This is to certify that __ RASZMANN PETER G___
has permission to __ Addition to add bath \& Laur
AT 20 PLEASANT AVE
provided that the person or persons of the provisions of the Statutes of the construction, maintenance and this department.

Apply to Public Works for street line and grade if nature of work requires such information.

OTHER REQUIRED APPROVALS
Fire Dept.
Health Dept.
Appeal Board
Other

City of Portland, Maine - Building or Use Permit Application 389 Congress Street, 04101 Tel: (207) 874-8703, Fax: (207) 874-8716

Permit ${ }^{\text {No: }} 0$	Issue Date:	CBL:
$06-0724$		131 K 002001

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

General Building Permit Application

If you or the property owner owes real estate or personal property taxes or user charges on any property within the City, payment arrangements must be made before permits of any kind are accepted.

Contractor's name, address \& telephone:
Who should we contact when the permit is ready: Peter R GS RManN
Mailing address:
Phone: _d o7_775-5141

?lease submit all of the information outlined in the Commercial Application Checklist. Failure to do so will result in the automatic denial of your permit.

In order to be sure the City fully understands the full scope of the project, the Planning and Development Department may request additional information prior to the issuance of a permit. For further information visit us on-line at wrw.portlandmainegov, stop by the Building Inspections office, rom 315 City Hall or call 874-8703.

I hereby certify that I am the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized by the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued, I certify that the Code Official's authorized representative shall have the authority to enter all areas covered by this permit at any reasonable hour to enforce the provisions of the codes applicable to this permit.

This is not a permit; you may not commence ANY work until the permit is issued.

City of Portland, Maine - Building or Use Permit
389 Congress Street, 04101 Tel: (207) 874-8703, Fax: (207) 874-8716

Permit No: $06-0724$	Date Applied For: $05 / 16 / 2006$	CBL: 131 K002001

Location of Construction: 120PLEASANT AVE	Owner Name: RASZMANN PETER G	Owner Address: 120 PLEASANT AVE	Phone:
Business Name:	Contractor Name:	ContractorAddress:	Phone
Lessee/Buyer's Name	Phone:	Permit Type: Additions - Multi Family	

3 unit residential/ Addition to add bath \& Laundry room, extend existing rear stairs, add bedroom 3rd floor

Addition to add bath \& Laundry room, extend existing rear stairs, add bedroom 3rd floor

Dept: Zoning
Status: Approved with Conditions
Reviewer: Ann Machado
Note:
Approval Date: $\quad \overrightarrow{06 / 02 / 2006}$
Ok to Issue:

1) This permit is being approved on the basis of plans submitted. Any deviations shall require a separate approval before starting that work.
2) As discussed during the review process, the property must be clearly identified prior to pouring concrete and compliance with the required setbacks must be established. Due to the proximity of the setbacks of the proposed addition, it may be required to be located by a surveyor.
3) This property shall remain a three family dwelling. Any change of use shall require a separate permit application for review and approval.

Dept: Building
Status: Approved with Conditions
Reviewer: Mike Nugent
Approval Date:
07/25/2006
Note:
Ok to Issue:

1) Walls surrounding the new stairway must be constructed of materials that provide a 1 hour fire rating and all doors must re rated as well. The fire Dept. Has mandated 1 hour doors. The windows on the third floor landing must be eliminated.
2) This is an exisiting occupied third floor unit extending into the attic portion to the rear.
3) 4) Basement Girder must be two (2) $2^{\prime \prime} \times 10^{\prime \prime}$ members with an additional post mid span.
1) Footing must have a perimeter drain/srone/filter faric as required by Section 1807.4 of the IBC
2) Stairs must be 26 inches in width, with a maximum rise of 7 inches and a minimum tread of 11 inches, NO CONVENTIONAL NOSINGS. Headroom must be 80 inches as measured straight up from the leading edge of the stair tread. Hand rails must be installed on both sides of the stairs.
3) The floor/celing assembly between the second floor and new third floor area must be constructed of materials that provide a 1 hour fire resistance rating and a sound transmission classification of 50 . All penetrations must be protected in accordance with Chapter 7 of the IBC.

Dept: Fire
Status: Approved with Conditions
Reviewer: Cptn Greg Cass
Note:
Approval Date: 06/05/2006

1) Doors to all common areas shall be fire rated to one hour
2) Fire Alarm system required per NFPA 72

Comments:

Ok to Issue:

5/30/2006-GG: received granted site plan exemption. /gg
6/8/2006-mjn: Left message with owner, have framing and stirway questions.
7/14/2006-gg: received additional plans, routed back to Mike Nugent. /gg

Location of Construction: 120PLEAS ANT AVE	Owner Name: RASZMANN PETER G	Owner Address: 120 PLEASANT AVE	Phone:
Business Name:	Contractor Name:	ContractorAddress:	Phone
Lessee/Buyer's Name	Phone:	Permit Type: Additions - Multi Family	

15 May 061 Revised 7/12/06 $2^{\text {nd }}$ revision 7/25/06
The City Of Portland
Permit Application Checklist
From Peter Raszmann
120 Pleasant Ave.
Portland, Maine, 04103
775-5141

