DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK

CITY OF PORTLAND BUILDING PERMIT

This is to certify that HILLER NE FIRE PROTECTION
of 240 Ballardvale St, Willmington, MA 01887

For installation at 70 BEDFORD ST USM Science Building

Job ID: 2011-07-1826-ALTCOMM

CBL: 114A- A-001-001

has permission to install NFPA 2001 Inergen system for Data Center

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise closed-in. 48 HOUR NOTICE IS REQUIRED. A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be

Fire Prevention Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY PENALTY FOR REMOVING THIS CARD

C(09ed

BUILDING PERMIT INSPECTION PROCEDURES

Please call 874-8703 or 874-8693 (ONLY)

or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this
 office if you have any questions.
- Permits expire in 6 months. If the project is not started or ceases for 6 months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

Final Fire

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUOPIED.

PORTLAND MAINE

Strengthening a Remarkable City, Building a Community for Life . www.portlandmaine.gov

Director of Planning and Urban Development Penny St. Louis

Job ID: 2011-07-1826-ALTCOMM Installation of NFPA 2001 Inergen System for the Data Center For installation at: 71 BEDFORD ST USM Science Building CBL: 114A- A-001-001

Conditions of Approval:

Fire

The suppression system shall be installed in accordance with NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems. A compliance letter is required.

Suppression system supervision shall be provided in accordance with NFPA 101, *Life Safety* Code, and NFPA 72, *National Fire Alarm and Signaling Code*.

Suppression system protection shall be maintained. Where the system is to be shut down for maintenance or repair, the system shall be checked at the end of each day to insure the system has been placed back in service.

City of Portland, Maine - Building or Use Permit Application 389 Congress Street, 04101 Tel: (207) 874-8703, FAX: (207) 8716

Job No: 2011-07-1826-ALTCOMM 2011-10799	2011-07-1826-ALTCOMM 9/29/2011		CBL: 114A- A-001-001				
Location of Construction: 70 FALMOUTH ST	Owner Name: UNIVERSITY OF MAIN	TE.	Owner Address: 107 MAINE AVE BANGOR, ME 04401			Phone:	
Business Name: USM Data Center	Contractor Name: Hiller NE Fire Protection Kidd	Jeffrey	Contractor Addresses 240 Ballardvale Str	ess: eet, Willmington, MA	01887	Phone: (207) 657-5646	
Lessee/Buyer's Name:	Phone:		Permit Type: FAFS				
Past Use: Proposed Use: University Same: University – t		o install	Cost of Work: \$480,000.00		CEO District:		
fire suppression system in floor computer room -#23'			Fire Dept:	Approved [3] Denied N/A	conditions	Inspection: Use Group: Type: Signature:	
Proposed Project Description Data Ctr & Generator Upgrades			Pedestrian Activ	ities District (P.A.D	.)		
Permit Taken By: Planing				Zoning Approv	/al		
 This permit application does not preclude the Applicant(s) from meeting applicable State and Federal Rules. Building Permits do not include plumbing, septic or electrial work. Building permits are void if work is not started within six (6) months of the date of issuance. False informatin may invalidate a building permit and stop all work. 		Special Zo Shorelar Wetland Flood Zo Subdivis Site Plan	one sion	Zoning Appeal Variance Miscellaneous Conditional Use Interpretation Approved Denied	Does not l Requires l Approved	st or Landmark Require Review Review	
	record of the named property,	Date: OV CERTIF	ICATION cosed work is authorize	Date:	Date:	authorized by	
	his authorized agent and I agree the code official's authorized re	Date: CERTIF or that the prope to conform to	all applicable laws of t	d by the owner of record	and that I have been a	rk described in	

Non-Water-Based Fire Suppression System Permit

If you or the property owner owes real estate or property taxes or user charges on any property within the city, payment arrangements must be made before permits of any kind are accepted.

# 2011.	-10799 CBL: 114A-A-1 went									
Exact location: (within structure) 2nd Floor Computer Room	1 #237									
Type of occupancy(s) (NFPA & ICC): Data Center, Normally Un-Occupied										
Building owner: University of Southern Maine, Portland Campus										
Managing Supervisor: Jeffrey Kidd of Hiller NE Fire Prote										
Supervisor phone: (978) 657-5550	E-mail: jeffkidd@hillerne.com									
Installing contractor: Dean & Allyn, Inc.	License No:									
Contractor phone: (207) 657-5646	E-mail: dnarvaez@deanandallyn.com									
The suppression work to be done will be: New: Renov	Addition to existing system: Permit no:									
System Type: Inergen NFPA Standard: 2001 Edition: Year 2008 *Non-NFPA systems are not approved for use within the City of Portland.	COST OF WORK: \$20,000.00 PERMIT FEE: \$230.00 (\$10 PER \$1,000 + \$30 FOR THE FIRST \$1,000)									
Download a new copy of this document from www.portlandmaine.gov/fire for every submittal. Attach all working documents as required on electronic PDF's in addition to full sized plans.										
Submit all information to the Building Inspections Department, 389 Con	gress Street, Room 315, Portland, Maine 04101.									

Prior to acceptance of any fire protection system, a complete commissioning and acceptance test must be coordinated with all fire system contractors and the Fire Department, and proper documentation of such test(s) provided.

All installation(s) must comply with NFPA and the Fire Department Technical Standard(s).

Applicant signature: Seffun Kidd	Date: 9/26/2011	

ANSUL INERGEN DESIGNER Version 2.1.2

Data file name: \\Mac-server\engineering

g\Job Folder\NE2471-University of Southern Maine (Langford & Low)\Calculations\A-2471-1r0.in

Job: NE2471

Customer: Langford & Low Address: 70 Falmouth St. Science Building Portland ME 04104

REMARKS: University of Southern Maine

Hazard Area Information

Area: Data Center

Design concentration 34.2% at 65° Fahrenheit

Estimated maximum concentration 50.2% at maximum hazard temperature 75° Fahrenheit

Gross volume of enclosure 6088 cubic feet Structural volume reductions 429.9 cubic feet Net volume of enclosure 5658.3 cubic feet Minimum INERGEN required 2393.5 cubic feet

Approximate INERGEN supplied 3912.9 cubic feet

Flooding factor .423 cubic feet of INERGEN per cubic feet of enclosure volume

Maximum allowable wall strength 5.0 lbs./sq.ft.

Area consists of one volume

Volume 1: Length 42.4 ft Width 17.3 ft Height 8.3 ft

2 nozzles. Nozzle identifiers: 301, 302

Area: Data Center; Subfloor

Design concentration 34.2% at 65° Fahrenheit

Estimated maximum concentration 50.2% at maximum hazard temperature 75° Fahrenheit

Gross volume of enclosure 587 cubic feet
Structural volume reductions 41.4 cubic feet
Net volume of enclosure 545.4 cubic feet
Minimum INERGEN required 230.7 cubic feet
Approximate INERGEN supplied 377.1 cubic feet

Flooding factor .423 cubic feet of INERGEN per cubic feet of enclosure volume

Maximum allowable wall strength 5.0 lbs./sq.ft.

Area consists of one volume

Volume 1: Length 42.4 ft Width 17.3 ft Height 0.8 ft

2 nozzles. Nozzle identifiers: 401, 402

Agent Storage Conditions

Number of cylinders: 10 each containing 429 cubic feet of INERGEN.

