ADDENDUM # 2

PROJECT:	Fore River Short Stay Hospital, Portland, Maine
PROJECT NO:	05-4898
OWNER:	Mercy Health System of Maine
CONSTRUCTION MANAGER:	Gilbane Building Company
MANAGEN.	7 Jackson Walkway Providence, Rhode Island 02903
<u>ARCHITECT:</u>	Francis Cauffman Foley Hoffmann 2120 Arch St., Philadelphia, PA 19103
CONSULTANTS:	
Associated Architect / Structural / Landscape:	SMRT, Inc
	144 Fore St., Portland, ME 04104
Civil Engineer:	DeLuca-Hoffman Associates, Inc. 778 Main St., Suit 8, South Portland, ME 04106
MEP Engineer:	
MEP Engineer.	BR+A Consulting Engineers 311 Arsenal St., Watertown, MA 02472
Food Service:	Inman Foodservices, LLC
	1808 West End Ave, Suite 1400, Nashville, TN 37203
Equipment Planning:	Gene Burton & Associates
	1893 General George Patton Dr., Franklin, TN 37067
DATE:	December 6, 2006

I GENERAL

A. This Addendum is hereby included in and made part of the Contract Drawings and Specifications, whether or not attached thereto. It becomes effective upon receipt of written authorization from the Owner's Representative. All requirements of the original drawings and specifications shall remain in force except as modified by this Addendum.

II REFER TO PROJECT MANUAL

- A. Refer to Volume 1 Table of Contents:
 - 1) ADD "Section 08332 Rolling Fire Doors"
- B. Refer to Volume 2 -Table of Contents:
 - 1) DELETE Section 15240 Cooling Tower Sand Water Filter
- C. Refer to Section 06402 Interior Architectural Woodwork. ADD the following paragraph under Section 2.3:
 - "P. Manufactured countertop support brackets: Equal to RAKKS by Ragine Corporation.
 - 1. 6063 T-6 "T" shaped extruded aluminum.
 - 2. MIG welded along both 45° mitre and across back.
 - 3. 5/16" holes accept 1/4" screws.
 - 4. Primed mill aluminum prepared to accept paint matching adjacent wall surfaces."
- D. ADD "Section 08332 Rolling Fire Doors" to Project Manual.
- E. Refer to Section 01411 Special Inspections and Structural Testing" ADD the Schedule of Special Inspections (6 pages) to the end of the Section.
- F. Refer to Specification Section 15300, 1.6(F)(2)
 - 1. **Modify** hose allowance from 100 GPM to 250 GPM.
- G. Refer to Specification Section 15300, 1.6(F)(3)
 - 1. **Modify** remote area from 2000 sq. ft. to 2500 sq. ft.
- H. Refer to Specification Section 15300, 1.6(F)(4)
 - 1. **Modify** remote area from 2000 sq. ft. to 2500 sq. ft.
- I. Refer to Specification Section 15410, 2.1(G)(1)
 - 1. Add the term "electronic" to paragraph to read "The units shall be electronic thermostatic controllers with check stops, strainers, outlet thermometer, volume control and chrome finish as detailed on the drawings."
 - 2. **Modify** manufacturer and model number to read "Armstrong Model #665DWPP-PTWEM613 Basis 2".
- J. Refer to Specification Section 15440, 2.9(B)
 - 1. **Delete** sub-paragraphs (2), (5), (6), (8).
 - 2. **Renumber** sub-paragraphs accordingly.

- 3. **Modify** cleanout model number for cleanouts in resilient tile and carpeted floors from "J.R. Smith #4146" to "Zurn #ZN-1400-BP-X" for tile, and "ZN-1400-SP-LM" for carpet.
- 4. **Modify** cleanout model number for cleanouts in concrete from "J.R. Smith #4226" to "Zurn 1400-BP".
- 5. **Modify** cleanout model number for wall cleanouts from "J.R. Smith #4735" to "Zurn 2144-6-BP".
- K. Refer to Specification Section 15440, 2.9(C)(4)
 1. Modify paragraph to read: "Refer to Schedule on Drawings."
 - 2. **Delete** sub-paragraphs (a), (b), (c), (d).
- L. Refer to Specification Section 15440, 2.9(D)
 - 1. **Delete** paragraph in its entirety.
- M. Refer to Specification Section 15440, 2.9(E)
 - 1. **Renumber** paragraph from "E" to "D".
 - 2. Modify door drain model number from "Zurn ZA-100-C-VP" to "Z-100-DP-EA".
- N. Refer to Specification Section 15440, 2.9(F)
 - 1. **Delete** paragraph in its entirety.
- O. Refer to Specification Section 15450, 2.1(D)(1)
 - 1. Modify acceptable manufacturers from "Zurn" to "Zurn-One".
- P. Refer to Specification Section 15450, 2.1(D)(2)
 - 1. **Modify** weight support requirements from 250 lbs. to 500 lbs.
- Q. Refer to Specification Section 15460, 2.1
 - 1. **Delete** paragraph in its entirety and **replace** with the following:

"2.1 DOMESTIC WATER HEATER AND MASTER MIXING VALVE ASSEMBLY

A. General: The parallel instantaneous water heater package with EMC shall be mounted on an angle iron frame. The package shall be pre-plumbed with all required components and pressure tested. Packages which require field assembly other than basic water, steam and electrical service shall be unacceptable. The instantaneous water heater shall operate on water differential using the feed forward principle and shall not use a feedback temperature control device with capillary system. The water controlling valve shall be mounted integral to the heat exchanger without the use of connecting piping. Only the necessary steam, water and condensate connections to the instantaneous water heater shall be pre-plumbed. Copper line storage tanks shall not be used. Temperature controller shall feature integrated circuit board technology

designed to deliver blended water economically at a safe, accurate temperature for sanitary use in re-circulated hot water systems. Electronic control box shall be supplied pre-wired, terminating at a knockout for Romex or BX cable connector. Materials of construction and items included shall be:

- 1. Shell of carbon steel with 3" NPT steam inlet and 1-1/4" NPT condensate exit ports
- 2. Tubes of 5/8" 16 gauge admiralty brass expanded into brass tube sheets
- 3. Water control valve body of bronze with brass and stainless steel internals and having 2" NPT water connections
- 4. Stand of 2" Carbon Steel Angle
- 5. Water pipe of Type L copper
- 6. Armstrong Steam Trap model 814
- 7. Armstrong Thermostatic Air Vent
- 8. 12V DC electronic temperature controller
- 9. 110V UL-listed transformer enclosed in a NEMA 4X enclosure
- 10. One electronic temperature controller to building automation interface module with interface cables and integral 4-20 mA input and output connections
- 11. Three temperature transmitters installed in hot and cold water inlet and re-circulation return piping and pre-wired to interface junction panel
- 12. One dual-mode temperature RTD providing a 4-20 mA signal for installation in the mixed downstream pipe work
- 13. Low voltage control wiring with protective conduit
- 14. All required valve fittings and isolation valves, pressure gauges, inlet combination ball valve strainers, inlet/return check valves, inlet, system blend and return line thermometers
- 15. 1/6 HP circulating pump rated at 15 gpm at 30 ft of head
- B. Performance: The instantaneous water heater shall be of the horizontal shell and tube design providing easy access to the individual tubes without moving the heater from its installed position. No overhead clearance shall be required for servicing. The controlling valve shall fail in the closed position to prevent overheating and scalding of the water. The Electronic Mixing Center (EMC) shall deliver up to 72 gpm with no minimum system draw-off requirement. The EMC shall have a visual operation "set" and "actual" temperature display for effective commissioning, adjustment and system monitoring and a visual signal by display to show "error" mode or "out of range" system failure, coupled with output for audible alarm and/or downstream solenoid valve relay. The EMC shall have an integral two-way data port for PC and BMS interface. The temperature controller shall be compliant with ASSE Standard 1017 and CSA B125 and so certified and identified. Model shall be 665DWPP-PTWEMC13 BASIS2. The instantaneous water heater package with EMC shall include all of the following capabilities:
 - 1. Maximum water pressure drop not exceeding 10 psi
 - 2. Re-circulated water control within +/-2°F with minimal recirculation of 4 gpm
 - 3. Accurate control of blended water drawn from the system at a point of use within +/-2°F measured 5m downstream of mixing valve
 - 4. Operational steam pressure of 2-15 psig
 - 5. Maximum allowable steam pressure of 150 psig
 - 6. Operational water pressure of 20-150 psig
 - 7. Maximum allowable water pressure of 150 psig
 - 8. Automatic shutoff of hot water flow upon cold water inlet supply failure
 - 9. Automatic shutoff of hot water flow in the event of a power failure"

- R. Refer to Specification Section 15240 Cooling Tower Sand Water Filters
 - 1. **Delete** Section 15240 in it's entirety without replacement.
- S. Refer to Specification Section 15518 Package High Pressure Steam Fire-tube Boilers and Accessories
 - 1. Article 2.1, Packaged Fire-Tube High Pressure Boilers
 - a. Paragraph B.1.c.1) Oil Pump, **Modify** second sentence to read: "Separate motor driven pump set shall be provided mounted and wired on the boiler base rail."
 - b. Paragraphs C through K (pages 7 thru 11), **Delete** paragraphs and **replace** with the following:
 - "C. Boiler Flame Safeguard Controller and Control Panel
 - 1. Each unit shall be factory equipped with a Boiler Control System providing technology and functions equal to the Cleaver Brooks Hawk ICS Boiler Control system.
 - 2. Each Boiler Control System shall be factory equipped with a pre-configured Programmable Controller and Human Machine Interface (HMI).
 - 3. Major system components shall include:
 - a. Programmable Controller.
 - b. Touch Screen HMI.
 - c. DeviceNetTM Communication Network.
 - d. Various Controller Input/Output Modules.
 - e. Parallel positioning system
 - f. One Burner Management Controller and Wiring Sub-Base.
 - g. One Flame Scanner: Infrared, Ultra-Violet, or UV Self-Check.
 - h. One Flame Amplifier, to correspond with the selected Flame Scanner.
 - i. Various Temperature Sensors.
 - 4. Major functions that the Boiler Control System shall provide:
 - a. Automatic sequencing of the boiler through standby, pre-purge, pilot flame establishing period, main flame establishing period, run and post purge.
 - b. Flame proving and lockout on flame failure during pilot flame proving, main flame proving, or run.
 - c. Low fire damper/valve position for flame ignition trials.
 - d. Full modulating control of fuel and combustion air.
 - e. Utilize solid state controls and sensors to provide various control functions, such as:
 - 1) On/Off, and Modulating Control.
 - 2) Modulating Control algorithm shall be Proportional-Integral-Derivative (PID) type.
 - 3) Thermal Shock Protection.
 - 4) Various High and Low limit alarms and shutdowns.

- f. Touch Screen graphical operator interface and monitoring.
- g. Manual control of the boiler-firing rate utilizing control screens on the HMI to increment and decrement the firing rate.
- h. On screen indication of burner management controller status and diagnostics.
- i. On screen real-time display of all connected process parameters.
- j. On screen display of system alarms and faults.
- k. On screen history of alarms and faults.
- l. Printing capabilities.
- m. On screen recommendation for troubleshooting fault conditions.
- n. On screen water level indication and alarm(s).
 - 1) Building and Plant Automation System interface
 - 2) Tamper resistant control logic and password protection.
 - 3) Night/Day Setback control.
 - 4) Stack Flue Gas, Combustion Air, and Shell (water) temperatures.
 - 5) Boiler Efficiency calculation
 - 6) Outdoor Reset for Hot Water Boilers.
 - 7) Remote Modulation or Firing Rate Set Point control.
 - 8) Assured Low Fire Cut-Off (ALFCO).
- 5. The Boiler Control System shall provide the following safety provisions for:
 - a. Integrated Burner Management
 - 1) Examine all load terminals to assure it is capable of recognizing the true status of the external controls, limits and interlocks. If any input fails this test, the burner management system should lockout on safety shutdown.
 - 2) Closed-loop logic test verifies integrity of safety critical loads (ignition, pilot, and main fuel valves) and must be able to lockout on safety. shutdown if any safety critical load is identified as proper or improper.
 - 3) Pre-ignition interlocks (fuel valve proof of closure, etc.) and flames signal checked during Standby and Pre-Purge.
 - 4) Dynamic checking of the flame signal amplifier. The control flame signal amplifier must be able to recognize a no flame signal during this dynamic amplifier check.
 - 5) Safe start check and expand check to include monitoring flame signal during standby.
 - 6) High and Low fire switches checked for proper sequencing.
 - 7) Tamper-proof Purge Timing and safety logic.

b. Integrated Boiler Controls

- 1) Operating and High Limit Control.
- 2) Primary and Secondary Low Water Cut-Off.
- 3) Variable Speed Drive fault shutdown.
- 4) Parallel Positioning Controls
- 5) Password protection of Programmable Controller logic.
- 6) Password protection of Parallel Positioning Control

- 6. The Boiler Control System shall provide annunciation and diagnostics:
 - a. First out annunciation, plus time and cycle, in sequence of fault occurrence.
 - b. Indication of failures at start up or during normal operation.
 - c. Provide historical alarm information for on screen display or printout.
 - d. Detects and isolates an alarm, and reports internal circuit faults.
 - e. English text description of the system fault and troubleshooting procedures.
 - f. Water Level alarms and/or indication.
 - g. Dynamic Self Checking.
- 7. The Boiler Control System shall be able to operate in these environmental conditions.
 - a. Supply Voltage: 120vac (+10%/-15%) 50 or 60 Hz.
 - b. Maximum total connected load:2000 VA.
 - c. Operating temperature limits: 32 to 130 F
 - d. 85% RH continuous, non-condensing, humidity.
 - e. 0.5G continuous vibration.
- 8. All Boiler Control System wiring shall be in accordance with the National Electrical Codes and local electrical codes.
- 9. Boiler Control System component functions shall be as follows:
 - a. Burner Management Controller: Provides boiler sequencing logic to meet FM/IRI/UL approval body requirements.
 - b. Touch Screen Graphical Interface: Provides user interface to the control system, boiler overview screen with connected boiler parameter readouts, Burner Management Control status screen, alarm screens, diagnostic screens for fault troubleshooting, alarm history screen, water level control screen, and system firing rate screen.
 - c. DeviceNetTM Communication Network: Provides communication between the Programmable Controller and other peripheral devices.
 - d. Various Programmable Controller Input/Output modules: Provides interface for discrete powered and/or isolated relay signals, as well as for analog signals, from and/or to other input/output devices.
 - e. Stack Temperature Sensor: Measures and transmits a signal to the Programmable Controller in relation to boiler exit flue gas temperature for indication and for use in the calculation of boiler efficiency. Also can be used for high stack temperature alarm and shutdown.
 - f. Water Temperature Transmitter for Hot Water Boilers: Provides an analog signal to the Programmable Controller for indication of boiler water temperature. Utilized for thermal shock protection, on/off, and modulating control of the burner.
 - g. Water (shell) Temperature Sensor: Measures and transmits a signal to the Programmable Controller in relation to boiler water temperature. Used for indication and thermal shock protection.
- 10. Combustion Air Temperature Probe Type J thermocouple
 - a. Shall be of the Integrated Type (in probe head)

- b. Provide 4 20mA DC Signal output in relation to process variable for remote display
- 11. Each boiler shall incorporate parallel positioning actuators one for each fuel valve, and one for the rotary air damper assembly.
- 12. Combustion Air Thermocouple to be Type J The system shall continuously monitor oxygen concentration in the boiler's exit flue gas and provide indication of O2 percentages and alarm points on a Human Machine Interface (HMI) type display.
- D. Communications Interface
 - 1. The Boiler Manufacturer shall furnish and install a control module capable of Ethernet communications between the boiler's programmable logic control system and other Ethernet compatible devices, as needed, and provide the following minimum requirements:
 - a. Interface with the Compact Logix Programmable Controller Protocol
 - b. Ethernet Industrial Protocol (Allen-Bradley EPIC)
 - c. Follows Ethernet Rules and Practices
 - d. High Noise Rejection
 - e. Open Industrial Network Standards
 - f. IEEE 802.3 Physical and Data Link Standard
 - g. Ethernet TCP/IP protocol suite industry standard
 - h. Control and Information Protocol (CIP) Compliant
- E. Lead-Lag Controller
 - 2. Lead/Lag and full modulation control
 - 3. Boilers' Start and Stop
 - 4. Hot water temperature, is compared with the setpoint and controller's processor executes PID algorithm. Lead boiler is commanded to come on line first. Lag boiler is commanded to come on line when a firing rate signal for the lead boiler reaches lag boiler start point. Lag boiler is commanded to stop when a firing rate signal for the lag boiler reaches lag boiler reaches lag boiler storp point.
 - 5. Lead/Lag Modulation Lag boiler starts modulation after lead boiler reaches maximum firing rate.
 - 6. Hot Standby System shall have a provision for keeping lag boiler in hot standby. Standby routine shall be based on a water temperature signal.
 - 7. This option is applicable to full modulation burners utilizing the CBHAWK ICS advanced boiler control system and modulating controls.
 - 8. All logic for Lead/Lag Control shall reside in the boiler controller. No additional control panels shall be required.
- F. VFD Drives
 - 9. The Boiler Manufacturer shall provide a Variable Speed Drive controller for use on the burner's Combustion Air Fan blower motor for the purpose of providing Improved Boiler Efficiency and Reduced Electrical Energy consumption.
 - 10. The Drive's voltage, frequency, and current ratings shall be rated in accordance with the electrical requirements as dictated by job site specifics, and for the properly rated motor horsepower.

- 11. The Variable Speed Drive must be capable of communicating over the DeviceNetTM protocol.
- 12. A pressure transmitter shall be supplied to measure the Wind Box Pressure of the Burner and shall be capable of supplying a 4 20mA process variable input signal to the VSD.
- 13. A Motor suitable for variable speed drive service must be supplied for use in conjunction with the Variable Speed Drive, and sized to match the motor requirements of the Combustion Air Fan Blower.
- 14. Variable Speed Drive shall be interlocked with boiler control to ensure safe operation.
- 15. Boiler to be supplied with a control circuit transformer and fuse protection for the control circuit.
- 16. In compliance with insurance requirements, include a 4" alarm bell with silence push-button. Alarm bell to sound during any and all abnormal boiler conditions. In addition to the local alarm bell being activated, a set of contacts shall be provided to sound a remote alarm."
- O. Refer to Specification Section 15550 Breeching and Freestanding Chimney
 - 1. Article 2.2 Stack Accessories
 - a. Paragraph B.2.1), **Change** "350" to "400".
 - b. Paragraph B.2.2), **Change** "500" to "400" and "1700" to "1600".
- P. Refer to Specification Section 15763 Steam Humidifiers
 - 1. Article 2.1 **Retitle** Article to read "STEAM HUMIDIFIERS MOUNTED IN AHU's".
 - 2. Article 2.1 Paragraph F, **Title to read** "Controls in-unit type".
 - 3. Article 2.2:
 - a. **Insert** new Article 2.2 Steam Humidifiers Mounted In-Ducts, directly following Paragraph 2.2.F, as follows:

"2.2 STEAM HUMIDIFIERS MOUNTED IN-DUCTS

- A. Acceptable manufacturers subject to compliance with the specifications shall be as follows:
 - 1. Armstrong
 - 2. Dri-Steem
 - 3. Pure Humidifier
- B. Provide steam humidifiers for electronic modulating control, of the steam separator type, providing full separation ahead of an integral steam jacketed control valve which discharges through an internal steam jacketed drying chamber, a silencing chamber, and a multiple steam jacketed distribution manifold. Humidifiers shall be single or multiple tube(s) as scheduled. Tube length shall match width of ductwork.

- C. Humidifiers shall receive steam at supply pressure (low pressure) and discharge at atmospheric pressure. Humidifiers shall be provided with inlet strainer and external inverted bucket steam traps. Humidifiers shall be constructed as follows:
 - 1. Separating chamber shall be designed to remove all water droplets and all particulate matter larger than (3) microns when humidifier is operating at maximum capacity without objectionable noise.
 - 2. Chamber shall be cast iron or stainless steel.
 - 3. A stainless steel modulating valve shall be provided. This control valve shall have a minimum turn down ratio:

a.	1/2"	25:1
b.	3/4" to 2"	50:1

- 4. The internal drying chamber shall be jacketed by steam at supply pressure.
- 5. The silencing chamber shall be steam jacketed and utilize a stainless steel silencing medium.
- 6. Multiple distribution manifold shall provide uniform distribution over its entire length and be jacketed by steam at supply pressure to ensure that vapor discharged is free of water droplets. A full-length stainless steel internal silencing screen shall be provided. Provide as a minimum of one control for every 5 manifolds. See details for additional information. Provide steam trapping in strict accordance with manufacturer's details and instructions.
- D. In addition provide with each humidifier kettle a temperature safety switch, which prevents operation when the condensate temperature returning from the manifold jacket is too low.
- E. Provide access doors downstream of humidifiers for visual verification of humidifier operation."
 - b. **Re-number** Paragraph "2.1.G" as "2.2.F".
- Q. Refer to Specification Section 15855 Registers, Grilles and Diffusers
 - 1. Article 2.2, Paragraph E.1 regarding Type I diffusers, **Delete** "or Metalaire Model 2000D'.
- R. Refer to Specification Section 15625 Centrifugal Water Chillers
 - 1. Article 2.11, Performance Test and Requirements
 - a. Paragraph A.9, **Revise** to read:

"Verification of Capacity and Efficiency Test shall include ARI tolerances except as follows:"

- b. Paragraphs A.9.a thru A.9.d, **Replace** current paragraphs with the following:
 - "a. The manufacturer shall supply a certified test report to confirm performance as specified. Proper ARI certification documents for the test loop shall be made available upon request from the manufacturer for

inspection. The performance test shall be conducted in accordance with ARI Standard 550-98 procedures and tolerances.

- b. All proposals for chiller performance must include an ARI approved selection method for the specified refrigerants.
- c. The performance test shall be run with clean tubes in accordance with ARI 550-98 to include the following:
 - 1) A downward temperature adjustment shall be made to the design leaving evaporator water temperature to adjust from the design fouling to the clean tube condition.
 - 2) An upward temperature adjustment shall be made to the design entering condenser water temperature to adjust from the design fouling to the clean tube condition.
 - 3) There shall be no exceptions to conducting the performance test with clean tubes and with temperature adjustments in (1) and (2). The manufacturer shall clean tubes, if necessary, prior to test to obtain a test fouling factor of .0000 hr. sq. ft. F/BTU.
- d. A certified test report of all data shall be submitted to the Project Owner and Construction Manager prior to completion of the project. The factory certified test report shall be signed by an officer of the manufacturer's company. Preprinted certification will not be acceptable; certification shall be in the original."
- c. Paragraphs A.9.e, **Delete** "(not 5% over)", and **Replace** with ", plus 5% over".
- d. Paragraph A.9.g, **Replace** current paragraph with the following:
 - "g. The equipment will be accepted if the test procedures and results are in conformance with ARI Standard 550-98. If the equipment fails to perform within allowable tolerances, the manufacturer will be allowed to make necessary revisions to his equipment and retest as required. The manufacturer shall assume all expenses incurred by the owner or his representative to witness the retest. In the event that these revisions do not achieve submitted performance, the following penalties will be imposed:
 - 1) CAPACITY TEST: For each ton below the specified capacity, one thousand dollars per ton will be deducted from the contract price.

Allowable capacity = $[(1 - tolerance) \times design capacity]$

2) POWER CONSUMPTION TEST: The power consumption penalty for all load points shall be based upon the tolerances set forth in paragraph above. The power consumption penalty (P.C.P.) will be calculated based upon the following formula:

P.C.P. = [Measured KW - (Measured Tons x Allowable KW/Ton*)] x \$2000/KW

- * Allowable KW/Ton = [(1 + tolerance) x design KW/Ton]
- 3) TOTAL PERFORMANCE PENALTY: The total performance penalty will be the sum of CAPACITY PENALTY AND POWER CONSUMPTION PENALTY."
- S. Refer to Specification Section 17000 Direct Digital/Automatic Temperature Controls
 - 1. Article 2.1, General
 - a. Paragraph A, **Modify** paragraph to read:

"Acceptable manufacturer's subject to full compliance with the specifications. The entire ATC System, including distribution network, shall be fully UL Listed and labeled for Energy Management (UL 916) and Fire Control/Smoke Management (UL 864)."

- b. **Add** paragraph A.6 to read:
 - "6. Trane"

III REFER TO THE DRAWINGS

A. ARCHITECTURAL:

- 1) Refer to Drawing A1.07, Loading Dock Plans & Elevations
 - a) Change Note on Elevation 4/A1.07 "sloped parapet with cast stone coping" to read "Sloped parapet with metal coping".
- 2) Refer to Drawing A1.00 Ground Floor Plan (Core & Shell)
 - a) ADD General Note "Note: See Plumbing Drawings for Floor Drain locations. Construction Contractor to coordinate."
- 3) REPLACE the following Drawings:
 - a) Drawing CS-2 Drawing List
 - b) Drawing A1.07 Loading Dock Plans & Elevations Revised aluminum guardrail elevations and added
 - c) Drawing A7.14 Miscellaneous Details Revise Chimney Details.

B. <u>HVAC:</u>

- 1) REPLACE the following drawings
 - a) <u>Drawing H0.02</u> Revised Boiler Feed Pump, Steam Boiler & Cabinet Heater Schedule.
 - b) <u>Drawing H0.03</u> Revised Schedules.
 - c) <u>Drawing H1.04</u> Revised Duct Plan for coordination.
 - d) <u>Drawing H2.00</u> Revised CFM's & GPM's to Box Schedule. Added expansions loop for MPS. Add PC piping serving CAC-1. Revised piping plan.
 - <u>Drawing H2.02</u> Revisions made to CFM's & GPM's on Box Schedule. Coordinated boxes locations and control wiring.
 - f) <u>Drawing H2.04</u> Revised supply and return box locations. Revised piping and thermostat control wiring.
 - g) <u>Drawing H3.01</u> Revised boiler piping. Added non-return valves.
 - h) <u>Drawing H3.03</u> Revised piping for cooling towers. Added cooling tower part plans.
 - i) <u>Drawing H3.04</u> Coordinated flow diagram with plans.
 - j) <u>Drawing H3.05</u> Revised pipe sizes.
 - <u>Drawing H4.03</u> Revised/coordinated Mechanical Room part plan.
 - <u>Drawing H4.04</u> Revised/Coordinated Level 5 part plan.
 - m) <u>Drawing H4.05</u> Revised/Coordinated Level 5 part plan.
 - n) Drawing H4.06

Revised part plans.