1. General scope of work. The alterations include adding a $9 \times 16 \mathrm{ft}$ addition to the east side of the house. On the first floor it will enclose access for the back stairs, and the back stairs will be re-configured. On'thesecond floor it will add a bath and laundry and the back stairs will be re configured to eliminate the winders in the stairs. On the third floor the existing rear stairwell will be extended to the third floor and a bedroom added . The maximum rise per tread is 7 " and the minimum run per tread is 11 "and stairwell framing width of 36 " min must be maintained and headroom of $6^{\prime} 8^{\prime \prime}$ must be maintained.
2. My understanding about fire rated fire doors that are to be installed at each apartment front and rear is that they are to be 90 Minute rated with automatic closers. Also common stairwells and accesses areas adjacent to apartments must be 90 minute rated and utilize $5 / 8^{\prime \prime}$ drywall.
3. The details of any new walls or permanent partitions. All walls will be conventionally framed with a single bottom plate and a double top plate. Exterior walls will be framed with 2 " $\times 6$ " and Interior walls will be framed with 2 " $\times 4$ " Insulation in walls is 6 " fiberglass with a6 mil vapor barrier (R19)in all new construction. Insulaltion in $3^{\text {rd }}$ floor ceiling is (between rafters) ventillation baffle, 9 " glass insulaltion, $3 / 4$ " foil faced foam, $3 / 4$ " strapping, and $1 / 2$ " drywall (R 37.5).
4. Below is the window and door schedule. Windows are Paradigm. If you see areas that require tempered glass let me know. Attached is a spec sheet from Paradigm with U values of windows. In addition the headers for below windows and doors are as follows: For all the below doors and windows a header of 2 layers of 2 "x6" minimum will be used.

Number	Quantity	Size and Description	Location
BW1	1	3624 Awning	South Basement BW2
1	3624 Awning	East Basement	
$1^{\text {st }}$ W 1	1	2428Awning Entry	East
1st W 2	1	3060Casement	Bedroom Egress E
$1^{\text {st } W ~ 3 ~}$	1	3060 Casement	Bedroom egress S $1^{\text {st }}$ W 4

5. The drawings submitted are as follows

1. Existing Conditions/ $1^{\text {st }}$ floor
2. Site plan
3. $1^{\text {st }}$ floor floor plan, electrical plan, floor framing details
4. $\quad 2^{\text {nd }}$ floor floor plan,electrical plan, floor framing detail,typical floor and
5. $\quad 3^{\text {rd }}$ floor floor plan,electrical plan ,roof framing detail
6. $3^{\text {rd }}$ floor floor framing detail/Typical wall framing details int and ext
7. South view/section
8. East View/Section
9. $3^{\text {rd }}$ floor Floor Plans
10. exterior View East/ foundation plans
11. The ridge beam was figured at a span of 12^{\prime} and spacing of 20^{\prime} and will require a beam either a Parallam or Microllam of $31 / 2^{\prime \prime} \times 91 / 4$ " minimum with bearing of 3 " at each end and $71 / 2 "$ intermediate bearing (see page 10 of Trus Joist Specifiers guide). The larger valley rafter is supporting an area of 1 l 'x 55 lb per $\mathrm{ft}(40+15)$ or 605 lb per ft and requires a $31 / 2^{\prime \prime} \times 91 / 4$ " with a 1.5 in bearing (See page 22 of Trus Joist Specifiers guide) In regards to the electrical work, I want to know what you require. I am assuming that you 1 want interconnected smoke alarms in bedrooms and common halls and in basement .Is this requirement for new construction areas only?
12.
13. $3^{\text {rd }}$ floor floor framing detail I will use 2 " $\times 10$ " joist if you recommend it. The Span is about 13 ' to the load bearing partition wall underneath. Currently the plan specifies $2 " x 8$ "@16"O.C.and they are lapped as is shown in the framing detail over both hall partition walls. The non bearing partition may be removed at some point in the future to remodel the kitchen on the second floor

1) This permit is being approved on the basis of plans submitted. Any deviations shall require a separate approval before starting that work.
2) As discussed during the review process, the property must be clearly identified prior to pouring concrete and compliance with the required setbacks must be established. Due to the proximity of the setbacks of the proposed addition, it may be required to be located by a surveyor.
3) This property shall remain a three family dwelling. Any change of use shall require a separate permit application for review and approval.

| Dept: Building | Status: Pending | | |
| :--- | :--- | :--- | :--- | :--- |
| Note: | | Reviewer: Mike Nugent | Approval Date: |
| | | | |

Comments:

5/30/2006-GG: received granted site plan exemption. /gg
6/8/2006-mjn: Left message with owner, have framing and stirway questions.
7/14/2006-gg: received additional plans, routed back to Mike Nugent. /gg
7/19/2006-mjn: Stairs non compliant, pans lack details, spoke with owner.

