LAVALLEE BRENSINGER ARCHITECTS

The Park	Danforth	Pre	oject No.:	13-059-00
Portland	ME	Div	vision:	05 40 00
Transmit T	0:	Submission No.:	59	
Mark Donov	an	Version:	Α	
PC Construe		CM Reference No.:	05 40 00-003	
		Copies:		
Portland	pscot Street ME 04103	Ron Norton	Construction Mana	gement Consulti
Portiano	ME 04103	Andrew Pires	PC Construction	
		Kemp Carey	PC Construction	
Submittal No	o. Qty. Description			

Comments:

Note: Refer to attached submittals for review comments and requirements.

Tuesday, January 19, 2016

NH: 155 Dow Street, Suite 400 - Manchester, NH 03101 MA: 92 Montvale Ave, Suite 2150 - Stoneham, MA 02180 www.LBPA.com

Garret Bertolini 131 Presumpscot St Portland, ME 04103 T: 207.874.2323 F: 207.874.2727 E: gbertolini@pcconstruction.com

CONSTRUCTION

Project No. 14776 The Park Danforth Expansion & Renovations 789 Stevens Ave

Portland, ME 04103

Submittal 05 40 00-003 Review Cycle 1

Title Type Sent Date Due Date Cold-Formed Metal Framing - Calculations Calculations 13-Jan-2016 Spec 5 20-Jan-2016

Spec Section 05 40 00 Spec Sub-Section

Sent To For Review

Scott Timmons Lavallee Brensinger Architects

Responsible Subcontractor / Vendor

Richard Fifield Timberland Drywall, Inc.

Item Being Submitted

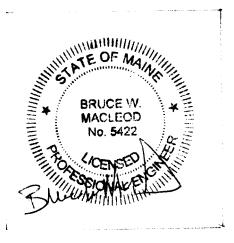
Cold-Formed Metal Framing - Calculations

Reviewed for conformance to specifications only. Calculations not reviewed.

Contractor's Review Stamp		Architect's Review S	tamp
I hereby certify that I have examined submittal(s) and have determined a measurements, construction criteria numbers, and similar data, coordina with other submissions and the wor contractors and, to the best of my k the enclosed submittal(s) is/are in fu Contract requirements, except as no	nd verified all field a, materials, catalog ated the submittal(s) k of other trades and nowledge and belief, ull compliance with the	Reviewed for Performance Cri Reviewed X Furnish as C Rejected Revise and Submit Specific Item This review is only for general conform with the design concept of the project general compliance with the informatic in the Contract Documents. Correction comments made on the shop drawing; this review do not relieve contractor frr compliance with the requirements of the and specifications. Approval of a spec	Corrected Gage specified does not meet specifications, reference architectural specifications for minimum gage requirements. Reference Architectural specifications for deflection requirements: L/720 horizontal deflection at brick. so or s during om he plans GC's intent is to place the CFMF before the
Signature	Date 01/13/2016	and specifications. Apploval of a speci- shall not include approval of an assert which the item is a component. Contre responsible for: dimensions to be conf and correlated at the jobsite; informati pertains solely to the fabrication proce to the means, methods, techniques, si and procedures of construction; coord	by of actor is immed on that seese or equences 3/4". Redesign CFMF for 1 1/4" vertical
Name Andrew Pire PC Construction Co	-	his or her Work with that of all other tra- for performing all work in a safe and satisfactory manner. Becker Structural Engineers, I Date: 01/15/2016 By: AR	ades; and Currection anowance.

This approval does not release subcontractor / vendor from the contractual responsibilities.

MacLeod Structural Engineers, P.A. Structural Consultants 90 Bridge Street Westbrook, Maine 04092 Phone (207) 839-0980 Fax (207) 839-0982


Project: <u>Park Danforth</u> <u>Portland, ME</u> By: <u>NED</u> Job ID: <u>2015-287</u> Date:<u>1/5/2016</u> Page:<u>1 of 1</u>

PARK DANFORTH Portland, ME

LIGHT GAGE FRAMING CALCULATIONS MSE Job #2015-287

> PREPARED BY MacLeod Structural Engineers, P.A. Westbrook, Maine DECEMBER 28, 2015

> > PREPARED FOR TIMBERLAND DRYWALL GORHAM, ME

2015-287 Cover.xmcd

MacLeod Structural Engineers, P.A. Structural Consultants 90 Bridge Street Westbrook, Maine 04092 Phone (207) 839-0980 Fax (207) 839-0982

Project: <u>Park Danforth</u> <u>Portland, ME</u> By: <u>NED</u> Job ID: <u>2015-287</u> Date: <u>12/28/2015</u> Page: <u>1 of 1</u>

DESIGN CRITERIA: Building Design Code: Maine Uniform Building And Energy Code W/ 2009 IBC **Design Loads:** Dead Loads: Partition Weight - 10 psf Roof Dead Load - 15 psf Design Wind: Location: Portland, ME /720, reference arch Basic Wind Speed = 100 mph pecificaitons Exposure Category "B" Importance Factor = 1.0per S0.0 Snow Load: Ground Snow Load = 60 psfSnow Exposure Factor = 1.0Importance Factor = 1.0 Thermal Factor = 1.0

Deflection Criteria For Studs. Standard Per Code - Unless Job Specifications Are More Stringent

Walls: L/600 At Masonry Backup, L/360 At Non-masonry Backup.

Roof: L/240

Allowance For Vertical Movement Of Structure = 3/4"

Materials:

Cold Formed Metal Framing Materials Based On SSMA Standards. Calculation Based On Min. Fy = 33 ksi for all materials (Unless Noted)

Fasteners:

Unless Noted Otherwise: Use Only The Following Fasteners:

- 1.) P.A.F. = 0.145" Dia. (min.) Powder Actuated Fastener (Hilti)
 - Use 1 1/4" Length For Attachment To Concrete
 - Use 5/8" Length For Attachment To Steel

2.) Use #10-16 Screws Typical For All Light gage To Light Gage Connections

3.) Use #12 Screws for Manufacturers Clips Where Required/Indicated

GC's intent is to place the CFMF before the slabs to heat the building for slab placement. To account for additional dead load deflections from the concrete slab placement.The vertical allowable deflections shall be 1 1/4" instead of 3/4". Redesign CFMF for 1 1/4" vertical deflection allowance.

Vestern
R
\mathbf{N}
ar
$\overline{\mathbf{O}}$

Fastener Design Criteria

The following information is provided to assure that framing components you select can be fastened correctly. Your selection of fasteners or welds will depend on the members selected and the load requirements you anticipate

AISI Calculated Allowable Loads for Screw Connection

	able	d Allowa	Minimum Required Allowable	linimum	Σ.		Welded	s for /	Load	AISI Allowable Loads for	AISI AII
				n/a	n/a	n/a	n/a	62	20	0.1242	
	863 380	333 8	625 3	n/a	n/a	n/a	n/a	45	33	0.1242	118
				356	467	n/a	n/a	85	20	0.1017	
	863 311	272 8		246	467	n/a	n/a	45	ŝ	0.1017	26
	849 315		625 2	249	467	n/a	n/a	65	20	0.0713	
_				173	467	n/a	n/a	45	33 33	0.0713	68
		219 6	562 2	<u>8</u>	467	167	333	85	20	0.0566	5
	416 173			137	370	115	333	45	33	0.0566	54
	296 138		277 1	109	263	<u>9</u> 2	241	45	33	0.0451	43
	199 106		186 93	84	177	71	162	45	ន	0.0346	33
	(lbs) (st		(lbs)	(lbs)	(ibs)	(sql)	(sqi)	(ksi)	(ksi)		
	tear Tension		Shear Te	Tension	Shear	Tension	Shear	FII	Fy	in	mils
•	Dia.=0.240"		Dia.=0,21"	Dia.≂0.190″	Dia	Dia.=0.16"	Dia.	2		Thickness	Thickness
	11.4A Utilit Corone		#10,4A HMH Sr	HUH Serow	#10.15	MH Screw	48-18 H	Material Strenuth	Malaris	Desinn	Material

I Allowable	#1/	Dia.=0.24 Shear Te	105	1063 957 1425		ig ure zour Alsi specification ie tilting and bearing modes of	s determined by E4.1 stating	3d y E4.2 stating that edge	- 3d	a Safety Factor of 3.0	ouccigues rus = 1 e ru steel, the shear values are for	juoiju	nd [Shear
Minimum Required Allowable Load for Screws	Design #12-24 HWH Screw	⊔ia.=∪. Shear it.o	н 70F	725	Screw table notes: 4 All unino uno coloridad uni-	2. Shear values were calculated using the 2001 Alsh specification 2. Shear values were based on the tilting and bearing modes of	Tailure Eq. E4.3.1-1, E.4.3.1-2 3. Minimum Spacing of Screws is determined by E4.1 stating	spacing shall not be less than 3d 4. Edge Distance is determined by E4.2 stating that edge	distance shall not be less than 3d	5. Allowable loads are based on a Safety Factor of 3.0 6 E4 3.2 states that the Booring Channeth - Days - teated	7. For the screws into structural steel, the shear values are for the following the screws into structural steel, the shear values are for	ute latitute of the surew itself. Look at bearing of clip to determine minimum	value of shear. 8 Rearing of Shear.	do not control in the above cases.
	Groove Weld	Long. (Ibs)		544 785	682 985	859 1241	1226 1771	1497 2162		1087 1570	1364	1719 2483	2452 3541	2994 4325
	Groo	Trans. (Ibs)		958 958	832 1202	1048 1514	1495 2159	1826 2637		1326 1915	1664 2404	2096 3028	2990 4319	3651 5274
sided	Fillet Weld	Trans. (Ibs)		864 1247	1084 1566	1365 1972	1795 1944	2192 2374		1727 2495	2168 3131	2731 3944	3589 3889	4384 4749
er Ve	Eil S	Long. (Ibs)		619 895	822 1188	1082 1563	1618 2337	2015 2911		998 1442	1253 1809	1578 2279	2884 4165	3678 5312
h of we	Material Strength	Fu (ksi)		45 65	45 65	45 65	45 65	45 65		45 65	45 65	45 65	45 65	45 65
e Loc (lbs/inc	Material	Fy (ksi)		33 20	33 50	20 33	33 20	2033		2033	33 50	33 50	20 33	20 33
AISI Allowable Loads for Welded Connections (Ibs/inch of weld)		Thickness (in)	4	0.0451 0.0451	0.0566 0.0566	0.0713 0.0713	0.1017 0.1017	0.1242 0.1242	4	0.0451 0.0451	0.0566 0.0566	0.0713 0.0713	0.1017 0.1017	0.1242 0.1242
AISI A Conn	Material	Thickness (mils)	L= 1 inch	43	54	68	26	118	L= 2 inch	43	54	68	67	118

	ii) A" Tarcion	234	304	382 552	481 620	620 620	620 620		4000 psi	155	155	155 155	155 155	155 155	155 155		Tension	215	215	215 215	215 215
	Jia.=0.177 1/ Shear	248	323	406 586	511 625	625 625	625 625	2.) (13	4000	185	185	185 185	185 185	185 185	185 185	5					
	Hilli X-DS (Dia.=0.177") 3/16" 1/4" Torsion Chost	234	304	382 390	390 330	99 99	330	dia. = 0.14	Min. Embedment 1" 3000 psi	120	120	120 120	120 120	120 120	120 120	dia. = 0.14	4000 psi Shear	203	265	332 335	335 335
	H 3/1 Shear	248	323	406 586	511 738	729 795	795 795) ING-X INI	Min. Emb 30	160	160	160 160	160 160	160 160	160 160) ING-X HI					
	Tencion	234	304	382 510	481 510	510 510	510 510	f ("sq	2000 psi	00	90	06 06	68	66	06 06	H (.sd	tt 1-1/2" Tension	190	190	190 190	190 190
('sqi)	a.=0.145") 1/4" Shear	203	265	332 480	419 590	590 590	590 590) spe	20 Choor	140	140	140 140	140 140	140 140	140 140) spe	Min. Embedment 1-1/2" 3 psi ear Tension				
's (PUF in Steel) Allowable Loads (Ibs.)	Hilti X-DNI (Dia.=0.145") 3/16" 1/4" rr Tension Shear	1 C C	304	360 360	360 360	360 360	360 360	ble Lo	SÌ Toncion	110	110	110	110 110	110	110	ble Lo	Min. 3000 psi Shear	203	265	280 280	280 280 280
	Hi 3/1 Shear	203	265	332 480	419 490	490 490	490 490	llowa	4000 psi Chear Tor		125	125	125 125	125 125	125 125	lowal					
Allow) F Fencinn	234	304	382 552 ·	481 695	686 800	800 800	ete) A	nent 3/4" psi Toncion	60	60	88	06 06	6 6	06 06	te) A	Tension	165	165	1 85	165 165
teel)	ia.=0.145" 1/4" Shear	203	265	332 480	419 605	597 620	620 620	oncre	Mih. Embedment 3/4" 3000 psi Stear Tonsion	110	110	₽ <u>₽</u>	110 110	110 110	110	oncre	Isi				
5	Hilli X-EDNI (Dia,=0.145") 3/16" 1/4" ar Tension Shear Tr	234	304	382 - 455 -	455 455	455 455	455 455	F in C	1 2000 psi Tarcina	70	2	22	02 02	22	02	F in C	2000 psi Shear	203	230	888	230 230
	Hil 3/16 Stear	203	265	332 425	419 425	425 425	425 425	s (PD	21 Choar	95	3 5	នន	88	ਲੇਲ	95 95	IDd) s	Yield Strength Fy ksi		~	~~~	~ ~
Anchory	Yield Strength Fv ksi	33	33	20 33 20 33	2033	20 X3	33 50	Ichor	Yield Strength Ev. Lei	33	33	2033	2033	20 33	33 50	Ichor		33	33	2033	233
	Material Thickness S mils		43	54	89	67	118	Hilti Anchors (PDF in Concrete) Allowable Loads (lbs.)	Material Thickness mile	33	43	54	88	67	118	Hilti Anchors (PDF in Concrete) Allowable Loads (lbs.) 酬析が30(dia.= 6,145)	Material Thickness mils	33	43	54	68
				······					_							_		luin nut			· · · ·

Steel Concrete ZZ ZZ Shear Ы

the shear values are for

Values may be increased 1/3 for wind or seismic loading.