C. PLUMBING

- 1) **REPLACE** the following Drawings:
 - a) <u>Drawing P0.00</u> Modified schedules.
 - b) <u>Drawing P0.01</u> Modified schedules.
 - c) <u>Drawing P0.02</u> Modified Details
 - d) <u>Drawing P1.UG</u> Modified underground storm and sanitary routing.
 - de <u>Drawing P1.00</u> Modified rain water piping. Added vent piping at open end drain.
 - f) <u>Drawing P1.01</u> Added sizing information.
 - g) <u>Drawing P1.02</u> Added sizing information.
 - h) <u>Drawing P1.03</u> Added sizing information.
 - i) <u>Drawing P1.04</u> Modified vent piping. Added sizing information.
 - j) <u>Drawing P1.05</u> Modified vent piping. Added sizing information.
 - k) <u>Drawing P2.00</u> Modified pipe sizing. Added HVAC make-up backflow preventers. Added Gas piping at shaft. Modified water heater arrangement.
 - <u>Drawing P2.01</u> Modified pipe sizing. Added Gas piping at shaft.
 - m) <u>Drawing P2.02</u> Modified pipe sizing.

page 14 of 19 December 6, 2006 ADDENDUM # 2 Added sizing info.

- n) <u>Drawing P2.03</u> Modified pipe sizing. Added sizing info.
- Drawing P2.04 Modified pipe sizing. Added sizing info.
- p) <u>Drawing P2.05</u> Added hose bibbs in Mechanical Room.
- q) <u>Drawing P3.01</u> Added sizing information.

D. FIRE PROTECTION

1) **REPLACE** the following Drawings:

- a) <u>Drawing FP1.00</u> Modified density notes based on FM Global requirements.
- b) <u>Drawing FP1.01</u> Modified density notes based on FM Global requirements.
- c) <u>Drawing FP1.02</u> Modified density notes based on FM Global requirements.
- d) <u>Drawing FP1.03</u> Modified density notes based on FM Global requirements.
- e) <u>Drawing FP1.04</u> Modified density notes based on FM Global requirements.
- f) <u>Drawing FP1.05</u> Modified density notes based on FM Global requirements.

IV. ADD the following Sketches

A. ARCHITECTURAL

Sketch SKA-7 – Ground Floor Plan

- 1. Added door GX045A
- 2. Revised door GX045
- 3. Revised Dimensions

Sketch SKA-8 - Ground Floor Plan

- 1. Door GM04c lengthened to 12'
- 2. Door GM04d relocated
- 3. Revisions to dimension

Mercy Health System of Maine Fore River Short Stay Hospital, Portland, Maine FCFH # F05-4898 page 15 of 19 December 6, 2006 ADDENDUM # 2

Sketch SKA-9 – First Floor Plan

- 1. Addition of wall and partition tag
- 2. Partition type revision
- 3. Partition type and wall revision

Sketch SKA-10 - First Floor Plan

- 1. Addition of wall and partition tag
- 2. Addition of wall and partition tag
- 3. Partition tag revision

Sketch SKA-11 - First Floor Plan

- 1. Addition of Detail Bubble 5/A1.29
- 2. Addition of elevation tag 26,27/A8.11

Sketch SKA-12 - Second Floor Plan

- 1. Revision of wall and dimensions
- 2. Revision of door 2X120 and dimensions

Sketch SKA-13 - Second Floor Plan

- 1. Revision of door 2X130, wall and dimensions
- 2. Revision of door 2X040b and dimensions

Sketch SKA-14 - Elevator Lobby Elevation

1. Revision to elevation 2/A1.28

Sketch SKA-15 - Partition Note Revision

1. Revision of Note from 1HR to 2 HR for wall partition

Sketch SKA-16 - Door and Frame Schedule

- 1. Revised storefront frame types 7 and 8/A6.02
- 2. Addition of FG-1

Sketch SKA-17 - Ground RCP

- 1. Addition of exit signs
- 2. Addition of exit sign
- 3. Remove exit sign
- 4. Addition of exit sign

Sketch SKA-18 - First RCP

- 1. Revision of ceiling
- 2. Addition of exit sign
- 3. Revision to ceiling

Sketch SKA-19 - Second RCP

- 1. Revision to ceiling
- 2. Addition of exit sign and revision to ceiling
- 3. Addition of exit sign and revision to ceiling
- 4. Addition of exit sign and revision to ceiling

Sketch SKA-20 - Pastoral Care Elevations

1. Addition of elevations 26 and 27/A8.11

Mercy Health System of Maine Fore River Short Stay Hospital, Portland, Maine FCFH # F05-4898 Sketch SKA-21 – Fourth Floor Revision Plan 1. Add Ante Room Sliding Door

Sketch SKA-22 – Fourth Floor Revision Plan 1. Add Ante Room Sliding Door

Sketch SKA-23 – Fourth Floor Corridor Revision 1. Add Ante Room Sliding Door

Sketch SKA-24 – Fourth Floor Roof Plan – Core & Shell 1. Chimney/Window Revision

Sketch SKA-25 – Partial South Building Elevation 1. Added Control Joint

Sketch SKA-26 – Wall Sections1. Detail Revision @ Foundation Wall

Sketch SKA-27 – Revision – Typical Hatch Detail 1. Deleted Ladder

Sketch SKA-28 – Window Schedule 1. Revised Window Elevations

B. HVAC

Sketch SKM-1 (H0.01)

- 1. Revised Air Handling Unit Schedule.
- 2. Revised Centrifugal Chiller Schedule.

Sketch SKM-2 (H1.00)

1. Revisions made to CFM's on Box Schedules.

Sketch SKM-3 (H1.01)

1. Revisions made to CFM's on Box Schedules.

Sketch SKM-4 (H1.02)

1. Revisions made to CFM's on Box Schedules.

Sketch SKM-5 (H1.03)

1. Revisions made to CFM's on Box Schedules.

Sketch SKM-6 (H2.01)

1. Revisions made to CFM's on Box Schedule.

Sketch SKM-7 (H2.03)

- 1. Revisions made to CFM's & GPM's on Box Schedule.
- 2. Revised thermostat control wiring.

Sketches SKM-8, SKM-9 & SKM-10 (H4.02)

1. Revised hot water supply and return at ground, First and Second Floor part plans.

Sketches SKM-11, SKM-12 (H5.03)

1. Added and revised details.

C. ELECTRICAL

Sketch SKE-1

1) Added manual override switch to site lighting control detail.

Sketch SKE-2

1) Added circuit numbers to panel designations.

Sketch SKE-3

1) Added circuit numbers to panel designations.

Sketch SKE-4

- 1) Added duplex receptacle for microwave.
- 2) Revised branch circuits.

Sketch SKE-5

- 1) Revised key note tags.
- 2) Revised branch circuits and EX-19 horsepower.

Sketch SKE-6

- 1) Added connections for nitrous oxide and nitrogen panel control circuits.
- 2) Revised branch circuits, AHU-3 and dearator horsepowers.

Sketch SKE-7

1) Revised branch circuits.

Sketch SKE-81) Revised branch circuits.

Sketch SKE-9

1) Revised branch circuits.

Sketch SKE-10

1) Revised branch circuits.

Sketch SKE-11

1) Revised circuit breaker and panel tags.

Sketch SKE-121) Revised branch circuits.

Sketch SKE-13

1) Revised Mechanical equipment horsepowers.

Sketch SKE-14

- 1) Added switches.
- 2) Revised switching and branch circuit wiring.

Mercy Health System of Maine Fore River Short Stay Hospital, Portland, Maine FCFH # F05-4898 page 18 of 19 December 6, 2006 ADDENDUM # 2 Sketch SKE-15

1) Added switches and revised branch circuit wiring.

Sketch SKE-16

1) Revised branch circuit wiring and added switch legs to fixtures.

Sketch SKE-17

1) Added missing fixtures and revised branch circuit wiring in OR #5.

Sketch SKE-181) Revised branch circuit wiring.

Sketch SKE-191) Revised branch circuit wiring.

Sketch SKE-20

1) Revised lighting in alcoves, branch circuit wiring and corrected fixture types.

Sketch SKE-21

1) Provided fused switch for future Electrical service for Maintenance Building.

2) Provided a feeder from Maintenance Building to Panel DP4G4 in Ground Floor of Hospital.

Sketch SKE-221) Revised panelboard circuit breakers.

Sketch SKE-23

1) Revised panelboard circuit breakers and Exhaust Fan horsepowers.

Sketch SKE-24

1) Revised circuit breaker for ice maker per Kitchen Equipment consultant.

End of Addendum #2

SECTION 08332 - ROLLING FIRE DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. All of the Contract Documents, including General and Supplementary Conditions, and Division 1 General Requirements, apply to the work of this Section.

1.2 SUMMARY

A. The work of this Section includes rolling fire doors.

1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's product data and installation instructions for each type of rolling fire door. Include both published data and any specific data prepared for this project.
- B. Shop Drawings: Submit shop drawings for approval prior to fabrication. Include detailed plans, elevations, and details of framing members, required clearances, anchors, and accessories. Include relationship with adjacent materials.

1.4 QUALITY ASSURANCE

- A. Manufacturer: Rolling fire doors shall be manufactured by a firm with a minimum of five years experience in the fabrication and installation of rolling fire doors. Manufacturers proposed for use, which are not named in these specifications, shall submit evidence of ability to meet performance and fabrication requirements specified, and include a list of five projects of similar design and complexity completed within the past five years.
- B. Installer: Installation of rolling fire doors shall be performed by an authorized representative of the manufacturer.
- C. Single-Source Responsibility: Provide doors, guides, motors, and related primary components from one manufacturer for each type of door. Provide secondary components from source acceptable to manufacture of primary components.
- D. Pre-Installation Conference: Schedule and convene a pre-installation conference just prior to commencement of field operations, to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work.

1.5 DELIVERY, STORAGE and HANDLING

A. Deliver materials and products in labeled protective packages. Store and handle in strict compliance with manufacturer's instructions and recommendations. Protect from damage from weather, excessive temperatures and construction operations.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURER

A. Provide rolling fire doors by Overhead Door Corporation, Pennsylvania Division; Telephone 800-929-2553 or 717-248-0131; Fax 800-929-1274.

2.2 ROLLING FIRE DOORS

- A. Basis of Design Product: Series 631 Fire Doors by Overhead Door Corporation or approved equal.
- B. Label: Provide fire doors certified with the following listing.
 - 1. Rolling fire doors up to 144 sq. ft. and 12' in width or height shall bear the UL 1-1/2 Hour Class B Label for masonry fire walls.
- C. Curtain: Interlocking roll-formed slats as specified following. Endlocks shall be attached to each end of alternate slats to prevent lateral movement.
 - 1. Flat profile type F-265 for doors thru 14'-0" wide, fabricated of 24 gauge galvanized steel.
- D. Glazing: Not required.
- E. Finish:
 - 1. Galvanized Steel: Slats and hood shall be galvanized steel in accordance with ASTM A 525 and receive rust-inhibitive, roll coating process, including bonderizing, 0.2 mils thick baked-on primer paint, and 0.6 mils thick baked-on polyester (powder coated) top coat. Non-galvanized exposed ferrous surfaces shall receive one coat of rust-inhibitive primer.
- F. Color: Gray polyester top coat. (Powder coating finish in color as selected by Architect from manufacturer's standard colors).
- G. Bottom Bar: Two (galvanized) structural steel angles 1-1/2" by 1-1/2" by 1/8" minimum. (Single angle for conveyor applications).
- H. Guides: Roll-formed steel shapes attached to continuous steel wall angle for doors thru 12' wide. Three structural steel angles with minimum thickness of 3/16" for doors over 12' wide.
 - 1. Fastening Guides to Masonry Fire Walls: UL listed expansion anchors, or by throughbolts on soft brick or hollow block walls, or by bolts on steel jambs, or welded in accordance with manufacturer's listing.

I. Brackets: Steel plate to support counterbalance, curtain and hood.

- J. Counterbalance: Helical torsion spring type. Counterbalance shall be housed in a steel tube or pipe barrel, supporting the curtain with deflection limited to 0.03" per foot of span.
 1. Counterbalance shall be adjustable by means of an adjusting tension wheel.
- K. Hood: 24-gauge galvanized primed steel. Provide one intermediate support bracket for wall openings over 13'6" wide.
- L. Manual Operation: Chain hoist.
- M. Automatic Closure:
 - 1. Provide automatic-closing device that is inoperative during normal door operations, with [oscillating] [viscous-speed] governor unit complying with requirements of NFPA 80 and with an easily tested and reset release mechanism, and designed to be activated by the following:
 - a. Replaceable fusible links with temperature rise and melting point of 165 deg F interconnected and mounted on both sides of door opening.
- N. Locking: Interior bottom bar slide bolt.
- O. Wall Mounting Condition: Face-of-wall mounting.

PART 3 - EXECUTION

3.1 PREPARATION

A. Take field dimensions and examine conditions of substrates, supports, and other conditions under which this work is to be performed. Do not proceed with work until unsatisfactory conditions are corrected.

3.2 INSTALLATION

- A. Strictly comply with manufacturer's installation instructions and recommendations. Coordinate installation with adjacent work to ensure proper clearances and allow for maintenance.
- B. Install rolling fire doors in compliance with requirements of NFPA 80. Test fire-release system and reset components after testing.
- C. Instruct Owner's personnel in proper operating procedures and maintenance schedule.

3.3 ADJUSTING AND CLEANING

A. Test rolling fire doors for proper operation and adjust as necessary to provide proper operation without binding or distortion.

Mercy Health System of Maine Fore River Short Stay Hospital, Portland, Maine FCFH # F05-4898 Section 08332 – Rolling Fire Doors Addendum #2 December 6, 2006 Page 3 B. Touch-up damaged coatings and finishes and repair minor damage. Clean exposed surfaces using non-abrasive materials and methods recommended by manufacturer of material or product being cleaned.

END OF SECTION 08332

SCHEDULE OF SPECIAL INSPECTIONS

DATE: 9/13/2006

JEKVILE (AII, AII, - STEEL CONSTRUCTION IRC 2003)
Beview Fahricator 0A/0C noncedures manual.
Review material certificates of compliance (bolts, nuts, washers, structural steel and weld filler material).
Review welder certification.
Review shop drawings.
inspect welded connections
Inspect bolted connections.
Review structural steel and fabrication for conformance to approved shop drawings.
Review Certificate of Compliance.

Page 1 of 6

Schedule of Special Inspections

SMRT Project No. 05034-00

SCHEDULE OF SPECIAL INSPECTIONS

DATE: 9/13/2006

MATERIAL/ACTIVITY	ITEM	SERVICE	EXTENT (All, Sample, Other, None)	COMMENTS	AGENT #
STRUCTURAL STEEL - Erections	1.2a	Review welder certification.	Obtain certification numbers for all welders and all steel. Verify welder qualification in accordance with AWS D1.1		
	1.2b	Review materials certificates of compliance (bolts, nuts, washers, and weld filler material).	Verify that certificates of compliance have been approved.		
	1.2c	Review structural steel and erection for conformance to approved shop drawings	Verify all member sizes, piece marks and connection details.		
	1.2d	inspect welded connections.	Verify correct weld filler processes and weld rod storage. Provide continuous inspection of complete and partial penetration groove welds and for fillet welds greater than 5/16". Periodically inspect fillet welds equal to or less than 5/16". Visually inspect all welds.	Inspector shall be qualified according to AWS D1.1	
	1.2e	Inspect field bolting installation in accordance with Section 9 of RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts.	Visually inspect all bolts. During installation, verify bolts, nuts, washers, paint, bolted parts and installation and tightening procedures are in compliance with referenced standards. Periodically inspect the installation of snug-tightened connections. Verify that all plies of all snug- tightened connections are drawn together. At pretensioned bolted connections, observe the pre-installation testing and calibration procedures when such procedures are required for the installation method. Provide continuous monitoring for pretensioned bolted method. Provide continuous monitoring for pretensioned bolted connections utilizing calibrated wrench method or turn of the nut method without method. Provide periodic monitoring of pretensioned bolted connections utilizing the turn of the nut method, or the twist-off bolt method.	4.	
	1.2f	Review Bracing connections.	Visually inspect all.		
	1.2g	Review Column splices.	Visually inspect all.		
	1.2h	Review shear connections	Visually inspect all.		
STEEL STAIRS AND GIJARDRAILS NOTE: special inspector may waive	1.5a	Review Fabricator QA/QC Procedures manual.	Special Inspector to review.		
Fabricator shop inspection if the fabricator is currently certified through	1.5b	Review Fabricator QA/QC procedures implementation and conformance.	One shop inspection required. Visual inspection of shop conformance.		-
נחפ אוסט ענשמונץ בפרנותכפנומת program.	1.5c	Review welder certifications.	Verify welder qualification in accordance with AWS D1.1. Obtain certification numbers for all welders.		
	1.5d	Review shop drawings.	Verify approval		
	1.5e	Inspect welded connections.	Perform continuous inspection of complete and partial penetration groove welds and fillet welds larger than 5/16". Perform periodic inspection of fillet welds 5/16" and smaller. Visually inspect all welds after completion.		
	1.5f	Inspect bolted connections utilizing high-strength bolts.	Periodically inspect installation of high-strength bolts. Verify that all plies of all connections are drawn together.		

Addendum # 2 December 6, 2006

Schedule of Special Inspections

SMRT Project No. 05034-00

SCHEDULE OF SPECIAL INSPECTIONS

			APPLICABLE TO THIS PROJECT
MATERIALIACTIVITY	ITEM	H SERVICE	EXTENT COMMENTS AGENT #
			(All, Sample, Other, None)
Steel Stairs and Guardrail Systems • Erection	1,6a	Review welder certification.	Verity welder qualification in accordance with AWS D1.1. Obtain certification numbers for all welders.
	1.6b	Inspect welded connections.	Perform continuous inspection of complete and partial penetration groove welds and fillet welds larger than 5/16". Perform periodic inspection of installation of fillet welds 5/16" and smaller. Yisually inspect all welds after completion.
	1.60	Inspect bolted connections utilizing high-strength bolts.	Periodically inspect installation of high strength bolts. Verify that all plies are drawn together.
	1.6d	Inspect installation.	Perform periodic inspection in progress and complete inspection at completion verifying all members and connections conform with the contract documents and approved shop drawings.
SECONDARY / MISC STRUCTURAL STEEL	EL 1.7a	Review girts connections.	Visually inspect all.
	1.7b	Review welder certification.	Obtain certification numbers for all welders.
	1.7c	Review brick relieving angle connections/installation.	Visually inspect all. Verify member size and connections to structure.
	1.7d	Review details of steel frames.	Visually inspect all.
	1.7e	inspect bolted connections utilizing high-strength bolts.	Periodically inspect installation of high-strength bolts. Verify that all plies of all connections are drawn together.
	1.7f	Review fabrication for conformance with approved shop drawings.	Verify member sizes, piece marks, and connection details match approved shop drawings.
Steel Deck Erection	1.Ba	ings.	Verify approval.
	1.8b	Review welder certification.	Verify welder qualification in accordance with AWSD1.1. Obtain certification numbers of all welders.
	1.8c	el deck connection to	Visually inspect all. Verify welds comply with AWS D1.3 requirements.
	1.8d	Inspect installation of shear connectors.	Prior to starting, verify materials and weld processes are in compliance with AWS requirements and construction documents. Periodically inspect shear connector Installation. Inspect soundness of all welds. Verify number and location of all. Random test 20% of all connectors in accordance with AWS Chapter 5.
		SECTION 2 - CONCRETE CC	SECTION 2- CONCRETE CONSTRUCTION (IBC 2003 - 1704.4)
CONCRETE MATERIALS	2.1a	Review mix design.	Verify approval of all mixes intended for use.
	2.1b	Review reinforcement grade.	Inspect Identifying marks on reinforcing steel.
	2.1c	Review submittals.	Verify acceptance of propriety products and reinforcing steel shop drawings. Review requirements of reinforcing steel on placement drawings.
REINFORCING AND PRESTRESSING STEEL	2.2a	Inspect condition and placement of reinforcing steel.	All reinforcing steel at walls, spread footings, columns and beams and column piers. Check prior to each concrete placement.

Page 3 of 6

SMRT Project No. 05034-00

Schedule of Special Inspections

SCHEDULE OF SPECIAL INSPECTIONS

AGENT # COMMENTS APPLICABLE TO THIS PROJECT Periodically inspect reinforcement grade size, location of placement, method of securing in place, and lap splices during installation and prior to Periodically inspect material, location, and attachment of veneer anchors. Perform construction testing in accordance with the Contract Documents. Verify approval of mortar mixes, mortar ingredients, reinforcing, steel shop drawings, veneer anchor assemblies, and other items requiring SER approval per the Construction Documents. Inspect procedures daily when air temperature is below 40 degrees F or above 90 degrees F at any time in the day. Verify product installed complies with approved submittal. Periodically check spacing and additional requirements at openings. Periodically inspect grout spaces prior to grout placement. Periodically Periodically verify mix proportions for compliance with approved mix. Inspect placement procedures at all concrete placements. Once daily when air temperature is above 32°F. Twice daily when temperature is below 32°F. Verify member sizes and layout of all structural members. (All, Sample, Other, None) Visually inspect at all steel column locations. EXTENT Visually inspect all placement and curing. Inspect for each concrete placement nspect grout mixing and placement. SECTION 3 - MASONRY CONSTRUCTION (IBC 2003 - 1704.5) rior to each concrete placement. Prior to each concrete placement. All concrete placements. All concrete placements. Periodically inspect. grout placement. Take concrete cylinder samples and perform compressive strength Inspect bolt types; verify bolts embedment for compliance with contract documents. ield testing of concrete slump, temperature, and air content. Inspect installation of anchor bolts, masonry dowels and other Inspect placement of elevated concrete for compliance with contract documents. Observe concrete placement. Observe concrete curing technique and temperature. inspect cold weather and hot weather installation. Inspect size and location of structural elements. Verify dimensions and materials acceptability. Field testing of mortar, grout, and prisms Inspect mixing of site-prepared mortar SERVICE inspect installation of veneer anchors. Inspect deformed bar reinforcement. Verify acceptability of substrate. Inspect joint reinforcement. inspect mortar placement. inspect grout placement. Review submittals embedded items. test. ITEM 3.1b 3.1c 3.1d 2.3a 2.3b 2.4a 2.5b 2.5c 2.5d 3.1g 3.1h 2.2b 2.5a 3. te 3.1j 2.9a 3.1a 3,15 3.1 REINFORCED MASONRY AND MASONRY VENEER MATERIALIACTIVITY CONCRETE OPERATIONS ELEVATED CONCRETE ANCHOR BOLTS EMBEDMENTS FORMWORK

DATE: 9/13/2006

December 6, 2006 Addendum # 2

Schedule of Special Inspections

SMRT Project No. 05034-00

Page 4 of 6

SCHEDULE OF SPECIAL INSPECTIONS

DATE: 9/13/2006

			APPLICABLE TO THIS PROJECT	ROJECT , and a substitution of the state o	
MATERIALIACTIVITY	ITEM	SERVICE	EXTENT	COMMENTS	AGENT #
			(All, Sample, Other, None)		
		SECTION 5 - 50	SECTION 5 - SOILS (IBC 2003 - 1704.7)		
SOILS	5.1a	Inspect site preparation and soil conditions prior to placement of fill[All under building footprint. for conformance with contract documents and soils report.	All under building footprint.		
	5.1b	Inspect testing and placement of fill material for conformance with Required for all fill more than 12" deep- contract documents and soils report.	Required for all fill more than 12" deep.		
	5.1c	Review soils compaction testing for compliance with contract documents and soils report.	See contract documents for testing frequency.		
		SECTION 7 - SPRAYED-FIRE-RESI	SECTION 7 - SPRAYED-FIRE-RESISTANT MATERIALS (IBC 2003 - 1704.11)		
SPRAYED-ON FIREPROOFING	7.1a	Inspect surface of structural members to be sprayed for conformance with contract documents.	Visually inspect all.		
	7.1b	Observed application conditions for conformance with the approved manufacturer's written instructions.	At each fireproofing application.		
~	7.1c	Observe field-testing of thickness, density, and bond strength of the sprayed fire resistive material for compliance with contract documents.	As specified in IBC 2003, Section 1704.11.3 and 4.		
		SECTION 8 - EIF	SECTION 8 - EIFS (IBC 2003 - 1704.12)		
EIFS	8.1a	Inspect EIFS installation	Visually inspect all.		
Special inspections are not required for EIFS applications installed over a water- resistive barrier with a means of draining moisture to the exterior.					
		SECTION 9 - SPECIAL	SECTION 9 - SPECIAL CASES (IBC 2003 1704.13)		
	9.1a				
	9.1 <u>b</u>				
		SECTION 10-SMOKE C	SECTION 10 - SMOKE CONTROL (IBC 2003 - 1704.14)		
SMOKE CONTROL	10.1a	Test scope shall be as follows: 1. During erection of ductwork and To be coordinated by the project mechanical engineer. prior to concealment for the purposes of leakage testing and recording of device location. 2. Prior to occupancy and after sufficient completion for the purposes of pressure difference testing, flow measurements and detection and control verification.	To be coordinated by the project mechanical engineer.	Special inspection agencies for smoke control shall have expertise in fire protection engineering, mechanical engineering and certification as air balancers.	

