# LAVALLEE BRENSINGER ARCHITECTS

| SHOP DF       | RAWIN       | G TRANSMITTAL                  |                   |                    |                  |
|---------------|-------------|--------------------------------|-------------------|--------------------|------------------|
| The Park D    | anforth     |                                | Pr                | oject No.:         | 13-059-00        |
| Portland      | ME          |                                | Di                | vision:            | 04 20 00         |
| Transmit To:  |             |                                | Submission No.:   | 251                |                  |
| Mark Donovar  | n           |                                | Version:          | Α                  |                  |
| PC Constructi | on          |                                | CM Reference No.: | 04 20 00-007       |                  |
| 131 Presump   | scot Street |                                | Copies:           |                    |                  |
| Portland      |             | 04103                          | Ron Norton        | Construction Manag | gement Consultir |
|               |             | 04103                          | Andrew Pires      | PC Construction    |                  |
|               |             |                                | Kemp Carey        | PC Construction    |                  |
| Submittal No. | Qty. Des    | scription                      |                   |                    |                  |
| 251 - 1       | 0 Ma        | sonry Ties Around Openings - C | alculations       |                    |                  |

Comments:

Note: Refer to attached submittals for review comments and requirements.

Monday, September 26, 2016

NH: 155 Dow Street, Suite 400 - Manchester, NH 03101 MA: 92 Montvale Ave, Suite 2150 - Stoneham, MA 02180 www.LBPA.com

# LAVALLEE BRENSINGER ARCHITECTS

| SHOP DRA                                                   | WING REV        | /IEW        |           |
|------------------------------------------------------------|-----------------|-------------|-----------|
| The Park Dan                                               | forth           | Project No: | 13-059-00 |
| Portland                                                   | ME              | Division:   | 04 20 00  |
| First Review Date<br>Second Review Da<br>Third Review Date | 9/26/2016<br>te | Version:    | A         |

REVIEW IS ONLY FOR GENERAL CONFORMANCE WITH THE DESIGN CONCEPT AND INFORMATION PROVIDED IN THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE DETERMINATION OF ALL QUANTITIES AND DIMENSIONS, FOR COORDINATION OF THE WORK OF ALL TRADES, FOR ALL INFORMATION PERTAINING TO FABRICATION PROCESSES, TECHNIQUES OF ASSEMBLY AND CONSTRUCTION, AND FOR PERFORMING ALL WORK IN A SAFE AND WORKMAN-LIKE MANNER. REVIEW AND MARKINGS SHALL NOT BE CONSTRUED AS RELIEVING THE CONTRACTOR FROM HIS RESPONSIBILITIES FOR COMPREHENSIVE REVIEW OR FROM COMPLIANCE WITH THE CONTRACT DOCUMENTS.

| Submittal No.   | 251 - 1                                          | LEED: |
|-----------------|--------------------------------------------------|-------|
| Description     | Masonry Ties Around Openings - Calculations      |       |
| Status          | No Exceptions Taken                              |       |
| Action Required | Comply with comments. Resubmission not required. |       |

Comments:

Reviewed By:

Scott Timmons

Page 1 of 1

NH: 155 Dow Street, Suite 400 - Manchester, NH 03101 MA: 92 Montvale Ave, Suite 2150 - Stoneham, MA 02180 www.LBPA.com



Garret Bertolini 131 Presumpscot St Portland, ME 04103 T: 207.874.2323 F: 207.874.2727 E: gbertolini@pcconstruction.com

## CONSTRUCTION

### Project No. 14776 The Park Danforth Expansion & Renovations 789 Stevens Ave Portland, ME 04103

# Submittal 04 20 00-007 Review Cycle 1

Title Type Sent Date Due Date Masonry Ties Around Openings - CalculationsCalculations22-Aug-201605-Sep-2016Spec Sub-

Spec Section 04 20 00 Spec Sub-Section

#### Sent To For Review

Scott Timmons Lavallee Brensinger Architects

#### Responsible Subcontractor / Vendor

Brian Bradstreet Custom Masonry, Inc.

#### Item Being Submitted

Masonry Ties Around Openings - Calculations

Calculations are being submitted to address the masonry anchor spacing concern around openings and panel ends, as identified in S.W. Cole's Construction Observation Report, dated 7/5/16.

| Contractor's Review Stamp                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Architect's Review Stamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I hereby certify that I have examined the enclosed<br>submittal(s) and have determined and verified all field<br>measurements, construction criteria, materials, catalog<br>numbers, and similar data, coordinated the submittal(s)<br>with other submissions and the work of other trades and<br>contractors and, to the best of my knowledge and belief,<br>the enclosed submittal(s) is/are in full compliance with the<br>Contract requirements, except as noted above. | Reviewed       Furnish as Corrected         Rejected       Revise and Resubmit         Submit Specific Item       Received For Record         This review is only for general conformance with the design concept of the project and general compliance with the information given in the Contract Documents. Corrections or comments made on the shop drawings during this review do not relieve contractor from compliance with the requirements of the plans and specifications. Approval of a specific item |
| Signature Date 08/22/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                   | which the item is a component. Contractor is<br>responsible for: dimensions to be confirmed<br>and correlated at the jobsite; information that<br>pertains solely to the fabrication processes or<br>to the means, methods, techniques, sequences<br>and procedures of construction; coordination of                                                                                                                                                                                                            |
| Name<br>Andrew Pires<br>PC Construction Company                                                                                                                                                                                                                                                                                                                                                                                                                             | his or her Work with that of all other trades; and<br>for performing all work in a safe and<br>satisfactory manner.<br>Becker Structural Engineers, Inc<br>Date: 09/21/2016 By: ARW                                                                                                                                                                                                                                                                                                                             |

This approval does not release subcontractor / vendor from the contractual responsibilities.



# **THE PARK DANFORTH** PORTLAND, MAINE

# BRICK TIE CALCULATIONS AUGUST 15, 2016 SUBMITTAL #1





## THE PARK DANFORTH PORTLAND, MAINE

# **DESIGN CRITERIA**

### BUILDING CODE: STATE OF MAINE UNIFORM BUILDING CODE W/ IBC & ASCE7

#### **DESIGN LOADS:**

| DESIGN WIND: | LOCATION: PORTLAND, M | AINE                   |
|--------------|-----------------------|------------------------|
|              | BASIC WIND SPEED      | 100MPH (98mph per ATC) |
|              | EXPOSURE CATEGORY     | В                      |
|              | IMPORTANCE FACTOR     | 1.0                    |

#### **BRICK TIE:**

HECKMANN POS-I-TIE BARREL ANCHOR WITH 3/16"DIA. WIRE TRIANGLE TIE.