ŝ

 Fxx values were based off of Fxx >= 60ksi and that Fxx > Fu from the 2001 AISi Specification Code All values were calculated using the 2001 AISI Specification

4. Values include a 2.5 factor of safety.

Allowable Loads Fasteners

2. Shear values were based on the tilting and bearing modes of failure Eq. E4.3.1-1, E.4.3.1-2

1/8" 3 x Embedment

2,⊉

4. E4.3.2 states that the bearing strength < Pns = $t^e + Fu$ 3. Allowable loads are based on a safety factor of 3.0

Alt values were calculated using the 2001 AISI Specificati

Hilti table notes:

Vin. Material Thickness

Min. Edd

acing Vin.

215 215 215

190 190

165 165 165 165

R 230 230

2033 20 33

118 97

33 33 33 33 33 33 33 33

190 190

280 280 80 280 280

Screw and Weld Capacities

Screw Capacities

Table Notes

- 1. Capaties based on AISI S100 Section E4.
- Whe nconnecting materials of different steel thicknesses or tens ils strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capaties are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- Wher t multiple fasteners are used, screws are assumed to have i center-to-center spacing of at least 3 times the nominal dian der (d).
- 5. Screvs are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screv.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

									_					·····				
						Allo	wable S	Screw (Connec	ction Ca	apacity	r (lbs)						
				7000				Classifier (សូមមា					PATERAT		
~ 1				glameteinistaan	NUMBER OF PROVIDE	ning with State Party		CONTRACTOR	consecutives	torn a new party a sporte	the second	COLUMN STREET			en sen de la composition de la composit La composition de la c			
Theknow		Contra 1	aria no	[P35=64	Silbs, Pila	=*:\[SIDS)	20265=32	allos, Pres	= 686 (03)	(Gesser)	4105 Prisi	= 16(5(89)))		0.005,1965,	= 2326 108)	16002200	805 86	= 3201 (108)
	-90000-0		(Cn)	0.138	dia, 0.272	Hiead	0,164	dia, 0.272	Head	0/190	dia (0.540	^e Head	026	0[27,0,32]0	Cittand,	0.250	00406	V Heed J
				Shore	Pull-Out	Pull-Over	Shoar	Pull Out	Pull-Over	Shear	Pull Out	Pull-Over	Shaar	Bull Out	Pull Origin	Change	Dul Out	Bull Over
				Presinger 4991978	的理论和政治的知道	entress or synamic case	Hillicon Republica	1965年1月1日日本市政部署	pression and and and	出来的公司的行行	production of the part	a a a a a a a a a a a a a a a a a a a	(lithumoutoutore)	的时间也能够成为这些世	a contractory of	Manager Mar	2015-020100-02	Cim provide a
18	D.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	60	44	127
27.27	0.0283	33	12833363	82	37	127.8	89	43	127	96 25	50	159	102	57	159	- 110	66	
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	-118	63	175	127	73	211
33.84	0.0346	33	45	151	61	140	164	72.	195	点。1773名	84	265	. 188	95	265	203	110	318
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415
54	0.0566	33	45 🔅	214	100.	140	344	118	2 195	370	137	386	394	156	433	424	180	521
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	600	227	656
97	0.1017	33	45	214	140.	. 140	426	195	195	548	246	386	777	280	775	1,016	324	936
118	0.1242	33	45	214	.140	140	426	195	195	548	301	386	777	342	775	1,016	396	1,067
10:54.23	0.0566	50	65 🔊	214 j.e.	140		426,	471. ()	195.0	534	198.	386	569	225	625	613	261	752
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	866	328	948
	0.1017	50 📜	. 65	214	140	140	426	195	195 😥	548	356	386	777	405	775	st.016	468	1,067
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	1,016	572	1,067

Weld Capacities

Table Notes

- 1. Capacities based on the AISI S100 Specification Sections E2.4 for fillet welds and E2.5 for flare groove welds.
- 2. When connecting materials of different steel thicknesses or tensile strengths, use the lowest values.
- 3. Capacities are based on Allowable Strength Design (ASD).
- 4. Weld capacities are based on E60 electrodes. For material thinner than 68 mil, 0.030" to 0.035" diameter wire electrodes may provide best results.
- 5. Longitudinal capacity is considered to be loading in the direction of the length of the weld.
- 6. Transverse capacity is loading in perpendicular direction of the length of the weld.
- For flare groove welds, the effective throat of weld is conservatively assumed to be less than 2t.
- 8. For longitudinal fillet welds, a minimum value of EQ E2.4-1, E2.4-2, and E2.4-4 was used.
- For transverse fillet welds, a minimum value of EQ E2.4-3 and E2.4-4 was used.

2014 by the

10. For longitudinal flare groove welds, a minimum value of EQ E2.5-2 and E2.5-3 was used.

		, A	Allowable Weld (Capacity (lbs / in)	*	
Thickness (Mis)	iDesigns Thickness	Tridu Tridu (Kalif	Fit Torreste (KSI)	Longitudinal	Nolus Transverse	við örlið Langiludinal	Ad Weids
43	0.0451	33	45	499	864	544	663
54	0.0566			626	1084	682	832
68	0.0713	33	45	789	1365	859	1048
<u>97</u>	0.1017	33	45	1125	1269		NE DE L'ENERT
54	0.0566	50	65	905	1566	985	1202
68	0.0713	50	65	1140	1972	1241	1514
97	0.1017	50	65	1269	1269	_1	_ 1

¹Weld capacity for material thickness greater than 0.10" requires engineering judgment to determine leg of welds, W1 and W2.

3.2.2 General Application Fasteners

3.2.2.2 Material Specifications

Fastener Designation	Fastener Material	Fastener Plating ¹	Steel Washer or Clip Material ²	Washer or Clip Plating ^{1,2}
X-U	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc
DS/EDS	Carbon Steel	5 µm Zinc	N/A	N/A
X-ZF	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc
X-CR ³	SAE 316	N/A	SAE 316	N/A
X-GN/X-GHP/X-EGN	Carbon Steel	5 µm Zinc	N/A	N/A
X-DNI	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc
X-EDNI	Carbon Steel	5 µm Zinc	N/A	N/A
X-AL-H	Carbon Steel	5 µm Zinc	N/A	N/A
X-NK/ENK	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc
SL Forming Nail	Carbon Steel	5 µm Zinc	N/A	N/A
BC ZF	Carbon Steel	5 µm Zinc	Carbon Steel	5 µm Zinc

1 The 5 μm zinc coating is in accordance with ASTM B 633, SC 1, Type III.

2 Most fasteners have a plastic washer for guidance when installing. Not all fastener lengths have a premounted steel washer. Refer to Section 3.2.2.4 for more information on available fasteners.

 The X-CR fastener material is a proprietary material, which provides a corrosion resistance equivalent to SAE 316 stainless steel. The steel washer material is SAE 316 stainless steel.

3.2.2.3 Technical Data

Allowable Loads in Normal Weight Concrete 1, 4

· ·		Shank	Mi	n.	T			Concre	ete Co	mpressi	ve Str	ength				
Description	Fastener	Diameter	Embed	lment			0 psi				0 psi			6000	psi	
		in. (mm)	in.	(mm)	Tensio	n ib (kN)	Shea	r ib (kN)	Tensio	on Ib (kN)	Shear	rlb (kN)	Tensio	on Ib (kN)	Shea	rlb (kN)
			3/4	(19)	100	(0.44)	125	(0.57)	100	(0.44)	125	(0.57)	105	(0.47)	205	(0.91)
Universal Knurled	x-∪*	0.157 (4.0)	- 1	(25)	165	(0.73)	190	(0.85)	170	(0.76)	225	(1.00)	110	(0.49)	280	(1.25)
Shank Fasteners	7-0	0.137 (4.0)	1-1/4	(32)	240	(1.07)	310	(1.38)	280	(1.25)	310	(1.38)	180	(0.80)	425	(1.89)
			1-1/2	(38)	275	(1.22)	420	(1.87)	325	(1.45)	420	(1.87)		-		
X-U 47 P8 with DX-Kwik	X-U ³	0.157 (4.0)	1-1/2	(38)		-			395	(1.76)	405	(1.80)	360	(1.60)	570	(2.54)
		0.138 (3.5)	3/4	(19)	45	(0.20)	75	(0.33)	60	(0.27)	105	(0.47)		-		
Standard Fastener	X-ZF ²	&	1	(25)	85	(0.38)	150	(0.67)	90	(0.40)	200	(0.89)		-		-
Standard Fasterier	A-21 -	0.145 (3.7)	1-1/4	(32)	130	(0.58)	210	(0.93)	130	(0.58)	290	(1.29)			·.	_
		0.140 (0.7)	1-1/2	(38)	175	(0.78)	260	(1.16)	245	(1.09)	360	(1.60)		-		_
Limited Purpose			3/4	(19)	25	(0.11)	35	(0.16)		-				-		_
Fastener	X-CF	0.145 (3.7)	1	(25)	50	(0.22)	160	(0.71)				-				-
Fastener			1-1/4	(32)	130	(0.58)	210	(0.93)		-				-		_
			3/4	(19)	50	(0.22)	120	(0.53)	125	(0.56)	135	(0.60)				-
Lineur Duty Fastanar	DS	0.177 (4.5)	1	(25)	130	(0.58)	195	(0.87)	155	(0.69)	240	(1.07)		-		
Heavy Duty Fastener	05	0.177 (4.5)	1-1/4	(32)	220	(0.98)	385	(1.71)	270	(1.20)	425	(1.89)				<u> </u>
			1-1/2	(38)	300	(1.33)	405	(1.80)	355	(1.58)	450	(2.00)		_		
		0.145 (3.7)	3/4	(19)	30	(0.13)	40	(0.18)	65	(0.29)	40	(0.18)		-		
Stainless Steel Fastener	X-CR	8 8	1	(25)	55	(0.24)	185	(0.82)	120	(0.53)	190	(0.85)	100	(0.44)	170	(0.76)
Stamless Steel Fastener		α 0.157 (4.0)	1-1/4	(32)	110	(0.49)	290	(1.29)	125	(0.56)	300	(1.33)	120	(0.53)	440	(1.96)
		0.157 (4.0)	1-1/2	(38)	265	(1.18)	405	(1.80)	350	(1.56)	450	(2.00)		÷		
Gas Fastener	X-GN	0.118 (3.0)	3/4	(19)	95	(0.42)	120	(0.53)	95	(0.42)	120	(0.53)		-		-
Gas Fastener	A-GIN	0.110 (3.0)	1	(25)	115	(0.51)	220	(0.98)	115	(0.51)	220	(0.98)		- ·		
Premiùm Gas Fastener	X-GHP	0.118 (3.0)	5/8	(16)		-				-		-	50	(0.22)	100	(0.44)
			3/4	(19)	60	(0.27)	105	(0.47)	110	(0.49)	120	(0.53)		-		
Universal Fastener	X-DNI	0.145 (3.7)	1	(25)	145	(0.64)	185	(0.82)	160	(0.71)	240	(1.07)	100	(0.44)	125	(0.56)
oniversal i deterior	X DIG	0.140 (0.17	1-1/4	(32)	160	(0.71)	290	(1.29)	230	(1.02)	330	(1.47)	200	(0.89)	250	(1.11)
			1-1/2	(38)	220	(0.98)	330	(1.47)	320	(1.42)	425	(1.89)		-		-
			3/4	(19)	65	(0.29)	70	(0.31)	90	(0.40)	95	(0.42)	120	(0.53)	125	(0.56)
High Borformonoo Eastoner	X-AL-H	0.177 (4.5)	1	(25)	130	(0.58)	190	(0.85)	165	(0.73)	195	(0.87)	180	(0.80)	280	(1.25)
High Performance Fastener		U.I.I. (7.0)	1-1/4	(32)	135	(0.60)	265	(1.18)	240	(1.07)	270	(1.20)	240	(1.07)	440	(1.96)
			1-1/2	(38)	200	(0.89)	340	(1.51)	240	(1.07)	460	(2.05)				-
X-AL-H 42 P8 with DX-Kwik	X-AL-H ³	0.177 (4.5)	1-1/2	(38)	355	(1.60)	470	(2.09)	475	(2.11)	565	(2.51)		-		-
Knob Head Fastener	X-NK ⁵	0.145 (3.7)	1	(25)	85	(0.38)	165	(0.73)	145	(0.64)	215	(0.96)				-
Forming Fastener	SL 44/476	0.145 (3.7)	1	(25)	60	(0.27)	65	(0.29)		-		-				
i oming i asteriei	SL 626	0.145 (3.7)	1	(25)	75	(0.33)	75	(0.33)		-				-		_

1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC 70. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria. 4 Multiple fasteners are recommended for any attachment.

5 Available in Canada or by special order.

investigated in accordance with accepted design criteria.
 with a shark length of 2-7/8" have a shark diameter of 0.115"

 $2\;$ X-ZF fasteners with a shank length of 2-7/8" have a shank diameter of 0.145". All other X-ZF fasteners for concrete have shank diameters of 0.138".

3 Fastener installed with DX-Kwik drilled pilot hole installation found in Section 3.2.1.1.10.

* More details about new the innovative X-U fastener can be found in Section 3.2.3.

