DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK

CITY OF PORTLAN UILDING PER

This is to certify that

UNIVERSITY OF NEW ENGLAND /High Tech Fire Protection

PERMIT ID: 2013-00427

Located at

746 STEVENS AVE/ 1 COLLEGE AVE

CBL: 145 B042001

has permission to install NFPA 13 supervised sprinkler system.

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise clsoed-in. 48 HOUR NOTICE IS REQUIRED.

A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be procured prior to occupancy.

Fire Prevention/Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY THERE IS A PENALTY FOR REMOVING THIS CARD

City of Portland, Maine - Bui	Iding or Use	Permit Annlice	tion P	ermit No:	Issue Date:		CBL:
389 Congress Street, 04101 Tel: (_			2013-00427			145 B042001
Location of Construction:	Owner Name:			Address:			Phone:
746 STEVENS AVE/ I COLLEGE AVE	UNIVERSITY ENGLAND	Y OF NEW	11 HI ME 0	LLS BEACH F 4005	FORD,		
Business Name:	Contractor Name		Contrac	tor Address:			Phone
UNE	High Tech Fire	e Protection	P.O. B	lox 156 Minot	ME 04258		(207) 998-2551
Lessee/Buyer's Name	Phone:		Permit 7	Гуре:			Zone:
	1		Fire S	uppression Wa	ater Based		R5
Past Use:	Proposed Use:		Permit		Cost of Work		CEO District:
Patient Care / Dental Arts Facility		Care / Dental Arts		\$1,100.00		7,280.00	7
for University Education	Facility for Un	iversity Education	FIRE D	EPT:	Approved	INSPECTI Use Group:	
				, [Denied	Ose Oroup.	Type.
			3(2	013 🗆] N/A		
Proposed Project Description: install water based fire suppression sy	stem in new Pat	ient Care Facility	Signatur	oli3 = E: Blan Jal		Signature:	
				0	¥		
			Acti	on: Approv	ed App	roved w/Con	ditions Denied
			Sign	ature:		te:	
	pplied For: 4/2013			J	Approva	1	
1. This permit application does not	preclude the	Special Zone or Re	eviews	Zonin	g Appeal	1	Historic Preservation
Applicant(s) from meeting applic Federal Rules.		Shoreland		Variance		e	Not in District or Landmark
 Building permits do not include p septic or electrical work. 	plumbing,	Wetland		Miscellar	neous		Does Not Require Review
3. Building permits are void if work within six (6) months of the date		Flood Zone		Conditio	nal Use		Requires Review
False information may invalidate permit and stop all work	a building	Subdivision		Interpreta	ation		Approved
		Site Plan			d		Approved w/Conditions
		Maj Minor N		Denied			Denied
		Date: 3/4/1	3	Date:		Date:	~

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

SIGNATURE OF APPLICANT	ADDRESS	DATE	PHONE
RESPONSIBLE PERSON IN CHARGE OF WORK, TITLE		DATE	PHONE

BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 (ONLY) or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in 6 months. If the project is not started or ceases for 6 months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

REQUIRED INSPECTIONS:

Final - Fire

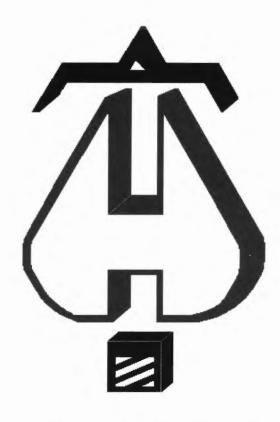
The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUPIED.