# **TIE CALCULATIONS:**

Design wind load = 26.1psf (zone 5)

Tie tributary area = 2.67s.f. max.

Max Load on Tie = 26.1psf x 2.67s.f. = 69.6 lbf

Tie test failure load = 679 lbf(avg) See attached data Factor of Safety provided = 10

Fastener allow tension at 18ga stud

| #10 screw  | Ta = 109 lbf |
|------------|--------------|
| #12 screw  | Ta = 121 lbf |
| 1/4" screw | Ta= 138 lbf  |

The Heckman Pos-I-Tie anchor with triangle ties are adequate for the prescribed maximum area (2.67s.f.). More closely spaced ties around openings are <u>not</u> required per ACI 530, and as shown in these calculations. Per ACI 530, for wind loads not exceeding 110mph, ties around openings should not exceed 3ft on center and be located within 12inches of the opening.



# THE PARK DANFORTH PORTLAND, MAINE

| <b>ast</b> i<br>ne follo    | wing infor                        | <b>Desi</b><br>Imatio | n is pro<br>of faste  | Sriter<br>ovided to   | ria<br>assure<br>welde v | e that fra              | ) Guijurg      | componer<br>the mem                      | tts you s                     | elect can                         | be faster           | pa                          | Hilti A<br>Material<br>Thickness | nchors<br>Yield<br>Strendt | (PDF<br>Mill)<br>Mill | in Ste              | el) All<br>(145")     | owabi                    | e Loa<br>Elixio     | ds (lbs<br>10a=0.14          |                             |                               | Hitti X-DS (I               | ila.=0.177                |                 |   |
|-----------------------------|-----------------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------|------------------------------------------|-------------------------------|-----------------------------------|---------------------|-----------------------------|----------------------------------|----------------------------|-----------------------|---------------------|-----------------------|--------------------------|---------------------|------------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------|-----------------|---|
| quiren                      | ents you a                        | anticip               | pate                  |                       | MEIUS                    | dan iliw                |                | me mem                                   | Ders Seie                     | icted and                         | the load            |                             | mils<br>33                       | Fy ksi<br>33               | Shear Te<br>203 2     | aston St<br>34 20   | ear Tens<br>13 23     | on Sh<br>4 20            | ar Tensi<br>13 234  | un Shear<br>203              | rension<br>234              | shear<br>248                  | 16"<br>Tension<br>234       | Shear<br>248              | Tension<br>23.4 |   |
| ISI C                       | alculate                          | A A                   | lowat                 | ole Los               | ads fc                   | or Scr                  | ev C           | onnect                                   | ion                           |                                   |                     |                             | \$                               | 33                         | 265 3                 | 04 26               | 30                    | 4 26                     | 5 304               | 265                          | 304                         | 323                           | 304                         | 323                       | 304             |   |
| Material<br>Thickness       | Design<br>Thickness               | Mat                   | terial Streng         | 415                   | #8-18 HWH<br>Dia.=0.1    | Screvy<br>6"            | #10-16<br>Dia: | HVH Screw<br>=0.190"                     | ≢12-14 H<br>Dia.=             | WH Screw<br>0.21ª                 | 1/4"-14 H<br>Dia.=( | WH Screw<br>0.240*          | 54                               | 88                         | 332 3                 | £88<br>888          | 88                    | 4833                     | 80<br>300<br>300    | 48<br>33<br>33               | 382<br>510                  | 288<br>288                    | 382<br>390                  | 286<br>586                | 382<br>382      |   |
| allis<br>33                 | ii<br>0.0346                      | Fy<br>[ks]            | 1<br>(FS              |                       | ltear<br>(bs)            | lension<br>(libs)<br>74 | Shear<br>(Ibs) | Tension<br>(Stas)                        | Shear<br>(Ibs)                | Tension<br>(Ebs)                  | Sitear<br>(tos)     | Tension<br>(Ibs)            | 89                               | 88                         | 419 4                 | 55 4                | 19<br>15<br>69<br>69  | 5 49                     | 9 360               | 419<br>590                   | 481<br>510                  | 511<br>738                    | 390<br>390                  | 511<br>625                | 481<br>620      |   |
| 43                          | 0.0451                            | 38                    | 4                     | 2                     | 41                       | 8                       | 38             | 5 6                                      | 211                           | 121                               | 236<br>236          | 38                          | 67                               | 23                         | 425 4                 | 555                 | 20 88                 | 6 49<br>0 49             | 360                 | 220                          | 510                         | 562                           | 390                         | 625<br>625                | 620<br>620      |   |
| 54                          | 0.0566                            | ខ្លួន                 | 48                    | 500                   | RR                       | 115<br>167              | 370<br>467     | 1 <u>3</u> 3                             | 88                            | 152<br>219                        | 416<br>600          | 173<br>250                  | 118                              | 88                         | 425 4                 | 52<br>52<br>66<br>6 | 88                    | 49                       | 0 360               | 230<br>230                   | 510                         | 795<br>795                    | 390                         | 625                       | 200             |   |
| 89                          | 0.0713<br>0.0713                  | នន                    | 48                    |                       | 1/3                      | n/a<br>n/a              | 467<br>467     | 173<br>249                               | 822<br>872                    | 191<br>276                        | 88<br>849<br>849    | 218<br>315                  | Hilti A                          | nchors                     | (PDF                  | in Col              | Increte               | ) Allor                  | vable               | Loads                        | (Ibs.)                      | INO-X JUH                     | (dia. = 0,14                | 5                         |                 | _ |
| 67                          | 0.1017<br>0.1017                  | ខ្លួន                 | 48                    |                       | 1/a<br>1/a               | n/a<br>n/a              | 467<br>467     | 246<br>356                               | 55<br>52                      | 272<br>393                        | 88<br>88<br>88      | 311<br>450                  | Material<br>Thickness            | Yield<br>Strength          | 2000                  | Min.<br>psi         | Embedment<br>3000 psi | 3/4" 40                  | isq 00              |                              | 2000 psi                    | Nim. Eest<br>30               | tedment 1"<br>00 psi        | 4000                      | 15              |   |
| 118                         | 0.1242<br>0.1242                  | 88                    | 48                    |                       | n/a<br>1/a               | n/a<br>11/a             | n/a<br>n/a     | n'a<br>Na                                | 625<br>625                    | 88<br>89                          | <u> 8</u> 88        | 380<br>549                  | 33                               | 33                         | 95<br>95              | ZO TO               | 10 9(                 | 125 125                  | 110                 | 214(                         | er Tension<br>) 90          | 160                           | Tension<br>120              | Shear To<br>185           | ansion<br>155   |   |
| AISI AI                     | lowable                           | Loa                   | ds fo                 | r Weld                | pa                       |                         | 2              |                                          |                               | A PON                             | denne               |                             | \$3                              | 88                         | 38                    | 2 4                 | 10 90                 | 125                      | 월 9                 | 14                           | 88                          | 160                           | 120                         | <u>8</u>                  | 155             |   |
| Conne                       | ctions (                          | lbs/inc               | h of weld             | 6                     |                          |                         | Ľ              | ad for                                   | Screv                         | vs<br>vs                          | owapie              | •                           | 24                               | 38                         | នន                    | 22                  | 20                    | 125                      | 25                  | 14(                          | 88                          | <u>6</u>                      | 22                          | 影影                        | <u>8</u> 8      |   |
| Material<br>Thickness       | Design<br>Thickness               | Material<br>Fy        | Strength<br>Fu        | Fillet V<br>Long. Tra | Meld<br>ans. Tra         | Groove Wel<br>ns. Long  |                | Design<br>lickness<br>in                 | #12-24<br>Dic<br>Shear        | HWH Screer<br>3.=0.21"<br>Tanelon | #115<br>Chur        | 28 HWH Screw<br>Dia.=0.24"  | 8                                | ខ្លួន                      | 95<br>95              | 22                  | 010<br>999            | 125                      | 11<br>11<br>11      | 14(                          | 66                          | 91<br>160                     | 120<br>120                  | 185<br>185                | 155             |   |
| L= 1 inch                   | {u}                               | (KSI)                 | (KSI)                 | (IDS) (I              | DS) (IL                  | 35) (jbs)               |                | lis<br>1875                              | TP5                           | llbs<br>1042                      |                     | a lbs                       | 26                               | 2033                       | 88                    | 22                  | 10<br>90              | 125                      | 111                 | 140                          | 88                          | <u>88</u>                     | 52<br>2<br>2<br>2<br>2<br>2 | 88                        | 155             |   |
