.0" D x 62.0'L Pipe Storage

1,046 cf Total Available Storage

		1,046 CT 10tal A	wallable Storage	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
117.74	81	0	0	81
124.90	81	580	580	309
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
120.74	16	0	0	
124.90	16	67	67	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
122.90	952	0	0	952
124.90	952	1,904	1,904	1,171

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 14

Device	Routing	Invert	Outlet Devices
#1	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.30 hrs HW=118.77' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Summary for Pond 107P: DW1

Inflow Area =	0.085 ac, 29.55% Impervious, Inflow D	epth > 0.48" for 2 YEAR STORM event
Inflow =	0.03 cfs @ 12.20 hrs, Volume=	0.003 af
Outflow =	0.01 cfs @ 13.11 hrs, Volume=	0.003 af, Atten= 79%, Lag= 54.5 min
Discarded =	0.01 cfs @ 13.11 hrs, Volume=	0.003 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.12' @ 13.11 hrs Surf.Area= 81 sf Storage= 45 cf

Plug-Flow detention time= 70.4 min calculated for 0.003 af (99% of inflow) Center-of-Mass det. time= 68.5 min (916.7 - 848.2)

Volume	Invert	Avail.Storage	Storage	Description		
#1	117.74'	206 cf		n Stage Data (Coni		
				Overall - 64 cf Embe		
<u>#2</u>	120.74'	64 cf	Custon	n Stage Data (Prisn	natic) Listed below	v (Recalc) Inside #1
		270 cf	Total Av	/ailable Storage		
Elevation	Surf./		:Store	Cum.Store	Wet.Area	
(feet)	(s	q-ft) (cubi	c-feet)	(cubic-feet)	(sq-ft)	
117.74		81	0	0	81	
124.90		81	580	580	309	
			0 580			

360 360	
0 0	
64 64	
	c.Store Cum.Store oic-feet) (cubic-feet) 0 0

Device	Routing	Invert	Outlet Devices
#1 #2	Discarded Primary		2.410 in/hr Exfiltration over Wetted area 6.0" Round Culvert L= 34.0' Ke= 0.500 Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf

Discarded OutFlow Max=0.01 cfs @ 13.11 hrs HW=119.12' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) —2=Culvert (Controls 0.00 cfs)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 15

Summary for Subcatchment 100S: SA100

Runoff

=

0.71 cfs @ 12.09 hrs, Volume=

0.055 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN I	Description		
	6,877	98	Paved park	ing, HSG D)
V	6,877	•	100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 102S: SA102

Runoff

=

0.31 cfs @ 12.09 hrs, Volume=

0.022 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description			
	1,495	61	>75% Gras	s cover, Go	ood, HSG B	
	2,508	98	Paved park	ing, HSG D	1	
	4,003 1,495 2,508			verage vious Area pervious Are		
Tc (min)	Length (feet)	Slope (ft/ft)	7	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 103S: SA103

Runoff

0.76 cfs @ 12.09 hrs, Volume=

0.055 af, Depth> 3.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Area (sf) CN	Description
1,3	44 61	>75% Grass cover, Good, HSG B
6,6	77 98	Paved parking, HSG D
8,0	21 92	Weighted Average
1,3	44	16.76% Pervious Area
6,6	77	83.24% Impervious Area

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 16

Tc	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0		·			Direct Entry, MINIMUM

Summary for Subcatchment 105S: SA105

Runoff = 0.15 cfs @ 12.24 hrs, Volume=

0.014 af, Depth> 1.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN I	Description		
	1,080	98 1	Jnconnecte	ed roofs, H	SG D
	4,513	61 >	>75% Gras	s cover, Go	ood, HSG B
	5,593	68 \	Neighted A	verage, Ui	Adjusted CN = 65
	4,513	{	30.69% Per	vious Area	
	1,080	•	19.31% lmp	ervious Ar	ea
	1,080	,	100.00% Ui	nconnected	1
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.9	110	0.0200	0.12		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"

Summary for Subcatchment 106S: SA106

Runoff = 0.11 cfs @ 12.24 hrs, Volume=

0.010 af, Depth> 1.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN I	Description		
	4,300	61	75% Gras	s cover, Go	ood, HSG B
	360	98 t	Jnconnecte	ed pavemei	ent, HSG D
	4,660	64 \	Veighted A	verage, UI	I Adjusted CN = 62
	4,300	ć	92.2 <mark>7</mark> % Per	vious Area	a
	360	7	7.73% Impe	ervious Are	ea
	360	•	00.00% U	nconnected	d
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.2	90	0.0150	0.10		Sheet Flow, GRASS

Grass: Dense n= 0.240 P2= 3.00"

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment 107S: SA107

Runoff = 0.12 cfs @ 12.17 hrs, Volume=

0.010 af, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description		
	1,088	98 l	Jnconnecte	ed pavemer	nt, HSG D
	2,594	61 >	75% Gras	s cover, Go	ood, HSG B
	3,682	72 V	Veighted A	verage, UI	Adjusted CN = 66
	2,594	7	'0.45% Per	vious Area	
	1,088	2	9.55% Imp	ervious Ar	ea
	1,088	1	10 %00.00	nconnected	1
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.5	90	0.0300	0.13		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"

Summary for Subcatchment 134S: SA134

Runoff = 0.86 cfs @ 12.09 hrs, Volume=

0.066 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Ai	rea (sf)	CN D	escription)		
	8,370	98 F	Roofs, HSG	B D	
	8,370	1	00.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0			······································	····	Direct Entry, MINIMUM

Summary for Reach 100R: SD CB12-LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 3.35" for 10 YEAR STORM event

Inflow = 2.37 cfs @ 12.10 hrs, Volume= 0.175 af

Outflow = 2.36 cfs @ 12.10 hrs, Volume= 0.175 af, Atten= 0%, Lag= 0.0 min

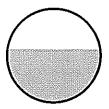
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.16 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.95 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.10 hrs

Average Depth at Peak Storage= 0.57'

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs


Prepared by BH2M ENGINEERS

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

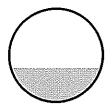
Page 18

12.0" Round Pipe n= 0.012 Length= 4.0' Slope= 0.0100 '/' Inlet Invert= 115.12', Outlet Invert= 115.08'

Summary for Reach 102R: SD CB11-LG13/14

Inflow Area = 0.276 ac, 76.39% Impervious, Inflow Depth > 3.33" for 10 YEAR STORM event

Inflow = 1.07 cfs @ 12.09 hrs, Volume= 0.077 af


Outflow = 1.07 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.53 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 115.68', Outlet Invert= 115.53'

Summary for Reach 103R: SD CB10-CB11

Inflow Area = 0.184 ac, 83.24% Impervious, Inflow Depth > 3.59" for 10 YEAR STORM event

Inflow = 0.76 cfs @ 12.09 hrs, Volume= 0.055 af

Outflow = 0.76 cfs @ 12.09 hrs, Volume= 0.055 af, Atten= 1%, Lag= 0.3 min

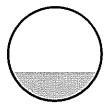
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.82 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.6 min

Peak Storage= 9 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL II POST


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

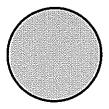
Page 19

12.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0100 '/' Inlet Invert= 116.25', Outlet Invert= 115.78'

Summary for Reach 134R: ROOF DRAIN

Inflow Area = 0.192 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.86 cfs @ 12.09 hrs, Volume= 0.066 af


Outflow = 0.61 cfs @ 12.10 hrs, Volume= 0.066 af, Atten= 29%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.51 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 0.3 min

Peak Storage= 6 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Summary for Pond 100P: LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 3.35" for 10 YEAR STORM event

Inflow = 2.36 cfs @ 12.10 hrs, Volume= 0.175 af

Outflow = 2.36 cfs @ 12.10 hrs, Volume= 0.164 af, Atten= 0%, Lag= 0.5 min

Discarded = 0.03 cfs @ 12.10 hrs, Volume= 0.026 af Primary = 2.33 cfs @ 12.10 hrs, Volume= 0.138 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 116.08' @ 12.10 hrs Surf.Area= 162 sf Storage= 563 cf

Plug-Flow detention time= 38.4 min calculated for 0.164 af (94% of inflow)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 20

Center-of-Mass det. time= 17.2 min (761.2 - 744.0)

Volume	Invert	Avail.Sto	rage S	Storage I	Description		
#1	109.00'	4				nic) Listed below (
#2	112.46'	19					ocf x 40.0% Voids ow (Recalc) Inside #1
		6	10 cf ⁻	Total Ava	ailable Storage	•	
Elevation (feet)		f.Area (sq-ft)	Inc.S (cubic-		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
109.00		162		0	0	162	
116.58		162	1	,228	1,228	504	
Elevation (feet)	Sur	f.Area (sq-ft)	Inc.S (cubic-		Cum.Store (cubic-feet)		
112.46		48		0	0		
116.58		48		198	198		
Device F	Routing	Invert	Outlet	Devices			
	Discarded Primary	109.00' 115.08'	12.0" Inlet /	Round Outlet In	filtration over V Culvert L= 12.0 vert= 115.08' / 1 v Area= 0.79 sf) '/' Cc= 0.900

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=116.07' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=2.31 cfs @ 12.10 hrs HW=116.07' (Free Discharge) —2=Culvert (Barrel Controls 2.31 cfs @ 3.68 fps)

Summary for Pond 102P: LG 13/14

Inflow Area =	0.276 ac, 76.39% Impervious, Inflow D	Depth > 3.33" for 10 YEAR STORM event
Inflow =	1.07 cfs @ 12.09 hrs, Volume=	0.077 af
Outflow =	1.07 cfs @ 12.10 hrs, Volume=	0.070 af, Atten= 0%, Lag= 0.4 min
Discarded =	0.02 cfs @ 12.10 hrs, Volume=	0.016 af
Primary =	1.05 cfs @ 12.10 hrs, Volume=	0.054 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 116.08' @ 12.10 hrs Surf.Area= 117 sf Storage= 306 cf

Plug-Flow detention time= 43.4 min calculated for 0.070 af (92% of inflow) Center-of-Mass det. time= 15.7 min (779.0 - 763.3)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	110.86'	235 cf	Custom Stage Data (Conic) Listed below (Recalc)
			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids
#2	112.86'	133 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		369 cf	Total Available Storage

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 21

Elevation		Surf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	<u>)</u>
110.8	36	117	0	0	117	r
117.0	03	117	722	722	354	۲
Elevatio	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
112.8	36	32	0	0		
117.0)3	32	133	133		
Device	Routing	Invert	Outlet Devices			
#1	Discarde	ed 110,86'	2.410 in/hr Exfi	tration over W	letted area	

#2 Primary 115.53' **12.0" Round Culvert** L= 31.0' Ke= 0.500 Inlet / Outlet Invert= 115.53' / 115.22' S= 0.0100 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=116.08' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=1.05 cfs @ 12.10 hrs HW=116.08' (Free Discharge) —2=Culvert (Barrel Controls 1.05 cfs @ 3.41 fps)

Summary for Pond 105P: DW3

Inflow Area =	0.128 ac, 19.31% Impervious, Inflow Depth > 1.32" for 10 YEAR STORM event
Inflow =	0.15 cfs @ 12.24 hrs, Volume= 0.014 af
Outflow =	0.06 cfs @ 12.68 hrs, Volume= 0.011 af, Atten= 61%, Lag= 26.0 min
Discarded =	0.02 cfs @ 12.68 hrs, Volume= 0.010 af
Primary =	0.04 cfs @ 12.68 hrs, Volume= 0.002 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 124.10' @ 12.68 hrs Surf.Area= 81 sf Storage= 238 cf

(sq-ft)

16

16

(feet) 120.74

124.90

Plug-Flow detention time= 150.2 min calculated for 0.011 af (79% of inflow) Center-of-Mass det. time= 94.9 min (922.8 - 827.8)

(cubic-feet)

0

67

Volume	Invert	Avail.Storage	Storage	e Description		
#1	117.74'	205 cf	Custor	n Stage Data (Coni	c) Listed below (Recalc)
				Overall - 67 cf Embe		
#2	120.74'	67 cf	Custon	n Stage Data (Prisn	natic) Listed belo	ow (Recalc) Inside #1
		2 7 2 cf	Total A	vailable Storage		
Elevation (feet)	Surf. <i>F</i> (s		c.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
117.74		81	0	0	81	
124.90		81	580	580	309	
Elevation	Surf.A	area Inc	:Store	Cum.Store		

(cubic-feet)

0

67

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 22

Device	Routing	Invert	Outlet Devices
#1	Primary	123.90'	6.0" Round Culvert L= 28.0' Ke= 0.500
	-		Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#2	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 12.68 hrs HW=124.10' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.04 cfs @ 12.68 hrs HW=124.10' (Free Discharge)
—1=Culvert (Barrel Controls 0.04 cfs @ 0.82 fps)

Summary for Pond 106P: DW2

Inflow Area =	0.320 ac, 18.14% Impervious, Inflow D	epth > 0.44" for 10 YEAR STORM event
inflow =	0.11 cfs @ 12.24 hrs, Volume=	0.012 af
Outflow =	0.07 cfs @ 12.82 hrs, Volume=	0.010 af, Atten= 33%, Lag= 35.1 min
Discarded =	0.07 cfs @ 12.82 hrs, Volume=	0.010 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 122.90' @ 12.80 hrs Surf.Area= 1,033 sf Storage= 190 cf

Plug-Flow detention time= 137.5 min calculated for 0.010 af (83% of inflow) Center-of-Mass det. time= 92.9 min (920.0 - 827.1)

Volume	Invert	Avail.Storage	Storage Description
#1	117.74'	205 cf	Custom Stage Data (Conic) Listed below (Recalc)
			580 cf Overall - 67 cf Embedded = 513 cf x 40.0% Voids
#2	120.74'	67 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
#3	122.90'	762 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,904 cf Overall x 40.0% Voids
#4	123.90'	12 cf	6.0" D x 62.0'L Pipe Storage
		4 040 -f	Tetal Available Change

1,046 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
117.74	81	0	0	81
124.90	81	580	580	309
Elevation (feet) 120.74 124.90	Surf.Area (sq-ft) 16 16	Inc.Store (cubic-feet) 0 67	Cum.Store (cubic-feet) 0 67	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
122.90	952	0	0	952
124.90	952	1,904	1,904	1,171

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 23

Device	Routing	Invert	Outlet Devices
#1	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.07 cfs @ 12.82 hrs HW=122.90' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.07 cfs)

Summary for Pond 107P: DW1

Inflow Area =	0.085 ac, 29.55% Impervious, Inflow I	Depth > 1.39" for 10 YEAR STORM event
Inflow =	0.12 cfs @ 12.17 hrs, Volume=	0.010 af
Outflow =	0.01 cfs @ 13.67 hrs, Volume=	0.008 af, Atten= 88%, Lag= 89.7 min
Discarded =	0.01 cfs @ 13.67 hrs, Volume=	0.008 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 122.97' @ 13.67 hrs Surf.Area= 81 sf Storage= 191 cf

Plug-Flow detention time= 166.0 min calculated for 0.008 af (82% of inflow) Center-of-Mass det. time= 117.3 min (939.7 - 822.4)

Volume	Invert	Avail.Sto	rage	Storage [Description		
#1	117.74'	20	06 cf			nic) Listed below (
#2	120.74'		64 cf	Custom	Stage Data (Pri	nbedded = 516 cf o smatic) Listed beld	x 40.0% Voids ow (Recalc) Inside #1
		27	70 cf	Total Ava	ilable Storage		
Elevatior (feet		ırf.Area (sq-ft)		Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
117.74	L	81		0	0	81	
124.90)	81		580	580	309	
Elevatior (feet		rf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
120.74		16	•	0	0		
124.74	ļ	16		64	64		
Device	Routing	Invert	Outle	et Devices			
#1	Discarded	117.74'	2.41	0 in/hr Exf	iltration over W	Vetted area	
#2	Primary	123.90'	Inlet	/ Outlet In	u lvert L= 34.0' vert= 123.90' / 1 v Area= 0.20 sf	' Ke= 0.500 123.90' S= 0.0000)'/' Cc= 0.900

Discarded OutFlow Max=0.01 cfs @ 13.67 hrs HW=122.97' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 24

Summary for Subcatchment 100S: SA100

Runoff

0.83 cfs @ 12.09 hrs, Volume=

0.064 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN E	Description					
	6,877	98 F	Paved parking, HSG D					
	6,877	1	00.00% Im	pervious A	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0	(,,,,	(1)	(10000)	(0.0)	Direct Entry, MINIMUM			

Summary for Subcatchment 102S: SA102

Runoff

0.39 cfs @ 12.09 hrs, Volume=

0.027 af, Depth> 3.51"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN	Description				
	1,495	61	>75% Gras	s cover, Go	ood, HSG B		
	2,508	98	Paved park	ing, HSG D)		
	4,003	84	Weighted A	verage			
	1,495		37.35% Pervious Area				
	2,508		62.65% Imp	pervious Are	ea		
_							
Tc	Length	Slope	•	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry, MINIMUM		

Summary for Subcatchment 103S: SA103

Runoff

0.91 cfs @ 12.09 hrs, Volume=

0.066 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Area (s	f) CN	Description
1,34	4 61	>75% Grass cover, Good, HSG B
6,67	7 98	Paved parking, HSG D
8,02	1 92	Weighted Average
1,34	4	16.76% Pervious Area
6,67	7	83.24% Impervious Area

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 25

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 105S: SA105

Runoff =

0.21 cfs @ 12.23 hrs, Volume=

0.019 af, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	A	rea (sf)	CN [Description					
		1,080	98 l	Unconnected roofs, HSG D					
_		4,513	61 >	>75% Grass cover, Good, HSG B					
		5,593	68 \	68 Weighted Average, UI Adjusted CN = 65					
		4,513		80.69% Pervious Area					
		1,080		19.31% Impervious Area					
		1,080	1	100.00% Ui	nconnected	1			
	To	Longth	Clana	Volocity	Conneity	Description			
	Tc (min)	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_		(feet)		······	(CIS)				
	15.9	110	0.0200	0.12		Sheet Flow, GRASS			
						Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 106S: SA106

Runoff

0.15 cfs @ 12.23 hrs, Volume=

0.014 af, Depth> 1.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

rea (sf)	CN I	CN Description					
4,300	61 :	>75% Gras	s cover, Go	ood, HSG B			
360	98 l	Unconnected pavement, HSG D					
4,660	64 \	64 Weighted Average, UI Adjusted CN = 62					
4,300	(92.27% Pervious Area					
360	7	7.73% Impervious Area					
360	•	100.00% Unconnected					
_	•	•		Description			
(feet)	(ft/ft)	(ft/sec)	(cfs)				
90	0.0150	0.10		Sheet Flow, GRASS			
	4,300 360 4,660 4,300 360 360 Length (feet)	4,300 61 2 360 98 1 4,660 64 1 4,300 9 360 7 360 7 Length Slope (feet) (ft/ft)	4,300 61 >75% Gras 360 98 Unconnecte 4,660 64 Weighted A 4,300 92.27% Per 360 7.73% Imper 360 100.00% Un Length Slope Velocity (feet) (ft/ft) (ft/sec)	4,300 61 >75% Grass cover, Go 360 98 Unconnected pavement 4,660 64 Weighted Average, UI 4,300 92.27% Pervious Area 360 7.73% Impervious Area 360 100.00% Unconnected Length Slope Velocity Capacity (feet) (ft/ft) (ft/sec) (cfs)	4,300 61 >75% Grass cover, Good, HSG B 360 98 Unconnected pavement, HSG D 4,660 64 Weighted Average, UI Adjusted CN = 62 4,300 92.27% Pervious Area 360 7.73% Impervious Area 360 100.00% Unconnected Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)		

Grass: Dense n= 0.240 P2= 3.00"

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 26

Summary for Subcatchment 107S: SA107

Runoff = 0.17 cfs @ 12.17 hrs, Volume=

0.013 af, Depth> 1.90"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN I	Description					
	1,088	98	Jnconnecte	ed pavemer	nt, HSG D			
	2,594	61	>75% Grass cover, Good, HSG B					
	3,682	72 \	Weighted Average, UI Adjusted CN = 66					
	2,594		70.45% Pervious Area					
	1,088	2	29.55% Impervious Area					
	1,088	•	100.00% Unconnected					
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description			
11.5	90	0.0300	0.13		Sheet Flow, GRASS Grass: Dense n= 0.240	P2= 3.00"		

Summary for Subcatchment 134S: SA134

Runoff = 1.01 cfs @ 12.09 hrs, Volume=

0.078 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN I	Description					
	8,370	98 F	Roofs, HSG D					
	8,370	•	100.00% Im	pervious A	ırea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0		•			Direct Entry, MINIMUM			

Summary for Reach 100R: SD CB12-LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 4.07" for 25YEAR STORM event

Inflow = 2.71 cfs @ 12.09 hrs, Volume= 0.212 af

Outflow = 2.71 cfs @ 12.09 hrs, Volume= 0.212 af, Atten= 0%, Lag= 0.0 min

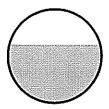
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.32 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.08 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.62'

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 25YEAR STORM Rainfall=5.50"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

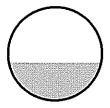
Page 27

12.0" Round Pipe n= 0.012 Length= 4.0' Slope= 0.0100 '/' Inlet Invert= 115.12', Outlet Invert= 115.08'

Summary for Reach 102R: SD CB11-LG13/14

Inflow Area = 0.276 ac, 76.39% Impervious, Inflow Depth > 4.05" for 25YEAR STORM event

Inflow = 1.29 cfs @ 12.09 hrs, Volume= 0.093 af


Outflow = 1.29 cfs @ 12.09 hrs, Volume= 0.093 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.43 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.63 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 115.68', Outlet Invert= 115.53'

Summary for Reach 103R: SD CB10-CB11

Inflow Area = 0.184 ac, 83.24% Impervious, Inflow Depth > 4.33" for 25YEAR STORM event

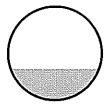
inflow = 0.91 cfs @ 12.09 hrs, Volume= 0.066 af

Outflow = 0.91 cfs @ 12.09 hrs, Volume= 0.066 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.02 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.5 min

Peak Storage= 11 cf @ 12.09 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs PARK DANFORTH MODEL II POST Type III 24-hr 25YEAR STORM Rainfall=5.50"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

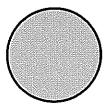
Page 28

12.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0100 '/' Inlet Invert= 116.25', Outlet Invert= 115.78'

Summary for Reach 134R: ROOF DRAIN

Inflow Area = 0.192 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 1.01 cfs @ 12.09 hrs, Volume= 0.078 af


Outflow = 0.65 cfs @ 12.02 hrs, Volume= 0.078 af, Atten= 36%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.53 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 0.3 min

Peak Storage= 6 cf @ 12.05 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Summary for Pond 100P: LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 4.07" for 25YEAR STORM event

Inflow = 2.71 cfs @ 12.09 hrs, Volume= 0.212 af

Outflow = 2.68 cfs @ 12.10 hrs, Volume= 0.201 af, Atten= 1%, Lag= 0.5 min

Discarded = 0.03 cfs @ 12.10 hrs, Volume= 0.027 af Primary = 2.66 cfs @ 12.10 hrs, Volume= 0.174 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 116.18' @ 12.10 hrs Surf.Area= 162 sf Storage= 573 cf

Plug-Flow detention time= 34.1 min calculated for 0.201 af (95% of inflow)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 29

Center-of-Mass det. time= 15.5 min (759.9 - 744.3)

Volume	Invert	Avail.Sto	rage Sto	orage D	escription		
#1	109.00'	4				nic) Listed below (R	
#2	112.46'	19				Embedded = 1,030 ismatic) Listed belov	cf x 40.0% Voids w (Recalc) Inside #1_
		6	10 cf To	tal Avai	ilable Storage		
Elevation (feet)		rf.Area (sq-ft)	Inc.Sto (cubic-fe		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
109.00		162		0	0	162	
116.58		162	1,2	28	1,228	504	
Elevation (feet)		rf.Area (sq-ft)	Inc.Sto		Cum.Store (cubic-feet)		
112.46		48		0	Ō		
116.58		48	1:	98	198		
Device F	Routing	Invert	Outlet D	evices			
	Discarded Primary	109.00' 115.08'	12.0" R Inlet / O	ound C utlet Inv		0' Ke= 0.500 114.96' S= 0.0100	'/' Cc= 0.900

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=116.18' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=2.65 cfs @ 12.10 hrs HW=116.18' (Free Discharge) —2=Culvert (Barrel Controls 2.65 cfs @ 3.82 fps)

Summary for Pond 102P: LG 13/14

Inflow Area =	0.276 ac, 76.39% Impervious, Inflow	Depth > 4.05" for 25YEAR STORM event
Inflow =	1.29 cfs @ 12.09 hrs, Volume=	0.093 af
Outflow =	1.29 cfs @ 12.10 hrs, Volume=	0.087 af, Atten= 0%, Lag= 0.4 min
Discarded =	0.02 cfs @ 12.10 hrs, Volume=	0.017 af
Primary =	1.28 cfs @ 12.10 hrs, Volume=	0.070 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 116.15' @ 12.10 hrs Surf.Area= 117 sf Storage= 311 cf

Plug-Flow detention time= 38.8 min calculated for 0.087 af (93% of inflow) Center-of-Mass det. time= 15.0 min (774.3 - 759.3)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	110.86'	235 cf	Custom Stage Data (Conic) Listed below (Recalc)
			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids
#2	112.86'	133 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		369 cf	Total Available Storage

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 30

Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
110.86	117	0	0	117
117.03	117	722	722	354
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
112.86	32	0	0	
		133	133	

Device	Routing	Invert	Outlet Devices
#1	Discarded	110.86'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	115.53'	12.0" Round Culvert L= 31.0' Ke= 0.500
			Inlet / Outlet Invert= 115.53' / 115.22' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=116.15' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=1.27 cfs @ 12.10 hrs HW=116.15' (Free Discharge) 2=Culvert (Barrel Controls 1.27 cfs @ 3.55 fps)

Summary for Pond 105P: DW3

Inflow Area =	0.128 ac, 19.31% Impervious, Inflow I	Depth > 1.82" for 25YEAR STORM event
Inflow =	0.21 cfs @ 12.23 hrs, Volume=	0.019 af
Outflow =	0.19 cfs @ 12.41 hrs, Volume=	0.016 af, Atten= 8%, Lag= 10.7 min
Discarded =	0.02 cfs @ 12.42 hrs, Volume=	0.010 af
Primary =	0.18 cfs @ 12.41 hrs, Volume=	0.006 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 124.31' @ 12.42 hrs Surf.Area= 81 sf Storage= 247 cf

Plug-Flow detention time= 112.1 min calculated for 0.016 af (82% of inflow) Center-of-Mass det. time= 62.2 min (882.9 - 820.7)

Volume	Invert .	Avail.Storage	Storage	e Description		
#1	117.74'	205 cf	Custor	n Stage Data (Conic) Listed below (R	ecalc)
				Overall - 67 cf Embe		
#2	120.74'	67 cf	Custor	n Stage Data (Prism	natic) Listed below	/ (Recalc) Inside #1_
		272 cf	Total A	vailable Storage		
Elevation	Surf.Ar	rea Ind	:Store	Cum.Store	Wet.Area	
(feet)	(sq	-ft) (cubi	c-feet)	(cubic-feet)	(sq-ft)	
117.74		81	0	0	81	
124.90		81	580	580	309	

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
120.74	16	0	0
124.90	16	67	67

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 31

Device	Routing	Invert	Outlet Devices
#1	Primary	123.90'	6.0" Round Culvert L= 28.0' Ke= 0.500
	-		Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#2	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.02 cfs @ 12.42 hrs HW=124.28' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.16 cfs @ 12.41 hrs HW=124.28' (Free Discharge) 1=Culvert (Barrel Controls 0.16 cfs @ 1.38 fps)

Summary for Pond 106P: DW2

Inflow Area = 0.320 ac, 18.14% Impervious, Inflow Depth > 0.80" for 25YEAR STORM event

Inflow = 0.29 cfs @ 12.41 hrs, Volume= 0.021 af

Outflow = 0.07 cfs @ 12.98 hrs, Volume= 0.019 af, Atten= 76%, Lag= 34.1 min

Discarded = 0.07 cfs @ 12.98 hrs, Volume= 0.019 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 123.33' @ 12.98 hrs Surf.Area= 1,033 sf Storage= 370 cf

Plug-Flow detention time= 95.2 min calculated for 0.019 af (88% of inflow)

Center-of-Mass det. time= 62.5 min (872.3 - 809.8)

<u>Volume</u>	Invert .	Avail.Storage	Storage Description			
#1	117.74'	205 cf	Custom Stage Data (Conic) Listed below (Recalc)			
			580 cf Overall - 67 cf Embedded = 513 cf x 40.0% Voids			
#2	120.74'	67 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1			
#3	122.90'	762 cf	Custom Stage Data (Conic) Listed below (Recalc)			
			1,904 cf Overall x 40.0% Voids			
#4	123.90'	12 cf	6.0" D x 62.0'L Pipe Storage			
		1,046 cf	Total Available Storage			
Elevation	Surf.Ar		nc.Store Cum.Store Wet.Area			

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
117.74	81	0	0	81
124.90	81	580	580	309
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
120.74	16	0	0	
124.90	16	67	67	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
122.90	952	0	0	952
124.90	952	1,904	1,904	1.171

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 32

Device	Routing	Invert	Outlet Devices
#1	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.07 cfs @ 12.98 hrs HW=123.33' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.07 cfs)

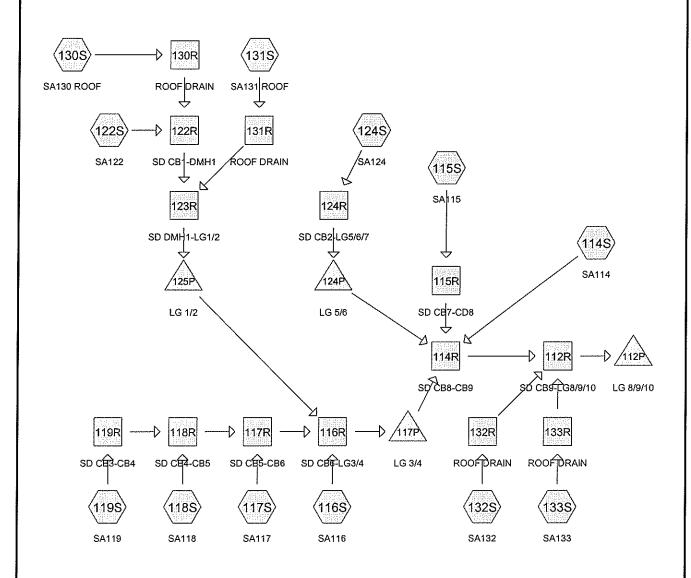
Summary for Pond 107P: DW1

Inflow Area =	0.085 ac, 29.55% Impervious, Inflow	Depth > 1.90" for 25YEAR STORM event
Inflow =	0.17 cfs @ 12.17 hrs, Volume=	0.013 af
Outflow =	0.06 cfs @ 12.61 hrs, Volume=	0.011 af, Atten= 66%, Lag= 26.1 min
Discarded =	0.02 cfs @ 12.61 hrs, Volume=	0.010 af
Primary =	0.04 cfs @ 12.61 hrs, Volume=	0.001 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 124.10' @ 12.61 hrs Surf.Area= 81 sf Storage= 238 cf

Plug-Flow detention time= 153.8 min calculated for 0.011 af (81% of inflow)

Center-of-Mass det. time= 102.0 min (917.4 - 815.4)


Volume	Invert	Avail.Storage	Storage De	escription			
#1	117.74'	206 cf	Custom Stage Data (Conic) Listed below (Recalc)				
			580 cf Overall - 64 cf Embedded = 516 cf x 40.0% Voids				
#2	120.74'	64 cf	f Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1				
		270 cf	Total Avail	able Storage			
Elevation	Surf.Ar	rea Ind	:.Store	Cum.Store	Wet.Area		

Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
117.74	81	0	0	81
124.90	81	580	580	309
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
120.74				

Device	Routing	Invert	Outlet Devices
#1	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	123.90'	6.0" Round Culvert L= 34.0' Ke= 0.500
	-		Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf

Discarded OutFlow Max=0.02 cfs @ 12.61 hrs HW=124.10' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.04 cfs @ 12.61 hrs HW=124.10' (Free Discharge) —2=Culvert (Barrel Controls 0.04 cfs @ 0.77 fps)

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 2

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.023	39	>75% Grass cover, Good, HSG A (124S)
0.080	61	>75% Grass cover, Good, HSG B (116S, 117S, 118S, 119S, 122S)
0.589	98	Paved parking, HSG D (114S, 115S, 116S, 117S, 118S, 119S, 122S, 124S)
0.346	98	Roofs, HSG D (130S, 131S, 132S, 133S)
1.037	94	TOTAL AREA

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.023	HSG A	124\$
0.080	HSG B	116S, 117S, 118S, 119S, 122S
0.000	HSG C	
0.934	HSG D	114S, 115S, 116S, 117S, 118S, 119S, 122S, 124S, 130S, 131S, 132S, 133S
0.000	Other	
1.037		TOTAL AREA

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC Printed 11/17/2014 Page 4

Ground Covers (all nodes)

HS((acr				HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.0)23	0.080	0.000	0.000	0.000	0.103	>75% Grass cover, Good	116S,
								117S,
								118S,
								1198,
								122S,
								124S
0.0	000	0.000	0.000	0.589	0.000	0.589	Paved parking	114S,
								115S,
								116S,
								117S,
								118S,
								119S,
								122S,
								124S
0.0	000	0.000	0.000	0.346	0.000	0.346	Roofs	130S,
								131S,
								132S,
								1338
0.0)23	0.080	0.000	0.934	0.000	1.037	TOTAL AREA	

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 5

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	112R	118.50	118.31	19.0	0.0100	0.012	12.0	0.0	0.0
2	114R	119.74	118.60	114.0	0.0100	0.012	12.0	0.0	0.0
3	115R	120.20	119.97	23.0	0.0100	0.012	12.0	0.0	0.0
4	116R	120.03	119.89	14.0	0.0100	0.012	12.0	0.0	0.0
5	117R	120.27	120.13	14.0	0.0100	0.012	12.0	0.0	0.0
6	118R	120.94	120.37	57.0	0.0100	0.012	12.0	0.0	0.0
7	119R	121.15	121.04	11.0	0.0100	0.012	12.0	0.0	0.0
8	122R	121.85	121.21	64.0	0.0100	0.012	12.0	0.0	0.0
9	123R	121.11	120.60	51.0	0.0100	0.012	12.0	0.0	0.0
10	124R	120.90	120.63	27.0	0.0100	0.012	12.0	0.0	0.0
11	130R	0.00	-0.10	10.0	0.0100	0.012	6.0	0.0	0.0
12	131R	0.00	-0.25	25.0	0.0100	0.012	6.0	0.0	0.0
13	132R	0.00	-0.25	25.0	0.0100	0.012	6.0	0.0	0.0
14	133R	0.00	-0.25	25.0	0.0100	0.012	6.0	0.0	0.0
15	112P	118.31	116.40	79.0	0.0242	0.012	12.0	0.0	0.0
16	117P	118.89	118.84	5.0	0.0100	0.012	12.0	0.0	0.0
17	124P	120.63	120.16	47.0	0.0100	0.012	12.0	0.0	0.0
18	125P	120.60	120.41	19.0	0.0100	0.012	12.0	0.0	0.0