Ci	ty of Portland, Maine - Buil	ding or Use Permit		Permit No:	Date Applied For:	CBL:				
	Congress Street, 04101 Tel: (U	4-871	6 2013-00427	03/04/2013	145 B042001				
Loc	ation of Construction:	Owner Name:		Owner Address:		Phone:				
74	6 STEVENS AVE/ 1 COLLEGE	UNIVERSITY OF NEW ENG	LAN 11 HILLS BEACH RD							
Bus	iness Name:	Contractor Name:		Contractor Address: Phone						
UN	1E	High Tech Fire Protection P.O. Box 156 Minot								
Less	see/Buyer's Name	Phone:		Permit Type:						
				Fire Suppression V	Vater Based					
Pro	posed Use:		Propos	ed Project Description:						
Sa	me: Patient Care / Dental Arts Faci	lity for University Education	instal	NFPA 13 supervise	d sprinkler system.					
						1				
D	ept: Zoning Status: A	pproved Re	viewer	: Marge Schmuckal	Approval Da	te: 03/04/2013				
	ote:	PP-0.02		8		Ok to Issue:				
14	ore.					OK 10 13500.				
D	ept: Fire Status: A	pproved w/Conditions Rev	viewer	: Ben Wallace Jr	Approval Da	te: 03/20/2013				
	ote:					Ok to Issue: 🗹				
	Installation shall be in accordance	with the City of Portland Fire D	enartm	ent Regulations and						
1)	State Sprinkler permit with RMS									
	(NFPA 13 figure 24.1) shall be pr				0					
2)	System acceptance and commission	oning must be coordinated with a	larm ai	nd suppression system	n contractors and the	Fire				
	Department. Call 874-8703 to sch									
3)	Fire department connection shall b	be two 2 ¹ / ₂ " inlets.								
4)	A Knox Box is required.									
	, i i i i i i i i i i i i i i i i i i i	uided in eccordence with NEDA	101 1	fo Safaty Cada and	NEDA 72 National I	Sino Alarmand				
5)	Sprinkler supervision shall be pro- Signaling Code.	vided in accordance with NFPA	101, L	ie salety Code, and	INFFA 12, National I	Fire Alarm and				
6)	Notice: The first scheduled final in	nspection fee is at no charge Ad	dition	al inspections shall be	e billed at \$75 for ea	ch inspector.				
7)	The entire sprinkler system shall b Water-Based Fire Protection Syste		NFPA	25, Standard for Ins	pection, Testing and	Maintenance of				

Water-Based Fire Suppression System Permit

If you or the property owner owes real estate or property taxes or user charges on any property within the city, payment arrangements must be made before permits of any kind are accepted.


Installation address: One College Street	_ CBL: 145-B-42
Exact location: (within structure) Entire Structure	
Type of occupancy(s) (NFPA & ICC): Business / Educationa	al
Building owner: University of New England	
	License No: 515
Supervisor phone: (207) 998-2551	E-mail: EPoulin@fairpoint.net
Installing contractor: High Tech Fire Protection	License No: 102
Contractor phone: (207) 998-2551	E-mail: HTFP@fairpoint.net
	Addition to existing system:
This is an amendment to an existing permit: Yes: O NO	Permit no:
NFPA Standard this system is designed to:13	Edition: 2010
*Non-NFPA systems are not approved for use within the City of Portland.	COST OF WORK: \$107,280.00
Download a new copy of this document from	PERMIT FEE: \$1,100
www.portlandmaine.gov/fire for every submittal. Attach all working	(\$10 PER \$1,000 + \$30 FOR THE FIRSTOL,000)
documents and complete approved submittals as may be required by	RECEIVE
the State Fire Marshal's Office on electronic PDF's in addition to	(\$10 PER \$1,000 + \$30 FOR THE FIRST \$1,000) RECEIVED ,000) MAR 0 4 2013
full sized plans.	MANT maginapection
Contractor shall verify location and type of all FDCs shall	MAR UNAPPORT
be approved in writing by the Fire Prevention Bureau.	
Submit all information to the Building Inspections Department 389 Con	urress Street Room 315 Portland Maine 04101

Submit all information to the Building Inspections Department, 389 Congress Street, Room 315, Portland, Maine 04101.

Prior to acceptance of any fire protection system, a complete commissioning and acceptance test must be coordinated with all fire system contractors and the Fire Department, and proper documentation of such test(s) provided.

All installation(s) must comply with NFPA and the Fire Department Technical Standard(s).