32 Hitti, Inc. (US) 1-800-879-8000 | www.us.hilti.com | en español 1-800-879-5000 | Hilti (Canada) Corp. 1-800-363-4458 | www.hilti.ca | Product Technical Guide 2008

General Application Fasteners 3.2.2

Allowable Loads in Minimum f'c = 3000 psi Structural Lightweight Concrete1, 6

					·	Fastener Loca	ation	
Fastener	Fastener	Shank	Min.	Installed in	to Concrete	Installed through	3" deep Metal Dec	k into Concrete ^{2,3}
Description		Diameter	Embedment	Tension	Shear	Tensio	n lb (kN)	Shear
		in. (mm)	in. (mm)	ib (kN)	lb (kN)	Upper Flute	Lower Flute	lb (kN)
			3/4 (19)	125 (0.56)	115 (0.51)	130 (0.58)	95 (0.42)	245 (1.09)
Universal Knurled	x-u*	0.157 (4.0)	1 (25)	205 (0.91)	260 (1.16)	215 (0.96)	120 (0.53)	330 (1.47)
Shank Fasteners		0.101 (4.0)	1-1/4 (32)	315 (1.40)	435 (1.93)	295 (1.31)	120 (0.53)	375 (1.67)
			1-1/2 (38)	425 (1.89)	475 (2.11)	400 (1.78)	260 (1.16)	430 (191)
		0.138 (3.5)	3/4 (19)	110 (0.49)	175 (0.78)	120 (0.53)	-	265 (1.18)
Standard Fastener	X-ZF ⁵	&	1 (25)	135 (0.60)	180 (0.80)	215 (0.96)	145 (0.64)	315 (1.40)
	7.21	0.145 (3.7)	1-1/4 (32)	220 (0.98)	260 (1.16)	250 (1.11)	200 (0.89)	405 (1.80)
			1-1/2 (38)	285 (1.27)	315 (1.40)	285 (1.27)	210 (0.93)	415 (1.85)
Limited Purpose Fastener	X-CF	0.145 (3.7)	1 (25)	130 (0.58)	165 (0.73)	130 (0.58)	-	165 (0.73)
			3/4 (19)	100 (0.44)	200 (0.89)	100 (0.44)	-	200 (0.89)
Heavy Duty Fastener	DS4	0.177 (4.5)	1 (25)	180 (0.80)	360 (1.60)	180 (0.80)	180 (0.80)	405 (1.80)
	03.	0.177 (4.5)	1-1/4 (32)	300 (1.33)	520 (2.31)	300 (1.33)	250 (1.11)	515 (2.29)
			1-1/2 (38)	450 (2.00)	680 (3.02)	450 (2.00)	325 (1.45)	625 (2.78)
Stainless		0.145 (3.7)	1 (25)	230 (1.02)	240 (1.07)	230 (1.02)	-	240 (1.07)
Steel Fasterier	X-CR	&	1-1/4 (32)	320 (1.42)	400 (1.78)	320 (1.42)	-	400 (1.78)
Oteen asterner		0.157 (4.0)	1-1/2 (38)	405 (1.80)	500 (2.22)	405 (1.80)	-	500 (2.22)
Gas Fastener	X-GN	0.110 00	3/4 (19)	115 (0.51)	140 (0.62)	75 (0.33)	85 (0.38)	175 (0.78)
Casilasterier	- A-GIN	0.118 (3.0)	1 (25)	170 (0.76)	220 (0.98)	155 (0.69)	160 (0.71)	255 (1.13)
			3/4 (19)	120 (0.53)	180 (0.80)		- ···	-
Universal Fastener	X-DNI	0.145 (3.7)	1 (25)	175 (0.78)	185 (0.82)	225 (1.00)	115 (0.51)	320 (1.42)
Oniversal Lasterier	A-DIM	0.140 (0.1)	1-1/4 (32)	240 (1.07)	315 (1.40)	365 (1.62)	205 (0.91)	420 (1.87)
-			1-1/2 (38)	300 (1.33)	365 (1.62)	480 (2.14)	280 (1.25)	450 (2.00)
			3/4 (19)	115 (0.51)	155 (0.69)	115 (0.51)		155 (0.69)
High Performance	X-AL-H	0.177 (4.5)	1 (25)	225 (1.00)	350 (1.56)	225 (1.00)	120 (0.53)	340 (1.51)
Fastener		0.177 (4.5)	1-1/4 (32)	330 (1.47)	475 (2.11)	330 (1.47)	195 (0.87)	385 (1.71)
			1-1/2 (38)		· -		285 (1.27)	585 (2.60)
			1 (25)	175 (0.78)	185 (0.82)	175 (0.78)	-	185 (0.82)
Knob Head Fastener	X-NK7	0.145 (3.7)	1-1/4 (32)	240 (1.07)	280 (1.25)	240 (1.07)		280 (1.25)
			1-1/2 (38)	300 (1.33)	295 (1.31)	300 (1.33)	-	295 (1.31)

1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC 70. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria.

2 The steel deck profile is 3" deep composite floor deck with a thickness of 20 gauge (0.0358"). Figure 1 (Section 3.2.1.1.6) shows the nominal flute dimensions, fastener locations, & load orientations for the deck profile.

3 Structural lightweight concrete fill above top of metal deck shall be a minimum of 3-1/4" deep.

4 DS fasteners installed at 1-1/2" embedment through steel deck into the lower flute must be installed at a minimum distance of 6" from the edge of the floor deck.

5 X-ZF fasteners with a shank length of 2-7/8" have a shank diameter of 0.145". All other X-ZF fasteners for concrete have shank diameters of 0.138".

6 Multiple fasteners are recommended for any attachment.

7 Available in Canada or by special order.

Fastener Location Min. Fastener Shank Installed Through Metal Deck into Concrete 2,3 Fastener Description Diameter Embedment Tension Ib (kN) Shear in. (mm) in. (mm) **Upper Flute** Lower Flute Ib (kN) Universal Knurled 3/4 (19) 95 (0.42)(0.42)370 95 (1.65)X-U* 0.157 (4.0) Shank Fastener 1 (25)125 (0.56)125 (0.56)415 (1.85)0.138 (3.5) 3/4 (19)80 (0.36)80 (0.36)315 (1.40)X-ZF⁴ Standard Fastener 205 & 0.145 (3.7) 1 (25)(0.91)205 (0.91)445 (1.98)3/4 75 (0.33)85 (19)(0.38)175 (0.78)X-GN 0.118 (3.0) Gas Fastener 155 (0.69)160 (25)(0.71)255 1 (1.13)

Allowable Loads Into Minimum f'c = 3000 psi Structural Lightweight Concrete Over 1-1/2" Deep, B-Type Steel Deck 1, 5

1 The tabulated allowable load values are for the low-velocity fasteners only, using a safety factor that is greater than or equal to 5.0, calculated in accordance with ICC-ES AC 70. Wood or steel members connected to the substrate must be investigated in accordance with accepted design criteria

2 Steel deck profiles are 1-1/2" deep, B-type deck with a thickness of 20 gauge (0.0358" thick steel). Fasteners may be installed through the metal deck into lightweight concrete having both nominal & inverted deck profile orientations with a minimum lower flute width of 1-3/4" or 3-1/2", respectively. Fasteners shall be placed at centerline of deck flutes. Refer to Figures 2 & 3 (Section 3.2.1.1.6) for additional flute dimensions, fastener locations, and load orientations for both deck profiles.

3 Structural lightweight concrete fill above top of metal deck shall be a minimum 2-1/2" deep.

4 X-ZF fasteners with a shank length of 2-7/8" have a shank diameter of 0.145". All other X-ZF fasteners for concrete have shank diameters of 0.138".

5 Multiple fasteners are recommended for any attachment.

* More details about the new innovative X-U fastener can be found in Section 3.2.3.

おぼし ひのりりきけんりいち == 1

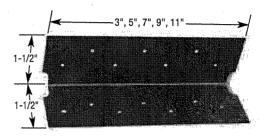
EasyClip[®] S-Series[®] Support Clips are used in any rigid connection application not requiring a long leg.

- 1-1/2" x 1-1/2" legs.
- Lengths available in 3", 5", 7", 9" and 11".
- Available in 16, 14 and 12 gauge.
- Prepunched for faster and more accurate fastener placement.

Dietrich[™] EasyClip[™] S-Series[™] support clips are used for rigid connections in window and door framing. These clips are also used in joist, bypass or other miscellaneous connections to secure one framing member to another or to secure framing members to the structural frame. EasyClip[®] S-Series[®] clips are prepunched for faster and more accurate fastener placement.

Alternative Products

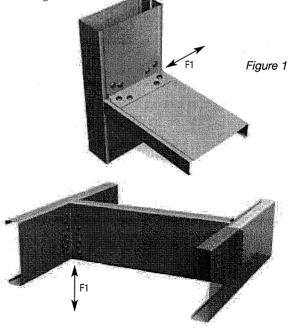
EasyClip" S-Series" Support Clips


EasyClip^T U-Series^T, EasyClip^T X-Series^T, EasyClip^{**} D-Series^{**} or EasyClip^{**} B-Series^{**}

Product Dimensions

1-1/2" x 1-1/2" x 3" (38.1mm x 38.1mm x 76.2 mm) 1-1/2" x 1-1/2" x 5" (38.1mm x 38.1mm x 127 mm) 1-1/2" x 1-1/2" x 7" (38.1mm x 38.1mm x 178 mm) 1-1/2" x 1-1/2" x 9" (38.1mm x 38.1mm x 229 mm) 1-1/2" x 1-1/2" x 11" (38.1mm x 38.1mm x 279 mm)

Material Specifications


Gauge: 16 gauge (54 mils) Design Thickness: 0.0566 inches (1.438 mm) Gauge: 14 gauge (68 mils) Design Thickness: 0.0713 inches (1.811 mm) Gauge: 12 gauge (97 mils) Design Thickness: 0.1017 inches (2.583 mm) Coating: G90 (Z275) hot-dipped galvanized coating Yield Strength: Mill-certified SS Grade 50 ksi (340 MPa) ASTM: A 653/A 653M

EasyClip[™] S-Series[™] Support Clip

Installation

E-Series[™] support clips are attached to the cold-formed steel (CFS) framing members using #10 minimum selfdrilling screws driven through the clip holes into the steel framing. When not filling all holes, install fasteners symmetrically starting at the top and bottom edges and move toward the center of the clip. Clip can also be welded to the CFS framing. Connections to the building frame can be made with powder-actuated fasteners, drill-in concrete anchors or welding. When using the tabular values for a welded clip, provide a full weld to the structure, top to bottom, along the outside of the clip. A 3/4" minimum weld on the outside edge of the 1-1/2" leg is also required to control warping or to hold the clip in place before final welding.

request a quote online @ dietrich metalframing • com The place to stop...before the building starts!"

General Framing

EasyClip" S-Series" Support Clips

сазубир	<u>9-961162</u>	Subhour d	onha						
DMF		Thic	kness		Si	ize	Weigh	t/Piece	Packaging
Product Code	Gauge	Mils	Design T Inches	hickness mm	Inches	mm	lbs	kg	Pcs/ Bucket
S543	16	54	0.0566	1.438	1-1/2 x 1-1/2 x 3	38.1 x 38.1 x 76.2	0.140	0.064	400
	() () () () () () () () () () () () () (01418	
S547	16	54	0.0566	1.438	1-1/2 x 1-1/2 x 7	38.1 x 38.1 x 178	0.340	0.154	100
A Margina (and the second		U. S. Witter	
S541	16	54	0.0566	1.438	1-1/2 x 1-1/2 x 11	38.1 x 38.1 x 279	0.530	0.240	100
Stel Sile State		$[\frac{1}{2},\ldots,\frac{1}{2}]$			linka wana kata kata kata kata kata kata kata k			K.V.WR	5 2410 July
S685	14	68	0.0713	1.811	1-1/2 x 1-1/2 x 5	38.1 x 38.1 x 127	0.300	0.136	200
							a dana abay		
S689	14	68	0.0713	1.811	1-1/2 x 1-1/2 x 9	38.1 x 38.1 x 229	0.540	0.245	100
S973	12	97	0.1017	2.583	1-1/2 x 1-1/2 x 3	38.1 x 38.1 x 76.2	0.260	0.118	200
		Side SPasses	0.000						
S977	12	97	0.1017	2.583	1-1/2 x 1-1/2 x 7	38.1 x 38.1 x 178	0.600	0.272	100
85055551491									
S971	12	97	0.1017	2.583	1-1/2 x 1-1/2 x 11	38.1 x 38.1 x 279	0.940	0.426	70

FasyClin™ S-Series™ Sunnort Clins

EasyClip™ S-Series™ Support Clips Allowable Clip Capacities (lbs) Using #10–16 Self-Drilling Screws

ALL DESIGN	No. of	Stud Thickness and Yield Strength											
Clip	Screws to		a (33 mil)			a (43 mil)			terre de la comp	16 ga (54mil)	t vident fan Start	
Cub.	Steel		33 ksi	<u> </u>	Sold Service multiple services	<u>33 ksi</u>			33 ksi			50 ksi	
<u></u>	Framing (1)	F1	F2	F3	F1	F2	F3.∠	F1	F2	F3	F1	F2	F3
S543	3	295(295)	210(531)	531	437(437)	210(788)	788	616(555)	210(1110)	1110	777(555)	210(1195)	1400
S545	5	651(651)	371(885)	885	965(965)	371(1313)	1313	1361(1361)	371(1850)	1850	1716(1460)	371(2105)	2333
S547	<u> </u>	1029(1029)	531(1239)	1239	1526(1526)	531(1838)	1838	2151(2151)	531(2591)	2591	2712(2456)	531(3015)	3267
S549	9	1408(1408)	692(1593)	1593	2090(2090)	692(2363)	2363	2945(2945)	692(3331)	3331	3714(3452)	692(3925)	4200
S541	11	1785(1785)	852(1947)	1000 1947	2648(2648)	852(2889)	2889	3732(3732)	852(4071)	4071	4706(4432)	852(4835)	5133
S683			32(1347)		2040(2040)	052(2005)	2005				4700(4452)	052(4055)	
S685	2	317(317)	354(354)	354	470(470)	525(525)	525	662(662)	587(740)	740	835(835)	587(933)	933
S687	4	653(653)	708(708)	708	969(969)	841(1050)	1050	1365(1365)	841(1480)	1480	1722(1722)	841(1867)	1867
S689	4	679(679)	708(708)	708	1007(1007)	1050(1050)	1050	1420(1420)	1095(1480)	1480	1790(1790)	1095(1867)	1867
S681	6	1015(1015)	1062(1062)	1062	1505(1505)	1349(1576)	1576	2121(2121)	1349(2221)	2221	2675(2675)	1349(2800)	2800
S973	3	295(295)	531(531)	531	437(437)	679(788)	788	616(616)	679(1110)	1110	777(777)	679(1400)	1400
S975	5	651(651)	885(885)	885	965(965)	1196(1313)	1313	1361(1361)	1196(1850)	1850	1716(1716)	1196(2333)	2333
 S977	41/16			209	305(985)	1190(1313)		1301(1301)	1190(1850)		1/16(1/16)	1190(2555)	2555
3977	7	1029(1029)	1239(1239)	1239	1526(1526)	1713(1838)	1838	2151(2151)	1713(2591)	2591	2712(2712)	1713(3267)	3267
S979	4 9	1408(1408)	1593(1593)	1593	2090(2090)	2229(2363)	2363	2945(2945)	2229(3331)	3331	3714(3714)	2229(4200)	4200
S971	11	101 (1015) 1785(1785)	1002(0062) 1947(1947)	1967 1947	2648(2648)	2746(2889)	2889	3732(3732)	2746(4071)	4071	4706(4706)	2746(5133)	5133