Total agent 4290 cubic feet

Engineering units (ft, cu ft, psia) are specified

Calculation based on 70 degree Fahrenheit pre-discharge Pipeline Temperature

Calculation based on fixed nozzle and pipe sizes

Pipe Data Input

Sec	Sec	Nominal	Length	Elev	90's	Side	Thru	Union/	Noz	Eql
Start	End	Pipe Size	(ft)	(ft)		Tee	Tee	Cplg	Dia	(ft)

1 2 12 14 22	2 12 14 22 24	1/2 - 40 T 2 - 80 W 2 - 80 T 2 - 40 T 2 - 40 T	0.01 5.00 0.00 40.30 7.80	0.00 0.50 0.00 4.30 0.00	0 2 0 6 0	0 1 0 0	0 3 0 0 1	0 0 0 0	10 cyl	38.00 0.00 Orifice 0.00 0.00
22 24 24 28	28 301 302 401	3/4 - 40 T 1 1/4 - 40 T 1 1/4 - 40 T 3/8 - 40 T		-9.30 -1.00 -1.00 -0.50	1 1 1	1 1 1	0 0 0	0 0 0	0.594 0.594 0.188	0.00 0.00 0.00 0.00
28	402	3/8 - 40 T	8.50	-0.50	1	1	0	0	0.188	0.00

ANSUL INERGEN DESIGNER

UL listed EX4510, FMRC Approved (J.I.) 2Y0A9.AF, ULC listed CEx1151 Version 2. 1. 2

Data file name: \\Mac-server\engineering

g\Job Folder\NE2471-University of Southern Maine (Langford & Low)\Calculations\A-2471-1r0.in

Job Number NE2471 for Langford & Low

Address: 70 Falmouth St. Science Building Portland ME 04104

REMARKS: University of Southern Maine

Agent Storage Conditions

Storage pressure is 2175 psia at 70 degrees Fahrenheit.
429 cubic feet of INERGEN stored in each of 10 cylinders.
Total agent in storage is 4290 cubic feet.
Time to discharge 3861 cubic feet (90% of INERGEN) is 69.7 seconds Maximum pressure downstream of manifold orifice is 1246 psia

Concentrations

		95%		Maximum	Minimum	Requested
Area	Volume	Time (sec)	Cu Ft INERGEN	Concentration at Max. Temp.	Concentration at Min. Temp.	Concentration at Min Temp.
Data Center	5658.3	28	3919.4	50.3% at 75°F	49.6% at 65°F	34.2% at 65°F
		Sea I	evel equival	ent oxygen: 10.49	% at 75°F	
Data Center; Subflo	oor			, ,		
	545.4	29	370.6	49.6% at 75°F	49.0% at 65°F	34.2% at 65°F
		Seal	evel equival	ent oxygen: 10.6%	% at 75°F	

Free Vent Calculation

Area	Peak	Maximum Wall	Minimum Free
	Rate	Strength	Vent Area
Data Center	8275.7 cfm	5.0 lbs./sq.ft.	316 sq. in.
Data Center; Subfloor	787.1 cfm	5.0 lbs./sq.ft.	30 sq. in.

Pressure Drop Results

Sec Start	Sec End		lominal Pipe Size	Length (ft)	Equiv Length(ft)	Elev (ft)	Tee/ Mfld	Start psia	Term psia	Flow (cfm)
1	2	1/2	40 T	0.0	38.0	0.0	MFLD	1033	1000	489.9
2	12	2	80 W	5.0	22.9	0.5	MFLD	1000	995	4898.9
12	14	ORI	FICE .62	5 INCHES	DRILL NO). 5/8		995	452	4898.9

1 (Continued)

ANSUL

UL listed EX4510, FMRC Approved (J.I.) 2Y0A9.AF, ULC listed CEx1151 Version 2. 1. 2

Data file name: \\Mac-server\engineering

g\Job Folder\NE2471-University of Southern Maine (Langford & Low)\Calculations\A-2471-1r0.in

Job Number: NE2471

Pressure Drop Results (Continued)

Sec	Sec	Nomi		Equiv	Elev	Tee/	Start	Term	Flow
Start	End	Pipe		Length(ft)) (ft)	Mfld	psia	psia	(cfm)
14 22 22	22 24 28	2 40	0 T 40.3 0 T 7.8 0 T 17.5	71.3 11.2 23.7	4.3 0.0 -9.3	THRU SIDE	452 576 576	576 573 569	4898.9 4474. 424.9
24	301	1 1/4 4	10 T 6.8	17.2	-1.0	BULL	573	564	2239.2
24	302		10 T 13.3	23.7	-1.0	BULL	573	561	2234.7
28	401		0 T 8.5	12.2	-0.5	BULL	569	558	212.4
28	402	3/8 40	0 T 8.5	12.2	-0.5	BULL	569	558	212.4

Calculation based on 70 degree Fahrenheit pre-discharge Pipeline Temperature

Pipe and Fittings

Sec Start	Sec End		minal se Size	Length (ft)	90's	Side Tee	Thru Tee	Union Cplgs		ql ft)	
1 2 12	2 12 14	2	40 T 80 W 80 W	0.0 5.0	0 2 0	0 1 0	0 3 0	0 0 0	Cyl Va Man.		
14 22 22	22 24 28	2	40 T 40 T 40 T	40.3 7.8 17.5	6 0 1	0 0 1	0 1 0	0 0 0			
24 24 28	301 302 401	1 1/4 1 1/4 3/8	40 T 40 T 40 T	6.8 13.3 8.5	1 1 1	1 1 1	0 0 0	0 0 0			
28	402	3/8	40 T	8.5	1	1	0	0			

Nozzle Performance Summary

Nozzle			Drill	Quantity (cu ft)	Area
Number			Diameter	Discharged	Name
301	1 1/4 40 T	19/32	0.593	1962.5 Continued)	Data Center

ANSUL INERGEN DESIGNER

UL listed EX4510, FMRC Approved (J.I.) 2Y0A9.AF, ULC listed CEx1151 Version 2. 1. 2

Data file name: \\Mac-server\engineering

g\Job Folder\NE2471-University of Southern Maine (Langford & Low)\Calculations\A-2471-1r0.in

Job Number: NE2471

Nozzle Performance Summary (Continued)

Nozzle Number	Nominal Pipe Size	Drill Number	Drill Diameter	Quantity (cu ft) Discharged	Area Name
302	1 1/4 40 T	19/32	0.593	1956.9	Data Center
401	3/8 40 T	3/16	0.187	185.3	Data Center; Subfloor
402	3/8 40 T	3/16	0.187	185.3	Data Center; Subfloor

Messages/Errors

ANSUL 150 bar INERGEN DESIGNER Version number 2.1.2 Calculation based on fixed nozzle and pipe sizes.

Calculation done on 8/10/2011 at 2:21:15 PM

Pipe schedule selected for pipe sizes downstream of the manifold orifice is based on the maximum pipe pressure for Grade A-53B, A-106B Seamless. To determine if other grades are acceptable, verify that the maximum pipe pressures for other grades are equal to or greater than the maximum anticipated downstream pressure.

Calculation by Hiller New England Fire Protection, Inc.

Engineering Department 240 Ballardvale St. Wilmington MA 1887 USA

Telephone: 978-657-5550

Fax: 978-657-0016

Installation Data Pack for New Project

Pipe Type

America

Contact

Hiller New England Fire Protection, Inc.

Date

8/7/11

Units

US

Altitude

0'

Designed with Hole Sizes 0;5/64"

Detector: VLP

Type

VESDA VLP

Endcap Usage

Create a Balanced Design

Application

Default

Aspirator Speed

3990rpm

Temperature

68.0 °F

Absolute Pressure

System Flowrate

1013.5hPa

Manifold Pressure

83.5l/min

211Pa

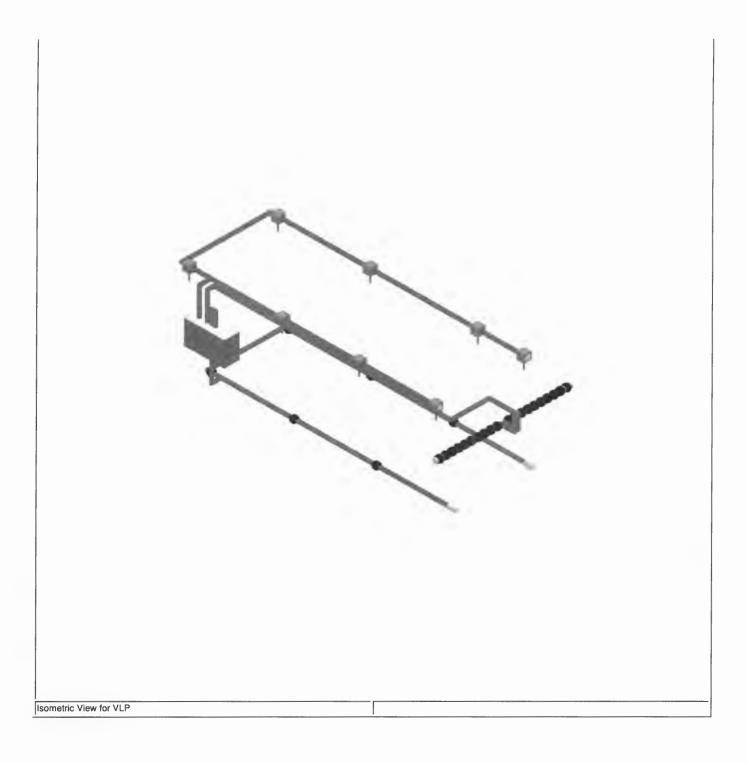
Total Pipe Length

Number Of Sample Points 36

239' 3"