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 114S: SA114

Runoff

0.45 cfs @ 12.09 hrs, Volume=

0.034 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	escription					
	6,863	98 F	Paved parking, HSG D					
	6,863	1	100.00% Impervious Area					
Tc	Length	Slope	•	, ,	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 115S: SA115

Runoff

0.09 cfs @ 12.09 hrs, Volume=

0.007 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN E	Description						
	1,408	98 F	98 Paved parking, HSG D						
	1,408	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0			-	·	Direct Entry, MINIMUM				

Summary for Subcatchment 116S: SA116

Runoff

0.24 cfs @ 12.09 hrs, Volume=

0.019 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN I	Description						
	3,708	98 I	Paved parking, HSG D						
	35	61 :	75% Grass cover, Good, HSG B						
	3,743	98 \	98 Weighted Average						
	35	().94% Perv	ious Ārea					
	3,708	(99.06% lmp	pervious Ar	ea				
Tc	Length	Slope	•	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
~ ~					5. (F.	RESERVED AS THE			

6.0

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment 117S: SA117

Runoff

0.07 cfs @ 12.10 hrs, Volume=

0.005 af, Depth> 0.93"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN	Description						
	1,618	61	>75% Gras	75% Grass cover, Good, HSG B					
	1,116	98	Paved park	ing, HSG D)				
	2,734	76	Veighted Average						
	1,618		59.18% Pervious Area						
	1,116		40.82% lmp	ervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
6.0	(1.001)	(1471)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(010)	Direct Entry, MINIMUM				

Summary for Subcatchment 118S: SA118

Runoff

0.04 cfs @ 12.10 hrs, Volume=

0.003 af, Depth> 0.93"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN	Description					
	1,018	61	>75% Gras	s cover, Go	ood, HSG B			
	697	98	Paved park	ing, HSG D)			
	1,715	76	76 Weighted Average					
	1,018		59.36% Pervious Area					
	697		40.64% Imp	ervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 119S: SA119

Runoff

0.22 cfs @ 12.09 hrs, Volume=

0.016 af, Depth> 2.50"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

	Area (sf)	CN	Description		
	3,261 98 Paved parking, HSG D				
	100	61	>75% Grass cover, Good, HSG B		
'	3,361	3,361 97 Weighted Average			
	100		2.98% Pervious Area		
	3,261		97.02% Impervious Area		

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 8

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 122S: SA122

Runoff = 0.14 cfs @ 12.09 hrs, Volume=

0.010 af, Depth> 1.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN	Description					
	710	61	>75% Grass cover, Good, HSG B					
	2,135	98	Paved parking, HSG D					
	2,845	89	Weighted A					
	710		24.96% Pervious Area					
	2,135		75.04% Imp	ervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)	-	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 124S: SA124

Runoff = 0.39 cfs @ 12.09 hrs, Volume=

0.027 af, Depth> 1.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN	Description						
	1,000	39	>75% Grass cover, Good, HSG A						
	6,449	98	Paved park	Paved parking, HSG D					
	7,449	90	0 Weighted Average						
	1,000		13.42% Pervious Area						
	6,449	i	36.58% lmp	ea					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 130S: SA130 ROOF

Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.20 cfs @ 12.09 hrs, Volum

0.015 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK	DANE	ORTH	MODEL	111	TROS
1 71/1/					001

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 9

 Area (sf)	CN	Description
 3,082	98	Roofs, HSG D
3,082		100.00% Impervious Area
To Length	Slor	pe Velocity Capacity Description

(min) (feet) (ft/ft) (ft/sec) (cfs)

6.0 Direct Entry, MINIMUM

Summary for Subcatchment 131S: SA131 ROOF

Runoff = 0.17 cfs @ 12.09 hrs, Volume=

0.013 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

<i>F</i>	\rea (sf)	CN D	Description					
	2,552	98 F	Roofs, HSG D					
	2,552	1	100.00% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 132S: SA132

Runoff = 0.29 cfs @ 12.09 hrs, Volume=

0.022 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

A	rea (sf)	CN [Description					
	4,394	98 F	Roofs, HSG D					
	4,394	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 133S: SA133

Runoff = 0.33 cfs @ 12.09 hrs, Volume= 0.025 a

0.025 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

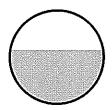
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC Page 10

A	rea (sf)	CN [Description					
	5,035	98 F	Roofs, HSG D					
	5,035		100.00% Impervious Area					
Tc (min)_	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Reach 112R: SD CB9-LG8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 1.59" for 2 YEAR STORM event

Inflow = 2.42 cfs @ 12.12 hrs, Volume= 0.138 af


Outflow = 2.41 cfs @ 12.12 hrs, Volume= 0.138 af, Atten= 1%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.16 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.75 fps, Avg. Travel Time= 0.2 min

Peak Storage= 9 cf @ 12.12 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 19.0' Slope= 0.0100 '/' Inlet Invert= 118.50', Outlet Invert= 118.31'

Summary for Reach 114R: SD CB8-CB9

Inflow Area = 0.821 ac, 87.47% Impervious, Inflow Depth > 1.33" for 2 YEAR STORM event

Inflow = 1.93 cfs @ 12.11 hrs, Volume= 0.091 af

Outflow = 1.84 cfs @ 12.12 hrs, Volume= 0.091 af, Atten= 5%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

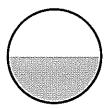
Max. Velocity= 4.86 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.46 fps, Avg. Travel Time= 1.3 min

Peak Storage= 44 of @ 12.12 hrs
Average Depth at Peak Storage= 0.49'

Bank-Full Depth= 1.00' Flow Area= 0.8 ef Ca

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 2 YEAR STORM Rainfall=3.00"


Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

Page 11

12.0" Round Pipe n= 0.012 Length= 114.0' Slope= 0.0100 '/' Inlet Invert= 119.74', Outlet Invert= 118.60'

Summary for Reach 115R: SD CB7-CD8

Inflow Area = 0.032 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.09 cfs @ 12.09 hrs, Volume= 0.007 af


Outflow = 0.09 cfs @ 12.09 hrs, Volume= 0.007 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.05 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 0.5 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 23.0' Slope= 0.0100 '/' Inlet Invert= 120.20', Outlet Invert= 119.97'

Summary for Reach 116R: SD CB6-LG3/4

Inflow Area = 0.460 ac, 82.62% Impervious, Inflow Depth > 1.59" for 2 YEAR STORM event

Inflow = 1.05 cfs @ 12.10 hrs, Volume= 0.061 af

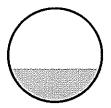
Outflow = 1.04 cfs @ 12.10 hrs, Volume= 0.061 af, Atten= 1%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.17 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 2 YEAR STORM Rainfall=3.00" Printed 11/17/2014


PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

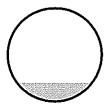
Page 12

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.03', Outlet Invert= 119.89'

Summary for Reach 117R: SD CB5-CB6

Inflow Area = 0.179 ac, 64.97% Impervious, Inflow Depth > 1.60" for 2 YEAR STORM event

Inflow = 0.33 cfs @ 12.10 hrs, Volume= 0.024 af


Outflow = 0.32 cfs @ 12.10 hrs, Volume= 0.024 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.99 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.27', Outlet Invert= 120.13'

Summary for Reach 118R: SD CB4-CB5

Inflow Area = 0.117 ac, 77.97% Impervious, Inflow Depth > 1.97" for 2 YEAR STORM event

Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.019 af

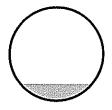
Outflow = 0.26 cfs @ 12.10 hrs, Volume= 0.019 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.80 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 0.9 min

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 13

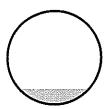
Peak Storage= 5 cf @ 12.10 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 57.0' Slope= 0.0100 '/' Inlet Invert= 120.94', Outlet Invert= 120.37'

Summary for Reach 119R: SD CB3-CB4

Inflow Area = 0.077 ac, 97.02% Impervious, Inflow Depth > 2.50" for 2 YEAR STORM event

Inflow = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af


Outflow = 0.21 cfs @ 12.09 hrs, Volume= 0.016 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.64 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 11.0' Slope= 0.0100 '/' Inlet Invert= 121.15', Outlet Invert= 121.04'

Summary for Reach 122R: SD CB1-DMH1

Inflow Area = 0.136 ac, 88.02% Impervious, Inflow Depth > 2.20" for 2 YEAR STORM event

Inflow = 0.34 cfs @ 12.09 hrs, Volume= 0.025 af

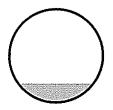
Outflow = 0.34 cfs @ 12.10 hrs, Volume= 0.025 af, Atten= 1%, Lag= 0.6 min

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 14

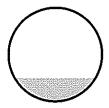
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.03 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 1.0 min

Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 64.0' Slope= 0.0100 '/' Inlet Invert= 121.85', Outlet Invert= 121.21'

Summary for Reach 123R: SD DMH1-LG1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 2.32" for 2 YEAR STORM event


Inflow = 0.50 cfs @ 12.10 hrs, Volume= 0.038 af

Outflow = 0.50 cfs @ 12.10 hrs, Volume= 0.038 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.40 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 0.7 min

Peak Storage= 8 cf @ 12.10 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 51.0' Slope= 0.0100 '/' Inlet Invert= 121.11', Outlet Invert= 120.60'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

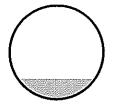
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 15

Summary for Reach 124R: SD CB2-LG5/6/7

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 1.86" for 2 YEAR STORM event

Inflow = 0.39 cfs @ 12.09 hrs, Volume= 0.027 af


Outflow = 0.38 cfs @ 12.09 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.14 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 0.4 min

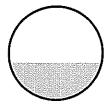
Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 27.0' Slope= 0.0100 '/' Inlet Invert= 120.90', Outlet Invert= 120.63'

Summary for Reach 130R: ROOF DRAIN

Inflow Area = 0.071 ac.100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.20 cfs @ 12.09 hrs, Volume= 0.015 af


Outflow = 0.20 cfs @ 12.09 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.77 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 10.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.10'

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

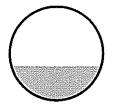
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 16

Summary for Reach 131R: ROOF DRAIN

Inflow Area = 0.059 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.17 cfs @ 12.09 hrs, Volume= 0.013 af


Outflow = 0.17 cfs @ 12.09 hrs, Volume= 0.013 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.64 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.01 fps, Avg. Travel Time= 0.4 min

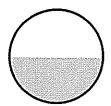
Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Reach 132R: ROOF DRAIN

Inflow Area = 0.101 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.29 cfs @ 12.09 hrs, Volume= 0.022 af


Outflow = 0.29 cfs @ 12.09 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.05 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Prepared by BH2M ENGINEERS

Printed 11/17/2014

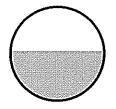
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 17

Summary for Reach 133R: ROOF DRAIN

Inflow Area = 0.116 ac,100.00% Impervious, Inflow Depth > 2.59" for 2 YEAR STORM event

Inflow = 0.33 cfs @ 12.09 hrs, Volume= 0.025 af


Outflow = 0.33 cfs @ 12.09 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.15 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Pond 112P: LG 8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 1.59" for 2 YEAR STORM event

Inflow = 2.41 cfs @ 12.12 hrs, Volume= 0.138 af

Outflow = 2.38 cfs @ 12.13 hrs, Volume= 0.127 af, Atten= 1%, Lag= 0.8 min

Discarded = $0.03 \text{ cfs } \boxed{0}$ 12.13 hrs, Volume= 0.027 afPrimary = $0.03 \text{ cfs } \boxed{0}$ 12.13 hrs, Volume= 0.100 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.19' @ 12.13 hrs Surf.Area= 198 sf Storage= 655 cf

Plug-Flow detention time= 44.2 min calculated for 0.126 af (92% of inflow)

Center-of-Mass det. time= 20.9 min (765.5 - 744.5)

Volume	Invert	Avail.Storage	Storage Description
#1	112.64'	461 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,420 cf Overall - 267 cf Embedded = 1,153 cf x 40.0% Voids
#2	115.64'	267 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		728 cf	Total Available Storage

Elevation (feet)	Surf.Area (sg-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sg-ft)
112.64	198	0	0	198
119.81	198	1.420	1,420	556

Type III 24-hr 2 YEAR STORM Rainfall=3.00"

PARK DANFORTH MODEL III POST Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 18

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
115.64	64	0	0
119.81	64	267	267

<u>Device</u>	Routing	Invert	Outlet Devices
#1	Discarded	112.64'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	118.31'	12.0" Round Culvert L= 79.0' Ke= 0.500
			Inlet / Outlet Invert= 118.31' / 116.40' S= 0.0242 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=119.17' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=2.28 cfs @ 12.13 hrs HW=119.17' (Free Discharge) 2=Culvert (Inlet Controls 2.28 cfs @ 3.16 fps)

Summary for Pond 117P: LG 3/4

Inflow Area =	0.460 ac, 82.62% Impervious, Inflow D	epth > 1.59" for 2 YEAR STORM event
Inflow =	1.04 cfs @ 12.10 hrs, Volume=	0.061 af
Outflow =	1.03 cfs @ 12.11 hrs, Volume=	0.056 af, Atten= 1%, Lag= 0.4 min
Discarded =	0.02 cfs @ 12.11 hrs, Volume=	0.016 af
Primary =	1.01 cfs @ 12.11 hrs, Volume=	0.040 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.51' @ 12.11 hrs Surf.Area= 117 sf Storage= 311 cf

Plug-Flow detention time= 47.1 min calculated for 0.056 af (92% of inflow) Center-of-Mass det. time= 21.0 min (774.7 - 753.7)

Volume	Invert	Avail.Sto	rage	Storage D	escription			
#1	114.22'	2	35 cf	Custom S	tage Data (Cor	nic) Listed below	(Recalc)	
							f x 40.0% Voids	
#2	116.22'	1;	33 cf	Custom S	tage Data (Pris	smatic) Listed be	elow (Recalc) Inside #1	
		3	69 cf	Total Avail	lable Storage			
Elevation	on Su	ırf.Area	Inc	.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(cubic	c-feet)	(cubic-feet)	(sq-ft)		
114.2	22	117		0	0	117		
120.3	39	117		722	722	354		
Elevatio	on Su	ırf.Area	Inc	.Store	Cum.Store			
(fee		(sq-ft)	(cubic	c-feet)	(cubic-feet)			
116.2	22	32		0	0			
120.3	9	32		133	133			
Device	Routing	Invert	Outle	et Devices				
#1	Discarded	114.22'	2.410	2.410 in/hr Exfiltration over Wetted area				
#2	Primary	118.89'	12.0'	' Round C	ulvert L= 5.0'	Ke= 0.500		

Inlet / Outlet Invert= 118.89' / 118.84' S= 0.0100 '/' Cc= 0.900

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 19

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=119.50' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.99 cfs @ 12.11 hrs HW=119.50' (Free Discharge) —2=Culvert (Barrel Controls 0.99 cfs @ 2.82 fps)

Summary for Pond 124P: LG 5/6

inflow Area =	0.171 ac, 86.58% Impervious, Inflow [Depth > 1.86" for 2 YEAR STORM event
Inflow =	0.38 cfs @ 12.09 hrs, Volume=	0.027 af
Outflow =	0.42 cfs @ 12.12 hrs, Volume=	0.023 af, Atten= 0%, Lag= 1.4 min
Discarded =	0.02 cfs @ 12.12 hrs, Volume=	0.013 af
Primary =	0.40 cfs @ 12.12 hrs, Volume=	0.010 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.98' @ 12.12 hrs Surf.Area= 117 sf Storage= 293 cf

Plug-Flow detention time= 96.2 min calculated for 0.023 af (85% of inflow) Center-of-Mass det. time= 53.2 min (830.3 - 777.0)

Volume	Invert	Avail.Storage	Storage Description
#1	115.96'	235 cf	Custom Stage Data (Conic) Listed below (Recalc)
			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids
#2	117.96'	133 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		369 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
115.96	117	0	0	117
122.13	117	722	722	354
Elevation	Surf.Area	Inc.Store	Cum.Store	
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	
117.96	32	0	0	
122.13	32	133	133	

Device	Routing	Invert	Outlet Devices
#1	Discarded	115.96'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	120.63'	12.0" Round Culvert L= 47.0' Ke= 0.500
			Inlet / Outlet Invert= 120.63' / 120.16' S= 0.0100 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.12 hrs HW=120.92' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.35 cfs @ 12.12 hrs HW=120.92' (Free Discharge) 2=Culvert (Inlet Controls 0.35 cfs @ 1.83 fps)

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 20

Summary for Pond 125P: LG 1/2

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.97' @ 12.11 hrs Surf.Area= 117 sf Storage= 276 cf

Plug-Flow detention time= 73.0 min calculated for 0.033 af (88% of inflow) Center-of-Mass det. time= 36.5 min (787.8 - 751.2)

Volume	Invert	Avail.Sto	rage	Storage [Description				
#1	115.96'	2	60 cf	• , , , , , , , , , , , , , , , , , , ,					
#2	117.93'	,	ടറ ഹ്	718 cf Overall - 69 cf Embedded = 649 cf x 40.0% Voids cf Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1					
##2	117.93		69 cf	•		Sinauc) L	isted below	(Necalc) Inside #1	
		3:	29 cf	Total Ava	ilable Storage				
Elevation	Su	rf.Area	Inc	.Store	Cum.Store	W	et.Area		
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)		(sq-ft)		
115.96		117		0	0		117		
122.10		117		718	718		352		
,		• • •					332		
Elevation	Su	rf.Area	Inc	.Store	Cum.Store				
(feet)		(sq-ft)		c-feet)	(cubic-feet)				
			(Cabic						
117.93		32		0	0				
120.10		32		69	69				
Device F	Routing	Invert	Outle	et Devices					
#1 E	Discarded	115.96'	2.410) in/hr Exf	iltration over W	Vetted are	ea		
#2 F	Primary	120.60'							
	. ,				vert= 120.60' / 1			Cc= 0.900	

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=120.96' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.47 cfs @ 12.11 hrs HW=120.96' (Free Discharge) —2=Culvert (Barrel Controls 0.47 cfs @ 2.72 fps)

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 21

Summary for Subcatchment 114S: SA114

Runoff = 0.71 cfs @ 12.09 hrs, Volume=

0.054 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	escription					
	6,863	98 F	Paved parking, HSG D					
	6,863	1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0		. (1414)	(1.000)	(5,5)	Direct Entry, MINIMUM			

Summary for Subcatchment 115S: SA115

Runoff = 0.15 cfs @ 12.09 hrs, Volume=

0.011 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	N Description								
	1,408	98 F	8 Paved parking, HSG D								
	1,408	1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 116S: SA116

Runoff = 0.39 cfs @ 12.09 hrs, Volume=

0.030 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description								
	3,708	98	Paved parking, HSG D								
	35	61	>75% Grass cover, Good, HSG B								
	3,743 35 3,708	98	Weighted Average 0.94% Pervious Area 99.06% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft									

6.0

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment 117S: SA117

Runoff = 0.16 cfs @ 12.09 hrs, Volume=

0.011 af, Depth> 2.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description								
	1,618	61	>75% Grass cover, Good, HSG B								
	1,116	98	Paved park	ing, HSG D)						
	2,734	76	Weighted A	Weighted Average							
	1,618		59.18% Per	vious Area	l						
	1,116		40.82% Imp	pervious Ar	ea						
Тс	Length	Slope	,	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 118S: SA118

Runoff = 0.10 cfs @ 12.09 hrs, Volume=

0.007 af, Depth> 2.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

	rea (sf)	CN	Description						
	1,018	61	>75% Gras	s cover, Go	ood, HSG B				
	697	98	Paved park	ing, HSG D)		_		
	1,715	76	Weighted A	verage					
	1,018	;	59.36% Pervious Area						
	697	•	40.64% lmp	ervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		_		
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 119S: SA119

Runoff = 0.34 cfs @ 12.09 hrs, Volume=

0.026 af, Depth> 4.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Area (sf)	CN	Description					
3,261	98	Paved parking, HSG D					
100	61	>75% Grass cover, Good, HSG B					
3,361	97	Weighted Average					
100		2.98% Pervious Area					
3,261		97.02% Impervious Area					

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 23

Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 122S: SA122

Runoff

0.25 cfs @ 12.09 hrs, Volume=

0.018 af, Depth> 3.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description								
•	710	61	>75% Grass cover, Good, HSG B								
	2,135	98	Paved park	ing, HSG D)						
	2,845	89	Weighted A	Weighted Average							
	710		24.96% Pervious Area								
	2,135		75.04% lmp	pervious Ar	ea						
Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description						
6.0		•			Direct Entry, MINIMUM						

Summary for Subcatchment 124S: SA124

Runoff

0.68 cfs @ 12.09 hrs, Volume=

0.048 af, Depth> 3.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN	Description							
	1,000	39	>75% Grass cover, Good, HSG A							
	6,449	98	Paved park	ing, HSG D	1					
	7,449	90	Weighted A	Weighted Average						
	1,000		13.42% Pervious Area							
	6,449		86.58% Imp	ervious Ar	ea					
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, MINIMUM					

Summary for Subcatchment 130S: SA130 ROOF

Runoff

0.32 cfs @ 12.09 hrs, Volume=

0.024 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 24

_	Α	rea (sf)	CN	Description								
		3,082	98	Roofs, HSG	Roofs, HSG D							
		3,082		100.00% In	pervious A	Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
	6.0					Direct Entry, MINIMUM						

Summary for Subcatchment 131S: SA131 ROOF

Runoff

0.26 cfs @ 12.09 hrs, Volume=

0.020 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN E	Description		
	2,552	98 F	Roofs, HSG	D D	
	2,552	1	00.00% lm	pervious A	ırea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0		ν	\		Direct Entry, MINIMUM

Summary for Subcatchment 132S: SA132

Runoff

0.45 cfs @ 12.09 hrs, Volume=

0.035 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

A	rea (sf)	CN [Description						
	4,394	98 F	Roofs, HSG D						
•	4,394	1	00.00% Im	pervious A	urea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 133S: SA133

Runoff

0.52 cfs @ 12.09 hrs, Volume=

0.040 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC Page 25

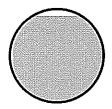
A	rea (sf)	CN [Description							
	5,035	98 F	Roofs, HSG D							
	5,035	,	100.00% Im	npervious A	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry, MINIMUM					

Summary for Reach 112R: SD CB9-LG8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 2.99" for 10 YEAR STORM event

Inflow = 4.16 cfs @ 12.10 hrs, Volume= 0.259 af

Outflow = 4.14 cfs @ 12.11 hrs, Volume= 0.259 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.60 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.11 fps, Avg. Travel Time= 0.2 min

Peak Storage= 14 cf @ 12.10 hrs
Average Depth at Peak Storage= 0.92'
Peak Full Depth= 1.00', Flow Area= 0.9 cf. Capacity

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 19.0' Slope= 0.0100 '/' Inlet Invert= 118.50', Outlet Invert= 118.31'

Summary for Reach 114R: SD CB8-CB9

Inflow Area = 0.821 ac, 87.47% Impervious, Inflow Depth > 2.69" for 10 YEAR STORM event

Inflow = 3.27 cfs @ 12.10 hrs, Volume= 0.184 af

Outflow = 3.20 cfs @ 12.11 hrs, Volume= 0.184 af, Atten= 2%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.51 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 1.0 min

Peak Storage= 67 cf @ 12.10 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 1.00' Flow Area= 0.8 sf

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

Prepared by BH2M ENGINEERS
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 26

12.0" Round Pipe n= 0.012 Length= 114.0' Slope= 0.0100 '/' Inlet Invert= 119.74', Outlet Invert= 118.60'

Summary for Reach 115R: SD CB7-CD8

Inflow Area = 0.032 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.15 cfs @ 12.09 hrs, Volume= 0.011 af

Outflow = 0.14 cfs @ 12.09 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.35 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.90 fps, Avg. Travel Time= 0.4 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 23.0' Slope= 0.0100 '/' Inlet Invert= 120.20', Outlet Invert= 119.97'

Summary for Reach 116R: SD CB6-LG3/4

Inflow Area = 0.460 ac, 82.62% Impervious, Inflow Depth > 2.97" for 10 YEAR STORM event

Inflow = 1.79 cfs @ 12.10 hrs, Volume= 0.114 af

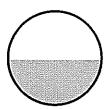
Outflow = 1.78 cfs @ 12.10 hrs, Volume= 0.114 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.82 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 0.1 min

Peak Storage= 5 cf @ 12.10 hrs Average Depth at Peak Storage= 0.48' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 10 YEAR STORM Rainfall=4.70"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

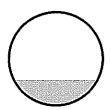
<u>Page 27</u>

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.03', Outlet Invert= 119.89'

Summary for Reach 117R: SD CB5-CB6

Inflow Area = 0.179 ac, 64.97% Impervious, Inflow Depth > 2.96" for 10 YEAR STORM event

Inflow = 0.61 cfs @ 12.10 hrs, Volume= 0.044 af


Outflow = 0.61 cfs @ 12.10 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.58 fps, Min. Travel Time= 0.1 min

Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.27', Outlet Invert= 120.13'

Summary for Reach 118R: SD CB4-CB5

Inflow Area = 0.117 ac, 77.97% Impervious, Inflow Depth > 3.41" for 10 YEAR STORM event

Inflow = 0.45 cfs @ 12.09 hrs, Volume= 0.033 af

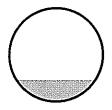
Outflow = 0.44 cfs @ 12.10 hrs, Volume= 0.033 af, Atten= 1%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.28 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 0.8 min

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 28

Peak Storage= 8 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 57.0' Slope= 0.0100 '/' Inlet Invert= 120.94', Outlet Invert= 120.37'

Summary for Reach 119R: SD CB3-CB4

Inflow Area =

0.077 ac, 97.02% Impervious, Inflow Depth > 4.07" for 10 YEAR STORM event

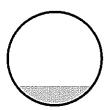
Inflow =

0.34 cfs @ 12.09 hrs, Volume=

0.026 af

Outflow =

0.34 cfs @ 12.09 hrs, Volume=


0.026 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 11.0' Slope= 0.0100 '/' Inlet Invert= 121.15', Outlet Invert= 121.04'

Summary for Reach 122R: SD CB1-DMH1

Inflow Area = 0.136 ac, 88.02% Impervious, Inflow Depth > 3.73" for 10 YEAR STORM event

Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.042 af

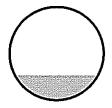
Outflow = 0.57 cfs @ 12.10 hrs, Volume= 0.042 af, Atten= 1%, Lag= 0.5 min

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 29

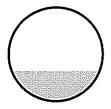
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.52 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.8 min

Peak Storage= 10 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 64.0' Slope= 0.0100 '/' Inlet Invert= 121.85', Outlet Invert= 121.21'

Summary for Reach 123R: SD DMH1-LG1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 3.86" for 10 YEAR STORM event


Inflow = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af

Outflow = 0.82 cfs @ 12.10 hrs, Volume= 0.063 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.91 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.6 min

Peak Storage= 11 cf @ 12.10 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 51.0' Slope= 0.0100 '/' Inlet Invert= 121.11', Outlet Invert= 120.60'

Type III 24-hr 10 YEAR STORM Rainfall=4.70" Printed 11/17/2014

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

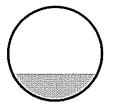
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 30

Summary for Reach 124R: SD CB2-LG5/6/7

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 3.39" for 10 YEAR STORM event

0.68 cfs @ 12.09 hrs, Volume= Inflow 0.048 af


Outflow 0.68 cfs @ 12.09 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.70 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 0.3 min

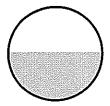
Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00' Flow Area= 0.8 sf. Capacity= 3.86 cfs

12.0" Round Pipe n = 0.012Length= 27.0' Slope= 0.0100 '/' Inlet Invert= 120.90', Outlet Invert= 120.63'

Summary for Reach 130R: ROOF DRAIN

Inflow Area = 0.071 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow 0.32 cfs @ 12.09 hrs, Volume= 0.024 af


Outflow 0.32 cfs @ 12.09 hrs, Volume= 0.024 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.12 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n = 0.012Length= 10.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.10'

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

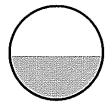
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 31

Summary for Reach 131R: ROOF DRAIN

Inflow Area = 0.059 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af


Outflow = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.98 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 0.4 min

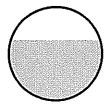
Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Reach 132R: ROOF DRAIN

Inflow Area = 0.101 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

Inflow = 0.45 cfs @ 12.09 hrs, Volume= 0.035 af


Outflow = 0.45 cfs @ 12.09 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.39 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.09 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 32

Summary for Reach 133R: ROOF DRAIN

Inflow Area = 0.116 ac,100.00% Impervious, Inflow Depth > 4.15" for 10 YEAR STORM event

0.52 cfs @ 12.09 hrs, Volume= 0.040 af Inflow

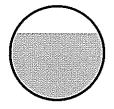
Outflow 0.52 cfs @ 12.09 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method. Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.47 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.09 hrs

Average Depth at Peak Storage= 0.36'


Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe

n = 0.012

Length= 25.0' Slope= 0.0100 '/'

Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Pond 112P: LG 8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 2.99" for 10 YEAR STORM event

Inflow 4.14 cfs @ 12.11 hrs, Volume= 0.259 af

4.07 cfs @ 12.12 hrs, Volume= Outflow 0.246 af, Atten= 2%, Lag= 0.6 min

Discarded = 0.03 cfs @ 12.13 hrs, Volume= 0.029 af 4.04 cfs @ 12.12 hrs, Volume= Primary 0.217 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.95' @ 12.12 hrs Surf.Area= 198 sf Storage= 728 cf

Plug-Flow detention time= 29.4 min calculated for 0.245 af (95% of inflow)

Center-of-Mass det. time= 13.6 min (758.5 - 744.9)

Volume	Invert	Avail.Storage	Storage Description
#1	112.64'	461 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,420 cf Overall - 267 cf Embedded = 1,153 cf x 40.0% Voids
#2	115.64'	267 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		700 -4	Total Available Otanana

728 cf Total Available Storage

Ε	levation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
	112.64	198	0	0	198
	119.81	198	1,420	1,420	556

Type III 24-hr 10 YEAR STORM Rainfall=4.70"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 33

Surf.Area	Inc.Store	Cum.Store
(sq-ft)	(cubic-feet)	(cubic-feet)
64	0	0
64	267	267
	(sq-ft) 64	(sq-ft) (cubic-feet) 64 0

Device	Routing	Invert	Outlet Devices
#1	Discarded	112.64'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	118.31'	12.0" Round Culvert L= 79.0' Ke= 0.500

Inlet / Outlet Invert= 118.31' / 116.40' S= 0.0242 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=119.87' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=3.93 cfs @ 12.12 hrs HW=119.89' (Free Discharge) 2=Culvert (Inlet Controls 3.93 cfs @ 5.00 fps)

Summary for Pond 117P: LG 3/4

Inflow Area = 0.460 ac, 82.62% Impervious, Inflow Depth > 2.97" for 10 YEAR STORM event 1.78 cfs @ 12.10 hrs, Volume= 0.114 af

Outflow = 1.78 cfs @ 12.11 hrs, Volume= 0.108 af, Atten= 0%, Lag= 0.3 min 0.02 cfs @ 12.11 hrs, Volume= 0.017 af

Primary = 1.76 cfs @ 12.11 hrs, Volume= 0.091 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.76' @ 12.11 hrs Surf.Area= 117 sf Storage= 327 cf

Plug-Flow detention time= 30.5 min calculated for 0.107 af (94% of inflow) Center-of-Mass det. time= 12.3 min (763.8 - 751.5)

Volume	Invert	Avail.Sto	rage S	torage De	scription		
#1	114.22'	23			age Data (Co		
#2	116.22'	13					88 cf x 40.0% Voids d below (Recalc) Inside #1
	110.22		<u> </u>		able Storage	ornano, Lieto	a bolow (Hodalo) Hiolad III
Clauration	. Of	A	laa Ci	1	Com Chana	\A/a+ A	
Elevatior feet)		Area sq-ft)	Inc.St (cubic-fe		Cum.Store (cubic-feet)	Wet.A	rea _I -ft)
114.22	·	117	(OGDIO I	0	0		117
120.39		117		722	722		B54
Elevation	n Surf	Δrea	Inc.St	tore	Cum.Store		
(feet		sq-ft)	(cubic-fe		(cubic-feet)		
116.22	2	32		0	0		
120.39)	32		133	133		
Device	Routing	Invert	Outlet I	Devices			
#1	Discarded	114.22'	2.410 ii	n/hr Exfilt	ration over V	Vetted area	

DOVIOC	rounig	HIVOIL	Outlet Devices
#1	Discarded	114.22'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	118.89'	12.0" Round Culvert L= 5.0' Ke= 0.500
	•		Inlet / Outlet Invert= 118.89' / 118.84' S= 0.0100 '/' Cc= 0.900

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 34

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=119.75' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=1.74 cfs @ 12.11 hrs HW=119.75' (Free Discharge) —2=Culvert (Barrel Controls 1.74 cfs @ 3.25 fps)

Summary for Pond 124P: LG 5/6

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 3.39" for 10 YEAR STORM event Inflow = 0.68 cfs @ 12.09 hrs, Volume= 0.048 af Outflow = 0.68 cfs @ 12.10 hrs, Volume= 0.043 af, Atten= 0%, Lag= 0.4 min 0.02 cfs @ 12.10 hrs, Volume= 0.015 af Primary = 0.66 cfs @ 12.10 hrs, Volume= 0.028 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 121.04' @ 12.10 hrs Surf.Area= 117 sf Storage= 297 cf

Plug-Flow detention time= 61.4 min calculated for 0.043 af (89% of inflow) Center-of-Mass det. time= 25.7 min (788.6 - 762.8)

Volume	Inver	t Avail.Sto	rage Stor	age Description					
#1	115.96	' 2		• • • • • • • • • • • • • • • • • • • •					
#2	117.96	. 1		of Overall - 133 of tom Stage Data			l0.0% Voids (Recalc) Inside #1		
	,,,,,,			ıl Available Stora					
Elevatio	on S	urf.Area	Inc.Stor	e Cum.Sto	re V	Vet.Area			
(fee	et)	(sq-ft)	(cubic-feet	(cubic-fee	et)	(sq-ft)			
115.9	96	117)	0	 117			
122.1		117	72	2 72	22	354			
Elevatio (fee	-	urf.Area (sq-ft)	Inc.Stor						
117.9	96	32	1	Ó	Ó				
122.1		32	13	3 13	33				
Device	Routing	Invert	Outlet De	vices					
#1	Discarded	115.96'	2.410 in/h	r Exfiltration ove	er Wetted a	rea			
#2				2.0" Round Culvert L= 47.0' Ke= 0.500 let / Outlet Invert= 120.63' / 120.16' S= 0.0100 '/' Cc= 0.900					

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=121.04' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.66 cfs @ 12.10 hrs HW=121.04' (Free Discharge)
2=Culvert (Inlet Controls 0.66 cfs @ 2.18 fps)

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 35

Summary for Pond 125P: LG 1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 3.85" for 10 YEAR STORM event lnflow = 0.82 cfs @ 12.10 hrs, Volume= 0.063 af Outflow = 0.82 cfs @ 12.10 hrs, Volume= 0.057 af, Atten= 0%, Lag= 0.3 min Discarded = 0.80 cfs @ 12.11 hrs, Volume= 0.017 af Primary = 0.80 cfs @ 12.10 hrs, Volume= 0.040 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 121.09' @ 12.11 hrs Surf.Area= 117 sf Storage= 282 cf