Table Notes Screw Capacity Notes:

DIETRICH

- The tabulated value indicates the number of screws in a single clip leg attached to the 1) cold-formed steel (CFS) framing.
- Screws shall be attached in a symmetric manner, starting at the outside holes and moving to the center. 2)
- Reference Figure 1 on opposite page 3) The allowable values for F1 are based only on the shear capacity of the clip leg attached to the CFS framing. The capacity of the attachment to other materials and structures must be checked separately.
- 4) The allowable values for F2 assume mechanical fasteners are attached to the structure, and are along the vertical centerline of the clip leg. Mechanical fasteners to other materials and structures must be checked separately.
- The screw diameter must be 0.19" (min.) for #10 screws. 5)
- The ultimate screw shear strength must be a minimum of 1400 lbs. for #10 screws. 6)
- 7) When clips have combinations of F1, F2, and F3, use a linear interaction for combinations of F1 and F3, and a souared interaction for combinations of F1 and F2.
- Screws must be long enough so that at least 3 exposed threads are visible after installation. 8)

- 9) Screw capacity is based on the 1996 AISI Specification.
- 10) Allowable loads have not been increased 33% for wind or seismic.
- For connections made to 14 ga. (68 mils.) and 12 ga. (97 mils.), use the tabulated values 11) for 16 ga. (54 mils.), 50 ksi.
- 12) It is the responsibility of the design professional to detail the drawings for proper clip attachment.
- 13) Contact Dietrich Design Group at 1-800-873-2443 for technical assistance.
- Weld Capacity Notes:
- 1) F1 and F2 values in parentheses are maximum shear and tension capacities when the clips are welded to the base structure (min 3/16" - 36 ksi steel)
- 2) Listed weld capacities are computed assuming a E60XX welding rod or wire. 3) The clips are to be welded to the structure along the back corner
- and along the complete length of the clip. When secondary welds are used to hold the clip in place, they are not used in capacity calculations.

Available for Overnight Delivery, call 866-638-1908

49

UNIEGE CONS

Fast Top™ Clips are used in head-of-wall deflection conditions for exterior curtain wall and interior, nonload-bearing walls.

- Vertical deflection up to 2-1/2" (1-1/4" up and 1-1/4" down).
- FastClip[™] slip technology.
- Available in 3-1/4" and 4-3/4" widths.
- Positively attached. Eliminates friction-held and temporary fastening.
- Attaches within the wall cavity.
- FastClip^{**} deflection screws provide frictionless deflection connections.
- Embossed fastening patterns to ensure accurate placement of fasteners.

Dietrich Fast Top" Clips are used in head-of-wall deflection conditions for in-fill curtain wall assemblies to provide for vertical movement. These clips are used in place of or in combination with deflection track. They also make a positive attachment and do not require bridging installed continuously throughout the upper most punchouts. The Fast Top" clip connectors can be attached to the underside

of structural members, concrete decks or floor assemblies. Studs must be cut less than full height to enable vertical movement up to 2-1/2" (1-1/4" up and down). Fast Top" Clips install quickly with welds, screws or power actuated fasteners. FastClip[™] deflection screws are used to attach the clip to the cold-formed framing and to ensure frictionless deflection. These clips are also embossed with fastening patterns to ensure accurate placement of fasteners.

Alternative Products

SLP-TRK® Slotted Slip Track, Spazzer® 9200, Spazzer® 5400 Fast Strut"

FTC3

Product Dimensions

1-1/2" x 4" x 3-1/4" (38.1mm x 102mm x 82.6mm) 1-1/2" x 4" x 4-3/4" (38.1mm x 102mm x 120mm)

FTC5

Material Specifications

Gauge: 14 gauge (68 mils) Design Thickness: 0.0713 inches (1.811 mm) Coating: G90 (Z275) hot dipped galvanized Yield Strength: Mill-certified SS Grade 50 ksi (340 MPa) ASTM: A 653/ A 653M

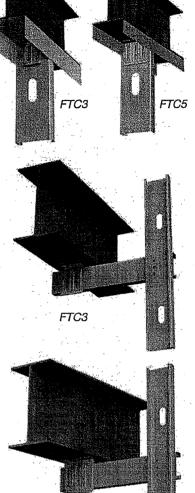
Installation

Connections to the building can be made with screws, powder-actuated fasteners, drill-in concrete anchors or welding. Mechanical fasteners shall be equally spaced along the scored line of the 1.5" flange. When using the tabulated allowable loads indicated in the table on the following page, connections to the building structure must be made according to the table notes. FastClip" deflection screws are used to attach the clip to the cold-formed steel framing. Screws shall be driven through the slotted holes and positioned to allow for the appropriate building deflection. Three FastClip[™] deflection screws are required with the FTC5 and two FastClip[™] deflection screws are required with the FTC3. U.S. Patent No. 6, 688, 069

Sizing and Packaging — Fast Top™ Clip (FTC3 and FTC5)

DMF		Thic	mess		Si	ze	Weigh	t/Piece	Packaging*
Product	Gauge	Mils	and a second	hickness	Inches	mm	lbs	kg	Pcs/
Code	0	(1996) All and a second	Inches	mm	Contract of The				Box
FTC3	14	68	0.0713	1.811	1-1/2 x 4 x 3-1/4	38.1 x 102.x 82.6	0.410	0,186	25
ETCH -	1 1 1 1	68	0.0713	T 911	1.170 y 4 y 4.3/4	38 T x 102 y 120:	ີດເຣເດີ	0.277	30

*FTC3 Includes 55 FastClip™ deflection screws per box.


*FTC5 Includes 110 FastClip** deflection screws per box.

SE

Head of Wall

Fast Top" Clip (FTC3/FTC5

FTC3 Clip Allowable Loads (lbs) anically And Welded hored Stud Thickness Slip Direct to Number PAF in **PAF** in 1/4" and Yield Strength Allowance Structural Steel (FS=5) Steel #12-24 1-3/4" (FS=10) Kwik-Cons (Inches) Steel Anchors Screws 259 259 252 259 245 2 20 ga. 0.75 259 (33 mil) 259 259 209 2 259 219 33 ksi 1.25 269 471 2 471 252 471 245 18 ga. 0.75 286 47 (43 mil) 471 219 471 209 2 437 33 ksi 1.25 47 551 2 504 252 551 245 16 ga. 0.75 551 551 (54 mil) 551 2 437 219 551 209 33 ksi 1.25 55 48 FTC5 Clip Allowable Loads (lbs) Welded Mechanically Anchored Stud Thickness Slip Allowance 1/4" x 1-3/4" Direct to PAF in PAE in Number and Yield Strength Steel Steel #12-24 Structural inf (FS=5) (wik-Cons (Inches) Steel Anchors (ES=10)Screws 386 386 317 386 386 .2 20 ga. 0.75 386 386 (33 mil) 386 4 386 386 386 386 386 33 ksi 386 2 386 286 386 386 338 586 386 1.25 3 386 4 386 371 386 505 2 505 317 505 477 18 ga. 0.75 (43 mil) 505 440 505 505 4 286 505 417 33 ksi 505 2 505 1.25 505 505 505 4 505 371 638 .2 634 317 638 477 16 ga. 0.75 (54 mil) 638 4 638 440 638 286 638 417 33 ksi 638 2 571 1.25 638 53E **F**XF 404 638 4 638 371 638 477 1061 2 .634 317 853 0.75 1061 389 1061 473 16 ga. 440 1061 879 1061 4 (54 mil) 417 1061 2 571 286 791 50 ksi

FTC3 and FTC5 Table Notes

1.25

1061

4

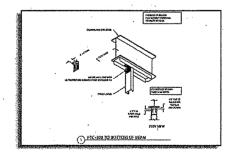
742

1) For the FTC3, tabulated values for welds are based on 3.25" of weld along each edge of the 1.5" clip lea. 2) For the FTC3, tabulated values for the Hilti* PAF's and. Buildex screws are based on the following: the outermost anchors are placed 1/2"(min.) away from the clip edge and/or bearing edge, anchors are spaced at 2.25" (min) when using two anchors, and 1-1/8" (min) when using three anchors. 3) For the FTC3, tabulated values for Hilti* Kwik-Cons are based on the following: anchors are spaced at 2.25" o/c (min.), anchors are placed 3/4" (min.) away from edge of building structure and 1/2" (min.) away from edge of the Fast Top Clip. The tabulated values are based on 3000 psi concrete. For the FTC5, tabulated values for welds are based on 4.5 of weld along each edge of the 1.5" clip leg. 5) For the FTC5, tabulated values for the Hiltl" PAF's and Buildex** screws are based on the following: the outermost anchors are placed 1/2"(min.) away from the clip edge and/or bearing edge, anchors are spaced at 3-3/4" (min) when using two anchors, 1-7/8" (min) when using three anchors, and 1-1/4" when using 4 anchors.

6) For the FTC5, tabulated values for Hilti* Kwik-Cons are based on the following: anchors are spaced at 3-3/4" (min.) when using 2 anchors, and 1-7/8" when using 3 anchors, anachors are placed 3/4" (min.) away from edge of building structure and 1/2" (min.) away from edge of the Fast Top Clip. The tabulated values are based on 3000 psi concrete. 7) The values given for PAF's are based on Hilti X-EDNI 0.145" Dia. powder actuated fasteners with 15 mm washers in 3/16" steel.

1061

371


8) #12-24 screws shall have an ultimate shear capacity no less than 2100 lb.

 It is the responsibility of the design professional to detail the project drawings for proper clip attachment.
 Contact Dietrich Design Group at 1-800-873-2443 for technical assistance.

* Hilti is a registered trademark of Hilti Aktiengeseilschaft Corporation.

** Buildex is a registered trademark of Illinois Tool Works, Inc. **Typical Construction Details**

FTC5

Visit our CAD Library at districh metalframing • com to view or download construction details in .dwg, .dxf, and .pdf formats.

Available for Overnight Delivery, call 866-638-1908

DIETRICH CLIP EXPRESS Available

MacLeod Structural Engineers, PA

404 Main Street Gorham, Maine p 207-839-0980 f 207-839-0982

JOB TITLE	Park Danforth	
	Portland, ME	
JOB NO.	2015-287	SHEET NO.
CALCULATED BY		DATE
CHECKED BY		DATE

www.struware.com

Code Search

I. Code: ASCE 7 - 05

11. Occupancy:

> Occupancy Group = В **Business**

111. **Type of Construction:**

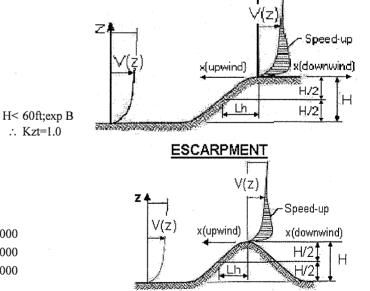
Fire Rating: Roof = Floor =

IV. Live Loads:

Roof angle (θ) Roof 0 to 200 sf: 200 to 600 sf: over 600 sf: 0.00/12 0.0 deg

> 0.000 0.000

1.000


1.000

Floor

Stairs & Exitways Balcony Mechanical Partitions

Wind Loads: ASCE 7 - 05 ۷.

Importance Factor	1.00
Basic Wind speed	100 <mark>mp</mark> h
Directionality (Kd)	0.85
Mean Roof Ht (h)	55 <mark>.0</mark> ft
Parapet ht above grd	<mark>19.</mark> 0 ft
Exposure Category	B B
Enclosure Classif.	Enclosed Building
Internal pressure	+ <mark>/-0</mark> .18
Building length (L)	32 <mark>5.</mark> 0 ft
Least width (B)	60 <mark>.0</mark> ft
Kh case l	0.833
Kh case 2	0.833
Topographic Factor (K	zt)
Topography	Flat
Hill Height (H)	0.0 ft
Half Hill Length (Lh)	0.0 ft
Actual H/Lh =	0.00
Use H/Lh =	0.00
Modified Lh =	0.0 ft
From top of crest: x=	0.0 ft
Bldg up/down wind?	downwind
H/Lh = 0.00	$K_1 =$
x/Lh = 0.00	$K_2 =$
z/Lh = 0.00	K ₃ =
At Mean Roof Ht:	
$Kzt = (1+K_1)$	$K_2K_3)^2 =$

2D RIDGE or 3D AXISYMMETRICAL HILL

MacLeod Structural Engineers, PA	JOB TITLE Park Danforth		
404 Main Street	Portland, ME	· · · · ·	
Gorham, Maine	JOB NO. 2015-287	SHEET NO.	
p 207-839-0980	CALCULATED BY NED	DATE	
f 207-839-0982	CHECKED BY	DATE	

V. Wind Loads - Components & Cladding: Buildings h≤60' & Alternate design 60'<h<90'

Kz = Kh (case 1)	= 0.83	GCpi =	+/-0.18	1	NOTE: If tributary area is greater than
Base pressure (qh)	= 18.1 psf	a =	6.0 ft	7	00sf, MWFRS pressure may be used.
Minimum r	parapet height at build	ling perimeter =	4.5 ft		

Roof Angle = 0.0 deg Type of roof = Monoslope

<u>Roof</u>	GCp +/- GCpi			Surfa	ce Pressure (p	User input		
Area	10 sf	50 sf	100 sf	10 sf	50 sf	100 sf	20 sf	70 sf
Negative Zone 1	-1.18	-1.11	-1.08	-21.4 psf	-20.1 psf	-19.6 psf	-20.8 psf	-19.9 psf
Negative Zone 2	-1.98	-1.49	-1.28	-35.9 psf	-27.0 psf	-23.2 psf	-32.1 psf	-25.2 psf
Negative Zone 3	-1.98	-1.49	-1.28	-35.9 psf	-27.0 psf	-23.2 psf	-32.1 psf	-25.2 psf
Positive All Zones	0.48	0.41	0.38	10.0 psf	10.0 psf	10.0 psf	10.0 psf	10.0 psf
Overhang Zone 1&2	-1.70	-1.63	-1.60	-30.8 psf	-29.5 psf	-29.0 psf	-30.3 psf	-29.3 psf
Overhang Zone 3	-1.70	-1.63	-1.60	-30.8 psf	-29.5 psf	-29.0 psf	-30.3 psf	-29.3 psf

Negative zone 3 = zone 2, since parapet ≥ 3 ft.