Maximum Transport Time 53

Minimum Hole Flow Rate 1.01/min


Inverted Detector

Fire Threshold

0.062%/ft

Balance Data

Group name	Aggregate Sensitivity	Balance	Suction pressure (least)	Endcap Sensitivity Factor
[Default Group]	0.062%/ft	76%	157Pa	0.0

Pipe:Ceiling Sampling

Total Pipe Length 83' 10"

Ambient Pressure 0Pa
Sector Pressure 211Pa
Number Of Sample Points 8
Pipe Flowrate 22.1/min

To Tee

Pipe Diameter 0.874in

		Elbow	Tee
Distance	1	3.6"	5.3"
Relative	н	3, 3,	1, 6,
Direction		4	æ
Hole Diameter		•	•
Capillary Length	11	•	•
Transport	Sec	•	•
Pressure Flow Flow %	P.	-	•
Flow	Mm/	•	
Flow %			•
Sel	11/0/	-	
ete			
Cap		•	•
Intersection Pressure	2		•

Lower Branch

Pipe Diameter 0.874in

Upper Branch

Pipe Diameter 0.874in

L		Dietano	Deletive	Direction	Holo	Canillany	Transport	Proceire	FIDE	FLOW	Hole	Diameter Canillary	Capillary	Intercertion
			A LONG		Diameter		Time			%	Sensitivity		Diameter	•
*		=	#		<u>=</u>		sec	Ра	l/min	7	%/#	ü	Ë	Pa
2	Capillary	y 8' 1"	2' 10"	'	5/64"	6	5	195	2.8	3.3	1.859	0.874	0.375	202
Ŀ	Elbow	9.1"	1-	L			'		•		•	•		
·	Elbow	v 20' 7"	11.6"	æ		•			'	•	•			
9	Capillary	7 21.7"	-	1	5/64"	9	12	191	2.8	3.3	1.874	0.874	0.375	199
_	Capillary	33, 7"	12'		5/64"	.9	19	189	2.7	3.3	1.885	0.874	0.375	197
8	Capillary	¥ 47.7"	14.		5/64"	9	31	187	2.7	3.3	1.894	0.874	0.375	195
တ	Capillary	53.7"	9		5/64"	.9	42	186	2.7	3.3	1.899	0.874	0.375	194
10	Endcap	54' 1"	.9	-	0	•		1	1	-		0.874		

21	Hole	55' 11"	10"	-	5/64"		17	157	2.1	2.5	2.444	0.874	-	-
22	Endcap	56' 5"	6"	-	0	-	-	-	-	-	-	0.874	-	-

Pipe:Subfloor Sampling

)

Total Pipe Length 86'6"
Ambient Pressure 0Pa
Sector Pressure 211Pa
Number Of Sample Points 8
Pipe Flowrate 18.9l/min

To Tee

Pipe Diameter 0.874in

distance Relative Direction Hole Capillary Diameter Length tt ft in ft	1,8" I	2'3" 6" D -	10'9" 8'6" F	12' 1'3" L
Transport Pressure Flow Flow % Time sec Pa I/min	-	'		'
Pressure Flow		,		
w Flow %				
Hole Sensitivity %/ft	•			
Diameter			,	
Diameter Capillary Diameter in in		,		
Intersection Pressure Pa		-		-

Upper Sampling

Pipe Diameter 0.874in

	#	-	•	•	2	3	4	ч
		Hole	Elbow	Elbow	Hole	Hole	Hole	Fndcan
Distance	#	13, 3,,	13.8"	23.9"	24.3"	35.	45'9"	.55
Relative	#	1.3"	.9	10,	.9	10.9"	10.8"	10, 3"
Relative Direction			ш	Œ				
Hole Diameter	드	5/64"	•	1	5/64"	5/64"	5/64"	5/64"
Capillary Length				,		-	'	
Transport Time	sec	9	,		12	19	30	53
Pressure	Ра	201			199	197	196	195
Flow	l/min	2.4	·		2.4	2.4	2.4	23
Flow %		2.9		'	2.9	2.8	2.8	27
Hole Sensitivity	%/ft	2.159			2.172	2.182	2.189	2 267
Diameter	ء.	0.874	'	,	0.874	0.874	0.874	0.874
Capillary Diameter	Ë		'	,	'		,	l'
Intersection Pressure	Pa							

Lower Sampling

Pipe Diameter 0.874in

-		_		
	Intersection Pressure Pa			,
	Capillary Diameter in		'	,
	Diameter	0.874	0.874	0.874
	Hole Sensitivity %/ft	2.165	2.172	2.250
	Flow %	2.9	2.9	2.8
	Flow I/min	2.4	2.4	198 2.3
	Pressure	200	199	
	Transport F Time	12	23	45
	Capillary Length ft	•	•	-
	Hole Cap Diameter Le in	5/64"	2/64"	5/64"
	Distance Relative Direction Hole Diameter ft ft in			-
	Relative ft	.9,6	10'9"	10'3"
	Distance	21.6"	32.3"	45' 6"
		Hole	Hole	Endcap
i	*	9	1	œ

Pipe:To CRAC Units

Total Pipe Length 68' 11"

Ambient Pressure 0Pa
Sector Pressure 211Pa
Number Of Sample Points 20
Pipe Flowrate 42.5l/min

To Tee

Pipe Diameter 0.874in

	#	•	·	•	•	
		Elbow	Elbow	Elbow	Elbow	Tee
Distance	#	3, 8,,	4' 7"	35, 2"	40, 2"	43' 11"
Relative	#	3.0	10"	30, 10"	5.	3.6"
Distance Relative Direction		L	æ	L	R	L
Hole C	<u>.</u> ⊆	•	-		-	'
Sapillary	°=	'	•	'	-	1
Transport Pressure Flow Flow %	sec		•	-	-	,
Pressure	Pa	'	•	•	•	
Flow	l/min	'	٠	'	'	
Flow %			-	•	•	
Hole Sensitivity	%/ft	•	•			
Diameter Capillary Diameter	Ë				-	-
r Capillary I	<u>:</u>	,		•	-	•
Intersection Pressure						

To CRAC Unit 2A

Pipe Diameter 0.874in

Distance Relative Direction Hole Capillary Transport Flow Flow Flow Sensitivity Diameter Capillary Intersection Pressure Flow Flow Sensitivity Diameter Capillary Intersection Pressure Flow Flow Sensitivity Diameter Pressure Pressure Pressure Pa I/min Pressure Pres	*	·	•	•	-	7	က	4	2	9	1	8	6	10	L
Distance Relative Direction Hole Capillary Transport Pressure Flow Flow % Hole Sensitivity Adv. 2 3" D		Elbow	Elbow	Elbow	Hole	Hole	Hole	Hole	Hole	Hole	Hole	Hole	Hole	Hole	
Hole Capillary Transport Pressure Flow Flow % Hole Diameter Length Time Pa I/min % Sensitivity in ft sec Pa I/min % #1	#		46' 2"	47' 11"	48, 5"	49'3"	50' 1"	50' 11"	51.9"	52' 7"	53, 2,,	54'3"	55' 1"	55' 11"	1 101
Hole Capillary Transport Pressure Flow Flow % Hole Diameter Length Time Pa I/min % Sensitivity in ft sec Pa I/min %/ft	#		2,	1.6.1	.9	10"	10"	10"	10"	10.	10.	10.	10"	10.	10
Hole Capillary Transport Pressure Flow Flow % Hole Diameter Length Time Pa I/min % Sensitivity in ft sec Pa I/min %/ft		0	_	ш	'		'			·	'	'			
Hole Sensitivity %/ft	Diameter in		•	'	5/64"	5/64"	5/64"	5/64"	5/64"	5/64"	5/64"	5/64"	5/64"	5/64"	-
Hole Sensitivity %/ft	Length						,								
Hole Sensitivity %/ft	Time	,			6	10	10	10	=	=	12	13	14	17	
Hole Sensitivity %/ft	Pa		Ĺ		160	160	159	159	158	158	158	157	157	157	
Hole Sensitivity %/ft	l/min		Ĺ	L.	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
Hole Sensitivity %/ft			'		2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	
	Sensitivity %/ft		'	'	2.419	2.423	2.426	2.429	2.432	2.435	2.438	2.440	2.442	2.444	
Capillary Intersecti Diameter Pressuri					0.874	0.874	0.874	0.874	0.874	0.874	0.874	0.874	0.874	0.874	0.874
Intersecti Pressur Pa	Diameter														Ľ
E . .	Pre			'	1	,		,				'	'	1	