The City Of Portland
Permit Application Checklist
From Peter Raszmann
120 Pleasant Ave.
Portland, Maine, 04103
7755141

1. General scope of work. The alterations include adding a $7.5 \times 16 \mathrm{ft}$ addition to the east side of the house. On the first floor it will enclose access for the back stairs, and the back stairs will be re-configured. On the second floor it will add a bath and laundryand the back stairs will be re configured to eliminate the winders in the stairs. On the third floor the existing rear stairwell will be extended to the third floor and a bedroom added. Assumptions about this are that the maximum rise per tread is $73 / 4$ " and the minimum run per tread is 10 "and stairwell framing width of $36^{\prime \prime}$ min must be maintained and headroom of $6^{\prime} 8^{\prime \prime}$ must be maintained.
2. My understanding about fire rated fire doors that are to be installed at each apartment front and rear is that they are to be 90 Minute rated with automatic closers.
3. The details of any new walls or permanent partitions. All walls will be conventionally framed with a single bottom plate and a double top plate. Exterior walls will be framed with 2 "x6" and Interior walls will be framed with 2 " $\times 4$ " Insulation in walls is 6 " fiberglass with a6 mil vapor barrier (R19) in all new construction. Insulaltion in $3^{\text {rd }}$ floor ceiling is (between rafters) ventillation baffle, 9 " glass insulaltion, $3 / 4$ " foil faced foam, $3 / 4 "$ strapping, and $1 / 2 "$ drywall (R 37.5).

Below is the window and door schedule. Windows are Paradigm. If you see areas that require tempered glass let me know. Attached is a spec sheet from Paradigm with U values of windows.

Number	Quantity	Size and Description	Location
BW1	1	3624 Awning	South Basement BW2
1	3624 Awning	East Basement	
$1^{\text {st }} \mathrm{W}$ 1	1	2428Awning Entry	East
1st w 2	1	3060Casement	Bedroom Egress E
$1^{\text {st } \mathrm{W} ~ 3 ~}$	1	3060 Casement	Bedroom egress S $1^{\text {st }} \mathrm{W}$
$2^{\text {nd }} \mathrm{W} 1$	1	P2424 (picture)	stair landing east

2ndW2	1	2848C	Hall
$2^{\text {nd }} \mathrm{w} 3$	1	2848 C	Hall
$2^{\text {nd }} \mathrm{w} 4$	1	3620Awning	Bath
$2^{\text {nd }}{ }_{\text {w }} 5$	1	2420A	Laundry
$2^{\text {nd }} \mathrm{W} 6$	1	2420 Awning	Laundry
3rdW 1	1	C3052	Dormer
$3^{\text {rd }}$ w 2	1	C3052	Dormer
$3^{\text {rd }}$ w 3	1	C3052Bedroom Egress	South
$3^{\text {rd }} \mathrm{w} 4$	1	3232 Octagon	South
$3^{\text {rd }}$ w 5	1	VS308vellux	Roof window

Below is the door schedule
number Quan Size and descpt Model and location

BD1 $1 \quad 3^{\prime} 0^{\prime \prime} \times 6^{\prime} 6^{\prime \prime}$ RHOS Therma Tru \#206 6 9/1 $6^{\prime \prime} /$ Entry/Single Bore

$1^{\text {st }} \mathrm{D} 1$	1	2'8"x6'8"LHIS	Therma Tru \#206 69/16" Single Bore
$1^{\text {st }} \mathrm{D} 2$	1	2'8"x6'8"RHIS	Bsmt Doort/Single Bore
$1^{\text {st }}$ D3	1	2'8"x6'8"RHOS	Steel Fire Door 5 3/16" Rear/Double Bore
$1{ }^{\text {st }}$ D4	1	2'8"x6'8" LHIS	Steel Fire Door $53 / 16$ " Br/Single Bore
$1^{\text {st }}$ D5	1	$3^{\prime} 0{ }^{\prime \prime} \times 6^{\prime} 8^{\prime \prime}$ Bifold	Bedroom
$2^{\text {nd }}$ D1	1	2'8"x6'8" LHIS	Therma Tru \#206 5 9/16" Porch Single Bore
$2^{\text {nd }}$ D2	1	2'8"x6'8" RHOS	Fire Door to hal1/Single Bore
2nd D3	1	$2^{\prime} 8^{\prime \prime} \times 6^{\prime} 8^{\prime \prime} \mathrm{RHOS}$	Fire Door To hall/ Single Bore
$2^{\text {nd }}$ D4	1	$3^{\prime} 0$ "x6'8' Bifold	BR Clo
$2^{\text {nd }}$ D5	1	$3^{\prime} 0$ "x \times ' $8^{\prime \prime}$ Bifold	Hall
$2^{\text {nd }}$ D6	1	$2^{\prime} 8^{\prime \prime} \times 6^{\prime} 8$ " LHIS	front entry/Double Bore
$3^{\text {rd }}$ D1	1	2'8'*6'8'LHOS	Hall to Bedroom/Double Bore
$3^{\text {rd }}$ D2	1	2'8"×6'8'' RHIS	Front Entry (on 2 ${ }^{\text {nd }}$ Floor)Double Bore

The drawings submitted are as follows

1. Existing Conditions/ $1^{\text {st }}$ floor
2. Site plan
3. $1^{\text {st }}$ floor floor plan, electrical plan, floor framing details
4. $\quad 2^{\text {nd }}$ floor floor plan,electrical plan, floor framing detail,typical floor and wall framing details
5. $\quad 3^{\text {rd }}$ floor floor plan, electrical plan ,roof framing detail
6. $3^{\text {rd }}$ floor floor framing detail
7. South view/section
8. East View/Section
9. $3^{\text {rd }}$ floor Floor Plans
10. exterior View East