| 43                          | 0.0451                            | ខ្លួន                 | 5 <del>5</del> 55     | 619 8<br>895 12       | 64 6<br>247 9            | 63 544<br>58 785        | ,<br>          | 0.25                                     | 725                           | 1063                              | 38                  | 7 1425                      | 118                              | 8 3                        | នន                    | 22                  | 10 90                 | 125                      | 문 탄                 | 14                           | 88                          | 88                            | 51 55                       | 158 ja                    | 155 H           |   |
| 54                          | 0.0566                            | នន                    | 82<br>82              | 822 1(<br>1188 15     | 566 12                   | 32 682                  | - N            | rew table                                | notes:                        |                                   | O IOIT FOOD         |                             | Hilti A                          | nchors                     | PDF                   | in Cor              | orete                 | ) Allov                  | vable               | Loads                        | (lbs.)                      | HIG X-DNI                     | dia. = 0.145                | 3                         | 3               |   |
| 89                          | 0.0713                            | 2033                  | 45<br>65              | 1082 15<br>1563 15    | 365 10<br>972 15         | 148 859<br>114 124      | - ~            | Shear values w                           | were based                    | t on the tillin                   | g and bearir        | pecification<br>ig modes of | Material<br>Thickness            | Yield<br>Streng            | - 49                  | 2009 psi            |                       |                          | 306                 | Min. Embedir<br>O psi        | ieat 1-1/2"                 |                               | 4000 osi                    |                           |                 |   |
| 26                          | 0.1017<br>0.1017                  | 2033                  | 82<br>85              | 1618 17<br>2337 15    | 795 14<br>944 21         | 195 122<br>59 177       | 67<br>67       | tariure eq. E <sup>.</sup><br>Minimum Sp | 4.3.1-1, E.4<br>acing of Sc   | .3.1-2<br>srews is dete           | rmined by E         | 4.1 stating                 | 33<br>33                         | 89 ks<br>33                |                       | Shear<br>203        | 1                     | nsion<br>65              | 21                  | ear<br>33                    | lension<br>190              |                               | Shear<br>203                |                           | ension<br>215   |   |
| 118                         | 0.1242                            | នេះ                   | 42                    | 2015 21               | 192 18                   | 26 149                  |                | spacing shal                             | I not be les                  | s than 3d                         |                     |                             | 43                               | 33                         |                       | 230                 |                       | 85                       | 3                   | 8                            | 190                         |                               | 265                         |                           | 215             |   |
| L= 2 inch                   | 0.1242                            | 20                    | 8                     | 2911 Z                | 374 26                   | 337 216                 | *<br>~         | Edge Distanu<br>distance shal            | ce is determ<br>Il not be les | ined by E4.<br>s than 3d          | stating that        | edge                        | 54                               | 2033                       |                       | 230<br>230          | • <b></b> ••          | හහ                       | 222                 | 88                           | 61<br>190                   |                               | 88<br>88<br>88              |                           | 215<br>215      |   |
| 43                          | 0.0451                            | 88                    | <del>8</del> 8        | 998 17<br>1442 24     | 727 13<br>495 19         | 326 108<br>115 157(     | 5 9            | Allowable Io:<br>F4 3.2 states           | ads are basi                  | ed on a Safe<br>arinn Strenn      | by Factor of 3      | 3.0<br>•••••                | 89                               | 88                         |                       | 230                 |                       | នន                       | 222                 | 88                           | 66                          |                               | 888<br>888                  |                           | 215             |   |
| 54                          | 0.0566                            | នាន                   | <del>8</del> 5        | 1253 21<br>1809 31    | 168 16<br>131 24         | 64 136<br>04 197        | N.             | For the screw                            | vs into struc                 | dural steel, 1                    | he shear val        | ues are for                 | 67                               | នួន                        |                       | 230                 |                       | នន                       | 55                  | 88                           | 190                         |                               | 888                         |                           | 215             |   |
| 88                          | 0.0713<br>0.0713                  | 2033                  | <del>8</del> 8        | 1578 27<br>2279 39    | 731 20                   | 171<br>28 248           |                | itself. Look a<br>fin to determ          | t bearing of                  |                                   | Juoli               |                             | 118                              | 8 23                       |                       | 230                 |                       | 88                       | 222                 | 88                           | 66 6                        |                               | 335                         |                           | 215             |   |
| 26                          | 0.1017<br>0.1017                  | ខ្លួន                 | 65 45                 | 2884 35<br>4165 38    | 589 29<br>389 43         | 90 245<br>19 3541       | -              | value of shee<br>Pearing or Di           | Hense vehi                    |                                   | ~-E                 |                             | Material                         | u u                        | dge                   | Min.                | din. 1                | laterial                 | Hitti               | able notes                   | 2                           |                               | 8                           |                           | 3               |   |
| 118                         | 0.1242<br>0.1242                  | 33                    | 45<br>65              | 3678 45<br>5312 47    | 384 36<br>749 52         | 51 299<br>74 432        |                | do not contre<br>cases.                  | ol in the aby                 | 3 8                               |                     | - Shear                     | Steel                            | 11/4<br>2°                 | g .                   | spacing<br>3        | 3 X Em                | /aess<br>/8"<br>herdment | 1. All V<br>2. Sher | alues were (<br>ar values we | zalculated u<br>re based on | using the 2<br>It the tilting | 001 AISI S                  | pecification<br>g modes o | n<br>of failure |   |
| 1. All value                | s were calcula                    | ated usin             | ng the 200            | 11 AISI Spec          | cification               |                         | 1              |                                          |                               |                                   | Ð                   | :                           |                                  |                            |                       | ,                   |                       |                          | <b>J</b> 3. Allo    | vable loads                  | are based o                 | on a safety                   | factor of 3.                | 0                         |                 |   |
| 2. Fxx valu<br>2001 AK      | es were based<br>Si Specification | a off of F.<br>n Code | XX ~ 60               | si and that           | Fox > Fu                 | from the                |                |                                          |                               |                                   |                     |                             |                                  |                            |                       |                     |                       |                          | 4. E4.3             | .2 states tha                | t the bearin                | ig strength                   | < Pns = t*                  | "Fu                       |                 |   |
| 8. Values n<br>6. Values ir | tay be increas<br>Iclude a 2.5 fa | ed 1/3 f              | for wind o<br>safety. | r seismic lo          | ading.                   |                         |                |                                          |                               |                                   |                     |                             |                                  |                            |                       |                     |                       |                          |                     |                              | - <u>1</u> 2                |                               |                             |                           |                 |   |
|                             |                                   |                       |                       |                       |                          | •                       |                |                                          |                               |                                   |                     |                             |                                  |                            |                       |                     |                       | asten                    | ers                 | V                            | lewell                      |                               | 240                         | 1111                      |                 |   |