To CRAC Unit 1A

Pipe Diameter 0.874in

		Distance	Distance Relative Direction	Direction	Hole	_		Transport Pressure	Œ	MO	Flow Flow %	Flow %	Flow % Hole	Flow %
*		#	#		in	t	sec		Ра	Pa I/min		l/min	l/min	l/min %/ft in
-	Elbow	w 44'2"	÷n	O		,		L						-
	Elbow	w 46' 2"	2	_		-		L				-		
-	Elbow	W 47'11"	1.6.1	В							1	•		
12	Hole	e 48' 5"	.9	'	5/64"		6		160	160 2.1	2.1	2.1 2.6	2.1 2.6 2.419	2.1 2.6
	Hole	e 49'3"	10"	'	5/64"		10		0	160 2.1		2.1 2.6	2.1 2.6 2.423	2.1 2.6
1	Hole	e 50' 1"	10"		5/64"		10	159	O	9 2.1	2.1	2.1 2.6	2.1 2.6 2.426	2.1 2.6
1	Hole	e 50' 11"	10"		5/64"		10	159	l on	9 2.1		2.1 2.6	2.1 2.6 2.429	2.1 2.6
4	Hole	e 51.9"	10"		5/64"		1-	158	0	8 2.1	2.1	2.1 2.5	2.1 2.5 2.432	2.1 2.5
1	Hole	e 52' 7"	10.		5/64"		=	158	100	8 2.1		2.1 2.5	2.1 2.5 2.435	2.1 2.5
1	Hole	53, 5"	10		5/64"		12	158	m	3 2.1	2.1	2.1 2.5	2.1 2.5 2.438	2.1 2.5
1	Hole	e 54'3"	10.	'	5/64"		13	157	1	7 2.1		2.1 2.5	2.1 2.5 2.440	2.1 2.5
1	Hole	e 55' 1"	10"		5/64"		14	157	1	7 2.1		2.1 2.5	2.1 2.5 2.442	2.1 2.5

PRICELESS PROTECTION

INERGEN. Clean Agent Fire Suppression Systems

INERGEN IS BETTER FOR YOUR PROPERTY

Upon discharge, INERGEN instantly floods the room, remaining suspended to suppress fires quickly and effectively. An inert gas mixture, INERGEN is absolutely free of residues and corrosive by-products that may produce further property damage. In performance testing, INERGEN easily exceeded the NFPA Standard 2001 allowance of one-minute discharge, with documented extinguishments of 22 seconds for a Class A fire and 17 seconds for a Class B fire.

Reliable and field proven, INERGEN delivers the performance you would expect from the world leader in fire suppression.

BETTER FOR YOUR PEOPLE

One of the most remarkable aspects of INERGEN is that it is safe for people. Unlike halocarbon (chemical) alternatives, which can create dangerous levels of hydrogen fluoride when in the presence of fire, INERGEN is entirely nontoxic, producing no corrosive decomposition products whatsoever. Plus, because INERGEN will not produce a fog when discharged, escape routes remain visible.

With INERGEN, the oxygen level is reduced enough to put out the flames, yet more than enough remains to breathe. In fact, those who breathe normally around INERGEN in extinguishing concentrations receive the same amount of oxygen to the brain as they would in an ordinary atmosphere, vital in cases where immediate evacuation may not be possible.

BETTER FOR THE ENVIRONMENT

The production of Halon 1301 was banned in 1993, a direct result of its negative effects on the ozone layer. We engineered INERGEN to be environmentally kind from the very start. INERGEN is non-synthetic, made exclusively of gases we already breathe: nitrogen, argon, and carbon dioxide. Once discharged, it simply returns to the atmosphere in its natural state. And because it poses no ozone depletion or global warming potential, INERGEN will never be subject to future legislative bans.

240 BALLARDVALE ST. WILMINGTON, MA 01887 (978) 657-5550

TRANSMITTAL SHEET

TO: FROM: Eddie Cook **Building Inspections Department** ADDRESS: DATE: 389 Congress St., Room 315 9/26/2011 Portland, ME 04101 JOB NUMBER: Modification to the 2nd Floor Computer NE2471 Room's Inergen Fire Suppression Detection/Control System at the University of Southern Maine 70 Falmouth St. Portland, ME 04104

ENLOSED DRAWINGS

EQUIPMENT CUTS

COMPACT DISC

FOR YOUR USE

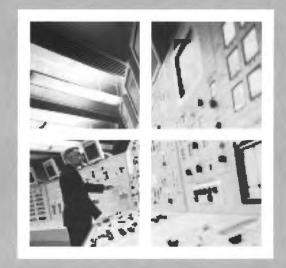
NOTES/COMMENTS:

Please find the following documents for the above mentioned project:

- 1 set of blue print drawings
- 1 set of Inergen calculations
- 1 set of Vesda calculations
- 1 set of Equipment Cut Sheets
- 1 compact disc containing pdf's of all of the above
- 1 application for permit of a Non-Water-based extinguishing agent
- Check for \$230 for permit

RECEIVED

SEP 2 9 2011


Dept. of Building Inspections City of Portland Maine

Please find the above mentioned documents pertaining to the 2nd floor Computer Room renovations at the Portland campus of the University of Southern Maine.

The Computer Room is currently being protected by an existing Inergen Fire Suppression system. The room is getting bigger. The far right wall is moving to the right approximately 4'-0". An additional Inergen cylinder will be added to the existing manifold to compensate for the added volume, helping the system maintain its compliance with NFPA 2001, year 2008. Nozzles will be relocated to help maintain an even distribution of agent. A door is being removed and the associated electric release and abort station will be removed. The A/V devices located at the removed door location will be relocated. A maintenance disconnect switch will be added and the existing obsolete smoke detection system will be replaced with a state of the art Vesda Smoke Detection System. Should you have any questions regarding this project, please don't hesitate in contacting me at the above phone number or email me at eddiecook@hillerne.com. Thank you,

Eddie Cook

EVEN AFTER THE FIRE, YOU'RE UP AND RUNNING

In minutes, fire and the attempts to put it out can destroy the equipment that keeps your operation in action. And yet, without the right defenses in place — those that protect people, property and the environment — many businesses are putting themselves at needless risk every day. Others, however, have an INERGEN® system at the ready.

Created as an ozone-safe replacement for Halon 1301, INERGEN is the nucleus of ANSUL's contemporary approach to fire protection: protect lives, protect property and protect the environment.

Clean, non-conductive INERGEN is a natural fire suppression agent particularly suited to areas where damage from conventional agents cannot be tolerated, such as sensitive data storage, information processing and systems operation electronics. In addition, many archival organizations use INERGEN to protect valuable, irreplaceable items such as artwork, historic documents and antiquities.

NO OZONE DEPLETION, GLOBAL WARMING POTENTIAL OR ATMOSPHERIC LIFETIME

ENTIRELY INERT SAFE FOR SENSITIVE ELECTRONICS AND IRREPLACEABLE ITEMS

ALL-NATURAL UL/ULC, FM, USCG AND MANY INTERNATIONAL APPROVALS/LISTINGS

EVERGREEN DISCHARGE WARRANTY ENVIRONMENTAL WARRANTY

IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING 1.

1.1. Identification of the preparation

Product Name:

"INERGEN"

Chemical Name:

N/A - This is a mixture/preparation.

CAS No.:

N/A - This is a mixture/preparation.

Chemical Formula:

N/A - This is a mixture/preparation.

EINECS Number:

N/A - This is a mixture/preparation.

1.2. Use of the preparation

The intended or recommended use of this preparation is to discharge a FIRE EXTINGUISHING AGENT.

1.3. Company identification

Manufacturer/Supplier: ANSUL INCORPORATED

Address:

One Stanton Street, Marinette, WI 54143-2542

Prepared by:

Safety and Health Department

Phone:

715-735-7411

Internet/Home Page:

http://www.ansul.com

Date of Issue:

September, 2004

1.4. Emergency telephone

CHEMTREC 800-424-9300 or 703-527-3887

COMPOSITION/INFORMATION ON INGREDIENTS 2.

2.1. Ingredient Name:

Nitrogen.

Chemical Formula:

 N_2 .

CAS No .:

7727-37-9.

EINECS Number:

231-783-9.

Concentration, Wt %:

42.5 %

Hazard Identification:

See Heading 3.

Ingredient Name:

Argon.

Chemical Formula: CAS No .:

Ar. 7440-37-1.

EINECS Number:

231-147-0.

Concentration, Wt %:

47 %.

Hazard Identification:

See Heading 3.

Ingredient Name:

Carbon Dioxide.

Chemical Formula:

CO₂. 124-38-9.

CAS No .: **EINECS Number:**

204-696-9.

Concentration, Wt %:

10.5 %.