Date: 02/26/2013 Applicant signature - JFOSS@ Fairpaht.net 1055 erony

... Fire Protection by Computer Design

High Tech Fire Protection 84 Hackett Mills Road P.O. Box 156 Minot, Maine 04258-0156 998-2551

Job Name:First Floor Calc.Drawing:FP-02Location:1 College StreetRemote Area:Contract:080212-1Data File:First Floor Calc.wxf

-

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Water Supply: C1 - Static Press C2 - Residual Pr C2 - Residual Fi	essure: 54			Dema D D H H S	2 - System Flow 2 - System Pressure lose (Adj City) lose (Demand) 3 - System Demand	6.930 139.943 41.232 100 239.943 14.634
			1		1	
0			 			
0						
0						
0						
0						
	_		 			
C1		C2	 			
D2		0				
) 13			 			
D1			 			

*

Water Supply Curve (C)

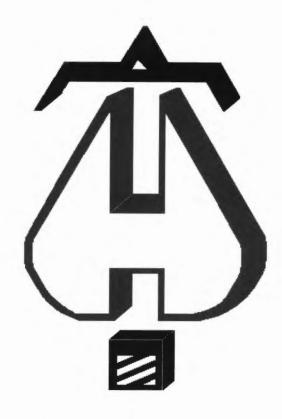
Fitting	s Used Summary																				
•	ech Fire Protection oor Calc.																			2 02/26/2	013
Fitting Lo		1/2	3/4	1	11/4	1½	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
AI	Alarm Viking J1								10		13		20	23							
В	Generic Butterfly Valve	0	0	0	0	7	7	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
Fsp	Flow Switch Potter VSR	Fittin	g gener	rates a F	ixed Los	ss Based	d on Flo	W													
G	Generic Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
V	90' Ell Firelock #001	0	0	0	0	0	3.5	4.3	5	0	6.8	8.5	10	13	0	0	0	0	0	0	0
X Zia	90'Tee-BranchFirelock002 Wilkins 350	0 Fittin	0 g genei	0 rates a F	0 Fixed Los	0 ss Based	8.5 d on Flo	10.8 w	13	0	16	21	25	33	0	0	0	0	0	0	0

Pressure / Flow Summary - STANDARD

High Tec First Floc	h Fire Protection F Calc.	on					Page Date	3 02/26/2013
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP1	-1.5	5.6	16.14	na	22.5	0.1	225	7.0
DP2	-1.5	5.6	16.14	na	22.5	0.1	225	7.0
401	24.0	K = K @ EQ01	21.38	na	24.08			
A1	24.0		23.0	na				
402	24.0	K = K @ EQ01	21.41	na	24.1			
42	24.0		23.02	na				
43	24.0		23.64	na				
44	23.0		24.2	na				
103	24.0	K = K @ EQ01	18.67	na	22.5			
104	24.0	K = K @ EQ02	20.61	na	23.34			
06	24.0	K = K @ EQ01	18.74	na	22.54			
07	24.0	K = K @ EQ02	20.69	na	23.38			
46	24.0		21.86	na				
47	24.0		21.94	na				
48	24.0		23.64	na				
49	23.0		24.24	na				
45	23.0		24.33	na				
A10	23.0		24.79	na				
A11	8.0		31.41	na				
Z3	8.0		34.79	na				
TOR	8.0		34.8	na				
BOR	3.0		38.0	na				
BASE	3.0		43.29	na				
11	3.0		43.38	na				
TEST	8.0		41.23	na	100.0			