Plug-Flow detention time= 53.3 min calculated for 0.057 af (91% of inflow) Center-of-Mass det. time= 23.2 min (768.6 - 745.4)

Volume	Invert	Avail.Sto	rage	Storage l	Description		
#1	115.96'	26	60 cf		• ,	ic) Listed below (Red	•
#2	117.93'	(69 cf			pedded = 649 cf x 40 matic) Listed below	
		32	29 cf	Total Ava	ailable Storage		
Elevation (feet)		f.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
115.96		117		0	0	117	
122.10		117		718	718	352	
Elevation (feet)		f.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
117.93		32		0	0		
120.10		32		69	69		
Device F	Routing	Invert	Outle	et Devices			
#1 [Discarded	115.96'	2.410) in/hr Ext	iltration over W	etted area	
#2 Primary		120.60'	Inlet	" Round Culvert L= 19.0' Ke= 0.500 :/ Outlet Invert= 120.60' / 120.41' S= 0.0100 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf			

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=121.09' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.79 cfs @ 12.10 hrs HW=121.09' (Free Discharge) 2=Culvert (Barrel Controls 0.79 cfs @ 3.03 fps)

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 36

Summary for Subcatchment 114S: SA114

Runoff

=

0.83 cfs @ 12.09 hrs, Volume=

0.064 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Area (sf)	CN E	Description						
******	6,863	98 F	Paved parking, HSG D						
	6,863	1	100.00% Impervious Area						
T (min		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0)				Direct Entry, MINIMUM				

Summary for Subcatchment 115S: SA115

Runoff

=

0.17 cfs @ 12.09 hrs, Volume=

0.013 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

_	Α	rea (sf)	CN [Description						
		1,408	98 F	Paved parking, HSG D						
		1,408	1	100.00% Impervious Area						
	Tc	Length		-		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 116S: SA116

Runoff :

0.45 cfs @ 12.09 hrs, Volume=

0.035 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Aı	rea (sf)	CN	Description							
	3,708	98	Paved parking, HSG D							
	35	61	>75% Gras:	75% Grass cover, Good, HSG B						
`	3,743	98	Weighted Average							
	35		0.94% Perv	ious Ārea						
	3,708		99.06% lmp	ervious Ar	ea					
	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						

6.0

Direct Entry, MINIMUM

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 37

Summary for Subcatchment 117S: SA117

Runoff

0.21 cfs @ 12.09 hrs, Volume=

0.014 af, Depth> 2.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN	Description						
	1,618	61	>75% Grass cover, Good, HSG B						
	1,116	98	Paved park	ing, HSG D)				
	2,734	76	Weighted Average						
	1,618	;	59.18% Per	vious Area	1				
	1,116	4	40.82% Imp	ervious Ar	rea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 118S: SA118

Runoff

0.13 cfs @ 12.09 hrs, Volume=

0.009 af, Depth> 2.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN I	Description						
	1,018	61 :	>75% Gras	s cover, Go	ood, HSG B				
	697	98 I	Paved park	ing, HSG D)				
	1,715	76 \	Neighted A	verage					
	1,018	į	59.36% Pervious Area						
	697	4	10.64% Imp	ervious Are	ea				
_									
Tc	Length	Slope	_	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry, MINIMUM				

Summary for Subcatchment 119S: SA119

Runoff

0.40 cfs @ 12.09 hrs, Volume=

0.031 af, Depth> 4.80"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Area (sf)	CN	Description
3,261	98	Paved parking, HSG D
100	61	>75% Grass cover, Good, HSG B
3,361	97	Weighted Average
100		2.98% Pervious Area
3,261		97.02% Impervious Area

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 38

Tc (min)	 Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry, MINIMUM

Summary for Subcatchment 122S: SA122

Runoff

0.31 cfs @ 12.09 hrs, Volume=

0.022 af, Depth> 4.02"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	rea (sf)	CN	Description					
	710	61	>75% Gras	s cover, Go	ood, HSG B			
	2,135	98	^D aved park	ing, HSG D)			
	2,845	89	Neighted A	verage				
	710		24.96% Pei	າvious Area				
	2,135	•	75.04% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 124S: SA124

Runoff

0.82 cfs @ 12.09 hrs, Volume=

0.059 af, Depth> 4.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN	Description							
	1,000	39	>75% Gras	75% Grass cover, Good, HSG A						
	6,449	98	Paved park	ing, HSG D)					
	7,449	90	Weighted Average							
	1,000		13.42% Pervious Area							
	6,449		86.58% Impervious Area							
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft	-	(cfs)						
6.0		•			Direct Entry, MINIMUM					

Summary for Subcatchment 130S: SA130 ROOF

Runoff

0.37 cfs @ 12.09 hrs, Volume=

0.029 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

PARK	DANEC	RTH MO	DFI III	POST
	DANIC		<i></i>	FUJI

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 39

 Α	rea (sf)	CN I	Description					
	3,082	98	Roofs, HSC	B D				
	3,082	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 131S: SA131 ROOF

Runoff =

0.31 cfs @ 12.09 hrs, Volume=

0.024 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

	Area (sf)	CN I	Description		
	2,552	98 F	Roofs, HSC	D D	
	2,552	,	100.00% Im	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 132S: SA132

Runoff

0.53 cfs @ 12.09 hrs, Volume=

0.041 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

A	rea (sf)	CN [Description			
	4,394	98 F	Roofs, HSG	B D		
	4,394	1	00.00% Im	pervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0			•		Direct Entry, MINIMUM	

Summary for Subcatchment 133S: SA133

Runoff =

0.61 cfs @ 12.09 hrs, Volume=

0.047 af, Depth> 4.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YEAR STORM Rainfall=5.50"

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 40

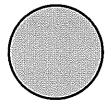
A	rea (sf)	CN [Description		
	5,035	98 F	Roofs, HSC	D D	
	5,035	1	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 112R: SD CB9-LG8/9/10

Inflow Area = 1.037 ac. 90.08% Impervious, Inflow Depth > 3.68" for 25YEAR STORM event

Inflow = 4.94 cfs @ 12.10 hrs, Volume= 0.318 af

Outflow = 4.19 cfs @ 12.07 hrs, Volume= 0.318 af, Atten= 15%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.59 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.25 fps, Avg. Travel Time= 0.1 min

Peak Storage= 15 of @ 12.10 hrs Average Depth at Peak Storage= 1.00'

Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 19.0' Slope= 0.0100 '/' Inlet Invert= 118.50'. Outlet Invert= 118.31'

Summary for Reach 114R: SD CB8-CB9

Inflow Area = 0.821 ac, 87.47% Impervious, Inflow Depth > 3.37" for 25YEAR STORM event

Inflow = 3.90 cfs @ 12.10 hrs, Volume= 0.230 af

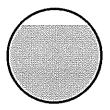
Outflow = 3.83 cfs @ 12.11 hrs, Volume= 0.230 af, Atten= 2%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.60 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.96 fps, Avg. Travel Time= 1.0 min

Peak Storage= 79 cf @ 12.10 hrs Average Depth at Peak Storage= 0.83' Bank-Full Depth= 1.00' Flow Area= 0.8 sf. Capacity= 3.86 cfs

Type III 24-hr 25YEAR STORM Rainfall=5.50"


Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

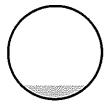
Page 41

12.0" Round Pipe n= 0.012 Length= 114.0' Slope= 0.0100 '/' Inlet Invert= 119.74', Outlet Invert= 118.60'

Summary for Reach 115R: SD CB7-CD8

Inflow Area = 0.032 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.17 cfs @ 12.09 hrs, Volume= 0.013 af


Outflow = 0.17 cfs @ 12.09 hrs, Volume= 0.013 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.46 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.94 fps, Avg. Travel Time= 0.4 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 23.0' Slope= 0.0100 '/' Inlet Invert= 120.20', Outlet Invert= 119.97'

Summary for Reach 116R: SD CB6-LG3/4

Inflow Area = 0.460 ac, 82.62% Impervious, Inflow Depth > 3.66" for 25YEAR STORM event

Inflow = 2.14 cfs @ 12.10 hrs, Volume= 0.140 af

Outflow = 2.14 cfs @ 12.10 hrs, Volume= 0.140 af, Atten= 0%, Lag= 0.1 min

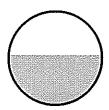
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.04 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.78 fps, Avg. Travel Time= 0.1 min

Peak Storage= 6 cf @ 12.10 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr 25YEAR STORM Rainfall=5.50"

PARK DANFORTH MODEL III POST


Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 42

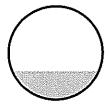
Printed 11/17/2014

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.03', Outlet Invert= 119.89'

Summary for Reach 117R: SD CB5-CB6

Inflow Area = 0.179 ac, 64.97% Impervious, Inflow Depth > 3.63" for 25YEAR STORM event

Inflow = 0.74 cfs @ 12.10 hrs, Volume= 0.054 af


Outflow = 0.74 cfs @ 12.10 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.27', Outlet Invert= 120.13'

Summary for Reach 118R: SD CB4-CB5

Inflow Area = 0.117 ac, 77.97% Impervious, Inflow Depth > 4.11" for 25YEAR STORM event

Inflow = 0.54 cfs @ 12.09 hrs, Volume= 0.040 af

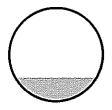
Outflow = 0.53 cfs @ 12.10 hrs, Volume= 0.040 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.46 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 0.7 min

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 43

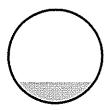
Peak Storage= 9 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 57.0' Slope= 0.0100 '/' Inlet Invert= 120.94', Outlet Invert= 120.37'

Summary for Reach 119R: SD CB3-CB4

Inflow Area = 0.077 ac, 97.02% Impervious, Inflow Depth > 4.80" for 25YEAR STORM event

Inflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af


Outflow = 0.40 cfs @ 12.09 hrs, Volume= 0.031 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.18 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 11.0' Slope= 0.0100 '/' Inlet Invert= 121.15', Outlet Invert= 121.04'

Summary for Reach 122R: SD CB1-DMH1

Inflow Area = 0.136 ac, 88.02% Impervious, Inflow Depth > 4.46" for 25YEAR STORM event

Inflow = 0.68 cfs @ 12.09 hrs, Volume= 0.051 af

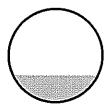
Outflow = 0.67 cfs @ 12.10 hrs, Volume= 0.051 af, Atten= 1%, Lag= 0.5 min

Type III 24-hr 25YEAR STORM Rainfall=5.50"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC


Printed 11/17/2014

Page 44

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.70 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 0.8 min

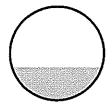
Peak Storage= 12 cf @ 12.09 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 64.0' Slope= 0.0100 '/' Inlet Invert= 121.85', Outlet Invert= 121.21'

Summary for Reach 123R: SD DMH1-LG1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 4.58" for 25YEAR STORM event

Inflow = 0.98 cfs @ 12.09 hrs, Volume= 0.074 af


Outflow = 0.97 cfs @ 12.10 hrs, Volume= 0.074 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.10 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.57 fps, Avg. Travel Time= 0.5 min

Peak Storage= 12 cf @ 12.10 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 51.0' Slope= 0.0100 '/' Inlet Invert= 121.11', Outlet Invert= 120.60'

Type III 24-hr 25YEAR STORM Rainfall=5.50" Printed 11/17/2014

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

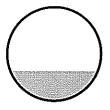
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 45

Summary for Reach 124R: SD CB2-LG5/6/7

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 4.12" for 25YEAR STORM event

Inflow = 0.82 cfs @ 12.09 hrs, Volume= 0.059 af


Outflow = 0.82 cfs @ 12.09 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.90 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.42 fps, Avg. Travel Time= 0.3 min

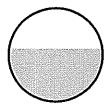
Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.31' Bank-Full Depth= 1.00' Flow Area= 0.8 sf. Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 27.0' Slope= 0.0100 '/' Inlet Invert= 120.90', Outlet Invert= 120.63'

Summary for Reach 130R: ROOF DRAIN

Inflow Area = 0.071 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.37 cfs @ 12.09 hrs, Volume= 0.029 af


Outflow = 0.37 cfs @ 12.09 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 10.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.10'

Type III 24-hr 25YEAR STORM Rainfall=5.50"

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

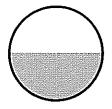
Printed 11/17/2014 Page 46

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Summary for Reach 131R: ROOF DRAIN

0.059 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event Inflow Area =

Inflow 0.31 cfs @ 12.09 hrs, Volume= 0.024 af


Outflow 0.31 cfs @ 12.09 hrs, Volume= 0.024 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.10 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 0.3 min

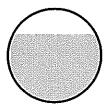
Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n = 0.012Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Reach 132R: ROOF DRAIN

0.101 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event Inflow Area =

Inflow 0.53 cfs @ 12.09 hrs, Volume= 0.041 af


Outflow 0.53 cfs @ 12.09 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.49 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.45 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n = 0.012Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Printed 11/17/2014

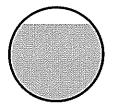
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 47

Summary for Reach 133R: ROOF DRAIN

Inflow Area = 0.116 ac,100.00% Impervious, Inflow Depth > 4.87" for 25YEAR STORM event

Inflow = 0.61 cfs @ 12.09 hrs, Volume= 0.047 af


Outflow = 0.61 cfs @ 12.09 hrs, Volume= 0.047 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.53 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Pond 112P: LG 8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 3.68" for 25YEAR STORM event

Inflow = 4.19 cfs @ 12.07 hrs, Volume= 0.318 af

Outflow = 4.20 cfs @ 12.10 hrs, Volume= 0.305 af, Atten= 0%, Lag= 1.9 min

Discarded = 0.03 cfs @ 12.10 hrs, Volume= 0.030 af Primary = 4.16 cfs @ 12.10 hrs, Volume= 0.275 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 120.02' @ 12.10 hrs Surf.Area= 198 sf Storage= 728 cf

Plug-Flow detention time= 26.4 min calculated for 0.305 af (96% of inflow)

Center-of-Mass det. time= 12.2 min (757.7 - 745.4)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	112.64'	461 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,420 cf Overall - 267 cf Embedded = 1,153 cf x 40.0% Voids
#2	115.64'	267 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		728 cf	Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
112.64	198	0	0	198
119.81	198	1,420	1,420	556

Type III 24-hr 25YEAR STORM Rainfall=5.50"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 48

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
115.64	64	0	0
119.81	64	267	267

Device	Routing	Invert	Outlet Devices
#1	Discarded	112.64'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	118.31'	12.0" Round Culvert L= 79.0' Ke= 0.500
	-		Inlet / Outlet Invert= 118.31' / 116.40' S= 0.0242 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=120.02' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=4.15 cfs @ 12.10 hrs HW=120.02' (Free Discharge) 2=Culvert (Inlet Controls 4.15 cfs @ 5.29 fps)

Summary for Pond 117P: LG 3/4

Inflow Area =	0.460 ac, 82.62% Impervious, Inflow D	Depth > 3.66" for 25YEAR STORM event
Inflow =	2.14 cfs @ 12.10 hrs, Volume=	0.140 af
Outflow =	2.13 cfs @ 12.11 hrs, Volume=	0.134 af, Atten= 0%, Lag= 0.3 min
Discarded =	0.02 cfs @ 12.11 hrs, Volume=	0.018 af
Primary =	2.12 cfs @ 12.11 hrs, Volume=	0.116 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.87' @ 12.11 hrs Surf.Area= 117 sf Storage= 334 cf

Plug-Flow detention time= 26.9 min calculated for 0.133 af (95% of inflow) Center-of-Mass det. time= 11.4 min (761.9 - 750.5)

<u>Volume</u>	Invert	: Avail.Sto	rage S	Storage D	Description			
#1	114.22'	2	35 cf (of Custom Stage Data (Conic) Listed below (Recalc)				
			-	+			8 cf x 40.0% Void	
#2	116.22	<u>' 1</u> ;	33 cf (Custom S	Stage Data (Pris	smatic) Listed	below (Recalc) I	nside #1
		30	69 cf 7	Γotal Ava	ilable Storage			
	_					144 . 4		
Elevation	on S	urf.Area	Inc.S	store	Cum.Store	Wet.Are	ea	
(fee	et)	(sq-ft)	(cubic-1	feet)	(cubic-feet)	(sq-	<u>ft)</u>	
114.2	22	117		0	0	11	17	
120.3	39	117		722	722	35	54	
Elevation	on Si	urf.Area	Inc.S	Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-1	feet)	(cubic-feet)			
116.2	22	32		0	0			
120.3	39	32		133	133			
Device	Routing	Invert	Outlet	Devices				
#1	Discarded	114.22'	2.410	in/hr Exf	iltration over W	etted area		
#2	Primary	118.89'	12.0"	12.0" Round Culvert L= 5.0' Ke= 0.500				

Inlet / Outlet Invert= 118.89' / 118.84' S= 0.0100 '/' Cc= 0.900

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 49

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=119.86' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=2.09 cfs @ 12.11 hrs HW=119.86' (Free Discharge) 2=Culvert (Barrel Controls 2.09 cfs @ 3.42 fps)

Summary for Pond 124P: LG 5/6

Inflow Area =	0.171 ac, 86.58% Impervious, Inflow [Depth > 4.12" for 25YEAR STORM event
Inflow =	0.82 cfs @ 12.09 hrs, Volume=	0.059 af
Outflow =	0.82 cfs @ 12.10 hrs, Volume=	0.053 af, Atten= 0%, Lag= 0.4 min
Discarded =	0.02 cfs @ 12.10 hrs, Volume=	0.016 af
Primary =	0.80 cfs @ 12.10 hrs, Volume=	0.037 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 121.09' @ 12.10 hrs Surf.Area= 117 sf Storage= 300 cf

Plug-Flow detention time= 54.0 min calculated for 0.053 af (90% of inflow) Center-of-Mass det. time= 21.3 min (779.9 - 758.6)

Volume	Inve	ert Avail.Sto	orage Stora	ge Description			
#1	115.9	6' 2		• .	nic) Listed below (Re	•	
40	447.0	01 4			mbedded = $588 \text{ cf } x$		
<u>#2</u>	117.9	<u>6' 1</u>	33 cf Custo	om Stage Data (Pri	ismatic) Listed below	(Recaic) Inside #1	
		3	69 cf Total	Available Storage			
Elevation	on :	Surf.Area	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
115.9	96	117	0	0	117		
122.1	13	117	722	722	354		
Elevation	on :	Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
117.9	96	32	0	0			
122.1	13	32	133	133			
Device	Routing	Invert	Outlet Devi	ces			
#1	Discarded	115.96	2.410 in/hr	410 in/hr Exfiltration over Wetted area			
#2	Primary	120.63'	12.0" Roui	nd Culvert L= 47.	0' Ke= 0.500		
	•		Inlet / Outle	et Invert= 120.63' / 1	120.16' S= 0.0100 '/'	Cc= 0.900	

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=121.08' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.79 cfs @ 12.10 hrs HW=121.08' (Free Discharge) —2=Culvert (Barrel Controls 0.79 cfs @ 3.36 fps)

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 50

Summary for Pond 125P: LG 1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 4.58" for 25YEAR STORM event 0.97 cfs @ 12.10 hrs, Volume= 0.074 af 0.97 cfs @ 12.10 hrs, Volume= 0.069 af, Atten= 0%, Lag= 0.3 min 0.02 cfs @ 12.10 hrs, Volume= 0.018 af 0.95 cfs @ 12.10 hrs, Volume= 0.051 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 121.14' @ 12.10 hrs Surf.Area= 117 sf Storage= 284 cf

Plug-Flow detention time= 48.5 min calculated for 0.069 af (92% of inflow) Center-of-Mass det. time= 20.4 min (764.1 - 743.6)

Volume	Invert	Avail.Sto	rage	Storage	Description		
#1	115.96'	20	60 cf	Custom	Stage Data (Con	nic) Listed below (F	Recalc)
						pedded = $649 \text{ cf } x$	
#2	117.93'	(<u>69 cf</u>	Custom	Stage Data (Pris	matic) Listed belo	w (Recalc) Inside #1
		32	29 cf	Total Ava	ailable Storage		
	_						
Elevation		f.Area		.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	(sq-ft)	
115.96		117		0	0	117	
122.10		117		718	718	352	
Elevation	Surf	f.Area	Inc	.Store	Cum.Store		
(feet)	•	(sq-ft)	(cubic	c-feet)	(cubic-feet)		
117.93		32		0	0		
120.10		32		69	69		
Device R	outing	Invert	Outle	et Devices	;		
#1 D	iscarded	115.96'	2.410	0 in/hr Ex	filtration over W	etted area	•
#2 P	rimary	120.60'	12.0" Round Culvert L= 19.0' Ke= 0.500				
	,		Inlet / Outlet Invert= 120.60' / 120.41' S= 0.0100 '/' Cc= 0.900				'/' Cc= 0.900
					w Area= 0.79 sf		

Discarded OutFlow Max=0.02 cfs @ 12.10 hrs HW=121.14' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.94 cfs @ 12.10 hrs HW=121.14' (Free Discharge) —2=Culvert (Barrel Controls 0.94 cfs @ 3.15 fps)

APPENDIX F O&M PLAN

OPERATIONS & MAINTENANCE PLAN FOR STORMWATER FACILITIES October 2014

For: The Park Danforth 777 Stevens Avenue Portland, Maine

The applicant, The Park Danforth, will be responsible for all operation and maintenance of the entire site.

Site Description

The Park Danforth is an existing elderly housing project that will be expanded.

Stormwater Overview and Objectives

The Stormwater Plan has two separate systems:

- 1. The existing on-site stormwater system that discharges to the City stormdrain in Forest Avenue.
- 2. The new stormwater system that incorporates infiltration for the "First Flush" therefore providing treatment before discharging to the city stormdrain in Forest Avenue.

Contacts:

Design Engineer:	BH2M 28 State Street Gorham, Me. 04038 (207) 839-2771
Developer:	The Park Danforth 777 Stevens Avenue Portland, Me. 04103
Inspector:	

Contractor 1	
Contractor 2	

Purpose

The following O&M Plan provides guidance and schedules for the O&M of the stormwater facility.

Leaching Galleries

Contractors:

- 1. Inlet Inspections: The inlet of the basin shall be checked periodically to ensure that flows are not blocked by debris. Inspections shall be conducted monthly during wet weather conditions from March to November.
- 2. Erosion & Instability: The drywell should be inspected annually for erosion, destabilization of side slopes, embankment settling and other signs of structural failure, and loss of storage volume due to sediment accumulation. Corrective action should be taken immediately upon identification of problems.
- 3. Sediment Removal: Sediment shall be removed from the structure at least annually and from the basin when necessary.
- 4. Measurement of Sediment Accumulation: Inspect for sediment accumulation. If sediment reaches 1' in depth, the sediment shall be removed.

Storm Drain System Includes Catch Basins & Manholes

- 1. Inspect catch basin inlets on a monthly basis for debris or conditions which could inhibit flow entry. Remove debris and properly dispose.
- 2. Inspect the catch basin structures on an annual basis.
 - a) Check that rims are securely attached and properly set to optimize flow entry.

- b) Measure and record silt accumulation, if any. Sumps shall be cleaned at least on a yearly basis in the spring.
- 3. Check pipelines on an annual basis to determine silt accumulation, if any. Remove excess silt if found.

City of Portland

The owner is required to comply with the annual reporting requirements contained in Chapter 32 of the City of Portland Code of Ordinances.

Housekeeping

- 1. Use "Inspection & Maintenance Log" and keep records in three-ring binder.
- 2. See attached Appendix B "Inspection and Maintenance" from Maine DEP Stormwater Regulations.
- 3. See attached "Appendix C" from Maine DEP Stormwater Regulations for Performance Standards.

INSPECTION SUMMARY The Park Danforth

Inspection of Schedule *

• Leaching Galleries

Inspect Monthly Remove Sediment Yearly

• Storm Drains and Catchbasins

Inspect Monthly Measure Silt & Remove Yearly

^{*} After significant rainstorm in addition to regular inspections. Inspections shall be within 3 days of significant rainfall.

INSPECTION LOG The Park Danforth Stormwater Management Inspection & Maintenance Log

Date of Inspection:
Inspection by:
Purpose of Inspection: Monthly, Yearly, Significant Rainfall (circle one)
• Leaching Galleries
Description of Conditions:
Maintenance & Date of Repairs:
Sediment Inspection & Removal:
• Catchbasins
Description of Conditions:

Maintenance & Date of	Repairs:		
Sediment Inspection &	Removal:		
· · · · · · · · · · · · · · · · · · ·			
			Inspector Signatu
			 Inspector Signatur

<u>APPENDIX G</u> 1997 STORMWATER REPORT

May 13, 1997 3042

STORMWATER MANAGEMENT AND EROSION CONTROL REPORT

The Park Danforth 777 Stevens Avenue Portland, Maine

Land Use Consultants, Inc. is submitting plans and drainage calculations on behalf of The park Danforth for a proposed three (3) story addition to the existing seven (7) story building. The 2.5 acre site is located adjacent to Poland Street between Stevens Avenue and Forest Avenue. The existing seven (7) story brick building includes 106 residential dwelling units and a small detached garage with a main parking lot along Stevens Avenue and a supplementary parking lot in the rear with access from Forest Avenue.

Drainage for the present site is collected with several existing catch basins around the building which discharge into a separated storm drain in Forest Avenue. No stormwater detention methods are implemented for the existing site. Most of the existing storm drain pipes are installed with flat slopes typically less than 0.5% due to the available invert elevation at Forest Avenue. Drainage patterns for the existing site are depicted on the Pre-Development Drainage Sketch Plan showing 11 small drainage subcatchment areas corresponding to each catch basin or sub-drainage area. These subcatchments combine in the existing storm drain system to determine the total discharge from the site at the point where runoff enters the Forest Avenue storm sewer (Reach#11). Due to the small site and subcatchment areas a variation of the "Rational Method" was used to predict peak runoff rates from the site. Runoff calculations were performed with HydroCAD 4.51 software using the "Modified Rational Method".

The proposed site includes a large three (3) story addition to the existing building, thus increasing the number of dwelling units to 161. The existing parking area in the rear of the building will be relocated as shown to account for the new addition. The parking area along Stevens Avenue will be expanded to provide extra parking for the additional units. As a result of the proposed changes, the total impervious area is increased from 1.2 acres to 1.6 acres for the developed site. This increase in impervious surface resulted in a modest (15±%) increase of stormwater peak flow rates from the developed site. Due to the limited amount of large open areas available a conventional detention pond is not feasible for this site. In order to provide adequate flow control for this project we are proposing to install a hydro-brake vortex valve in the new storm drain line. The existing system was evaluated for potential storage capacity for detention volume using the existing structures and pipes. The system was determined to have adequate storage for the 25 year storm. However, a 24 inch diameter storm drain was added at the end of the line to provide additional capacity and to provide immediate and close storage for small storms such as the one or two year storm events.

Proposed drainage patterns for the developed site are similar to the existing conditions. The Post-development Drainage Sketch Plan shows the proposed site divided into 10 subcatchment areas which discharge to the Forest Avenue storm sewer. Reach #11 is the point of comparison to the pre-development calculations since this point represents the total combined flow from the

May 13, 1997

3042

developed site and includes the resultant peak flow rates after considering the flow attenuation contributed by the in-line hydro brake.

The results of our drainage calculations are indicated in the Summary Table below. With the addition of the on-line hydro brake the peak runoff rate will be slightly reduced to below the existing peak flow rates for the 2, 10 and 25 year storm events. The calculations and supporting material are included in the Appendix. In order to save on paper and reproduction volume a full report and summary was generated for the 25 year storm event only for the pre-developed and post-developed conditions. A brief summary of each of the subcatchments, reaches or structures only will be listed for the 2 year and 10 year storms.

Summary Table						
<u>Storm</u>	Existing (cfs)	Developed (cfs)				
2 year	4.26	3.89				
10 year	5.99	5.81				
25 year	7.01	6.80				

(The rates indicated above are the combined peak flow rates evaluated at Reach #11)

Erosion Control measures are limited to siltation fencing around the perimeter of the site and hay bale sediment barriers around the catch basins as shown on the Post-development Drainage Sketch.

It is our conclusion that the proposed storm drain and hydro brake system will provide adequate control of stormwater runoff from the site without producing any significant downstream impacts. We feel that the proposed measures, if properly constructed and maintained, will be sufficient to control stormwater runoff and erosion from the proposed site without significant degradation of existing water quality.

Prépared by:

Patrick L. Clark, P. E.

PLC/pp

Enclosure: Pre-Development Drainage Sketch (11 in. x 17 in.)

Post-Development Drainage Sketch (11 in. x 17 in.)

Appendix (with calculations)

APPENDIX

STORMWATER MANAGEMENT AND EROSION CONTROL REPORT

The Park Danforth 777 Stevens Avenue Portland, Maine

Calculation & Worksheets

TABLE 2

Runoff Coefficients
(Values of C in Q=CIA)

. Open Sandy Loam	Clay and Silt Loam	Tight Clay	
0.10 0.25 0.30	0.30 0.35 0.50	0.40 0.50 0.60	
0.10 0.16 0.22	0.30 0.36 0.42	0.40 0.55 0.60	
0.30 0.40 0.52	0.50 0.60 0.72	0.60 0.70 0.82	
impervious 0.40 - 0.50	impervious 0.55 0.65	70% of area impervious 0.65 0.80	
Minimum 0.90	Optimum 0.95	Maximum 1.00	
0.85	0.95	1.00	
0.60	0.70	0.80	
	0.70 0.30		
eets	0.60 0.75		
0.10	0.40	0.60	
0.10	0.30	0.60	
	0.20		
	0.10 0.25 0.30 0.10 0.16 0.22 0.30 0.40 0.52 30% of area impervious 0.40 0.50 Minimum 0.90 0.85 0.60	Coam Silt Loam	Coam Silt Loam Tight Clay

Taken from: Tourbier, Joachim and Westmacott, Richard, <u>Water Resources Protection Measures in Land Development - A Handbook</u>, University of Delayare, April, 1974.

REGIONAL RAINFALL INTENSITY-DURATION CURVES

Project Park Danforth	Computed By PLC
Job No. 3042	Checked By
Date	Sheetof
Rational Method	
Existing Site	80 /SF/grass/s=.025
D CB#/ A= 0.164 ac (7/60)	
Grass .137	c= ·30 (·041)
Paved .027	C= .95 (.026)
• 164	£ (.067) (c=.41)
	;
3 CB#2	
A=0.25(10880)	:
Grass (= .30	180'/SF/gmss/5= · 025
3 CB #3 A= ·377 (16 922)	
1	90 /SF/Paved) S= .008
(9170) Grass ,211	c=,30 (.063)
Paved 166	c = .95 (· 158)
. خرد 3	E(.221) (c= .67)
@ CB #4	
A= 313 (13640 sf)	30 1/SF/Grass/, 025
Grass .051	· 30 (.015) 50 / SCF/Paved/.008
(3700) Paved . 262	.95 (.249)
13/3	¿ (·264) (cz.84)
·	
5 CB#5	25 1/5F/Grass/.025
A = 0.098 (4820)	65'/SCF/Paned/1008
1 A	30 $(.005)$ (5) $(.076)$ $(.076)$
	\$ (.081)

```
Project PARK DANFORTH
                          Job No. 3042
                          Checked By_____
 Date.
                          Sheet____ of __
                                      40 /SF/Grass/s= .025
 6 CB#6
A= .064 (2800)
                        (.016)
        Grass 0.054
    (440) Paved 0.010
                        .95 (1010)
                                ¿(1026) (c= 141
(7) CB #7
     A=0.281 (12280)
                                          100 /SF/Grass/s=1010
  (2300) Grass .053 .30 (.016)
Paved .229 .95 (.218)
                                              C = .83
                 0281 & (.234)
8 CB: #8

A= .048 (2080)

(150) Grass .003 = 30 (.001)

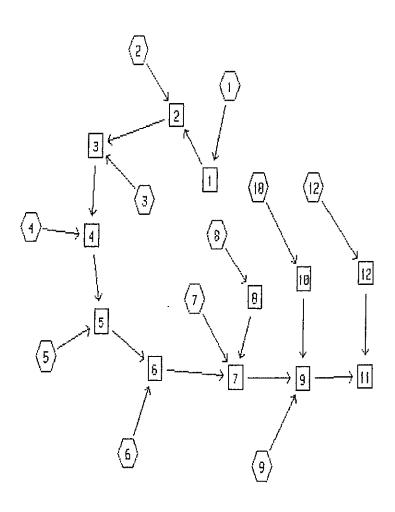
Paved .045 ,95 (.043)

.048 \( \xi (.044) \)
                                        80'/SF/Paved/5= .030
9 CB#9
A= ·211 (9200)
                                        501/SF/grass/s=1050
                                        100 / SCF/ grass/ 5= .035
       Grass C= 130
10) CB #10
                                       115 / SF/Paved/5= .030
    A= .270 (9600)
(575) Grass .013 .30 (.004)
Paved .207 .95 (.197)
                               £ (·201) (c= ·91
```

Project Park Danforth Job No. Date	Computed By	

	NOT	USED
· /		

(12)	To Reach #11 (Forest Aue)
	A=0.124ac (5400st)
	C = . 95 (paved)


· 270'/SF/PAUED/S=0.030

Project Park Dan Forth Computed By PLC											
Proj	ウカルク										
	Date Sheet of EXISTING REACH DESCRIPTION SUMMARY SHEET: WATERSHED #										
		PIPE	NUMBER	BOTTOM	DEPTH	SIDE SLO	PES I	MANNINGS		ENGTH	FLOWS
REACH NO.	DESCRIPTION		PIPES		(FT.)	LEFT	RIGHT	"N"	(FT./FT.)	(FT.)	INTO
1	Pipe (CB#1-CB#2)	6							1004		R2
2	Pipe (CB#2-CB#3)	8	1).		}		1003		R3
3	Pipe (CB#3-CB#4)	10						101	10025		R4
4	Pipe (CB#4-CB#5)	12	1						•0100		R5
5	Pipe (CB#5-CB#6)	12							0180		R6
6	Pipe (CB#6-CB#7)	15	1					101	.003		R7
7	Pipe (CB#7-CB#9)	15							.0025		R9
8	Pipe(c8#8-C8#7)	6	1						1065	65	<i>R</i> 7
9	Pipe (CB#9-CB#11)	15	1					101	1006		CB#11
10	Pipe (CB TO-CB #9)	10	1		<u> </u>		<u> </u>	•01	1035	60	R9
12	Streetgutter			1	15	10Z	0	• 1/	-007	100	R16
	CB Lead	12	1)	_	_		101	102	10	\rightarrow
								.,			
	The state of the s										
$\overline{\Box}$								Annu an			
一			 •			-	<u> </u>				
الــــــــا	ı i		l .	ı	ı	ı					

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

Prepared by Land Use Consultants, Inc.