Hazard Identification:

See Heading 3.

HAZARDS IDENTIFICATION 3.

FOR HUMANS:

Product:

EU Classification:

Nonflammable Gas.

R Phrases:

None.

S Phrases

Keep container in a well ventilated place.

Limit Values for Exposure:

Nitrogen:

None established.

Argon:

None established.

Carbon Dioxide: OSHA PEL:

5,000 ppm.

ACGIH TLV-TWA:

5,000 ppm.

30,000 ppm.

ACGIH TLV-STEL:

IDLH (Immediately Dangerous for Life and Health): 50,000 ppm.

Neither this preparation nor the substances contained in it have been listed as carcinogenic by National Toxicology

EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. Exposure limit values

Limit Values for Exposure:

Nitrogen: Argon:

None established. None established.

Carbon dioxide: OSHA PEL:

5,000 ppm, (9,000 mg/m³). ACGIH TLV-TWA: 5,000 ppm, (9,000 mg/m3).

ACGIH TLV-STEL: 30,000 ppm, (54,000 mg/m3).

IDLH (Immediately Dangerous for Life and Health): 50,000 ppm.

8.2. Exposure controls

8.2.1. Occupational exposure controls

8.2.1.1. Respiratory protection

Exposure to high concentrations requires the use of self-contained breathing apparatus. Other respirators will not protect in an oxygen deficient atmosphere.

8.2.1.2. Hand protection

Use leather gloves when handling cylinders.

8.2.1.3. Eye protection

Use safety glasses with side shields or safety goggles.

8.2.1.4. Skin protection

No special equipment is needed.

8.2.2. Environmental exposure controls

None needed. The components of this product are normal atmospheric gases.

PHYSICAL AND CHEMICAL PROPERTIES 9.

9.1. General information

Appearance:

Colorless gas.

Odor:

None.

9.2. Important health, safety, and environmental information

pH:

Boiling point/boiling range:

7 (at 25 °C). -320 °C.

Flash point:

None to boiling.

Flammability (solid/gas):

Not flammable.

Explosive properties:

Not explosive.

Oxidizing properties:

Not an oxidizer.

Vapor Pressure:

2205 psi @ 70 °F. (21.1 °C)

Relative Density (Water = 1):

0.084 lbs/ft3.

Solubility:

- Water solubility:

Carbon dioxide: 88 ml per 100 ml @ 20 °C.

Nitrogen: Insoluble.

Argon: Insoluble. Not soluble.

- Fat solubility:

Partition coefficient, n-octanol/water: Not determined.

Viscosity:

Not determined.

Vapor density (Air = 1):

1.0.

Evaporation rate (Butyl acetate = 1): < 1, water only evaporates.

9.3. Other information

Auto-ignition temperature:

Does not ignite.

INERGEN (Continued) Page 5

15. REGULATORY INFORMATION

EU Classification: Nonflammable gas.

R Phrases: None.

S Phrases: 9 Keep container in a well ventilated place.

Exposure Limit Values:

Nitrogen:
Argon:

Carbon dioxide:

None established.
None established.
5,000 ppm, (9,000 mg/m³).

ACGIH TLV-TWA: 5,000 ppm, (9,000 mg/m³).

ACGIH TLV-STEL: 30,000 ppm, (54,000 mg/m³). IDLH (Immediately Dangerous for Life and Health): 50,000 ppm.

EINECS Status: All components are included in EINECS inventories or are exempt from listing.

EPA TSCA Status All components are included in TSCA inventories or are exempt from listing.

Canadian DSL (Domestic Substances List): All components are included in the DSL or are exempt from listing.

Environmental restrictions:

Restrictions on Marketing and Use:

None are known.

None are known.

None are known.

None are known.

16. OTHER INFORMATION

(HMIS) HAZARDOUS MATERIAL IDENTIFICATION SYSTEM RATINGS:

 HEALTH:
 1
 4. Severe Hazard

 FLAMMABILITY:
 0
 3. Serious Hazard

 REACTIVITY:
 0
 2. Moderate Hazard

Slight Hazard
 Minimal Hazard

(WHMIS) CANADIAN WORKPLACE HAZARDOUS MATERIAL IDENTIFICATION SYSTEM RATINGS:

This product is rated: A Compressed Gas.

Format is from directive 2001/58/EC.

EINECS data is from http://ecb.jrc.it/existing-chemicals/

Data used to compile the data sheet is from Ansul Material Safety Data Sheet, February, 2002.

Toxicological information added from the EINECS ESIS (Existing Substances Information System).

A rating under WHMIS has been added, following the Canadian guidelines.

17. DISCLAIMER

THE ABOVE INFORMATION IS BELIEVED TO BE CORRECT, BUT DOES NOT PURPORT TO BE ALL INCLUSIVE AND SHALL BE USED ONLY AS A GUIDE. ANSUL SHALL NOT BE HELD LIABLE FOR ANY DAMAGE RESULTING FROM HANDLING OR FROM CONTACT WITH THE ABOVE PRODUCT.

MSDS available at http://www.ansul.com

ANSUL®

INERGEN® FIRE SUPPRESSION SYSTEMS DATA SHEET

150 BAR SYSTEM SPECIFICATIONS

PRODUCT NAME

INERGEN® Fire Suppression System

ENVIRONMENTAL IMPACT

INERGEN agent is a mixture of three naturally occurring gases: nitrogen, argon, and carbon dioxide. As INERGEN agent is derived from gases present in the earth's atmosphere, it exhibits no ozone depleting potential, does not contribute to global warming, nor does it contribute unique chemical species with extended atmospheric lifetimes. Because INERGEN agent is composed of atmospheric gases, it does not pose the problems of toxicity associated with the chemically derived Halon alternative agents.

PRODUCT DESCRIPTION

The INERGEN Fire Suppression System, manufactured by Ansul, is an engineered system utilizing a fixed nozzle agent distribution network. The system is designed and installed in accordance with the National Fire Protection Association (NFPA) Standard 2001, "Clean Agent Fire Extinguishing Systems." When properly designed, the INERGEN system will extinguish surface burning fire in Class A, B, and C hazards by lowering the oxygen content below the level that supports combustion.

INERGEN agent has also been tested by FMRC for inerting capabilities. Those tests have shown that INERGEN agent, at design concentrations between 40% and 50%, has successfully inerted mixtures of propane/air, and methane/air.

The system can be actuated by detection and control equipment for automatic system operation along with providing local and remote manual operation as needed. Accessories are used to provide alarms, ventilation control, door closures, or other auxiliary shutdown or functions.

When INERGEN agent is discharged into a room, it introduces the proper mixture of gases that will allow a person to breathe in a reduced oxygen atmosphere.

A system installation and maintenance manual is available containing information on system components and procedures concerning design, operation, inspection, maintenance, and recharge.

The system is installed and serviced by authorized distributors that are trained by the manufacturer.

Basic Use – The INERGEN system is particularly useful for suppressing fires in hazards where an electrically non-conductive medium is essential or desirable; where clean-up of other agents present a problem; or where the

hazard is normally occupied and requires a non-toxic agent.

The following are typical hazards protected by INERGEN systems:

- Computer rooms
- Subfloors
- Tape storage
- · Telecommunication/Switchgear
- Vaults
- · Process equipment
- All normally occupied or unoccupied electronic areas where equipment is either very sensitive or irreplaceable

Composition and Materials - The basic system consists of extinguishing agent stored in high strength alloy steel cylinders. Various types of actuators, either manual or automatic, are available for release of the agent into the hazard area. The agent is distributed and discharged into the hazard area through a network of piping and nozzles. Each nozzle is drilled with a fixed orifice designed to deliver a uniform discharge to the protected area. On large hazards, where three or more cylinders are required, a screwed or welded pipe manifold assembly is employed. The cylinder(s) is connected to the distribution piping or the manifold by means of a flexible discharge bend and check valve assembly.

Additional equipment includes – Control panels, releasing devices, remote manual pull stations, corner pulleys, door closures, pressure trips, bells and alarms, and pneumatic switches. All or some are required when designing a total system.

INERGEN Agent - INERGEN agent is a mixture of three inerting (oxygen diluting) gases: 52% nitrogen, 40% argon, and 8% carbon dioxide. INERGEN gas extinguishes fire by lowering the oxygen content below the level that supports combustion. When INERGEN agent is discharged into a room, it introduces the proper mixture of gases that still allow a person to breathe in a reduced oxygen atmosphere. It actually enhances the body's ability to assimilate oxygen. The normal atmosphere in a room contains 21% oxygen and less than 1% carbon dioxide. If the oxygen content is reduced below 15%, most ordinary combustibles will cease to burn. INERGEN agent will reduce the oxygen content to approximately 12.5% while increasing the carbon dioxide content to about 3%. The increase in the carbon dioxide content increases a person's respiration rate and the body's ability to absorb oxygen. Simply stated, the human body is stimulated by the carbon dioxide to breathe more deeply and rapidly to compensate for the lower oxygen content of the atmosphere.