Schedule of Special Inspections

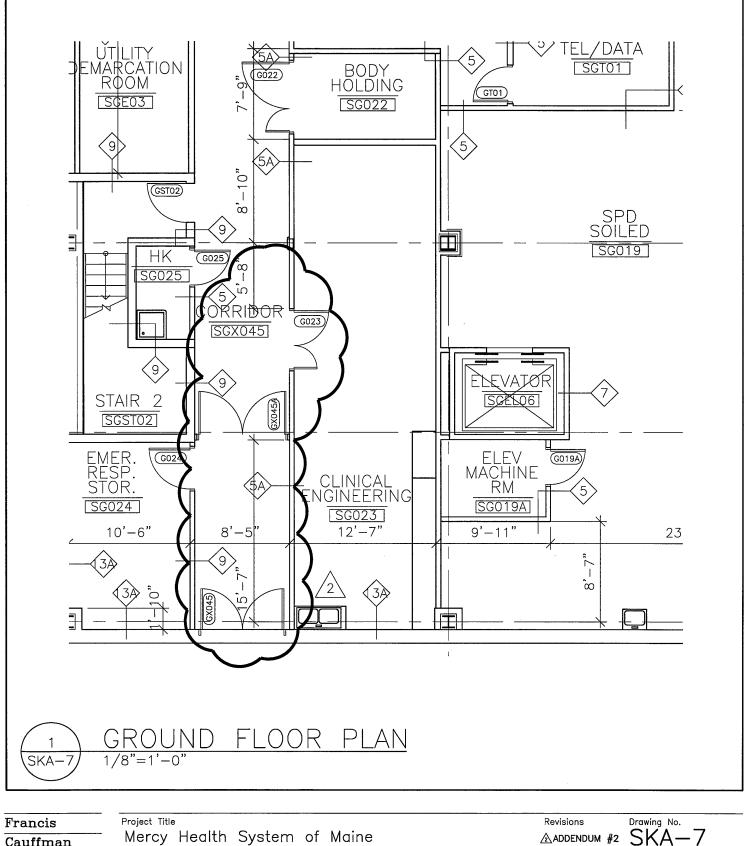
SMRT Project No. 05034-00

Page 5 of 6

SCHEDULE OF SPECIAL INSPECTIONS

DATE: 9/13/2006

			APPLICABLE TO THIS PROJECT	ect 2 kine - ja juli juriječka stanovana s	
MATERIALIACTIVITY	ITEM	SERVICE	EXTENT	COMMENTS	AGENT #
			(All, Sample, Other, None)		
		SECTION 11 - QUALITY ASSURANCE	SECTION 11 - QUALITY ASSURANCE OF SEISMIC RESISTANCE (IBC 2003 - 1705)		
MEP	11.a	Quality assurance plan accordance with Secti	for seismic requirements shall be provided in To be coordinated by the project MEP engineers. ons 1705, 1702.7 and 1708.5.		


a second s

SMRT Project Na. 05034-00

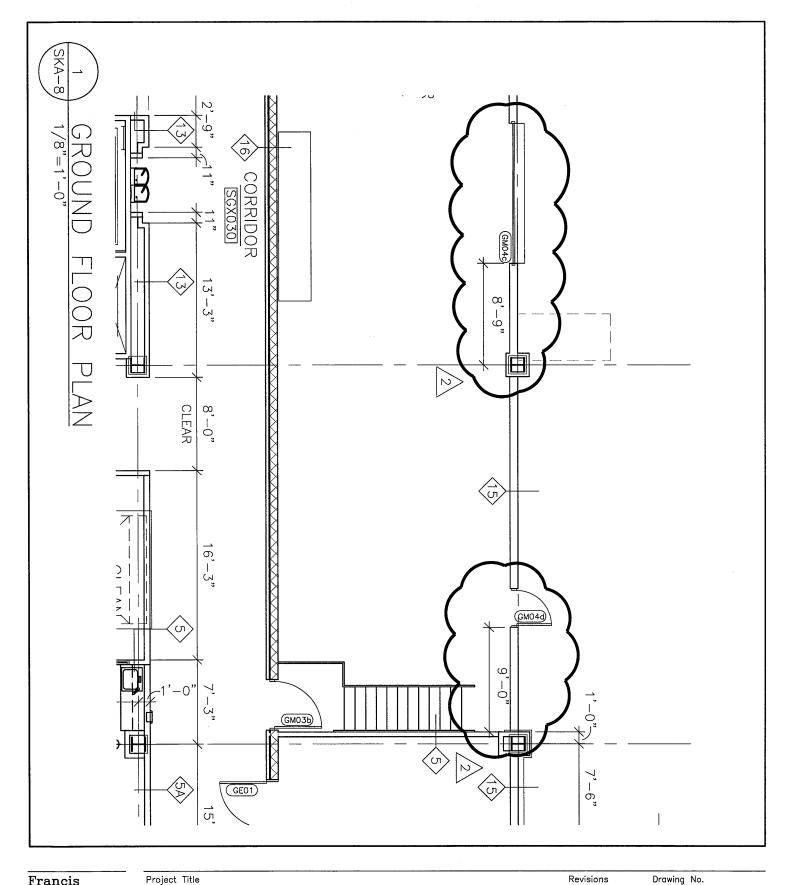
Addendum # 2 December 6, 2006

Page 6 of 6

Schedule of Special Inspections

Cauffman

Foley


Hoffmann

2120 Arch Street Philadelphia, PA 19103 215-568-8250 MERCY

Drawing Title Ground Floor Plan

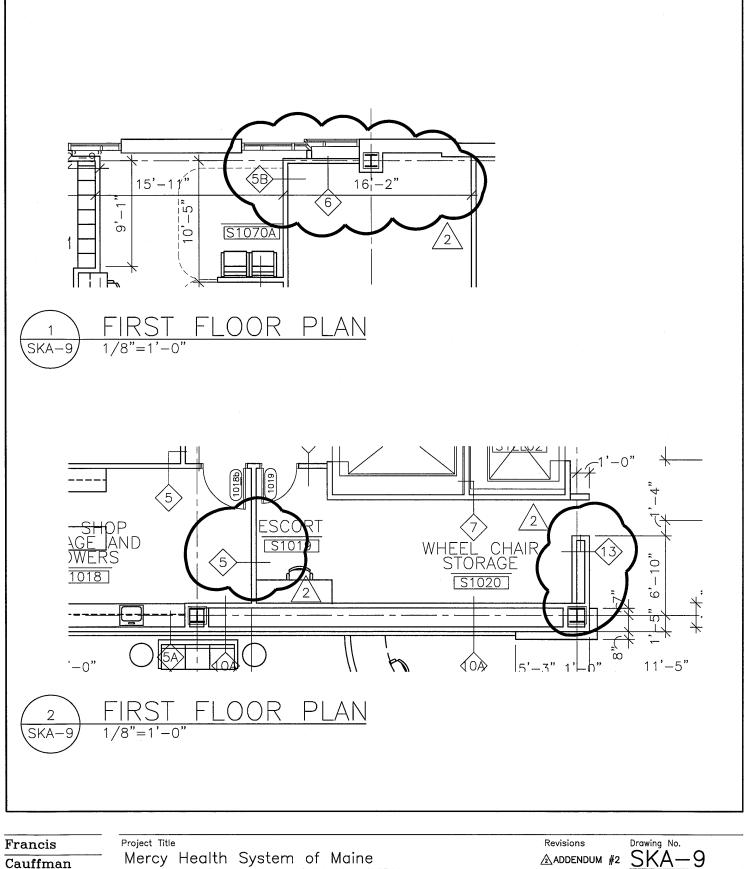
FORE RIVER SHORT STAY HOSPITAL

<u>/</u>				
	Revision To: A1.00A, A1.00B			
Date 12.06.06	Project No. F05-4898			
Scale	Drawn By			
AS NOTED	EWG			

Francis

Cauffman

Foley


Hoffmann

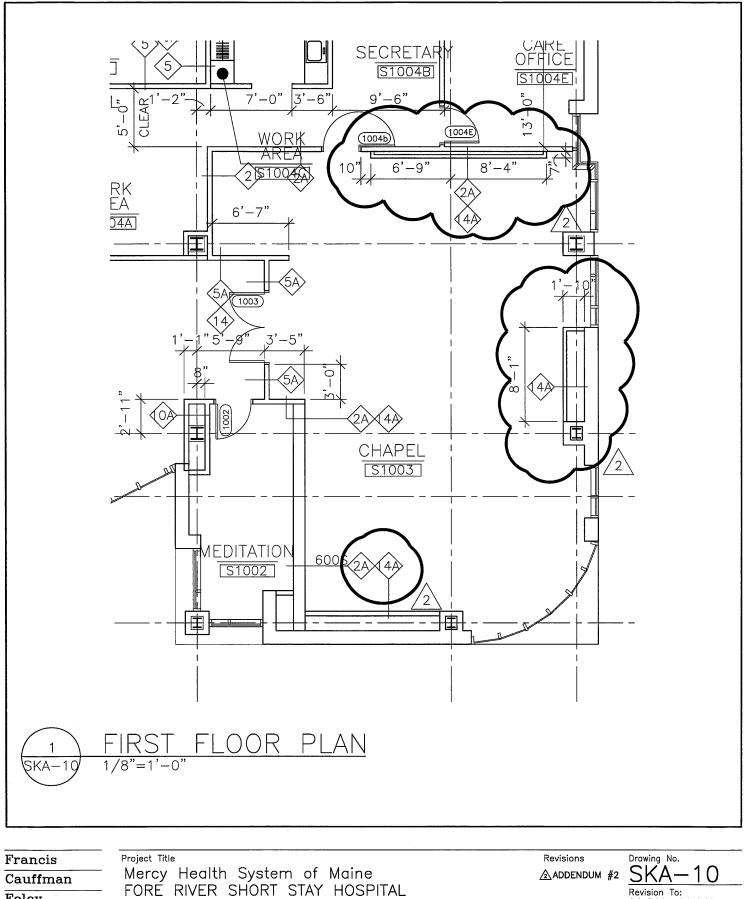
2120 Arch Street Philadelphia, PA 19103 215-568-8250

Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL MERCY

Drawing Title Ground Floor Plan

Revisions	Drawing No. SKA-8
<u>.</u>	Revision To: A1.00A, A1.00B
^{Date} 12.06.06	Project No. F05-4898
Scale	Drawn By
AS NOTED	EWG

	~	u		11	..	α	1
_			-				_


Foley Hoffmann

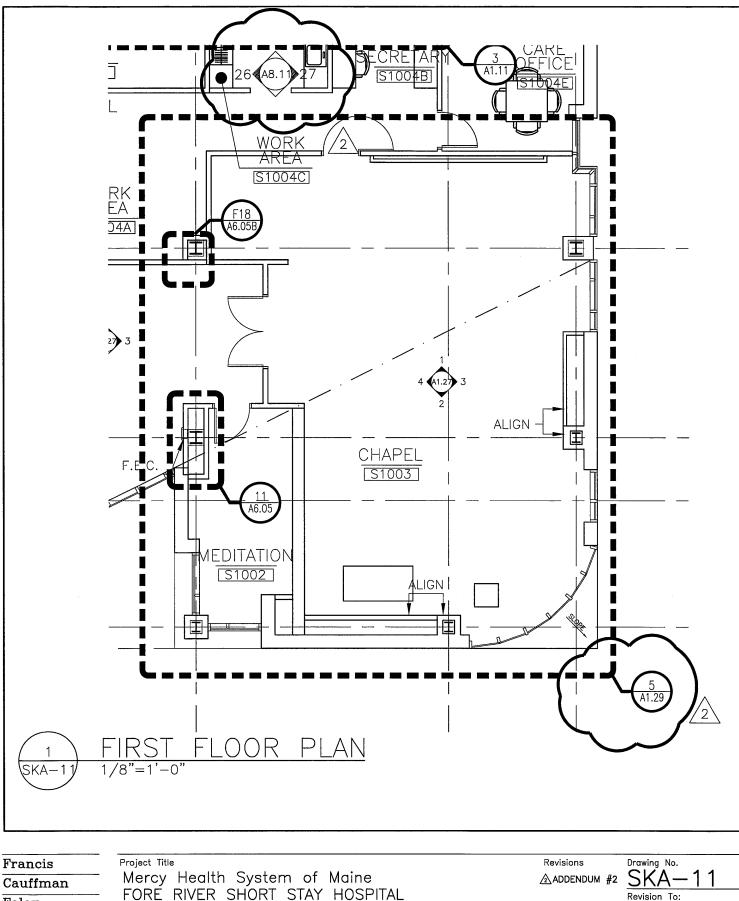
MERCY

2120 Arch Street Philadelphia, PA 19103 215-568-8250 Drawing Title First Floor Plan-Partition revision

FORE RIVER SHORT STAY HOSPITAL

ADDENDUM #2 SKA-9 Revision To: A1.01A, A1.01B Project No. F05-4898 Scale AS NOTED EWG

ፑሳ	017

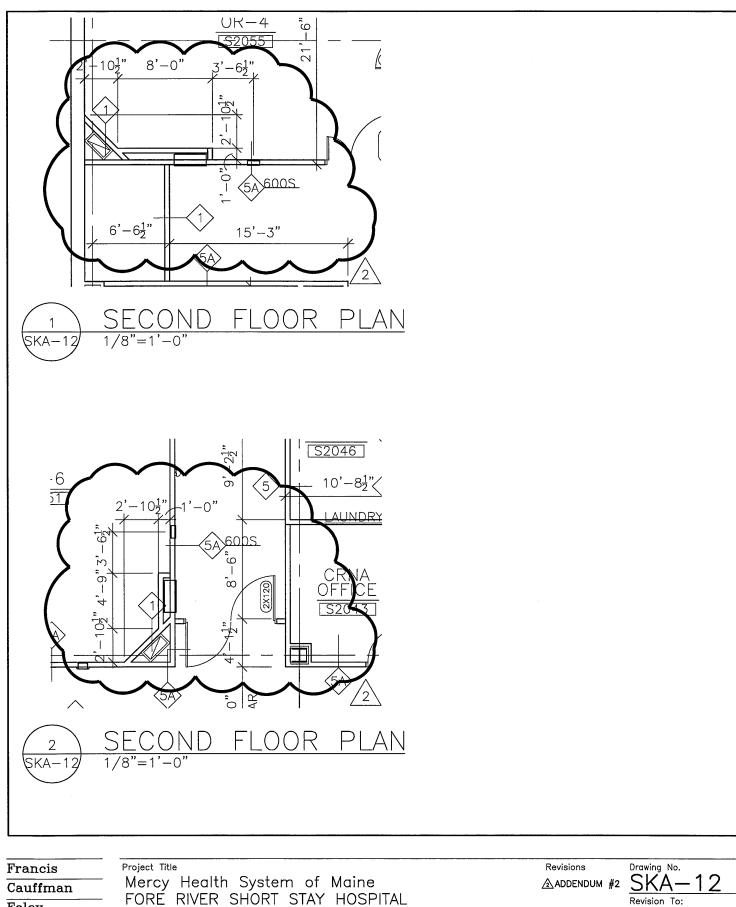

Hoffmann

2120 Arch Street Philadelphia, PA 19103 215-568-8250

Drawing	Title	First	Floo	or	Plan
		Parti	tion	re	visior

MERCY

Revision To: A1.01A, A1.01B Date 12.06.06 Project No. F05-4898 Scale Drawn By AS NOTED EWG


Foley

Hoffmann

2120 Arch Street Philadelphia, PA 19103 215-568-8250 MERCY

Drawing Title First Floor Plan-Detail Bubble and Elevation Tag

	Revision To: A1.01B
Date 12.06.06	Project No. F05-489
Scale	Drawn By
AS NOTED	EWG

Foley

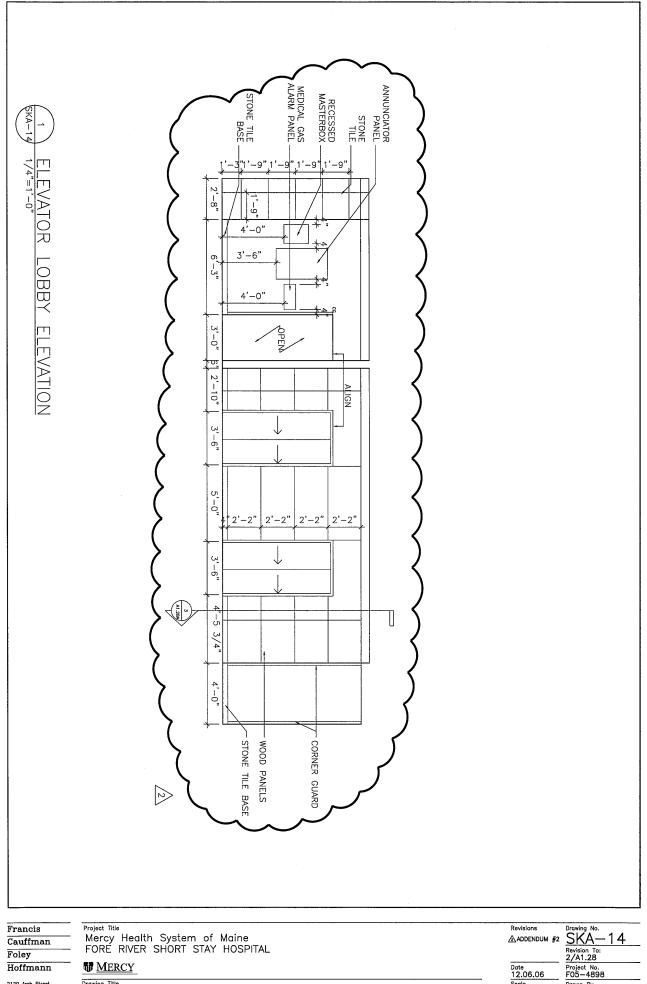
Hoffmann

2120 Arch Street Philadelphia, PA 19103 215-568-8250 MERCY

Drawing Title Second Floor Plan-Dimension, wall and door revisions

Revision To: A1.02A, A1.02B Project No. F05-4898 Date 12.06.06 Scale Drawn By AS NOTED EWG

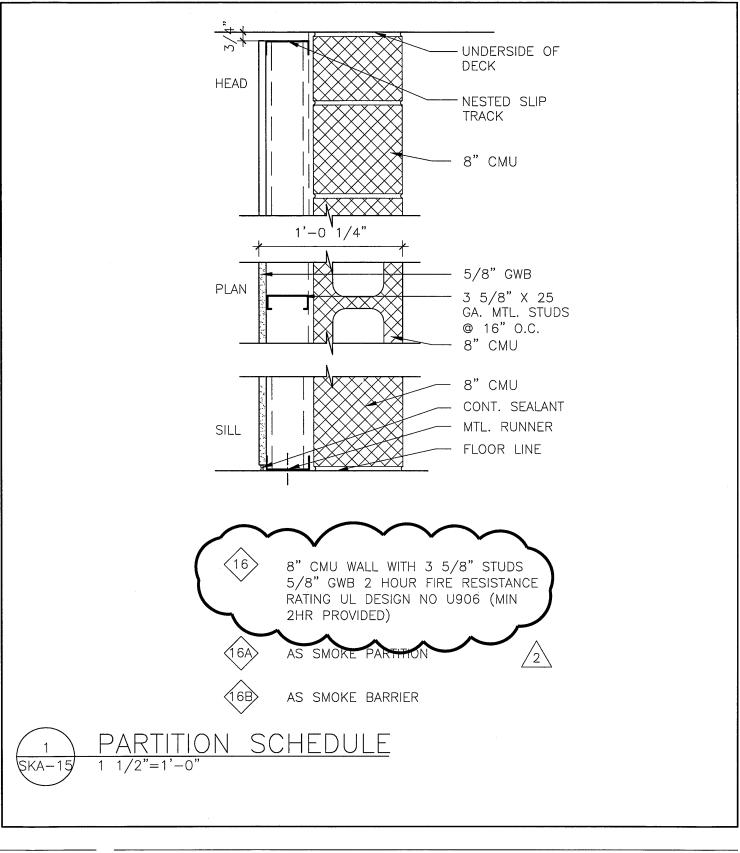
CORRECT SECOND FLOOR PLAN 1/8"=1'-0"	
2 SECOND FLOOR PLAN	
FrancisProject TitleCauffmanMercy Health System of MaineFolowFORE RIVER SHORT STAY HOSPITAL	Revisions $ADDENDUM #2$ $\frac{Drawing No.}{SKA - 13}$ Revision To:
	ICTION IN TO.

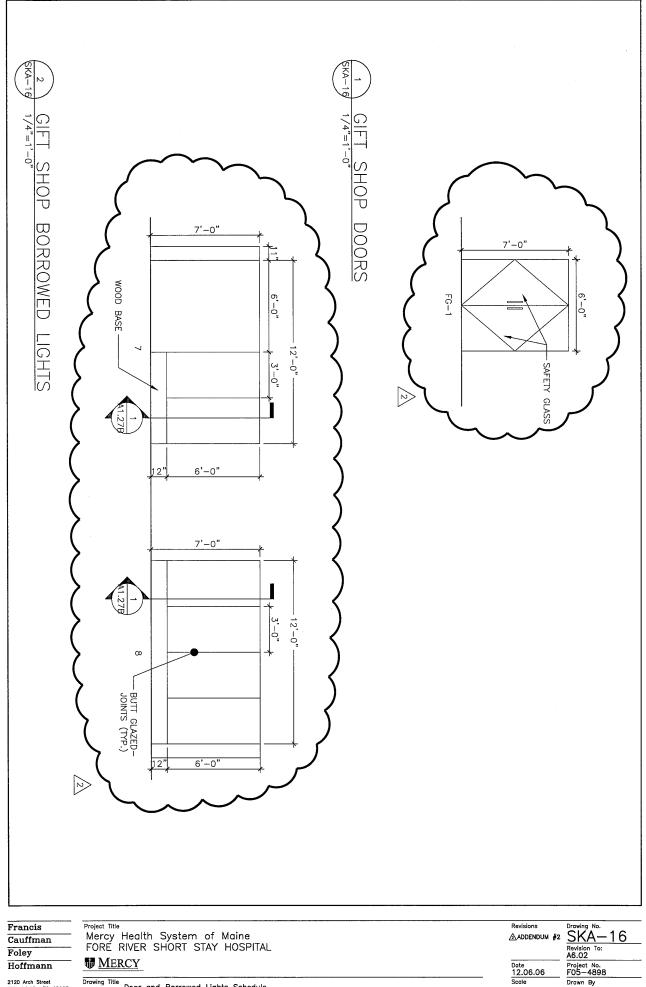

A second second	
Tile 1 eren	
rolev	

Hoffmann

2120 Arch Street Philadelphia, PA 19103 215–568–8250 Drawing Title Second Floor Plan— Dimension, wall and door revisions

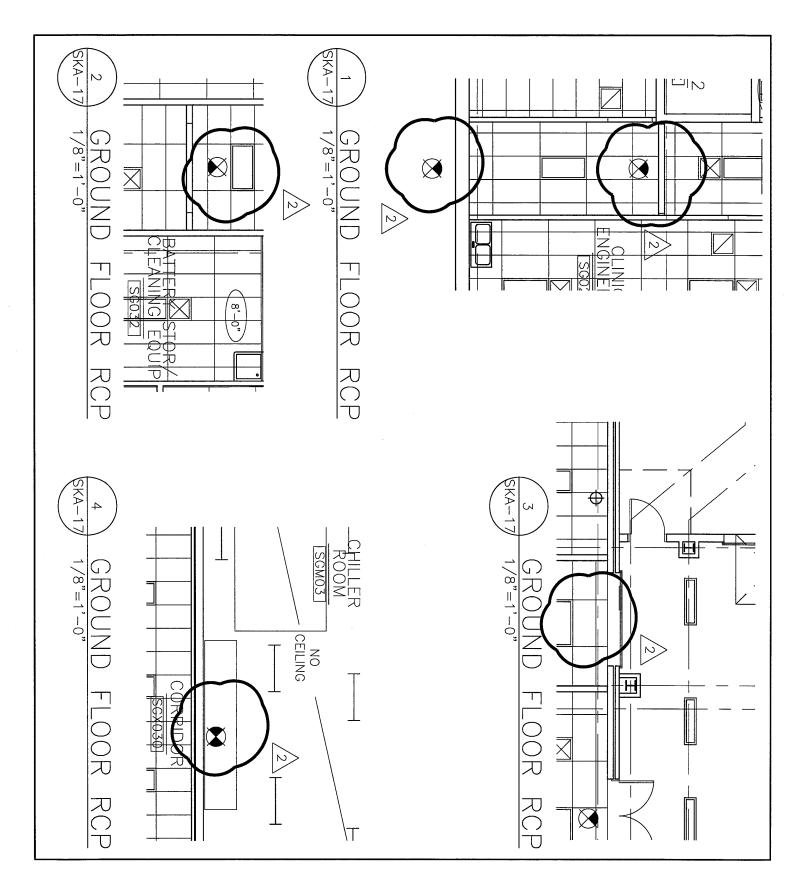
MERCY


		Revision To: A1.02A, A1.02B
Date 12.06.06		Project No. F05-4898
Scale		Drawn By
AS NOTED)	EWG


2120 Arch Street Philadelphia, PA 19103 215-568-8250

Drawing Title Elevator Lobby Elevation Revision

Date 12.06.06 Scale AS NOTED Drawn By EWG


Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	▲ADDENDUM #2	<u>SKA-15</u>
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision To: A6.01
Hoffmann	MERCY	Date 12.06.06	Project No. F05-4898
2120 Arch Street Philadelphia, PA 19103 215–568–8250	Drawing Title Partition Schedule- Note Revision	Scale AS NOTED	Drawn By EWG

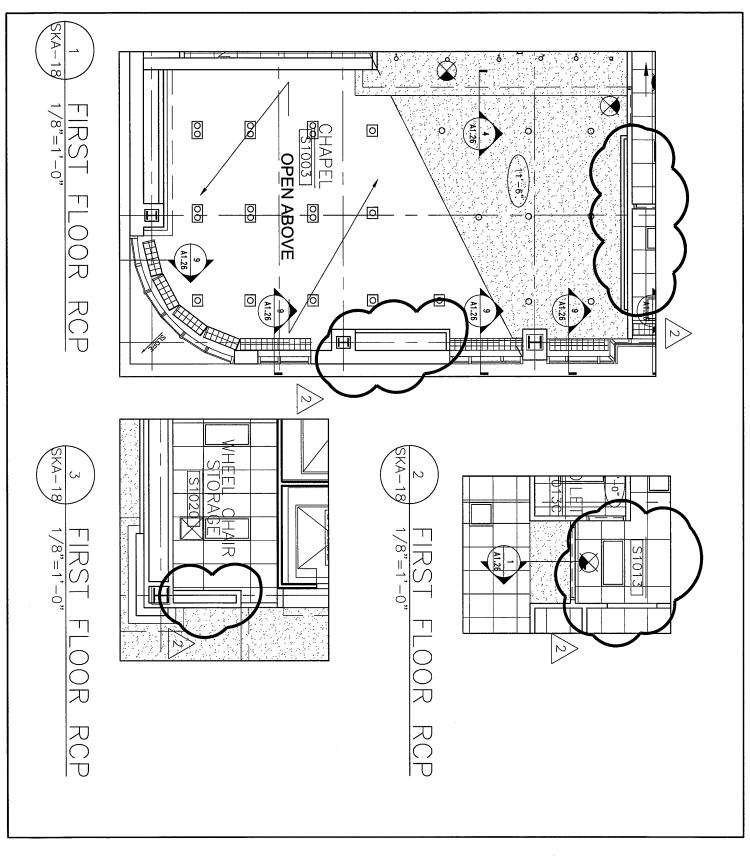
2120 Arch Street	
Philadelphia, PA	19103
215-568-8250	

Door and Borrowed Lights Schedule Revision

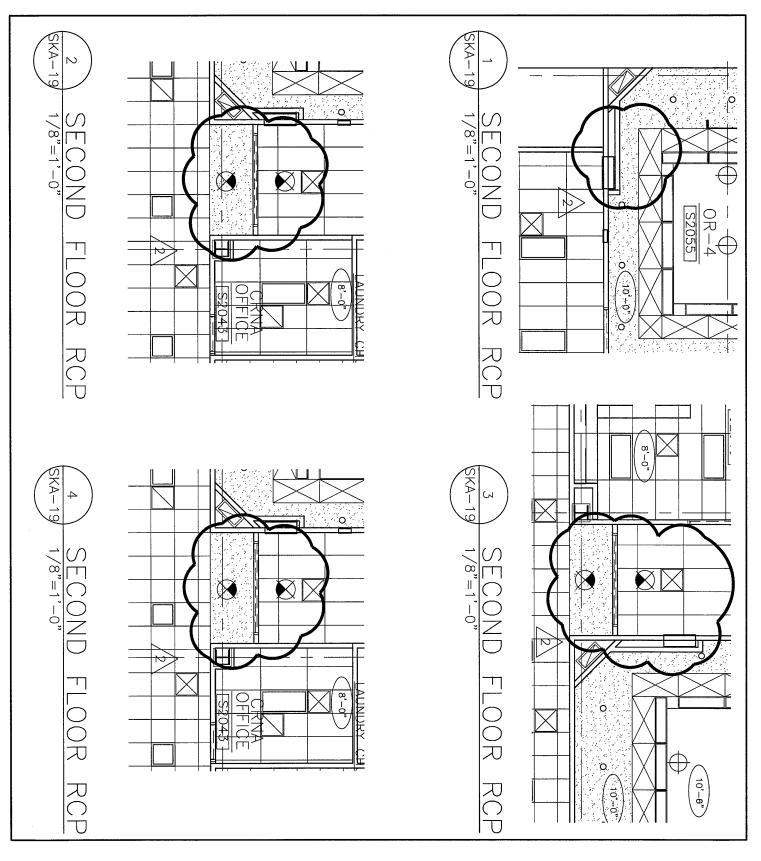
Date 12.06.06 Scale AS NOTED Drown By EWG