The ridge beam was figured at a span of 12^{\prime} and spacing of 20^{\prime} and will require a beam either a Parallam or Microllam of $31 / 2 " x 91 / 4 "$ minimum with bearing of 3 " at each end and $7 \frac{1}{2}$ " intermediate bearing (see page 10 of Trus Joist Specifiers guide). The larger valley rafter is supporting an area of 11 ' x 55 lb per $\mathrm{ft}(40+15)$ or 605 lb per ft and requires a $31 / 2 " \times 91 / 4$ " with a 1.5 in bearing (See page 22 of Trus Joist Specifiers guide) In regards to the electrical work, I want to know what you require. I am assuming that you 1 want interconnected smoke alarms in bedrooms and common halls and in basement .Is this requirement for new construction areas only?
1.
6. $\quad 3^{\text {rd }}$ floor floor framing detail

I will use 2 " $\times 10$ "joist if you recommend it. The Span is about 13 ' to the load bearing partition wall underneath. Currently the plan specifies $2 " x 8$ "@16"O.C.and they are lapped as is shown in the framing detail over both hall partition walls. The non bearing partition may be removed at some point in the future to remodel the kitchen on the second floor

15 May 06
The City Of Portland
Permit Application Checklist
From Peter Raszmann
120 Pleasant Ave.
Portland, Maine, 04103
7755141

1. General scope of work. The alterations include adding a $5 . \mathrm{ft} \times 16 \mathrm{ft}$ addition to the east side of the house. On the first floor it will enclose access for the back stairs. On the second floor it will add a bath and laundry. On the third floor the existing rear stairwell will be extended to the third floor and bedroom added . Assumptions about this are that the maximum rise per tread is $73 / 4$ " and the minimum run per tread is 10 "and stairwell framing width of 36 " min must be maintained and headroom of $6^{\prime} 8^{\prime \prime}$ must be maintained.
2. My understanding about fire rated fire doors that are to be installed at each apartment front and rear is that they are to be 90 Minute rated with automatic closers.
3. The details of any new walls or permanent partitions. All walls will be conventionally framed with a single bottom plate and a double top plate. Exterior walls will be framed with 2"x6" and Interior walls will be framed with 2 "x4" Insulation in walls is 6 " fiberglass with a6 mil vapor barrier (R19)in all new construction. Insulaltion in $3^{\text {rd }}$ floor ceiling is (between rafters) ventillation baffle, 9 " glass insulaltion, $3 / 4$ " foil faced foam, $3 / 4$ " strapping, and $1 / 2$ " drywall (R 37.5).

Below is the window and door schedule. Windows are Paradigm. If you see areas that require tempered glass let me know. Attached is a spec sheet from Paradigm with U values of windows.

Number	Quantity	Size and Description	Location
BW1	,	3624 Awning	East Basement
BW2	1	3624 Awning	South Basement
$1^{\text {st }} \mathrm{W} 1$	1	3652 casement(egress)	Bedroom
1st w 2	1	3652casement	Bedroom
$1^{\text {st }} \mathrm{W} 3$	1	3616 Awning	East Bath (existing)
$1^{\text {st }} \mathrm{W} 4$	1	P2430picture)	Under front stairs
$2^{\text {nd }} \mathrm{W} 1$	1	P2430pictur)	stair landing front
2ndW2	1	36I8Awning	Bath
$2^{\text {nd }}$ w 3	1	2418Awning	Bath
$2^{\text {nd }} \mathrm{w} 4$	1	3618Awning	Bath

The drawings submitted are as follows

1. Existing Conditions/ $1^{\text {st }}$ floor
2. Site plan
3. $1^{\text {st }}$ floor floor plan, electrical plan, floor framing details
4. $\quad 2^{\text {nd }}$ floor floor plan, electrical plan,floor framing detail,typical floor and wall framing details
5. $\quad 3^{\text {rd }}$ floor floor plan, electrical plan ,roof framing detail

The ridge beam was figured at a span of 12^{\prime} and spacing of 20^{\prime} and will require a beam either a Parallam or Microllam of $31 / 2^{\prime \prime} \times 91 / 4 "$ minimum with bearing of 3 " at each end and $7 \frac{1}{2}$ " intermediate bearing (see page 10 of Trus Joist Specifiers guide). The larger valley rafter is supporting an area of 11 ' $x 55 \mathrm{lb}$ per $\mathrm{ft}(40+15)$ or 605 lb per ft and requires a $31 / 2^{\prime \prime} \times 91 / 4$ " with a 1.5 in bearing (See page 22 of Trus Joist Specifiers guide) In regards to the electrical work, I want to know what you require. I am assuming that you 1 want interconnected smoke alarms in bedrooms and common halls and in basement .Is this requirement for new construction areas only?
1.
6. $3^{\text {rd }}$ floor floor framing detail I will use 2 " $\times 10$ "joist if you recommend it. The Span is about 13 ' to the load bearing partition wall underneath. Currently the plan specifies $2 " \times 8$ "@16"O.C.and they are lapped as is shown in the framing detail over both hall partition walls. The non bearing partition may be removed at some point in the future to remodel the kitchen on the second floor
7. South view/Section
8. East View/Section

