	Project	Job No.	
Matthew Hood, PE 11500 Benthaven Dr Lakewood, CO 80215	Lesher Schmidt Deck		
	Subject	Sheet no./rev.	
			1
		Calc By	Date
		MOH	10/13/13

To whom it may concern,

I have reviewed the design of the double 2x8 beam supporting the deck. Based on the following assumptions it is adequate as is.

- Dead load is 10 psf
- Maximum snow load on the deck is 50 psf
- The beam is a double 2x8 of yellow pine no. 2
- The maximum clear span is 7'-1"
- The lumber is pressure treated but not incised

See the calculations below for complete justification of this analysis

Sincerely,

Mathew O. Hood, PE

Dead Load;	DL = 10 psf
Snow Load;	SL = 50 psf
Tributary Width;	Trib = 12 ft /2 = 6.0 ft
Span;	I = 7 ft + 1 in
Load on Beam;	ω = Trib * (DL +SL) = 360 plf
Moment;	M = ω*l ² /8 = 2257.81 lb_ft
Shear;	V = ω*l/2 = 1275 lbs

	Project		Job No.
Matthew Hood. PE		Lesher Schmidt Deck	
11500 Benthaven Dr Lakewood, CO 80215	Subject		Sheet no./rev.
			2
			Calc By Date
			MOH 10/1
STRUCTURAL WOOD MEMBE	R DESIGNSTR	UCTURAL WOOD BEAM DESIGN (NDS 2	<u>005)</u>
In accordance with the ASD m	ethod		
			TEDDS calculation versior
Analysis results			
Design moment in major axis		M _x = 2257 lb_ft	
Design shear		F = 1488 lb	
Maximum reaction		R = 1488 lb	
	[
57°		\sim	
<u>↓</u> <u>/</u> <u>/</u> <u>/</u>			
			
	◄ —4"-	→	
Sown lumber costion details			
Sawn lumber section details		h - 2 in	
Dressed breadth of sections		$D_{\text{nom}} = 2 $	
Nominal donth of acctions		d = 9 in	
Dressed depth of sections		$a_{nom} = 6$ III	
Number of soctions in momber		u - 7.23 m	
Quarall broadth of momber		$h = N \times h = 2$ in	
Overall breader of member		$D_b = 14 \times D = 3111$	
Table 4B - Reference design v	alues for visua	Ily graded Southern Pine dimension lum	ber (2''-4'' thick)
Species, grade and size classifie	cation	Southern Pine, No.2 grade, 8" wide	
Bending parallel to grain		$F_{\rm b} = 925 \text{lb/in}^2$	
Tension parallel to grain		F _t = 550 lb/in ²	
Compression parallel to grain		F _c = 1350 lb/in ²	
Compression perpendicular to g	rain	$F_{c_{perp}} = 565 \text{ lb/in}^2$	
Shear parallel to grain		$F_v = 175 \text{ lb/in}^2$	
Modulus of elasticity		$E = 1400000 \text{ lb/in}^2$	
Mean shear modulus		G _{def} = E / 16 = 87500 lb/in ²	
Member details			
Service condition		Dry	
Length of bearing		$L_b = 4$ in	
Load duration		Two months	
Section properties			
Cross sectional area of member		$A = N \times b \times d = 21.75 \text{ in}^2$	
Section modulus		$S_x = N \times b \times d^2 / 6 = 26.28 \text{ in}^3$	
		$S_v = d \times (N \times b)^2 / 6 = 10.87 \text{ in}^3$	
Second moment of area		$I_x = N \times b \times d^3 / 12 = 95.27 \text{ in}^4$	

	Project		Job No.		
Matthew Hood, PE 11500 Benthaven Dr	Lesher Schmidt Deck				
	Subject		Sheet no./rev.		
Lakewood, CO 80215				3	
			Calc By	Date	
			MOH	10/13/13	
Adjustment factors					
Load duration factor - Table 2.3.2		$C_{\rm p} = 1.15$			
Temperature factor - Table 2.3.3		$C_{\rm H} = 1.00$			
Size factor for bending $-$ Table 4R		$C_{t} = 1.00$			
Size factor for tension - Table 4B		$C_{Fb} = 1.00$			
Size factor for compression - Table	4B	$C_{\text{E}_{2}} = 1.00$			
Flat use factor - Table 4B		$C_{rc} = 1.15$			
Incising factor for modulus of elasti	city - Table 4.3 8	$B_{Cirr} = 1.00$			
Incising factor for bending shear t	ension & compre	ession - Table 4.3.8			
		$C_i = 1.00$			
Incising factor for perpendicular co	mpression - Tab	le 4 3 8			
		Cic. perp = 1.00			
Repetitive member factor - cl.4.3.9		Cr = 1.00			
Bearing area factor - cl.3.10.4		C _b = 1.00			
Depth-to-breadth ratio		$d_{nom} / (N \times b_{nom}) = 2.00$			
- Beam is fully restrained					
Beam stability factor - cl.3.3.3		C _L = 1.00			
Bearing perpendicular to grain -	cl.3.10.2				
Design compression perpendicular	to grain	$F_{c,perr}$ = $F_{c,perr} \times C_t \times C_i \times C_b$ = 565 lb/in ²			
Applied compression stress perper	dicular to grain	$f_{\text{prop}} = \mathbb{R} / (\mathbb{N} \times h \times I_{\text{p}}) = 124 \text{ lb/in}^2$			
· + + · · · · · · · · · · · · · · · · ·		$f_{0,perp} = 0.219$			
	PASS - Des	sign compressive stress exceeds applied com	pressive stre	ss at bearing	
Strength in bending - cl.3.3.1			•	-	
Design bending stress		F_{h} = $F_{h} \times C_{h} \times C_{h} \times C_{h} \times C_{rh} \times C_{h} \times C_{h}$ = 1064 lb	/in ²		
Actual bending stress		$f_{\rm b} = M_{\rm v} / S_{\rm v} = 1031 \text{ lb/in}^2$			
		$f_{\rm b} / F_{\rm b}' = 0.969$			
		PASS - Design bending stress exce	eds actual be	ending stress	
Strength in shear parallel to grai	n - cl 3 <i>4</i> 1			5	
Design shear stress	11 - 01.0.4.1	$E_{\rm s}$ = $E_{\rm s} \times C_{\rm p} \times C_{\rm s} \times C_{\rm s}$ = 201 lb/in ²			
Actual shear stress og 3.4.2		$f = 3 \times E / (2 \times A) = 103 \text{ lb/in}^2$			
Autual Sileal Siless - Ey.J.4-2		$f_{\rm e} = 0.517 (2 \times R) = 100 10/111$			
		PASS - Design shear stross of	vcoods actual	shoar stress	
		r Aug - Design shear shess e	Leeus aciudi	311Cai 311833	