Francis

Cauffman


Foley

Hoffmann


2120 Arch Street Philadelphia, PA 19103 215-568-8250 Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL

MERCY

Drawing Title Ground Floor RCP Revisions Add and remove exit signs Revision To: ADDENDUM #2 Date 12.06.06 Scale AS NOTED Project No. Project No. F05-4898 Drawn By EWG

Francis Cauffman	Project Title Mercy Health System of Maine	Revision To:	Drawing No. SKA—18
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision To: A5.01
Hoffmann	MERCY	Date 12.06.06	Project No. F05—4898
2120 Arch Street Philadelphia, PA 19103 215–568–8250	Drawing Title Addition of Exit Sign, Addition of Walls in Chapel, and Revision of Wall in Storage area	Scale AS NOTED	Drawn By EWG

Francis

Cauffman

Foley

Hoffmann

2120 Arch Street Philadelphia, PA 19103 215–568–8250 Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL

MERCY

Drawing Title Second Floor RCP Revisions Addition of exit signs and Revisions to ceiling

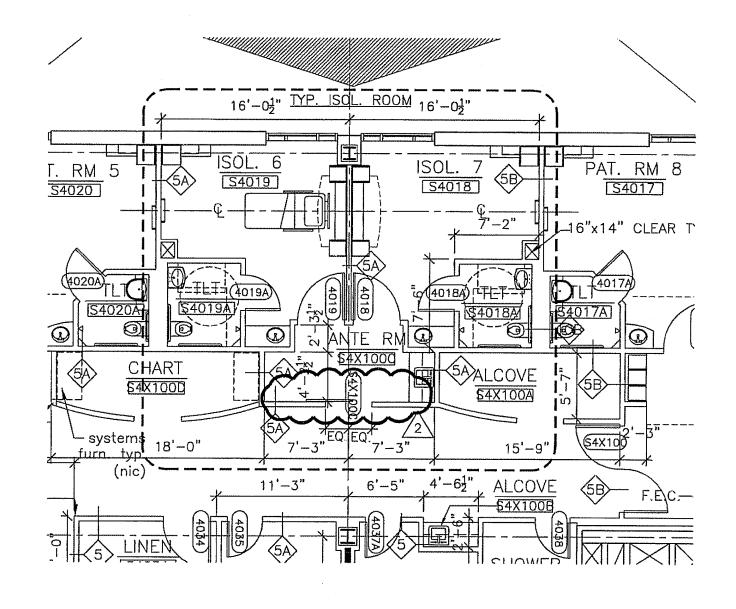
Revision To:	Drawing No. SKA—19
	Revision To: A5.02
Date 12.06.06	Project No. F05—4898
Scale	Drawn By
AS NOTED	EWG

BULKHEAD SS 1/2" CONT BEZA SS 1/2" CONT SS 1/2" CONT
CARE ELEVATIONS

Francis

Cauffman

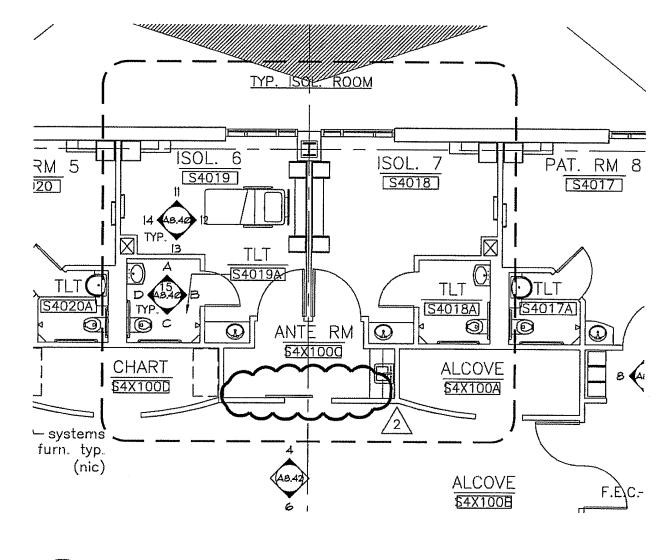
Foley

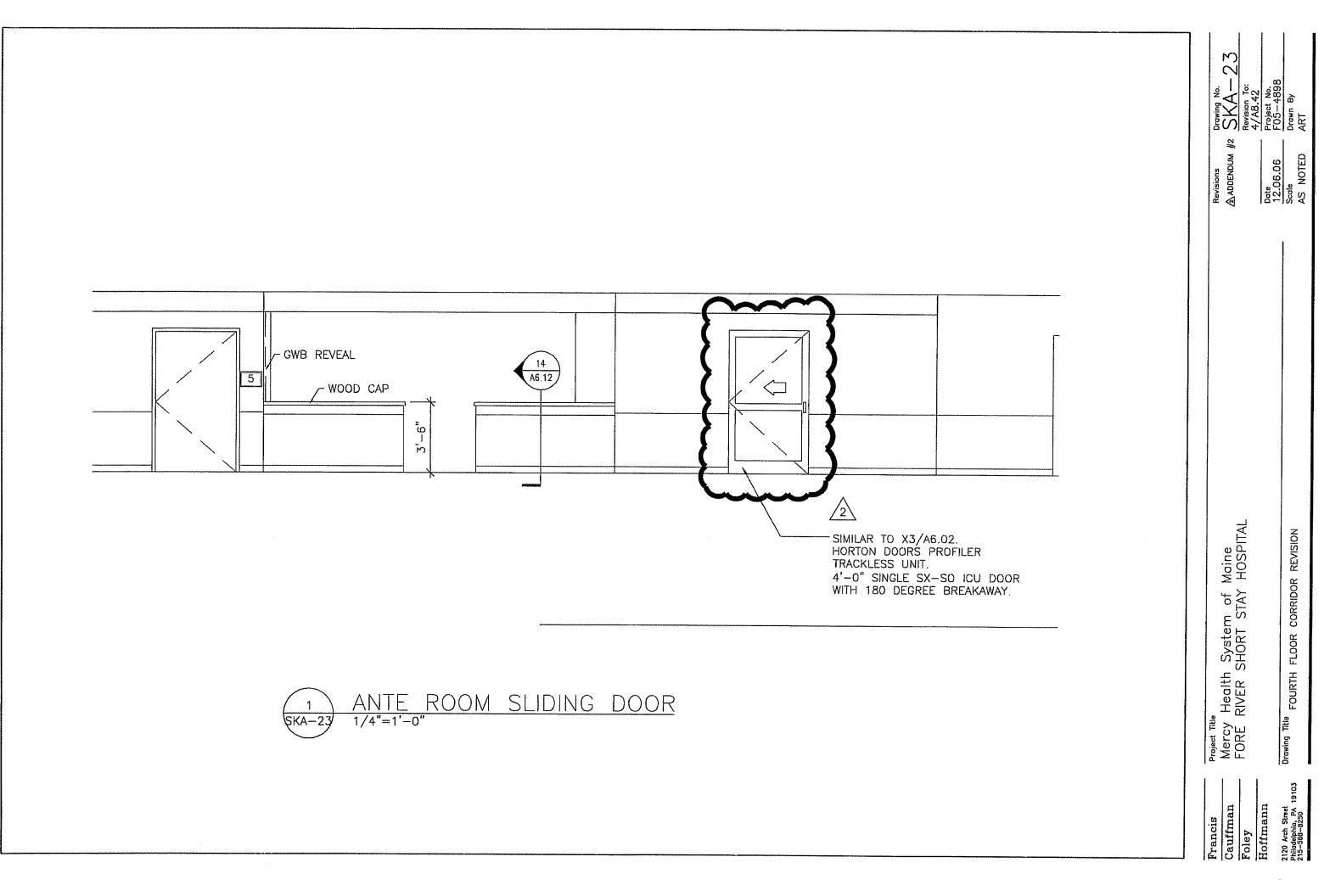

Hoffmann

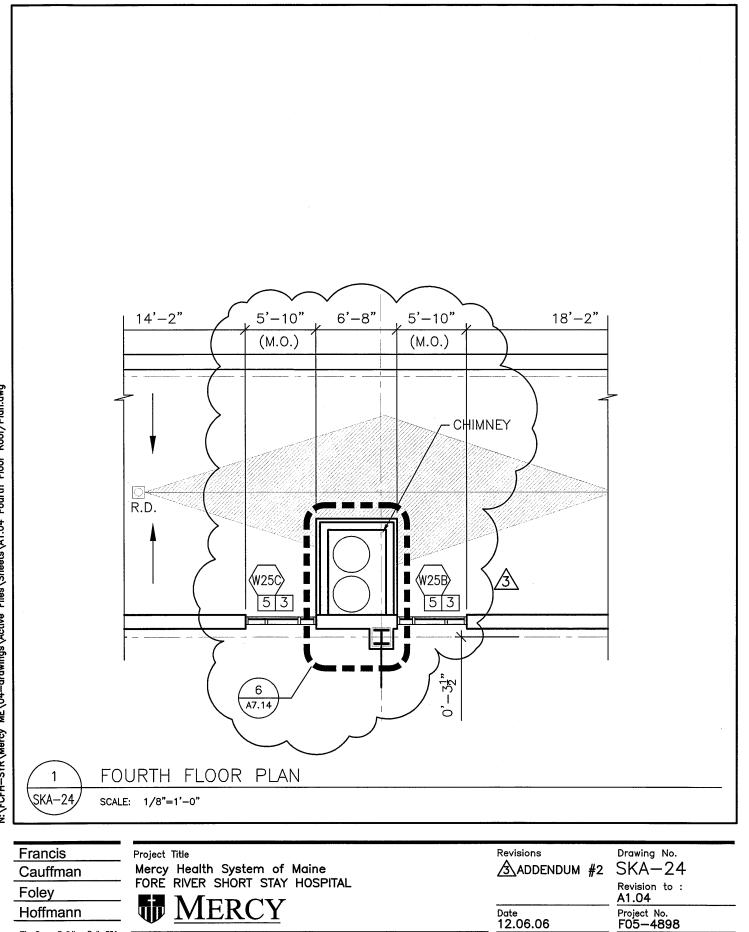
2120 Arch Street Philadelphia, PA 19103 215–568–8250 Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL

MERCY

Drawing Title Pastoral Care Elevation Additions 26, 27/A8.11

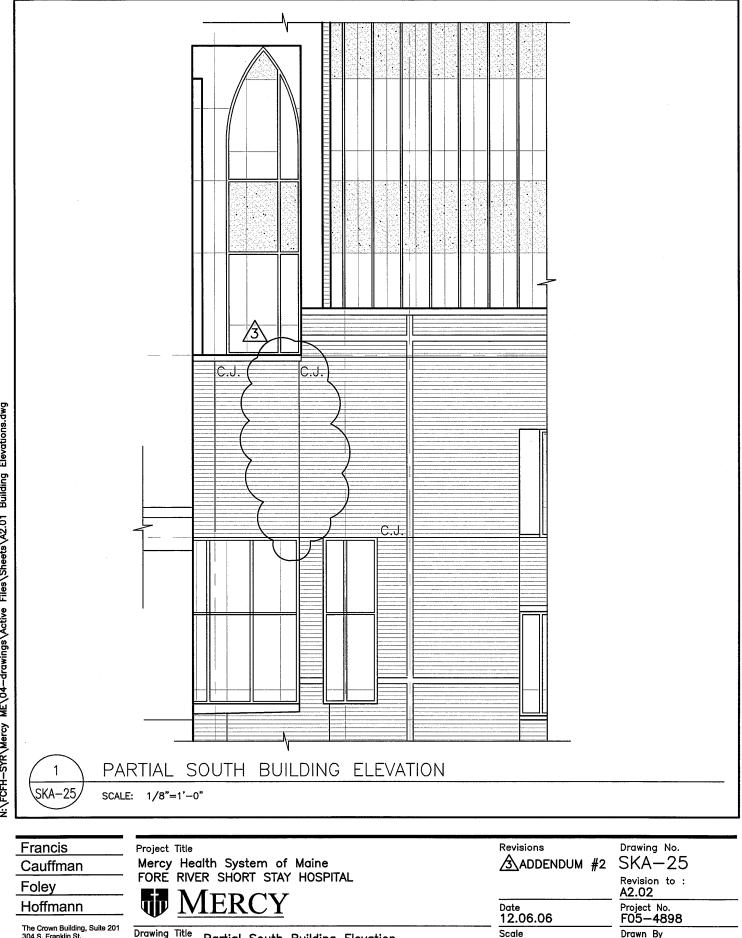

ADDENDUM #2	SKA-20
	Revision To: A8.11
Date 12.06.06	Project No. F05—4898
Scale	Drawn By
AS NOTED	EWG


- W


Francis Cauffman Foley	Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL	Revisions ADDENDUM #2	Brawing No. SKA-21 Revision To: A1.04A
		Date 12.06.06	Project No. F05-4898
2120 Arch Street Philadelphia, PA 19103 215-568-8250	Drawing Title FOURTH FLOOR PLAN REVISION	Scale AS NOTED	Drawn By ART

Francis Cauffman Foley	Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL	Revisions ADDENDUM #2	2 SKA-22 Revision To: A1.04B
		Date 12.06.06	Project No. FO5-4898
2120 Arch Streel Philadelphia, PA 19103 215-588-8250	Drawing Title FOURTH FLOOR PLAN REVISION	Scale AS NOTED	Drawn By ART

N:\FCFH-SYR\Mercy ME\04-drawings\Active Files\Sheets\A1.04 Fourth Floor Roof/Plan.dwg

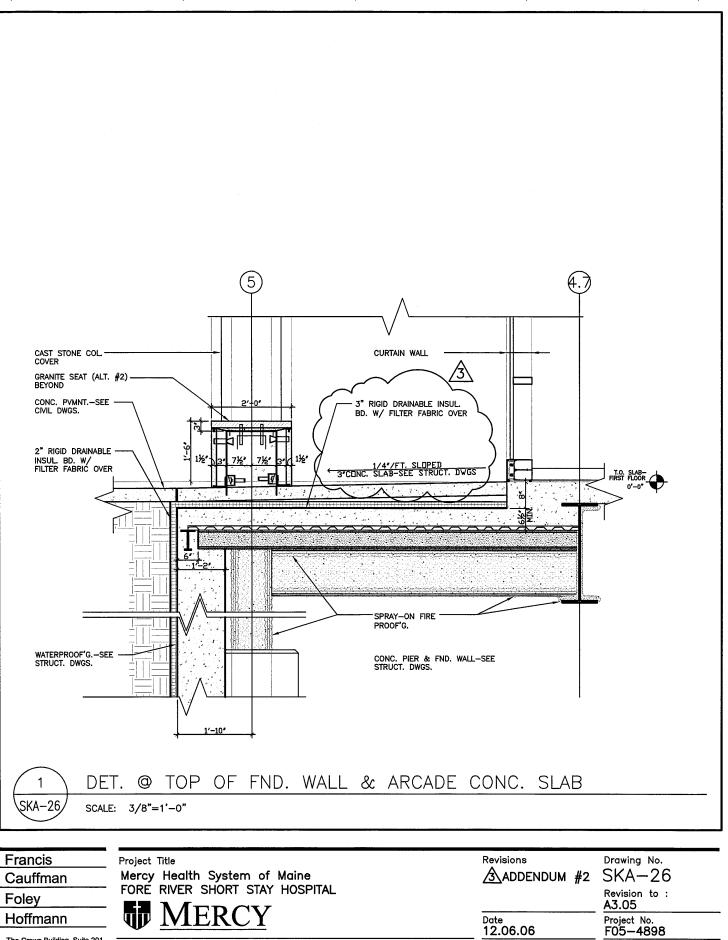

Drawing File Name:

The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463 Drawing Title

Fourth Floor Roof/Plan–Core & Shell Chimney/Window revision to A1.04

Project No. F05-4898 Drawn By AS NOTED JJL

Scale

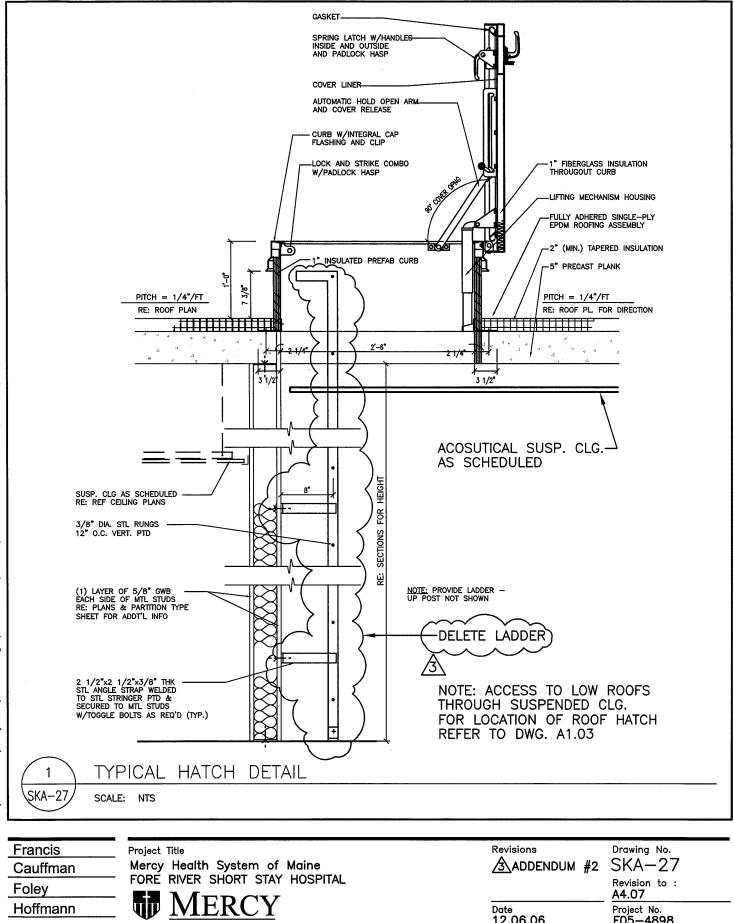


The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463

Drawing Title Partial South Building Elevationcontrol joint addition

Drawn By JJL

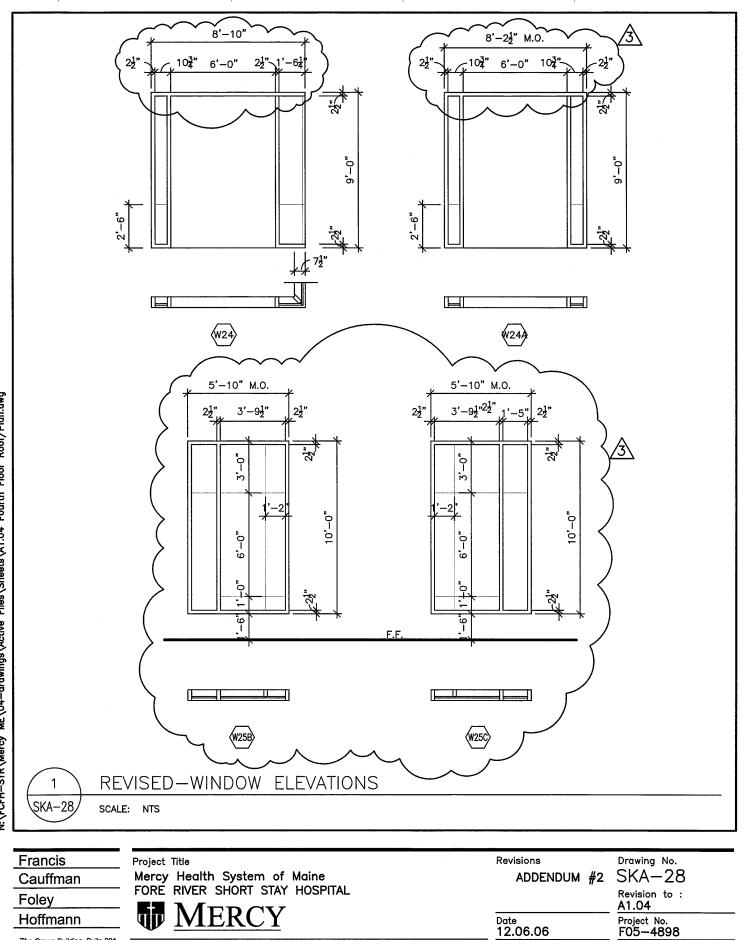
AS NOTED



N:\FCFH-SYR\Mercy ME\04-drawings\Active Files\Sheets\A3.05 Building Elevations.dwg

Drawing File Name:

Foley		
Hoffmann	MERCY	Date 12.06.06
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing ^{Title} Wall Sections— Detail Revision @ Foundation Wall	Scale AS NOTED


Drawn By JJL

Roof/Plan.dwg Floor Fourth N:\FCFH-SYR\Mercy ME\04-drawings\Active Files\Sheets\A1.04

Drawing File Name

Project No. F05-4898 12.06.06 The Crown Building, Suite 201 Drawing Title Scale Drawn By 304 S. Franklin St. Syracuse, N.Y. 13202 Revision-Typical Hatch Detail AS NOTED JJL 315-423-0463

Scale

AS NOTED

Drawn By

JJL

N:\FCFH-SYR\Mercy ME\04-drawings\Active Files\Sheets\A1.04 Fourth Floor Roof/Plan.dwg

Drawing File Name:

The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463


Drawing Title

Window Schedule

							SPILI					SUPP	LY FAN (2)							Return fa	N					PREI	HEAT CO							COOL	ING CO
																											AIR SIDI			ieam side	:		AIR	SIDE		<u> </u>
AHU Unit Number	LOCATION		-	Minimum External SP		ide (m) 2	Min. CFM	Max. CFM		Type S	in. Ma P BH	P MHP		Motor Type	Inlet vanes Inlet bell	Inlet cone Outlet cone	<u>- 9</u>	FAN Type	Return CFM	SP	Max. Min. BHP MHP	RPM	Motor Type Inlet vanes	Inlet bell Inlet cone Auther come	Max. F	EDB 'F	LDB °F	Minimum Rows Max. Fin Spacina FPI	Max.∆P Inch H ₂ 0 Pressure in Coil	Flow	Max. Face Velocity (FPM)		EWB LI)B LWB °F °F	Minimum Rows Max Fin Spac. FPI	Max.∆P Inch
AHU-1	PENTHOUSE		82,500	-	20,6		-	-		\sim	.0 89.		-			YES YE					SCHEDULE				800	-10	55	2 8	0.1 5	3620(1 ⁻ 3620(1 ⁻	-			.0 51.0		1.10
AHU-2 AHU-3	PENTHOUSE BOILER ROO		82,500 12,600	1.5	34,2 3,0		-	-		\smile	.0 89. .0 12.1	9 100 4 15				YES YE YES YE	-	_	-		SCHEDULE	HU.01			800 - 800	-10 -10	55 60		0.1 5		<u>1</u> 500	81.4		.0 51.0	8 12	-
AHU-4	BOILER ROO		4,000	1.5	1		-	_			.0 3.7		_			YES YE		-	_	_		-			· 800	-10	60		0.1 5	-	<u></u>	<u> </u>		2		-
			,,		,-	Λ																									Λ					
			HUMIDIFIER							FILTER																										
WATER	SIDE		5		PRE	-FILTER			CARBO	n filters			FI	NAL FILT	ER																					
luid Flow GPM ater 431 ater 440 - 2 -	EWT LWT 'F 'F 42 58 42 58 1 -	 19		500 (500 ((1) (2) (2) Specified Type	28 Kinimum Efficiency	Max Pressure Drop Clean 1.5 8.0 1.5 1.6 1.6 1.5 1.0 1.2 1.0 1.2	Max. 500 500	-		ын Марана О.5 (О.5 (- 50 50 Harry Errors Urop Dirty	(C) (C) Specified Type) -	Served and a constraint of the served and the serve	bressure Drop Dirty		upply SA umber – –		-	P01 480V-3ø 480V-3ø 480V-3ø	–60 Hz –60 Hz	Every Power Second Power YES YES YES) BASED	REMARK (7) (7) ON YORI			<u> </u>						
		-			1	30 0	.45 1.0		-	-	-	- -		-	-	-		-	-	-	480V-3ø	–60 Hz	YES		9) based	on yori	k airpai	(
																								7								_				
		N	UNIT UMBER CH-1 UTURE CH-2 UTURE CH-3	NOM TONS 650 650		ECTRICAL PHASE 3 3 3 3	MIN. CIRC. AMP. 683	CE Ewr F 58.0 - -	LWT F 42.0	GPM	EVAPOF	ator D #Pas Er	OF SES FO 54 2 0.0	ULING A		EWT F 85 -	Lwr F 96 -		EDU ENSER # OF PASSES 2 - -	Fouling Factor		FLA F	ESSOR DATA KW KW/ AATING M4 396.0 0.6 - 1	NPL KW/T 09 0.41		ES E POW 2 NC								A Bard Dea + Athanes	TA Consulting Engineers, LLC seenal on the Charles	Arsenal Street ertown, MA 02472–5789

					CE	NTF	RIFI	JGA	٩L	СН	ILL	ER	S(CHE	EDL	ILE						6/95 S106.DWG	
		ELEC	ctrical d	ATA			E	VAPORATO	R					COND	enser			COMF	PRESSOR	DATA		NOTES	
Unit Number	Nom Tons	VOLTS	PHASE	MIN. CIRC. AMP.	EWT °F	LWT °F	GPM	FLUID	# OF PASSES	FOULING FACTOR	⊿PRESS FT. H₂0	EWT *F	L₩T °F	GPM	# OF PASSES	FOULING FACTOR	∆PRESS FT. H₂0	FLA	KW Rating	KW/TON MAX	NPLV KW/TON	SEE BELOW	emer Power
CH-1	650	460	3	683 /	58.0	42.0	1000	WATER	2	0.0005	11.09	85	96	1,625	2	0.001	21.34	538.5	396.0	0.609	0.412	1,2	NO
FUTURE CH-2	650	-	3	<u> </u>	7 -	-	I	-	-	0.0005	-	-	-	-	-	0.001	-	-	-	∧ -	-	2	
FUTURE CH-3	650	-	3	-	-	-	I	-	-	0.0005	-		-	-	-	0.001	-	-	_ Z	-7_(-	