Snow Roof Load Tables

How to Use These Tables

1 Calculate total load (neglect beam weight) on beam or header in pounds per linear foot (plf)

2 Select appropriate Span (center-to-center of bearing)
3 Scan horizontally to find the proper width and a depth that exceeds actual total load
4 Review bearing length requirements to ensure adequacy
Also see General Notes on page 23

Timberstrand ${ }^{\circledR}$ LSL: Roof -Snow Load Area 115\% (PLF)

Span	Condition	13/4" Width					3M"				idth		
		91/4"	91/2"	$\begin{gathered} 1.7 E \\ 111 / 4^{\prime \prime} \end{gathered}$	1178"	14"	1.3 E				1.7E		
							43/8"	51/2"	71/4"	85/9"	91/4"	91/2"	111/4"
3'	Total Load	4,491	4.612	4,612	4,612	4.612	1,770	2.740	4,644	6.469	8,981	9,222	9.222
	Deflection L/240 / L/360	*/*	*/*	*/*	*/*	*/*	*/1,420	*/2,548	*/*	*/*	*/*	*/x	*/*
	Min. End/Int. Bearing (in.)	441109	451113	45111.3	4.51113	451113	15135	1.7/4.3	2.9173	4.1/10.i	4.4110 .9	4.5/11.3	4.5/113
4'	Total Load	2866	2,979	3.457	3.457	3.457	994	1,539	2,609	3,635	5,731	5.958	6,912
	Deflection L/240 / L/360	*/*	*/*	*/*	*/*	*/*	3781652	*/1215	*/2477	*/*	*/*	*/*	*/*
	Min. End/Int. Bearing (in.)	37193	39197	4.51113	45/11 3	45/11.3	1.5/3.5	15135	2.2/5.5	$31 / 77$	3.7/9.3	3.9/97	$45 / 113$
5^{\prime}	Total Load	2.033	2139	2.754	2.764	2.764	634	983	1,667	2.323	4,066	4.278	5.507
	Deflection L/240 / L/360	*/1704	*/1 819	*/2,717	*/*	*/*	522/348	*/662	*/1,399	*/2,185	*/3,407	*/3,638	\%/5,433
	Min. End/Int. Bearing (in.)	$33 / 83$	35187	$45 / 11.2$	4.5/11.3	4.5/113	1513.5	1.5/3.5	1.8144	2416.1	3.3/8.3	3.5/8.7	4.5111 .2
6'	Total Load	1.410	1,484	2,050	2,273	2,302	318	615	1,155	1,611	2,820	2.968	4,100
	Deflection L/240 / U360	*/1,074	*/1 150	*/1,761	*/2,008	*/*	5091206	5961397	*/857	*/1,367	- $/ 2,147$	*/2,301	*/3.522
	Min. Endllnt. Bearing (in.)	28169	29173	4.0/10.0	4.4/11.1	4.5/11.3	1.5/3.5	1.5/3.5	1.5/3.7	2.0151	2.8/6.9	2.9/7.3	40110.0
$7{ }^{\prime}$	Total load	1.035	1,089	1,504	1,668	1.972	172	337	743	1,181	2,069	2.178	3,009
	Deflection L/240 / L/360	*/714	*/767	*/1,195	*/1,372		*/132	*/256	*/560	*/904	*/1,429	*/1,535	*/2,391
	Min. End/Int. Bearing (in.)	24/59	$25 / 62$	3.4/8.6	3.8/9.5	45/11.3	1.5/3.5	1.5/3.5	1.5/3.5	1.7/4.4	2.4/5.9	2.5/6.2	3.4/8.6
8	Total Load	791	832	1,150	1,276	1,724	100	198	443	902	1,582	1,665	2,301
	Deflection U240 / L/360	7451497	8021535	*/843	*/973	*/*	*/89	*/174	*/384	*/626	1,491/994	1,604/1,069	*/1,687
	Min. End/Int. Bearing (in.)	$21 / 52$	22154	3.0/7.5	3.3/8.3	4.5/11.3	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.8	$21 / 52$	22154	30175
9'-6"	Total Load	559	589	814	903	1,237		98	225	637	1.119	1177	1.628
	Deflection L/240 / L/360	4621308	4981332	7961531	*/615	*/954		*/*	*/*	580/381	9241616	9961664	159211061
	Min. Endllnt. Bearing (in.)	17144	18146	2.5/6.3	2817.0	3.8196		15135	1.5/3.5	15135	17144	1846	25163
10'	Total load	504	531	734	814	1,116		79	183	574	1,009	1,062	1,468
	Deflection L/240 / L/360	4001266	431/287	691/461	8021535	*/834		*/*	*/*	501/33	7991533	862/574	1,382/921
	Min. End/Int. Bearing (in.)	17141	I 7144	2.4/6.0	2.7/6.7	3.6/9.1		1.5/3.5	1.51.3.5	1513.5	1.7/41	17144	24160
12'	Total load	311	336	508	563	772			86	387	622	673	1,016
	Deflection U240 / L/360	2371158	2561171	4151277	4831322	7641509			*/*	297/198	4751316	5121342	8301553
	Min. End/Int. Bearing (in.)	15/35	1 5135	20150	2.2156	30176			15135	1.5/3.5	$15 / 35$	15135	$20 / 50$
14'	Total Load	197	213	350	410	565				244	395	427	701
	*peflection L/240 / L/360	1521101	1641109	2671178	312/208	4981332				189/126	304/202	3281219	5351357
	Min. Endlint. Bearing (in.)	15/3 5	$15 / 35$	16141	19/47	$26 / 65$				1.5/3.5	$15 / 35$	15135	$16 / 41$
16'-6"	Total Load	120	130	216	253	405				147	240	260	431
	Deflection U240 / L/360	94163	102168	1661111	1951130	3131208				117/78	1881125	2031135	3331222
	Min. End/Int. Bearing (in.)	$15 / 35$	15135	15135	15135	22155				$15 / 35$	$15 / 35$	$15 / 35$	$15 / 35$
18'-6"	Total Load	84	91	153	179	292				102	169	183	305
	Deflection L/240 / L/360	67/45	73148	119179	140193	2251150				83/56	134189	145197	238/159
	Min. End/Int. Bearing (in.)	$15 / 35$	15135	15135	15135	18145				1.5/3.5	15135	$15 / 35$	15135
20'	Total Load	66	72	120	142	232				80	132	143	240
	Deflection L/240 / U360	53136	58138	95163	111174	1801120				66144	107171	115177	1901126
	Min. End/Int. Bearing (in.)	15135	15135	15135	I 5135	$16 / 39$				1.5/3.5	15135	$15 / 35$	$15 / 35$
24'	Total Load			68	80	133					73	79	135
	Deflection L/240 / U360			55137	65/43	106170					62/41	67/45	111174
	Min. End/Int. Bearing (in.)			15135	15135	15135					15135	15135	15135
28'	Total Load					82							81
	Deflection L/240 / L/360					67/45							70147
	Min. Endllnt. Bearing (in.)					15135							1.5/3.5