Walls	GCp +/- GCpi			Surfa	ce Pressure (p	User input		
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	35 sf	50 sf
Negative Zone 4	-1.17	-1.01	-0.90	-21.2 psf	-18.3 psf	-16.3 psf	-19.6 psf	-19.2 psf
Negative Zone 5	-1.44	-1.12	-0.90	-26.1 psf	-20.3 psf	-16.3 psf	-23.0 psf	-22.1 psf
Positive Zone 4 & 5	1.08	0.92	0.81	19.6 psf	16.7 psf	14.7 psf	18.0 psf	17.6 psf

Note: GCp reduced by 10% due to roof angle <= 10 deg.

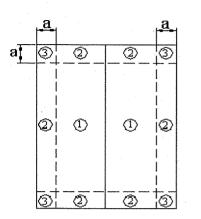
Parapet

qp = 15.2 psf	Solid Parapet Pressure	10 sf	100 sf	500 sf
	CASE A : Interior zone :	41.2 psf	31.3 psf	26.4 psf
CASE $A =$ pressure towards building	Corner zone :	41.2 psf	31.3 psf	26.4 psf
CASE B = pressure away from building	CASE B : Interior zone :	-28.8 psf	-24.0 psf	-20.6 psf
	Corner zone :	-32.9 psf	-25.7 psf	-20.6 psf

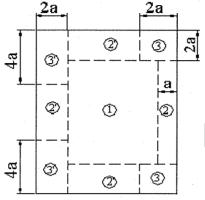
Rooftop Structures & Equipment

	height to centroid of Af = ight of equipment (he) =	Gust Effect Factor (G) = Base pressure (qz) =	0.85 21.3 Kd psf
Cross-Section Directionality (Kd)	Square 0.90		
Width (D) Type of Surface	10.0 ft N/A		h/D = 0.00
Type of Surface	Square (wind along diagonal)	S	Square (wind normal to fac

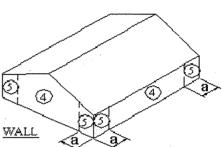
Square (wind along diago	onal)	Square (wind r	Square (wind normal to face)			
Cf =	1.00	$C_{f} =$	1.30			
Af =	10.0 sf	$A_{f} =$	10.0 sf			
Adjustment Factor (Adj) =	1.90	Adjustment Factor (Adj) =	1.900			
F = qz G Cf Af Adj =	16.3 Af	$\mathbf{F} = \mathbf{q}_{\mathbf{z}} \mathbf{G} \mathbf{C}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}} \mathbf{A}_{\mathbf{f}}$	21.2 Af			
$\mathbf{F} =$	163 lbs	F =	212 lbs			

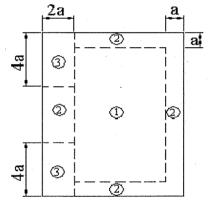

7

MacLeod Structural Engineers, PA JOB TITLE Park Danfort 404 Main Street Portland, ME

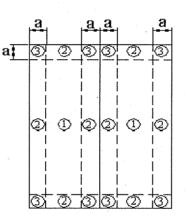

404 Main Street Gorham, Maine p 207-839-0980 f 207-839-0982

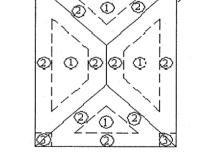
A JOB TITLE	Park Danforth	
	Portland, ME	
JOB NO.	2015-287	SHEET NO.
CALCULATED BY	NED	DATE
CHECKED BY		DATE


Location of Wind Pressure Zones



 $\theta \le 7$ degrees and Monoslope ≤ 3 degrees




Monoslope roofs $3^{\circ} < \theta \le 10^{\circ}$

Monoslope roofs $10^{\circ} < \theta \le 30^{\circ}$

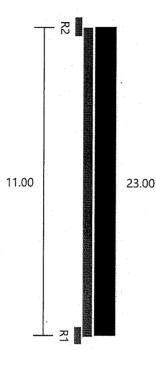
aa

2

a

জ্ঞ

a


 $\theta > 7$ degrees

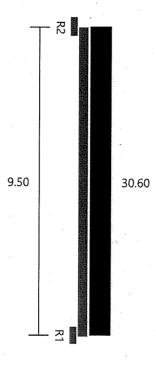
 $\theta > 7$ degrees

ล

Z

Project Name: 2015-287 Park Danforth Model: Wall Stud 1st Floor Zone 5 @ 12" o.c. Code: 2007 NASPEC [AISI S100-2007]

Section :	600S162-33 Sin	gle C Stud
Maxo =	950.6 Ft-Lb	Moment of Intertia, I = 1.79 in^4


Fy = 33.0 ksi **Va =** 638.1 lb

Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations

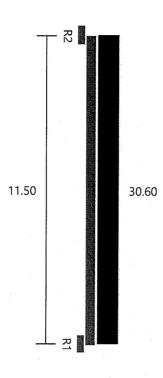
Flexural and	Deflecti					_			. .	Def	lection
Span		Mmax Ft-Lb	Mmax/ Maxo	•	oos ·Lb	Brac (in)	cing	Ma(Brc) Ft-Lb	Mpos/ Ma(Brc)	(in)	Ratio
Span		347.9	0.366		7.9	60.0		856.1	0.406	0.100	L/1316
Distortional	Buckling		0.000	04		00.0		000.1	0.400	0.100	L/1310
Span		K-phi lb-in/in	Lm Bi in	rac	Ma-d Ft-Lb	-	Mmax Via-d	1			
Span		0.00	132.0		788.8	(0.441				
Combined B	ending a	nd Web Cri	opling								
Reaction or	Load		ring	Pa		Pn		Mmax	Intr.		Stiffeners
Pt Load	P(lb)	(in)		(lb)		(lb)		(Ft-Lb)	Value	•	Required?
R1	126.5	1.00		152.8		267.4		0.0	0.43		NO
R2	126.5	1.00		152.8		267.4		0.0	0.43		NO
Combined B	ending a	nd Shear									
Reaction or	Vmax	M	max	Va					Int	r.	Intr.
Pt Load	(lb)	(F	t-Lb)	Facto	r	V/Va		M/Ma	Ur	stiffened	Stiffened
R1	126.5	0.	0	1.00)	0.20		0.00	0.2	20	N/A
R2	126.5	0.4	0	1.00)	0.20		0.00	0.2	20	N/A

Project Name: 2015-287 Park Danforth Model: Wall Stud 2nd Floor to Roof Zone 4 & 5 Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 1 Date: 12/28/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Section : 600S162-33 Single C Stud Maxo = 950.6 Ft-Lb

Moment of Intertia, I = 1.79 in^4


Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations

Flexural and	Deflecti	<u>on Check</u>								D - 6	
·		Mmax	Mmax/		pos	Bracir	~	Ma(Brc)	Mpos/	Det	lection
Span		Ft-Lb	Махо	F	t-Lb	(in)	F	-t-Lb	Ma(Brc)	(in)	Ratio
Span		345.2	0.363	3.	45.2	60.0	8	357.4	0.403	0.074	L/1536
Distortional I	Buckling	<u>Check</u>									
Span		K-phi Ib-in/in	Lm B in	irac	Ma-d Ft-Lb	Mr Ma	nax/ I-d	x			
Span		0.00	114.0	כ	788.8	0.4	138				
Combined B	ending a	nd Web Cri	ppling								
Reaction or	Load		ring	Ра		Pn		Mmax	Intr.		Stiffeners
Pt Load	P(lb)	(in)		(lb)		(lb)		(Ft-Lb)	Value	1	Required?
R1	145.4	1.00).	152.8		267.4		0.0	0.49		NO
R2	145.4	1.00)	152.8		267.4		0.0	0.49		NO
Combined Be	ending a	nd Shear									
Reaction or	Vmax	м	max	Va					Int	r.	Intr.
Pt Load	(lb)	(F	t-Lb)	Fact	or	V/Va		M/Ma	Ur	stiffened	Stiffened
R1	145.4	0.	0	1.0	0	0.23		0.00	0.2	23	N/A
R2	145.3	0.	0	1.0	0	0.23		0.00	0.2	23	N/A

Fy = 33.0 ksi **Va =** 638.1 lb

Project Name: 2015-287 Park Danforth Model: Section 8 Wall Stud Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 1 Date: 12/29/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Section :600S162-43 Single C StudMaxo =1390.0 Ft-LbMoment of Intertia, I = 2.32 in^4Londo base net base readified for strength sharks

Fy = 33.0 ksi **Va =** 1415.7 lb

Loads have not been modified for strength checks

Loads have been multiplied by 0.70 for deflection calculations

Flexural and	Deflection	on Check	-						D-4	
		Mmax	Mmax/	Mp	os	Bracing	Ma(Brc)	Mpos/	Der	lection
Span		Ft-Lb	Махо	Ft-l	_b	(in)	Ft-Lb	Ma(Brc)	(in)	Ratio
Span		505.9	0.364	505	.9	Full	1390.0	0.364	0.123	L/1118
Distortional	Buckling	Check	*							
Span		K-phi Ib-in/in	Lm Br in	ac	Ma-d Ft-Lb	Mma Ma-o				
Span		0.00	138.0	,e	1205.1	0.42	0			
Combined B	ending a	nd Web Crip	pling							
Reaction or	Load	Bea	ring	Pa		n	Mmax	Intr.		Stiffeners
Pt Load	P(lb)	(in)		(lb)	(1	b)	(Ft-Lb)	Value	ł	Required?
R1	176.0	1.00		259.1	4	53.4	0.0	0.35		NO
R2	176.0	1.00		259.1	4	53.4	0.0	0.35		NO .
Combined B	ending a	<u>nd Shear</u>								
Reaction or	Vmax	Mr	nax	Va				Int	r.	Intr.
Pt Load	(lb)	(Fi	t-Lb)	Factor	•	V/Va	M/Ma	Ur	stiffened	Stiffened
R1	176.0	0.0)	1.00		0.12	0.00	0.1	2	N/A
R2	176.0	0.0)	1.00		0.12	0.00	0.1	2	N/A

SIMPSON STRONG-TIE COMPANY INC.

MacLeod Structural Engineers, P.A. Structural Consultants 90 Bridge Street Westbrook, Maine 04092 Phone (207) 839-0980 Fax (207) 839-0982

Project: <u>Park Danforth</u> <u>Portland, ME</u> By: <u>NED</u> Job ID: <u>2015-287</u> Date:<u>12/28/2015</u> Page:<u>1 of 1</u>

Connection Of Track To Stee	l / Concrete (Non-	<u>slip track):</u>	
General Design Criteria:		Stud Design Criteria:	
Maximum Reaction, Rmax:	$R_{max} := 225 lbf$	Width of Stud, Sf:	$S_{f} := 1.625 in$
Stud Spacing, Ss:	$S_s := 16in$	Thickness of Stud (Gage), Ts:	$T_s := 0.0346 in$
Fastener Spacing, Fs:	$F_s := 16in$	Inside Radius Bend, r:	$r = 0.0764 \cdot in$
		Yield Strength of Stud, Fys	F _{ys} := 36ksi
Track Design Criteria:		PAF Design Criteria:	
Thickness of Track (Gage), Ga.:	$T_g := 0.0346in$	Number of PAFs, No:	No := 1
Track Leg Length, L:	L:= 1.25in	Diameter of Shank of PAF, ds:	$d_s \coloneqq 0.145 in$
Track Width, Tw:	$T_w := 6.0$ in	Diameter of Head of PAF, dh:	$d_h := 0.3 in$
Bending Stress, Fb: (Typ.)	F _b := 36ksi	PAF Shear Capacity, Concrete	$Vc_{paf} := 260lbf$
Ultimate Stress, Fu: (Typ.)	$F_u := 50ksi$	PAF Tension/ Pullout Cap., Conc.	$Tc_{paf} := 185lbf$
		PAF Shear Capacity, Steel	$Vs_{paf} := 590lbf$
		PAF Tension/ Pullout Cap., Steel	$Ts_{paf} := 510lbf$
		Note Concrete, $F'c = 3000 \text{ psi}$ min. Steel thickness 1/4"	

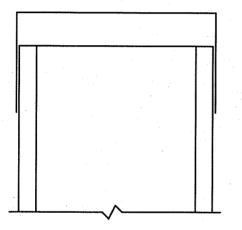
<u>Use:</u> 600T125-33 Track

<u>Use:</u> (1) 0.145" Dia. PAF per Stud

Design Of Connection includes:

A.) Check PAF For Shear Bearing On Track		
Bearing Capacity of Steel Sheet, Pas:	$P_{as} = 226 \cdot lbf$	$Cap_A = "OK"$
B.) Check PAF For Shear		
Shear Capacity of PAF, Concrete	$Vc_{paft} = 260 \cdot lbf$	Cap _B = "OK"
Shear Capacity of PAF, Steel	$Vs_{paft} = 590 \cdot lbf$	Cap _s = "OK"
C.) Check Web Crippling of Studs		
Stud Web Crippling Capacity, Pa:	$P_a = 295.3 \cdot lbf$	$Cap_C = "OK"$
D.) Check Track Punch-through		
Track Punch-through Capacity, Ppt:	$P_{pt} = 361 \cdot lbf$	$Cap_D = "OK"$