90 Bridge Street suite 252 Westbrook, Maine 04092 Phone (207) 839-0980

| MacLeod | Structura | l Engineers, PA |
|---------|-----------|-----------------|
|         |           |                 |

404 Main Street Gorham, Maine p 207-839-0980 f 207-839-0982

| JOB TITLE     | Park Danforth |           |
|---------------|---------------|-----------|
|               | Portland, ME  |           |
| JOB NO.       | 2015-287      | SHEET NO. |
| CALCULATED BY | NED           | DATE      |
| CHECKED BY    |               | DATE      |
|               |               |           |

www.struware.com

### Code Search

- I. Code: ASCE 7 05
- II. Occupancy:

Occupancy Group = R Residential

#### III. Type of Construction:

Fire Rating: Roof = Floor =

#### IV. Live Loads:

| Roof angle | e (0)          |
|------------|----------------|
| Roof       | 0 to 200 sf:   |
| -          | 200 to 600 sf: |
|            | over 600 sf:   |

0.00 / 12 0.0 deg

Floor Stairs & Exitways Balcony Mechanical Partitions

#### V. Wind Loads : ASCE 7 - 05

| Importance Factor         | 1.00              |  |  |  |
|---------------------------|-------------------|--|--|--|
| Basic Wind speed          | 100 mph           |  |  |  |
| Directionality (Kd)       | 0.85              |  |  |  |
| Mean Roof Ht (h)          | 55.0 ft           |  |  |  |
| Parapet ht above grd      | 19.0 ft           |  |  |  |
| Exposure Category         | В                 |  |  |  |
| Enclosure Classif.        | Enclosed Building |  |  |  |
| Internal pressure         | +/-0.18           |  |  |  |
| Building length (L)       | 325.0 ft          |  |  |  |
| Least width (B)           | 60.0 ft           |  |  |  |
| Kh case 1                 | 0.833             |  |  |  |
| Kh case 2                 | 0.833             |  |  |  |
|                           |                   |  |  |  |
| Topographic Factor (K     | <u>zt)</u>        |  |  |  |
| Topography                | Flat              |  |  |  |
| Hill Height (H)           | 0.0 ft            |  |  |  |
| Half Hill Length (Lh)     | 0.0 ft            |  |  |  |
| Actual H/Lh =             | 0.00              |  |  |  |
| Use H/Lh =                | 0.00              |  |  |  |
| Modified Lh =             | 0.0 ft            |  |  |  |
| From top of crest: x=     | 0.0 ft            |  |  |  |
| Bldg up/down wind?        | downwind          |  |  |  |
| $H/Lh = 0.00$ $K_1 =$     |                   |  |  |  |
| v/I h = 0.00 $K -$        |                   |  |  |  |
| $\frac{1}{2}$ /L h = 0.00 | к <u>2</u><br>И — |  |  |  |
| Z/Ln = 0.00               | $\mathbf{K}_3 =$  |  |  |  |
| At Mean Root Ht:          |                   |  |  |  |
| $Kzt = (1 + K_1 k)$       | $(K_2K_3)^2 =$    |  |  |  |



| MacLeod Structural Engineers, PA | JOB TITLE Park Danforth |           |
|----------------------------------|-------------------------|-----------|
| 404 Main Street                  | Portland, ME            |           |
| Gorham, Maine                    | JOB NO. 2015-287        | SHEET NO. |
| p 207-839-0980                   | CALCULATED BY NED       | DATE      |
| f 207-839-0982                   | CHECKED BY              | DATE      |