[^0]
Snow Roof Load Tables

General Notes

- Tables are based on:
- Uniform loads (beam weight considered) and the more restrictive of simple or continuous span.
- Deflection criteria of L/180 total load. For stiffer deflection criteria, use L/240 values for total load deflection.
- For door and window applications, Trus Joist recommends using the L/360 value for a live load deflection limit and the $\mathbf{L} / 240$ value for a total load limit.

Also see General Assumptions on page 5.

TimberStrand ${ }^{\circledR}$ LSL: Roof —Snow Load Area 115\%(PLF)

Span	Condition	31/2" Width			51/4" Width (2- or 3-ply)						5M" Plank Orientation $\begin{aligned} & 1.3 \mathrm{E} \\ & 31 / 2^{\prime \prime} \end{aligned}$
		1.7 E			1.7E						
		117/8"	14"	16"	91/4"	91/2"	111/4"	117/8"	14"	16"	
3'	Total load	9,222	9,222	9.222	13,472	13,833	13,833	13,833	13.833	13.833	1,393
	Deflection L/240 / L/360	**	*/*	*/*	*/*	*/*	*/*	*/*	*/*	*/*	*/1,224
	Min. End/Int. Bearing (in.)	$45 / 113$	4.5111 .3	4.5/11.3	4.4/10.9	4.5/11.3	4.5/11.3	4.5111 .3	4.5/11.3	4.5/11.3	1.5/3.5
4'	Total load	6,912	6,912	6,912	8,597	8,937	10,368	10,368	10,368	10,368	997
	Deflection U240 / L/360	*/*	*/*	*/*	*/*	*/*	*/*	*/*	*/*	*/*	8201547
	Min. End/Int. Bearing (in.)	$45 / 113$	4.51113	4.5/11.3	3.7/9.3	3.9/9.7	4.5/11.3	4.5111 .3	4.5/11.3	4.5/11.3	1.5/3.5
5'	Total Load	5526	5,526	5,526	6,099	6.417	8,261	8,289	8,289	8.289	534
	Deflection L/240 / L/360	${ }^{*} \mathrm{I}$ -	*/*	*/*	*/5,111	*/5,456	-18.150	*/*	*/*	*/*	4321288
	Min. End/Int. Bearing (in.)	$45 / 113$	4.51113	4.5/113	3318.3	$35 / 8.7$	4.5/11.2	$45 / 11.3$	45111.3	4.5/11.3	1.5/3.5
6'	Total load	4546	4,602	4,602	4,230	4.452	6,150	6,819	6,903	6,903	259
	Deflection U240 / L/360	*/4,017	*/*	*/*	*/3,221	*/3,451	*/5,282	*/6,025	*/*	*/*	2541169
	Min. End/Int. Bearing (in.)	44/11 I	4.5/11.3	4.5/11.3	2.8/6.9	2.9/7.3	4.0/10.0	4.4/11.1	4.5111 .3	4.5111 .3	1.5/3.5
7	Total Load	333 b	3,942	3,942	3.104	3.266	4,513	5.004	5.913	5,913	138
	Deflection L/240 / L/360	*/2744	*/*	*/*	*/2,143	*/2,302	*/3,586	*/4.116	*/*	*/*	-1107
	Min. End/Int. Bearing (in.)	$38 / 95$	45111.3	4.5/11.3	2.4/5.9	2.516 .2	3418.6	3.8/9.5	4.5111 .3	45111.3	$15 / 3.5$
8'	Total load	2,551	3,447	3,447	2,373	2,497	3.451	3.827	5,170	5,170	79
	Deflection L/240 / L/360	*/1,945	*/*	*/*	,23611,491	2,40611,604	*/2,530	*/2,918	*/*	*/*	*/72
	Min. End/Int. Bearing (in.)	$33 / 83$	4.5/11.3	4.5/11.3	2.1/5.2	2.2/5.4	3.0/7.5	3.3/8.3	4.5111 .3	4.5/11.3	1.5/3.5
9'-6'	Total load	1,805	2,474	2,900	1,678	1,766	2,442	2,708	3.711	4,350	