Cylinders – The cylinders are constructed, tested, and marked in accordance with applicable Dept. of Transportation (DOT) and the U.S. Bureau of Explosives specifications. As a minimum, the cylinders must meet the requirements of DOT 3AA2300 or 3AA2015+.

Cylinder Assembly - The cylinder assembly is of steel construction with a red standard finish. Four sizes are available to meet specific needs. Each is equipped with a pressure seat-type valve equipped with gauge. The valve is constructed of forged brass and is attached to the cylinder providing a leak tight seal. The valve also includes a safety pressure relief device which provides relief at 2900-3300 psi (20685-23167 kPA) per CGA test method. Cylinder charging pressure is 2175 psi at 70 °F (14997 kPA at 21 °C). The cylinders are shipped with a maintenance record card and shipping cap attached. The cap is attached to the threaded collar on the neck of each cylinder to protect the valve while in transit. The cylinder serial number and date of manufacture are stamped near the neck of each cylinder.

Electric Actuator – Electric actuation of an agent cylinder is accomplished by an electric actuator interfaced through an AUTOPULSE® Control System. This actuator can be used in hazardous environments where the ambient temperature range is between 32 °F and 130 °F (0 °C and 54 °C). In auxiliary or ovemde applications, a manual lever actuator can be installed on top of the actuator.

Manual or Pneumatic Actuators –
Manual/pneumatic actuators are available for
✓
lever actuation on the cylinder valve. Manual
actuation is accomplished by pulling the
hand lever on the actuator.

Detection System – The AUTOPULSE Control System is used where an automatic electronic control system is required to actuate the INERGEN system. This control system is used to control a single fixed fire suppression or alarm system based on inputs received from fire detection devices. The detection circuits can be configured using cross, counting, independent or priority-zone (counting) concepts. The control system has been tested to the applicable FCC Rules and Regulations for Class A Computing devices.

ANSUL®

INERGEN® FIRE SUPPRESSION SYSTEMS DATA SHEET

EXTINGUISHING AGENT

APPLICATION

INERGEN® extinguishing agent used in Ansul engineered systems is particularly useful for hazards where an electrical, nonconductive medium is essential or desirable; where clean-up of other agents presents a problem; where hazard obstructions require the use of a gaseous agent; or where the hazard is normally occupied and requires a non-toxic agent.

The following are typical hazards protected by INERGEN systems:

- · Computer rooms
- · Subfloors
- · Tape storage
- · Telecommunications/Switchgear
- Vaults
- · Process equipment
- All normally occupied or unoccupied areas where electronic equipment is either very sensitive or irreplaceable

ENVIRONMENTAL IMPACT

INERGEN agent is a mixture of three naturally occurring gases: nitrogen, argon and carbon dioxide. As INERGEN agent is derived from gases present in the earth's atmosphere, it exhibits no ozone depleting potential, does not contribute to global warming, nor does it contribute unique chemical species with extended atmospheric lifetimes. Because INERGEN agent is composed of atmospheric gases, it does not pose the problems of toxicity associated with the chemically derived Halon alternative agents.

DESCRIPTION

INERGEN agent is a plentiful, non-corrosive gas that does not support combustion nor react with most substances. INERGEN agent contains only naturally-occurring gases which have no impact on the ozone or the environment in general. INERGEN agent is a mixture of three inerting (oxygen diluting) gases: 52% nitrogen, 40% argon, and 8% carbon dioxide. INERGEN agent extinguishes fire by lowering the oxygen content below the level that supports combustion. When INERGEN agent is discharged into a room, it introduces the proper mixture of gases that still allow a

person to breathe in a reduced oxygen atmosphere. It actually enhances the body's ability to assimilate oxygen. The normal atmosphere in a room contains approximately 21% oxygen and less than 1% carbon dioxide. If the oxygen content is reduced below 15%, most ordinary combustibles will not burn. INERGEN agent will reduce the oxygen content to approximately 12.5% while increasing the carbon dioxide content to about 3%. The increase in the carbon dioxide content increases a person's respiration rate and the body's ability to absorb oxygen. Simply stated, the human body is stimulated by the carbon dioxide to breathe more deeply and rapidly to compensate for the lower oxygen content of the atmosphere.

PERFORMANCE

INERGEN is an effective fire extinguishing agent that can be used on many types of fires. INERGEN extinguishing system units are designed for total flooding protection against Class A surface burning, Class B flammable liquid, and Class C fires occurring within an enclosure by lowering the oxygen content below the level that supports combustion.

INERGEN agent has been tested by FMRC for inerting capabilities. Those tests have shown that INERGEN agent, at design concentrations between 40% and 50%, has successfully inerted mixtures of propane/air, and methane/air.

PHYSICAL PROPERTIES OF INERGEN

Specific gravity: 0.085 lbs./cu. ft. (1.36 kg/m³)

Vapor density: 1.1 (Air = 1)

Approximate molecular weight:

APPROVAL

INERGEN agent complies with the NFPA Standard 2001, Standard for Clean Agent Fire Extinguishing Systems and EPA Program SNAP, Significant New Alternate Policy.

Agent is listed and approved by Underwriters Laboratories, Inc. (UL) and Factory Mutual Research Corporation (FMRC).

Containers meet the applicable Department of Transportation (DOT) specifications.

UL EX-4510 6-1-02 Page 1-1.1

REV. 3

CV-98 Valve / Cylinder Shipping Assembly

Description

The cylinder is factory filled with INERGEN® agent. A single cylinder may be used or multiple cylinders can be manifolded together to obtain the required quantity of agent for total flooding. The cylinder valve can be actuated electrically, pneumatically, and/or manually with approved valve actuation components. All valves are equipped with an anti-recoil feature.

The cylinders are shipped with a maintenance record card and protective shipping cap attached to the threaded neck of each cylinder. This cap entirely encloses and protects the valve while in shipment. The equivalent length of the valve is equal to 20 ft. (6.1 m) of 1/2 in. Sch. 40 pipe.

Component	Material	Approvals
Cylinder	Steel	Meets DOT 3AA2300
Valve	Brass	
Safety Relief Valve	Brass	
Valve/Cylinder Assembly		FMRC Approved UL Listed (EX-4510)
Shipping Cap	Steel	

Shipping Assembly Part No.	Nomina Size ft.3	Cylinder (m ³)		INERGEN Quantity m3	Appro Weigi	oximate ht (kg)	Dimer A in.	nsion (cm)	Dime B in.	nsion (cm)
Shipping As	semblies -	- Red Standa	ard Paint							
426147	200	(5.7)	205	(5.8)	128	(58)	52.7	(129)	8.5	(21.6)
426148	250	(7.1)	266	(7.5)	169	(77)	57.7	(147)	9.3	(23.5)
426149	350	(9.9)	355	(10.1)	217	(98)	59.7	(152)	10.7	(27.3)
426620	LC-350	(9.9)	355	(10.1)	217	(98)	60.2	(152.9)	10.5	(26.7)
426594	LC-425	(12.0)	429	(12.1)	246	(111.6)	70.5	(179.1)	10.5	(26.7)
426150	435*	(12.3)	439	(12.4)	260	(117.9)	66.9	(170.0)	11.0	(27.9)
Shipping As	semblies -	- Red Corros	sion Resis	tant Paint						
426256	200	(5.7)	205	(5.8)	128	(58)	52.7	(129)	8.5	(21.6)
426257	250	(7.1)	266	(7.5)	169	(77)	57.7	(147)	9.3	(23.5)
426258	350	(9.9)	355	(10.1)	217	(98)	59.7	(152)	10.7	(27.3)
426621	LC-350	(9.9)	355	(10.1)	217	(98)	60.2	(152.9)	10.5	(26.7)
426595	LC-425	(12.0)	429	(12.1)	246	(111.6)	70.5	(179.1)	10.5	(26.7)
426259	435	(12.3)	439	(12.4)	260	(117.9)	66.9	(170.0)	11.0	(27.9)

^{*} NOTE: For Shanghai version, order Part No. 430935.