V 5

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 3.00 IN/HR RUNOFF SPAN = 10-13 HRS, dt= .01 HRS, 301 POINTS

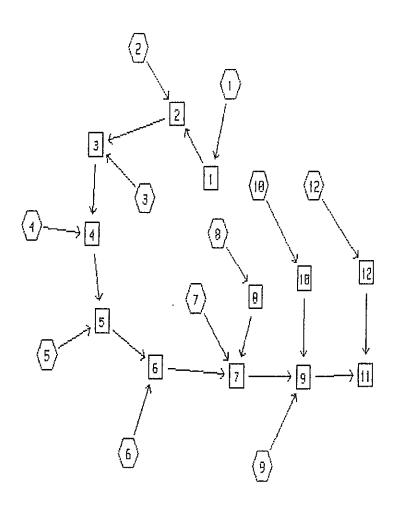
SUBCAT	AREA	Тc				WGT'D		PEAK	Tpeak	VOL
NUMBER	(ACRE)	(MIN)	GROUND	COVERS	(%CN)	CN	С	(CFS)	(HRS)	(AF)
1	.16	11.3	-			-	.41	.17	10.17	0.00
2	.25	21.6	6-7	-		-	.30	.10	10.17	0.00
3	.38	1.7	-	-		-	.67	.76	10.03	.01
4	.31	5.6	•••			-	.84	.78	10.10	.01
5	.10	5.0		-		-	.83	.25	10.09	0.00
6	.06	6.5	-	-		-	.41	.07	10.11	0.00
7	.28	19.4	<u>.</u>	 -		_	.83	.36	10.17	.01
8	.05	.9	-			-	.92	.14	10.02	0.00
9	.21	6.5	-			_	.30	.19	10.11	0.00
10	.22	1.2	<u></u>			~	.91	.60	10.02	.01
12	. 40	2.4		-		-	.95	1.14	10.04	.02

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH ROUTING BY STOR-IND+TRANS METHOD

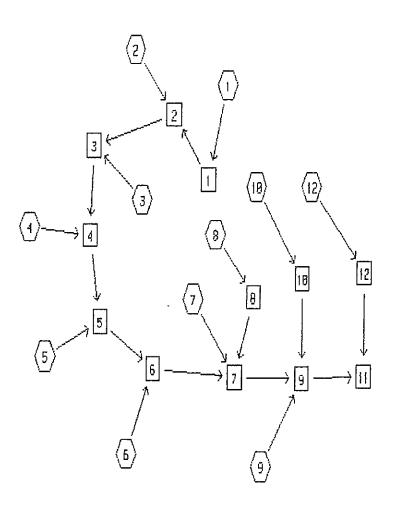

The second secon

REACH		BOTTOM		SI	DE				PEAK	TRAVEL	PEAK
ΝΟ.	DIAM (IN)	WIDTH (FT)	OEPTH (FT)		PES /FT)	п	LENGTH (FT)	SLOPE (FT/FT)	VEL. (FPS)	TIME (MIN)	Qout (CFS)
NATURAL PROPERTY FALSE							\		(143)	7117147	(Cr3)
1	6.0	_	-	-	~	.010	115	.0040	2.2	.9	.17
2	8.0	-	-	_	-	.010	140	.0030	2.2	1.0	. 26
3	10.4	_	-	-	~	.010	80	.0025	2.8	.5	.94
4	12.0	_		-	-	.010	60	.0100	5.6	.2	1.70
. 5	12.0	-	_	_	-	.010	70	.0180	7.2	.2	1.95
6	15.0	-	-		_	.010	200	.0030	3.7	.9	2.00
7	15.0	-	-	-	<u></u>	.010	125	.0025	3.6	.6	2.45
8	6.0	-	-	_	-	.010	65	.0650	5.7	.2	.14
9	15.0	_	-	-	-	.010	95	.0060	5.4	.3	3.14
10	10.0	· <u>.</u> .	-	-	-	.010	60	.0350	6.6	.2	.61
11	15.5			-		.010	10	.0060	5.8	0.0	4.26
12	_	1.0	.5	.02	_	.110	100	.0500	.7	2.2	1.13

Prepared by Land Use Consultants, Inc.

12 May 97

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems



Prepared by Land Use Consultants, Inc.

<u>HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems</u>

12 May 97

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 4.20 IN/HRRUNOFF SPAN = 10-13 HRS, dt= .01 HRS, 301 POINTS

SUBCAT	AREA	Tc				WGT'D		PEAK	Tpeak	VOL
NUMBER	(ACRE)	(MIN)	GROUND	COVERS	(%CN)	CN	<u>C</u>	(CFS)	(HRS)	(AF)
1	.16	11.3				-	.41	.24	10.17	.01
2	.25	21.6	_	. .		-	.30	.14	10.17	0.00
3	.38	1.7	-			_	.67	1.07	10.03	.02
4	.31	5.6	-			-	.84	1.09	10.10	.02
5	.10	5.0	_	. .			.83	.35	10.09	.01
6	.06	6.5	-			_	.41	.10	10.11	0.00
7	.28	19.4					.83	.50	10.17	.01
8	.05	.9	-			-	.92	.19	10.02	0.00
9	.21	6.5	-			-	.30	.26	10.11	0.00
10	.22	1.2	-		.	-	.91	.84	10.02	.01
12	.40	2.4	-			_	.95	1.60	10.04	.02

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH ROUTING BY STOR-IND+TRANS METHOD

REACH NO.	DIAM (IN)	BOTTOM WIOTH (FT)	OEPTH (FT)	SI SLO: (FI		n	LENGTH (FT)	SLOPE (FI/FT)	PEAK VEL. (FPS)	TRAVEL TIME (MIN)	PEAK Qout (CFS)
1	6.0					.010	115	.0040	2.4	.8	.23
		-	_		-						
2	8.0	_	_	_	_	.010	140	.0030	2.4	1.0	.36
3	10.4	-	-		-	.010	80	.0025	3.0	.4	1.33
4	12.0	-	-	_	_	.010	60	.0100	6.1	.2	2.40
5	12.0	-	-	-	-	.010	70	.0180	7.9	.1	2.74
6	15.0	_	-	-	-	.010	200	.0030	4.0	.8	2.82
7	15.0		-	_	<u>-</u>	.010	125	.0025	3.8	.5	3.45
8	6.0		-	-	-	.010	65	.0650	6.2	.2	.19
9	15.0	_	-	-	_	.010	95	.0060	5.8	.3	4.42
10	10.0	_ ′	-	-	-	.010	60	.0350	7.3	.1	.85
11	15.5	-	_	-	<u> </u>	.010	10	.0060	6.1	0.0	5.99
12	_	1.0	.5	.02		.110	100	.0500	.8	2.0	1.58

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

The second secon

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 4.90 IN/HR RUNOFF SPAN = 10-13 HRS, dt= .01 HRS, 301 POINTS

SUBCAT NUMBER	AREA (ACRE)	Tc (MIN)	GROUND	COVER	5 (%C	N)	WGT'D CN	С	PEAK (CFS)	Tpeak (HRS)	VOL (AF)
1	.16	11.3	-	-	_	-	_	.41	.28	10.17	.01
2	.25	21.6	_	-		_	_	.30	.17	10.17	0.00
3	.38	1.7	-	-	_	-	-	.67	1.25	10.03	.02
4	.31	5.6	_	-	-	-	-	.84	1.28	10.10	.02
5	.10	5.0	<u></u>	_	_	-	-	.83	.41	10.09	.01
6	.06	6.5	-	-	-		-	.41	.12	10.11	0.00
7	.28	19.4	-	_	-	-	-	.83	.58	10.17	.01
8	.05	.9		_	-	-	-	.92	.23	10.02	0.00
9	.21	6.5	<u></u>	_	-	-	-	.30	.31	10.11	.01
10	.22	1.2	-	-	-	-	-	.91	.98	10.02	.01
12	.40	2.4	_	_	-	_	-	.95	1.86	10.04	.03

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 9*7*

REACH ROUTING BY STOR-IND+TRANS METHOD

REACH NO.	OIAM (IN)	80TTOM WIDTH (FT)	DEPTH (FT)	SLO	DE PES /FT)	Π	LENGTH (FT)	SLOPE (FI/FT)	PEAK VEL. (FPS)	TRAVEL TIME (MIN)	PEAK Qout (CFS)
1	6.0	-	-	-	-	.010	115	.0040	2.5	.8	.27
2	8.0	-	_	-	-	.010	140	.0030	2.5	.9	.42
3	10.4	-	-	-	-	.010	80	.0025	3.1	. 4	1.55
4	12.0	-	-	_	-	.010	60	.0100	6.3	.2	2.81
5	12.0	~	_	_	_	.010	70	.0180	8. <u>2</u>	.1	3.20
6	15.0	-	-	-	-	.010	200	.0030	4.1	.8	3.30
7	15.0	₩.		-	-	.010	125	.0025	3.9	.5	4.03
8	6.0	-	-		_	.010	65	.0650	6.5	.2	.23
9	15.0	-	-	-	-	.010	95	.0060	5.9	.3	5.17
10	10.0		-	-	_	.010	60	.0350	7.5	.1	.99
11	15.5		-	~	~	.010	10	.0060	6.2	0.0	7.01
12	-	1.0	.5	.02	-	.110	100	.0500	.8	2.0	1.85

Prepared by Land Use Consultants, Inc.

12 May 97

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

SUBCATCHMENT 1

PEAK= .28 CFS @ 10.17 HRS, VOLUME= .01 AF

C= .41

TOTAL AREA = .16 AC

M-RATIONAL METHOD

DURATION= 10 MIN

INTEN= 4.90 IN/HR

SPAN= 10-13 HRS, dt=.01 HRS

Method

Comment

Tc (min)

TR-55 SHEET FLOW

Segment ID:AB

11.3

Grass: Dense n=.24 L=80' P2=3 in s=.025'/'

SUBCATCHMENT 2

PEAK= .17 CFS @ 10.17 HRS, VOLUME= 0.00 AF

____ C= .30

TOTAL AREA = .25 AC

M-RATIONAL METHOD DURATION= 10 MIN

INTEN= 4.90 IN/HR

SPAN= 10-13 HRS, dt=.01 HRS

Method

TR-55 SHEET FLOW

Comment Segment ID:AB Tc (min)

21.6

Grass: Dense n=.24 L=180' P2=3 in s=.025'/'

SUBCATCHMENT 3

PEAK= 1.25 CFS @ 10.03 HRS, VOLUME= .02 AF

C= .67

TOTAL AREA = .38 AC

M-RATIONAL METHOD

DURATION= 10 MIN

INTEN= 4.90 IN/HR

SPAN= 10-13 HRS, dt=.01 HRS

<u>Method</u>

Comment

Tc (min)

TR-55 SHEET FLOW

Segment ID:AB

Smooth surfaces n=.011 L=90' P2=3 in s=.008'/'

1.7

Data for 3042/PARK-DANFORTH/EXISTING SITE/25 YEAR DURATION= 10 MIN INTEN= 4.90 IN/HR Prepared by Land Use Consultants, Inc. 12 May 97 HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems SUBCATCHMENT 4 PEAK= 1.28 CFS @ 10.10 HRS, VOLUME= .02 AF C= .84 M-RATIONAL METHOD TOTAL AREA = .31 AC DURATION≃ 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Method Comment Tc (min)
Segment ID:AB 5.1 TR-55 SHEET FLOW Grass: Dense n=.24 L=30' P2=3 in s=.025'/' SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:BC Paved Kv=20.3282 L=50' s=.008'/' V=1.82 fps Total Length= 80 ft Total Tc= 5.6 SUBCATCHMENT 5 PEAK= .41 CFS @ 10.09 HRS, VOLUME= .01 AF C= .83 M-RATIONAL METHOD TOTAL AREA = .10 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID:AB 4.4 Grass: Dense n=.24 L=25' P2=3 in s=.025'/' SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:BC Paved Kv=20.3282 L=65' s=.008'/' V=1.82 fps Total Length= 90 ft Total Tc= 5.0 SUBCATCHMENT 6 PEAK= .12 CFS @ 10.11 HRS, VOLUME= 0.00 AF

C= .41 TOTAL AREA = .06 AC M-RATIONAL METHOD DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS

 Method
 Comment
 Tc (min)

 TR-55 SHEET FLOW
 Segment ID:AB
 6.5

 Grass: Dense n=.24 L=40' P2=3 in s=.025'/'
 6.5

Data for 3042/PARK-DANFORTH/EXISTING SITE/25 YEAR OURATION= 10 MIN INTEN= 4.90 IN/HR Prepared by Land Use Consultants, Inc. 12 May 97 HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems SUBCATCHMENT 7 PEAK= .58 CFS @ 10.17 HRS, VOLUME= .01 AF C= .83 M-RATIONAL METHOD TOTAL AREA = .28 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Tc (min) Comment Segment ID:AB Method TR-55 SHEET FLOW 19.4 Grass: Dense n=.24 L=100' P2=3 in s=.01'/' SUBCATCHMENT 8 PEAK= .23 CFS @ 10.02 HRS, VOLUME= 0.00 AF C= .92 M-RATIONAL METHOD TOTAL AREA = .05 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Comment Segment ID:AB Method Tc (min) TR-55 SHEET FLOW .9 Smooth surfaces n=.011 L=80' P2=3 in s=.03'/' SUBCATCHMENT 9 PEAK= .31 CFS @ 10.11 HRS, VOLUME= .01 AF _____ C= .30 M-RATIONAL METHOD TOTAL AREA = .21 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS

Method	Comment	Tc (min)
TR-55 SHEET FLOW	Segment ID:AB	5.9
Grass: Dense n=.24 L=50' P2=3	in s=.05 '/'	
SHALLOW CONCENTRATED/UPLAND FLOW	Segment ID:BC	.6
Grassed Waterway Kv=15 L=100'	s=.035 '/' V=2.81 fps	
	•	
	Total Length= 150 ft Total Tc=	6.5

Data for 3042/PARK-DANFORTH/EXISTING SITE/25 YEAR DURATION= 10 MIN INTEN= 4.90 IN/HR Prepared by Land Use Consultants, Inc. 12 May 97 HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems SUBCATCHMENT 10 PEAK= .98 CFS @ 10.02 HRS, VOLUME= .01 AF C= .91 M-RATIONAL METHOD TOTAL AREA = .22 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Tc (min) Method Comment Segment ID:AB TR-55 SHEET FLOW 1.2 Smooth surfaces n=.011 L=115' P2=3 in s=.03'/' SUBCATCHMENT 12 PEAK= 1.86 CFS @ 10.04 HRS, VOLUME= .03 AF _____ C= .95 M-RATIONAL METHOD

Tc (min) Method Comment TR-55 SHEET FLOW Segment ID:AB 2.4

DURATION= 10 MIN INTEN= 4.90 IN/HR

SPAN= 10-13 HRS, dt=.01 HRS

Smooth surfaces n=.011 L=270' P2=3 in s=.03'/'

TOTAL AREA = .40 AC

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH 1 EXISTING PIPE (CB#1-CB#2)

Qin = .28 CFS @ 10.17 HRS, VOLUME= .01 AF

Qout= .27 CFS @ 10.19 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= 1.4 MIN

OEPTH (FT)	END AREA (SQ-FT)	DISCH (CFS)	6" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH≍ .27 FT
• 4	1 0.0	.01	ก≕ .01	PEAK VELOCITY= 2.5 FPS
	1 0.0	.04	LENGTH= 115 FT	TRAVEL TIME = .8 MIN
	2 0.0	.09	SLOPE= .004 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
. 4	4 .1	.39		
. 0	4.2	. 45		
	5.2	.49		
. !	5.2	.50		
	5.2	.49		
. !	5.2	.46		

REACH 2 EXISTING PIPE (CB#2-CB#3)

Qin = .43 CFS @ 10.19 HRS, VOLUME= .01 AF Qout= .42 CFS @ 10.22 HRS, VOLUME= .01 AF, ATTEN= 2%, LAG= 1.7 MIN

DEPTH E	ND AREA	DISCH (CFS)	8" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .32 FT
.1	0.0	.02	n= .01	PEAK VELOCITY= 2.5 FPS
.1	0.0	.08	LENGTH= 140 FT	TRAVEL TIME = .9 MIN
.2	.1	.17	SLOPE= .003 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.5	.3	.72		
. 5	.3	. 84		
.6	.3	.92		
.6	.3	.93		
.6	.3	.92		
.7	.3	.86		

REACH 3

EXISTING 10" PIPE (CB#3-CB#4)

Qin = 1.57 CFS @ 10.16 HRS, VOLUME= .03 AF Qout= 1.55 CFS @ 10.17 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= .6 MIN

DEPTH (END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	10.4" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .70 FT
.1	0.0	.03	n= .01	PEAK VELOCITY= 3.1 FPS
. 2	.1	.14	LENGTH= 80 FT	TRAVEL TIME = .4 MIN
.3	.1	.31	SLOPE= .0025 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
. 6	.4	1.32		
.7	.5	1.55		
.8	.6	1.69		
.8	.6	1.70		
.8	.6	1.69		
. 9	. 6	1.58		

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH 4

EXISTING PIPE (CB#4-CB#5)

Qin = 2.81 CFS @ 10.16 HRS, VOLUME= .05 AF Qout= 2.81 CFS @ 10.17 HRS, VOLUME= .05 AF, ATTEN= 0%, LAG= .2 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	12" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH≃ .56 FT
. 1	0.0	.10	n= .01	PEAK VELOCITY= 6.3 FPS
. 6	2 .1	.41	LENGTH= 60 FT	TRAVEL TIME = .2 MIN
	3.2	.91	SLOPE= .01 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.7	7 .6	3.88		
. 8	3 . <i>7</i>	4.53		
	7 .7	4.94		
- (8.	4.98		
1.0	8.	4.94		
1.0	8.	4,63		

REACH 5

EXISTING PIPE (CB#5-CB#6)

Qin = 3.21 CFS @ 10.17 HRS, VOLUME= .06 AF Qout= 3.20 CFS @ 10.17 HRS, VOLUME= .06 AF, ATTEN= 0%, LAG= .1 MIN

DEPTH 4	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	12" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .50 FT
.1	0.0	.13	n= .01	PEAK VELOCITY≃ 8.2 FPS
.2	.1	.54	LENGTH= 70 FT	TRAVEL TIME $=$.1 MIN
.3	.2	1.22	SLOPE= .018 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.7	.6	5.20		
.8	.7	6.07		
. 9	.7	6.62		
.9	.8	6.68		
1.0	.8	6.62		
1.0	.8	6.21		

REACH 6

EXISTING PIPE (CB#6-CB#7)

Qin = 3.32 CFS @ 10.17 HRS, VOLUME= .06 AF Qout= 3.30 CFS @ 10.19 HRS, VOLUME= .06 AF, ATTEN= 1%, LAG= 1.2 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	15" PIPE	STOR-IND+TRANS METHOD
0.	0.0	0.00		PEAK DEPTH= .78 FT
	1 .1	.10	n= .01	PEAK VELOCITY= 4.1 FPS
	3.2	.40	LENGTH= 200 FT	TRAVEL TIME = .8 MIN
	4 .3	.90	SLOPE= .003 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
	9.9	3.85		
1.	0 1.1	4.50		
1.	1 1.2	4.90		
1.	2 1.2	4.95		
1.	2 1.2	4.90		
1.	3 1.2	4.60		

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

REACH 7

Committee of the contract of t

EXISTING PIPE (CB#7-CB#9)

Qin = 4.05 CFS @ 10.17 HRS, VOLUME= .08 AF Qout= 4.03 CFS @ 10.19 HRS, VOLUME= .08 AF, ATTEN= 1%, LAG= 1.0 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	15" PIPE	STOR-IND+TRANS METHOD
0.	0.0	0.00		PEAK DEPTH≕ .98 FT
	1 .1	.09	n= .01	PEAK VELOCITY= 3.9 FPS
	3 .2	.37	LENGTH= 125 FT	TRAVEL TIME = .5 MIN
	4 .3	.82	SLOPE= .0025 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
	9.9	3.52		
1.	0 1.1	4.10		
1.	1 1.2	4.48		
1.	2 1.2	4.52		
1.	2 1.2	4.47		
1.	3 1.2	4.20		

REACH 8

EXISTING PIPE (CB#8-CB#7)

Qin = .23 CFS @ 10.02 HRS, VOLUME= 0.00 AF Qout= .23 CFS @ 10.03 HRS, VOLUME= 0.00 AF, ATTEN= 0%, LAG= .6 MIN

DEPTH	END AREA	рІSСН		
(FT)	(SQ-FT)	(CFS)	6" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .12 FT
.1	0.0	.04	n= .01	PEAK VELOCITY= 6.5 FPS
. 1	0.0	.16	LENGTH= 65 FT	TRAVEL TIME = .2 MIN
.2	0.0	.36	SLOPE= .065 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.4	.1	1.56		
. 4	.2	1.82		
.5	.2	1.98		
.5	.2	2.00		·
.5	.2	1.98		
.5	.2	1.86		

REACH 9

EXISTING PIPE (CB#9~CB#11)

Qin = 5.20 CFS @ 10.17 HRS, VOLUME= .09 AF Qout= 5.17 CFS @ 10.17 HRS, VOLUME= .09 AF, ATTEN= 1%, LAG= .4 MIN

OEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	15" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .84 FT
.1	.1	.14	n= .01	PEAK VELOCITY≃ 5.9 FPS
.3	.2	. 57	LENGTH= 95 FT	TRAVEL TIME = .3 MIN
. 4	.3	1.27	SLOPE= .006 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.9	.9	5.45		
1.0	1.1	6.36		
1.1	1.2	6.93		
1.2	1.2	7.00		
1.2	1.2	6.93		
1.3	1.2	6.50		

12 May 97

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

REACH 10 EXISTING PIPE (CB#10-CB#9)

Qin = .98 CFS @ 10.02 HRS, VOLUME= .01 AF Qout = .99 CFS @ 10.03 HRS, VOLUME = .01 AF, ATTEN = 0%, LAG = .6 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	10" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .24 FT
• .	1 0.0	.11	n= .01	PEAK VELOCITY= 7.5 FPS
	2.1	.47	LENGTH= 60 FT	TRAVEL TIME $=$.1 MIN
	3 .1	1.04	SLOPE= .035 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
. 0	6.4	4.46		
	7.5	5.21		
. 8	8.5	5.68		
_ :	8.5	5.73		
. 8	8 .5	5.68		
- 1	8 .5	5,33		

15" PVC OUTLET TO STORM DRAIN (FOREST AVE) REACH 11

Qin = 7.00 CFS @ 10.17 HRS, VOLUME= .12 AF Qout= 7.01 CFS @ 10.18 HRS, VOLUME= .12 AF, ATTEN= 0%, LAG= .1 MIN

DEPTH E	ND AREA (SQ-FT)	DISCH (CFS)	15.5" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= 1.04 FT
.1	.1	.15	n= .01	PEAK VELOCITY= 6.2 FPS
.3	.2	.62	LENGTH= 10 FT	TRAVEL TIME = 0.0 MIN
- 4	.3	1.39	SLOPE= .006 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
. 9	1.0	5.94		
1.0	1.1	6.94		
1.2	1.2	7.57		
1.2	1.3	7.64		
1.3	1.3	7.57		
1.3	1.3	7.10		

REACH 12 GUTTER FLOW (FOREST AVE)

Qin = 1.86 CFS @ 10.04 HRS, VOLUME= .03 AF Qout= 1.85 CFS @ 10.19 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= 9.0 MIN

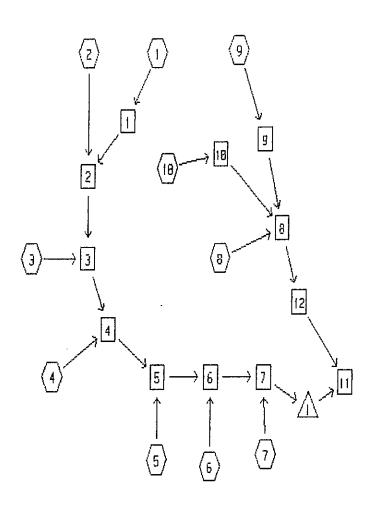
OEPTH (FT)	END AREA	DISCH (CFS)	1' x .5' CHANNEL	STOR-IND+TRANS METHOD
0.4	***************************************	0.00	S/S= .02 & 0 '/'	PEAK DEPTH= .27 FT
	1.1	.03	n= .11	PEAK VELOCITY= .8 FPS
•	1.4	.16	LENGTH= 100 FT	TRAVEL TIME = 2.0 MIN
	2.7	.41	SLOPE= .05 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
	2 1.4	.98		
	3 2.6	2.24		
. 4	4.4	4.63	·	
	5 6.8	8.19		

12 May 97

Job No. 3042	Computed By PLC Checked By Sheet of	
DEVELOPED SITE DEVELOPED SITE		80'/SF/grass/s= .025
A = 0.164 ac (7160sf) Grass Paved .02 .164	7 C= 195	` '
Q CB#2		(= .41) 180/sF/grass/s=.025
A = 0.195ac (8476sf) Grass = 0 Paved = 0		(0.052) (0.020) 0.072
		37
3 CB #3 A = 0444ac (19360sF)	90) / SF/ Paved / 5 = .008
Grass = 0.0 Paved = 0.0	378 C=195	0.020 0.360 0.380
	C= 185	

Project PARK DANFORTH	Computed By PLC	
Job No. 3042	Checked By	
Date	Sheet of	
	T = 1	5.6 min
(4) CB #4		
A=0.39/ac (17020	o s t)	
Grass ~0.	.032 C=.30. (.0	096)
Paved ~0	.359 = .95	341)
	¿ CA E	351)
	C= .90	· · ·
(5) CB \$5	100'/SF/Paved	1/5=.008
A = 0.091ac (3976)		_
Grass ~	0.013 C=30 (.00	39)
Paved ~		
(0.091 ZCA=(07	180
·	C = 0.8	76
	60'/SF/grass/S=	.,025
6 CB #6	/ // /	
A = 0.062ac (27045F))·	
, , , , , , , , , , , , , , , , , , , ,		(0.016)
Pavio	l~ 0.009 C= 195	(0,009)
	0.065	4=0.024
. •	Z(X	
	(= .39	

Project	Computed By	
Job No.	Checked By	
Date	Sheet of	
7 (53 8)	Te	= 20min.
A=0,720	22 (31,36055)	,
Gra	ss ~ · 207 (= · 30. (.	· 062)
	1~ · 5/3 C= ·95 (.	
, ,	• 720 €CA	549
	C= .7	6
	901/SF/g	russ / · 025
(B) CB #9	-	
A = 0.083	2 (3548sf)	
	rass ~ .039 C=130 (10	,
<i>,</i>	aved ~ 1043 = 195 (10	
	.082 (ECA = .0	253
	· (c= 165)	
(g) CB #10	170 /SF/PG	(wed/s=1025) Paved/s=1025
19 CB 195	Tac(8495 st) 100'/sc=/	Paved / 5= 1025
$H = U_1 H^2$	Grass ~ 0,028 C= 30	(.008)
	paved ~ 0,167 c=.95	(.159.)
	pased ~ O.195 (ECA	= •167
	.06	····
	C= .86	
•		


Project Job No Date	Computed By Checked By Sheet of	
(O) CB # 11 A = 0.077ac(3355s+ Grass .03 Paved04	C=.30 C=.95	25 /SF/grass/.04 70 / SF/pawed/.035 (.011) (.038) ECA .049

.

Pro	ject Park Dauforth	.	C	omputed	By	PLC					
l '	No. 3042								-		
	e	- · · · · · · · · · · · · · · · · · · ·		heet			·· -· · · · · · · · · · · · · · · · · ·				
	REACH DES	CRIPT					WATE	RSHE) # <u></u>		
REACH	DEVELOPED DESCRIPTION	PIPE DIA, (IN.)	NUMBER PIPES	BOTTOM WIDTH (FT.)	DEPTH (FT.)	SIDE SLO (FT. LEFT	PES /FT.) RIGHT	MANNINGS "N"	SLOPE (FT./FT.)	LENGTH (FT.)	FLOWS INTO
	Ex. pipe (CBI-CBZ)	6	1	-	_			.01	.004	115	R2
2	Ex. pipe (CB2-CB3)	8	1					101	1003	140	R3
3	Ex pipe (CB3-CB4)	10	1					101	10025	80	R4
4	Expipe (CB4-CB5)	12	1				_	101	10100	60	R5
5	Ex, pipe (CBS - CB6)	12	1	-			-	101	.018	70	26
6	Ex. pipe + Extension - CBG - DMH /	15		-	1	_	_	101	1003	260	R=7
7	New Pipe (DMHI-DMHZ)	15	1		-	_		.009	1004	150	RII
8	New Pipe(CB8-DMHZ)	12			-	_	_	.009	,003	30	RIZ
9	New Pipe (CB10-CB9)	l	1			_	_	.009	1003	45	R8
10	New Pipe (CBII-CB9)	12	1				_	,009	.010	90	R8
	Ex Pipe (DMHZ-DMH3)	15	1			_		0	.003	Z 0	\rightarrow
	New pipe (CB8-Dm+Z)		1			_	_	1009	1003	5	RI
						70.00					
	·										
		!									

Prepared by Land Use Consultants, Inc. 12 Ma HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 3.00 IN/HR RUNOFF SPAN = 10-13 HRS, dt= .01 HRS, 301 POINTS

SUBCAT NUMBER	AREA (ACRE)	Tc (MIN)	GROUND	COV	ERS (%0	N)	WGT'C	C	PEAK (CFS)	Tpeak (HRS)	VOL (AF)
1	.16	11.3	_	_		_	-	.41	.17	10.17	0.00
2	.20	21.6	-	_	-	-	No.	.37	.10	10.17	0.00
3	. 44	1.7	-	-	-	-	-	.85	1.12	10.03	.02
4	.39	5.6	-	-	~~	-	-	. 90	1.05	10.10	.02
5	.09	1.8	-		-		-	.86	.23	10.04	0.00
6	.06	9.0	-	_	-	-	-	.39	.07	10.15	0.00
7	.72	5.0	-	-	-	-	-	.76	1.64	10.09	.03
8	.08	12.4	-		_	-	_	.65	.12	10.17	0.00
9	.19	2.2	-			-	-	.86	.49	10.04	.01
10	.08	4.5	-	_	-	-	-	.64	.15	10.08	0.00

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH ROUTING BY STOR-IND+TRANS METHOD

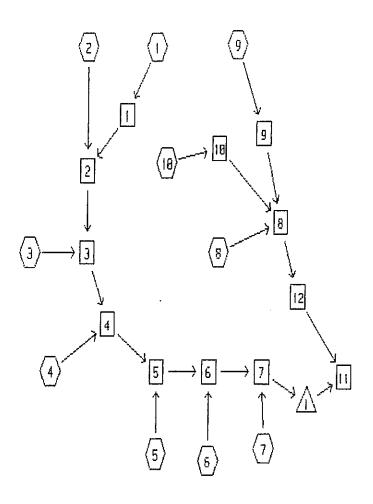
.

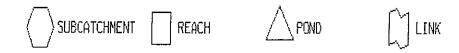
REACH NO.	DIAM (IN)	BOTTOM WIDTH (FT)	DEPTH (FT)	SLO	DE PES VFT)	Π	LENGTH (FT)	SLOPE (FI/FT)	PEAK VEL. (FPS)	TRAVEL TIME (MIN)	PEAK Qout (CFS)
1	6.0		***	~	-	.010	115	-0040	2.2	.9	.17
2	8.0	<u>-</u>	-	_	-	.010	140	.0030	2.2	1.0	.26
3	11.7	***	-	-		.010	80	.0025	3.1	. 4	1.29
4	12.0	-	-	-	-	.010	60	.0100	6.1	.2	2.34
5	12.0	-	<u></u>	-	-	.010	70	.0180	7.8	.2	2.56
6	15.0	-	-	-	-	.010	260	.0030	3.9	1.1	2.60
7	24.0	-	-	-		.009	150	.0040	5.2	.5	4.17
8	12.0	_	_	_	_	.009	30	.0030	3.1	.2	.77
9	12.0	-	_	•	<u>.</u>	.009	45	.0030	2.7	.3	.49
10	12.0		_	-	-	.009	90	.0100	3.0	.5	.15
11	17.4	-		-		.010	20	.0030	4.4	.1	3.89
12	12.0	_	_	_	_	.009	50	.0030	3.1	.3	.76

Prepared by Land Use Consultants, Inc.

12 May 97

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems


POND ROUTING BY STOR-IND METHOD


POND	START	FLOOD	PEAK	PEAK		- PEAK	FLOW		QoL	t
NO.	ELEY.	ELEV.	ELEV.	STORAGE	Qin	Qout	Qpri	Qsec	ATTEN.	LAG
************	(FT)	(FT)	(FT)	(AF)	(CFS)	(CFS)	(CFS)	(CFS)	(%)	(NIM)
1	14.7	21.0	16.9	.02	4.17	3.39			19	3.7

Prepared by Land Use Consultants, Inc.

12 May 97

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 4.20 In/HRRUNOFF SPAN = 10-13 HRS, dt = .01 HRS, 301 POINTS

SUBCAT	AREA	Tc				WGT'	כ	PEAK	Tpeak	VOL
NUMBER	(ACRE)	(MIN)	GROUND	COVERS	6 (%CN)	CN	С	(CFS)	(HRS)	(AF)
1	.16	11.3	_	-		_	.41	.24	10.17	.01
2	.20	21.6	-	_		-	.37	.14	10.17	0.00
3	.44	1.7	-	_	ve 10	-	.85	1.57	10.03	.02
4	.39	5.6	-	-	- -	-	.90	1.47	10.10	.03
5	.09	1.8		~		-	.86	.33	10.04	0.00
6	.06	9.0	-			-	.39	.10	10.15	0.00
7	.72	5.0	-	-		-	.76	2.30	10.09	.04
8	.08	12.4	_	-	- -		.65	.17	10.17	0.00
9	.19	2.2	-	_		-	.86	.69	10.04	.01
10	.08	4.5		-		-	.64	.22	10.08	0.00

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

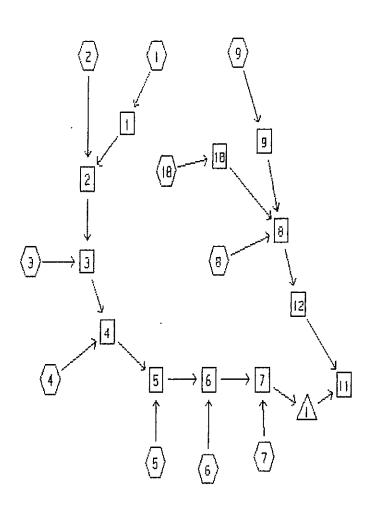
12 May 97

REACH ROUTING BY STOR-IND+TRANS METHOD

REACH NO.	OIAM (IN)	BOTTOM WIDTH (FT)	OEPTH (FT)	SI SLO (FT		Π	LENGTH (FT)	SLOPE (FI/FI)	PEAK VEL. (FPS)	TRAVEL TIME (MIN)	PEAK Qout (CFS)
1	6.0	-			-	.010	115	.0040	2.4	.8	.23
2	8.0	_	-		-	.010	140	.0030	2.4	1.0	.36
3	11.7	-	-	-	-	.010	80	.0025	3.2	. 4	1.83
4	12.0	-	-	-	-	.010	60	.0100	6.4	.2	3.29
5	12.0	-	-	_	_	.010	70	.0180	8.4	.1	3.60
6	15.0	-	_	-	-	.010	260	.0030	4.2	1.0	3.66
7	24.0	•••	-	-	-	.009	150 ·	.0040	5.8	.4	5.85
8	12.0	_	_	_	-	.009	30	.0030	3.5	.1	1.07
9	12.0	-	-	-	-	.009	45	.0030	3.0	.2	.69
10	12.0				-	.009	90	.0100	3.4	. 4	.22
11	17.4	<u></u>	-	<u></u>	_	.010	20	.0030	4.6	.1	5.81
12	12.0		_	_	-	.009	50	.0030	3.5	.2	1.07

Prepared by Land Use Consultants, Inc.