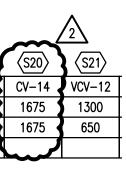
CENTRIFUGAL CHILLER SCHEDULE	Scale Scale	TILLIACY 12.06.06		ADDENDLIM #2	-rancis Project Title Drawing No.	Drawing No. SKM - 1 Revision to : H0.01 Project No. F05-4898 Drawn By SAC	DUM #2	Project Title Mercy Health System of Maine FORE RIVER SHORT STAY HOSPITAL FORE RIVER SHORT STAY HOSPITAL \widehat{M} \widehat{MERCY}
------------------------------	-------------	----------------------	--	--------------	-----------------------------------	--	--------	--

					2		1 2	Δ	$\widehat{1}$				Z	1			Z	$\frac{1}{2}$	2			
S1	$\langle S2 \rangle$	$\langle S3 \rangle$	$\langle S4 \rangle$	$\left< S5 \right>$	(S6)	S 7	<u>(S8)</u>	S 9	S10	(S11)	S12	(S13)	S14	(S15)	(S16)	<s17></s17>	S18	S19	S20	S21	S22	(S23)
CV-14	CV-19	VCV-12	VCV-12	CV-16	CV-5	W -6	CV-12	W-6	CV-12	CV-12	CV-12	CV-12	W-6	CV-19	CV-12	CV-12	W-22	CV-5	C V-14	CV-14	CV-10	CV-12
1600	2325	1100	1200	2000	200	400	1000	350	1200	1200	1450	1400	350	2500	1400	1450	3000	300	1800	1925	900	1425
1600	2325	550	600	2000	200	200	1000	175	1200	1200	1450	1400	175	2500	1400	1450	1500	300	1800	1925	900	1425
					NO COIL			,					NO COIL				NO COIL		5			
	/	1	/	1																		
$\langle R1 \rangle$	$\langle R2 \rangle$	(R3)	$\langle R4 \rangle$	R 5	$\left< R6 \right>$	$\langle R7 \rangle$	$\left< R8 \right>$			E1	> {E2	> {E3) <u>(E4</u>	\rangle								
WR-16	WR-16	CVR-12	WR-8	WR-14	CVR-12	CVR-22	CVR-12			HV-	CEAV-	-2 HV-:	2 CEAV-	-1								
2300	1875	1400	450	900	1450	3000	1400			600	1525	6 800) 1100	0								Q
1150	950	1400	225	450	1450	3000	1400			600	1525	6 800) 1100	0								II
																						anas Cers,

Francis	Project Title Rev	Revisions	Drawing No.
Cauffman			SKM-2
Foley	HOSPILAL		Revision to : H1.00
Hoffmann		Date 12.06.06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title DETAIL CALL OUT AND REVISIONS MADE TO Second CFM'S ON BOX SCHEDULES	scale 1/8"=1'-0"	Drawn By SAC

.72-5789 AX: 617-924-9339 + Ath: Engine Charles

		B $R14$ $9x9$ $C-175$ $C-17$	UNDRY HUTE S1027 8x8 F-100 S34	
S1 S2 S VCV-16 VCV-16 VCV 2200 2200 180 1100 1100 90	-4 VCV-16 VCV-16 VCV-14 00 2000 2100 1800	2 1 S7 S8 S9 S10 VCV-8 CV-8 W-6 VCV-8 375 475 400 550 200 475 200 275 NO COIL VOUL VOUL	S11 S12 S13 S14 VCV-10 VCV-8 VCV-10 CV-11 800 225 1000 1150 400 125 500 1150	2 CV-12 CV-19 1400 2250
1 2 \$\$17\$ \$\$18\$ \$\$17\$ \$\$18\$ \$\$CV-10 \$\$CV-12 \$\$775 1000 \$\$775 1000 \$\$705 1000	·8 VCV-8 VV-6 VCV-8 V ·500 400 500 <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>1 \$\$27\$ \$\$28\$ \$\$29\$ \$\$30\$ CV-12 VCV-19 VCV-10 VCV-12 975 2525 900 1050 975 1275 450 525 1 1 1 1</th> <th>1 1 2 (S31) (S32) (S33) (S34) 2 CV-14 VCV-6 VCV-12 W-8 1800 400 1100 500 1800 200 550 250 NO COLL NO COLL</th>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 \$\$27\$ \$\$28\$ \$\$29\$ \$\$30\$ CV-12 VCV-19 VCV-10 VCV-12 975 2525 900 1050 975 1275 450 525 1 1 1 1	1 1 2 (S31) (S32) (S33) (S34) 2 CV-14 VCV-6 VCV-12 W-8 1800 400 1100 500 1800 200 550 250 NO COLL NO COLL
R1 R2 R3 WR-10 WR-14 WR- 725 1800 400 375 900 200	-6 WR-8 CVR-22 WR-12 V -6 550 3250 1100	2 2 R7 R8 WR-14 WR-12 CVR-8 WR-6 1550 1400 525 400 775 700 525 200	2 1 (R11) (R12) (R13) (R14) CVR-14 NOT WR-19 WR-8 1500 USED 2525 500 1500 1275 250	2 <u>R15</u> <u>R16</u> <u>R17</u> <u>CV-12</u> <u>WR-16</u> <u>WR-12</u> <u>975</u> <u>2300</u> <u>1200</u> <u>975</u> <u>1150</u> <u>600</u>


Francis	Project Title	Revisions	Drawing No.
Cauffman			SKM-3
Foley	, HOSPITAL		Revision to : H1.01
Hoffmann	MEKCY	Date 12 OF OF	Project No. FOF_ABOR
The Crown Building Suite 201		00:00:7	
304 S. Franklin St. Svraduse N V 13202	Drowing Title Changes made to emer. Elec. Room and revisions	Scale	Drawn By
315-423-0463	MADE TO CFM'S AND SIZES ON BOX SCHEDULES	n- i= o/i	SAC

BRAA Bard, Rao + Athauss Consulting Engineers, LLC The Arsenal on the Charles 311 Arsenal Street Watertown, MA 02472-5789 617-254-0016 FAX 617-924-9339

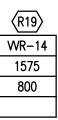
-		$\sqrt{2}$						$\sqrt{2}$								$\sqrt{2}$			
\mathcal{I}	S1	S2	$\langle S3 \rangle$	$\langle S4 \rangle$	S5	S6	S 7	<u>(S8</u>)	S9	(S10)	S11	S12	(S13)	(S14)	(S15)	S16	(S17)	S18	(S19)
S VC	V-14	CV-10	VCV-12	VCV-12	CV-6	CV-12	CV-12	CV-6	VCV-8	W-6	VCV-8	VCV-8	CV-12	CV-10	CV-8	CV-8	CV-6	CV-12	VCV-19
)	500	825	1100	1200	300	1150	1425	200	550	300	625	450	1275	900	700	600	300	1250	3000
{ <u>}</u>	750 📢	825	700	700	300	1150	1425	200	275	150	350	225	1275	900	700	600	300	1250	1500
	كر .																NO COIL		2 POS.

