	Project	Lesher Schmidt Deck	
Matthew Hood, PE No. 11500 Benthaven Dr Lakewood, CO 80215	Subject	Sheet no./rev.	
		Calc By MOH	Date $10 / 13 / 13 ~$

To whom it may concern,

I have reviewed the design of the double 2×8 beam supporting the deck. Based on the following assumptions it is adequate as is.

- Dead load is 10 psf
- Maximum snow load on the deck is 50 psf
- The beam is a double 2×8 of yellow pine no. 2
- The maximum clear span is 7 '- 1 "
- The lumber is pressure treated but not incised

See the calculations below for complete justification of this analysis

Sincerely,

Mathew O. Hood, PE

Matthew Hood, PE 11500 Benthaven Dr Lakewood, CO 80215	Lesher Schmidt Deck		Job No.	
	Subject		2	
			Calc By MOH	Date 10/13/13

STRUCTURAL WOOD MEMBER DESIGNSTRUCTURAL WOOD BEAM DESIGN (NDS 2005)

In accordance with the ASD method

Analysis results

Design moment in major axis
$\mathrm{M}_{\mathrm{x}}=2257 \mathrm{lb} _\mathrm{ft}$
Design shear
$F=1488 \mathrm{lb}$
Maximum reaction
$\mathrm{R}=1488 \mathrm{lb}$

$\mid \longleftarrow 4 " \rightarrow$

Sawn lumber section details

Nominal breadth of sections
$\mathrm{b}_{\text {nom }}=2$ in
Dressed breadth of sections
$\mathrm{b}=1.5$ in
Nominal depth of sections
$\mathrm{d}_{\text {nom }}=8$ in
Dressed depth of sections
Number of sections in member
$\mathrm{d}=7.25$ in
$\mathrm{N}=2$
Overall breadth of member
$b_{b}=N \times b=3$ in
Table 4B - Reference design values for visually graded Southern Pine dimension lumber (2"-4" thick)

Species, grade and size classification
Bending parallel to grain
Tension parallel to grain
Compression parallel to grain
Compression perpendicular to grain
Shear parallel to grain
Modulus of elasticity
Mean shear modulus

Member details

Service condition
Length of bearing
Load duration

Section properties

Cross sectional area of member
Section modulus

Second moment of area

Southern Pine, No. 2 grade, 8 " wide
$\mathrm{F}_{\mathrm{b}}=925 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{t}}=550 \mathrm{lb} / \mathrm{in}^{2}$
$F_{\mathrm{c}}=1350 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{c} _ \text {perp }}=565 \mathrm{lb} / \mathrm{in}^{2}$
$F_{V}=175 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{E}=1400000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{G}_{\text {def }}=\mathrm{E} / 16=87500 \mathrm{lb} / \mathrm{in}^{2}$

Dry
$\mathrm{L}_{\mathrm{b}}=4$ in
Two months

A $=\mathrm{N} \times \mathrm{b} \times \mathrm{d}=21.75 \mathrm{in}^{2}$
$S_{x}=N \times b \times d^{2} / 6=26.28$ in 3
$S_{y}=d \times(N \times b)^{2} / 6=10.87$ in 3
$\mathrm{I}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{d}^{3} / 12=95.27 \mathrm{in}^{4}$
$l_{y}=d \times(N \times b)^{3} / 12=16.31$ in 4

Adjustment factors

Load duration factor - Table 2.3.2 $\quad C_{D}=1.15$
Temperature factor - Table 2.3.3
$C_{t}=1.00$
Size factor for bending - Table 4B
$\mathrm{C}_{\mathrm{Fb}}=1.00$
Size factor for tension - Table 4B
$\mathrm{C}_{\mathrm{Ft}}=1.00$
Size factor for compression - Table 4B $\quad C_{F c}=1.00$
Flat use factor - Table 4B
$\mathrm{C}_{\mathrm{fu}}=1.15$
Incising factor for modulus of elasticity - Table 4.3.8 $\mathrm{C}_{\mathrm{iE}}=\mathbf{1 . 0 0}$
Incising factor for bending, shear, tension \& compression - Table 4.3.8
$\mathrm{C}_{\mathrm{i}}=1.00$
Incising factor for perpendicular compression - Table 4.3.8
$C_{\text {ic_perp }}=1.00$
Repetitive member factor - cl.4.3.9
$C_{r}=1.00$
Bearing area factor - cl.3.10.4
$C_{b}=1.00$
Depth-to-breadth ratio
$\mathrm{d}_{\text {nom }} /\left(\mathrm{N} \times \mathrm{b}_{\text {nom }}\right)=2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3
$C_{L}=1.00$
Bearing perpendicular to grain - cl.3.10.2
Design compression perpendicular to grain
$F_{c _ \text {perp }}{ }^{\prime}=F_{c _ \text {perp }} \times C_{t} \times C_{i} \times C_{b}=565 \mathrm{lb} / \mathrm{in}^{2}$
Applied compression stress perpendicular to grain
$\mathrm{f}_{\mathrm{c} \text { _perp }}=\mathrm{R} /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=\mathbf{1 2 4} \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c} \text { _perp }} / \mathrm{F}_{\mathrm{c} _ \text {perp }}=\mathbf{0 . 2 1 9}$
PASS - Design compressive stress exceeds applied compressive stress at bearing

Strength in bending - cl.3.3.1

Design bending stress
$F_{b}{ }^{\prime}=F_{b} \times C_{D} \times C_{t} \times C_{L} \times C_{F b} \times C_{i} \times C_{r}=1064 \mathrm{lb} / \mathrm{in}^{2}$
Actual bending stress
$\mathrm{f}_{\mathrm{b}}=\mathrm{M}_{\mathrm{x}} / \mathrm{S}_{\mathrm{x}}=1031 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}=0.969$
PASS - Design bending stress exceeds actual bending stress
Strength in shear parallel to grain - cl.3.4.1

Design shear stress
Actual shear stress - eq.3.4-2

$$
\begin{aligned}
& F_{v}{ }^{\prime}=F_{v} \times C_{D} \times C_{t} \times C_{i}=201 \mathrm{lb} / \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{v}}=3 \times F /(2 \times A)=103 \mathrm{lb} / \mathrm{in}^{2} \\
& f_{v} / F_{v^{\prime}}=0.510
\end{aligned}
$$

PASS - Design shear stress exceeds actual shear stress