12 May 97


HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

POND ROUTING BY STOR-IND METHOD

POND	START	FLOOD	PEAK	PEAK		- PEAK	FLOW		Qou	ıt
NO.	ELEV.	ELEV.	ELEV.	STORAGE	Qin	Qout	Qpri	Qsec	ATTEN.	LAG
ni marania ni dinavana	(FT)	(FT)	(FT)	(AF)	(CFS)	(CFS)	(CFS)	(CFS)	(%)	(MIN)
1	14.7	21.0	19.2	.03	5.85	5.07			13	3.1

Prepared by Land Use Consultants, Inc. HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

Prepared by Land Use Consultants, Inc. HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

RUNOFF BY M-RATIONAL METHOD: DURATION= 10 MIN INTEN= 4.90 IN/HR RUNOFF SPAN = 10-13 HRS, dt = .01 HRS, 301 POINTS

SUBCAT	AREA	Tc				WGT'D		PEAK	Tpeak	۷OL
NUMBER	(ACRE)	(MIN)	GROUND	COVERS	(%CN)	CN	С	(CFS)	(HRS)	(AF)
1	.16	11.3	_	<u>.</u>		-	.41	.28	10.17	.01
2	.20	21.6	_	_ ,		-	.37	.17	10.17	0.00
3	.44	1.7	-			-	.85	1.83	10.03	.03
4	.39	5.6	_			_	.90	1.72	10.10	.03
5	.09	1.8	-			-	. 86	.38	10.04	.01
6	.06	9.0					.39	.12	10.15	0.00
7	.72	5.0	-		···	-	.76	2.68	10.09	.05
8	.08	12.4				-	.65	.20	10.17	0.00
9	.19	2.2	<u>.</u>				.86	.80	10.04	.01
10	.08	4.5	-			_	.64	.25	10.08	0.00

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

REACH ROUTING BY STOR-IND+TRANS METHOD

REACH		BOTTOM		SI	DE				PEAK	TRAVEL	PEAK
NO.	DIAM (IN)	WIOTH (FT)	DEPTH (FT)		PES VFT)	n	LENGTH (FT)	SLOPE (FT/FT)	VEL. (FPS)	TIME (MIN)	Qout (CFS)
1	6.0	_	_		-	.010	115	.0040	2.5	.8	.27
2	8.0			-	-	.010	140	.0030	2.5	. 9	.42
3	11.7	-	-	_	_	.010	80	.0025	3,3	.4	2.13
4	12.0	-	-	-	-	.010	60	.0100	6.6	.2	3.84
5	12.0		-	-	-	.010	70	.0180	8.6	.1	4.20
6	15.0	-	-	_	_	.010	260	.0030	4.2	1.0	4.27
7	24.0	-	_	-	-	.009	150	.0040	6.1	.4	6.83
8	12.0	-	-		-	.009	30	.0030	3.6	.1	1.25
9	12.0	-	-	_	~	.009	45	.0030	3,2	.2	.80
10	12.0		-	-	_	.009	90	.0100	3.6	. 4	.25
_11	17.4		-		_	.010	20	.0030	4.7	1	6.80
12	12.0	_	-	-	-	.009	50	.0030	3.6	.2	1.24

Uata for 3U42/PARK-UANFURTH/UEVELUPEU 511E/25 YEAR DURATION= 10 MIN INTEN= 4.90 IN/HR

Prepared by Land Use Consultants, Inc.

12 May 97

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

POND ROUTING BY STOR-IND METHOD

POND	START	FLOOD	PEAK	PEAK	~~~~	- PEAK	FLOW		Qou	t
NO.	ELEV.	ELEV.	ELEV.	STORAGE	Qin	Qout	Qpri	Qsec	ATTEN.	LAG
	(FT)	(FT)	(FT)	(AF)	(CFS)	(CFS)	(CFS)	(CFS)	(%)	(MIN)
1	14.7	21.0	20.7	.03	6.83	5.95			13	3.0

Prepared by Land Use Consultants, Inc. HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

and the same of th	200 11201 00011150101 07000110
SUBCATCHMENT 1	
PEAK= .28 CFS @ 10.17 HRS, VOLUME=	.01 AF
C= .41 TOTAL AREA = .16 AC	M-RATIONAL METHOD DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS
Method Commer	nt Tc (min)
TR-55 SHEET FLOW Segmen Grass: Dense n=.24 L=80' P2=3 in s	nt ID: 11.3
SUBCATCHMENT 2	
PEAK= .17 CFS @ 10.17 HRS, VOLUME= 0.	00 AF
C= .37 TOTAL AREA = .20 AC	M-RATIONAL METHOD DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS
Method Commen	t <u>Tc (min)</u>
TR-55 SHEET FLOW Segmen Grass: Dense n=.24 L=180' P2=3 in	t ID: 21.6
SUBCATCHMENT 3	
PEAK= 1.83 CFS @ 10.03 HRS, VOLUME= .	03 AF
C= .85 TOTAL AREA = .44 AC	M-RATIONAL METHOD DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS
Method Commen	t Tc (min)
	t IO: 1.7
SUBCATCHMENT 4	
PEAK= 1.72 CFS @ 10.10 HRS, VOLUME= .0	D3 AF

DURATION= 10 MIN INTEN= 4.90 IN/HR

SPAN= 10-13 HRS, dt=.01 HRS

Tc (min)

5.6

TOTAL AREA = .39 AC

Comment

Segment ID:

<u>Method</u>

DIRECT ENTRY

Data for 3042/PARK-DANFORTH/DEVELOPED SITE/25 YEAR DURATION= 10 MIN INTEN= 4.90 IN/HR Prepared by Land Use Consultants, Inc. 12 May 97 HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems SUBCATCHMENT 5 PEAK= .38 CFS @ 10.04 HRS, VOLUME= .01 AF C= .86 M-RATIONAL METHOD TOTAL AREA = .09 AC DURATION= 10 MIN INTEN≃ 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Comment Method Tc (min) TR-55 SHEET FLOW Segment ID: 1.8 Smooth surfaces n=.011 L=100' P2=3 in s=.008'/' SUBCATCHMENT 6 PEAK= .12 CFS @ 10.15 HRS, VOLUME= 0.00 AF ____ C= .39 M-RATIONAL METHOD TOTAL AREA = .06 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Method <u>Comment</u> <u>Tc (min)</u> TR-55 SHEET FLOW Segment ID: Grass: Dense n=.24 L=60' P2=3 in s=.025 '/' SUBCATCHMENT 7 PEAK= 2.68 CFS @ 10.09 HRS, VOLUME= .05 AF C= .76 M-RATIONAL METHOD TOTAL AREA = .72 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Comment Method Tc (min) DIRECT ENTRY Segment ID: 5.0 SUBCATCHMENT 8 PEAK= .20 CFS @ 10.17 HRS, VOLUME= 0.00 AF C= .65 M-RATIONAL METHOD TOTAL AREA = .08 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS CommentTc (min)Segment ID:12.4 Method TR-55 SHEET FLOW

Grass: Dense n=.24 L=90' P2=3 in s=.025'/'

UATA TOT 3042/PARK-DANFORTH/DEVELUPED SITE/25 YEAR DURATION= 10 MIN INTEN= 4.90 IN/HR Prepared by Land Use Consultants, Inc. HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems SUBCATCHMENT 9 PEAK= .80 CFS @ 10.04 HRS, VOLUME= .01 AF C= .86 M-RATIONAL METHOD TOTAL AREA = .19 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Tc (min) Method Comment TR-55 SHEET FLOW Segment ID: 1.7 Smooth surfaces n=.011 L=170' P2=3 in s=.025'/'
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: . 5 Paved Kv=20.3282 L=100' s=.025 '/' V=3.21 fps Total Length= 270 ft Total Tc= 2.2 SUBCATCHMENT 10 PEAK= .25 CFS @ 10.08 HRS, VOLUME= 0.00 AF ___ C= .64 M-RATIONAL METHOD TOTAL AREA = .08 AC DURATION= 10 MIN INTEN= 4.90 IN/HR SPAN= 10-13 HRS, dt=.01 HRS Comment Tc (min) Method TR-55 SHEET FLOW Segment ID: 3.7 Grass: Dense n=.24 L=25' P2=3 in s=.04'/' TR-55 SHEET FLOW Segment ID: .8 Smooth surfaces n=.011 L=70' P2=3 in s=.035'/'

Total Length= 95 ft Total Tc= 4.5

A CONTRACTOR OF THE PROPERTY O

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

REACH 1 EX. PIPE (CB#1-CB#2)

Qin = .28 CFS @ 10.17 HRS, VOLUME= .01 AF

Qout= .27 CFS @ 10.19 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= 1.4 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	6" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .27 FT
.1	0.0	.01	n= .01	PEAK VELOCITY= 2.5 FPS
.1	0.0	.04	LENGTH= 115 FT	TRAVEL TIME = .8 MIN
.2	0.0	.09	SLOPE= .004 FT/FT	SPAN= $10-13$ HRS, $dt=.01$ HRS
- 4	.1	.39		
. 4	.2	.45		
.5	.2	.49		
. 5	.2	.50		
.5	.2	.49		
.5	.2	.46		

REACH 2

EX. PIPE (CB#2-CB#3)

Qin = .43 CFS @ 10.19 HRS, VOLUME= .01 AF Qout= .42 CFS @ 10.22 HRS, VOLUME= .01 AF, ATTEN= 2%, LAG= 1.7 MIN

DEPTH	END AREA	DISCH		
<u>(FT)</u>	(SQ-FT)	(CFS)	8" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .32 FT
	1 0.0	.02	n= .01	PEAK VELOCITY= 2.5 FPS
	1 0.0	.08	LENGTH= 140 FT	
. :	2 .1	.17	SLOPE= .003 FT	T/FT SPAN= 10-13 HRS, dt=.01 HRS
	5.3	.72		
•	5 .3	.84		
.6	6.3	.92		
. (6.3	.93		
.6	5.3	.92		
-7	7.3	.86		

REACH 3 EX. PIPE (CB#3-CB#4)

Qin = 2.15 CFS @ 10.16 HRS, VOLUME= .04 AF Qout= 2.13 CFS @ 10.17 HRS, VOLUME= .04 AF, ATTEN= 1%, LAG= .5 MIN

DEPTH (FT)	END AREA (SQ-FT)	DISCH (CFS)	11.7" PIPE	STOR-IND+TRANS METHOD
0.	0.0	0.00		PEAK DEPTH≕ .79 FT
	1 0.0	.05	n= .01	PEAK VELOCITY= 3.3 FPS
	2.1	.19	LENGTH= 80 FT	TRAVEL TIME = .4 MIN
	3.2	. 42	SLOPE= .0025 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
•	7.6	1.81		
	8 .6	2.12		
•	9.7	2.31		
	9.7	2.33		
	9.7	2.31		
1.	0.7	2.16		

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

REACH 7

NEW PIPE (DMH#1-DMH#2)

Qin = 6.85 CFS @ 10.16 HRS, VOLUME= .12 AF Qout= 6.83 CFS @ 10.17 HRS, VOLUME= .12 AF, ATTEN= 0%, LAG= .6 MIN

DEPTH END AF (FT) (SQ-F		24" PIPE	STOR-IND+TRANS METHOD PEAK DEPTH= .77 FT
	0 0.00 2 .43 4 1.81	n= .009 LENGTH= 150 FT	PEAK VELOCITY= 6.1 FPS TRAVEL TIME = .4 MIN
• •	8 4.05	SLOPE= .004 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
1.6 2 1.8 3	0 22.03		
1.9 3	.1 22.23 .1 22.03 .1 20.67		

REACH 8

NEW PIPE (CB#9-CB#8)

Qin = 1.25 CFS @ 10.16 HRS, VOLUME= .02 AF Qout= 1.25 CFS @ 10.17 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .3 MIN

DEPTH (FT)	END AREA (SQ-FT)	DISCH (CFS)	12" PIPE	STOR-IND+TRANS METHOD PEAK DEPTH= .45 FT
0.0	0.0	0.00		PEAK VELOCITY= 3.6 FPS
. 1	0.0	.06	n= .009	TRAVEL TIME = .1 MIN
. 2	2 .1	.25	LENGTH= 30 FT	SPAN= 10-13 HRS, dt=.01 HRS
.3	3 .2	.55	SLOPE= .003 FT/FT	STAR 20 -5 VIII S
.7	7 .6	2.36		
.8	3 .7	2.76		
	.7	3.00		
_ (9.8	3.03		
1.0	8. (3.00		
1.0	8. 0	2.82		

REACH 9

NEW PIPE (CB#10-CB#9)

Qin = .80 CFS @ 10.04 HRS, VOLUME= .01 AF Qout= .80 CFS @ 10.06 HRS, VOLUME= .01 AF, ATTEN= 0%, LAG= 1.2 MIN

(FT) (0.0 .1 .2 .3 .7 .8 .9	ND AREA (SQ-FT) 0.0 0.0 .1 .2 .6 .7 .7	DISCH (CFS) 0.00 .06 .25 .55 2.36 2.76 3.00 3.03	12" PIPE n= .009 LENGTH= 45 FT SLOPE= .003 FT/FT	STOR-IND+TRANS METHOD PEAK DEPTH= .36 FT PEAK VELOCITY= 3.2 FPS TRAVEL TIME = .2 MIN SPAN= 10-13 HRS, dt=.01 HRS
-9	.8	3.03		
1.0	.8	3.00		
1.0	.8	2.82		

The second secon

Prepared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

and an analysis of the section of th

REACH 10

NEW PIPE (CB#11-CB#9)

Qin = .25 CFS @ 10.08 HRS, VOLUME = 0.00 AF Qout = .25 CFS @ 10.16 HRS, VOLUME = 0.00 AF, ATTEN = 0%, LAG = 4.8 MIN

DEPTH	END AREA	DISCH		
(FT)	(SQ-FT)	(CFS)	12" PIPE	STOR-IND+TRANS METHOD
0.0	0.0	0.00		PEAK DEPTH= .14 FT PEAK VELOCITY= 3.6 FPS
•	0.0	.11	n= .009	/ 1111
. 2	2 .1	.45	LENGTH= 90 FT	TRAVEL TIME = .4 MIN SPAN= 10-13 HRS, dt=.01 HRS
4 3	3.2	1.01	SLOPE= .01 FT/FT	SPAN= 10-15 HK3, dt01 HK3
. 7	7.6	4.31		
.1	8.7	5.03		
. `	9 .7	5.48		
- '	9.8	5.54		
1.9	_	5.48		
1.	8. 0	5.15		

REACH 11

EX. PIPE (DMH#2-DMH#3)

Qin = 6.81 CFS @ 10.21 HRS, VOLUME= .14 AF Qout= 6.80 CFS @ 10.21 HRS, VOLUME= .14 AF, ATTEN= 0%, LAG= .2 MIN

DEPTH (FT)	END AREA (SQ-FT)	DISCH (CFS)	17.4" PIPE	STOR-IND+TRANS METHOD PEAK DEPTH= 1.19 FT
0.0	.1	0.00	n= .01	PEAK VELOCITY= 4.7 FPS TRAVEL TIME = .1 MIN
.3		.60 1.34	LENGTH= 20 FT SLOPE= .003 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
1.0	1.2	5.72		
1.2 1.3		6.68 7.28		
1.4		7.35		
1.4 1.5		7.28 6.83		

REACH 12

NEW PIPE (CB#8-DMH#2)

Qin = 1.25 CFS @ 10.17 HRS, VOLUME= .02 AF Qout= 1.24 CFS @ 10.17 HRS, VOLUME= .02 AF, ATTEN= 1%, LAG= .2 MIN

DEPTH (FT)	END AREA	DISCH (CFS)	12" PIPE	STOR-IND+TRANS METHOD PEAK DEPTH= .45 FT
0.0	0.0	0.00	0.00	PEAK VELOCITY= 3.6 FPS
.1	0.0	.06	ח= .009	TRAVEL TIME = .2 MIN
.2	.1	.25	LENGTH= 50 FT	113117 EH 1 417 E
.3	3 .2	.55	SLOPE= .003 FT/FT	SPAN= 10-13 HRS, dt=.01 HRS
.7	, .6	2.36		
. 8	3.7	2.76		
. 9	.7	3.00		
. 9	9 .8	3.03		
1.0	8.	3.00		
1.0	8. (2.82		

Data for 3042/PARK-DANFORTH/DEVELOPED SITE/25 YEAR OURATION= 10 MIN INTEN= 4.90 IN/HR 'repared by Land Use Consultants, Inc.

HydroCAD 4.52 000511 (c) 1986-1996 Applied Microcomputer Systems

12 May 97

POND 1

DMH #2 WITH HYDRO-BRAKE

Qin = 6.83 CFS @ 10.17 HRS, VOLUME= .12 AF Qout= 5.95 CFS @ 10.23 HRS, VOLUME= .12 AF, ATTEN= 13%, LAG= 3.0 MIN

ELEVATION (FT)	CUM.STOR (CF)	STOR-IND METHOD PEAK STORAGE = 1317 CF
14.7	0	PEAK ELEVATION= 20.7 FT
17.0	850	FLOOD ELEVATION= 21.0 FT
19.0	1115	START ELEVATION= 14.7 FT
20.0	1250	SPAN= 10-13 HRS, dt=.01 HRS
21.0	1350	Tdet= 4 MIN (.12 AF)

ROUTE INVERT OUTLET DEVICES 1 P 14.7' 9.8" ORIFICE/GRATE

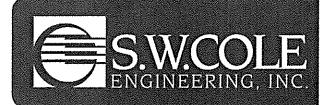
 $Q=.6 PI r^2 SQR(2g) SQR(H-r)$

$\frac{\text{APPENDIX H}}{\text{S.W. COLE GEOTECHNICAL REPORT}}$

REPORT

June 18, 2014 14-0065 S

Geotechnical Engineering Services


Proposed Senior Living Facility The Park Danforth Arbor Street & Forest Avenue Portland, Maine

PREPARED FOR:

The Park Danforth c/o Mitchell & Associates Attention: Robert Metcalf 70 Center Street Portland, Maine 04101

PREPARED BY:

S. W. Cole Engineering, Inc. 286 Portland Road Gray, Maine 04039 207-657-2866

- · Geotechnical Engineering
- · Construction Materials Testing
- GeoEnvironmental Services
- Ecological Services

www.swcole.com

TABLE OF CONTENTS

1.0 INTRODUCT	ION			1
1.1 Scope and	Purpose			1
1.2 Site and Pr	oposed Construction			1
2.0 EXPLORATION	ON AND TESTING			2
2.1 Exploration	s		·	2
2.2 Testing				3
3.0 SITE AND SU	BSURFACE CONDITIONS.			3
3.1 Surficial	drock			3
3.2 Soil and Be	drock			3
3.3 Groundwate	er			4
0 00,0,,,,,,				
4.0 EVALUATION	AND RECOMMENDATION	S		4
4.1 General Fir	ndings			4
4.2 Site and Su	bgrade Preparation			5
4.3 Excavation	and Dewatering	•••••		6
4.4 Foundation	and Dewaterings			7
4.5 Foundation	Drainage			7
	ade			
	labs and Sidewalks			
4.8 Backfill and	Compaction			9
4.9 Weather Co	onsiderations	•••••		. 10
4.10 Paved Are	eas			. 10
4.11 Recomme	ndation for Additional Study			. 11
1911,194	eview and Construction Testir			
5.0 CLOSURE	PAL STATE			
Attachment A Sheet 1	Limitations Exploration Location Plan			
Sheets 2 - 15	Exploration Logs			
Sheet 16	Key to the Notes and Sym			
	<u> </u>	ting		
Sheets 17 – 21 Sheet 22	Laboratory Gradation Test Underdrain Detail			

14-0065 S

June 18, 2014

The Park Danforth c/o Mitchell & Associates Attention: Robert Metcalf 70 Center Street Portland, Maine 04101

Subject:

Geotechnical Engineering Services

Proposed Senior Living Facility

The Park Danforth

Arbor Street and Forest Avenue

Portland, Maine

Dear Bob:

In accordance with our Revised Proposal, dated February 21, 2014, we have performed subsurface explorations for the subject project. This report summarizes our findings and geotechnical recommendations and its contents are subject to the limitations set forth in Attachment A.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information at the site in order to develop geotechnical recommendations relative to foundations, earthwork and pavement associated with the proposed construction. Our scope of services included test boring explorations, soils laboratory testing, a geotechnical analysis of the subsurface findings and preparation of this report.

1.2 Site and Proposed Construction

The site is located southwest of the intersection of Arbor Street and Forest Avenue in Portland, Maine. The site is currently occupied by residential and retail development and improvements associated with the existing Park Danforth facility.

286 Portland Road, Gray, ME 04039-9586 • P: (207) 657.2866 • F: (207) 657.2840 • E: infogray@swcole.com

We understand development plans call for demolition of existing improvements and construction of a new on-grade, two to three story apartment building for senior housing. The new apartment building is proposed in the northeast portion of the site in the vicinity of an existing one-story retail building that will be demolished. Development plans also include a one-story, on-grade addition to the northwest wing of the existing Park Danforth building. The proposed type of building construction and structural loading are not available at this time. We anticipate proposed finish floor elevations will be within 1 foot of existing grades. Paved parking and access drive areas are proposed around the north, east, and west peripheries of the site, adjacent to Forest Avenue, Arbor Street, and Stevens Avenue.

Proposed and existing site features are shown on the "Exploration Location Plan" attached as Sheet 1.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Fourteen test borings (B-101 through B-114) were made at the site on May 22 and 23, 2014 by Great Works Test Boring, Inc. of Rollinsford, New Hampshire working under subcontract to S. W. Cole Engineering, Inc. (S.W.COLE). The exploration locations were selected by Mitchell & Associates and established in the field by S.W.COLE based on measurements from existing site features. The exploration program consisted of the following:

- Five test borings (B-104 through B-108) made for the proposed two to three-story building in the northeast portion of the site;
- Three test borings (B-111 through B-114) made for the proposed one-story Park Danforth building addition;
- Six test borings (B-101 through B-103 and B-109 and B-110) made for the proposed paved areas.

The approximate exploration locations are shown on the "Exploration Location Plan" attached as Sheet 1. Logs of the test borings are attached as Sheets 2 through 15. The elevations shown on the logs were estimated based on topographic information shown on Sheet 1. A key to the notes and symbols used on the logs is attached as Sheet 16.

2.2 Testing

The test borings were drilled using a combination of solid stem auger and hollow stem auger drilling techniques. The soils were sampled at 2 to 5 foot intervals using a split spoon sampler and Standard Penetration Testing (SPT) techniques. SPT blow counts are shown on the logs.

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. Laboratory testing included five gradation tests and five moisture content tests. Results of the gradation testing are attached as Sheets 17 through 21. Results of the moisture content tests are shown on the logs.

3.0 SITE AND SUBSURFACE CONDITIONS

3.1 Surficial

The site is currently occupied by residential and retail development and associated landscape and pavement areas. The site is an urban site with likely previous development including past structures that are not represented on Sheet 1. The site is relatively level and flat with existing grades generally dropping west to east from about elevation 127 to 120 feet. Existing site features are shown on Sheet 1.

It should be noted that the site is a urban site with likely previous development including past structures that are not represented on Sheet 1.

3.2 Soil and Bedrock

Underlying a surficial layer of topsoil or pavement the borings encountered a subsurface profile generally consisting of a thin layer of uncontrolled granular fill overlying native outwash sands overlying refusal surfaces (probable bedrock). The principal soils encountered at the explorations are summarized below; refer to the attached logs for more detailed descriptions of the subsurface findings.

<u>Uncontrolled Fill</u>: The borings encountered uncontrolled fill consisting of loose to medium dense, brown and dark brown sand with varying portions of silt, gravel, and miscellaneous debris such as coal, porcelain, glass, and brick fragments. Rootlets were observed in the fill at some of the explorations. The fill was penetrated at depths varying from approximately 1.5 to 6 feet at the explorations.

<u>Outwash Sands:</u> Underlying the uncontrolled fill, the borings encountered native outwash sands consisting of stratified medium dense to very dense sand with varying portions of silt and gravel. The borings, with the exception of B-104 through B-108, were terminated in the outwash sands at depths varying from 9 to 21 feet.

<u>Refusal Surfaces</u>: Underlying the outwash sands, borings B-104 through B-108 encountered refusal surfaces (probable bedrock) at depths varying from 22 to 28 feet. A zone of probable bedrock was penetrated by as much as approximately 2 feet by the augers before encountering refusal.

3.3 Groundwater

Free groundwater or saturated soils were encountered at depths varying from about 18 to 21 feet at borings B-105 through B-108. Free water was not encountered at the remainder of the borings. Long term groundwater information is not available. It should be anticipated that seasonal groundwater levels will fluctuate, especially during periods of snowmelt and precipitation.

3.4 Seismic and Frost

The 25-year Air Freezing Index for the Portland, Maine area is about 1,290-Fahrenheit degree-days, which corresponds to a frost penetration depth on the order of 4.5 feet. Based on the subsurface findings, we interpret the site soils to correspond to Seismic Soil Site Class C according to 2009 IBC.

4.0 EVALUATION AND RECOMMENDATIONS

4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint. The principle geotechnical considerations are as follows:

- The site is an urban site likely with past structures and underground improvements
 that may not become apparent until construction. An assessment of past site
 uses including historical structures should be completed during the planning phase
 of the project to help understand the impact of past site development to the
 proposed construction.
- A 2 to 6 foot layer of uncontrolled granular fill exists within the proposed apartment building and Park Danforth building addition footprints. The uncontrolled fill should be removed and replaced below foundations and densified below on-grade floor slabs. Areas that become soft after densifying should be removed and replaced prior to installing slab gravels. Provided the building pads are properly prepared, spread footing foundations and on-grade floor slabs appear suitable for the proposed construction.
- Native sand subgrades below foundations and on-grade floor slabs should be densified. Pavement subgrades consisting of uncontrolled fill or native sands should be proof-rolled and soft areas repaired prior to installing pavement gravels.
- Imported Granular Borrow, Structural Fill, and Crushed Stone will be needed for construction. Existing native outwash sands appear suitable for reuse as Granular Borrow.
- We recommend completing a historical mapping and records review of the site to explore the potential for buried structures and foundations which may be encountered during construction. S.W.COLE is available to complete this task.

4.2 Site and Subgrade Preparation

We recommend that site preparation begin with the construction of an erosion control system to protect adjacent drainage ways and areas outside the construction limits. As much vegetation as possible should remain outside the construction areas to lessen the potential for erosion and site disturbance. All topsoil and organics should be completely removed from areas of proposed construction. Final cuts to subgrade elevation should be made with a smooth edge bucket to lessen subgrade disturbance. We offer the following

subgrade preparation recommendations for proposed building and paved areas.

<u>Proposed Building Areas</u>: In addition to grubbing all organics, all existing pavement, utilities, foundations, structures, and uncontrolled fill should be completely removed beneath proposed foundations until undisturbed native sands are encountered. The removal of unsuitable materials should extend outward 1 foot laterally from edge of footing for every foot of vertical depth below bottom of footing (1H:1V bearing splay). Overexcavations should be backfilled with compacted Structural Fill. The native sand footing subgrade soils should be densified with 3 to 5 passes of a vibratory plate compactor having a static weight of at least 600 pounds prior to placing new fill or concrete.

Following installation and backfilling of building foundations, we recommend floor slab subgrade be densified with 3 to 5 passes of a vibratory roller having a static weight of at least 5 tons. Floor slab areas that become soft or continue to yield after densifying should be removed and replaced with compacted Structural Fill prior to installing slab gravels.

<u>Proposed Paved Areas</u>: Following grubbing all organics, all pavement and deleterious materials should be removed beneath proposed paved areas. Existing utilities should be removed and existing foundations should be removed to at least 4.5 feet below finish grade and backfilled with compacted Granular Borrow. Pavement subgrades should be proof rolled and densified with 3 to 5 passes of a vibratory roller having a static weight of at least 10 tons. Pavement subgrade areas that become soft or continue to yield should be removed and replaced with compacted Granular Borrow prior to installing pavement gravels.

4.3 Excavation and Dewatering

Excavation work will generally encounter existing uncontrolled granular fill and native outwash sands. Care must be exercised during construction to limit disturbance of the native bearing soils. Earthwork and grading activities should occur during drier Summer and Fall seasons. Final cuts to subgrade should be performed with a smooth-edged bucket to help minimize soil disturbance.

We recommend that the construction documents contain unit pricing for removal and replacement of existing uncontrolled fills, structures, and other unsuitable materials as

described herein.

Groundwater was encountered at the explorations at depths on the order of 20 feet. Sumping and pumping dewatering techniques should be adequate to control groundwater in excavations. Excavations must be properly shored or sloped in accordance with OSHA trenching regulations to prevent sloughing and caving of the sidewalls during construction. Care must be taken to preclude undermining adjacent structures, utilities and roadways. The design and planning of excavations, excavation support systems, and dewatering is the responsibility of the contractor.

4.4 Foundations

We recommend the proposed buildings be supported on spread footings founded on densified native outwash sands or properly compacted Structural Fill overlying densified native outwash sands. As presented herein, it will be necessary to remove and replace existing uncontrolled fills below foundations.

For foundations bearing on properly prepared subgrades, we recommend the following geotechnical parameters for design consideration:

- Design Frost Depth = 4.5 feet
- Net Allowable Soil Bearing Pressure = 4 ksf or less
- Base Friction Factor = 0.30 (concrete to sand)
- Total Unit Weight of Backfill = 125 pcf (compacted Structural Fill)
- At-Rest Lateral Earth Pressure Coefficient = 0.5 (compacted Structural Fill)
- Internal Friction Angle of Backfill = 30° (compacted Structural Fill)
- Seismic Soil Site Class = C (IBC 2009)

4.5 Foundation Drainage

The site soils consist of relatively dry, well-drained sands. However, it is good practice to provide perimeter underdrainage to help reduce the risk of frost heaving of entrance slabs and sidewalks. We recommend an underdrain system be installed along the outside edge the perimeter footings. The underdrain pipe should consist of 4-inch diameter, slotted foundation drain pipe bedded in Underdrain Sand. The underdrain pipe must have a positive gravity outlet protected from freezing, clogging and backflow. Surface grades should be sloped away from the building for positive drainage. General underdrain details

are illustrated on Sheet 22.

4.6 Slab-On-Grade

On-grade floor slabs in heated areas may be designed using a subgrade reaction modulus of 100 pci (pounds per cubic inch) provided the slab is underlain by at least 12-inches of compacted Structural Fill placed over densified native sand subgrades. The structural engineer or concrete consultant must design steel reinforcing and joint spacing appropriate to slab thickness and function.

We recommend a sub-slab vapor retarder particularly in areas of the building where the concrete slab will be covered with an impermeable surface treatment or floor covering that may be sensitive to moisture vapors. The vapor retarder must have a permeance that is less than the floor cover or surface treatment that is applied to the slab. The vapor retarder must have sufficient durability to withstand direct contact with the sub-slab base material and construction activity. The vapor retarder material should be placed according to the manufacturer's recommended method, including the taping and lapping of all joints and wall connections. The architect and/or flooring consultant should select the vapor retarder products compatible with flooring and adhesive materials.

The floor slab should be appropriately cured using moisture retention methods after casting. Typical floor slab curing methods should be used for at least 7 days. The architect or flooring consultant should assign curing methods consistent with current applicable American Concrete Institute (ACI) procedures with consideration of curing method compatibility to proposed surface treatments, flooring and adhesive materials.

4.7 Entrance Slabs and Sidewalks

Entrance slabs and sidewalks adjacent to the building must be designed to reduce the effects of differential frost action between adjacent pavement, doorways, and entrances. We recommend that non-frost susceptible Structural Fill be provided to a depth of at least 4.5 feet below the top of entrance slabs. This thickness of Structural Fill should extend the full width of the entrance slab and outward at least 4.5 feet, thereafter transitioning up to the bottom of the adjacent sidewalk or pavement gravels at a 3H:1V or flatter slope. General details of this frost transition zone are attached as Sheet 22.

4.8 Backfill and Compaction

We recommend the following fill and backfill materials:

<u>Granular Borrow:</u> Sand or silty sand meeting the gradation requirements of MDOT Standard Specification 703.19 Granular Borrow. Granular Borrow is recommended for use as:

- Fill to raise site grades in proposed paved areas
- Backfill of overexcavations below proposed paved areas

<u>Structural Fill</u>: Clean, non-frost susceptible sand and gravel meeting the gradation requirements for Structural Fill as given below.

Structi	ural Fill
Sieve Size	Percent Finer by Weight
4 inch	100
3 inch	90 to 100
1/4 inch	25 to 90
#40	0 to 30
#200	0 to 5

Structural Fill is recommended for use as:

- Backfill for overexcavations below footings and on-grade floor slabs
- Fill to raise grades in building areas
- Backfill against foundations
- Backfill within frost transition zones below entrances and sidewalks

<u>Underdrain Sand</u>: Underdrain Sand used around underdrain pipes should meet the gradation requirements of MDOT Standard Specifications 703.22 "Underdrain Backfill Type B".

Reuse of Site Soils: The existing uncontrolled fills are unsuitable for reuse below proposed building areas, but may be suitable for reused in proposed pavement and landscape areas. The native sands appear suitable for reuse as Granular Borrow. The contractor should anticipate the need to moisture condition soils for reuse.

<u>Placement and Compaction</u>: Fill should be placed in horizontal lifts and compacted such that the desired density is achieved throughout the lift thickness with 3 to 5 passes of the compaction equipment. Loose lift thicknesses for grading, fill and backfill activities should not exceed 12 inches. We recommend that fill and backfill in building and paved areas be compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557.

4.9 Weather Considerations

Construction activity should be limited during wet and freezing weather and the site soils may require drying before construction activities may continue. The contractor should anticipate the need for water to temper fills in order to facilitate compaction during dry weather. If construction takes place during cold weather, subgrades, foundations and floor slabs must be protected during freezing conditions. Concrete and fill must not be placed on frozen soil; and once placed, the concrete and soil beneath the structure must be protected from freezing.

4.10 Paved Areas

We anticipate paved areas will be subjected primarily to passenger vehicle and light delivery truck traffic. Considering the site soils and proposed usage, we offer the following pavement section for consideration. Materials are based on Maine Department of Transportation Standard Specifications.

- 1 ¼ inches of 9.5 mm Hot Mix Asphalt (50 Gyration Design)
- 2 ¼ inches of 12.5 mm Hot Mix Asphalt (50 Gyration Design)
- 3 inches of MDOT 703.06 Type A, Crushed Aggregate Base
- 15 inches of MDOT 703.06 Type D, Crushed Aggregate Subbase

Pavement subgrades are anticipated to consist of densified existing fills, native sands or compacted Granular Borrow. The base and subbase materials should be compacted to at least 95 percent of their maximum dry density as determined by ASTM D-1557. Hot mix asphalt pavement should be compacted to 92 to 97 percent of its theoretical maximum density as determined by ASTM D-2041. A tack coat should be used between successive lifts of bituminous pavement.

It should be understood that frost penetration can be on the order of 4.5 feet in this area. In the absence of full depth excavation of frost susceptible soils below paved areas and subsequent replacement with non-frost susceptible compacted fill, frost penetration into the subgrade will occur and some heaving and distress of pavement must be anticipated.

4.11 Recommendation for Additional Study

Given the previously developed nature of the site, we recommend performing a historical mapping and records research review of the site. A review will help to establish the location of historical buildings and underground structures which could be encountered during construction. S.W.COLE is available to provide the historical research services.