#### V. Wind Loads - Components & Cladding: Buildings h ≤60' & Alternate design 60'<h<90'

| Edudo Componento C   | v oluduling.    | Buildingo n 300      | a Alternate acoign e |                                         |
|----------------------|-----------------|----------------------|----------------------|-----------------------------------------|
| Kz = Kh (case 1) =   | 0.83            | GCpi =               | +/-0.18              | NOTE: If tributary area is greater than |
| Base pressure (qh) = | 18.1 psf        | a =                  | 6.0 ft               | 700sf, MWFRS pressure may be used.      |
| Minimum para         | pet height at l | ouilding perimeter = | 4.5 ft               |                                         |

Roof Angle = 0.0 deg Type of roof = Monoslope

| (     | GCp +/- GC                                                                           | pi                                                     | Surface Pressure (psf)                                 |                                                                                                                                                                                                                                                                                                                                                                |                                                          | User input                                               |                                                         |  |
|-------|--------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--|
| 10 sf | 50 sf                                                                                | 100 sf                                                 | 10 sf                                                  | 50 sf                                                                                                                                                                                                                                                                                                                                                          | 100 sf                                                   | 20 sf                                                    | 70 sf                                                   |  |
| -1.18 | -1.11                                                                                | -1.08                                                  | -21.4 psf                                              | -20.1 psf                                                                                                                                                                                                                                                                                                                                                      | -19.6 psf                                                | -20.8 psf                                                | -19.9 psf                                               |  |
| -1.98 | -1.49                                                                                | -1.28                                                  | -35.9 psf                                              | -27.0 psf                                                                                                                                                                                                                                                                                                                                                      | -23.2 psf                                                | -32.1 psf                                                | -25.2 psf                                               |  |
| -1.98 | -1.49                                                                                | -1.28                                                  | -35.9 psf                                              | -27.0 psf                                                                                                                                                                                                                                                                                                                                                      | -23.2 psf                                                | -32.1 psf                                                | -25.2 psf                                               |  |
| 0.48  | 0.41                                                                                 | 0.38                                                   | 10.0 psf                                               | 10.0 psf                                                                                                                                                                                                                                                                                                                                                       | 10.0 psf                                                 | 10.0 psf                                                 | 10.0 psf                                                |  |
| -1.70 | -1.63                                                                                | -1.60                                                  | -30.8 psf                                              | -29.5 psf                                                                                                                                                                                                                                                                                                                                                      | -29.0 psf                                                | -30.3 psf                                                | -29.3 psf                                               |  |
| -1.70 | -1.63                                                                                | -1.60                                                  | -30.8 psf                                              | -29.5 psf                                                                                                                                                                                                                                                                                                                                                      | -29.0 psf                                                | -30.3 psf                                                | -29.3 psf                                               |  |
|       | IO sf           -1.18           -1.98           -1.98           0.48           -1.70 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{tabular}{ c c c c c c c } \hline GCp +/- GCpi & Sur \\ \hline 10 sf & 50 sf & 100 sf & 10 sf \\ \hline -1.18 & -1.11 & -1.08 & -21.4 psf \\ -1.98 & -1.49 & -1.28 & -35.9 psf \\ -1.98 & -1.49 & -1.28 & -35.9 psf \\ 0.48 & 0.41 & 0.38 & 10.0 psf \\ -1.70 & -1.63 & -1.60 & -30.8 psf \\ -1.70 & -1.63 & -1.60 & -30.8 psf \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |

| Walls               | GCp +/- GCpi |        |        | Surface Pressure (psf) |           |           | User input |           |
|---------------------|--------------|--------|--------|------------------------|-----------|-----------|------------|-----------|
| Area                | 10 sf        | 100 sf | 500 sf | 10 sf                  | 100 sf    | 500 sf    | 3 sf       | 3 sf      |
| Negative Zone 4     | -1.17        | -1.01  | -0.90  | -21.2 psf              | -18.3 psf | -16.3 psf | -21.2 psf  | -21.2 psf |
| Negative Zone 5     | -1.44        | -1.12  | -0.90  | -26.1 psf              | -20.3 psf | -16.3 psf | -26.1 psf  | -26.1 psf |
| Positive Zone 4 & 5 | 1.08         | 0.92   | 0.81   | 19.6 psf               | 16.7 psf  | 14.7 psf  | 19.6 psf   | 19.6 psf  |

Note: GCp reduced by 10% due to roof angle  $\leq 10$  deg.

#### <u>Parapet</u>

| 1 41 4 500                           |                          |           |           |           |
|--------------------------------------|--------------------------|-----------|-----------|-----------|
| qp = 15.2  psf                       | Solid Parapet Pressure   | 10 sf     | 100 sf    | 500 sf    |
|                                      | CASE A : Interior zone : | 41.2 psf  | 31.3 psf  | 26.4 psf  |
| CASE A = pressure towards building   | Corner zone :            | 41.2 psf  | 31.3 psf  | 26.4 psf  |
| CASE B = pressure away from building | CASE B : Interior zone : | -28.8 psf | -24.0 psf | -20.6 psf |
|                                      | Corner zone :            | -32.9 psf | -25.7 psf | -20.6 psf |

#### **Rooftop Structures & Equipment**

| Dist from mean roof height to centroid of Af = |                             |             | Gust Effect Factor $(G) =$ |                                    |              |
|------------------------------------------------|-----------------------------|-------------|----------------------------|------------------------------------|--------------|
| Не                                             | eight of equipment (he) $=$ |             | Base pressure $(qz) =$     | 21.3 Kd                            | psf          |
| Cross-Section<br>Directionality (Kd)           | Square<br>0.90              |             |                            |                                    |              |
| Width (D)                                      | 10.0 ft                     |             |                            | h/D = 0.00                         | 0            |
| Type of Surface                                | N/A                         |             |                            |                                    |              |
|                                                | Square (wind along diagona  | <u>al</u> ) | Se                         | juare (wind nori                   | mal to face) |
|                                                | Cf =                        | 1.00        |                            | $C_f =$                            | 1.30         |
|                                                | Af =                        | 10.0 sf     |                            | $A_f =$                            | 10.0 sf      |
|                                                | Adjustment Factor (Adj) =   | 1.90        | Adjustment Fa              | (Adj) =                            | 1.900        |
|                                                | F = qz G Cf Af Adj=         | 16.3 Af     | $F = q_z G$                | C <sub>f</sub> A <sub>f</sub> Adj= | 21.2 Af      |
|                                                | $\mathbf{F} =$              | 163 lbs     |                            | F =                                | 212 lbs      |