			~~~~		$\sqrt{2}$							
<b>S22</b>	<b>S23</b>	S24	<b>S25</b>	<b>S26</b>	<b>S</b> 27	<b>S28</b>	<b>S29</b>	<b>S30</b>	<b>S</b> 31	<b>S32</b>	<b>(</b> S33 <b>)</b>	<b>S34</b>
CV-12	W-8	VCV-8	VCV-12	CV-14	VCV-19	VCV-19	VCV-10	VCV-19	VCV-19	VCV-19	VCV-19	CV-8
1250	600	650	1225	1650	3000	3000	900	3000	3000	3000	3000	700
1250	300	325	625	1650	1500	1500	450	1500	1500	1500	1500	700
	NO COIL			مر	2 POS.	2 POS.		2 POS.	2 POS.	2 POS.	2 POS.	

			$\sqrt{2}$	$\sim$	~~~~	~~~~	2				$\sim$	$\sqrt{2}$							
$\langle R1 \rangle$	$\langle R2 \rangle$	$\left< R3 \right>$	$\langle R4 \rangle$	<b>R</b> 5	$\left< R6 \right>$	$\langle R7 \rangle$	$\langle R8 \rangle$	$\langle R9 \rangle$	(R10)	$\langle R11 \rangle$	(R12)	(R13)	R14	<b>(R15)</b>	<b>(R16)</b>	(R17)	<b>(R18</b> )	<b>(R19</b> )	R20
WR-12	WR-6	WR-16	WR-6	WR-14	WR-12	WR-18	WR-8	WR-16	WR-14	WR-16	WR-10	WR-16	WR-16	WR-16	WR-12	WR-16	WR-14	WR-16	WR-16
1300	300	1900	300	1750	1300	2700	600	2750	1450	1950	1125	2750	2750	2750	1100	2750	1800	2750	2750
700	300	950	150	1750	650	1350	300	1250	1450	975	575	1250	1250	1250	1100	1250	1800	1250	1250
				$\sim$	h	فرسه													



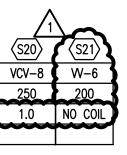



Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-4
Foley	FORE RIVER SHORT STAY HOSPITAL	22 AUVENDUM #2	Revision to : H1_02
Hoffmann	MURCY MERCY	Date 12 DE DE	Project No.
The Crown Building. Suite 201		12.00.00	- LUD-4090
304 S. Franklin St Syracuse, N Y 13202	Drawing Title REVISIONS MADE TO CFM'S ON BOX	Scale 1 /8"=1'0"	Drawn By SAC
315-423-0463	SCHEDULES	<b>2 . . . /</b> .	25

										2										
$\langle S1 \rangle$	$\langle S2 \rangle$	$\langle S3 \rangle$	$\langle S4 \rangle$	$\langle S5 \rangle$	$\langle S6 \rangle$	<b>S7</b>	$\langle S8 \rangle$	$\langle S9 \rangle$	(\$10)	<b>S11</b>	<b>S12</b>	<s13></s13>	(S14)	(S15)	(S16)	<b>(</b> S17 <b>)</b>	(S18)	<b>(</b> S19)	S20	(S21)
VCV-8	VCV-12	CV-10	VCV-14	VCV-10	CV-8	VCV-8	W-6	VCV-8	CV-8	VCV-10	VCV-8	VCV-8	CV-6	CV-12	VCV-8	VCV-8	VCV-18	VCV-8	CV-10	VCV-8
550	1100	775	1425	750	650	400	300	675	400	900	450	500	300	1050	500	500	2425	500	700	500
275	550	775	725	375	650	200	150	350	400	450	225	400	300	1050	400	400	1225	400	700	400
							NO COIL	I												
						^														

							2										
<b>S22</b>	<b>S23</b>	<b>S24</b>	<b>S25</b>	<b>S26</b>	<b>S27</b>	<b>S28</b>	<b>S29</b>	<b>S30</b>	<b>S</b> 31	<b>S32</b>	<b>S33</b>	<b>S34</b>	<b>S35</b>	<b>S36</b>	<b>S37</b>	<b>S38</b>	<b>S39</b>
VCV-8	VCV-8	W-8	VCV-14	VCV-14	VCV-12	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-10	VCV-6
500	700	600	1700	1700	1450	625	500	500	500	500	500	600	500	500	500	775	300
400	550	300	850	850	725	300	250	250	250	250	250	300	250	250	250	400	150
			2 POS.	2 POS.		5											
_																	

		2		2									2			$\lambda$		
$\langle R1 \rangle$	R2	R3	R4	<b>R</b> 5	$\left< R6 \right>$	$\langle R7 \rangle$	$\langle R8 \rangle$	$\langle R9 \rangle$	(R10)	(R11)	<b>(R12)</b>	(R13)	(R14)	(R15)	(R16)	(R17)	<b>(R18)</b>	(
WR-16	WR-14	WR-14	CVR-8	WR-12	WR-10	WR-6	WR-14	WR-10	CVR-6	WR-18	WR-8	WR-8	WR-10	WR-14	WR-14	WR-18	WR-12	V
2150	1725	1650	575	1325	900	300	1675	800	300	2475	600	200	850	1700	1700	2550	1275	
1075	875	825	575	675	450	150	1250	575	300	1250	300	200	425	850	850	1275	650	
															5			
				•														


0100-403-110			
Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-5
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : H1.03
Hoffmann	MERCY	Date 12 DE DE	Project No. FO5_4808
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202	Drawing Title REVISIONS MADE TO CFM'S ON BOX		Drawn By SAC
315-423-0463	SVIEDULES	•	





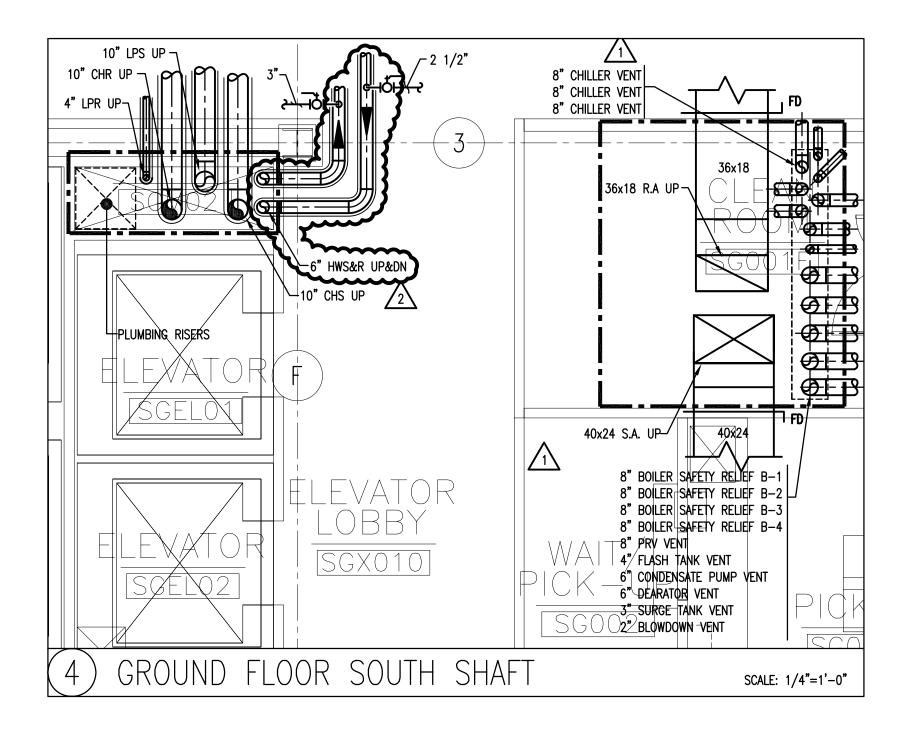
						$\sim$	$\sqrt{2}$	/	1							$\Lambda$	$\sim$		
$\langle S1 \rangle$	$\langle S2 \rangle$	$\langle S3 \rangle$	$\langle S4 \rangle$	<b>S5</b>	$\left< S6 \right>$	<b>S</b> 7	<u>S8</u>	<u>(S9)</u>	<b>S10</b>	(S11)	<b>S12</b>	<s13></s13>	S14	<b>S15</b>	<b>S16</b>	<b>(</b> \$17 <b>)</b>	<b>S18</b>	<b>S19</b>	
CV-12	CV-12	CV-4	CV-16	CV-16	CV-14	VCV-8	CV-8	W-6	VCV-8	VCV-10	VCV-8	VCV-10	CV-12	CV-12	CV-19	CV-10	CV-12	VCV-8	
1500	1500	1800	2000	2100	1800	200	475	200	275	400	125	500	1150	1400	2250	775	1000	300	
5.0	<u>∧ ^{5.0}</u>	6.0	6.75	7.0	6.0	0.5	1.0	NO COIL	1.0	1.5	0.5	1.75	4.0	4.75	7.5	2.5	3.25	1.0	
	2									K									_
(S22)	(S23)	S24	<u> </u>	(S26)		S28	<b>S29</b>	<b>S30</b>	(S31)	<u>(</u> \$32)	<b>S33</b>	(S34)					_		
VCV-12	VCV-12	VCV-10	CV-10	VCV-12	CV-12	VCV-19	VCV-10	VCV-12	CV-14	VCV-6	VCV-12	W-8							
250	550	425	1000	750	975	1275	450	<u>525</u>	1800	200	<u>550</u>	250							
1.0	2.0	1.5	3.25	2.5	3.25	4.25	1.5	1.75	6.0	0.75	1.75	NO COIL		•					
							$Z_2$	$\sim$	$V_2$		2			$\sqrt{2}$					
R1	$\langle R2 \rangle$	$\langle R3 \rangle$	$\langle R4 \rangle$	$\left< R5 \right>$	$\langle R6 \rangle$	$\left< {R7} \right>$	$\langle R8 \rangle$	<b>R9</b>	(R10)	(R11)	(R12)	<b>(R13)</b>	(R14)	(R15)	(R16)	(R17)			
WR-10	WR-14	WR-6	WR-8	CVR-22	WR-12	WR-14	WR-12	CVR-8	WR-6	CVR-14	NOT	WR-19	WR-8	CV-12	WR-16	WR-12			
725	1800	400	550	3250	1100	1550	1400	525	400	1500	USED	2525	500	975	2300	1200			
375	900	200	225	3250	550	775	700	525	200	1500	1	1275	250	975	1150	600			
								$\sim$		$\sim$									

Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-6
Foley	FORE RIVER SHORT STAT HOSPILIAL	74 MOOVIDOOV (77	Revision to : H2.01
Hoffmann	MERCY	Date 12.06.06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title REVISIONS MADE TO SIZE, CFM, AND GPM'S ON BOX SCHEDULES	$\frac{-}{\text{Scale}} \frac{1}{8} = 1^{-0^{n}}$	Drawn By SAC



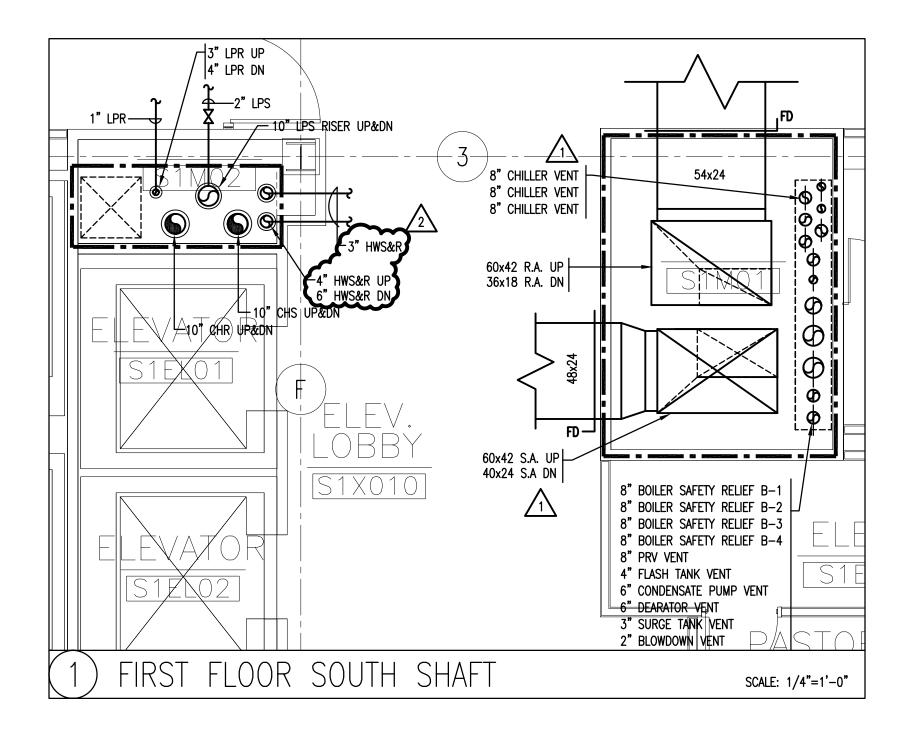


							Z	$\uparrow$		$2 \wedge 1$								$\uparrow$	
$\langle S1 \rangle$	$\langle S2 \rangle$	$\langle S3 \rangle$	$\langle S4 \rangle$	<b>S5</b>	<b>S6</b>	<b>S7</b>	$\langle S8 \rangle$	<b>S9</b>	(\$10)	<u>(S11)</u>	<b>S12</b>	<s13></s13>	(S14)	S15	<b>S16</b>	<b>S17</b>	(S18)	<b>S</b> 19	(
VCV-8	VCV-12	CV-10	VCV-14	VCV-10	CV-8	VCV-8	W-6	VCV-8	CV-8	VCV-10	VCV-8	VCV-8	CV-6	CV-12	VCV-8	VCV-8	VCV-18	VCV-8	CV
275	550	775	725	375	650	200	150	350	400	450	225	400	300	1050	400	400	1225	400	7
1.0	2.0	2.5	2.5	1.25	2.0	0.75	NO COIL	1.0	1.3	1.5	0.75	1.5	1.0	3.5	1.5	1.5	4.0	1.5	
										1									
-																			


				$\Lambda$			/2							$\Lambda$				
<b>S21</b>	<b>S22</b>	S23	(S24)	S25	<b>S26</b>	<u>(S27)</u>	<b>S28</b>	<b>S29</b>	<b>S30</b>	<b>S</b> 31	<b>S32</b>	<b>S33</b>	(S34)	(\$35)	<b>S36</b>	<b>S37</b>	<b>S38</b>	<b>(</b> S39 <b>)</b>
VCV-8	VCV-8	VCV-8	W-8	VCV-14	VCV-14	VCV-12	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-8	VCV-10	VCV-6
400	400	550	300	850	850	725	300	250	250	250	250	250	300	250	250	250	400	150
1.5	1.5	2.0	NO COIL	3.0	3.0	2.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.25	0.5
				2 POS.	2 POS.		<u>}</u>											

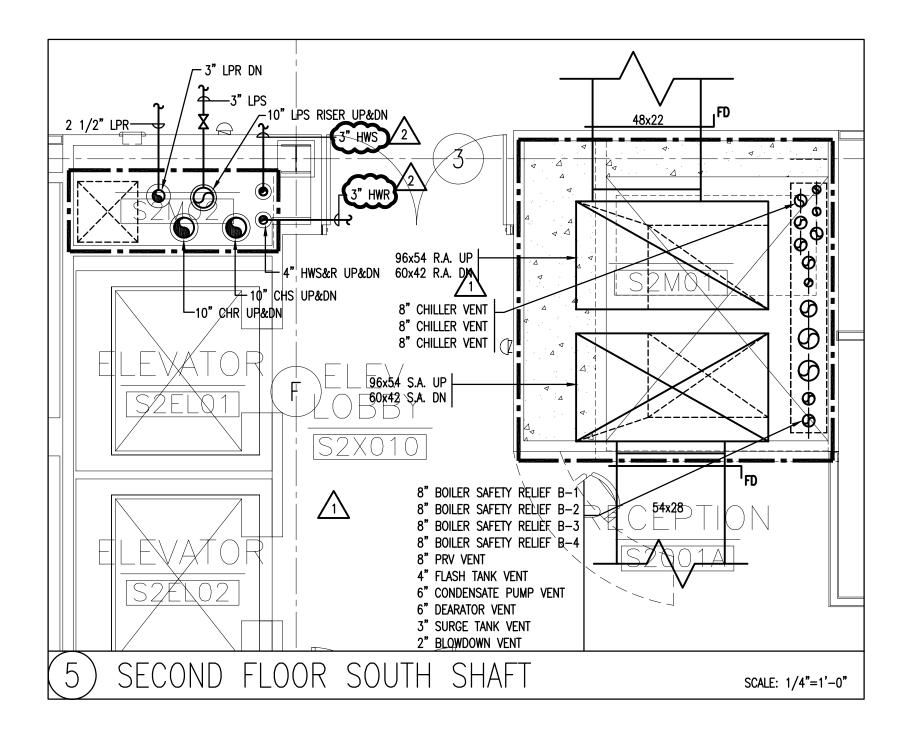
		$\underline{\mathbf{N}}$		2							/					$\lambda$	L	$\uparrow$
$\langle R1 \rangle$	R2	$\langle R3 \rangle$	$\left< \frac{R4}{R4} \right>$	$\left< R5 \right>$	$\left< \frac{R6}{R6} \right>$	$\langle R7 \rangle$	$\langle R8 \rangle$	$\langle R9 \rangle$	(R10)	(R11)	(R12)	(R13)	(R14)	(R15)	(R16)	(R17)	(R18)	(R19)
WR-16	► WR-14	WR-14	CVR-8	WR-12	WR-10	WR-6	WR-14	WR-10	CVR-6	WR-18	WR-8	• WR-8	WR-10	WR-14	WR-14	WR-18	WR-12	WR-14
2150	1725	1650	575	1325	900	300	1675	800	300	2475	600	200	850	1700	1700	2550	1275	1575
1075	875	825	575	675	450	150	1250	575	300	1250	300	200	425	850	850	1275	650	800
														K				

Francis	Project Title Re	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-7
Foley	HOSPITAL		Revision to : H2.03
Hoffmann		Date 12.06.06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title Revisions made to CFM and GPM's on Box Schedules	scale 1/8"=1'-0"	Drawn By SAC


S20
CV-10
700
3.0

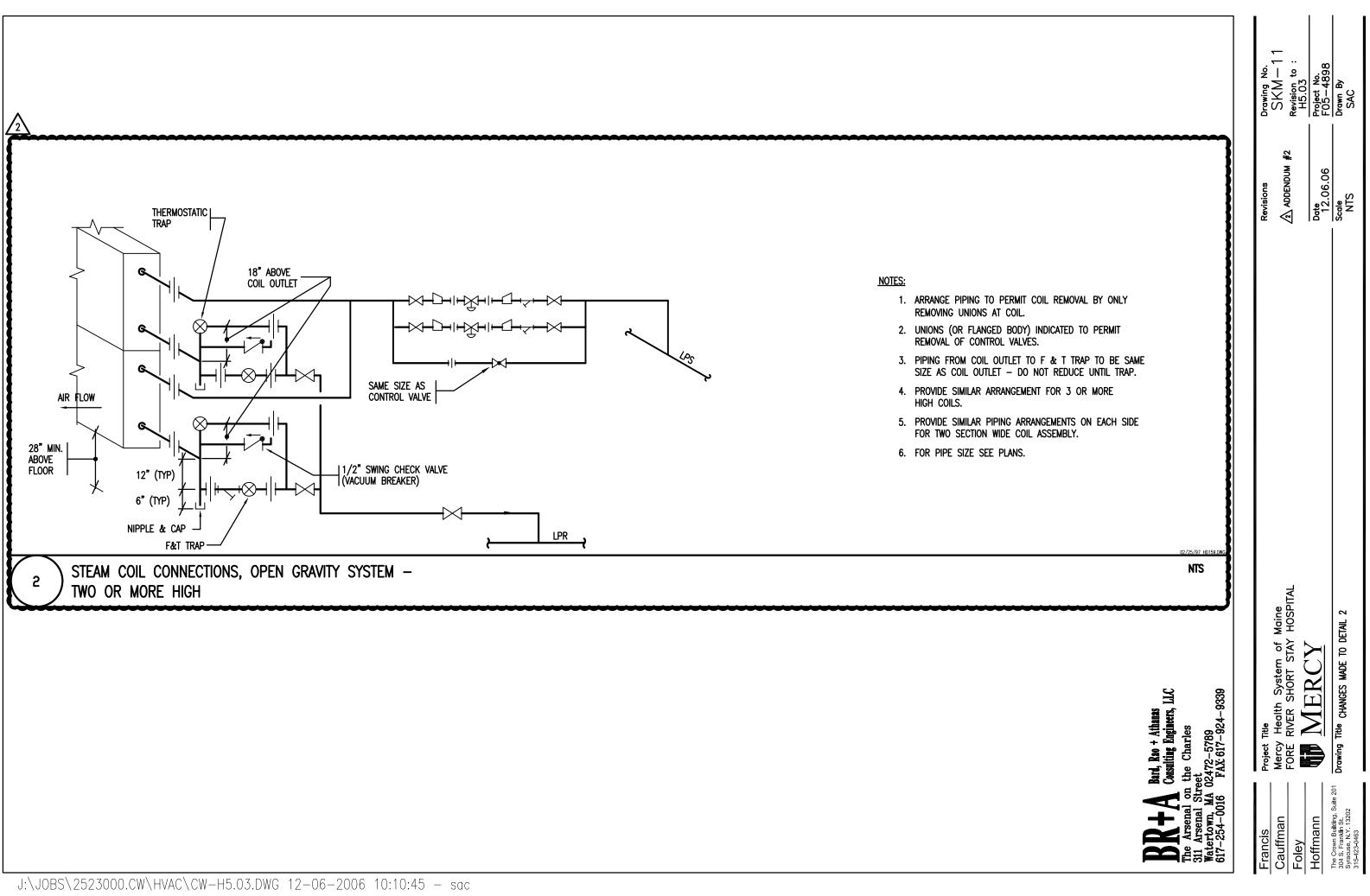


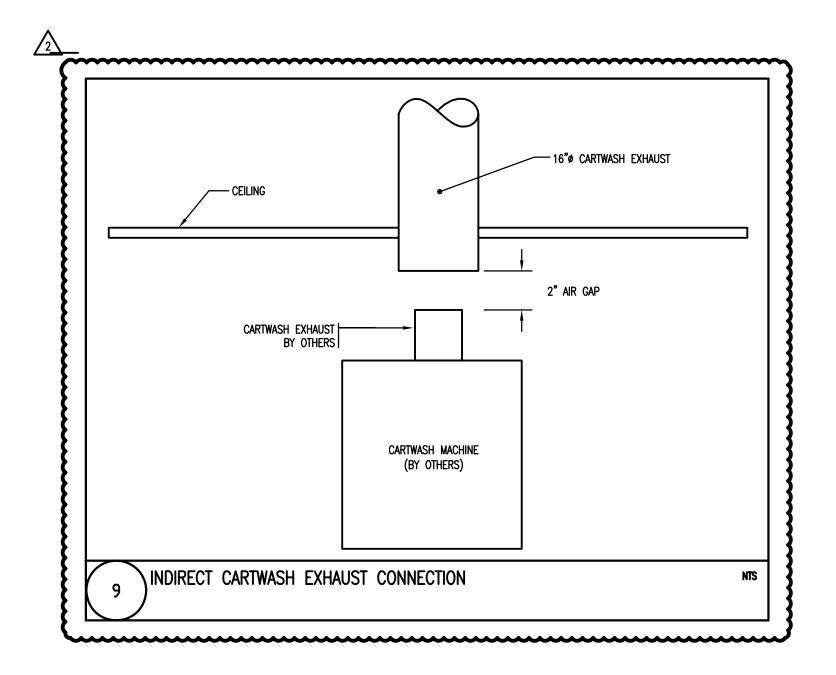



Cauffman Mercy Health System of Maine		S	Drawing No.
	term of Maine	0₩ MIIN	SKM-8
			Revision to : H4.02
Hoffmann WERCY		5 06	Project No. FO5_4808
The Crown Building, Suite 201 Sod S, Franklin St. Syrracues. NY: 13202 315-423-0463 SHAFT	Drawing Title REVISED HWS&R AT GROUND FLOOR SOUTH Scale 1/4"= 1/4"= 1/4"=	ule 1/4"=1'-0"	Drawn By SAC

Bard, Rao + Athanas Consulting Engineers, LLC n the Charles 2472-5789 FAX: 617-924-9339 617-25




Francis	Project Title Revis	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-9
Foley	7		Revision to : H4.02
Hoffmann	MIERCY	ate 12 06 06	Project No. FD54898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title REVISED HWS&R AT FIRST FLOOR SOUTH SHAFT	cole 1/4"=1'-0"	Drawn By SAC

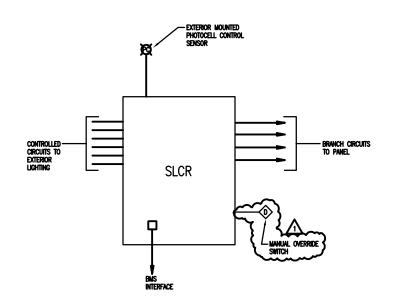

Bard, Rao + Athanas Consulting Engineers, LLC in the Charles 2472–5789 FAX: 617–924–9339 617-25



Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-10
Foley			Revision to : H4.02
Hoffmann		Date 17 OF OF	Project No. F//54808
The Crown Building, Suite 201 304 S. Franklin St. Svracuse NY 13202	Drawing Title REVISED HWS&R AT SECOND FLOOR SOUTH	Scale	Drawn By
315-423-0463			DAC

Bard, Rao + Athanas Consulting Engineers, LLC on the Charles 02472-5789 FAX: 617-924-9339 Watertown, MA 617-254-0016 

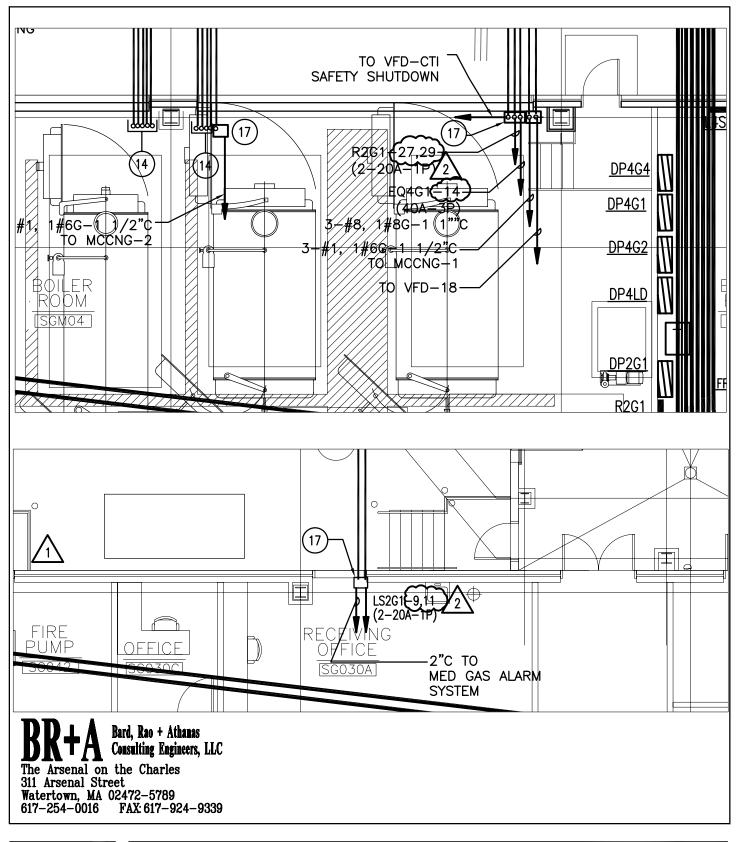




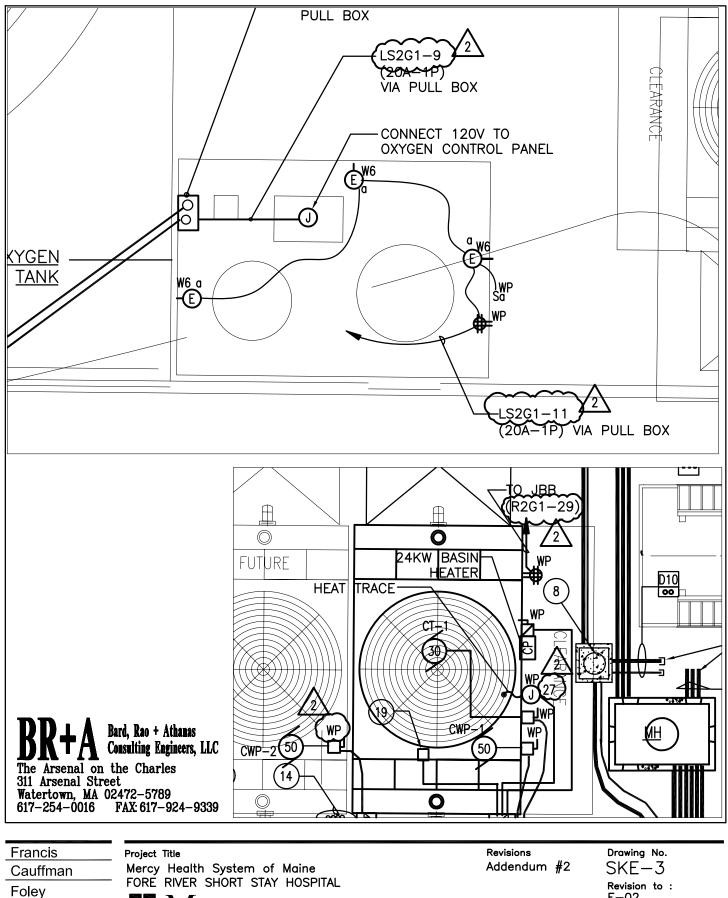

Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine		SKM-12
Foley			Revision to : H5_03
Hoffmann		Date 10.06.06	Project No.
The Council of the 200		12.00.00	FU3-4696
The Crown building, Suite 201 304 S. Franklin St. Svracrise N.Y. 13202	Drawing Title CHANGES MADE TO DETAIL 9	Scale	Drawn By
315-423-0463		CIN	SAC

Bard, Rao + Athanas Consulting Engineers, LLC 472–5789 ^AX: 617–924–9339 e Charles

20A-1P	2#6 & 1#6G		REB	SLCR
20A-1P	2#6 & 1#6G	2 1/2°C	RE9	-
20A-1P	2 <b>#6 &amp;</b> 1 <b>#6</b> G		UN-SWITCHED	-
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G		RE10	SLCR
20A-1P	2#6 & 1#6G	2 1/2°C	RE11	SLCR
20A-1P	2#6 & 1#6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G	2 1/2 C	RE11	SLCR
20A-1P	2∰6 & 1∰6G	2 1/20	UN-SWITCHED	-
20A-1P	2#6 & 1#6G		RE10	SLCR
20A-1P	2 <b>4</b> 6 & 1 <b>4</b> 6G	2 1/2°C	RE11	SLCR
20A-1P	2 <b>#6 &amp;</b> 1 <b>#6</b> G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G		RE10	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G	2 1/2°C	RE11	SLCR
20A-1P	2 <b>#6 &amp;</b> 1 <b>#6</b> G		UN-SWITCHED	-
20A-1P	2 <b>#</b> 6 & 1 <b>#6</b> G		RE12	SLCR
20A-1P	2#6 & 1#6G	2 1/2°C	RE13	SLCR
20A-1P	4 <b>#</b> 6 & 1 <b>#</b> 6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G	2 1/2"C	RE12	SLCR
20A-1P	4 <b>∦</b> 6 & 1 <b>∦</b> 6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G		RE12	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G	2 1/2°C	RE13	SLCR
20A-1P	4 <b>#</b> 6 & 1 <b>#</b> 6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G	2 1/2"C	RE14	SLCR
20A-1P	4 <b>#</b> 6 & 1 <b>#</b> 6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G		RE15	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G	2 1/2°C	RE13	SLCR
20A-1P	2#6 & 1#6G		UN-SWITCHED	-
20A-1P	2#6 & 1#6G		RE16	SLCR
20A-1P	2∰6 & 1∰6G	2 1/2"C	RE17	SLCR
20A-1P	2∰6&t1∰6G		RE18	SLCR
20A-1P	2 <b>#6 &amp;</b> 1 <b>#6</b> G		UN-SWITCHED	-
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G		RE16	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G	2 1/2°C	RE17	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G		RE18	SLCR
20A-1P	2 <b>#</b> 6 & 1 <b>#</b> 6G		UN-SWITCHED	-


RE16         o         o         PARCING SDUTH         277         825         L4SL-3           RE17         o         o         o         READVAY NORTH         277         1100         L4SL-4           RE18         o         o         o         PARCING SOUTH         277         1650         EQ462-9           RE19         o         o         o         FIRST FLOOR EXTERIOR         277         1100         L4SL-13           RE20         o         o         o         FIRST FLOOR EXTERIOR         277         900         L4SL-14           RE21         o         o         o         EXTERIOR CMOPY LTG.         277         200         EQ462-10	
RE18         •         •         PARKING SU/TH         277         1650         EQ462-9           RE19         •         •         •         FIRST FLOOR EXTERIOR         277         1100         L4SL-13           RE20         •         •         •         FIRST FLOOR EXTERIOR         277         900         L4SL-14	
RE19         •         •         FIRST FLOOR EXTERIOR         277         1100         L4SL-13           RE20         •         •         •         FIRST FLOOR EXTERIOR         277         900         L4SL-14	
RE20         •         •         •         FURST FLOOR EXTERIOR         277         900         L4SL-14	