4.12 Design Review and Construction Testing

S.W.COLE should be retained to review the civil and foundation construction documents to determine that our earthwork, foundation and pavement recommendations have been properly interpreted and implemented.

A soils and concrete testing program should be implemented during construction to observe compliance with the design concepts, plans, and specifications. S.W.COLE is available to provide subgrade observations for foundations as well as testing services for soils, concrete, asphalt, steel and spray-applied fireproofing construction materials.

5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

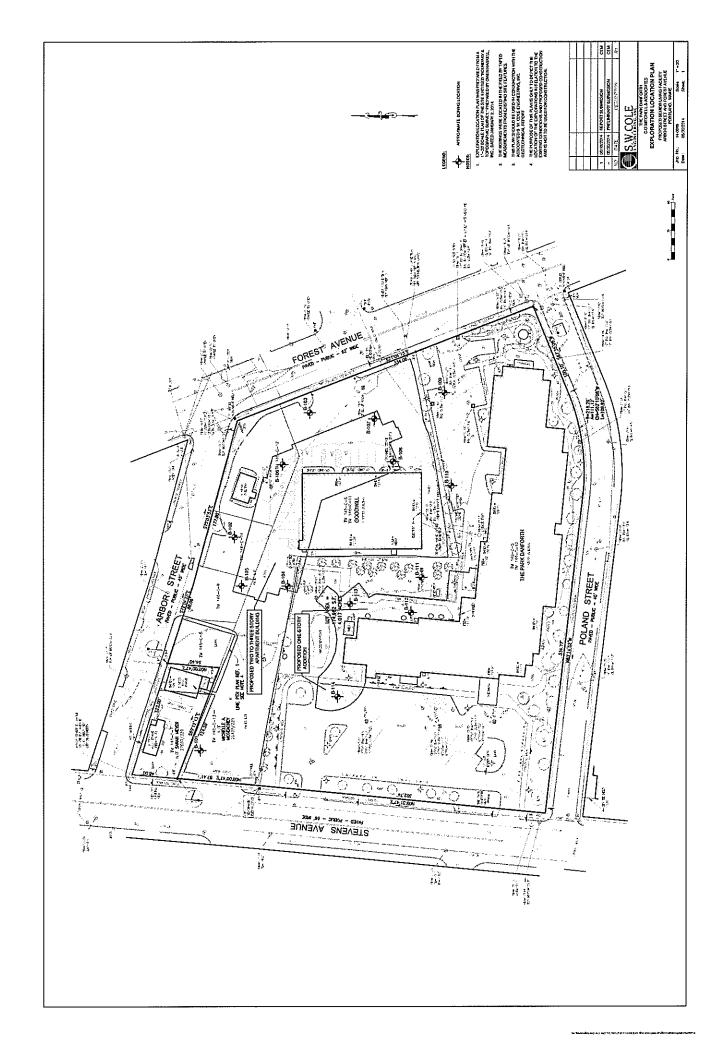
Evan M. Walker, P.E. Geotechnical Engineer

Timothy J. Boyce, P.E. Senior Geotechnical Engineer

EMW: tjb

Attachment A Limitations

This report has been prepared for the exclusive use of The Park Danforth and Mitchell & Associates for specific application to the proposed Park Danforth Expansion in Portland, Maine. S.W.COLE has endeavored to conduct the work in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.


The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of work has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

JEFF LEE

DRILLER:

B-101 BORING NO .: SHEET: 1 OF 1 44 0005

PROJECT NO.:	14-0065
DATE START:	5/23/2014
DATE FINISH:	5/23/2014

ELEV

ATION:	127' ±

SWC REP.: PJO

WATER LEVEL INFORMATION NO FREE WATER OBSERVED

SIZE I.D. HAMMER WT. HAMMER FALL TYPE CASING: SSA 2 1/4" SAMPLER: SS 1 3/8" 140-LBS 30"

GREAT WORKS TEST BORINGS, INC.

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

CORE BARREL:

LOCATION:

DRILLING CO.:

CASING BLOWS		SAN	1PLE		SAMI	PLER B	Lows	'ER 6"	DECT!	CTDATA PITET DATA
PER OOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DEPTH	STRATA & TEST DATA
										4" ASPHALT DARK BROWN GRAVELLY SAND, SOME SILT
	1D 2D	24"	18" 12"	2.5' 4.5'	9 4	7	5 5	5 4	5.0'	WITH ROOTLETS AND BRICK (FILL) ~MEDIUM DENSE TO LOOSE~
	3D	24"	18"	7.0'	5	12	24	24		BROWN SAND AND GRAVEL, TRACE SILT
	4D	24"	16"	9.0'	24	25	18	16		~DENSE~
										BOTTOM OF EXPLORATION AT 9.0'
								-		

Ω Λ	R A	D 1	ES	

D = SPLIT SPOON

C = 2" SHELBY TUBE S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

DRILLER - VISUALLY SOIL TECH. - VISUALLY LABORATORY TEST

STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

AND THE TRANSITION MAY BE GRADUAL.

BORING NO.:

U = 3.5" SHELBY TUBE

LABORATORY TEST

BORING LOG

B-102 BORING NO .: SHEET: 1 OF 1 PROJECT NO.: 14-0065

	• • • • • • • • • • • • • • • • • • • •				
PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE	PARK DANFORTI	H c/o MITCHELL & ASSOCIATES	DATE START:	5/23/2014
LOCATION:	ARBOR STREET & FOREST AVENUE, PORT		DATE FINISH:	5/23/2014	
DRILLING CO. :	GREAT WORKS TEST BORINGS, INC.	DRILLER:	JEFF LEE	ELEVATION:	123' ±

ELEVATION: TYPE SIZE I.D. HAMMER WT. HAMMER FALL SWC REP.: PJQ WATER LEVEL INFORMATION CASING: HSA 2 3/4" SAMPLER: SS 1 3/8" 140-LBS 30" NO FREE WATER OBSERVED

CORE BARREL:

CASING BLOWS		SAN	IPLE		SAM	PLER B	LOWS F	ER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		CHONAG IEO BAIA
										3"± ASPHALT
							***************************************		2.0'	DARK BROWN GRAVELLY SAND, SOME SILT (FILL) ~MEDIUM DENSE~
	1D	24"	20"	2.5'	4	5	7	9		ORANGE-BROWN MEDIUM TO COARSE SAND,
										SOME GRAVEL, TRACE SILT ~MEDIUM DENSE~
	2D	24"	18"	4.5'	7	9	7	7	5.0'	
	3D	24"	18"	7.0'	5	8	16	17		LIGHT BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE SILT
	- 55	24	10	7.0	Ť	۰	10	111	1	~MEDIUM DENSE TO DENSE~
	4D	24"	19"	9.0'	16	21	22	20	[MEDICIN SERVE
			· · · · · · · · · · · · · · · · · · ·						1	BOTTOM OF EXPLORATION AT 9.0'
									1 1	
]	
-										
-										
									<u> </u>	
AMPLE	S:			SOIL C	LASSIF	IED BY	′ :		REMARK	S:
= SPLI		ON		32.50	_,	,	•			
		TUBE			DRIL	LER - \	VISUAL	LY	s	STRATIFICATION LINES REPRESENT THE (3)
= 3" SF	HELBY	TUBE		Х	SOIL	TECH	VISU	ALLY	A	PPROXIMATE BOUNDARY BETWEEN SOIL TYPES

AND THE TRANSITION MAY BE GRADUAL.

BORING NO.:

LOCATION:

DRILLING CO.:

BORING LOG

JEFF LEE

B-103 BORING NO .: SHEET: 1 OF 1

PROJECT NO .: 14-0065

5/22/2014 DATE START:

5/22/2014

ELEVATION: 121' ±

SWC REP.:

PJO WATER LEVEL INFORMATION

DATE FINISH:

TYPE SIZE I.D. HAMMER WT. HAMMER FALL CASING: **HSA** 2 3/4" 1 3/8" 140-LBS 30" SAMPLER: SS

GREAT WORKS TEST BORINGS, INC.

NO FREE WATER OBSERVED CORE BARREL:

DRILLER:

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

CASING BLOWS		SAN	/PLE					DEP	тн	STRATA & TEST DATA	
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24			
										7	4"± ASPHALT
									_	1.5'	BROWN SAND SOME GRAVEL, SOME SILT (FILL) ~MEDIUM DENSE~
	1D	24"	16"	2.5'	6	9	7	7	_2	2.5'	ORANGE-BROWN FINE SAND SOME SILT ~MEDIUM DENSE~
		0.48	470	4.51			_		ļ		LIQUIT DROWN THE GAME TO ACT OF T
	2D	24"	17"	4.5'	6	6	6	7	1		LIGHT BROWN FINE SAND TRACE SILT
	3D	24"	16"	7.0'	4	6	7	7			~MEDIUM DENSE~
					•	_		,		ļ	
	4D	24"	18"	9.0'	8	7	8	10			
											BOTTOM OF EXPLORATION AT 9.0'
,											
									i	1	
									1		
]		
									l		
									ł		
			-								
										-	
							l			L	
									REM	ARK	
	= SPLIT SPOON						/ISLIAI	ا ب			STRATIFICATION LINES REPRESENT THE
	C = 2" SHELBY TUBE DRILLER - VISUALLY										ADDROVIMATE POLINDADY RETRIEFIN FOR TYPES

S = 3" SHELBY TUBE U = 3.5" SHELBY TUBE SOIL TECH. - VISUALLY LABORATORY TEST

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

AND THE TRANSITION MAY BE GRADUAL.

BORING NO.:

BORING NO.: B-104

SHEET: 1 OF 1

PROJECT NO.: 14-0065

PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

DRILLING CO.: GREAT WORKS TEST BORINGS, INC. DRILLER: JEFF LEE

PROJECT NO.: 14-0065

DATE START: 5/23/2014

DATE FINISH: 5/23/2014

ELEVATION: 124' ±

PJO

TYPE SIZE I.D. HAMMER WT. HAMMER FALL

HSA 2 3/4"
SS 1 3/8" 140-LBS 30"

SOIL TECH. - VISUALLY

LABORATORY TEST

Х

Х

WATER LEVEL INFORMATION NO FREE WATER OBSERVED

SWC REP.:

CORE BARREL:

S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

LOCATION:

CASING:

SAMPLER:

CASING BLOWS		SAN	1PLE		SAMI	PLER BI	LOWS F	PER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	DCF III	STRATA LEST DATA
										3"± ASPHALT
		2.45	4.0%	A 51					م ا	BROWN SAND, SOME GRAVEL, SOME SILT WITH GLASS & WOOD PIECES (FILL)
	1D	24"	16*	2.5'	5	6	5	8	2.0	~MEDIUM DENSE~ w = 3.4%
	2D	24"	18"	4.5'	12	16	18	20	1	BROWN GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT
]	
	3D	24"	17"	7.0'	13	23	25	33		~DENSE TO VERY DENSE~
	4D	18"	16"	8.5'	28	28	31			
	40	10	10	0.0	20				10.0'	
										w = 4.3%
	5D	24"	18"	12.0'	10	14	16	23		~DENSE~
										BROWN MEDIUM SAND, TRACE GRAVEL, TRACE SILT
									1	DIGHT MEDICIN CHAD, TIMOE GIVIVE, TIMOE GIET
						-]	
	6D	24"	20"	17.0'	12	12	15	21		~MEDIUM DENSE~
			·····						19.5'	
										WEATHERED BEDROCK
										REFUSAL AT 21.8'
										(PROBABLE BEDROCK)
										
AMPLE	· c.			SOIL C	1 ACC		/		DENTA	Ve.
	:S: IT SPC	ON		SUILU	TV001	ובט או	•		REMAR	no.
= 2" SHELBY TUBE DRILLER - VISUALLY						LER - Y	VISUAL	LY.		STRATIFICATION LINES REPRESENT THE (5)

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

BORING NO.:

B-104

AND THE TRANSITION MAY BE GRADUAL.

BORING NO.: B-105
SHEET: 1 OF 1
PROJECT NO.: 14-0065

	,	_	
PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES	DATE START:	5/23/2014
OCATION:	ARBOR STREET & FOREST AVENUE, PORTLAND, ME	DATE FINISH:	5/23/2014
ORILLING CO. :	GREAT WORKS TEST BORINGS, INC. DRILLER: JEFF LEE	ELEVATION:	124' ±
	TYPE SIZE I.D. HAMMER WT. HAMMER FALL	SWC REP.:	PJO

CASING: HSA 2 3/4" WATER LEVEL INFORMATION
SAMPLER: SS 1 3/8" 140-LBS 30" SOILS WET AT 21'

CORE BARREL:

CASING BLOWS		SAN	//PLE		SAM	PLER BI	LOWS P	PER 6*	DEPTH	STRATA & TEST DATA				
PER FOOT	NO,	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24						
										3"± ASPHALT				
										BROWN SAND SOME GRAVEL, SOME SILT WITH CONCRETE				
	1D	24"	15"	2.5'	- 5	9	18	8	3.0'					
										BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE SILT				
	2D	24"	16"	4.5'	5	6	6	8	5.0'	~MEDIUM DENSE~				
	3D	24"	17"	7.0'	6	16	22	23	-	~DENSE~				
	30	24	''	7.0		- 10	22	25	1	SENGE .				
	4D	24"	19"	9.0'	16	20	22	24		BROWN GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT				
									1					
									1					
	5D	24"	20"	12.0'	15	23	29	49	1	~VERY DENSE~				
	6D	24"	20"	17.01	16	23	31	38						
								<u> </u>						
								 	21.0'					
	7D	18"	15"	21.5'	24	34	45			BROWN GRAVELLY FINE TO MEDIUM SAND, TRACE SILT				
									23.0'	~VERY DENSE~				
										REFUSAL AT 23'				
										(PROBABLE BEDROCK)				
									-					
								<u> </u>						
									1					
				<u> </u>	·····				1					
							:]					
]					
SAMPL	AMPLES: SOIL CLASSIFIED BY:								REMAR	KS:				
D = SPl														
C = 2" S							VISUAL			STRATIFICATION LINES REPRESENT THE				
S = 3" S				<u> </u>			VISU			APPROXIMATE BOUNDARY BETWEEN SOIL TYPES				
$U = 3.5^{\circ}$	= 3.5" SHELBY TUBE LABORATORY TEST						אלז וב:	> 1		AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-105				

LOCATION:

DRILLING CO.:

BORING LOG

JEFF LEE

DRILLER:

BORING NO .: B-106 SHEET: 1 OF 1

PROJECT NO .: 14-0065

DATE START: 5/22/2014 DATE FINISH: 5/22/2014

ELEVATION:

122' ±

PJO

SIZE I.D. HAMMER WT. HAMMER FALL TYPE

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

SWC REP.:

WATER LEVEL INFORMATION

CASING: HSA 2 3/4" SAMPLER: SS 1 3/8" 140-LBS

GREAT WORKS TEST BORINGS, INC.

SOILS SATURATED AT 20'

30" CORE BARREL:

CASING BLOWS		SAN	MPLE .		SAMPLER BLOWS PER 6"			ER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		
	1D	24"	15"	2.5'	8	9	8	8	3.0'	2½" ± ASPHALT DARK BROWN TO BROWN SAND, SOME GRAVEL, SOME SILT (FILL) ~MEDIUM DENSE~
	2D	24"	15"	4.5'	9	9	7	3		BROWN FINE TO COARSE SAND, SOME GRAVEL, TRACE SILT ~MEDIUM DENSE~
	3D	24"	16"	7.0'	6	12	16	19	7.0'	
	4D	24"	16"	9.0'	12	15	16	16	10.0'	w = 4.1% BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE SILT ~DENSE~
	5D	24"	20"	12.0'	15	25	23	25		~DENSE~
										BROWN GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT
	6D	24"	18"	17.0	15	28	32	40		w = 2.4% ~VERY DENSE~
	7D	24"	22"	22.0'	15	17	24	30	21.2'	
										w =19.5% BROWN FINE TO MEDIUM SAND SOME SILT ~DENSE~ ~ DENSE ~
									28.0'	
										REFUSAL 28.0' (PROBABLE BEDROCK)
SAMPL		••••		SOIL C					REMAR	

SAMPLES:

D = SPLIT SPOON

C = 2" SHELBY TUBE S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

X

DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES SOIL TECH. - VISUALLY LABORATORY TEST

AND THE TRANSITION MAY BE GRADUAL.

BORING NO.:

TYPE

H\$A

LOCATION:

CASING:

DRILLING CO.:

BORING LOG

JEFF LEE

DRILLER:

B-107 BORING NO .: SHEET: 1 OF 1

PROJECT NO .: 14-0065

DATE START: 5/22/2014

ELEVATION: 121' ±

5/22/2014

DATE FINISH:

PJO

SWC REP .:

WATER LEVEL INFORMATION SOILS SATURATED AT 18'

1 3/8" 140-LBS 30" SS SAMPLER: CORE BARREL:

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

GREAT WORKS TEST BORINGS, INC.

2 3/4"

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

CASING SAMPLE SAMPLER BLOWS PER 6" BLOWS DEPTH STRATA & TEST DATA PER DEPTH REC. NO. PEN 0-6 6-12 12-18 18-24 FOOT @ BOT 3" ASPHALT DARK BROWN SAND, SOME GRAVEL, SOME SILT (FILL) 1D 24" 14" 2.5 6 9 9 9 2.5 ~MEDIUM DENSE~ ORANGE-BROWN SAND SOME SILT 15" 2D 24" 4.5 12 8 7 6 4.5 ~MEDIUM DENSE~ 3D 24" 17" 7.0 5 9 9 10 ~MEDIUM DENSE~ 4D 24" 18" 9.0' 12 13 12 12 LIGHT BROWN FINE TO MEDIUM SAND, TRACE SILT WITH OCCASIONAL SILT SEAMS BETWEEN 10-12' 24" 22" 12.01 8 11 16 23 AND 10" SAND AND GRAVEL LAYER FROM 15.2-16.0' 6D 24" 22" 17.01 12 16 15 18 ~DENSE~ 7D 24" 18" 22.0' 4 8 9 22 ~MEDIUM DENSE~ 23.0 WEATHERED BEDROCK 24.0 REFUSAL AT 24.0' (PROBABLE BEDROCK) SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON 8

C = 2" SHELBY TUBE

S = 3" SHELBY TUBE U = 3.5" SHELBY TUBE **DRILLER - VISUALLY** SOIL TECH, - VISUALLY LABORATORY TEST

STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

AND THE TRANSITION MAY BE GRADUAL.

B-107

BORING NO.:

CORE BARREL:

BORING LOG

BORING NO.: B-108

SHEET: 1 OF 1

PROJECT NO.: 14-0065

DATE START: 5/22/2014

5/22/2014 123' ±

PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE	PARK DANFORTH	H c/o MITCHELL & ASSOCIATES	DATE START:	
LOCATION:	ARBOR STREET & FOREST AVENUE, PORT	LAND, ME		DATE FINISH:	
DRILLING CO.:	GREAT WORKS TEST BORINGS, INC.	DRILLER:	JEFF LEE	ELEVATION:	

 TYPE
 SIZE I.D. HAMMER WT. HAMMER FALL
 SWC REP.:
 PJO

 CASING:
 HSA
 2 3/4"
 WATER LEVEL INFORMATION

 SAMPLER:
 SS
 1 3/8"
 140-LBS
 30"
 SOILS SATURATED AT 20'

CASING SAMPLE SAMPLER BLOWS PER 6" BLOWS DEPTH STRATA & TEST DATA PER DEPTH NO. PEN. REC. 0-6 6-12 12-18 18-24 FOOT @ BOT 21/4" ASPHALT BROWN SAND SOME GRAVEL, SOME SILT (FILL) 24" 14" 2.5 5 8 7 6 2.5 1D BROWN MEDIUM TO COARSE SAND 2D 24" 18" 4.5' 5 4 3 2 TRACE GRAVEL, TRACE SILT, TRACE ROOTLETS ~LOOSE~ 6.0 (FILL) 3D 24" 14" 7.0' 2 10 13 20 ~MEDIUM DENSE~ BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE SILT 4D 24" 16" 9.0' 10 15 20 16 10.0 12.0 10 12 ~MEDIUM DENSE~ 5D 24" 18" 18 25 BROWN FINE TO MEDIUM SAND, TRACE GRAVEL, TRACE SILT 17.0' 16 6D 24" 22" 10 13 15 19.0 BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, SOME SILT 22" 18 ~MEDIUM DENSE~ 7D 24" 22.0 13 18 21 REFUSAL AT 26.5' (PROBABLE BEDROCK) SAMPLES: SOIL CLASSIFIED BY: REMARKS: D = SPLIT SPOON 9 DRILLER - VISUALLY STRATIFICATION LINES REPRESENT THE C = 2" SHELBY TUBE S = 3" SHELBY TUBE SOIL TECH. - VISUALLY APPROXIMATE BOUNDARY BETWEEN SOIL TYPES Х U = 3.5" SHELBY TUBE LABORATORY TEST AND THE TRANSITION MAY BE GRADUAL. BORING NO.: B-108

LOCATION:

CASING:

DRILLING CO.:

BORING LOG

JEFF LEE

BORING NO .: B-109 SHEET: 1 OF 1 14-0065 PROJECT NO

	. —	F (0.0.40.0
PROJECT N	J.:	14-00

5/22/2014 DATE START: DATE FINISH: 5/22/2014

ELEVATION: 121'±

PJO SWC REP.:

WATER LEVEL INFORMATION

TYPE SIZE I.D. HAMMER WT. HAMMER FALL SSA 2 1/4" 1 3/8" 140-LBS 30" SS

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

GREAT WORKS TEST BORINGS, INC.

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

NO FREE WATER OBSERVED SAMPLER: CORE BARREL:

DRILLER:

CASING BLOWS		SAN	/IPLE		SAM	PLER BI	.ows F	PER 6"	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24	0.0	
										2½"± ASPHALT BROWN GRAVELLY SAND, SOME SILT (FILL)
	1D	24"	16"	2.5'	7	14	8	8	2.5'	~MEDIUM DENSE~
		0.411	401	4.51		40	44		1.51	BROWN FINE TO MEDIUM SAND, SOME GRAVEL, SOME SILT
	2D	24"	18"	4.5'	8	10	11	8	4.5'	~MEDIUM DENSE~
	3D	24"	18"	7.0'	3	5	5	5		
	4D	24"	17"	9.0'	6	9	9	12		LIGHT BROWN FINE TO MEDIUM SAND, TRACE SILT WITH COARSE SAND LAYERS BETWEEN 8-9'
	5D	24"	16"	12.0'	7	11	14	15		~MEDIUM DENSE~
	<u> </u>	24	10	12.0		- ' '	14	,,,		
										BOTTOM OF EXPLORATION AT 12.0'
				:						

SAMPLE	s.		<u></u>	SOIL C	LASSIE	IFD BY	/.		REMAR	KS:
= SPL		ON		JOIL 0	0011	ייט פיי	-		· ve wich	STRATIFICATION LINES REPRESENT THE

C = 2" SHELBY TUBE S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

DRILLER - VISUALLY SOIL TECH. - VISUALLY LABORATORY TEST

STRATIFICATION LINES REPRESENT THE

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL. BORING NO.:

BORING NO.:	B-110
SHEET:	1 OF 1
PROJECT NO.:	14-0065
DATE START:	5/22/2014
DATE FINISH:	5/22/2014

PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES
LOCATION:	ARBOR STREET & FOREST AVENUE, PORTLAND, ME

GREAT WORKS TEST BORINGS, INC. DRILLER: JEFF LEE DRILLING CO.:

ELEVATION: 125' ±

TYPE SIZE I.D. HAMMER WT. HAMMER FALL

PJO SWC REP.: WATER LEVEL INFORMATION

CASING: SSA 2 1/4" SAMPLER: SS 1 3/8" 140-LBS 30"

NO FREE WATER OBSERVED

CORE BARREL:

CASING BLOWS		SAN	MPLE		SAMI	PLER BI	ows F	ER 6*	DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		
										2½" ASPHALT
	1D	12"	6"	1.5'	19	50			2.0	DARK BROWN GRAVELLY SAND, SOME SILT (FILL)
									3.0'	<blow -="" count="" gravel="" overstated="" pushed="">> ORANGE-BROWN FINE TO MEDIUM SAND</blow>
	2D	24"	15"	5.0'	4	5	5	4	5.0'	
	3D	24"	16"	7.0'	5	4	9	13		~MEDIUM DENSE~
										BROWN FINE TO MEDIUM SAND, SOME GRAVEL, TRACE SILT
	4D	24"	16"	9.0'	17	21	15	14		< <blow -="" count="" gravel="" overstated="" pushed="">></blow>
	5D	24"	14"	12.0'	9	10	12	14		~MEDIUM DENSE~
										BOTTOM OF EXPLORATION AT 12.0'
			l							

\vdash										
				<u> </u>						

<u> </u>										
SAMPLI	ES:			SOIL C	LASSIF	FIED BY	/ :		REMAR	KS:

D = SPLIT SPOON

C = 2" SHELBY TUBE

S = 3" SHELBY TUBE U = 3.5" SHELBY TUBE

DRILLER - VISUALLY SOIL TECH. - VISUALLY LABORATORY TEST

STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL.

BORING NO.: B-110

BORING NO.: B-111

SHEET: 1 OF 1

PROJECT NO.: 14-0065

DATE START: 5/22/2014

EIVC		NG, INC	•			PROJECT NO	14-0000
PROJECT / CLIENT:	PROPOSED	SENIOR LIVIN	NG FACILITY / TI	HE PARK DANFORT	H c/o MITCHELL & ASSOCIAT	ES DATE START:	5/22/2014
LOCATION:	ARBOR STR	EET & FORES	DATE FINISH:	5/22/2014			
DRILLING CO.:	GREAT WOR	KS TEST BOI	RINGS, INC.	DRILLER:	JEFF LEE	ELEVATION:	124' ±
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		SWC REP.:	PJO
CASING:	HSA	2 3/4"				WATER LEVEL INFORM	MATION
SAMPLER:	SS	1 3/8"	140-LBS	30"		NO FREE WATER OBS	ERVED
CORE BARREL:							

1D 24' 2D 24' 3D 24' 4D 24'	18" 18" 18"	2.0' 4.0' 7.0' 9.0'	0-6 4 5 4 17	6-12 4 4 11 20	5 8 16	18-24	0.3' 1.5' 3.5'	DARK BROWN SAND AND SILT WITH ROOTLETS (TOPSOIL) ~LOOSE~ DARK BROWN SILTY SAND, SOME GRAVEL (FILL) ~LOOSE~ ORANGE-BROWN MEDIUM TO COARSE SAND TRACE GRAVEL, TRACE SILT ~MEDIUM DENSE~
2D 24' 3D 24' 4D 24'	18"	7.0°	5 4	11	8	12	3.5'	DARK BROWN SILTY SAND, SOME GRAVEL (FILL) ~LOOSE~ ORANGE-BROWN MEDIUM TO COARSE SAND TRACE GRAVEL, TRACE SILT ~MEDIUM DENSE~
2D 24' 3D 24' 4D 24'	18"	7.0°	5 4	11	8	12	3.5'	ORANGE-BROWN MEDIUM TO COARSE SAND TRACE GRAVEL, TRACE SILT ~MEDIUM DENSE~
3D 24'	18"	7.0'	4	11	16			TRACE GRAVEL, TRACE SILT ~MEDIUM DENSE~
3D 24'	18"	7.0'	4	11	16			
4D 24'	17"	9.0'				19	7.0'	BB0010114FB0111176 661D0F 61175 60176 60177 FB1 67 67
4D 24'	17"	9.0'				19	7.0'	BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE SILT
			17	20	18			~MEDIUM DENSE~
			17	20	18	l		
5D 24'	20"	12.0'				24]	BROWN GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT
5D 24'	20"	12.0'						~MEDIUM DENSE~
5D 24'	20"	12.0						
		 	21	20	23	22	12.0'	
			 	<u> </u>			-	BROWN SAND AND GRAVEL, TRACE SILT
	-							~DENSE~
6D 12'	10"	16.0'	15	50				<u></u>
	1		, · ·					
								BOTTOM OF EXPLORATION AT 16.0'
			<u> </u>					
	-							
	-							
							1	
							1	
	ļ	-						
							-	
				<u> </u>	<u> </u>		1	
			 			<u> </u>	1	
	+		 	 			1	
	<u> </u>						1	
	 	-				<u> </u>	1	
		SOILO	1 4001	בובר פי	<i>/-</i>		REMAD	KS:
	D 12"		SOIL C	SOIL CLASSII	SOIL CLASSIFIED BY	SOIL CLASSIFIED BY:		

STRATIFICATION LINES REPRESENT THE

AND THE TRANSITION MAY BE GRADUAL.

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

BORING NO.:

B-111

DRILLER - VISUALLY

LABORATORY TEST

SOIL TECH. - VISUALLY

C = 2" SHELBY TUBE

S = 3" SHELBY TUBË U = 3.5" SHELBY TUBË

JEFF LEE

BORING NO.: B-112

SHEET: 1 OF 1

PROJECT NO.: 14-0065

PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

DATE START: 5/22/2014

DATE FINISH: 5/22/2014

13

B-112

BORING NO.:

LOCATION: ARBOR STREET & FOREST AVENUE, PORTLAND, ME
DRILLING CO.: GREAT WORKS TEST BORINGS, INC. DRILLER:

ELEVATION: 126' ±

TYPE SIZE I.D. HAMMER WT. HAMMER FALL

SWC REP.: PJO

CASING: HSA 2 3/4"

SAMPLER: SS 1 3/8" 140-LBS 30"

WATER LEVEL INFORMATION NO FREE WATER OBSERVED

CORE BARREL:

C = 2" SHELBY TUBE

S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

DRILLER - VISUALLY

LABORATORY TEST

SOIL TECH. - VISUALLY

PER FOOT	NO.					T	ABBIDEVIOLETA	5624000000000000000000000000000000000000	DEPTH	STRATA & TEST DATA
ĺ		PEN.	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		
			101	0.01					0.4	DARK BROWN SAND AND SILT WITH ROOTLETS (TOPSOIL / FILL) ~LOOSE~
	1D	24"	18"	2.0'	2	2	6	8	1	~LOOSE~ DARK BROWN GRAVELLY SILTY SAND
	2D	24"	22"	4.0'	5	7	13	20	1	WITH BRICK AND COAL FRAGMENTS (FILL)
									5.0'	~MEDIUM DENSE~
***************************************	3D	24"	14"	7.0'	7	17	18	17		~DENSE~
	0.5		,	1.0	•	''-				
	4D	11"	11"	9.0'	26	50/5"				BROWN SAND AND GRAVEL, TRACE SILT

	5D	24"	18"	12.0'	24	29	28	30		~VERY DENSE~
	6D	24"	22"	17.0	10	26	26	25		
										BOTTOM OF EXPLORATION AT 17.0'
										BOTTOM OF EXPLORATION AT TILL
		······								
SAMPLE D = SPL				SOIL C	LASSIF	FIED BY	' :		REMARI	KS:

STRATIFICATION LINES REPRESENT THE

AND THE TRANSITION MAY BE GRADUAL.

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

C = 2" SHELBY TUBE

S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

DRILLER - VISUALLY

LABORATORY TEST

SOIL TECH. - VISUALLY

BORING LOG

JEFF LEE

BORING NO.: B-113
SHEET: 1 OF 1
PROJECT NO.: 14-0065

PROJECT / CLIENT:	PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES
I OCATION!	APROR STREET & EOREST AVENUE DORTI AND ME

DATE START: 5/23/2014

DATE FINISH: 5/23/2014

DRILLING CO.: GREAT WORKS TEST BORINGS, INC. DRILLER:

ELEVATION: 125' ±

TYPE SIZE I.D. HAMMER WT. HAMMER FALL

SWC REP.: PJO

 CASING:
 HSA
 2 3/4"

 SAMPLER:
 SS
 1 3/8"
 140-LBS
 30"

 CORE BARREL:
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"
 30"</

WATER LEVEL INFORMATION NO FREE WATER OBSERVED

CASING BLOWS		SAN	/IPLE		SAM	PLER BI	LOWS F	PER 67	- DEPTH	STRATA & TEST DATA
PER FOOT	NO.	PEN,	REC.	DEPTH @ BOT	0-6	6-12	12-18	18-24		
	1D	24"	16"	2.0'	2	6	5	11	1 20,	GRASS / DARK BROWN SILTY SAND, TRACE GRAVEL
	טו	24	10.	2.0		6) 5	11	2.0	WITH PORCELAIN AND COAL FRAGMENTS (FILL) ~MEDIUM DENSE~ BROWN GRAVELLY SAND SOME SILT
	2D	24"	16"	4.0'	19	15	12	14		~MEDIUM DENSE~
									5.0'	
	3D	24"	19"	7.0'	11	17	20	25	1	~DENSE~
	4D	18"	16"	8.5'	14	19	33			BROWN GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT
									j	
	5D	24"	18"	12.0'	11	18	27	30		
	6D	24"	22"	17,0'	19	25	28	37		~VERY DENSE~
	0.0	24	22	17.0	פו	20	20	J.		VERT DENGE
										BOTTOM OF EXPLORATION AT 17.0'

	***************************************						Ī			
SAMPLE	! =e.			SOIL C	1 4001	IED DV	l		REMAR	Ve.
D = SPL		ON		JOIL U	OOIL	12001	-		I VENNIAL	

STRATIFICATION LINES REPRESENT THE

AND THE TRANSITION MAY BE GRADUAL.

APPROXIMATE BOUNDARY BETWEEN SOIL TYPES

BORING NO.:

TYPE

LOCATION:

DRILLING CO.:

BORING LOG

DRILLER:

JEFF LEE

B-114 BORING NO .: 1 OF 1 SHEET:

PROJECT NO.:	14-0065
DATE START:	5/23/2014
DATE FINISH:	5/23/2014

ELEVATION:

126'	+

SWC REP .: PJO

WATER LEVEL INFORMATION NO FREE WATER OBSERVED

CASING: HSA 2 3/4" 1 3/8" 140-LBS SAMPLER: SS 30" CORE BARREL:

GREAT WORKS TEST BORINGS, INC.

ARBOR STREET & FOREST AVENUE, PORTLAND, ME

PROJECT / CLIENT: PROPOSED SENIOR LIVING FACILITY / THE PARK DANFORTH c/o MITCHELL & ASSOCIATES

SIZE I.D. HAMMER WT. HAMMER FALL

CASING SAMPLE SAMPLER BLOWS PER 6" BLOWS DEPTH STRATA & TEST DATA PER DEPTH NO. PEN. REC. 0-6 6-12 12-18 18-24 @ BOT FOOT 31/2" ASPHALT 1,5 BROWN GRAVELLY SAND, SOME SILT (FILL) ~MEDIUM DENSE~ 24" 16" 2.5 8 8 3.0 BROWN FINE TO MEDIUM SAND, TRACE SILT ~MEDIUM DENSE~ 1D 5 8 2D 24" 15" 4.5' 11 20 25 25 ~DENSE TO VERY DENSE~ 3D 24" 18" 7.0' 13 23 31 31 4D 9" 7" 7.7 31 50/3" BROWN SAND AND GRAVEL, TRACE SILT 22" 17" 5D 11.8 9 14 21 50/5" ~DENSE~ 6D 24" 16" 17.0' 22 18 25 29 12" 10" 21.0 29 48 ~VERY DENSE~ 7D BOTTOM OF EXPLORATION AT 21.0' SOIL CLASSIFIED BY: REMARKS: SAMPLES:

D = SPLIT SPOON

C = 2" SHELBY TUBE S = 3" SHELBY TUBE

U = 3.5" SHELBY TUBE

DRILLER - VISUALLY SOIL TECH. - VISUALLY LABORATORY TEST

Х

STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL.