 MacLeod Structural Engineers, PA
 JOB TITLE Park Danforth

 404 Main Street
 Portland, ME

 Gorham, Maine
 JOB NO. 2015-287

 p 207-839-0980
 CALCULATED BY NED

 f 207-839-0982
 CHECKED BY

#### **Location of Wind Pressure Zones**



 $\theta \le 7$  degrees and Monoslope  $\le 3$  degrees





Monoslope roofs  $3^{\circ} < \theta \le 10^{\circ}$ 



Monoslope roofs  $10^{\circ} < \theta \le 30^{\circ}$ 



 $\theta > 7$  degrees



 $\theta > 7$  degrees



# **Search Results**

**Query Date:** Mon Aug 15 2016 **Latitude:** 43.6846 **Longitude:** -70.2924

ASCE 7-10 Windspeeds (3-sec peak gust in mph\*):

**Risk Category I:Risk Category II:Risk Category III-IV:MRI\*\* 10-Year:MRI\*\* 25-Year:MRI\*\* 50-Year:MRI\*\* 100-Year:**

ASCE 7-05 Windspeed: 98 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 83 (fastest mile in mph)

\*Miles per hour \*\*Mean Recurrence Interval

Users should consult with local building officials to determine if there are community-specific wind speed requirements that govern.



#### NEWFOUNDLAND AND LABRADOR ONTARIO QUÉBEC Ottawa PE TΑ Mont NE NOVA SCOTIA WISCONSIN Toronto MICHIGAN NH NEW YORK Chicago MA ٧A CTRI ILL'NOIS OHIO INDIANA OPhiladelphia MDDENJ WEST SOUR VIRGINIA KENTUCKY VIRGINIA TENNESSEE CAROLINA ANSAS SOUTH MISSISSIPPI CAROLINA ALABAMA GEORGIA Google Map data ©2016 Google, INEGI

#### WINDSPEED WEBSITE DISCLAIMER

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report.

# Test Data for POS-I-TIE<sup>™</sup> Brick Veneer Anchoring System

Tests were conducted at the Phil Ferguson Structural Engineering Laboratory at the University of Texas at Austin under the supervision of Dr. Richard Klingner Spring/Summer 2005.

# 2<sup>1</sup>/<sub>2</sub>" Pos-I-Tie<sup>TM</sup> Self-Drilling Screw In Steel Studs Tension Test

5 specimens were tested. Each consisted of a 16 gage steel stud with 1/2" Denz-glass, 2" Styrofoam, 2" airspace, and a standard modular clay-masonry veneer. The 2-1/2" long Pos-I-Tie self-drilling screw was drilled through the Styrofoam and denz-glass into the steel stud. A 3/16" x 4" long Hot Dipped Wire Tie was connected to the Barrel-Screw and mortared in the bed joint of the veneer.

Also given, in inches, are the "plateau displacements" at which the approximate maximum load level was first reached. This plateau displacement is a general index of the deformation capacity of the tie system.

| Table 1 | Tension Test –<br>With TRIANGLE WIRE TIE |                    | 25                              |
|---------|------------------------------------------|--------------------|---------------------------------|
| sample  | failure                                  | failure load , lbs | Plateau Displacement,<br>inches |
| 1       | screw pulled out of steel stud           | 679                | 1.2                             |
| 2       | triangle tie pulled out of bed joint     | 605                | 1.2                             |
| 3       | eye of screw fractured                   | 709                | 1.3                             |
| 4       | eye of screw fractured                   | 756                | 1.4                             |
| 5       | triangle tie pulled out of bed joint     | 644                | 1.5                             |
|         | AVERAGE                                  | 679                |                                 |
|         | COV                                      | 0.086              |                                 |

| Table 2 | Tension Test –<br>With SINGLE WIRE TIE                                    |                   | ٦                               |
|---------|---------------------------------------------------------------------------|-------------------|---------------------------------|
| sample  | failure                                                                   | failure load, lbs | Plateau Displacement,<br>inches |
| 1       | Single-leg tie pulled out of bed joint                                    | 350               | 1.8                             |
| 2       | Single-leg tie pulled out of bed joint                                    | 610               | 0.6                             |
| 3       | Masonry unit cracked, single-leg pulled<br>out of bed joint               | 415               | 0.2                             |
| 4       | Eye of screw "walked" to end of single-<br>wire tie, tie straightened out | 270               | 0.4                             |
| 5       | Eye of screw "walked" to end of single-<br>wire tie, tie straightened out | 547               | 0.3                             |
|         | AVERAGE                                                                   | 438               |                                 |
|         | COV                                                                       | 0.32              |                                 |

### **Tension Tests - Self-Drilling Screw to Steel Studs Summary**

" Specimens with triangle ties are about 1.5 times as strong as the single-wire ties, and are also much more consistent in strength.

" These ties are "adjustable two-piece anchors" under the definition of MSJC Code Section 6.2.2.5.6, which requires that one such anchor be provided for every 2.67 ft2 of wall area. Put simply, each tie must be responsible for 2.67 sq ft of wall. A typical high design wind pressure (components and cladding) is 50 lb/ft2. Typical design loads per anchor, assuming a load factor of 1.6, are therefore about 215 lb. **Even the** weaker of the two types of tie has strength about twice this.

" Specimens with triangle ties sometimes failed by pullout of the tie from the bed joint, and sometimes by fracture of the eye of the screw. In contrast, the specimens with single-wire ties sometimes failed by pullout of the tie from the bed joint, and sometimes by straightening out of the tie. This straightening out ultimately limited the capacity of the single-wire ties to loads less than what would probably have been

required to fracture the eye of the screw.

" Because the specimens were loaded so that the stud could rotate, loads were directed along the axis of the tie, and the closed eyes at the ends of the Pos-I-Tie® screws were subjected to concentric loads only, with essentially no shear or bending. As a result, the capacities corresponding to eye fracture are quite high, about 700 lb (triangle ties). This is in contrast to loads corresponding to the Tapcon Pos-I-Tie tests, and is discussed in the section dealing the CMU tests.

" Specimens with triangle ties have plateau displacements much larger than the specimens with single-wire ties. This is because the triangle ties are closed, and the eye cannot slip off. In contrast, specimens with single-wire ties are limited in displacement capacity by straightening out of the tie or slipping of the eye of the screw along the bent end of the tie. Triangle ties are initially stiffer than single-wire ties, because they have two wires rather than one.