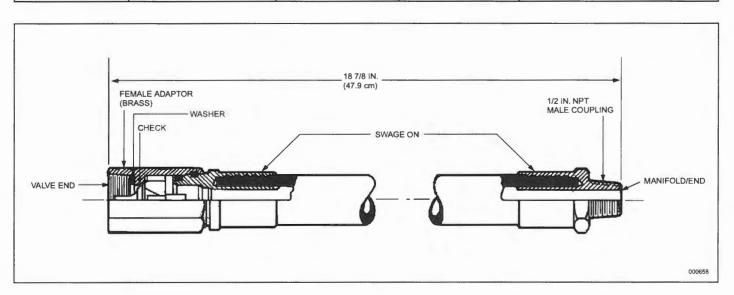
Canadian TC Approved

Shipping Assembly Part No.	Nomina Size ft.3	(m ³)		INERGEN Quantity m3	Appro Weigi	oximate ht (kg)	Dimer A in.	cm)	Dime B in.	nsion (cm)
Shipping As	semblies -	- Red Ename	el Paint							
426712	200	(5.7)	205	(5.8)	128	(58)	52.7	(129)	8.5	(21.6)
426713	250	(7.1)	266	(7.5)	169	(77)	57.7	(147)	9.3	(23.5)
426714	350	(9.9)	355	(10.1)	217	(98)	59.7	(152)	10.7	(27.3)
427551	LC-425	(12.0)	429	(12.1)	246	(111.6)	70.5	(179.1)	10.5	(26.7)
426715	435	(12.3)	439	(12.4)	260	(117.9)	66.9	(170.0)	11.0	(27.9)
Shipping As	semblies -	- Red Epoxy	CR Paint							
426716	200	(5.7)	205	(5.8)	128	(58)	52.7	(129)	8.5	(21.6)
426717	250	(7.1)	266	(7.5)	169	(77)	57.7	(147)	9.3	(23.5)
426718	350	(9.9)	355	(10.1)	217	(98)	59.7	(152)	10.7	(27.3)
427552	LC-425	(12.0)	429	(12.1)	246	(111.6)	70.5	(179.1)	10.5	(26.7)
426719	435	(12.3)	439	(12.4)	260	(117.9)	66.9	(170.0)	11.0	(27.9)

UL EX-4510 5-1-00 Page 1-12

REV. 4

Flexible Discharge Bend


Description

- ► The valve Flexible Discharge Bend (Part No. 427082) is a 5/8 in. (1.59 cm) I.D. extra-heavy flexible hose which connects the valve discharge outlet to the fixed piping or header manifold. The discharge bend has a special female thread for connecting to the valve outlet and a male 1/2 in. NPT thread for connecting to the fixed piping or manifold.
- ► The discharge bend will withstand a pressure of 9000 psi
- (621 bar). Its flexible connection allows for easy alignment of multiple cylinder banks to fixed piping. Each bend has a built-in check valve that prevents loss of agent should the system discharge while any cylinder is removed.

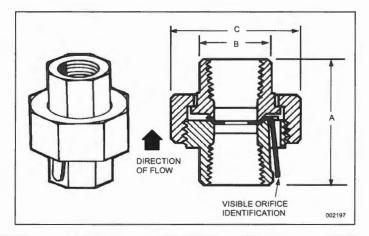
The equivalent length of this hose is equal to 18 ft. (5.5 m) of 1/2 in. Sch. 40 pipe.

Shipping Assembly Part No.	Description
427082	Flexible discharge bend
842430	Washer

		Thread Size/Type			
Component	Material	Valve End Manifold End		Approvals	
5/8 in. Flexible Discharge Bend	SAE 100 R2 Type AT	Special to mate with CV90 and CV-98 Valve	1/2 in. NPT Male	FMRC Approved UL Listed (EX-4510)	

UL EX-4510 11-1-00 Page 1-15

REV. 6


Clean Agent Systems

Pressure Reducer/Union

Description

The pressure reducer/union is required to restrict the flow of INERGEN® agent thus reducing the agent pressure down stream of the union. The 3000 psi (206.9 bar) NSCWP union contains a stainless steel orifice plate which is drilled to the specific size hole required based on the flow calculation.* The orifice plate provides readily visible orifice identification. The orifice union is available in six sizes: 1/2 in., 3/4 in., 1 in., 1 1/4 in., 1 1/2 in., and 2 in. NPT.

All pressure reducer/unions must be installed in the piping with the orifice identification tab on the pressure inlet side of the system. The 1 1/4 in., 1 1/2 in. and 2 in. orifice unions must be installed per the direction of the flow arrow stamped on the body.

Shipping Assembly Part No.	Description	A		В		С	
416677	1/2 in. NPT pressure reducer/union	2.06 in.	(5.2 cm)	1.18 in.	(2.9 cm)	1.95 in.	(4.9 cm)
416678	3/4 in. NPT pressure reducer/union	2.38 in.	(6.1 cm)	1.50 in.	(3.8 cm)	2.38 in.	(6.1 cm)
416679	1 in. NPT pressure reducer/union	2.63 in.	(6.7 cm)	1.78 in.	(4.5 cm)	2.77 in.	(7.0 cm)
416680	1 1/4 in. NPT pressure reducer/union	2.94 in.	(7.5 cm)	2.04 in.	(5.2 cm)	3.31 in.	(8.4 cm)
416681	1 1/2 in. NPT pressure reducer/union		(8.4 cm)			1	. ,
416682	2 in. NPT pressure reducer/union		(9.0 cm)		,		,

Component	Material	Thread Size	Approvals	
Pressure Reducer/	Body: Forged	1/2, 3/4, 1,	FMRC Approved	
Union	Steel	1 1/4, 1 1/2,	UL Listed (EX-4510)	
		2 in. NPT		
	Orifice Plate:			
	Stainless			
	Steel			

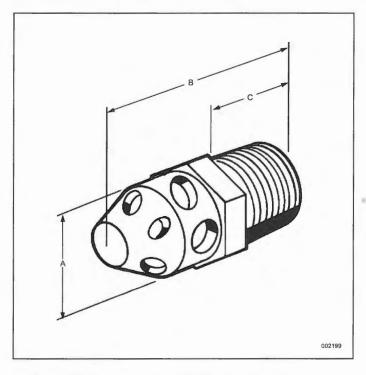
- ► NOTE: Refer to "Nozzle/Pressure Reducer Range Chart" in
- ▶ Design Section for detailed orifice range information.

^{*} Orifice diameter must be specified when placing order.

UL EX-4510 11-1-00 Page 1-16

REV. 6

360° Discharge Nozzle


Description

Discharge nozzles are designed to direct the discharge of INERGEN® agent using the stored pressure from the cylinders. Ten sizes of nozzles are available. The system design specifies the orifice size to be used for proper flow rate and distribution pattern*. The nozzle selection depends on the hazard and location to be protected. Standard nozzles are constructed of brass.

NOTE: 2, 2 1/2, and 3 in. nozzles are not recommended in areas that are subject to damage by high velocity discharges, such as suspended ceiling tiles.

Shipping Assembly Part No.	Description
417908	1/4 in. NPT nozzle**
417723	3/8 in. NPT nozzle**
417362	1/2 in. NPT nozzle
417363	3/4 in. NPT nozzle
417364	1 in. NPT nozzle
417365	1 1/4 in. NPT nozzle
417366	1 1/2 in. NPT nozzle
426155	2 in. NPT nozzle
426156	2 1/2 in. NPT nozzle
426137	3 in. NPT nozzle

Component	Material	Thread Size	Approvals	
Nozzle	Body-Brass	1/4**, 3/8**, 1/2, 3/4, 1, 1 1/4, 1 1/2, 2, 2 1/2, 3 NPT	FMRC Approved UL Listed (EX-4510)	

Size	A-In.	B-In.	C-In.	Hex
1/4 in.	5/8	1 9/16	21/32	5/8
3/8 in.	3/4	1 5/8	23/32	3/4
1/2 in.	15/16	1 31/32	27/32	15/16
3/4 in.	1 1/8	2 5/32	7/8	1 1/8
1 in.	1 13/32	2 9/16	1	1 7/16
1 1/4 in.	1 3/4	2 3/4	1 1/16	1 3/4
1 1/2 in.	2	2 31/32	1 1/16	2
2 in.	2 3/8	3	1	2 3/8
2 1/2 in.	3	3 1/2	1	3
3 in.	3 1/2	4 1/8	1 1/4	3 1/2

- ► NOTE: Refer to "Nozzle/Pressure Reducer Range Chart" in
- Design Section for detailed orifice range information.

Orifice diameter must be specified when ordering nozzle.
 Refer to Orifice Size Chart in Manual Appendix Section.

^{**}UL/ULC listed only.