The maximum velocity is 9.85 and it occurs in the pipe between nodes 407 and A7

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087


Final Calculations - Hazen-Williams

High Tech First Floor	n Fire Prote r Calc.	ction						Page 4 Date 02/26/2013
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitt	or	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******
DP1	22.50	1.049	1E	2.0	0.500	16.143		K Factor = 5.60
to	005	120	1Eql	18.0	20.000	-0.794		Vol 9.05
EQ01	22.5 0.0	0.1618		0.0	20.500	3.317		Vel = 8.35
	22.50					18.666		K Factor = 5.21
DP2	22.50	1.049	1T	5.0	0.500	16.143		K Factor = 5.60
o EQ02	22.5	120 0.1618	1Eql	18.0 0.0	23.000 23.500	-0.794 3.803		Vel = 8.35
	0.0							
	22.50					19.152		K Factor = 5.14
401 o	24.08	1.049 120	1T	5.0 0.0	3.800 5.000	21.384 0.0		K Factor @ node EQ01
A1	24.08	0.1834		0.0	8.800	1.614		Vel = 8.94
A1	0.0	2.635		0.0	12.000	22.998		
A2	24.08	120 0.0021		0.0 0.0	0.0 12.000	0.0 0.025		Vel = 1.42
	0.0	0.0021		0.0	12.000	0.020		
	24.08					23.023		K Factor = 5.02
402	24.10	1.049 120	1T	5.0 0.0	3.800 5.000	21.407 0.0		K Factor @ node EQ01
A2	24.1	0.1836		0.0	8.800	1.616		Vel = 8.95
A2	24.08	2.635	1X	14.827	67.900	23.023		
A3	48.18	120 0.0075		0.0 0.0	14.827 82.727	0.0 0.617		Vel = 2.83
A3 A3	0.0	2.635	1T	16.474	1.000	23.640		
0		120		0.0	16.474	0.433		
A4	48.18	0.0075		0.0	17.474	0.131		Vel = 2.83
A4 o	0.0	3.26 120	1X	17.471 0.0	29.600 17.471	24.204 0.0		
A5	48.18	0.0026		0.0	47.071	0.124		Vel = 1.85
	0.0 48.18					24.328		K Factor = 9.77
*P	40.10	10 1 11 10 10 10 10 10 10 10 10 10 10 10				24.020		KT actor =
403	22.50	1.049		0.0	12.000	18.666		K Factor @ node EQ01
0		120		0.0	0.0	0.0		
404	22.5	0.1618	47	0.0	12.000	1.942		Vel = 8.35 K Factor @ node EQ02
404 o	23.34	1.38 120	1T	6.0 0.0	1.900 6.000	20.608 0.0		K Factor @ node EQ02
A6	45. 84	0.1587		0.0	7.900	1.254		Vel = 9.83
	0.0					21 060		K Factor = 9.80
*P	45.84					21.862		N FAULUL = 9.00
406	22.54	1.049		0.0	12.000	18.737		K Factor @ node EQ01
0		120		0.0	0.0	0.0		
407	22.54	0.1623	47	0.0	12.000	1.948		Vel = 8.37
407 to	23.39	1.38 120	1T	6.0 0.0	1.900 6.000	20.685 0.0		K Factor @ node EQ02
A7	45.93	0.1594		0.0	7.900	1.259		Vel = 9.85

Final Calculations - Standard

High Tech Fire Protection

High Tecl First Floo	h Fire Protec r Calc.	ction						Page 5 Date 02/26/2013
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.) Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
		0						
	0.0 45.93					21.944		K Factor = 9.80
*P	40.00					21.044		
A6	45.84	2.635		0.0	12.000	21.862		
to	10.04	120		0.0	0.0	0.0		
A7	45.84	0.0068		0.0	12.000	0.082		Vel = 2.70
A7	45.93	2.635		5.903	63.200	21.944		
0	04 77	120		0.0	5.903	0.0		
A8	91.77	0.0246		0.0	69.103	1.698		Vel = 5.40
A8 to	0.0	2.635 120		5.903 0.0	1.000 5.903	23.642 0.433		
A9	91.77	0.0245		0.0	6.903	0.169		Vel = 5.40
A9	0.0	2.635		0.0	3.400	24.244		
0	0.0	120		0.0	0.0	0.0		
A5	91.77	0.0247		0.0	3.400	0.084		Vel = 5.40
A5	48.17	4.26		1.067	60.000	24.328		
0		120		8.954	30.021	0.0		N/-1 0.15
A10	139.94	0.0052		0.0	90.021	0.465		Vel = 3.15
A10	0.0	4.26		8.954 0.0	15.000 8.954	24.793 6.496		
A11	139.94	120 0.0052		0.0	23.954	0.125		Vel = 3.15
A11	0.0	4.26		7.907	13.100	31.414		
0	0.0	120		0.0	60.041	3.000		* Fixed loss = 3
Z3	139.94	0.0052	1B 1	5.8	73.141	0.378		Vel = 3.15
				6.334				
Z3	0.0	6.357		2.573	3.500	34.792		
to TOR	139.94	120 0.0007		0.0 0.0	12.573 16.073	0.0 0.012		Vel = 1.41
TOR	0.0	6.357		0.0	5.000	34.804		
to	0.0	120		5.147	37.720	3.166		* Fixed loss = 1
BOR	139.94	0.0007		2.573	42.720	0.031		Vel = 1.41
BOR	0.0	6.357	1E 1	7.603	4.900	38.001		
to		120		0.0	17.603	5.269		* Fixed loss = 5.269
BASE	139.94	0.0008		0.0	22.503	0.017		Vel = 1.41
BASE	0.0	6.16		3.236	70.000	43.287		
to LI1	120 64	120		2.359 0.0	35.595 105.595	0.0 0.090		Vel = 1.51
H1	139.94	0.0009		1.405	30.000	43.377		
H1 to	0.0	8.27 120		4.757	67.782	-2.166		
TEST	139.94	0.0002		1.62	97.782	0.021		Vel = 0.84
	100.00							Qa = 100.00
	239.94					41.232		K Factor = 37.37