" Examination of some specimens shows that the female-threaded portion of the Pos-I-Tie can turn with respect to the embedded portion of the screw. This does not seem to affect capacity, however. Capacity is much more affected by the movement under load of the screw-eye of specimens with single-wire ties, toward the free end of the tie.

## 2<sup>1</sup>/<sub>2</sub>" Pos-I-Tie<sup>TM</sup> Self-Drilling Screw In Steel Studs Compression Test

5 specimens were tested. Each consisted of two 16 gage steel studs with 1/2" Denzglass, 2" Styrofoam, 2" airspace, and standard modular clay masonry veneer. Two 2-1/2" long Pos-I-Tie self-drilling screws were drilled into each stud. 3/16" x 4" long Hot Dipped Pos-I-Tie Triangle ties were connected to the Barrel-Screws and mortared in the bed joints of the veneer. (Entire wall was 3 masonry units wide x 9 high).

| Table 3 | Compression Test -<br>With TRIANGLE<br>WIRE TIE |                      |                                            | 25                                    |
|---------|-------------------------------------------------|----------------------|--------------------------------------------|---------------------------------------|
| sample  | failure                                         | failure<br>load, lbs | Plateau<br>Displacement,<br>(total) inches | Plateau Displacement,<br>(gap) inches |
| 1       | buckling of ties                                | 1503                 | 0.6                                        |                                       |

| 2 | buckling of ties | 1359  | 0.4 | 0.1 |
|---|------------------|-------|-----|-----|
| 3 | buckling of ties | 1254  | 0.4 | 0.1 |
| 4 | buckling of ties | 1398  | 0.4 | 0.2 |
| 5 | buckling of ties | 1458  | 0.4 | 0.2 |
|   | AVERAGE          | 1394  |     |     |
|   | COV              | 0.069 |     |     |

| Table 4 | Compression Test -<br>With<br>SINGLE WIRE TIE |                      |                                            | l                                     |
|---------|-----------------------------------------------|----------------------|--------------------------------------------|---------------------------------------|
| sample  | failure                                       | failure<br>load, lbs | Plateau<br>Displacement,<br>(total) inches | Plateau Displacement,<br>(gap) inches |
| 1       | buckling of ties                              | 1286                 | 1.5                                        | 1.5                                   |
| 2       | buckling of ties                              | 743                  | 0.8                                        | 0.8                                   |
| 3       | buckling of ties                              | 1015                 | 0.4                                        | 0.4                                   |
| 4       | buckling of ties                              | 1026                 | 0.4                                        | 0.2                                   |
| 5       | buckling of ties                              | 936                  | 0.6                                        | 0.4                                   |
|         | AVERAGE                                       | 1002                 |                                            |                                       |
|         | COV                                           | 0.20                 |                                            |                                       |

## **Compression Tests - Self-Drilling Screw to Steel Studs Summary**

" All specimens failed by buckling of the ties. Failure loads are higher for triangle ties than for single-leg ties, because triangle ties have two legs rather than one. " These ties are "adjustable two-piece anchors" under the definition of MSJC Code Section 6.2.2.5.6, which requires that one such anchor be provided for every 2.67 ft2 of wall area. Put simply, each tie must be responsible for 2.67 ft2 of wall. A typical high design wind pressure (components and cladding) is 50 lb/ft2. Typical design loads per anchor, assuming a load factor of 1.6, are therefore about 215 lb. For four anchors, the typical design loads would be 4 times this, or 860 lb. **Even the weaker of** 

### the two types of tie has a strength exceeding this.

" In specimens with triangle ties, the total plateau displacement is due primarily to deformation of the studs, with only slight contributions from the flexibility of the ties. In contrast, in specimens with single-wire ties, almost the entire total plateau displacement is due to closing of the gap. This is due to the relatively high flexibility of the single-wire ties compared to that of the triangle ties.

## 5/8" Pos-I-Tie<sup>TM</sup> Tapcon® Screw In CMU

### **Tension Test**

Each specimen consisted of an 8 x 8 x 16-in.lightweight CMU conforming to ASTM C90, with a 5/8-in. long Tapcon Pos-I-Tie® screw placed in the face shell of the unit. Using a 2-in. airspace, the eye of the screw was attached to a 3/16-in. diameter, 4-in. long tie that was mortared in the bed joint of veneer made of standard modular clay masonry units.

| Table 5 | Tension Test –<br>With TRIANGLE WIRE TIE CMU<br>Positie Tapcon® screw in face shell aligned<br>with the cross-web |                      |                                         |
|---------|-------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| sample  | failure                                                                                                           | failure load,<br>lbs | Plateau Displacement,<br>(total) inches |
| 1       | Fracture of eye                                                                                                   | 489                  | 0.2                                     |
| 2       | Fracture of eye                                                                                                   | 344                  | 0.1                                     |
| 3       | Fracture of eye                                                                                                   | 454                  | 0.3                                     |
| 4       | Fracture of eye                                                                                                   | 405                  | 0.3                                     |
| 5       | Fracture of eye                                                                                                   | 404                  | 0.4                                     |
|         | AVERAGE                                                                                                           | 419                  |                                         |
|         | COV                                                                                                               | 0.13                 |                                         |

| Table 6 | Tension Test –<br>With TRIANGLE WIRE TIE CMU<br>Positie Tapcon® screw in face shell aligned<br>with the empty cell |                      |                                         |
|---------|--------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| sample  | failure                                                                                                            | failure load,<br>lbs | Plateau Displacement,<br>(total) inches |
| 1       | Fracture of eye                                                                                                    | 410                  | 0.4                                     |
| 2       | Fracture of eye                                                                                                    | 549                  | 0.7                                     |
| 3       | Pullout of tie from bed joint                                                                                      | 785                  | 1.0                                     |
| 4       | Fracture of eye                                                                                                    | 572                  | 0.3                                     |
| 5       | Fracture of eye                                                                                                    | 404                  | 0.6                                     |
|         | AVERAGE                                                                                                            | 544                  |                                         |
|         | COV                                                                                                                | 0.29                 |                                         |