ClarkWestern Building Systems CW Tech Support: (888) 437-3244 clarkwestern.com


AISI Standard for Cold-Formed Steel Framing Wall Stud Design - 2007 Edition DATE: 12/28/2015

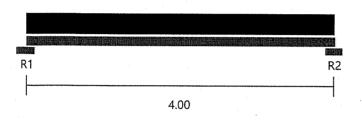
2015-287 Park Danforth

Section Designation: 600T200-54 [50] Single

Input Properties:

Web Height =	6.198 in	Design Thickness =	0.0566 in
Top Flange =	2.000 in	Inside Corner Radius =	0.0849 in
Bottom Flange =	2.000 in	Yield Point, Fy =	50.0 ksi

Deflection Track Design


Method: AISI Std 'Wall Stud Design' - B2.3

Deflection Clear Gap = 0.75 in Stud Spacing = 16 in e = 0.75 in Wdt = 12.57 in Pndt = 671 lb/stud **Padt = 240 lb/stud**

Project Name: 2015-287 Park Danforth Model: Section 3 Soffit Framing Code: 2007 NASPEC [AISI S100-2007]

35

60.00

Section : 250S162-33 Single C Stud

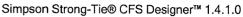
Maxo = 296.1 Ft-Lb Moment of Intertia, I = 0.24 in^4

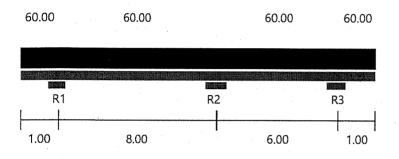
Loads have not been modified for strength checks

Loads have been multiplied by 0.70 for deflection calculations

Flexural and	Deflection	on Check							_	
		Mmax	Mmax/	Mp	oos	Bracing	Ma(Brc)	Mpos/	Def	lection
Span		Ft-Lb	Maxo	Ft-	Lb	(in)	Ft-Lb	Ma(Brc)	(in)	Ratio
Span		120.0	0.405	12	0.0	None	295.1	0.407	0.035	L/1377
Distortional	Buckling	Check								
Span		K-phi	Lm B	rac	Ma-d	Mmax	d			
•		lb-in/in	in		Ft-Lb	Ma-d				
Span		0.00	48.0		296.9	0.404				
Combined B	ending a	nd Web Crip	opling							
Reaction or	Load	Bea	ring	Pa		Pn	Mmax	Intr.		Stiffeners
Pt Load	P(lb)	(in)		(lb)		(lb)	(Ft-Lb)	Value	•	Required?
R1	120.0	1.00		172.6		302.1	0.0	0.36		NO
R2	120.0	1.00		172.6		302.1	0.0	0.36		NO
Combined B	ending a	<u>nd Shear</u>								
Reaction or	Vmax	Mi	max	Va				Ini	tr.	Intr.
Pt Load	(lb)	(F [.]	t-Lb)	Facto	r	V/Va	M/Ma	Ur	nstiffened	Stiffened
R1	120.0	0.0	C	1.00)	0.12	0.00	√ 0 .1	12	N/A
R2	120.0	0.0	כ	1.00)	0.12	0.00	0.1	12	N/A

Fy = 33.0 ksi **Va =** 975.3 lb


www.strongtie.com


Project Name:

Model: Section 5 Soffit Framing

Code: 2007 NASPEC [AISI S100-2007]

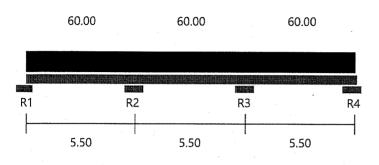
Page 1 of 1 Date: 12/29/2015

Section : 362S162-43 Single C Stud

Maxo =

612.0 Ft-Lb Moment of Intertia, I = 0.71 in^4

Fy = 33.0 ksi Va = 1739.1 lb


Loads have not been modified for strength checks

Loads have been multiplied by 0.70 for deflection calculations

Ministriant Minax/ Ft-Lb Max/ Maxo Mpos/ Ft-Lb Ma(Brc) (in) Mpos/ Ft-Lb Mpos/ Ma(Brc) Deflection Left Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.040 L/600 Left Span 375.0 0.613 293.0 None 442.2 0.663 0.093 L/1036 Right Span 375.0 0.613 132.2 None 555.3 0.238 0.008 L/8498 Right Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.000 L/4261 Distortional Buckling Check Ma-d Mmax/ Ma-d Mmax/ Ma-d Mood 1/4261 Distortional Buckling Lm Brac Ma-d Mmax/ Ma-d Ma-d Mmax/ Ma-d None 515.3 0.238 0.008 L/4261 Distortional Buckling 0.00 12.0 639.6 0.047 Value Kequired? Kequired? Left Cantilever 0.00 12.0 639.6	Flexural and	Deflection	on Check							D	() ()	
Left Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.040 L/600 Left Span 375.0 0.613 293.0 None 442.2 0.663 0.093 L/1036 Right Span 375.0 0.613 132.2 None 55.3 0.238 0.008 L/8498 Right Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.006 L/4261 Distortional Buckling Check Mark Mark Mark Mark Mark L/4261 Distortional Buckling Check Lm Brac Ma-d Mmax/ Mark Mark Mark Left Cantilever 0.00 12.0 639.6 0.047 Mark Intr. Stiffeners Right Span 0.00 72.0 639.6 0.047 Stiffeners Required? Right Cantilever 0.00 72.0 639.6 0.047 Stiffeners Required? Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners R1 256.9 6.00							U			Det	riection	
Left Span 375.0 0.613 293.0 None 442.2 0.663 0.093 L/1036 Right Span 375.0 0.613 132.2 None 555.3 0.238 0.008 L/8498 Right Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.006 L/4261 Distortional Buckling Check Span K-phi Lm Brac Ma-d Mmax/ Left Cantilever 0.00 12.0 639.6 0.047 L/4261 Left Span 0.00 96.0 634.9 0.591 Lm Brac K-phi Lm Brac Ma-d Ma-d Right Span 0.00 72.0 639.6 0.047 Lot K-phi Kephi <	-		Ft-Lb	Махо	Ft-	Lb	<u>(in)</u>	Ft-Lb	Ma(Brc)	(in)	Ratio	
Right Span 375.0 0.613 132.2 None 555.3 0.238 0.008 L/8498 Right Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.006 L/4261 Distortional Buckling Check K-phi Lm Brac Ma-d Mmax/ None 612.0 0.031 0.006 L/4261 Distortional Buckling Check K-phi Lm Brac Ma-d Mmax/ Ma-d None 612.0 0.031 0.006 L/4261 Left Cantilever 0.00 12.0 639.6 0.047 Ma-d Mmax/ None Stiffeners Right Span 0.00 72.0 633.6 0.047 Stiffeners Stiffeners Right Cantilever 0.00 72.0 639.6 0.047 Stiffeners Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners R1 256.9 6.00 526.4 921.2 30.0 0.28 <	Left Cantileve	r	30.0	0.049	19	.2	None	612.0	0.031	0.040	L/600	
Right Cantilever 30.0 0.049 19.2 None 612.0 0.031 0.006 L/4261 Distortional Buckling Check K-phi Lm Brac Ma-d Mmax/ Ma-d L/4261 Span K-phi Lm Brac Ma-d Mmax/ Ma-d Ma-d Ma-d Ma-d Left Cantilever 0.00 12.0 639.6 0.047 Intr. Value Required? Right Span 0.00 12.0 639.6 0.047 Value Stiffeners Value Value Reaction or Load Pa Pn Mmax Intr. Stiffeners Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2	Left Span		375.0	0.613	29	3.0	None	442.2	0.663	0.093	L/1036	j
$\begin{array}{c c c c c c } \hline Distortional $ Uckling Check $ $ Uckling Check $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	Right Span		375.0	0.613	13	2.2	None	555.3	0.238	0.008	L/8498	j i
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c } \hline Pan & $K-ph$ & Lm Par & $Ma-d$ & $Mmax$ \\ \hline $Ib-in/i & in' & $Ft-Lb$ & $Ma-d$ \\ \hline $Ib-in/i & in' & $Ft-Lb$ & $Ma-d$ \\ \hline $Ib-in/i & in' & 12.0 & 63.6 & 0.047 \\ \hline $Left$ Cantilev & 0.00 & 12.0 & 634.9 & 0.591 \\ \hline $Right$ Span$ & 0.00 & 72.0 & 634.9 & 0.591 \\ \hline $Right$ Cantilev & 0.0 & 72.0 & 639.6 & 0.047 \\ \hline $Right$ Cantilev & 0.0 & 12.0 & 639.6 & 0.047 \\ \hline $Right$ Cantilev & 0.0 & 12.0 & 639.6 & 0.047 \\ \hline $Right$ Cantilev & 0.0 & 12.0 & 639.6 & 0.047 \\ \hline $Reaction$ or $ $Load$ & $Bearing$ Fripulev & $Venton (Ib)$ & (Ib) & (Ib) & $(Intr. $Stiffeners$ Required?$ \\ \hline $Reaction$ or $ $Load$ & $P(lb)$ & (in) & (Ib) & (Ib) & (Ib) & $(Ft-Lb)$ & $Value$ Required?$ \\ \hline $R1$ & 256.9 & 6.00 & $$264$ & 921.2 & 30.0 & 0.28 & NO \\ \hline $R2$ & $$520.6$ & 6.00 & $$897.9$ & 1481.6 & 375.0 & 6.99 & NO \\ \hline $R3$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R3$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & 6.00 & $$264$ & 921.2 & 30.0 & 0.21 & NO \\ \hline $R5$ & 182.5 & $182.$	Right Cantilev	er	30.0	0.049	19.	2	None	612.0	0.031	0.006	L/4261	
Ib-in/in in Ft-Lb Ma-d Left Cantilever 0.00 12.0 639.6 0.047 Left Span 0.00 96.0 634.9 0.591 Right Span 0.00 72.0 639.6 0.047 Right Span 0.00 72.0 634.9 0.591 Right Cantilever 0.00 12.0 639.6 0.047 Combined Bending and Web Crippling Pa Pn Mmax Intr. Stiffeners Pt Load P(Ib) (in) (Ib) (Ib) Value Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO	Distortional E	Buckling	Check									
Left Cantilever 0.00 12.0 639.6 0.047 Left Span 0.00 96.0 634.9 0.591 Right Span 0.00 72.0 634.9 0.591 Right Cantilever 0.00 12.0 639.6 0.047 Right Cantilever 0.00 12.0 639.6 0.047 Right Cantilever 0.00 12.0 639.6 0.047 Reaction or Pt Load Load Bearing (in) Pa (lb) Pn (lb) Mmax (Ft-Lb) Intr. Stiffeners Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO Combined Bending and Shear 526.4 921.2 30.0 0.21 NO	Span				rac			d				
Left Span 0.00 96.0 634.9 0.591 Right Span 0.00 72.0 634.9 0.591 Right Cantilever 0.00 12.0 639.6 0.047 Combined Bending and Web Crippling Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO												
Right Span 0.00 72.0 634.9 0.591 Right Cantilever 0.00 12.0 639.6 0.047 Combined Bending and Web Crippling Reaction or Pt Load Load Bearing (in) Pa Pn Mmax (Ib) Intr. Stiffeners Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO		r	+									
Right Cantilever 0.0 12.0 639.6 0.047 Combined Bending and Web Crippling Reaction or Load Bearing Pa Pn Mmax Intr. Stiffeners Pt Load P(lb) (in) (lb) (lb) (Ft-Lb) Value Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO Combined Bending and Shear												
Combined Bending and Web Crippling Reaction or Pt Load Load (in) Bearing (ib) Pa (ib) Pn (ib) Mmax (Ft-Lb) Intr. Stiffeners Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO	U 1											
Reaction or Pt Load Load P(lb) Bearing (in) Pa (lb) Pn (lb) Mmax (Ft-Lb) Intr. Stiffeners Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO	-					639.6	0.047					
Pt Load P(lb) (in) (lb) (Ft-Lb) Value Required? R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO					_		_					
R1 256.9 6.00 526.4 921.2 30.0 0.28 NO R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO Combined Bending and Shear Combined Bending and Shear State State State State				ring								
R2 520.6 6.00 897.9 1481.6 375.0 0.69 NO R3 182.5 6.00 526.4 921.2 30.0 0.21 NO Combined Bending and Shear Combined Bending and Shear								· · /		•	-	
R3 182.5 6.00 526.4 921.2 30.0 0.21 NO Combined Bending and Shear NO											NO	
Combined Bending and Shear		520.6	6.00		897.9		1481.6	375.0	0.69		NO	
	R3	182.5	6.00)	526.4		921.2	30.0	0.21		NO	
	Combined Be	ending a	<u>nd Shear</u>									
Reaction or Vmax Mmax Va Intr. Intr.	Reaction or	Vmax	Μ	max	Va				In	tr.	Intr.	
Pt Load (Ib) (Ft-Lb) Factor V/Va M/Ma Unstiffened Stiffened	Pt Load	(lb)	(F	t-Lb)	Facto	r	V/Va	M/Ma	Ur	nstiffened	Stiffened	I.
R1 196.9 30.0 1.00 0.11 0.05 0.12 N/A	R1	196.9	30).0	1.00)	0.11	0.05	0.1	12	N/A	
R2 283.1 375.0 1.00 0.16 0.61 0.63 N/A	R2	283.1	37	′ 5.0	1.00)	0.16	0.61	0.6	53	N/A	
R3 122.5 30.0 1.00 0.07 0.05 0.09 N/A	R3	122.5	30).0	1.00)	0.07	0.05			N/A	

Project Name: 2015-287 Park Danforth Model: Section 12, 13, & 14 Soffit Framing Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 1 Date: 12/29/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0

 Section :
 250S162-33 Single C Stud

 Maxo =
 296.1 Ft-Lb

 Moment of Intertia, I = 0.24 in^4

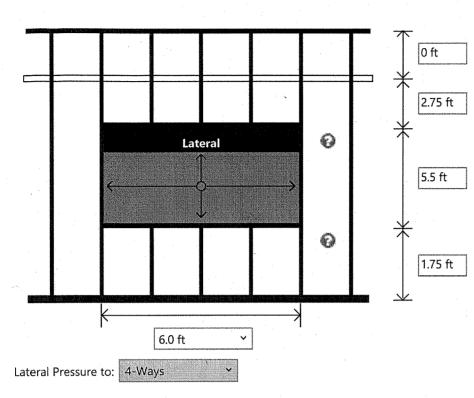
Loads have not been modified for strength checks