The World's No. I Brand of Air-sampling Smoke Detector

When unobtrusive detection is required

Is it important to preserve the internal design/decoration of the building? Is vandalism a problem with the current smoke detection system?

A VESDA system can be installed with tiny capillary sampling tubes, which are barely discernible to the human eye. The detectors can be placed in a cupboard or utility area. Great for:

- Modern offices
- · Cathedrals
- · Art galleries and museums
- · Heritage buildings
- · Prisons and detention centers
- · Prestigious residences

When evacuation is a challenge

Will the building be open to the general public? Will it house people who need extra help during an evacuation? Is evacuation difficult due to crowds or limited exits? What is the business impact of an evacuation?

The very early warning that a VESDA system provides allows the maximum time for evacuation. This is critical for:

- Shopping centers
- Stadiums
- · Heritage buildings
- Hospitals
- · Underground tunnels
- · Facilities for children and the elderly

When environmental conditions are difficult

Is poor air quality or are extreme temperatures present in the area to be protected?

VESDA detectors feature dual-stage filtration to ensure they continue to function reliably in dirty environments. The detectors can be installed elsewhere, with only the sampling pipes in the extreme environment. The sampled air can be filtered, warmed or cooled before reaching the detector. Ideal for:

- Power stations
- Public transport
- Paper and saw mills
- · Cold stores

- Mines
- Automotive operations
- Manufacturing facilities
- · Hazardous areas (Factory Mutual Class 1 Div 2)

When suppression systems are present

Is suppression release costly and disruptive?

The very early warning provided by a VESDA system allows early intervention to prevent suppression releases. The multiple warning levels of a VESDA system can be used to trigger different responses at different stages of a fire — from controlling air conditioning to initiating a suppression release. Applicable for:

- Communications hubs
- Server rooms
- Command stations
- Switch rooms

VESDA by Xtralis Product Range

VESDA VFT

The VESDA VFT is a unique and versatile high-sensitivity ASD that is able to pinpoint the source of incipient smoke to speed response, enhance investigation, and minimize business disruption and downtime. This advanced detector provides intelligent addressibility to identify up to 15 protected areas via microbore air-sampling tubes.

VESDA VLP (LaserPLUS™)

The VESDA VLP is the most popular detector in the VESDA by Xtralis product range. Like all VESDA ASDs, it detects fire at the earliest possible stage and reliably measures very low to extremely high concentrations of smoke. It has the world's widest sensitivity range of 0.005 to 20% obs/m (0.0015 to 6% obs/ft). VESDA VLP supports four configurable alarms (Alert, Action, Fire 1 and Fire 2) and protects areas up to 2,000 square meters (20,000 square feet).

VESDA VLS (LaserSCANNER™)

The VESDA VLS locates the origin of smoke by identifying the first sector (pipe) with the highest level of smoke and then continues to sample air from all sectors to monitor fire growth. The VESDA VLS also provides four alarm levels for each individual pipe (Alert, Action, Fire 1 and Fire 2) and provides individual pipe addressability and settings. It protects areas up to 2,000 square meters (20,000 square feet).

VESDA VLC (LaserCOMPACT™)

The VESDA VLC offers cost-effective protection of single environments and small areas. It offers the same wide sensitivity range as the VESDA VLP and VESDA VLS — 0.005 to 20% obs/m (0.0015 to 6% obs/ft). The VESDA VLC supports three configurable alarm levels (Alert, Pre-Alarm and Fire) and comes in two versions. One version interfaces via relays only (RO) and the other across either relays or VESDAnet (VN). In addition, an explosion-proof version of the VN VLC is available for the protection of hazardous areas.

VESDA VLF (LaserFOCUS™)

The VESDA VLF delivers the most advanced and cost-effective air-sampling smoke detection technology for small environments. The VESDA VLF-250 model protects areas up to 250 square meters (2,500 square feet), and the VESDA VLF-500 model covers up to 500 square meters (5,000 square feet). In addition to the features found in all Xtralis Laser products, VESDA VLF provides a new range of features and built-in intelligence for quick installation, commissioning and servicing.

VESDA VLT (LaserTEKNIC™)

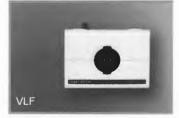
The VESDA VLT enables Original Equipment Manufacturers to offer the benefits of VESDA by Xtralis very early warning smoke detection in their products with little development investment.

Remote Displays and Programmers

The VESDA display module monitors and reports the status of a detector, providing visual representation of smoke levels along with all alarm and fault conditions. For monitoring convenience, multiple displays can be associated with a single detector.

The menu-driven VESDA Programmer allows the user to conveniently configure, commission and maintain the VESDA system, as well as program each individual detector. Only one programmer is needed to support the entire network.

Display and programmer modules can be mounted in a detector unit separately (connected via VESDAnet), in a single remote mounting box, or in a 19-inch sub rack.



Detector Configurations

Features	VFT-15	VLS	VLP	VLC	VLC	AN E OFOIEGO
	VF1-15	VLS	VLP	VESDAnet (VN)	Relays Only(RO)	VLF 250/500
Worldwide Approvals	Vds, UL, FM, CSFM	LPC, VdS, AFNO	OR, UL, ULC, UL268	A (in-duct application), FM, NY-MEA, CSF	FM, ActivFire, CFE.
Hazardous Area Approval (FM Class 1, Div 2, Groups A, B, C, D)	No	No	Yes	Yes	Yes	Yes
Sensitivity Range	0.001 to 20% obs/m (0.0003 to 6.0% obs/ft)			20% obs/m 6% obs/ft)	4.7	0.025 to 20% obs/m (0.008 to 6.4% obs/ft)
Two-stage Filter	Yes	Yes	Yes	Yes	Yes	Yes
Area Coverage (Maximum)	1,500 m ² (15,000 ft ²) (across 15 sectors)	2,000 m ² (20,000 ft ²) (across 4 sectors)	2,000 m ² (20,000 ft ²)	800 m ² (8,000 ft ²)	800 m ² (8,000 ft ²)	250/500 m ² (2,500/5,000 ft ²)
Multiple Pipe Addressability	Up to 15	Up to 4	No	No	No	No
Total Number of Alarm Thresholds	120 (Day/Night)	32 (Day/Night)	8 (Day/Night)	3	3	8 (Day/Night)
Relay Outputs	5 (Expands to 21)	7 or 12 relays	7	3	3	(Expands to 6)
On-board Memory (Max. Events)	Up to 20,000	18,000	18,000	12,000	12,000	18,000
Flow Sensor Circuit (one per pipe inlet)	1 + 1 in chamber	4	4	1	1	1
AutoLearn™ (automatically adjusts system to environment)	No	Yes	Yes	Yes	Yes	AutoLearn Smoke™ AutoLearn Flow™
Supported by ASPIRE2™ Pipe Network Design Software	Yes (transport times only) Predefined networks	Yes	Yes	Yes	Yes	Yes
Maximum No. of Holes	15	60	100	40	40	12/24
Bar Graph/Indicator LED	Yes	Local or Remote (20-segment bargraph display)	Local or Remote (20-segment bargraph display)	Local (5 on-board LEDS, remote 20-segment bar- graph display)	Local (5 on-board LEDs)	Local (7 on-board LEDs 10-segment circular display)
Programming Tools - On-board Programming Module - Portable Programmer - PC Software (VSC, VSM) via VESDAnet (when the detectors are connected on the VESDA network)	On-board programmer and PC software (VSC/VSM4)	Yes	Yes	Yes	Programmed via RS232 direct connection to PC using VSC	Programmed via RS232 direct connection to PC using VSC
VESDAnet	THE REAL PROPERTY.					
Max. No. of Devices/Detectors per Loop	N/A	200/100	200/100	200/100	N/A	200/100 (with VN Card)
Max. Distance between Devices	N/A	1,300 m (4,000 ft)	1,300 m (4,000 ft)	1,300 m (4,000 ft)	N/A	1,300 m (4,000 ft (with VN Card)
Computer-based Management via VSM	Yes	Yes	Yes	Yes	No	Yes (with VN Card)
Remote Relay Modules - 7-relay version - 12-relay version	N/A	(Part No.) VRT-501 VRT-900	VRT-500 N/A	VRT-500 N/A	N/A	VRT-500 N/A
Compatible Remote Bar-graph Displays - Display, 7-relays - Display, 12-relays - Display, no relays	N/A	(Part No.) VRT-400 VRT-800 VRT-700	VRT-200 N/A VRT-600	VRT-J00 N/A VRT-K00	N/A N/A N/A	VRT-V00 N/A VRT-W00