| Table 7 | Tension Test –<br>With SINGLE WIRE TIE CMU<br>Positie Tapcon® screw in face shell aligned<br>with the cross-web |                      | Reg.                                    |
|---------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| sample  | failure                                                                                                         | failure load,<br>lbs | Plateau Displacement,<br>(total) inches |
| 1       | Pullout of tie from bed joint                                                                                   | 364                  | 0.4                                     |
| 2       | Fracture of eye                                                                                                 | 599                  | 0.2                                     |
| 3       | Fracture of eye                                                                                                 | 419                  | 0.3                                     |
| 4       | Fracture of eye                                                                                                 | 613                  | 0.4                                     |
| 5       | Fracture of eye                                                                                                 | 517                  | 0.3                                     |
|         | AVERAGE                                                                                                         | 502                  |                                         |
|         | COV                                                                                                             | 0.22                 |                                         |

| Table 8 | Tension Test –<br>With SINGLE WIRE TIE CMU<br>Positie Tapcon® screw in face shell aligned<br>with the empty cell |                      | B                                       |
|---------|------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
| sample  | failure                                                                                                          | failure load,<br>lbs | Plateau Displacement,<br>(total) inches |
| 1       | Fracture of eye                                                                                                  | 574                  | 0.2                                     |
| 2       | Fracture of eye                                                                                                  | 325                  | 0.3                                     |
| 3       | Fracture of eye                                                                                                  | 621                  | 0.2                                     |
| 4       | Fracture of eye                                                                                                  | 427                  | 0.2                                     |
| 5       | Fracture of eye                                                                                                  | 487                  | 0.4                                     |
|         | AVERAGE                                                                                                          | 487                  |                                         |
|         | COV                                                                                                              | 0.24                 |                                         |

### 5/8" Pos-I-Tie<sup>™</sup> Tapcon<sup>®</sup> Screw In CMU Tension Test Summary

" Practically all specimens failed by fracture of the closed eye at the end of the Pos-I-Tie screw. This failure mode is essentially independent of the type of tie or whether the tie is attached to the face shell of the CMU or the web. It is therefore essentially the same for all four types of specimens tested in this series.

" These ties are "adjustable two-piece anchors" under the definition of MSJC Code Section 6.2.2.5.6, which requires that one such anchor be provided for every 2.67 ft2 of wall area. Put simply, each tie must be responsible for 2.67 ft2 of wall. A typical high design wind pressure (components and cladding) is 50 lb/ft2. Typical design loads per anchor, assuming a load factor of 1.6, are therefore about 215 lb. **Even the** weakest of the four types of specimen has strength about twice this.

" Examination of close-up photos of different specimens of this series during testing suggests that in most cases, the screw eyes were subjected to a combination of direct tension parallel to the axis of the screw, shear perpendicular to the axis of the screw, and local bending due to the orientation of the tie through the eye. Shear perpendicular to the axis of the screw arises when the axis of screw is not perpendicular to the face of the CMU, and therefore not exactly parallel with the direction of loading.

" Because the specimens in this series were loaded so that the CMU and the veneer could not rotate freely, if the anchor were not perpendicular to the surface of the masonry, shears could exist perpendicular to the axis of the anchor, and would account for the lower capacity of the ties in CMU compared with the ties in Steel

Studs. For example, in Table 5 and Table 6, which show failures for triangle ties by fracture of the eye, capacities are uniformly about 60% of the capacities corresponding to eye fracture for the same type of triangle tie in Table 1. Although the anchors and the failure modes are identical, the presence of shear in the CMU series makes the capacities in that series less than those in the Steel Stud test. It also makes the ties in the CMU fail almost invariably by fracture of the screw eye, rather than by the other failure modes noted for Steel Studs.

" It might be thought that because local bending decreases the fracture load of the eye, and because local bending depends on the angle of the upright portion of the tie, that control of that angle in production is important. This is not the case, however. No matter what the initial angle is, the tie straightens out and the angle changes as the load increases.

" Specimens with triangle ties have plateau displacements larger than the specimens with single-wire ties. This is because the triangle ties are closed, and the eye cannot slip off. The difference is less for the CMU tests than the Steel Stud tests, because the ties in the CMU are prevented from rotating by the manner in which the CMU and veneer are loaded. In contrast, specimens with single-wire ties are limited in displacement capacity by straightening out of the tie or slipping of the hook of the screw along the bent end of the tie. Triangle ties are initially stiffer than single-wire ties, because they have two wires rather than one.



• Geotechnical Engineering • Field & Lab Testing • Scientific & Environmental Consulting

#### CONSTRUCTION OBSERVATION REPORT

**Project:** The Park Danforth **Client:** The Park Danforth **Client's Rep.:** Ron Norton **S.W.COLE Project No.:** 14-0065.2 **Date:** 7/5/16 **Weather:** Mostly sunny, 60 - 85

Work in Progress: Custom Masonry, Inc.: Installation of masonry veneer D-line and 11-line elevations.

Work Performed by S.W.COLE Rep.: Observations of anchorage type and pattern.

**General Observations and Discussions:** In coordination with PC Construction and as required by the project schedule of Special Inspections, we made a site visit to observe anchors being utilized to secure the masonry veneer.

Installation of masonry has been ongoing for a few weeks and at the time of our visit, work was complete on Hline, at the second floor level on D-line and near the fourth floor level on 11-line. Anchors consisted of galvanized Pos-I-Tie system anchors with seismic wire triangle manufactured by Heckmann Building Products, Inc. as detailed in project submittal 04 20 0001. Based on observations from the building interior, it appeared that the fasteners are consistently being installed through the light gage framing members at 16 inches on center both horizontally and vertically. The fasteners are sized such that several threads penetrate the framing member. Spacing observed appears to satisfy the project specifications for typical requirements, however, it does not appear that additional fasteners are being utilized at the openings and panel ends as required in project specification 04 20 00 section 3.12. E.

Prior to leaving the site we discussed observations with Custom Masonry (Bill) and PC (Kemp) and understand going forward anchors will be spaced as detailed in the project specifications.

Time Onsite: 9:00 – 10:00 Attachments: Photos Sheet: 1 of 1 S.W.COLE Rep.: K. Gimpel Rev. by: RED

S.W.COLE was on-site at the request of our client to provide construction materials testing and to observe and document construction activities. The contractor has sole responsibility for schedule, site safety, methods, completeness and quality control.

**Included for Reference** 

# Heckmann Pos-I-Tie & Seismic Triangle - galvanized

# utilized for masonry veneer anchors



¥

60



# Masonry veneer anchorage @ 16" O.C. E.W.

through light gage framing members typical

# Masonry veneer anchorage not observed to be at 8" O.C. at

9

G

Egamara Sara

Steps

perimeter of openings and end of panels

21

91