Loads have been multiplied by 0.70 for deflection calculations

Flexural and	Deflectio	on Check							D - f	(* .
		Mmax	Mmax/	Мро		Bracing	Ma(Brc)	Mpos/	Def	ection
Span		Ft-Lb	Maxo	Ft-L		(in)	Ft-Lb	Ma(Brc)	(in)	Ratio
Left Span		181.5	0.613	145	.2	None	278.7	0.521	0.066	L/1002
Middle Span		181.5	0.613	45.4	4	None	285.8	0.159	0.005	L/13243
Right Span		181.5	0.613	145	.2	None	278.7	0.521	0.066	L/1002
Distortional I	Buckling	Check								
Span		K-phi Ib-in/in	Lm B in		Ma-d Ft-Lb	Mmax Ma-d	d ,			
Left Span		0.00	66.0		296.9	0.611				
Middle Span		0.00	66.0		296.9	0.611				
Right Span		0.00	66.0		296.9	0.611				
Combined B										
Reaction or			ring	Pa		'Pn	Mmax	Intr.		Stiffeners
Pt Load	P(lb)	(in)		(lb)		(lb)	(Ft-Lb)	Value		Required?
R1	132.0	6.00		336.0		588.0	0.0	0.20		NO
R2	363.0	6.00)	535.2		883.1	181.5	0.74		NO
R3	363.0	6.00		535.2		883.1	181.5	0.74		NO
R4	132.0	6.00)	336.0		588.0	0.0	0.20		NO
Combined B	ending a	<u>nd Shear</u>								
Reaction or	Vmax	M	max	Va				Int	r.	Intr.
Pt Load	(lb)	(F	t-Lb)	Factor	•	V/Va	M/Ma	Un	stiffened	Stiffened
R1	132.0	0.0	0	1.00		0.14	0.00	0.1	4	N/A
R2	198.0	18	31.5	1.00		0.20	0.61	0.6	5	N/A
R3	198.0	18	31.5	1.00		0.20	0.61	0.6	5	N/A
R4	132.0	0.0	0	1.00		0.14	0.00	0.1	4	N/A

Fy = 33.0 ksi

Va = 975.3 lb


www.strongtie.com

Project Name: 2015-287 Park Danforth Model: Window A Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Design Loads Wall Lateral Pressure : 19.6 psf RO Lateral Pressure : 4-Ways Lateral Element Forces multiplied by 1 for strength checks Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

Component(s)	Members(s)	Flexural Bracing (in)	Axial Ky (in)	/Ly Axial Ktl (in)	Distortior t K-Phi(lb- in/in)	nal Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Si	II Head/Sil	0	None	N/A
Vertical Header	600T300-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T300-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Summary Anal	<u>ysis Results</u>						
Component(s)	Members(s)	Axial Load (lb)	Mo	ax. oment t-Lb)	Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	32	6.7	130.7	130.7	130.7
Jamb Studs	600S200-54(50), Single	82.5	81	3.1	307.9	307.9	278.5
Vertical Header	600T300-54(50), Y-Y Axis	s N/A	12	3.7	82.5	N/A	82.5
Lateral Header	600T300-54(50), Single	N/A	29	5.9	168.4	N/A	168.4
Sill	600T125-33(33), Single	N/A	25	1.8	139.0	N/A	139.0
Summary Desi	gn Results						
Component(s)	Members(s)	Deflecti	on	Bending +Axial Interaction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1542		0.41	0.20	No .	Yes

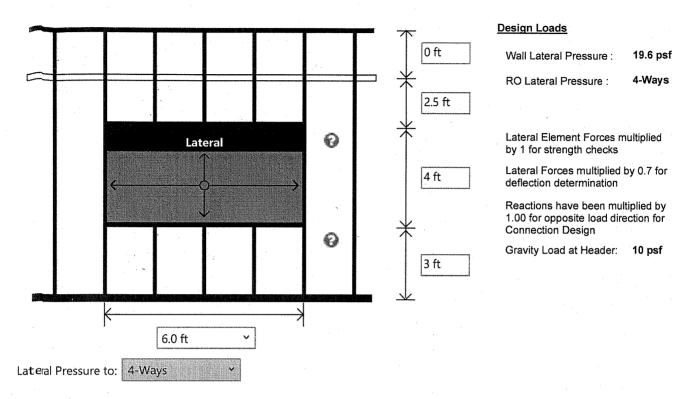
Project Name: 2015-287 Park Danforth

Model: Window A

Code: 2007 NASPEC [AISI S100-2007]

Date: 12/28/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Jamb Studs	600S200-54(50), Single	L/1129	0.37	0.31	No	Yes	
Vertical Header	600T300-54(50), Y-Y Axis	L/305	0.84	0.01	No	Yes	
Lateral Header	600T300-54(50), Single	L/5033	0.16	0.06	No	Yes	
Sill	600T125-33(33), Single	L/2403	0.51	0.22	R1, R2	Yes	


Page 2 of 2

Project Name: 2015-287 Park Danforth Mod C Window B Cod C 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Brace Settings

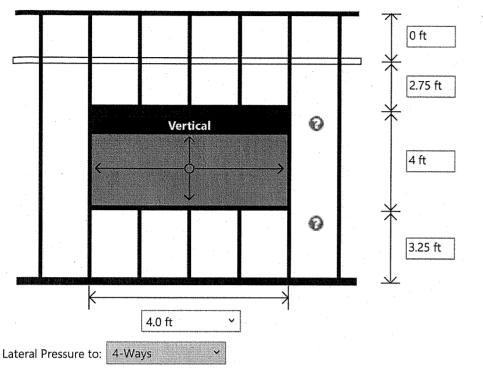
Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortior t K-Phi(lb- in/in)	al Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T300-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T300-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Summary Anal	lysis Results Members(s)	Axial Load (Ib)	Max. Momer (Ft-Lb)	it	Max. Shear(lb)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	294.8	·	124.1	124.1	124.1
Jamb Studs	600S200-54(50), Single	75.0	746.4		267.9	253.2	267.9
Vertical Header	600T300-54(50), Y-Y Axis	N/A	112.5		75.0	N/A	75.0
Lateral Header	600T300-54(50), Single	N/A	260.5		151.9	N/A	151.9
Sill	600T125-33(33), Single	N/A	282.6		166.6	N/A	166.6
Summary Desi	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+4	ending Axial teraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1798	0.3	37	0.19	No	Yes

Project Name: 2015-287 Park Danforth

Model: Window B

Code: 2007 NASPEC [AISI S100-2007]

Page 2 of 2 Date: 12/28/2015


Jamb Studs	600S200-54(50), Single	L/1297	0.34	0.30	No	Yes	
Vertical Header	600T300-54(50), Y-Y Axis	L/336	0.77	0.01	No	Yes	
Lateral Header	600T300-54(50), Single	L/5670	0.14	0.06	No	Yes	
Sill	600T125-33(33), Single	L/2113	0.58	0.27	R1, R2	Yes	

Project Name: 2015-287 Park Danforth Model: Window D Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

 Design Loads

 Wall Lateral Pressure :
 19.6 psf

 RO Lateral Pressure :
 4-Ways

 Lateral Element Forces multiplied by 1 for strength checks

 Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortion t K-Phi(lb- in/in)		Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T200-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
<u>Summary Anal</u> Component(s)	ysis Results Members(s)	Axial Load (Ib)	Max. Moment (Ft-Lb)	t	Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	326.7		130.7	130.7	130.7
Jamb Studs	600S200-54(50), Single	55.0	627.3		207.4	197.6	207.4
Vertical Header	600T200-54(50), Y-Y Axis	N/A	55.0		55.0	N/A	55.0
Lateral Header	600T200-54(50), Single	N/A	106.2		93.1	N/A	93.1
Sill	600T125-33(33), Single	N/A	116.0		102.9	N/A	102.9
Summary Desi	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+A:	nding xial eraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1542	0.4	1	0.20	No	Yes

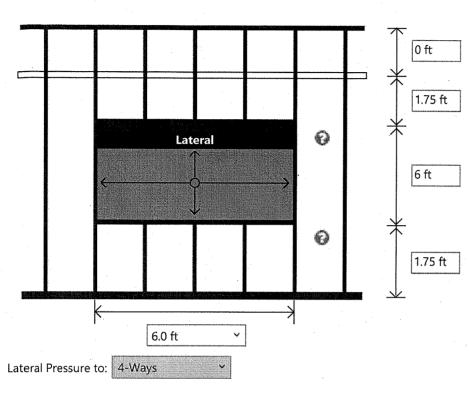
SIMPSON STRONG-TIE COMPANY INC.

www.strongtie.com

Project Name: 2015-287 Park Danforth

Model: Window D

Code: 2007 NASPEC [AISI S100-2007]


Page 2 of 2 Date: 12/28/2015

Jamb Studs	600S200-54(50), Single	L/1494	0.28	0.24	No	Yes	
Vertical Header	600T200-54(50), Y-Y Axis	L/673	0.49	0.01	No	Yes	
Lateral Header	600T200-54(50), Single	L/17824	0.06	0.03	No	Yes	
Sill	600T125-33(33), Single	L/7757	0.24	0.17	R1, R2	Yes	

Project Name: 2015-287 Park Danforth Model: Window F Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2 Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Design Loads

Wall Lateral Pressure :	19.6 psf
RO Lateral Pressure :	4-Ways

Lateral Element Forces multiplied by 1 for strength checks

Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortion t K-Phi(lb- in/in)	al Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T200-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A [°]
Summary Anal Component(s)	<u>ysis Results</u> Members(s)	Axial Load (lb)	Max. Moment (Ft-Lb)		Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	294.8		124.1	124.1	124.1
Jamb Studs	600S200-54(50), Single	52.5	722.5		289.9	289.9	289.9
Vertical Header	600T200-54(50), Y-Y Axis	N/A	78.8		52.5	N/A	52.5
Lateral Header	600T200-54(50), Single	N/A	253.6		139.7	N/A	139.7
Sill	600T125-33(33), Single	N/A	253.6		139.7	N/A	139.7
Summary Desig	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+A:	nding kial eraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1798	0.3	7	0.19	No	Yes

SIMPSON STRONG-TIE COMPANY INC.

www.strongtie.com

Project Name: 2015-287 Park Danforth

Model: Window F

Page 2 of 2

Date: 12/28/2015

Code: 2007 N/	ASPEC [AISI S100-2007]	Simpson Strong-Tie® CFS Designer™ 1.4.1.0				
Jamb Studs	600S200-54(50), Single	L/1339	0.33	0.24	No	Yes
Vertical Header	600T200-54(50), Y-Y Axis	L/313	0.70	0.01	No	Yes
Lateral Header	600T200-54(50), Single	L/5017	0.14	0.05	No	Yes
Sill	600T125-33(33), Single	L/2389	0.52	0.22	R1, R2	Yes

Project Name: 2015-287 Park Danforth Model: Window G

Page 1 of 2

Date: 12/28/2015

Code: 2007 NASPEC [AISI S100-2007]

Vertical

4.0 ft

v

v

Design Loads

0 ft

2.75 ft

5.5 ft

1.75 ft

0

 \odot

Wall Lateral Pressure :	19.6 psf
RO Lateral Pressure :	4-Ways

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Lateral Element Forces multiplied by 1 for strength checks

Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

Lateral Pressure to: 4-Ways

Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortior t K-Phi(Ib- in/in)	nal Distortion LM(in)	al Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T200-54(50), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Summary Anal	Members(s)	Axial Load (Ib)	Max. Momen (Ft-Lb)	t	Max. Shear(lb)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	326.7		130.7	130.7	130.7
Jamb Studs	600S200-54(50), Single	55.0	627.2		227.0	227.0	207.4
Vertical Header	600T200-54(50), Y-Y Axis	N/A	55.0		55.0	N/A	55.0
Lateral Header	600T200-54(50), Single	N/A	106.2		93.1	N/A	93.1
Sill	600T125-33(33), Single	N/A	86.6		73.5	N/A	73.5
Summary Desi	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+4	ending ixial ceraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1542	0.4	11	0.20	No	Yes

SIMPSON STRONG-TIE COMPANY INC.

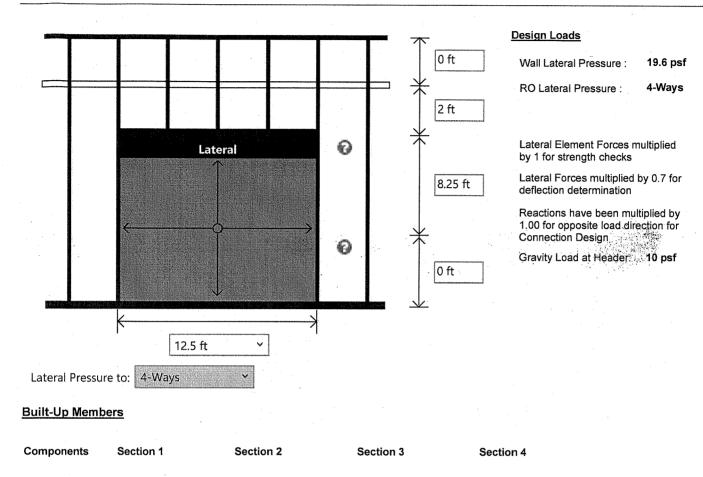
www.strongtie.com

Project Name: 2015-287 Park Danforth

Model: Window G

Code: 2007 NASPEC [AISI S100-2007]

Page 2 of 2


Date: 12/28/2015

Jamb Studs	600S200-54(50), Single	L/1488	0.28	0.22	No	Yes	
Vertical Header	600T200-54(50), Y-Y Axis	L/673	0.49	0.01	No	Yes	
Lateral Header	600T200-54(50), Single	L/17824	0.06	0.03	No	Yes	
Sill	600T125-33(33), Single	L/10457	0.18	0.12	No	Yes	

Project Name: 2015-287 Park Danforth Model: Window SF1 Sim. Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

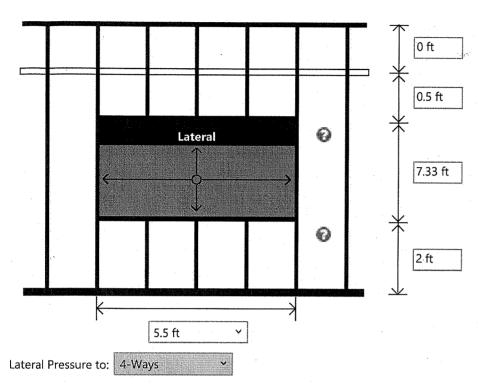
Lateral Header	600S200-54(50)	600S162-43(33	3)				
Brace Settings Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortior t K-Phi(lb- in/in)	nal Distortiona LM(in)	l Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Lateral Header	Built-Up	Full	N/A	N/A	0	None	N/A
Summary Ana	l <u>ysis Results</u> Members(s)	Axial Load (lb)	Max. Moment (Ft-Lb)	:	Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	343.2		133.9	133.9	133.9
Jamb Studs	600S200-54(50), Single	125.0	1239.9		572.3	356.2	572.3
Lateral Header	Built-Up	N/A	1732.7		461.1	N/A	461.1
Summary Desi	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+A:	nding xial eraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33),	L/1432	0.4	4	0.21	No	Yes
SIMPSON STRONG	TIE COMPANY INC.					· · · · · · · · · · · · · · · · · · ·	www.strongtie.com

Project Name: 2015-287 Park Danforth

Model: Window SF1 Sim.