15

BORING NO.: B-114

KEY TO THE NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

w - water content, percent (dry weight basis)

qu - unconfined compressive strength, kips/sq. ft. - laboratory test

S_v - field vane shear strength, kips/sq. ft. L_v - lab vane shear strength, kips/sq. ft.

q_p - unconfined compressive strength, kips/sq. ft. – pocket penetrometer test

O - organic content, percent (dry weight basis)

W_L - liquid limit - Atterberg test
 W_P - plastic limit - Atterberg test
 WOH - advance by weight of hammer
 WOM - advance by weight of man
 WOR - advance by weight of rods

HYD - advance by force of hydraulic piston on drill

RQD - Rock Quality Designator - an index of the quality of a rock mass.

 γ_T - total soil weight γ_B - buoyant soil weight

<u>Description of Proportions:</u> <u>Description of Stratified Soils</u>

		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	1/2" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness

And 35+% Occasional: one or less per foot of thickness
With Undifferentiated Frequent: more than one per foot of thickness

REFUSAL: Test Boring Explorations - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: Test Pit Explorations - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

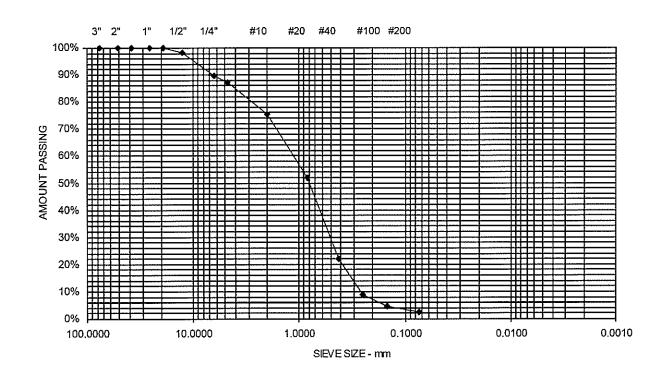
Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

ASTM C-117 & C-136

PORTLAND ME - PROPOSED SENIOR LIVING - THE PARK Project Name

DANFORTH - GEOTECHNICAL ENGINEERING SERVICES

Client THE PARK-DANFORTH Lab ID 18232G Date Received 5/28/2014 Date Completed 5/30/2014


JUSTIN BISSON

Tested By

Project Number 14-0065

Material Source B-104 2D 2.5-4.5

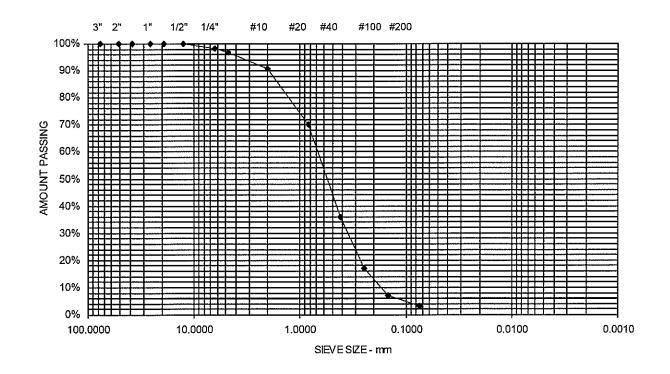
SIEVE SIZE	AMOUNT PASSING (%)	L
6"	100	
5"	100	
4"	100	
3"	100	
2"	100	
1-1/2"	100	
1"	100	
3/4"	100	
1/2"	98	
1/4"	90	
No. 4	87	12.8% Gravel
No. 10	75	
No. 20	52	
No. 40	22	84.8% Sand
No. 60	9	
No. 100	5	
No. 200	2.4	2.4% Fines
	6" 5" 4" 3" 2" 1-1/2" 1" 3/4" 1/2" 1/4" No. 4 No. 10 No. 20 No. 40 No. 60	6" 100 5" 100 4" 100 3" 100 2" 100 1-1/2" 100 1" 100 3/4" 100 1/2" 98 1/4" 90 No. 4 87 No. 10 75 No. 20 52 No. 40 22 No. 60 9 No. 100 5

Comments: w = 3.4%

ASTM C-117 & C-136

Project Name PORTLAND ME - PROPOSED SENIOR LIVING - THE PARK

DANFORTH - GEOTECHNICAL ENGINEERING SERVICES


Client THE PARK-DANFORTH

Lab ID 18233G Date Received 5/28/2014 Date Completed 5/30/2014 Tested By JUSTIN BISSON

Project Number 14-0065

Material Source B-104 5D 10-12

STANDARD DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97	3.2% Gravel
2.00 mm	No. 10	91	
850 um	No. 20	70	
425 um	No. 40	36	93.4% Sand
250 um	No. 60	17	
150 um	No. 100	7	
75 um	No. 200	3,3	3.3% Fines

Comments: w = 4.3%

ASTM C-117 & C-136

Project Name PORTLAND ME - PROPOSED SENIOR LIVING - THE PARK

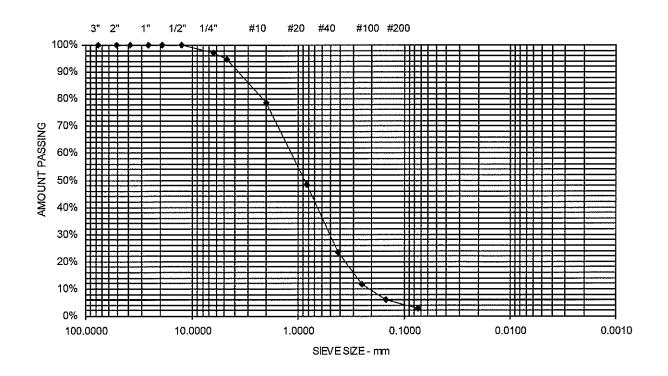
DANFORTH - GEOTECHNICAL ENGINEERING SERVICES

Client THE PARK-DANFORTH

 Lab ID
 18234G

 Date Received
 5/28/2014

 Date Completed
 5/30/2014


JUSTIN BISSON

Tested By

Project Number 14-0065

Material Source B-106 4D 7-9

<u>STANDARD</u> <u>DESIGNATION (mm/μm)</u>	SIEVE SIZE	AMOUNT PASSING (%)	
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
6.3 mm	1/4"	97	
4.75 mm	No. 4	95	5.4% Gravel
2.00 mm	No. 10	79	
850 um	No. 20	48	
425 um	No. 40	24	91.7% Sand
250 um	No. 60	12	
150 um	No. 100	6	
75 um	No. 200	2.9	2.9% Fines

Comments: w = 4.1%

ASTM C-117 & C-136

Project Name PORTLAND ME - PROPOSED SENIOR LIVING - THE PARK

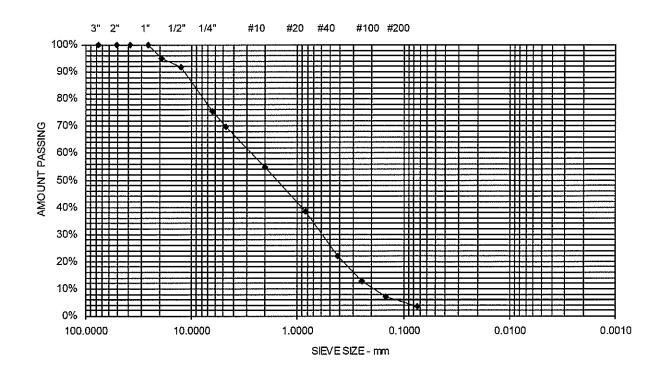
DANFORTH - GEOTECHNICAL ENGINEERING SERVICES

Client THE PARK-DANFORTH

 Lab ID
 18235G

 Date Received
 5/28/2014

 Date Completed
 5/30/2014


JUSTIN BISSON

Tested By

Project Number 14-0065

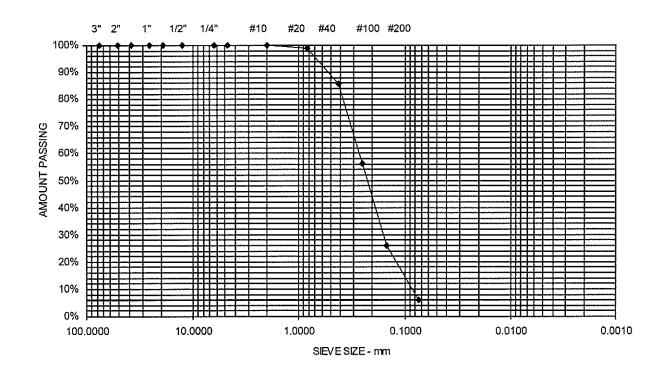
Material Source B-106 6D 15-17

STANDARD DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%	<u> </u>
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38,1 mm	1-1/2"	100	
25.0 mm	1"	100	
19,0 mm	3/4"	95	
12.5 mm	1/2"	92	
6.3 mm	1/4"	75	
4.75 mm	No. 4	70	30.3% Gravel
2.00 mm	No. 10	55	
850 um	No. 20	39	
425 um	No. 40	22	66.2% Sand
250 um	No. 60	13	
150 um	No. 100	7	
75 um	No. 200	3.6	3.6% Fines

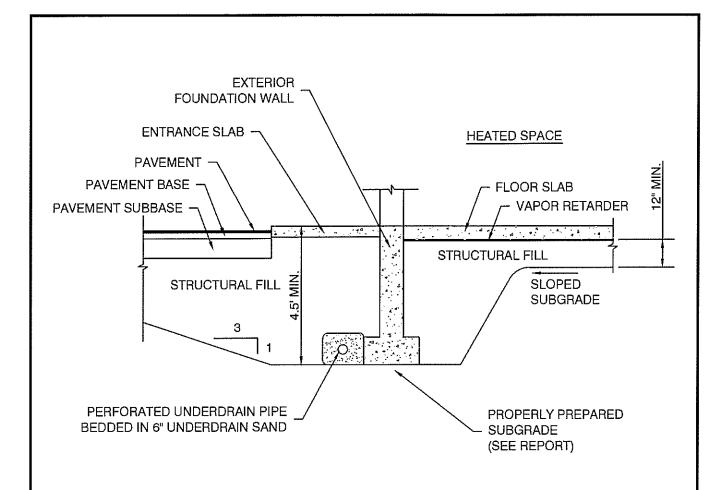
Comments: w = 2,4%

ASTM C-117 & C-136

Project Name PORTLAND ME - PROPOSED SENIOR LIVING - THE PARK


DANFORTH - GEOTECHNICAL ENGINEERING SERVICES

Client THE PARK-DANFORTH Lab ID 18236G Date Received 5/28/2014 Date Completed 5/30/2014


Project Number 14-0065

Material Source B-106 7D 20-22 JUSTIN BISSON Tested By

<u>STANDARD</u> <u>DESIGNATION (mm/μm)</u>	SIEVE SIZE	AMOUNT PASSING (%)	1
150 mm	6"	100	
	5"		
125 mm	-	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
6.3 mm	1/4"	100	
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	100	
850 um	No. 20	99	
425 um	No. 40	86	94.1% Sand
250 um	No. 60	56	
150 um	No. 100	26	
75 um	No. 200	5.9	5.9% Fines

Comments: w = 19.5%

NOTE:

- 1. UNDERDRAIN INSTALLATION AND MATERIAL GRADATION RECOMMENDATIONS ARE CONTAINED WITHIN THIS REPORT.
- 2. DETAIL IS PROVIDED FOR ILLUSTRATIVE PURPOSES ONLY, NOT FOR CONSTRUCTION.

THE PARK DANFORTH C/O MITCHELL & ASSOCIATES

UNDERDRAIN DETAIL

PROPOSED SENIOR LIVING FACILITY ARBOR STREET AND FOREST AVENUE PORTLAND, MAINE

Job No.:

14-0065

Scale:

Not to Scale

Date :

06/18/2014

Sheet:

22

APPENDIX I

TEST PITS (2 Reports) ALBERT FRICK ASSOCIATES INC.

Albert Frick, SS, SE James Logan, SS, SE Matthew Logan, SE Brady Frick, SE Bryan Jordan, SE William O'Connor, SE Noel Dunn, Office Manager

September 16, 2014

Mr. Robert Metcalf Mitchell Associates 70 Center Street Portland, ME 04101

Re: The Park at Danforth property, Forest & Stevens Avenue, Portland

Dear Mr. Metcalf:

On September 15, 2014, we evaluated six soil test pits, at locations of your choosing, on the above-referenced property to assist with stormwater design for a project on-site. We excavated these by hand shovel, to minimize damage to landscaping.

Enclosed for your review and use are soil profile classifications for each test pit evaluated, and a generic soil description for the 'nearest fit' series that best matches the filled land conditions of the site.

Soils observed all consist of regraded fill soils of variable gravelly loamy sand and sand textures. These generally become firmer with depth, as the compacted substratum is denser and somewhat resistant to internal drainage. Soils are generally moderately well-drained, with historical seasonal high groundwater generally within 4' of the mineral soil surface for short durations during the wettest seasons.

I trust you will find the enclosed information helpful in the design of a stormwater management plan for the property. Please do not hesitate to call should you have further questions or matters for discussion regarding the site.

Sincerely,

James Logan

Certified Soil Scientist #213 Licensed Site Evaluator #237

Wetland Scientist

FILLED LAND "SKERRY-LIKE"

SETTING

Parent Material:

Loamy glacial till underlain by sandy textured denser till.

Landform:

Drumlins and glaciated uplands.

Position in Landscape:

Usually occupies upper components of landform.

Slope Gradient Ranges:

(B) 3-8% (C) 8-20%

COMPOSITION AND SOIL CHARACTERISTICS

Drainage Class:

Moderately well-drained, with a perched water table 1.5 to 3.5 feet below the soil surface from November through May.

Typical Profile Description: Surface layer:

Light gray fine sandy loam, 0-4"

Subsurface layer: Subsoil layer: Substratum: Dark reddish brown fine sandy loam, 4-20" Yellowish brown fine sandy loam, 20-25" Mixed brown and light olive brown fine

sandy loam and sand, 25-65"

Hydrologic Group:

Group C

Surface Run Off:

Moderate

Permeability:

Moderate in solum and slow or moderately slow in the compact

substratum.

Depth to Bedrock:

Deep, greater than 40".

Hazard to Flooding:

None

INCLUSIONS (Within Mapping Unit)

Similar:

Adams, Croghan, Made Land, Cut & Fill Land

Dissimilar:

Tunbridge, Lyman (less than 40" to bedrock)

USE AND MANAGEMENT

Stormwater design: Skerry soils are moderately well drained. Soil permeabilities are expected to be 0.6-2.0 inches/hour in the upper portions of soil profile, and 0.06-0.6 inches/hour in the compact substratum, generally $25^{\circ}-65^{\circ}$ beneath the soil surface.

Street, Road Subdivision
THE PARK DANFORTH

Owner's Name
MITCHELL ASSOCIATES

ALL SOIL TEST PITS EXCAVATED BY HAND SHOVEL

		SOIL DESC	RIPTIO	NA N	ID CLASSI	FICATION (Lo	catio	on of Obse	rvatio	n Ho	les Shown	Above)
	Obse	rvation Hole " Depth o	TP I I Organic	: Horizo	Test Pit on Above Mine	☐ Boring rat Soil		Obse	rvation Hole _ " Depth o	TP 2 of Organia	: Horiz	Test Pit on Above Mine	☐ Boring ral Soil
	٥	Texture SANDY	Consist	ency	Color	Mottling		0	Texture SANDY	Consist	ency	Color	Mottling
	(84)	LOAM (FILL)			DARK BROWN			G .	(FILL)			BROWN_	
	SURFACE (inches)	LOAMY SAND	FRIA	3.18	AATXED			SURFACE (inches)	-LOAMY	FRIA	RI F	DARK	
		GRAVELLY. SAND			MIXED OLIVE BROWN			7802 70 20	SAND (FILL)			DARK YELLOWISH BROWN	
į	MINERAL SOIL S	(FILL)	SOMEW	HAT	MIXED	FEW FAINT		WINERAL SOIL				YELL OWISH	
	30 MOT3		SOMEW FIRM FIR IN PL	NCE	GRAYISH . BROWN			30 MOT38				YELLOWISH BROWN	
	рертн вецоw ф							9 40 40 PTH 8	FINE & MEDIUM SAND	SOMEN FIRM IN PL	MAT Me	LIGHT QLIVE BROWN	FEW-FAINT
	50							50				XC.AVATION	
FOR WASTEWATER DISPOSAL——			indition	²	Factor 25"	Graund Water Restrictive Layer Bedrock Pit Depth			Sail Classific	ation andition	Slope %	Foctor	Ground Water Restrictive Layer Bedrock Pit Depth
FOR SOILS MAPPING	F	Series Nome: ILLED LAND KERRY-LIKE		Draina	oge Class:	Hydrologic Group		F	Series Name: ILLED LANI KERRY-LIK	,	Dr air	rage Class:	Hydrologic Group:
	0	rvation Hale Depth a	TP 3 1 Organic Consiste	Horizo	Test Pit on Abave Miner Color	☐ Baring ral Sail Mottling		0	" Depth o	Consist		Test Pit on Above Miner	☐ Boring ral Soil Mottling
		BARK MULCH (FILL)			BLACK				SANDY LOAM			DARK BROWN	
	SURFACE (names)		FRIAE	X.E			W	(Sathers 10	(ETLL)	FRIA	3LE		
	d .	LOAMY SAND & SAND			OLIVE BROWN		П	Oit SURFACE	LOAMY SAND L SAND			LIGHT OLIVE BROWN TO OLIVE BROWN	
	WAERAL SI						1 1	SC S	W/BRICK DEBRIS	<u> </u>	(UAT		EGW. EA J. SE
	жети вегом В		VER					ee.cow		SPACY FIRM IN PL	Tö M ACE		FEW FAINT
	9EPTH	* * * * *	FIR	и	OLIVE GRAY	FEW FAINT		H1 40			•	KE OF	MAIA
	50		IMIT	OF EX	(CAVATION			50		ETWIT	oF∫€,	X LAVADAMI	S
OR VASTEWATER DISPOSAL —		Soil Classifica	ndition .	Slope	Factor 3	Ground Water Restrictive Layer Bedrock Pit Depth			Soil Classific	ation andition	OF E	HE ********** OCE #	Numd Well destrictive Laye Gedrock Fit Depth
FOR SOILS MAPPING	o_F	Series Name: ILLED LAND KERRY-LIKE		Draine	oge Closs:	Hydrologic Group			Series Nome: FILLED LAN		Drkir	lage Class:	Hydrologic Group:
	m	n A	egyist Sig	Jus	AFA)	237/ 2 SE/03	-,		9-	15-14 Date		SOIL SCI	ENT
/ /P"		associates - 954	• 1	nature						DOLE			

Town, City, Plantation
PORTLAND

Street, Road Subdivision
THE PARK DANFORTH

Owner's Name MITCHELL ASSOCIATES

-			·		n Above Min				Texture	r Organic		on Above Mine Color	rai Soil 1 Mottling
	o	Texture	Consis	tency	Color	Mottling		0	rextore	CONSIST	ency		, and the same
	1	-SANDY			DARK				SANDY			DARK _BROWN	
	l	LOAM			BROWN				LOAM			-10YR3/3-	
e e	-	(FILL)					18	10	(FJLL)	FRIA	JLE.		1
P. P.	10	LOAMY			MIXED		SURFACE (inches)		LOAMY				<u> </u>
ت پیر		SAND &	FK14	BLE	DARK YELLOWISH		Į,		SAND &			YELLOWISH	
₹ AC	i	SAND & SAND (FILL)			BROWN		8		SAND (FILL)			BROWN	<u> </u>
is.	20	(FICL)					1 2	20		 			
SOF	30 40				-OLIVE		Š			C = 1. E1	. // L ~ ~ ~	OLIVE	FEW FAI
Z				1	-BROWN-		 			SOMEY FIRM IN PL	To	BROWN	
a Car	20					- FEW FAINT	3	30		FIR	M-		
		77	1	REFU	<λ1 /	/	ð	30		IN TL	4CE		
35.0		//			OMPACTE	(=1-1)		i					
Ī		(ON	STONE	. IN C	OMFACTEL	/ F	#			-			
930	40			•			2	40		VER		OLIVE.	
										-FIR		GRAY	
										LIMIT	OF E	XCAVATION	I
	50							50	Soil Classife		Slope	Limiting D	Ground Water
TER		Soil Classific		Stope	21 "	□ Ground Water ■ Restrictive Layer □ Bedrock □ Pit Depth			Profile C		%	Factor	Restrictive Lo Bedrock Pit Depth
-	Soil	Profile Co Series Name:	ndition		noge Class:	Hydrologic Group		Soil	Series Name:		Drai	nage Class:	Hydrologic (
_		ILLED LAND)	1			八	F	FILLED LAN	<u>D</u>			
`	—–	KERRY-LIK					-		KERRY-LIK	E			
			RIPTI			SIFICATION (Loc	Obse	on of Observation Hale	ervatio of Organi	n Ho c Horiz	les Shown Test Pit on Above Mine	Above) Bori
	Obse	SOIL DESC	RIPTI		Test Pit on Above Mir		Loc	Obse	on of Observation Hole	ervatio of Organi Consis	c Horiz	Test Pit on Above Mine	Above) Bori
		SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil	Loc	Obse	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
	Obse	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Obse	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
	Obse a	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Obse ——	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
	Obse a	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Obse ——	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
	Obse a	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Obse 0	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
	Obse a	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observe (inches)	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
SIMS ACE Greeness	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		0 (88)	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit con Above Mine	☐ Borii eral Soil
SIMS ACE Greeness	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		SOUL SUMPALE (menes)	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit	☐ Borii eral Soil
SIMS ACE Georges	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		SOUL SUMPALE (menes)	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit	☐ Borii eral Soil
SIMS ACE (seches)	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observed the findings of the Act (inches) of t	rvation Hole _ " Depth	of Organi	c Horiz	Test Pit	☐ Borii eral Soil
SIMS ACE Georges	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observed the findings of the Act (inches) of t	rvation Hole _ " Depth	Consis	c Horiz	Test Pit	☐ Borii eral Soil
SIMS ACE (seches)	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observed the findings of the Act (inches) of t	rvation Hole _ " Depth	of Organi	tency	Test Pit con Above Mind	☐ Borir eral Soil
SIMS ACE Greeness	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observed the findings of the Act (inches) of t	rvation Hole _ " Depth	Consis	tency	Test Pit con Above Mine Color MA ES	Boring Mottling
	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		SOUL SUMPALE (menes)	rvation Hole _ " Depth	Consis	tency LOI	Test Pit ron Above Mine Color MA A A A A A A A A A A A A A A A A A	Boring Mottling
SIMS ACE Georges	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		Observed the findings of the Act (inches) of t	rvation Hole _ " Depth	Consis	tency LOI	Test Pit con Above Mine Color MA ES	Boring Mottling
SIMS ACE Georges	0 0 10	SOIL DESC rvation Hale _ " Depth o	RIPTI	ic Horiz	Test Pit on Above Mir	Boring neral Soil		OPENIA BELOW MAKERAL SUM SUM-ALL INDRESS O 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	rvation Hole _ " Depth	Consis	tency LOI JAN LOI	Test Pit ron Above Mine Color M.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	Borir Borir Mottling
SIMP ACE (seches)	0 0 10	SOIL DESC	CRIPTION Consis	ic Horiz	Test Pit	Mottling Mottling		Observed the findings of the Act (inches) of t	rvation Hole " Depth Texture	Consis	tency LOI JAN LOI	Test Pit ron Above Mine Color M.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	Mottling
S INCOME DITON WAS BAI "COST CHARALE GREENES]	Obse	SOIL DESC rvation Hale _ " Depth o	CRIPTION Consis	ic Horiz	Test Pit con Above Min Cotor Cotor Limiting Factor	Mottling Mottling Ground Water Pestrictive Loyer		OPENIA BELOW MAKERAL SUM SUM-ALL INDRESS O 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	rvation Hole _ " Depth	Consis	tency LOI JAN LOI	Test Pit on Above Mine Color MAAA MES SAN 13	Borir eral Soil Mottling
CONTRACTOR OF THE PARTY CONTRACTOR CONTRACTOR OF THE PARTY CONTRACTOR OF THE P	Obse	SOIL DESC rvation Hole " Depth of Texture Texture Soil Classific	Consis Consis	ic Horiz	Test Pit con Above Min Cotor Limiting Factor	Mottling Mottling		OPENIA BELOW MAKERAL SUM SUM-ALL INDRESS O 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Texture Texture Soil Classit	Consis	tency LOI JAN LOI	Test Pit on Above Mine Color MAAA AN AS AN AS CIENTING	Mottling Mottling Ground Wate Bestrictive La Bedrock Fit Depth
CONTRACTOR OF THE PARTY CONTRACTOR CONTRACTOR OF THE PARTY CONTRACTOR OF THE P	Obse 0 10 20 50 50	SOIL DESC rvation Hole " Depth of Texture Texture Soil Classific	CRIPTION Consis	ic Horiz stency	Test Pit con Above Min Cotor Limiting Factor	Mottling Mottling Ground Water Restrictive Loyer Bedrock		OE	Texture Texture Soil Classit	Consis	tency tency JAN LO	Test Pit on Above Mine Color MAAA AN AS AN AS CIENTING	Mottling Mottling Ground Wate Bestrictive L. Bedrock
SIMS ACE Georges	Obse 0 10 20 50 50	SOIL DESC rvation Hole " Depth of Texture Texture Soil Classific Profile C	Consis Consis	ic Horiz stency	Test Pit con Above Min Color Color Limiting Factor	Mottling Mottling Ground Water Restrictive Loyer Bedrock Pit Depth		OE	Texture Texture Soil Classif	Consis	tency tency JAN LO	Test Pit on Above Mino Color MAAA ABS AN 13 CIENTING	Mottling Mottling Ground Wate Bestrictive La Bedrock Fit Depth

Albert Frick, SS, SE James Logan, SS, SE Matthew Logan, SE Brady Frick, SE Bryan Jordan, SE William O'Connor, SE Noel Dunn, Office Manager

September 27, 2014

Mr. Mike King Mitchell Associates 70 Center Street Portland, ME 04101

Re: The Park at Danforth, Stevens Avenue, Portland

Dear Mr. King:

We have revisited the above-referenced site to re-excavate soil test pits for stormwater design. Previously our test pits were dug by hand shovel and soil auger, and were not sufficiently deep to fully evaluate soil characteristics. Enclosed for your review and use are revised soil profile descriptions for TP1-6, based on excavations with backhoe, at the on-site locations previously identified by others.

Soil profiles observed in backhoe test pits exhibited similar conditions to those described with hand shovel test pits. These consist of fill soils of variable sandy textures, over original soils that are Croghan (Variant) soils, in that they are glacial outwash soils on nearly level to gently sloping landforms. The area has been developed for many years, with more than one project at this site.

A subsurface layer of somewhat firm to firm, very gravelly loamy sand was observed in all test pits, which had evidence of slower internal drainage than those soil layers above and below this slightly cemented zone. Original soil data provided suggested the soils are "Skerry-like", but over –excavation/removal of the somewhat firm to firm subsurface layer would create soil conditions on-site that more closely resemble Croghan (Deeerfield) soil as mapped originally in the USDA Natural Resource Conservation Service Soil Survey of Cumberland County.

While Croghan soils are generally moderately well drained (i.e. seasonal high water tables generally within 4' of the original soil surface), long term development of city streets/infrastructure has likely lowered the traditional water tables in the area. (It is my understanding that soil borings verified static water table levels approaching 20' in depth). A revised generic soil description for fill over Croghan soils is also now enclosed.

I trust you will find this enhanced investigation of soils on the project site will be helpful in redefining parameters and site limiting factors for sound stormwater design.

Otherwise, should you have further questions or matters for discussion regarding the site, please do not hesitate to call.

Sincerely.

James Logar

Certified Soil Scientist #213 Licensed Site Evaluator #237

Wetland Scientist

Cc. Lester Berry, P.E. (BH2M)

CROGHAN (Variant)

SETTING

Parent Material:

Derived from outwash or deltaic sand.

Landform:

Occupy outwash terraces and sand plains.

Position in Landscape:

Usually are found in intermediate positions in the landscape.

Slope Gradient Ranges:

(B) 3-8% (C) 8-20%

COMPOSITION AND SOIL CHARACTERISTICS

Drainage Class:

Generally moderately well-drained, with an apparent water table within 4' of the soil surface. On this specific site, city stormwater infrastructure in surrounding streets has likely lowered the water

table.

Typical Profile Description:

Surface layer:

Dark brown sand, 0-7"

Subsurface layer: Strong

Strong brown/yellowish brown, brown & pale brown sand with mottles below 13", 7-

52'

Substratum:

Grayish brown loose sand, 52-60"

Hydrologic Group:

Group B

Surface Run Off:

Slow to medium

Permeability:

Rapid to very rapid in the lower horizons.

Depth to Bedrock:

Moderately deep, 20-40"

Hazard to Flooding:

None

INCLUSIONS
(Within Mapping Unit)

Similar:

Adams, Duane

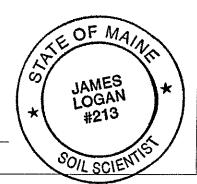
Dissimilar:

Au Gres, Naumburg, Naskeag

USE AND MANAGEMENT

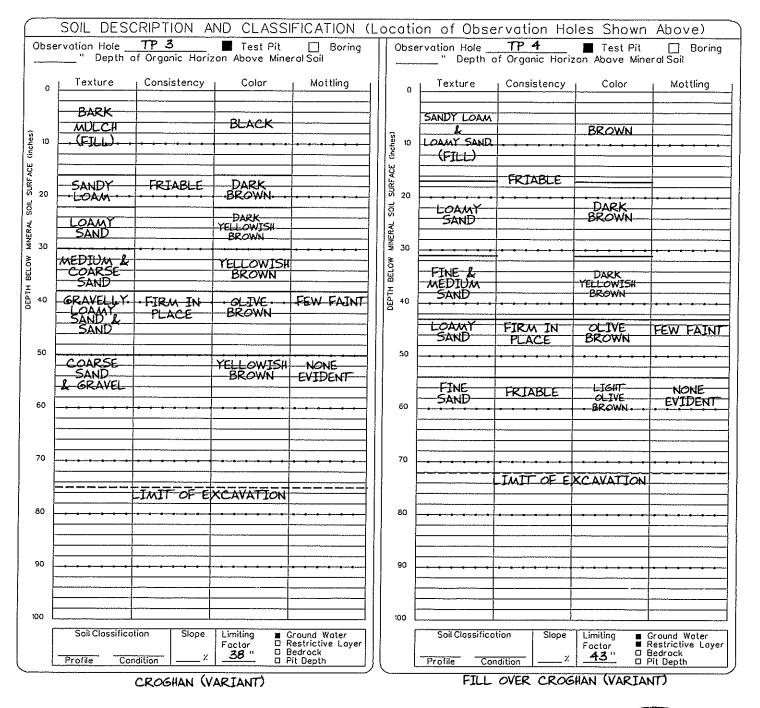
Development of stormwater management systems: The limiting factor for building site development is wetness due to the presence of a groundwater table. Proper foundation drainage or site modification is recommended. Croghan soils are suitable for creation of stormwater management structures, and permeability is 6"-20"/hr in the upper 7" of soil profile, and in excess of 20"/hr on subsoil.

ALL SOIL TEST PITS EXCAVATED BY BACKHOE


	SOIL DESC	RIPTION A	ND CLASSI	IFICATION (Locatio	on of Obse		les Shown	Above)
Obse	ervation Hole " Depth o	TP f Organic Hariz	■ Test Pit zon Above Mine	☐ Boring ral Soil	Obse	rvation Hole	TP 2 of Organic Horis	Test Pit zon Above Mine	☐ Boring eral Soil
0	Texture	Consistency		, Mottling ,		 _ Texture	: Consistency	; Color	ı Mottling ı
"					0				
	VARIABLE	FRIABLE							
S 10	SANDY		VARIABLE		10 E 80	SANDY LOAM			
Cinch	LOAM &		BROWN		(inches)	LOAMY SAND		BROWN	
SURFACE (inches)	SAND				GE	(FILL)			NONE
30 20	(FILL)	SOMEWHAT			SURFACE		FRIABLE		EVIDENT
SOIL		IN PLACE			SOF				
MINERAL SOIL O					RAL I	- LOAMY		DARK BROWN	
₩ 30	GRAVELLY .			1-21.1-2-1-2	MINERAL 05	SAND		BROWN	
Po	LOAMY COARSE		MIXED OLIVE	FEW FAINT	BELOW	MEDIUM &		YELL OWITCH	
E .	SAND		BROWN		8 8	COARSE SAND		YELLOWISH BROWN	
0ЕРТН ВЕLOW					DEPTH (-COBBLY	SOMEWHAT FIRM	- OLIVE	FEW FAINT
	MEDTI)M &	TOTABLE	LIGHT			SAND	FIRM IN COBBLES	BROWN	
	MEDIUM & COARSE SAND	FRIABLE	OLIVE BROWN						
50	SAND				50				
						GRAVELLY COARSE	FRIABLE	YELLOWISH BROWN	NONE EVIDENT
60		IMIT OF E	XCAVATION		60	SAND			CATOCIAI
					and a find				
Ì									
70		• • • • • •	• • • • • •		70				
ŀ							IMIT OF E	XCAVATION	
80					80				
30									
<u> </u>									
90					90				
-]				
F									
100 L			***************************************	-	100				
٢	Soil Classificat	tion Slope	Limiting E	Ground Water Restrictive Layer	[] г	Soil Classifico	tion Slope	Limiting m	Ground Water Restrictive Layer
	Profile Con-	dition	77" B	Restrictive Layer Bedrock Pit Depth		Profile Con	dition	1 20"	Restrictive Layer Bedrock Pit Depth
L		0.0.0	SHAN (VARTA		,		VCR CROSIV		

Site Evaluator/Soil Scient/st Signa (yre

237/213


SE/CSS *

9-25-14

ALBERT FRICK ASSOCIATES - 95A COUNTY ROAD GORHAM, MAINE 04038 - (207) 839-5563

ALL SOIL TEST PITS EXCAVATED BY BACKHOE

Site Evaluator/Soil Scientist Signolure

237/23

SE/CSS *

9-25-14

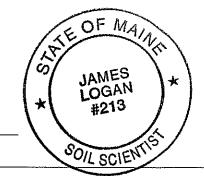
Date

ATE OF MAIN JAMES × LOGAN #213 SOIL SCIENTIS

ALBERT FRICK ASSOCIATES - 95A COUNTY ROAD GORHAM, MAINE 04038 - (207) 839-5563

ALL SOIL TEST PITS EXCAVATED BY BACKHOE

Observation Hole <u>TP 5</u> Tes " Depth of Organic Horizon Above	t Pit 🔲 Boring			-TO /		
	Mineral Soil	Obse	ervation Hole _ " Depth o	TP 6 of Organic Hori:	Test Pit zon Above Min	☐ Boring eral Soil
0 Texture Consistency Cole	or Mottling	0	Texture	Consistency	Color	Mottling
FRIABLE			SANDY LOAM		BROWN	
SANDY LOAM VARIA	RIC	(55	LOAMY SAND (FILL)		DROWN	
LOAMY SAND	VN	(inches	V MLD			
(FILL)		SURFACE	LOAMY	FRIABLE	DARK	
20 W/ BRICKS SOMEWHAT	4 4 4 4 4 4			• • • • • • •	DROWN	
		L SOIL	GRAVELLY		DARK	
30		MINERAL MINERAL	COARSE		YELLOWISH BROWN	
		BELOW A	SAND			
GRAVELLY FIRM IN OLIV	E COMMON- N FAINT	H 85	CONCLLY	SOMEWHAT	MIXED	FEW FAINT
40 COARSE SLIGHTLY	173.11	DEPTH 6	GRAVELLY COARSE SAND	SOMEWHAT FIRM IN PLACE	OLIVE BROWN	
CEMENTED)			SAND	317 1 5/100	DROWN	
50		50				
			MEDIUM & COARSE SAND	FRIABLE	LIGHT OLIVE BROWN	NONE
50		60	JARD	IMIT OF E	XCAVATION	
70		70				
LIMIT OF EXCAVAT	JON					
0	•••••	80	* * * * * *	• • • • • • •		
10		90			······································	• • • • • •
00		100				
Soil Classification Slope Limiting	■ Ground Water ■ Restrictive Layer		Soil Classifica	tion Slope	Factor	Ground Water Restrictive Loyer
Profile Condition / 34 "	☐ Bedrock ☐ Pit Depth	J(l	Profile Cor	ndition Z	36 "	Bedrock Pit Depth


Site Evaluator/Soil Scientist Signature

237/213

SE/CSS *

9-25-14 Dote

ALBERT FRICK ASSOCIATES - 95A COUNTY ROAD GORHAM, MAINE 04038 - (207) 839-5563

APPENDIX I

TEST PITS BY ALBERT FRICK ASSOCIATES INC.