... Fire Protection by Computer Design

High Tech Fire Protection 84 Hackett Mills Road P.O. Box 156 Minot, Maine 04258-0156 998-2551

Job Name: Second Floor Calc. (Revised)Drawing: FP-03Location: 1 College StreetRemote Area: #2Contract: 080212-1Data File: Second Floor Calc.wxf

-1

¢.

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Water Supply: C1 - Static Pressure : 56 C2 - Residual Pressure: 54 C2 - Residual Flow : 10	34		Demand: D1 - Eleva D2 - Syste D2 - Syste Hose (Adj Hose (Der D3 - Syste Safety Mar	tion : 12.993 m Flow : 185.601 m Pressure : 50.602 City) : mand) : 100 m Demand : 285.601 rgin : 5.213
50				
30				
20		 		
10		 		
00				
	C2			
0 D 2		 		
o p 3		 	· <u>·····</u> ······	
o //				
0				
0 P1		 		

•

Fittings Used Summary

High Tech Fire Protection Second Floor Calc. (Revised)

Page 2 Date 02/26/2013

e,

Fitting L	egend																				
Abbrev.	Name	1/2	3/4	1	11⁄4	11/2	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
A	Alarm Viking J1								10		13		20	23							
В	Generic Butterfly Valve	0	0	0	0	7	7	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
Fsp	Flow Switch Potter VSR	Fittin	g gener	ates a F	ixed Los	s Based	d on Flow	v													
G	Generic Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
V	90' Ell Firelock #001	0	0	0	0	0	3.5	4.3	5	0	6.8	8.5	10	13	0	0	0	0	0	0	0
Х	90'Tee-BranchFirelock002	0	0	0	0	0	8.5	10.8	13	0	16	21	25	33	0	0	0	0	0	0	0
Zia	Wilkins 350	Fittin	g gener	rates a F	ixed Los	ss Based	d on Flow	v													