	Deflection L/240 / L/360	*/1,230	*/1,909	*/*	1,3861924	1.4931996	2,38811,592	*/1,845	*/2,863	*/*	
	Min. End/Int. Bearing (in.)	$28 / 70$	3.8/9.6	4.51113	1.7/4.4	1814.6	2.5/6.3	2.8/7.0	3.8196	4.5/11.3	
10'	Total load	1628	2,231	2,754	1,513	1,592	2,202	2,442	3,347	4,131	
	Deflection L/240 / L/360	1,60411,069	*/1,667	*/*	1,1991799	1,2931862	2,07311,382	2,40611,604	*/2,501	*/*	
	Min. End/Int. Bearing (in.)	$27 / 67$	3.6/9.1	4.5/11.3	1.7/4.1	1714.4	2.4/6.0	2.7/6.7	3.6/9.1	4.5/11.3	
12'	Total Load	1127	1,545	1,995	934	1,009	1,523	1,690	2,317	2,993	
	Deflection L/240 / L/360	9671645	1,528/1,019	*/1,464	7121475	7691512	1.2451830	1.4501967	2,29211,528	*/2,195	
	Min. End/Int. Bearing (in.)	2.2/5.6	3.0/7.6	3.9/9.8	1.5/3.5	1.5/3.5	2.0/5.0	2.2/5.6	3.0/7.6	3.9/9.8	
14'	Total load	819	1,131	1,461	592	640	1,051	1,229	1,696	2,192	
	Deflection L/240 / L/360	6241416	9961664	1,4441962	4561304	4921328	8021535	9371624	1,4931996	2,165/1,44	
	Min. End/Int. Bearing (in.)	1.9/4.7	2.6/6.5	3.4/8.4	1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.7	2.6/6.5	3.4/8.4	
16'-6"	Total load	506	810	1,047	360	390	647	759	1,214	1.570	
	Deflection L/240 / L/360	3891259	6251417	9131609	2821188	3051203	4991333	5841389	9381625	1,3701913	
	Min. End/Int. Bearing (in.)	1.5135	$22 / 5.5$	2917.1	1.5/3.5	15135	1.5/3.5	1.5/3.5	$2.2 / 5.5$	2.9171	
18'-6"	Total load	359	584	829	253	274	458	538	877	1,244	
	Deflection L/240 / L/360	2791186	4501300	6601440	2011134	2181145	3581238	4191279	6751450	990/660	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.8/4.5	2.5/6.4	1.5135	1.5135	1.5/3.5	1.5/3.5	1.8/4.5	2.5/6.4	
20'	Total load	283	463	686	198	215	361	425	695	1,029	
	Deflection L/240 / L/360	2221148	3591239	5281352	1601107	1731115	2851190	3331222	5391359	7921528	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.6/3.9	2.3/5.7	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.6/3.9	2.3/5.7	
24'	Total load	160	266	398	109	119	203	240	399	597	
	Deflection L/240 / L/360	130187	2111141	3121208	93162	101167	1661111	1951130	3171211	468/312	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.513 .5	1.6/4.0	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.6/4.0	
28'	Total load	97	163	247	63	69	122	145	245	371	
	Deflection L/240 / L/360	82155	134189	1991132	59139	64143	105170	124182	2011134	2981199	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	

[^1]
How to Use This Table

1. Determine appropriate Roof Load and House width.
2. Locate Column Spacing.
3. Select beam size and material.

Also see General Notes on page 11.