$\frac{\text{APPENDIX J}}{\text{TREATMENT CALCULATIONS}}$

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 33

Summary for Subcatchment 100S: SA100

Runoff

0.14 cfs @ 12.09 hrs, Volume=

0.010 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN D	escription					
	6,877	98 F	98 Paved parking, HSG D					
	6,877	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 102S: SA102

Runoff

0.01 cfs @ 12.12 hrs, Volume=

0.001 af, Depth> 0.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

	A	rea (sf)	CN I	Description						
		1,495	61	>75% Grass cover, Good, HSG B						
_		2,508	98	Paved parking, HSG D						
		4,003	84 '	Weighted Average						
		1,495	;	37.35% Pervious Area						
		2,508	(62.65% Impervious Area						
					_					
	Tc	Length	Slope	-	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)_					
	6.0					Discot Enter	BAINICRALIBA			

6.0

Direct Entry, MINIMUM

Summary for Subcatchment 103S: SA103

Runoff

0.08 cfs @ 12.10 hrs, Volume=

0.006 af, Depth> 0.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

 Area (sf)	CN	Description			
 1,344	61	>75% Grass cover, Good, HSG B			
6,677	98	Paved parking, HSG D			
8,021	92	Weighted Average			
1,344		16.76% Pervious Area			
6,677		83.24% Impervious Area			

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 34

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 105S: SA105

Runoff =

0.00 cfs @

5.00 hrs, Volume=

0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN E	escription)					
	1,080	98 L	Inconnecte	ed roofs, H	SG D			
	4,513	61 >	75% Gras	s cover, Go	ood, HSG B			
	5,593	68 V	68 Weighted Average, UI Adjusted CN = 65					
	4,513	8	80.69% Pervious Area					
	1,080	1	9.31% Imp	ervious Ar	ea			
	1,080	1	100.00% Unconnected					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
15.9	110	0.0200	0.12		Sheet Flow, GRASS Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 106S: SA106

Runoff

0.00 cfs @

5.00 hrs, Volume=

0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

	A	rea (sf)	CN [CN Description						
		4,300	61 >	75% Gras	s cover, Go	ood, HSG B				
		360	98 l	<u>Jnconnecte</u>	ed pavemer	nt, HSG D				
-		4,660	64 \	64 Weighted Average, UI Adjusted CN = 62						
		4,300	ç	92.27% Pervious Area						
		360	7	7.73% Impervious Area						
		360	1	100.00% Unconnected						
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	15.2	90	0.0150	0.10		Sheet Flow, GRASS				

Grass: Dense n= 0.240 P2= 3.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 35

Summary for Subcatchment 107S: SA107

Runoff = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

	Area (sf)	CN I	Description					
	1,088	98 l	Jnconnecte	ed paveme	nt, HSG D			
	2,594	61 >	>75% Gras	s cover, Go	ood, HSG B			
	3,682	72 \	2 Weighted Average, Ul Adjusted CN = 66					
	2,594	7	70.45% Pei	rvious Area				
	1,088			pervious Ar				
	1,088	•	100.00% Unconnected					
T (min	3	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.	5 90	0.0300	0.13		Sheet Flow, GRASS			
					Grass: Dense n= 0.240 P2= 3.00"			

Summary for Subcatchment 134S: SA134

Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.012 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN [Description						
	8,370	98 F	Roofs, HSG D						
	8,370	100.00% Impervious Ar			rea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0	(1001)	(10.11)	(10000)	(0,0)	Direct Entry, MINIMUM				

Summary for Reach 100R: SD CB12-LG15/16/17

Inflow Area = 0.626 ac, 89.59% Impervious, Inflow Depth > 0.42" for TREATMENT event

Inflow = 0.30 cfs @ 12.09 hrs, Volume= 0.022 af

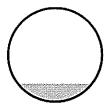
Outflow = 0.30 cfs @ 12.09 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.09 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

Type III 24-hr TREATMENT Rainfall=1.00" Printed 11/17/2014


PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

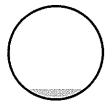
Page 36

12.0" Round Pipe n= 0.012 Length= 4.0' Slope= 0.0100 '/' Inlet Invert= 115.12', Outlet Invert= 115.08'

Summary for Reach 102R: SD CB11-LG13/14

Inflow Area = 0.276 ac, 76.39% Impervious, Inflow Depth > 0.29" for TREATMENT event

Inflow = 0.09 cfs @ 12.11 hrs, Volume= 0.007 af


Outflow = 0.09 cfs @ 12.11 hrs, Volume= 0.007 af, Atten= 1%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.06 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.87 fps, Avg. Travel Time= 0.3 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 15.0' Slope= 0.0100 '/' Inlet Invert= 115.68', Outlet Invert= 115.53'

Summary for Reach 103R: SD CB10-CB11

Inflow Area = 0.184 ac, 83.24% Impervious, Inflow Depth > 0.37" for TREATMENT event

Inflow = 0.08 cfs @ 12.10 hrs, Volume= 0.006 af

Outflow = 0.08 cfs @ 12.11 hrs, Volume= 0.006 af, Atten= 2%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.00 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 1.0 min

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014

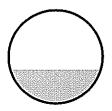
Page 37

12.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0100 '/' Inlet Invert= 116.25', Outlet Invert= 115.78'

Summary for Reach 134R: ROOF DRAIN

Inflow Area = 0.192 ac,100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.17 cfs @ 12.09 hrs, Volume= 0.012 af


Outflow = 0.17 cfs @ 12.09 hrs, Volume= 0.012 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.64 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.97 fps, Avg. Travel Time= 0.5 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 30.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.30'

Summary for Pond 100P: LG15/16/17

Inflow Area = 0.626 ac. 89.59% Impervious, Inflow Depth > 0.42" for TREATMENT event

Inflow = 0.30 cfs @ 12.09 hrs, Volume= 0.022 af

Outflow = 0.02 cfs @ 13.15 hrs, Volume= 0.017 af, Atten= 92%, Lag= 63.5 min

Discarded = 0.02 cfs @ 13.15 hrs, Volume= 0.017 af Primary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 115.04' @ 13.15 hrs Surf.Area= 162 sf Storage= 466 cf

Plug-Flow detention time= 174.4 min calculated for 0.017 af (80% of inflow)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 38

Center-of-Mass det. time= 121.4 min (880.2 - 758.9)

Volume	Invert	Avail.Sto	rage	Storage	Description		
#1	109.00'	4	12 cf			nic) Listed below (
#2	112.46'	19	98 cf_				0 cf x 40.0% Voids ow (Recalc) Inside #1_
		61	10 cf	Total Ava	ailable Storage		
Elevatior (feet	_	ırf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
109.00	כ	162		0	0	162	
116.58	3	162		1,228	1,228	504	
Elevatior (feet		ırf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
112.46	3	48	•	0	0		
116.58	3	48		198	198		
Device	Routing	Invert	Outle	et Devices	3		
#1	Discarded	109.00'	2.41	0 in/hr Ex	filtration over W	letted area	
#2	Primary	115.08'	Inlet	/ Outlet in	Culvert L= 12.0 overt= 115.08' / 1 w Area= 0.79 sf	0' Ke= 0.500 114.96' S= 0.0100) '/' Cc= 0.900

Discarded OutFlow Max=0.02 cfs @ 13.15 hrs HW=115.04' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=109.00' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Summary for Pond 102P: LG 13/14

Inflow Area =	0.276 ac, 76.39% Impervious, Inflow De	epth > 0.29" for TREATMENT event
Inflow =	0.09 cfs @ 12.11 hrs, Volume=	0.007 af
Outflow =	0.01 cfs @ 13.05 hrs, Volume=	0.007 af, Atten= 88%, Lag= 56.4 min
Discarded =	0.01 cfs @ 13.05 hrs, Volume=	0.007 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 113.16' @ 13.05 hrs Surf.Area= 117 sf Storage= 113 cf

Plug-Flow detention time= 110.1 min calculated for 0.007 af (100% of inflow) Center-of-Mass det. time= 108.2 min (924.0 - 815.8)

Volume	Invert	Avail.Storage	Storage Description
#1	110.86'	235 cf	Custom Stage Data (Conic) Listed below (Recalc)
			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids
#2	112.86'	133 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		369 cf	Total Available Storage

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 39

n {	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
ĝ	117	0	0	117	
3	117	722	722	354	
	Surf.Area	Inc.Store	Cum.Store		
)	(sq-ft)	(cubic-feet)	(cubic-feet)		
3	32	0	0		
3	32	133	133		
Routing	Invert	Outlet Devices			
Discarded	110.86'	2.410 in/hr Exfil	tration over V	Vetted area	
Primary	115.53'				
		mar, cancerni	,	' Cc= 0.900	
) 6 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8) (sq-ft) 6 117 8 117 n Surf.Area) (sq-ft) 6 32 8 32 Routing Invert Discarded 110.86'	(sq-ft) (cubic-feet) 117 0 117 722 118 Inc.Store 119 (sq-ft) 110 (cubic-feet) 110 32 110 0 <	(sq-ft) (cubic-feet) (cubic-feet) 117 0 0 3 117 722 722 1 Surf.Area Inc.Store Cum.Store (sq-ft) (cubic-feet) (cubic-feet) 32 0 0 33 32 133 133 Routing Invert Outlet Devices Discarded 110.86' 2.410 in/hr Exfiltration over V 115.53' 12.0" Round Culvert L= 31. Inlet / Outlet Invert= 115.53' /	(sq-ft) (cubic-feet) (cubic-feet) (sq-ft) 117 0 0 117 117 722 722 354 1 Surf.Area Inc.Store Cum.Store (sq-ft) (cubic-feet) (cubic-feet) 32 0 0 33 32 133 33 133 Routing Invert Outlet Devices Discarded 110.86' 2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.01 cfs @ 13.05 hrs HW=113.16' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=110.86' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Summary for Pond 105P: DW3

Inflow Area =	0.128 ac, 19	0.31% Impervious, In	flow Depth = 0.00" for	TREATMENT event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0	%, Lag= 0.0 min
Discarded =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	_
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.74' @ 5.00 hrs Surf.Area= 81 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow)

Center-of-Mass det. time= (not calculated: no inflow)

16

16

120.74

124.90

<u>Volume</u>	Invert	Avail.	Storage	Storag	e Description		
#1	117.74'		205 cf	Custo	m Stage Data (Conic	c) Listed below (Re	calc)
				580 cf	Overall - 67 cf Embe	edded = $513 \text{ cf } \times 4$	0.0% Voids
#2	120.74'		67 cf	Custo	m Stage Data (Prisn	natic) Listed below	(Recalc) Inside #1
			272 cf	Total A	Available Storage		
		_					
Elevation	Surf	.Area	Inc	:Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	(sq-ft)	
117.74		81		0	0	81	
124.90		81		580	580	309	
Elevation (feet)		Area sq-ft)		Store	Cum.Store (cubic-feet)		

0

67

0

67

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 40

Device	Routing	Invert	Outlet Devices
#1	Primary	123.90'	6.0" Round Culvert L= 28.0' Ke= 0.500
	-		Inlet / Outlet Invert= 123.90' / 123.90' S= 0.0000 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.20 sf
#2	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) **2=Exfiltration** (Passes 0.00 cfs of 0.00 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

Summary for Pond 106P: DW2

Inflow Area =	0.320 ac, 18.14	4% Impervious, Inflow De	epth = 0.00"	for TREATMENT event
Inflow =	0.00 cfs @ 5.0	00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @ 5.0	00 hrs, Volume=	0.000 af, Atte	n= 0%, Lag= 0.0 min
Discarded =	0.00 cfs @ 5.0	00 hrs, Volume=	0.000 af	_

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.74' @ 5.00 hrs Surf.Area= 81 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow)

Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert A	Avail.Storage	Storage Description
#1	117.74'	205 cf	Custom Stage Data (Conic) Listed below (Recalc)
			580 cf Overall - 67 cf Embedded = 513 cf x 40.0% Voids
#2	120.74'	67 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
#3	122.90'	762 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,904 cf Overall x 40.0% Voids
<u>#4</u>	123.90'	12 cf	6.0" D x 62.0'L Pipe Storage
		1,046 cf	Total Available Storage
Elevation (foot)	Surf.Ar		c.Store Cum.Store Wet.Area

(Teet)	(sq-π)	(cubic-teet)	(cubic-feet)	(sq-π)
117.74	81	0	0	81
124.90	81	580	580	309
Elevation	Surf.Area	Inc.Store	Cum Storo	
Elevation	Sun.Area		Cum.Store	
(feet)	(sg-ft)	(cubic-feet)	(cubic-feet)	
120.74	16	0	0	
124.90	16	67	67	
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
122.90	952	0	0	952
124.90	952	1,904	1,904	1,171

PARK DANFORTH MODEL II POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 41

Device	Routing	Invert	Outlet Devices
#1	Discarded	117.74'	2.410 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge)
1=Exfiltration (Passes 0.00 cfs of 0.00 cfs potential flow)

Summary for Pond 107P: DW1

Inflow Area =	0.085 ac, 29.55% Impervious, In	iflow Depth = 0.00" for TREATMENT event
Inflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Outflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.74' @ 5.00 hrs Surf.Area= 81 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow)

Center-of-Mass det. time= (not calculated: no inflow)

Volume	Inver	t Avail.Sto	rage Stor	age Description		
#1	117.74	' 20	06 cf Cus	tom Stage Data (Co	onic) Listed below (Re	calc)
					$nbedded = 516 cf \times 40$	
#2	120.74	<u>'</u>	64 cf Cus	tom Stage Data (Pr	ismatic) Listed below	(Recalc) Inside #1
		2	70 cf Tota	l Available Storage		
Claudia	C	······································	lma Ctaw	Cum Ctana	10/04 0 00	
Elevation		urf.Area	Inc.Store		Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet) (cubic-feet)	(sq-ft)	
117.7	74	81	(0	81	
124.9	90	81	580	580	309	
Elevation	on S	urf.Area	Inc.Store	e Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet) (cubic-feet)		
120.7	74	16	(0		
124.7	74	16	64	1 64		
Device	Routing	Invert	Outlet De	vices		
#1	Discarded	117.74'	2.410 in/h	r Exfiltration over	Wetted area	
#2	Primary	123.90'	6.0" Rou	nd Culvert L= 34.0)' Ke= 0.500	
			Inlet / Out	let Invert= 123.90' /	123.90' S= 0.0000 '/'	Cc = 0.900
			n = 0.012.	Flow Area= 0.20 st	F	

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge)
1=Exfiltration (Passes 0.00 cfs of 0.00 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=117.74' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 51

Summary for Subcatchment 114S: SA114

Runoff

=

0.14 cfs @ 12.09 hrs, Volume=

0.010 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN D	escription					
	6,863	98 F	98 Paved parking, HSG D					
	6,863	1	00.00% lm	pervious A	vrea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 115S: SA115

Runoff

0.03 cfs @ 12.09 hrs, Volume=

0.002 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

	Α	rea (sf)	CN E	Description			_
		1,408	98 F	Paved park	ing, HSG D		_
		1,408	1	00.00% Im	pervious A	Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	6.0		· ·			Direct Entry, MINIMUM	

Summary for Subcatchment 116S: SA116

Runoff

0.07 cfs @ 12.09 hrs, Volume=

0.005 af, Depth> 0.75"

A	rea (sf)	CN	Description					
	3,708	98	Paved parking, HSG D					
	35	61	>75% Gras	s cover, Go	ood, HSG B			
	3,743	98	Weighted A	verage				
	35		0.94% Pervious Area					
	3,708		99.06% lmp	pervious Ar	ea			
Tc	Length	Slope	•	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 52

Summary for Subcatchment 117S: SA117

Runoff = 0.00 cfs @ 12.49 hrs, Volume=

0.000 af, Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN I	Description					
	1,618	61 :	>75% Grass cover, Good, HSG B					
	1,116	98 I	Paved park	ing, HSG D)			
	2,734	76 \	Neighted A	verage				
	1,618		59.18% Pervious Area					
	1,116	4	10.82% Imp	ervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 118S: SA118

Runoff = 0.00 cfs @ 12.49 hrs, Volume=

0.000 af. Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN	<u>Description</u>					
	1,018	61	>75% Grass cover, Good, HSG B					
	697	98	Paved park	ing, HSG D)			
	1,715	76	Weighted A	verage				
	1,018		59.36% Pervious Area					
	697		40.64% Imp	pervious Ar	ea			
Τ-	[L	01	V-1:	0	Description			
Tc	Length	Slope	-	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 119S: SA119

Runoff = 0.06 cfs @ 12.09 hrs, Volume=

0.004 af, Depth> 0.66"

Area	(sf)	CN	Description
3,	,261	98	Paved parking, HSG D
	100	61	>75% Grass cover, Good, HSG B
3,	,361	97	Weighted Average
	100		2.98% Pervious Area
3,	,261		97.02% Impervious Area

Type III 24-hr TREATMENT Rainfall=1.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 53

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, MINIMUM	

Summary for Subcatchment 122S: SA122

Runoff = 0.02 cfs @ 12.10 hrs, Volume=

0.001 af, Depth> 0.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN I	Description					
	710	61	>75% Grass cover, Good, HSG B					
	2,135	98 I	Paved parking, HSG D					
	2,845	89 V	Weighted Average					
	710	2	24.96% Pervious Area					
	2,135	-	75.04% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 124S: SA124

Runoff = 0.06 cfs @ 12.10 hrs, Volume=

0.004 af, Depth> 0.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

	A	rea (st)	CN	Description					
		1,000	39	>75% Grass cover, Good, HSG A					
		6,449	98	Paved parking, HSG D					
		7,449	90	Weighted Average					
		1,000		13.42% Pervious Area					
		6,449		86.58% Impervious Area					
	_								
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry, MINIMUM			

Summary for Subcatchment 130S: SA130 ROOF

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 0.004 a

0.004 af, Depth> 0.75"

Type III 24-hr TREATMENT Rainfall=1.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 54

A	rea (sf)	CN [Description		
	3,082	98 F	Roofs, HSG	D	
	3,082	1	100.00% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 131S: SA131 ROOF

Runoff = 0.05 cfs @ 12.09 hrs, Volume=

0.004 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN E	Description					
	2,552	98 F	98 Roofs, HSG D					
	2,552	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0				•	Direct Entry, MINIMUM			

Summary for Subcatchment 132S: SA132

Runoff = 0.09 cfs @ 12.09 hrs, Volume=

0.006 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr TREATMENT Rainfall=1.00"

A	rea (sf)	CN [Description		
	4,394	98 F	Roofs, HSC	S D	
	4,394	1	100.00% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Subcatchment 133S: SA133

Runoff = 0.10 cfs @ 12.09 hrs, Volume= 0.007 af, Depth> 0.75"

Type III 24-hr TREATMENT Rainfall=1.00"

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

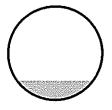
Printed 11/17/2014 Page 55

 Α	rea (sf)	CN I	Description		
	5,035	98 F	Roofs, HSC	B D	
	5,035	•	100.00% Impervious Area		
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, MINIMUM

Summary for Reach 112R: SD CB9-LG8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 0.29" for TREATMENT event

inflow = 0.35 cfs @ 12.10 hrs, Volume= 0.025 af


Outflow = 0.34 cfs @ 12.10 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.04 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 19.0' Slope= 0.0100 '/' Inlet Invert= 118.50', Outlet Invert= 118.31'

Summary for Reach 114R: SD CB8-CB9

Inflow Area = 0.821 ac, 87.47% Impervious, Inflow Depth > 0.17" for TREATMENT event

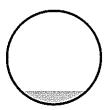
Inflow = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af

Outflow = 0.16 cfs @ 12.11 hrs, Volume= 0.012 af, Atten= 3%, Lag= 1.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.44 fps, Min. Travel Time= 0.8 min Avg. Velocity = 0.88 fps, Avg. Travel Time= 2.2 min

Peak Storage= 8 cf @ 12.10 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs


Type III 24-hr TREATMENT Rainfall=1.00" Printed 11/17/2014

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

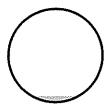
Page <u>56</u>

12.0" Round Pipe n= 0.012 Length= 114.0' Slope= 0.0100 '/' Inlet Invert= 119.74', Outlet Invert= 118.60'

Summary for Reach 115R: SD CB7-CD8

Inflow Area = 0.032 ac,100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.03 cfs @ 12.09 hrs, Volume= 0.002 af


Outflow = 0.03 cfs @ 12.10 hrs, Volume= 0.002 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.43 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 0.7 min

Peak Storage= 0 cf @ 12.09 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 23.0' Slope= 0.0100 '/' Inlet Invert= 120.20', Outlet Invert= 119.97'

Summary for Reach 116R: SD CB6-LG3/4

Inflow Area = 0.460 ac. 82.62% Impervious, Inflow Depth > 0.26" for TREATMENT event

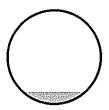
Inflow = 0.13 cfs @ 12.10 hrs, Volume= 0.010 af

Outflow = 0.13 cfs @ 12.10 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.30 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 0.3 min

Peak Storage= 1 cf @ 12.10 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs


Type III 24-hr TREATMENT Rainfall=1.00" Printed 11/17/2014

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

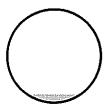
Page 57

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.03', Outlet Invert= 119.89'

Summary for Reach 117R: SD CB5-CB6

Inflow Area = 0.179 ac, 64.97% Impervious, Inflow Depth > 0.30" for TREATMENT event

Inflow = 0.06 cfs @ 12.11 hrs, Volume= 0.005 af


Outflow = 0.06 cfs @ 12.11 hrs, Volume= 0.005 af, Atten= 1%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 12.11 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 14.0' Slope= 0.0100 '/' Inlet Invert= 120.27', Outlet Invert= 120.13'

Summary for Reach 118R: SD CB4-CB5

Inflow Area = 0.117 ac, 77.97% Impervious, Inflow Depth > 0.45" for TREATMENT event

Inflow = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af

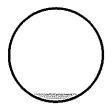
Outflow = 0.06 cfs @ 12.11 hrs, Volume= 0.004 af, Atten= 2%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.82 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 1.4 min

PARK DANFORTH MODEL III POST Type III 24-hr TREATMENT Rainfall=1.00"

Prepared by BH2M ENGINEERS


Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

<u>Page 58</u>

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 57.0' Slope= 0.0100 '/' Inlet Invert= 120.94', Outlet Invert= 120.37'

Summary for Reach 119R: SD CB3-CB4

Inflow Area = 0.077 ac, 97.02% Impervious, Inflow Depth > 0.66" for TREATMENT event

Inflow = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af

Outflow = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.82 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 12.09 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 11.0' Slope= 0.0100 '/' Inlet Invert= 121.15', Outlet Invert= 121.04'

Summary for Reach 122R: SD CB1-DMH1

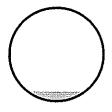
Inflow Area = 0.136 ac, 88.02% Impervious, Inflow Depth > 0.51" for TREATMENT event

Inflow = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af

Outflow = 0.08 cfs @ 12.11 hrs, Volume= 0.006 af, Atten= 2%, Lag= 0.8 min

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS


HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 59

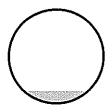
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.98 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 1.5 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 64.0' Slope= 0.0100 '/' Inlet Invert= 121.85', Outlet Invert= 121.21'

Summary for Reach 123R: SD DMH1-LG1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 0.58" for TREATMENT event


Inflow = 0.13 cfs @ 12.10 hrs, Volume= 0.009 af

Outflow = 0.13 cfs @ 12.11 hrs, Volume= 0.009 af, Atten= 2%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.27 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 1.0 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 51.0' Slope= 0.0100 '/' Inlet Invert= 121.11', Outlet Invert= 120.60'

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

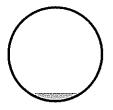
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 60

Summary for Reach 124R: SD CB2-LG5/6/7

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 0.29" for TREATMENT event

Inflow = 0.06 cfs @ 12.10 hrs, Volume= 0.004 af


Outflow = 0.06 cfs @ 12.11 hrs, Volume= 0.004 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.80 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 0.6 min

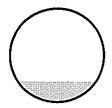
Peak Storage= 1 cf @ 12.10 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.86 cfs

12.0" Round Pipe n= 0.012 Length= 27.0' Slope= 0.0100 '/' Inlet Invert= 120.90', Outlet Invert= 120.63'

Summary for Reach 130R: ROOF DRAIN

Inflow Area = 0.071 ac,100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af


Outflow = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.98 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 12.09 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 10.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.10'

PARK DANFORTH MODEL III POST

Prepared by BH2M ENGINEERS

Printed 11/17/2014

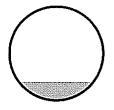
HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 61

Summary for Reach 131R: ROOF DRAIN

Inflow Area = 0.059 ac,100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.05 cfs @ 12.09 hrs, Volume= 0.004 af


Outflow = 0.05 cfs @ 12.09 hrs, Volume= 0.004 af, Atten= 1%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.88 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 0.6 min

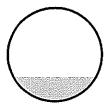
Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Reach 132R: ROOF DRAIN

Inflow Area = 0.101 ac.100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.09 cfs @ 12.09 hrs, Volume= 0.006 af


Outflow = 0.09 cfs @ 12.09 hrs, Volume= 0.006 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.20 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.80 fps, Avg. Travel Time= 0.5 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Length= 25.0' Slope= 0.0100 '/' Inlet Invert= 0.00', Outlet Invert= -0.25'

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 62

Summary for Reach 133R: ROOF DRAIN

Inflow Area = 0.116 ac,100.00% Impervious, Inflow Depth > 0.75" for TREATMENT event

Inflow = 0.10 cfs @ 12.09 hrs, Volume= 0.007 af

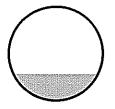
Outflow = 0.10 cfs @ 12.09 hrs, Volume= 0.007 af, Atten= 1%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.29 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 0.5 min

Peak Storage= 1 cf @ 12.09 hrs

Average Depth at Peak Storage= 0.14'


Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe

n = 0.012

Length= 25.0' Slope= 0.0100 '/'

Inlet Invert= 0.00', Outlet Invert= -0.25'

Summary for Pond 112P: LG 8/9/10

Inflow Area = 1.037 ac, 90.08% Impervious, Inflow Depth > 0.29" for TREATMENT event

Inflow = 0.34 cfs @ 12.10 hrs, Volume= 0.025 af

Outflow = 0.03 cfs @ 13.31 hrs, Volume= 0.020 af, Atten= 92%, Lag= 72.6 min

Discarded = 0.03 cfs @ 13.31 hrs, Volume= 0.020 af Primary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 118.24' @ 13.31 hrs Surf.Area= 198 sf Storage= 543 cf

Plug-Flow detention time= 176.9 min calculated for 0.020 af (78% of inflow)

Center-of-Mass det. time= 120.2 min (880.2 - 760.0)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	112.64'	461 cf	Custom Stage Data (Conic) Listed below (Recalc)
			1,420 cf Overall - 267 cf Embedded = 1,153 cf x 40.0% Voids
#2	115.64'	267 cf	Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1
		728 cf	Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)
112.64	198	0	0	198
119.81	198	1.420	1 420	556

PARK DANFORTH MODEL III POST Type III 24-hr TREATMENT Rainfall=1.00"

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 63

Surf.Area	Inc.Store	Cum.Store
(sq-ft)	(cubic-feet)	(cubic-feet)
64	0	0
64	267	267
	(sq-ft) 64	(sq-ft) (cubic-feet) 64 0

Device	Routing	Invert	Outlet Devices
#1	Discarded	112.64'	2.410 in/hr Exfiltration over Wetted area
#2	Primary	118.31'	12.0" Round Culvert L= 79.0' Ke= 0.500
			-1-1-1 / O. H-4 1 440 041 / 440 401 - O 0 004

Inlet / Outlet Invert= 118.31' / 116.40' S= 0.0242 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.03 cfs @ 13.31 hrs HW=118.24' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=112.64' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Summary for Pond 117P: LG 3/4

Inflow Area =	0.460 ac, 82.62% Impervious, Inflow	Depth > 0.26" for TREATMENT event
Inflow =	0.13 cfs @ 12.10 hrs, Volume=	0.010 af
Outflow =	0.01 cfs @ 12.97 hrs, Volume=	0.009 af, Atten= 90%, Lag= 52.0 min
Discarded =	0.01 cfs @ 12.97 hrs, Volume=	0.009 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.57' @ 12.97 hrs Surf.Area= 117 sf Storage= 183 cf

Plug-Flow detention time= 136.7 min calculated for 0.009 af (93% of inflow) Center-of-Mass det. time= 112.6 min (881.9 - 769.4)

Volume	Invert	Avail.Sto	rage	Storage Description					
#1	114.22'	23	35 cf	Custom Stage Data (Conic) Listed below (Recalc)					
#2	116.22'			722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1					
		36	69 cf	Total Avai	lable Storage				
Elevation (feet		Area sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
114.2	2	117		0	0	117			
120.3	9	117		722	722	354			
Elevatio		Area sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)				
116.2	2	32		0	0				
120.39	9	32		133	133				
Device	Routing	Invert	Outle	t Devices					
#1	Discarded	114.22'		110 in/hr Exfiltration over Wetted area					

\perp	CVICC	Rodaling	IIIVCIL	Oddet Bevices
	#1	Discarded	114.22'	2.410 in/hr Exfiltration over Wetted area
	#2	Primary	118.89'	12.0" Round Culvert L= 5.0' Ke= 0.500
				Inlet / Outlet Invert= 118 89' / 118 84' S= 0.0100 '/' Cc= 0.900

Prepared by BH2M ENGINEERS

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Printed 11/17/2014 Page 64

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.01 cfs @ 12.97 hrs HW=117.57' (Free Discharge) —1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=114.22' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Summary for Pond 124P: LG 5/6

Inflow Area = 0.171 ac, 86.58% Impervious, Inflow Depth > 0.29" for TREATMENT event 0.06 cfs @ 12.11 hrs, Volume= 0.004 af Outflow = 0.01 cfs @ 12.77 hrs, Volume= 0.004 af, Atten= 84%, Lag= 39.7 min 0.01 cfs @ 12.77 hrs, Volume= 0.004 af Primary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 117.29 @ 12.77 hrs Surf.Area= 117 sf Storage= 62 cf

Plug-Flow detention time= 65.1 min calculated for 0.004 af (99% of inflow) Center-of-Mass det. time= 63.6 min (883.0 - 819.4)

Volume	Invert	Avail.Sto	rage Sto	orage D	escription				
#1	115.96'	2:		Custom Stage Data (Conic) Listed below (Recalc)					
#2	117.96'	1:		722 cf Overall - 133 cf Embedded = 588 cf x 40.0% Voids Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1					
					able Storage		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Elevation (feet)		rf.Area (sq-ft)	Inc.Sto		Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
115.96	}	117		0	0	117			
122.13	3	117	7:	22	722	354			
Elevation (feet)		rf.Area (sq-ft)	Inc.Sto		Cum.Store (cubic-feet)				
117.96	•	32	•	0	0				
122.13	1	32	13	33	133				
Device I	Routing	Invert	Outlet D	evices					
#1 I	Discarded	115.96'	2.410 in/	2.410 in/hr Exfiltration over Wetted area					
#2 [Primary	120.63'	12.0" Round Culvert L= 47.0' Ke= 0.500 Inlet / Outlet Invert= 120.63' / 120.16' S= 0.0100 '/' Cc= 0.900						

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.01 cfs @ 12.77 hrs HW=117.29' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=115.96' (Free Discharge) 2=Culvert (Controls 0.00 cfs)

Prepared by BH2M ENGINEERS

Printed 11/17/2014

HydroCAD® 10.00 s/n 00619 © 2011 HydroCAD Software Solutions LLC

Page 65

Summary for Pond 125P: LG 1/2

Inflow Area = 0.195 ac, 91.63% Impervious, Inflow Depth > 0.58" for TREATMENT event lnflow = 0.13 cfs @ 12.11 hrs, Volume= 0.009 af Outflow = 0.01 cfs @ 12.99 hrs, Volume= 0.009 af, Atten= 89%, Lag= 52.5 min Discarded = 0.00 cfs @ 12.99 hrs, Volume= 0.009 af Primary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 119.16' @ 12.99 hrs Surf.Area= 117 sf Storage= 174 cf

Plug-Flow detention time= 132.7 min calculated for 0.009 af (94% of inflow) Center-of-Mass det. time= 112.0 min (882.3 - 770.3)

Volume	Invert	Avail.Sto	rage St	orage D	escription					
#1	115.96'	20		Custom Stage Data (Conic) Listed below (Recalc)						
#2	447.00	,		718 cf Overall - 69 cf Embedded = 649 cf x 40.0% Voids Custom Stage Data (Prismatic) Listed below (Recalc) Inside #1						
#4	<u>117.93'</u>					smatic) Listed be	iow (Recaid) Inside #1			
		32	29 cf To	tal Avail	lable Storage					
	_									
Elevation	Su	rf.Area	Inc.Sto	ore	Cum.Store	Wet.Area				
(feet)		(sq-ft)	(cubic-fe	et)	(cubic-feet)	(sq-ft)				
115.96		117		0	0	117				
122.10 117		718		718	352					
Elevation	Su	rf.Area	Inc.Sto	re	Cum.Store					
(feet)		(sq-ft)	(cubic-fe		(cubic-feet)					
117.93		32	•	0	0					
120.10		32		69	69					
Device F	Routing	Invert	Outlet D	evices						
#1 [Discarded	115.96'	2.410 in	2.410 in/hr Exfiltration over Wetted area						
#2 F	Primary	120.60'	120.60' 12.0" Round Culvert L= 19.0' Ke= 0.500							
	Inlet / Outlet Invert= 120.60' / 120.41' S= 0.0100 '/' Cc= 0.900									

n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.01 cfs @ 12.99 hrs HW=119.16' (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=115.96' (Free Discharge) —2=Culvert (Controls 0.00 cfs)