RE21 EXTERIOR CANOPY LTG. 277 200 F04G2-10	
RE22	
RE23 • • •	
RE24	




## SITE LIGHTING CONTROL RELAY PANEL 'SLCR'

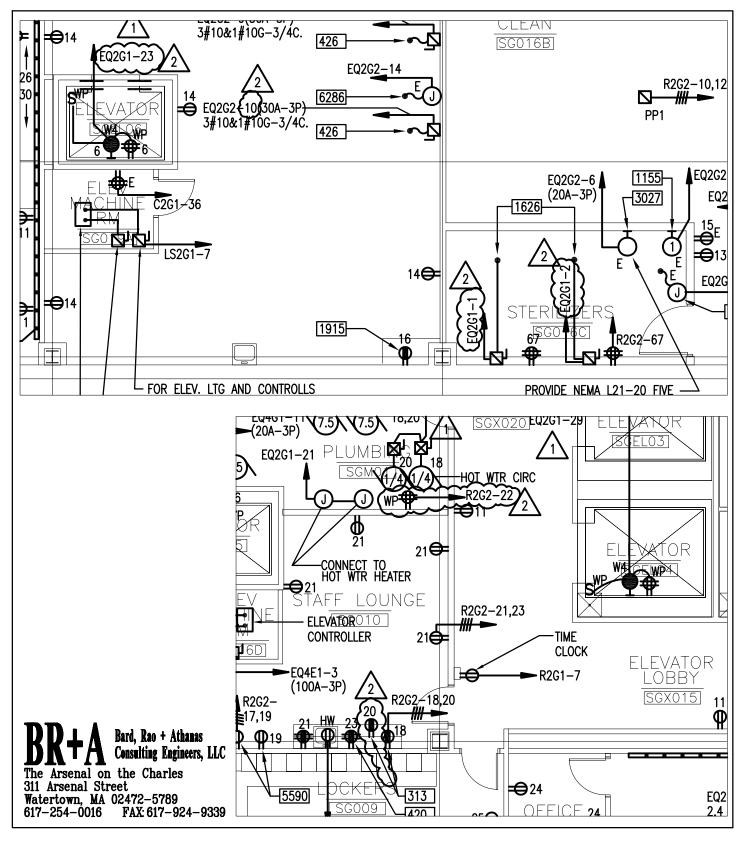


Francis Cauffman	Project Title Mercy Health System of Maine	Revisions Addendum #2	Drawing No. SKE—1
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E—01B
Hoffmann	MERCY	Date 12/06/06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL SITE PLAN	Scale NONE	Drawn By LMD

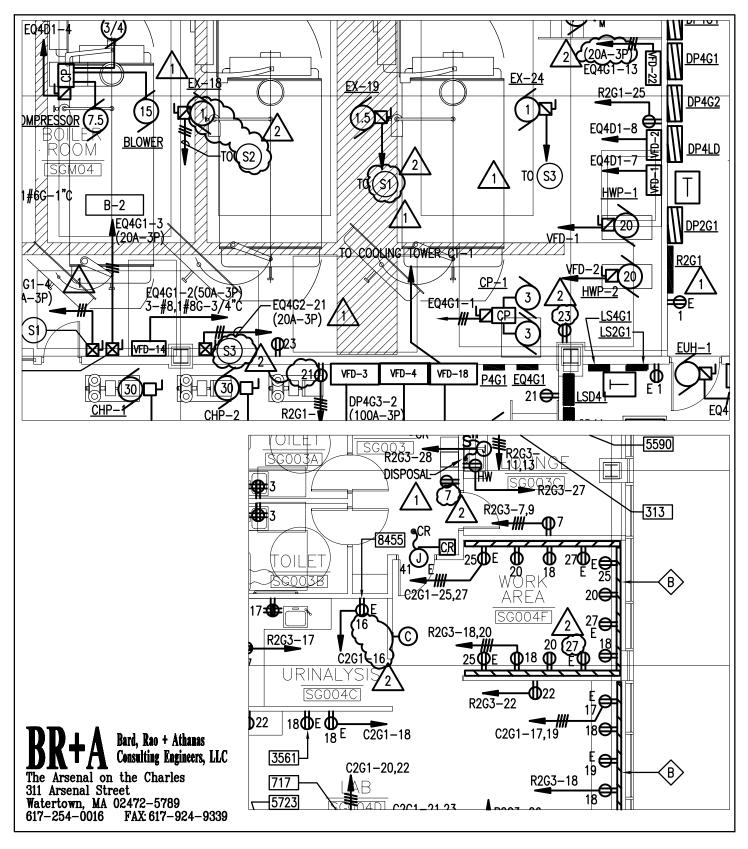


Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-2
Foley			Revision to : E—02
Hoffmann	MERCY	Date 2/06/06	Project No. F05—4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL PARTIAL SITE PLAN	Scale NONE	Drawn By LMD

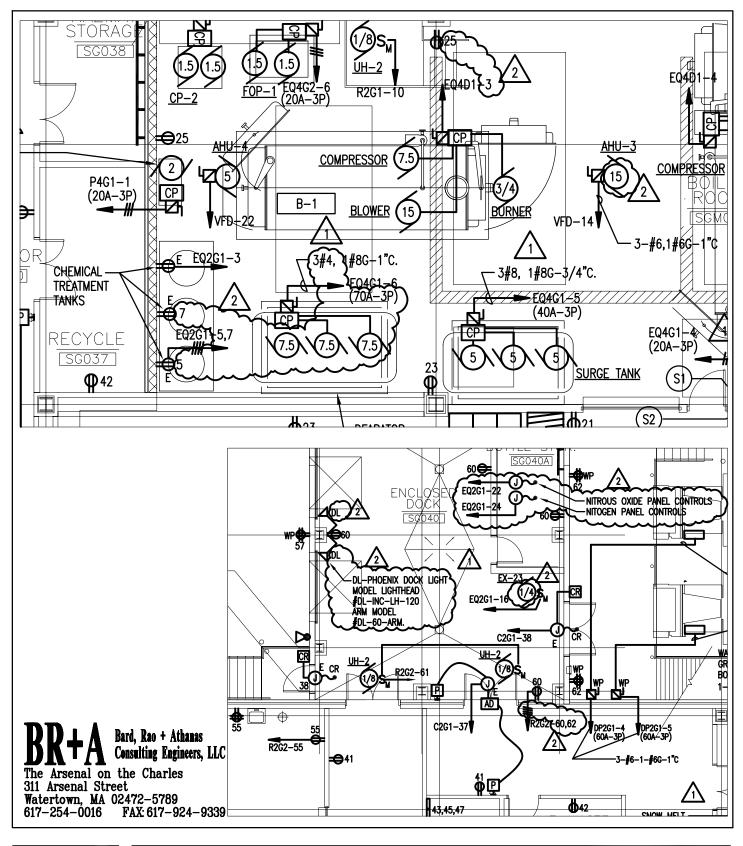



The Crown Building, Suite 201
304 S. Franklin St.
Syracuse, N.Y. 13202
315-423-0463

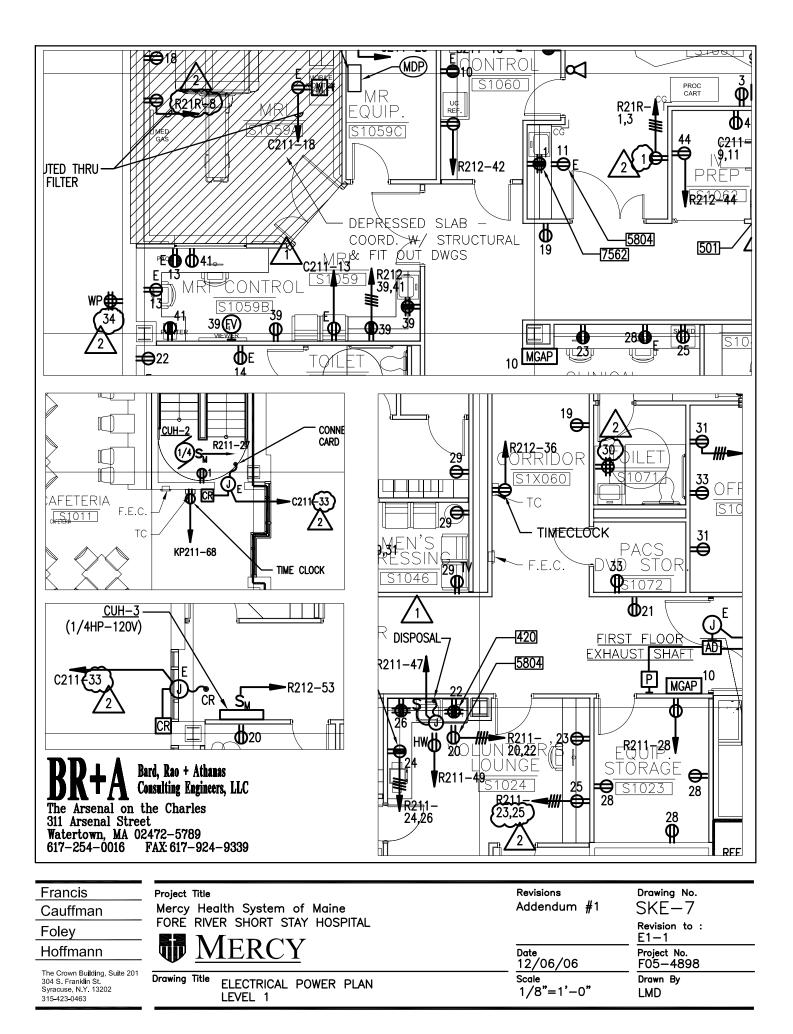
đ

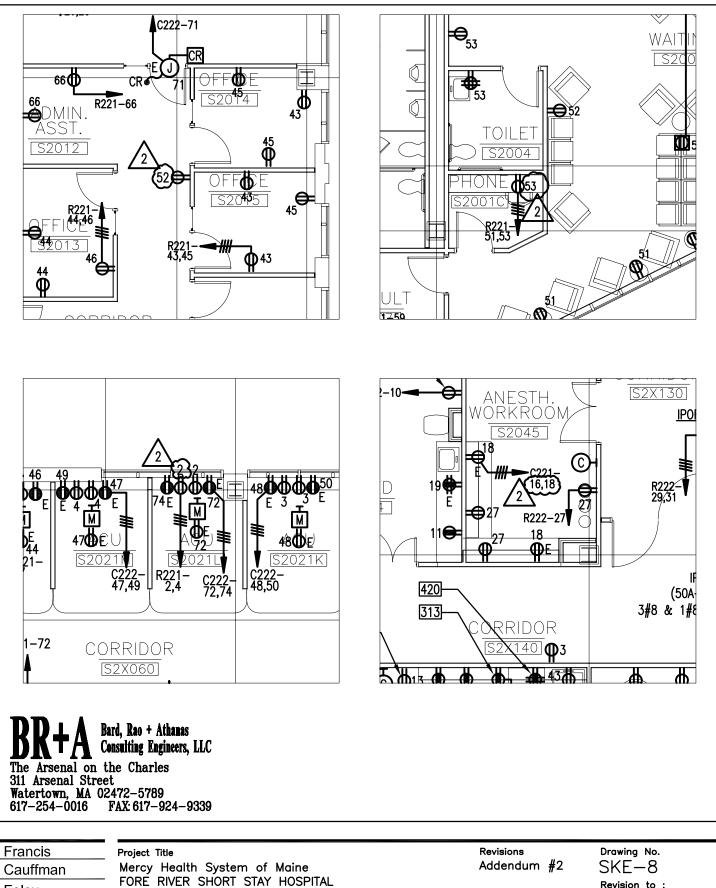

Drawing Title ELECTRICAL PARTIAL SITE PLAN

	<i>n</i> –	
		Revisio E-02
Date 2/06/06		Project F05-
Scale NONE		Drawn LMD


Drawing No. SKE—3
Revision to : E-02
Project No. F05-4898
Drawn By LMD




Francis Cauffman	Project Title Mercy Health System of Maine	Revisions Addendum #2	Drawing No. SKE—4
Foley	Fore river short stay hospital $\mathbf{MFRCV}$		Revision to : E1-G
Hoffmann	MERCY	Date 12/06/06	Project No. F05—4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN GROUND FLOOR	Scale 1/8"=1'-0"	Drawn By LMD




Francis Cauffman	Project Title Mercy Health System of Maine	Revisions Addendum #2	Drawing No. SKE—5
Foley Hoffmann	FORE RIVER SHORT STAY HOSPITAL	Date	Revision to : E1-G Project No.
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN GROUND FLOOR	<u>12/06/06</u> Scale 1/8"=1'-0"	F05-4898 Drawn By LMD



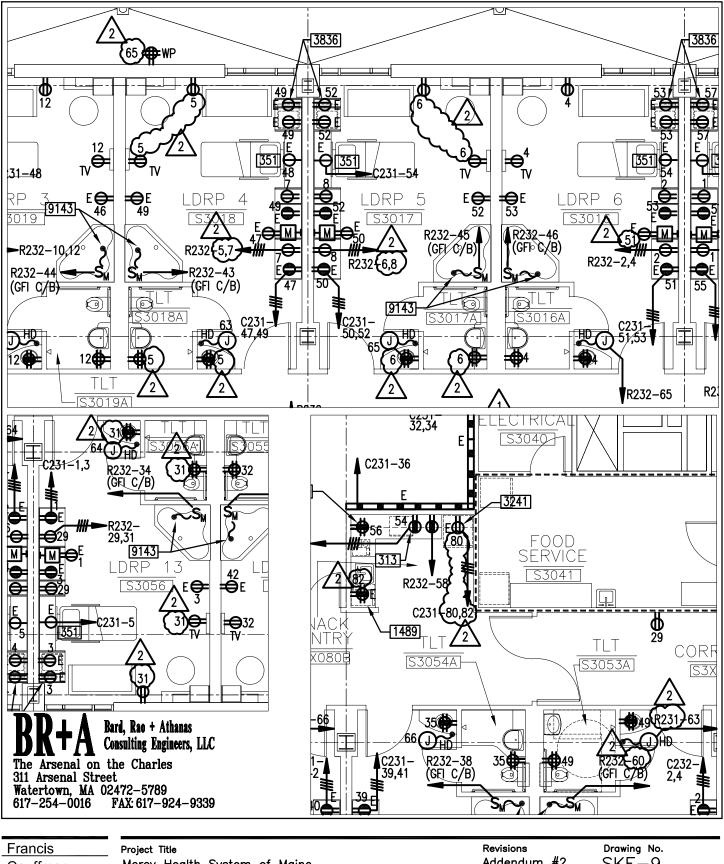
Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE—6
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E1-G
Hoffmann	<b>WERCY</b>	Date	Project No.
The Crown Building, Suite 201		12/06/06	F05—4898
304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN GROUND FLOOR	Scale 1/8"=1'-0"	Drawn By LMD





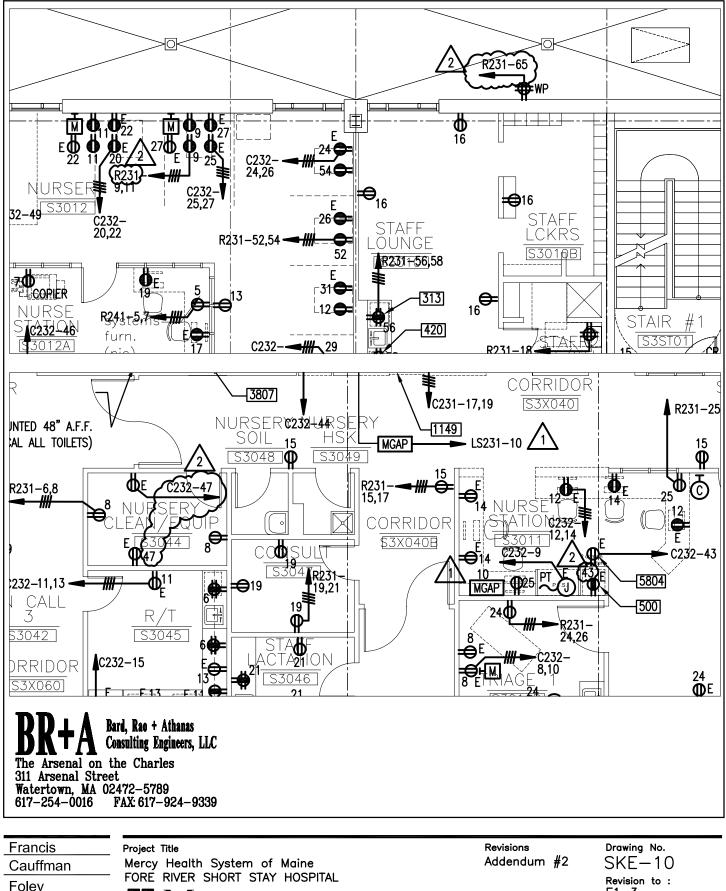
Foley

<u>Hoffman</u>n


The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463 Ū

Drawing Title ELECTRICAL POWER PLAN LEVEL 2 
 Date
 Project No.

 12/06/06
 F05-4898


 Scale
 Drawn By

 1/8"=1'-0"
 LMD

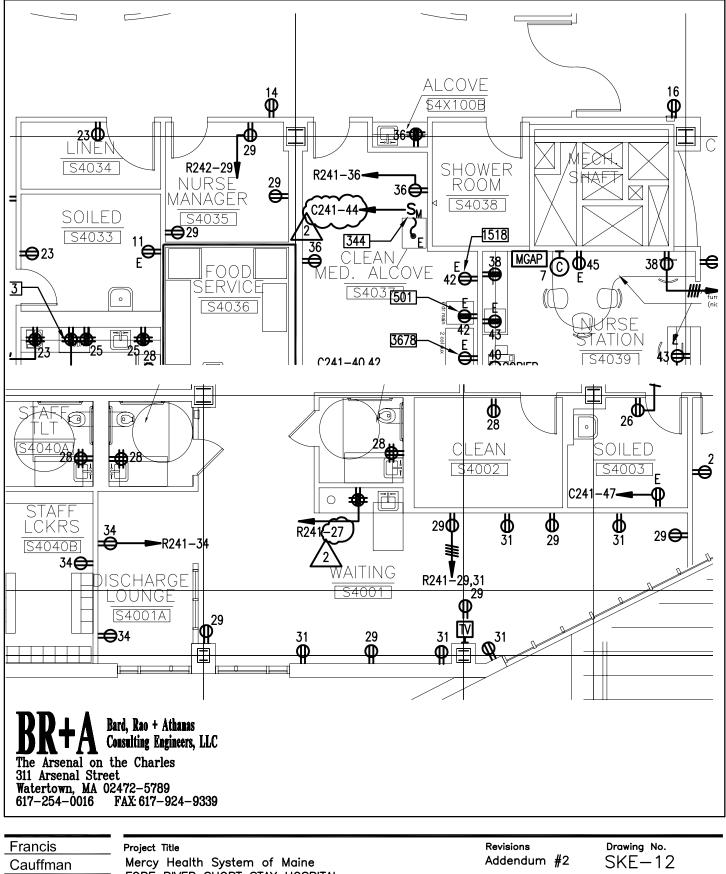


Addendum #2 SKE-9 Mercy Health System of Maine Cauffman FORE RIVER SHORT STAY HOSPITAL Revision to : Foley E1-3 (iii Hoffmann Project No. F05-4898 Date 12/06/06 The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315–423–0463 Scale **Drawing Title** Drawn By ELECTRICAL POWER PLAN 1/8"=1'-0" LMD

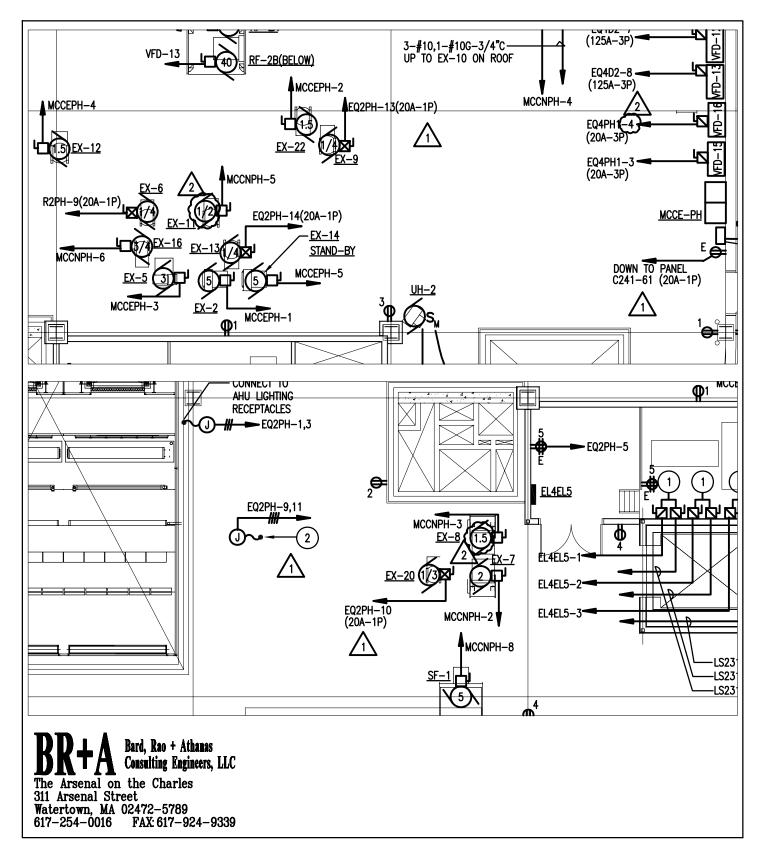
LEVEL 3



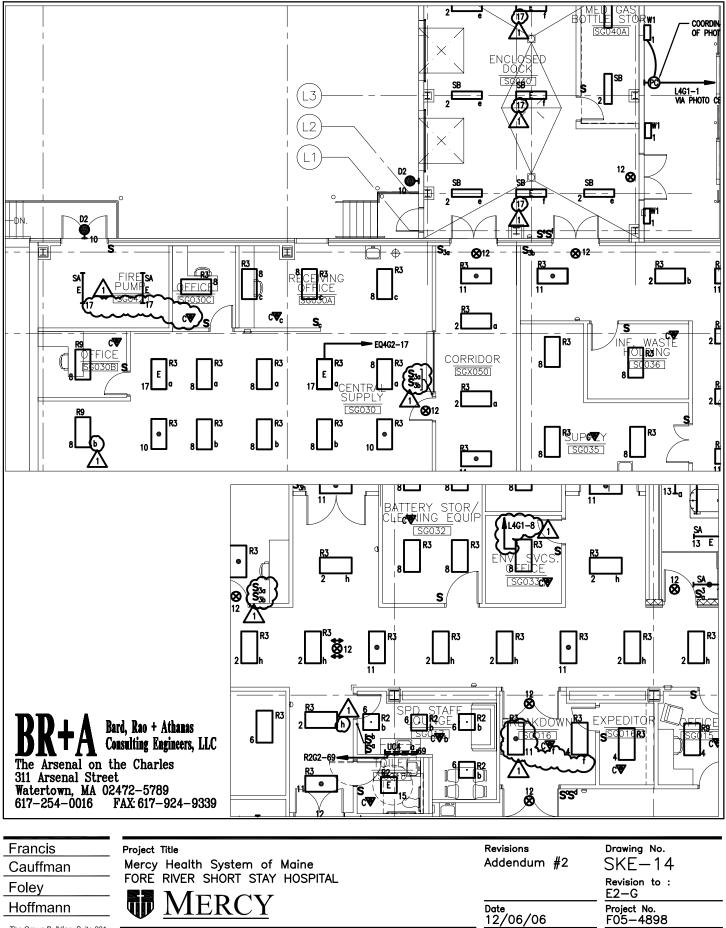
	I.	U	ч⊂у	
_				


Hoffmann

The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315–423–0463 Mercy Health System of Maine<br/>FORE RIVER SHORT STAY HOSPITALAddendum #2SKE-10<br/>Revision to :<br/>E1-3Image: Drawing Title<br/>LEVEL 3ELECTRICAL POWER PLAN<br/>LEVEL 3Date<br/>1/8"=1'-0"Project No.<br/>Scale<br/>1/8"=1'-0"


ITEMDESCRIPTIONLOADCIRCUIT BREAKERCIRCUIT BREAKERCONNECTION PLUG-1NPANEL/C CIRCUITE1REFRIGERATOR/FREEZER $\frac{1}{73}$ -14A120V20A-1P•C231-76E2ICE/WATER DISPENSER12A120V20A-1P••C231-78E3ICED TEA BREWER15A120V20A-1P••KP23-1E4COFFEE BREWER30A120/208-1ø30A-2P••KP23-2,4E5ACONVENIENCE OUTLET16A120V20A-1P••KP23-3E5BCONVENIENCE OUTLET16A120V20A-1P••KP23-5E5CCONVENIENCE OUTLET16A120V20A-1P••KP23-5E66MICROWAVE OVEN-1.210A120V20A-1P••KP23-7E7SODA DISPENSER10A120V20A-1P••KP23-7	E1		_	-	AMP	VOLTAGE			1011		
E1       REPRIGERATORY PREEZER $1/3$ -       14A       120V       20A-1P       C       C231-76         E2       ICE/WATER DISPENSER       -       -       12A       120V       20A-1P       C       C231-78         E3       ICED TEA BREWER       -       -       12A       120V       20A-1P       C       C231-78         E4       COFFEE BREWER       -       -       -       15A       120V       20A-1P       C       C231-78         E5A       CONVENIENCE OUTLET       -       -       30A       120/208-1Ø       30A-2P       C       KP23-2,4         E5B       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       C       KP23-3         E5B       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       C       XP23-5         E5C       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       C       XP23-5         E66       MICROWAVE OVEN       -       1.2       10A       120V       20A-1P       C       KP23-7		REFRIGERATOR/FREEZER	1/5-				DREAKER	PLUG-1N	DIRECT	CIRCUIT (ST)	F
E3ICED TEA BREWER15A120V $20A-1P$ $2$ KP23-1E4COFFEE BREWER30A120/208-1ø30A-2P•KP23-2,4E5ACONVENIENCE OUTLET16A120V20A-1P•KP23-3E5BCONVENIENCE OUTLET16A120V20A-1P•KP23-5E5CCONVENIENCE OUTLET16A120V20A-1P• $2$ KP23-5E5CCONVENIENCE OUTLET16A120V20A-1P• $2$ KP23-5E6MICROWAVE OVEN-1.210A120V20A-1P•KP23-7	F2 1			-	14A	120V	20A-1P	•		C231-76	2#12
E4COFFEE BREWER30A $120/208-10$ $30A-2P$ •KP23-2,4E5ACONVENIENCE OUTLET16A $120V$ $20A-1P$ •KP23-3E5BCONVENIENCE OUTLET16A $120V$ $20A-1P$ •KP23-5E5CCONVENIENCE OUTLET16A $120V$ $20A-1P$ • $xP23-5$ E5CCONVENIENCE OUTLET16A $120V$ $20A-1P$ • $xP23-5$ E6MICROWAVE OVEN-1.2 $10A$ $120V$ $20A-1P$ •KP23-7		ICE/WATER DISPENSER	-	-	12A	120V			•	C231-78	2#12
E5A       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       KP23-3         E5B       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       KP23-5         E5C       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       KP23-5         E5C       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       2       KP23-5         E6       MICROWAVE OVEN       -       1.2       10A       120V       20A-1P       •       KP23-7	E3	ICED TEA BREWER	-	-	15A	120V	20A-1P			KP23-1	2#12
E5B       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       KP23-5         E5C       CONVENIENCE OUTLET       -       -       16A       120V       20A-1P       •       2       KP23-5         E6       MICROWAVE OVEN       -       1.2       10A       120V       20A-1P       •       KP23-7	E4	COFFEE BREWER	-	-	30A	120/208-1ø	30A-2P	0		KP23-2,4	3#10
E5C       CONVENIENCE OUTLET       -       16A       120V       20A-1P       •       2       KP23-10         E6       MICROWAVE OVEN       -       1.2       10A       120V       20A-1P       •       KP23-7	E5A	CONVENIENCE OUTLET	-	-	16A	120V	20A-1P	•		KP23-3	2#12
E6     MICROWAVE OVEN     −     1.2     10A     120V     20A−1P     ●     KP23−7	E5B	CONVENIENCE OUTLET	-	-	16A	120V	20A-1P	•		KP23-5	2#12
	E5C	CONVENIENCE OUTLET	-	-	16A	120V	20A-1P	•	2	KP23-10	2#1
E7 SODA DISPENSER 10A 120V 20A-1P 2 • KP23-9	E6	MICROWAVE OVEN	-	1.2	10A	120V	20A-1P	•		KP23-7	2#1:
	E7 5	SODA DISPENSER	-	-	10A	120V	20A-1P 2			KP23-9	2#1
E8 AMBIENT CARBONATOR 7A 120V 20A-1P • KP23-11	E8 /	AMBIENT CARBONATOR	-	-	7A	120V	20A-1P	۰		KP23-11	2#1
E9 REFER TO COMMUNICATION DRAWINGS	E9	REFER TO COMMUNICATION DRAWI	NGS						1		
E10A CONVENIENCE OUTLET 16A 120V 20A-1P • KP23-6	E10A	CONVENIENCE OUTLET	-	-	16A	120V	20A-1P	•		KP23-6	2#1
E10B CONVENIENCE OUTLET 16A 120V 20A-1P • KP23-8	E10B	CONVENIENCE OUTLET	-	-	16A	120V	20A-1P	٠		KP23-8	2#1

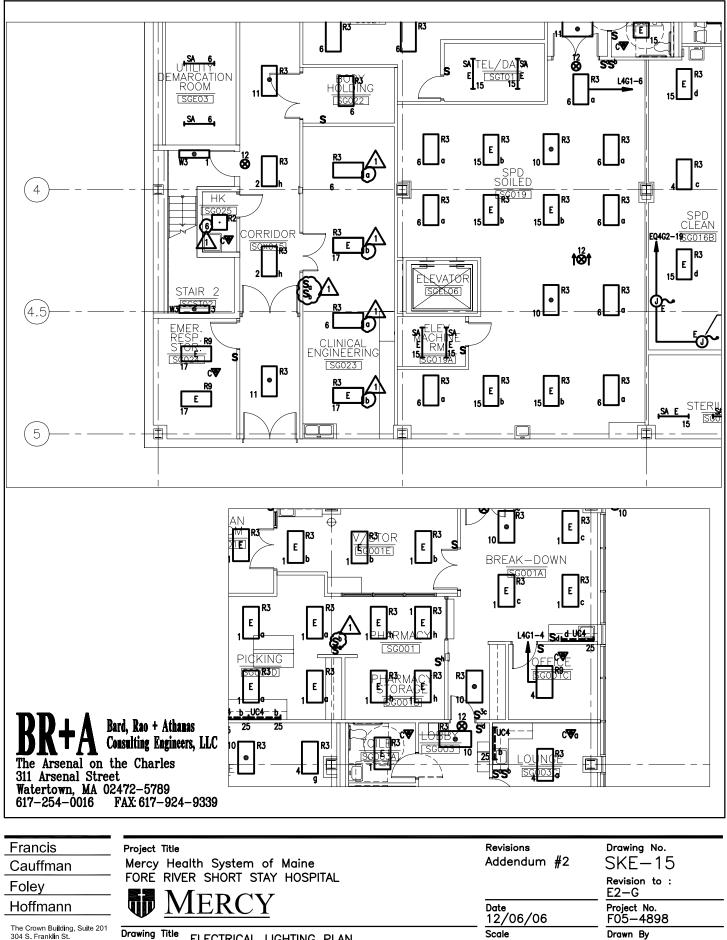
The Arsenal on the Charles 311 Arsenal Street Watertown, MA 02472-5789 617-254-0016 FAX:617-924-9339


Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-11
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E1-3
Hoffmann	MERCY	Date 12/06/06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN LEVEL 3	Scale 1/8"=1'-0"	Drawn By LMD



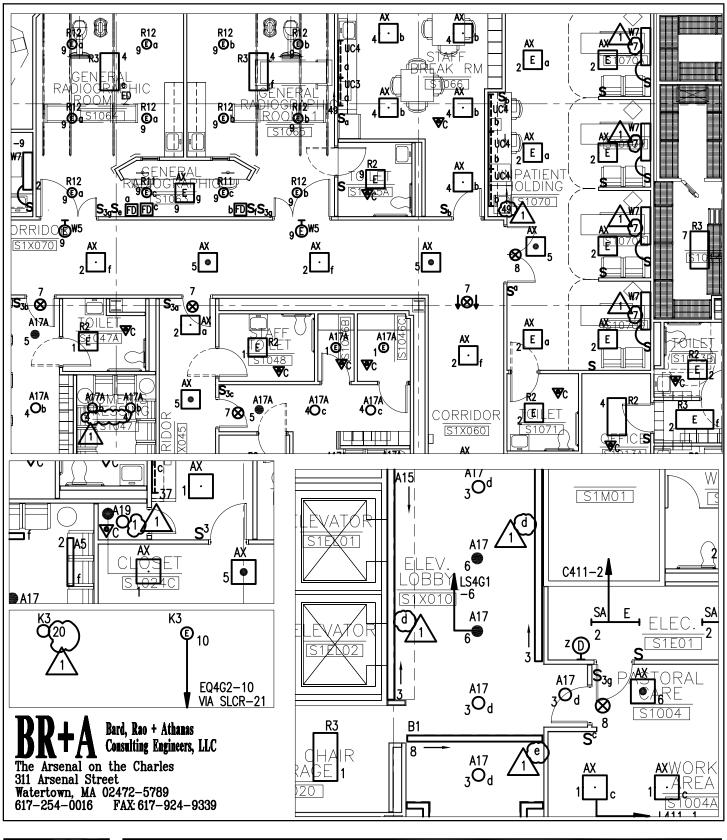
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E1-4	
Hoffmann	MERCY	Date 12/06/06	Project No. F05—4898	
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN LEVEL 4	Scale 1/8"=1'-0"	Drawn By LMD	



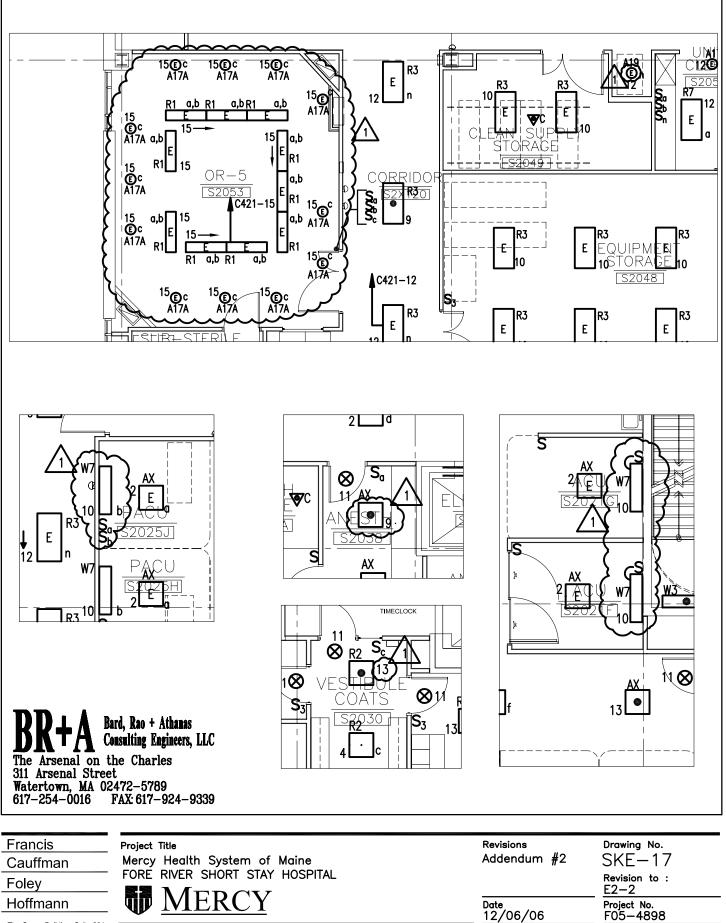

Francis Cauffman	Project Title Mercy Health System of Maine	Revisions Addendum #2	Drawing No. SKE—13
Foley	Fore river short stay hospital $\mathbf{FR}$		Revision to : 5
Hoffmann	MERCY	Date 12/06/06	Project No. F05—4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL POWER PLAN PENTHOUSE	Scale 1/8"=1'-0"	Drawn By LMD



The Crown Building, Suite 201
304 S. Franklin St.
Syracuse, N.Y. 13202
315-423-0463


Drawing Title ELECTRICAL LIGHTING PLAN LEVEL G

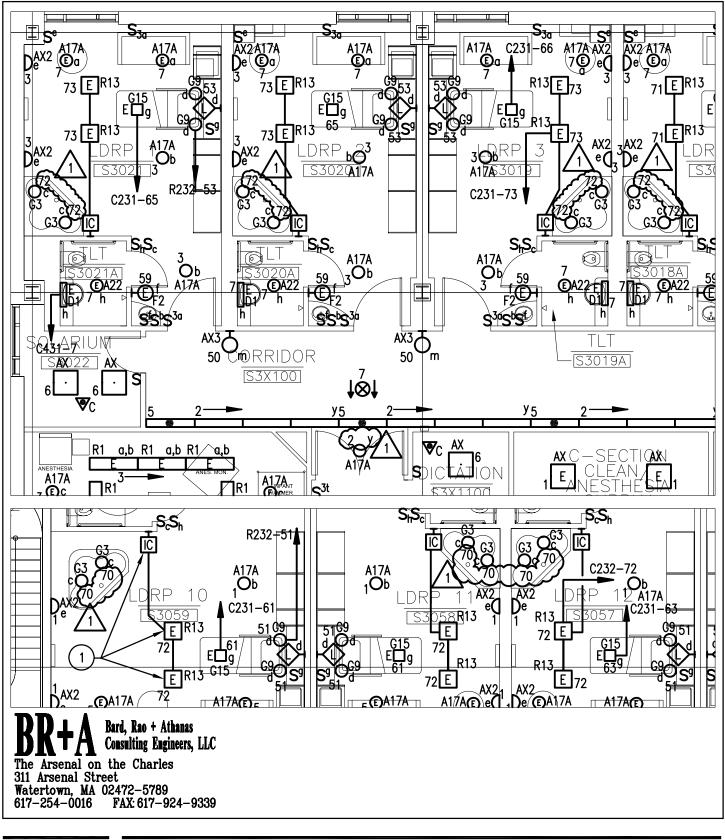
Addendum #2	SKE—14 Revision to : E2—G
Date	Project No.
12/06/06	F05—4898
Scale	Drawn By
1/8"=1'-0"	LMD



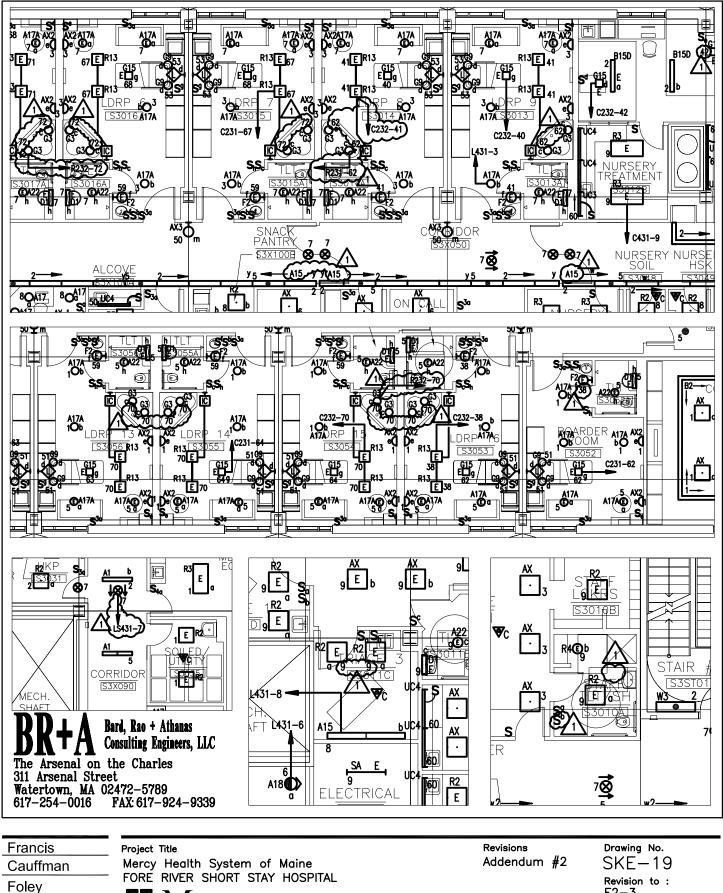

The Crown Building, Suite 201
304 S. Franklin St.
Syracuse, N.Y. 13202
315-423-0463

- ELECTRICAL LIGHTING PLAN LEVEL G
- Date 12/06/06 Scale Drawn By 1/8"=1'-0" LMD




Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-16
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E2—1
Hoffmann	MERCY	Date 12/06/06	Project No. F05—4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315–423-0463	Drawing Title ELECTRICAL LIGHTING PLAN LEVEL 1	Scale 1/8"=1'-0"	Drawn By LMD




The Crown Building, Suite 201
304 S. Franklin St.
Syracuse, N.Y. 13202
315-423-0463



	Revision to : E2—2
Date 12/06/06	Project No. F05—4898
Scale	Drawn By
1/8"=1'-0"	LMD

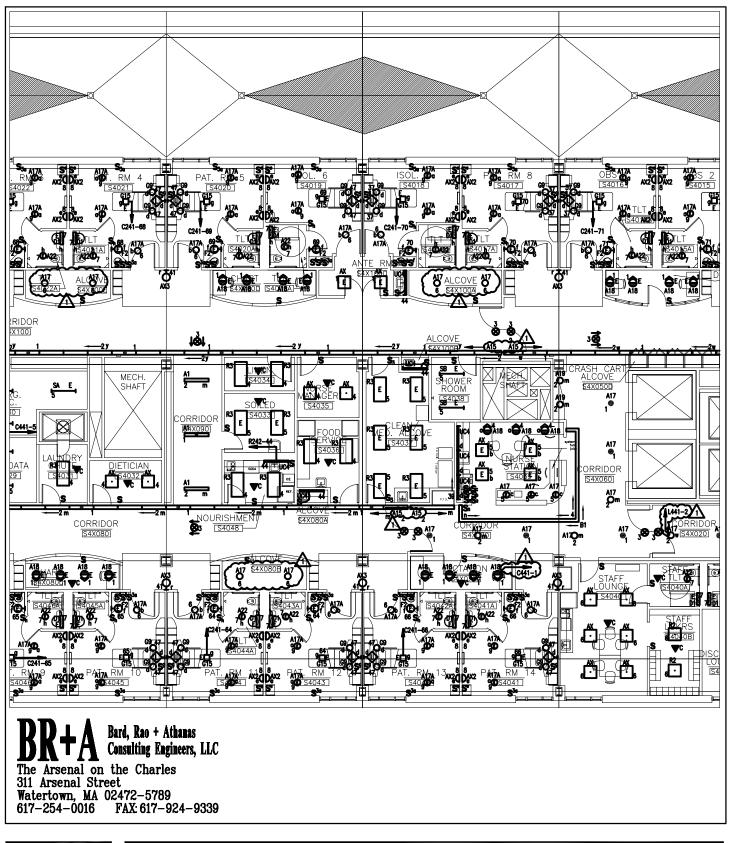


Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-18
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E2—3
Hoffmann	MERCY	Date 12/06/06	<u>E2-5</u> Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL LIGHTING PLAN LEVEL 3	<u>Scale</u> 1/8"=1'-0"	Drawn By LMD

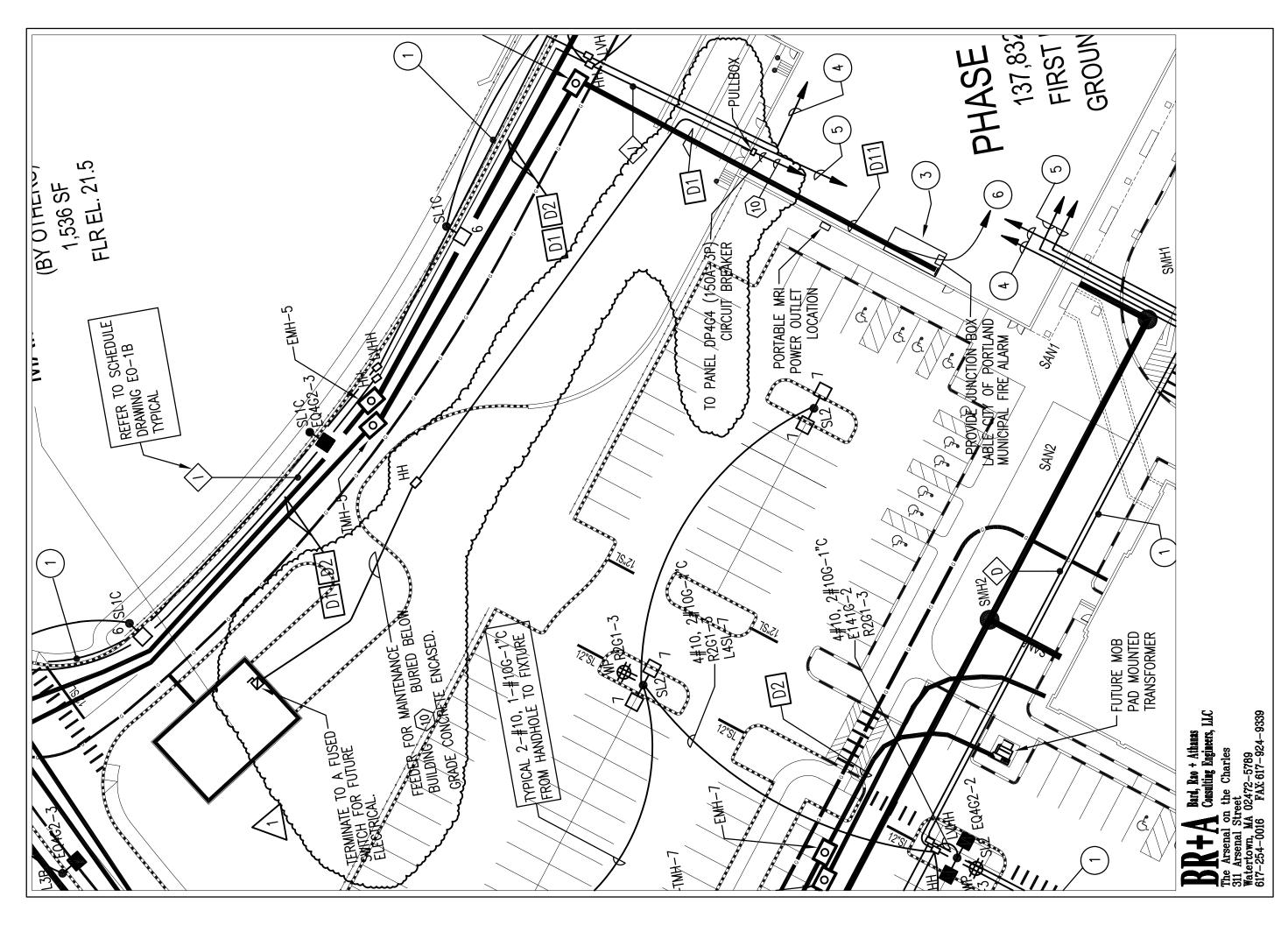


-
Hoffmann

The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463


٩D

Drawing Title ELECTRICAL LIGHTING PLAN LEVEL 3


·R(

E2-3 Date 12/06/06 Scale Drawn By 1/8"=1'-0" LMD

Project No. F05-4898



Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-20
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E2—4
Hoffmann	MERCY	Date	<u>L2-4</u> Project No.
		12/06/06	<u>F05-4898</u>
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL LIGHTING PLAN LEVEL 4	Scale 1/8"=1'-0"	Drawn By LMD



Francis	Project Title Revisi	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine Add	Addendum #2	SKE-21
Foley	FORE RIVER SHORT STAY HOSPITAL		Revision to : E-01A
Hoffmann		Jate 12/06/06	Project No. FD54R9R
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL Scale StTE PLAN		Drawn By LMD

											EDUL	.E 0	F PA	NELE	BOARD	S			1011 AT							1	2 = 120, 4 = 277, 4 = 120,	/208V - /480V - /208V-1#	3ø – 4W 3ø – 4W –3W PLUS	S = S R = F GROUND	SURFACE RECESSED
65	ik AIC	PAN	F	MCB	NNS MLO	MTG	C/B IC SEE SPEC	DOUBLE TUB	NOTES	VOLTAGE			) POLE				(2)	POLE		uit Brea					(3) PO	-					1P
AS REC							SPEC	85	ž	8	20	30	40	50	15	20	30	40	50	60	80	20	30	40	50	60	70	80	100	150	SPACE
		L4G1			100A	s	65K			4	24				-																
G	NOTES	R2G1			100A	s	10K			2	42				1		•						•								
		R2G2			225A	s	10K	x		2	84	凶			1	$\cap$						$\square$	<u>∦</u> ∆								
		R2G3			100A	s	10K			2	42																				
		P4G1			100A	s	65K			4	6	5~	$\rightarrow$									13		$\mathbf{M}$							(15)
		L4SL			100A	s	65K			4	20	PROVID	E GROUND PROTECTIC									$\sim$	~~~								
		L411			100A	s	65K			4	18																				6
	stand-by	R211			225A	S	10K	X		2	83		1																		
		R212			225A	S	10K	X		2	84						-														
		KP211			400A	R	10K	X	A.	2	<b>F4</b> 3	<u>R1</u>				<u>C</u> ,	2	24	2			3				2					
-+		KP212			400A	R	10K	X	A.	2	<b>}</b> 51	2	<u></u>			5	1	2	2			51	2		<u>y</u> a						6
-+		R21R		100A	-	S	10K			2	21	م م				Œ	مسر ا					Ri-	س ا								4
																						<b>∟</b>									
		L421			100A	S	65K	<u> </u>		4	12	<u> </u>			_	<u> </u>								<u> </u>							6
		R221		<u> </u>	225A	S	10K	X		2	84		_		-	<u> </u>				1			1	<u> </u>							
		R222		<u> </u>	225A	S	10K	X		2	74		_		-	<u> </u>				<u> </u>			1	<u> </u>							10
		L431		1	100A	S	65K	<u> </u>		4	12	<u> </u>	_			<u> </u>				1	-		<u> </u>	<u> </u>							$\mathbb{P}$
		R231		1	225A	S	10K	X	B.	2	84	<b>_</b>	_			<u> </u>				1			-	<u> </u>							
65	ik AIC	R232		1	225A	S	10K	X	C.	2	(84)	<u>*\</u>	_			<u> </u>				1			<u> </u>	<u> </u>							
		KP23		<u> </u>	100A	S	10K			2	22			-		<u> </u>	1			<u> </u>	-		<u> </u>	<u> </u>							$\square$
SREC	NIRED	L441		<u> </u>	100A	S	65K	<u> </u>		4	$\Theta$	<u>*\</u>	_	_		<b> </b>				<u> </u>				<b> </b>							6)
	NOTES	R241			225A	S	10K	X		2	74			_																	10
$\rightarrow$		R242			225A	S	10K	X		2	74			_			   .														10
$\downarrow$		KP24			100A	S	10K	<u> </u>		2	22	<u> </u>		_			1	<b> </b>				┨───									
		C4G1			100A	S	65K	<u> </u>		4	10	<u> </u>					┢──	<b> </b>	<u> </u>	<u> </u>				<b> </b>							<u> </u>