Code: 2007 NASPEC [AISI S100-2007]

Page 2 of 2 Date: 12/28/2015


	Single@16 in o/c			. *		·····	
Jamb Studs	600S200-54(50), Single	L/721	0.58	0.52	No	Yes	
Lateral Header	Built-Up	L/746	0.591	0.13	No	Yes	

Project Name: 2015-287 Park Danforth Model: Window SF2 Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Design Loads Wall Lateral Pressure : 19.6 psf RO Lateral Pressure : 4-Ways

Lateral Element Forces multiplied by 1 for strength checks

Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtL (in)	Distortion t K-Phi(lb- in/in)	nal Distortiona LM(in)	I Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T125-33(33), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Summary Anal	ysis Results Members(s)	Axial Load (Ib)	Max. Momen (Ft-Lb)	t	Max. Shear(lb)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	315.7		128.5	128.5	128.4
Jamb Studs	600S200-54(50), Single	13.8	618.0		289.6	173.3	289.6
Vertical Header	600T125-33(33), Y-Y Axis	N/A	18.9		13.8	N/A	13.8
Lateral Header	600T125-33(33), Single	N/A	154.4		87.6	N/A	87.6
Sill	600T125-33(33), Single	N/A	210.0		128.0	N/A	128.0
Summary Desig	<u>gn Results</u>						
Component(s)	Members(s)	Deflectio	+A	nding xial eraction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1623	0.4	0	0.20	No	Yes

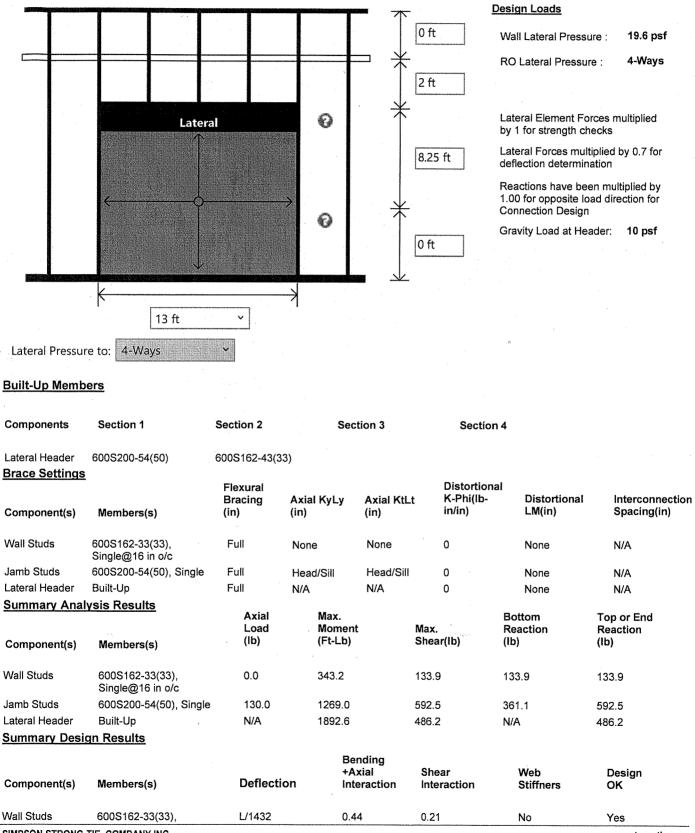
SIMPSON STRONG-TIE COMPANY INC.

Project Name: 2015-287 Park Danforth

Model: Window SF2

Code: 2007 NASPEC [AISI S100-2007]

Page 2 of 2 Date: 12/28/2015


Jamb Studs	600S200-54(50), Single	L/1591	0.27	0.16	No	Yes
Vertical Header	600T125-33(33), Y-Y Axis	L/290	0.87	0.01	No	Yes
Lateral Header	600T125-33(33), Single	L/4313	0.32	0.14	No	Yes
Sill	600T125-33(33), Single	L/3141	0.43	0.21	R1, R2	Yes

Project Name: 2015-287 Park Danforth Model: Window SF5, SF6, SF7, & SF8 Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

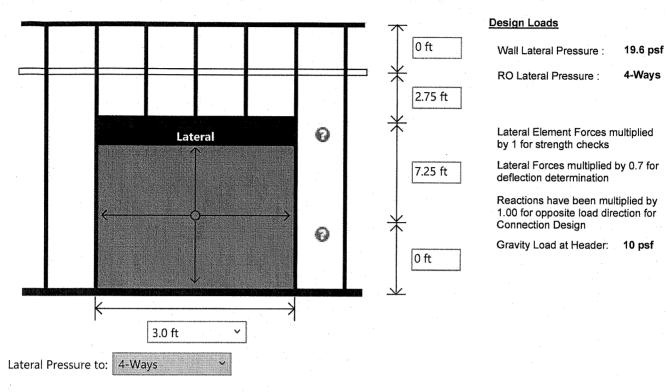
SIMPSON STRONG-TIE COMPANY INC.

www.strongtie.com

Project Name: 2015-287 Park Danforth Model: Window SF5, SF6, SF7, & SF8 Code: 2007 NASPEC [AISI S100-2007]

Date: 12/28/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0

	Single@16 in o/c		· .			
Jamb Studs	600S200-54(50), Single	L/705	0.59	0.54	No	Yes
Lateral Header	Built-Up	L/655	0.645	0.14	No	Yes


Page 2 of 2

Project Name: 2015-287 Park Danforth Model: Door 3x7 Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Brace Settings

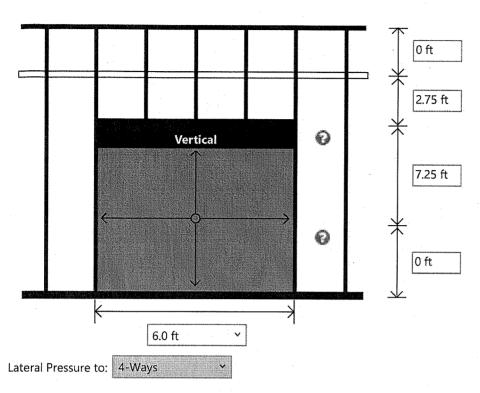
		Flexural			Distortiona		
Component(s)	Members(s)	Bracing (in)	Axial KyLy (in)	Axial KtLi (in)	t K-Phi(lb- in/in)	Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600T200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T200-54(50), Single	Full	N/A	N/A	0	None	N/A
Summary Ana	lysis Results						
Component(s)	Members(s)	Axial Load (Ib)	Max. Moment (Ft-Lb)		Max. Shear(lb)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	326.7		130.7	130.7	130.7
Jamb Studs	600S200-54(50), Single	41.3	519.8		190.3	190.3	171.9
Vertical Header	√600T200-54(50), Y-Y Axi	s N/A	30.9		41.3	N/A	41.3
Lateral Header	600T200-54(50), Single	N/A	52.4		62.5	N/A	62.5
Summary Desi	<u>gn Results</u>						

Component(s)	Members(s)	Deflection	Bending +Axial Interaction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1542	0.41	0.20	No	Yes
Jamb Studs	600S200-54(50), Single	L/1804	0.24	0.18	No	Yes
Vertical Header	600T200-54(50), Y-Y Axis	L/1594	0.27	0.01	No	Yes

SIMPSON STRONG-TIE COMPANY INC.

Project Name:	2015-287 Park Danforth					Page 2 of 2		
Model: Door 3	Sx7						Date: 12/28/2015	
Code: 2007 NASPEC [AISI S100-2007]					Simpson S	Strong-Tie®	CFS Designer™ 1.4.1.0	
Lateral Header	600T200-54(50), Single	L/48041	0.03	0.02		No	Yes	-

Project Name:


Model: Door 6x7

Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/28/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Design Loads Wall Lateral Pressure : 19.6 psf RO Lateral Pressure : 4-Ways Lateral Element Forces multiplied by 1 for strength checks Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

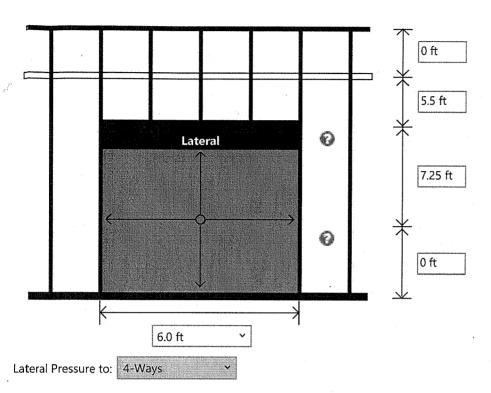
Brace Settings

Component(s)	Members(s)	Flexural Bracing (in)	Axial KyLy (in)	Axial KtLt (in)	Distortiona K-Phi(lb- in/in)	ll Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	600S200-54(50), Y-Y Axis	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A
Summary Ana	lysis Results Members(s)	Axial Load (Ib)	Max. Moment (Ft-Lb)	-	Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	326.7	1	130.7	130.7	130.7
Jamb Studs	600S200-54(50), Single	82.5	811.8	2	278.5	271.1	278.5
Vertical Header	600S200-54(50), Y-Y Axis	s N/A	123.7	8	32.5	N/A	82,5
Lateral Header	600T125-33(33), Single	N/A	297.7	1	69.1	N/A	169.1

Component(s)	Members(s)	Deflection	Bending +Axial Interaction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/1542	0.41	0.20	No	Yes
Jamb Studs Vertical Header	600S200-54(50), Single 600S200-54(50), Y-Y Axis	L/1145 L/645	0.38 0.25	0.31 0.02	No No	Yes Yes

SIMPSON STRONG-TIE COMPANY INC.

Summary Design Results


Project Name:						Page 2 of 2
Model: Door 6	5x7					Date: 12/28/2015
Code: 2007 NASPEC [AISI S100-2007]				Simps	on Strong-Tie® CF	S Designer™ 1.4.1.0
Lateral Header	600T125-33(33), Single	L/2026	0.61	0.27	R1, R2	Yes

Project Name: 2015-287 Park Danforth Model: Door 6x7 - Section 9 Code: 2007 NASPEC [AISI S100-2007]

Page 1 of 2

Date: 12/29/2015

Simpson Strong-Tie® CFS Designer™ 1.4.1.0

Design Loads Wall Lateral Pressure : 19.6 psf RO Lateral Pressure : 4-Ways Lateral Element Forces multiplied by 1 for strength checks Lateral Forces multiplied by 0.7 for deflection determination

Reactions have been multiplied by 1.00 for opposite load direction for Connection Design

Gravity Load at Header: 10 psf

Brace Settings

		Flexural			Distortiona		1-4
Component(s)	Members(s)	Bracing (in)	Axial KyLy (in)	Axial KtLt (in)	t K-Phi(lb- in/in)	Distortional LM(in)	Interconnection Spacing(in)
Wall Studs	600S162-33(33), Single@16 in o/c	Full	None	None	0	None	N/A
Jamb Studs	600S200-54(50), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	362S162-33(33), Boxed	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Boxed	Full	N/A	N/A	0	None	N/A
Summary Ana	<u>ysis Results</u>						
Component(s)	Members(s)	Axial Load (Ib)	Max. Moment (Ft-Lb)		Max. Shear(Ib)	Bottom Reaction (Ib)	Top or End Reaction (Ib)
Wall Studs	600S162-33(33), Single@16 in o/c	0.0	531.0		166.6	166.6	166.6
Jamb Studs	600S200-54(50), Single	165.0	1432.8		370.0	370.0	296.5
Vertical Header	362S162-33(33), Boxed	N/A	247.5		165.0	N/A	165.0
Lateral Header	600T125-33(33), Boxed	N/A	418.9		249.9	N/A	249.9
Summary Desi	<u>gn Results</u>						

Component(s)	Members(s)	Deflection	Bending +Axial Interaction	Shear Interaction	Web Stiffners	Design OK
Wall Studs	600S162-33(33), Single@16 in o/c	L/744	0.67	0.26	R1, R2	Yes
Jamb Studs	600S200-54(50), Single	L/546	0.67	0.58	No	Yes
Vertical Header	362S162-33(33), Boxed	L/1460	0.28	0.08	No	Yes

SIMPSON STRONG-TIE COMPANY INC.

www.strongtie.com

Project Name: 2015-287 Park Danforth Model: Door 6x7 - Section 9 Code: 2007 NASPEC [AISI S100-2007]				Page 2 of 2 Date: 12/29/2015 Simpson Strong-Tie® CFS Designer™ 1.4.1.0									
							Lateral Header	600T125-33(33), Boxed	L/2859	0.43	0.20	R1. R2	Yes

www.strongtie.com