Final Calculations - Hazen-Williams

High Tech Fire Protection Second Floor Calc. (Revised) Page 4 Date 02/26/2013

Second Fl	oor Calc. (F	Revised)						Date 02/26/2013			
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft		ting or v. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******			
DP1 o	22.50	1.049 120	2E 1T	4.0 5.0	2.000 9.000	16.143 -0.433		K Factor = 5.60			
EQ01	22.5	0.1618		0.0	11.000	1.780		Vel = 8.35			
	0.0 22.50					17.490		K Factor = 5.38			
10	22.50	1.61		0.0	12.000	17.490	· · · · · · · · · · · · · · · · · · ·	K Factor @ node EQ01			
0	22.00	120		0.0	0.0	0.0					
11	22.5	0.0201		0.0	12.000	0.241		Vel = 3.55			
11	22.65	1.61 120		0.0 0.0	12.000 0.0	17.731 0.0		K Factor @ node EQ01			
o 12	45.15	0.0729		0.0	12.000	0.875		Vel = 7.12			
12	23.21	1.61		0.0	12.000	18.606		K Factor @ node EQ01			
0		120		0.0	0.0	0.0					
13	68.36	0.1569	4.7	0.0	12.000	1.883		Vel = 10.77			
13 o	24.35	1.61 120	1T	8.0 0.0	5.600 8.000	20.489 0.0		K Factor @ node EQ01			
B1	92.71	0.2758		0.0	13.600	3.751		Vel = 14.61			
	0.0 92.71					24.240		K Factor = 18.83			
*P											
20	22.54	1.61		0.0	12.000	17.556		K Factor @ node EQ01			
21	22.54	120 0.0201		0.0 0.0	0.0 12.000	0.0 0.241		Vel = 3.55			
21	22.70	1.61		0.0	12.000	17.797		K Factor @ node EQ01			
D		120		0.0	0.0	0.0					
22	45.24	0.0732		0.0	12.000	0.878		Vel = 7.13			
22	23.25	1.61 120		0.0 0.0	12.000 0.0	18.675 0.0		K Factor @ node EQ01			
o 23	68.49	0.1575		0.0	12.000	1.890		Vel = 10.79			
23	24.40	1.61	1T	8.0	5.600	20.565		K Factor @ node EQ01			
С		120		0.0	8.000	0.0					
B2	92,89	0.2768		0.0	13.600	3.764		Vel = 14.64			
	0.0 92.89					24.329		K Factor = 18.83			
*P	52.00										
B1	92.71	3.26		0.0	10.000	24.240					
0		120		0.0	0.0	0.0					
B2	92.71	0.0089		0.0	10.000	0.089		Vel = 3.56			
B2	92.89	3.26 120	1X	17.471 0.0	31.900 17.471	24.329 0.0					
o B3	185.6	0.0321		0.0	49.371	1.584		Vel = 7.13			
B3	0.0	3.26	1X	17.471	72.400	25.913					
С		120		0.0	17.471	0.0					
B4	185.6	0.0321	01/	0.0	89.871	2.882		Vel = 7.13			
B4 o	0.0	4.26 120	2V	17.907 0.0	49.100 17.907	28.795 0.0					
B5	185.6	0.0087		0.0	67.007	0.584		Vel = 4.18			

Final Calculations - Standard

 $\sigma_{\rm i}$

High Tech Fire Protection Second Floor Calc. (Revised) Page 5 Date 02/26/2013

Second Floor Calc. (Revised)								Date 02/26/2013	
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes ******	
B5	0.0	4.26			0.000	29.379			
to	1.000	120	0.	-	3.954	12.993			
B6	185.6	0.0087	0.	.0 38	3.954	0.340		Vel = 4.18	
B6	0.0	4.26	1B 15.		3.900	42.712			
to		120	1Fsp 0.		5.821	3.000		* Fixed loss = 3	
Z2	185.6	0.0087		.954 79 .067	9.721	0.695		Vel = 4.18	
Z2	0.0	6.357	1V 12	.573 5	5.600	46.407			
to		120	0.	.0 12	2.573	0.0			
TOR	185.6	0.0012	0.	.0 18	3.173	0.022		Vel = 1.88	
TOR	0.0	6.357	1Fsp 0.	.0 5	5.000	46.429			
to	1.1	120	1AI 25.	147 37	7.720	3.166		* Fixed loss = 1	
BOR	185.6	0.0012	1V 12.	.573 42	2.720	0.053		Vel = 1.88	
BOR	0.0	6.357	1E 17.	.603 4	.900	49.648			
to		120	1Zia 0.	.0 17	7.603	2.906		* Fixed loss = 2.906	
BASE	185.6	0.0012	0.	.0 22	2.503	0.027		Vel = 1.88	
BASE	0.0	6.16	1G 3.	.236 70	000.	52.581			
to		120		359 35	5.595	0.0			
H1	185.6	0.0014	0.	.0 105	5.595	0.153		Vel = 2.00	
H1	0.0	8.27	1E 21.	.405 30	0.000	52.734			
to		120		757 67	7.782	-2.166			
TEST	185.6	0.0003	1T 41.	.62 97	7.782	0.034		Vel = 1.11	
	100.00							Qa = 100.00	
	285.60					50.602		K Factor = 40.15	