Ridge Beams

Descriptor/Area
$\mathrm{A}: \mathrm{FA} / 2 \mathrm{Fi} / \mathrm{B}$
792 sqft
$\mathrm{B}: \mathrm{WD} / 2 \mathrm{Fr}$
120 sqft
Bye
28 sqft
D:N/A 80 sqft $=158$
$\mathrm{E}: 2 \mathrm{Fr} / \mathrm{B}$
406 sqft
F: 2FBAY
14 sqft
G:OFP
156 sqft
H:2FBAY/B 12sqft

APPLICATION FOR EXEMPTION FROM SITE PLAN REVIEW

P日, br baszmorty

Applicant

30 fhepront oue. , ध隹
Applicant's Mailing Address

Consultant/Agent/Phone Number

Application Date

Project Name/Description

Address of Proposed Site

CBL: \qquad
Description of Proposed Development:

Please Attach Sketch/Plan of Proposal/Development

Criteria for Exemptions:
See Section 14-523 (4) on back side of form
a) Within Existing Structures; No New Buildings, Demolitions or Additions

THIS IS XO'I A BOLNDARY SURVEY
This copyrighted document expires $1-27-0$ - Reproduction and/or dissemination after this date is unathorized MORTGACE: INSPOOMON OF: DEED BOOK _ 9053 _ PAGE _ 283 _ COCNTY _ Cumberdand_-

ADDRESS: 120 Pleasant Avenue Forlland, Maine Job Number: 53278 Inspection Date: 10-27-05 Scale: $1^{\prime \prime}=20^{\circ}$
Buyer: Peter G Ras\%mann
Client File \#: R-RASTMAX:
Sellers: Richard D \& Susan G. Knedler

face of granile curb

Pleasanl Avenue

1 HEIRFIHY CFIRTMIY' 'YO: Hopkinson, Abbondanza \& Backer. the Monuments found did nol conflict with the deed descriplion
The dwelling setbacks do not volate town zoning requirements
As delineated on the Fiederal Fimergency Management Agency Community Panel
l'he structure docs not fall within the special flood hazard zone
The land does not fall w thin the special flood hazard zone
A watland elud, tiae mo hown morinemort

APPARENT EASEMENTS AND RIGHTS OF WAY ARE SHOWN OTHER ENCUMBRANCES. RECORDED OR NOT, MAY EXIST THIS SKETCH WILL NO'T REVEAL ABUTTING DEED CONFIIC'TS IF' ANY
copyl:
Livingston - Hughes
Professional Land Survryors 8 G Gunnea Road
Kenmebunkport Maine 04046
207-967-9761 phone $\quad 207-967$ - 4831

Low E/ 0.3410 .33
Low E FF $1 / 0.32 / 0.31$
Low E argons 0.3010 .30
Low Eargon FF 410.2910 .28
'Optional Foam Insulation in frame
ClimaGuard RLE is a appearance as with other low e products on the market. In fact, the appearance is so dose to Cardinalát ${ }^{\text {TMs }}$ Low E 172 you will not be able to tell one from the other. This color match means replacing broken or failed glass is a non-issue.

RLE glass is manufactured using a proprietary IO-layer process, making the low e coating more durable manufacturing, which results in a reduced chance of scratches, impurities, and in tum reduces the risk fo

Our commitment to our customers goes beyond providing the latesttechnical innovations. We also work provide the shortest lead times in the industry, which requires parhering with vendors who can support this position. Guardian Industries has manufacturing facilities in Now York and Massachusetts, both less than a day away, which will help to reduce lead times for customs and special order items.
Technical data and literature will be available shortly from you Paradigm Sales Representative. Please v GuardianClimaGuard Low-E Glass to learn more about ClimaGuard LRE glass, and as always, please I contact the Engineering Dept at Paradigm Windows if you have any questions about this issue.

copyright © 2004 All Rights Reserved ParadigmWindows

Accuracy

Paradigm offers a limitlesscollection of half-rounds, arches, gothic arch tops, and other excit shapes. Engineered for aesthetics as well as meeting local building codes, Paradigmallows: design with a full line of quality and maintenance-freewindows. Compliment your next plan w choice of Warm White or Toasted Almond vinyl windows and reflect your personal style.

Technical News

[Sep 06 0s] ::Technical Bulletin \#16 - Glass Vendor Change

This bulletin shall serve to announce a change at Paradigm Window Solutions of glass vendors. Effective October Ist, 2005, we will begin producing windows made with high performance low e glass made by Guardian Industries, and we will no longer supply Cardinala ${ }^{\mathrm{m}^{\mathrm{m}} \mathrm{s}}$ Low We have long promoted the Cardinal product as a superior performer in the market; be assuredthat this does nothing to alter thatposition.

Guardian Industries is one of the largest glass manufacturersin the world with 24 float plants (raw glass) and 21 fabrication plants, employing 19,000 people in over 21 countries. Guardianbegan in windshield manufacturer, and began manufacturing float glass for use in windows and doors in 1970.

ClimaGuard RLE glass from Guardian Industries is the latest innovationin so called afcesecond generationaen low-e glass coatings. In terms of technical performance, ClimaGuard RLE glass provides equal or better performance1 versus Cardinal\& $€ \%$ Low E 172 glass. The table below shows a performance comparison of Cardinal 172 and ClimaGuard RLE in our premium double hung window. You will note that there is in most cases a . Ol improvement in the unit U-value with the RLE glass from Guardian.

[^2]
[^0]: Indicates Total Load value controls

[^1]: * Indicates Total load value controls

[^2]: 8321 Premium Double Hung Thermal Performance (per NFRC 100-2004)
 Type Glass/Unit U-value LE 172/Unit U-value RLE
 Clear/0.46/0.46