Ţ		C2G1		$ \mathbf{h} $	225A	) s	10K	X		2	62	<u>12</u>		-		$\Theta$		<u> </u>		-			<u> </u>								(20)
	FEEDER BREAKER ONLY	CT2G1			100A	S	10K	<u> </u>		<u> </u> .	20			_			5			-			2	2							
+	JALIANEN UNLI	C411		45-1	225A	S	65K	<u>.</u>		4	10	_ ·		_		$\vdash$												1			11
+		C211 CT211		150A	1000	s	10K	X		2	65	1	+			1										2					10
$\dashv$				1	100A	S	10K			2	20						1			-											8
$\square$		CT212			100A 225A	S S	10K 65K			2	20		7	-			1			-			-					-			8 6
		C421		150A	2234	S S	10K	x		4 2	20 (61)	<u>k</u>	+	-						+	+	╢──	+			-		1	-		0 10
Ţ	Feeder Breaker only	C221 C422			225A	s s	10K 65K	<b>^</b>		4	10	<b>*</b>	7	-						+	-	$\parallel$	+			1		1	$\left  \right $		4
R		C422 C222		150A	22007	s s	10K	x		* 2	84		+	-		-				1			+	-				'	$\vdash$		
+		C7222			100A	s	10K	+		2	20		+	-		+	1			+		-	+	+					$\left  \right $		8
+		C431		1	225A	s	65K	+		4	12		+		-	1	+			1			1	1				1			9
-		C231		1	225A	s	10K	x		2	84	1	-	+		1				1			1	1				· ·			
$\dashv$		C232		1	225A	s	65K	1			60	1	1		1	1	1	1		1	1	1	1	1							10
		CT231		1	100A	S	10K	1			20		1		1	1	2	1		1	1		1	1							6
		C441		1	225A	S	65K	1		4	13	1			1	1							1	1				1			8
		C241		150A		S	10K	x		2	(81)	入			1	1				1			1	1			$\widehat{\mathbf{h}}$				
		CT241		1	100A	s	10K	1			20	<b>–</b>			1	1	2			1			1	1							6
65	SK AIC	EQ4G1		1	225A	s	65K	1		4		1				1				1		9	1	2	-		$\overline{1}$	2			
		EQ2G1		400A		s	10K	1		2	20	1				1				1			1	1	<u>```</u>	~~~			2	1	13
SKEC	VIRED	EQ21		1	100A	R	10K	1		2	25	1				1						2	2								5
	NOTES	EQ2G2		2	(225A)	s	65K	1		4	19	1				1		1		1		3	2		2						6
$\Rightarrow$		LS4G1			100A	s	65K	1		4	24	1			1	1				1			$\left  \begin{array}{c} 1 \\ 1 \end{array} \right $								3
$\square$		LS2G1		50A		s	10K	x		2	24			1		1				1			1	1							$\mathcal{O}_{1}$
		EQ4G2		1	225A	s	65K	1		4	15	<b>—</b>		1		1						3		1							15
		LS431			100A	s	65K			4	24				1		1	1			1	1	1								3
ᆋ	EEDER			50A	1	s	10K	x	<u> </u>	2	16	1	-		-11	+		+	<del> </del>	+	+		+	+				<b></b>			

Francis	Project Title	Revisions	Drawing No.
Cauffman	Mercy Health System of Maine	Addendum #2	SKE-22
Foley	FURE RIVER SHORT STAT HOSPILAL		Revision to : E5–3
Hoffmann	<b>MERCY</b>	Date 12/06/06	Project No. F05-4898
The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463	Drawing Title ELECTRICAL SCHEDULE OF PANELBOARDS	Scale 1/8"=1'-0"	Drawn By LMD

**BRAA** Bard, Rao + Athanas Consulting Engineers, LLC The Arsenal on the Charles 311 Arsenal Street Watertown, MA 02472-5789 617-254-0016 FAX 617-924-9339

111     150     5     100     X     2     65     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     <	01201		1004	3	IUK	T	1	1	20		1	11	1	<b>.</b> .	1	1	1		2	2					[		Т
211       1       000       5       108       1       2       20       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	C411		225A	S	65K			4	10															1			
212       100       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>C211</td> <td>150A</td> <td></td> <td>S</td> <td>10K</td> <td>X</td> <td></td> <td>2</td> <td>65</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	C211	150A		S	10K	X		2	65	1			1									2					
211       224       5       684       -       4       20       7       -       -       -       -       1       -       1       -       -       -       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       1       -       -       -       -       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	CT211		100A	S	10K			2	20					1													T
150       S       10K       X       2       10A       7       6       6       6       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	CT212		100A	S	10K			2	20					1													T
221       228       5       68       1       4       10       7       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>C421</td> <td></td> <td>225A</td> <td>s</td> <td>65K</td> <td></td> <td></td> <td>4</td> <td>20</td> <td></td> <td>7</td> <td></td> <td>1</td> <td></td> <td></td> <td>T</td>	C421		225A	s	65K			4	20		7													1			T
22       150       S       100       S       100       X       2       64       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .	C221	150A		S	10K	X		2	61													1					T
221       1004       S       1004       X       2       20       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>C422</td> <td></td> <td>225A</td> <td>s</td> <td>65K</td> <td></td> <td></td> <td>4</td> <td>10</td> <td></td> <td>7</td> <td></td> <td>1</td> <td></td> <td></td> <td>T</td>	C422		225A	s	65K			4	10		7													1			T
S1       225A       S       66K       4       12       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	C222	150A		S	10K	X		2	84																		T
S1       228       S       10K       X       2       64       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	CT221		100A	S	10K			2	20					1													T
32       25A       S       65K       Image: constraint of the second secon	C431		225A	S	65K			4	12															1			T
231       100k       S       10k       Image: Constraint of the state of the sta	C231		225A	S	10K	X		2	84																		T
Ath $2$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$	C232		225A	s	65K				60																		Γ
441       150A       S       10K       X       2 $61/2$ 2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	CT231		100A	S	10K				20					2													T
2241       100A       S       10K       20       20       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>C441</td><td></td><td>225A</td><td>s</td><td>65K</td><td></td><td></td><td>4</td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>T</td></t<>	C441		225A	s	65K			4	13															1			T
Hefit       225A       S       65K       4       4       1       1       9       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th< td=""><td>C241</td><td>150A</td><td></td><td>S</td><td>10K</td><td>X</td><td></td><td>2</td><td>(81)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\odot$</td><td>Δ</td><td></td><td></td><td>T</td></th<>	C241	150A		S	10K	X		2	(81)														$\odot$	Δ			T
201       400A       S       10K       2       20       1       1       2       1         21       100A       R       10K       2       25       1       1       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	CT241		100A	S	10K				20					2									~				T
100A       R       10K       2       25       1       1       3       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	EQ4G1		225A	S	65K			4										9	1	2	$\left( \right)$			2			T
262 $225A$ S $65K$ 4       19       1       3 $2$ $2$ 1       3 $2$ $2$ 1       1       3 $2$ $2$ 1       1       3 $2$ $2$ 1       1       1       3 $2$ $2$ 1       1       1       3 $2$ $2$ 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>EQ2G1</td> <td>400A</td> <td></td> <td>S</td> <td>10K</td> <td></td> <td></td> <td>2</td> <td>20</td> <td></td> <td>~~~</td> <td>~~~</td> <td>~</td> <td></td> <td>2</td> <td>1</td> <td>T</td>	EQ2G1	400A		S	10K			2	20												~~~	~~~	~		2	1	T
AG1       100A       S       65K       4       24       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	EQ21		100A	R	10K			2	25									2	2								T
261       50A       S       10K       X       2 $24$ 2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th< td=""><td>EQ2G2</td><td></td><td>225A)</td><td>S</td><td>65K</td><td></td><td></td><td>4</td><td>19</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>3</td><td>2</td><td></td><td>$\mathbb{N}$</td><td></td><td></td><td></td><td></td><td></td><td>T</td></th<>	EQ2G2		225A)	S	65K			4	19						1			3	2		$\mathbb{N}$						T
MG2       225A       S       65K       4       15       10       3       1       10       1       10       1         A31       100A       S       65K       4       24       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>LS4G1</td> <td></td> <td>100A</td> <td>s</td> <td>65K</td> <td></td> <td></td> <td>4</td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td>	LS4G1		100A	s	65K			4	24										1								T
A31       100A       S       65K       4       24       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	LS2G1	50A		S	10K	X		2	24																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EQ4G2		225A	S	65K			4	15									3		1							T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LS431		100A	S	65K			4	24										1								
2PH     50A     S     10K     2     16     Image: Contract of the second secon	LS231	50A		S	10K	X		2							•												
PH 50A S 10K 2 16	<u>CT222</u>		100A	s	10K			2	(18)	<u>/2\</u>				2	2										<u> </u>		
PH 50A S 10K 2 16	EQ2PH	50A		s	10K			2	16																	<u> </u>	╉
																											▮
	R2PH	50A		s	10K			2																			
	EQ4PH1		225A	S	65K			4	6	2								4	1		(2		2				
									ľ												$\sim$	~~~	me				

					DRY TYPE TR	ANSFORMER SCHEDULE		
SIZE	KVA	PRIMARY AMPS	SECONDARY AMPS	480 VOLT (2) OVERCURRENT	208 VOLT (3) OVERCURRENT	480V PRIMARY FEEDER	20/208V SECONDARY FEEDER	GROUNDING (4) CONDUCTOR
T1	9	11	25	20A, 3P	30A, 3P	3#12 & 1#12G - 3/4"C.	4#10 & 1#10G - 3/4"C.	1 <b>#</b> 8 - 3/4"C
T2	15	18	42	30A, 3P	50A, 3P	3#10 & 1#10G - 3/4"C.	4#6 & 1#8G - 1"C.	1 <b>#</b> 8 - 3/4"C
Т3	30	36	83	60A, 3P	100A, 3P	3#4 & 1#10G - 1"C.	4#1 & 1#6G - 1 1/2"C.	1 <b>#</b> 6 - 3/4"C
T4	45	54	125	80A, 3P	150A, 3P	3#3 & 1#8G - 1 1/4"C.	4#1/0 & 1#6G - 2"C.	1#6 - 3/4"C
T5	75	90	208	150A, 3P	250A, 3P	3#1/0 & 1#6G - 1 1/2"C.	4#250 KCMIL & 1#2G - 3"C.	1#2 - 3/4"C
T6	112.5	135	313	250A, 3P	400A, 3P	3#250 KCMIL & 1#4G - 2 1/2"C.	4#500 KCMIL & 1#1/0G - 4"C.	1#1/0 - 3/4°C
17	150	181	417	300A, 3P	500A, 3P	3#350 KCMIL & 1#4G - 3"C.	8#250 KCMIL & 2#1/0G 2-3"C.	1#1/0 - 3/4°C
T8	225	270	625	400A, 3P	800A, 3P	3#500 KCMIL & 1#3G - 3 1/2"C.	8#500 KCMIL & 2#2/0G 2-4"C.	1 <b>#</b> 2/0 - 3/4°C
T9	300	361	834	600A, 3P	1000A, 3P	6#350 KCMIL & 2#1G 2-3"C.	12#400 KCMIL & 3#3/0G 3-3"C.	1 <b>#</b> 3/0 - 3/4°C
T10	500	600	1400	1000A, 3P	1600A, 3P	9#400 KCMIL & 3#2/0G 3-3"C.	16#600 KCMIL & 4#300 KCMIL G 4-4"C.	1#300KCMIL-1*0

## TRANSFORMER SCHEDULE NOTES:

- 1. ALL PHASE AND NEUTRAL CONDUCTOR SIZES ARE BASED ON COPPER CONDUCTORS PER N.E.C. TABLE 310-16.
- 2. MANUFACTURERS SELECTION FOR THE TYPE OF PRIMARY BREAKER (THERMAL MAGNETIC VS. SOLD STATE) SHALL ENSURE COORDINATION WITH TRANSFORMER IN-RUSH CURRENT. IF MIS-COORDINATION IS IDENTIFIED BY THE COORDINATION STUDY, THE MANUFACTURER SHALL REPLACE THE DEVICE WITH A DEVICE THAT WILL PROPERLY COORDINATE, AT NO ADDITIONAL COST.
- 3. SECONDARY OVERCURRENT PROTECTION SHALL BE LOCATED WITHIN A PANELBOARD (MAIN BREAKER) OR INDIVIDUALLY MOUNTED CIRCUIT BREAKER. THE SECONDARY OVERCURRENT PROTECTION DEVICE SHALL BE LOCATED SUCH THAT THE MAXIMUM LENGTH OF SECONDARY CONDUCTORS DO NOT EXCEED 10'-0".
- 4. SIZE OF TRANSFORMER BONDING JUMPERS AND GROUNDING ELECTRODE CONDUCTOR.

NOTE A: PROVIDE THE FOLLOWING BREAKERS WITH 120V SHUNT TRP, CONNECTED TO HOOD FIRE SUPPRESSION SYSTEM. (7)20A-1P, (2)50-2P, (1)40A-2P (1)30A-1P, (2)60-3P

Note B: Provide (2)20A-1P with GFCI.

Note C: Provide (14)20a—1P with GFCI.

- 5. THE GROUNDING ELECTRODE CONDUCTOR SHALL BE UNSPLICED AND INSTALLED AS OPEN WIRING OR RUN IN NON METALLIC (PVC SCHEDULE 40) CONDUIT TO PROTECT IT FROM SEVERE DAMAGE.
- 6. 600 KCMIL CONDUCTORS AND LARGER SHALL BE PROVIDED WITH MAC ADAPTERS AS REQUIRED TO COORDINATE WITH BREAKER LUG SIZES.

5	EX-14	5	-	7.6	3	480	SEE SPEC.	-	FVNR	1	RE Wit	
6	SPARE		-		3	480	SEE SPEC.	-	FVNR	1		
7	SPARE	1/2	-	1	3	480	SEE SPEC.	-	FVNR	1	開始	
8	SPARE		-		3	480	SEE SPEC.	-	FVNR	1		ß
9	SPARE	1/2	-	1	3	480	SEE SPEC.	-	FVNR	1	R B F C S C S C A R R S M R R S M R R R R R R R R R R R R	Drawn I
10	SPARE	1	-	1.8	3	480	SEE SPEC.	-	FVNR	1		
480 V		MOT			tional ini		n refer to el	CCN—PH ectrical specifi 3 wire		ULE	lions /06/(	Scale
	US SIZE: 600 AMPS			-			BRANCH	CIRCUIT T DEVICE	MOTOR	<b></b>		й
EM	NAMEPLATE	HP	KW	FLA	PHASE	VOLTS	HMCP	FEEDER C.B.	CONTROLL		BRA	
1	EX-1	10	-	14	3	480	SEE SPEC.	-	FVNR	2	RE Wit	
2	EX-7	2		3.4	3	480	SEE SPEC.	-	FVNR	1	RE Wit	
3	EX-8	(1.5		2.6 ^Z	1	480	SEE SPEC.		FVNR	1	RE Wit	
4	EX-10 VIA VFD-17	7.5	<u> -</u>	11	$\Delta_{3}^{3}$	480	SEE SPEC.	30A-3P			RE Wi	
5	EX-11	(1/2		سنما	Ļ	480	SEE SPEC.	-	FVNR	1	WW I	
6	EX-16	3/4	-	1.4	3	480	SEE SPEC.	-	FVNR	1	RE Wi	
7	EX-21	7.5	-	11	3	480	SEE SPEC.	-	FVNR	1	RE	
8	SF-1	5	-	7.6	3	480	SEE SPEC.	-	FVNR	1	RE I	
9	SF-2	5	-	7.6	3	480	SEE SPEC.	-	FVNR	1	RE	
10	R2PH (VIA XFMR) SPARE	-	-	-	3	480	SEE SPEC.	30A-3P	DAID	-	ŝ	
11		-	-	-	$\left  \right $	$\left  \right $	SEE SPEC.		FVNR	2		
12 13	SPARE SPARE	-	-	-	$\left  \right $	++				1		
14	SPARE	-	-	-	$\left  \right $	++			$\left  \right $	1		
480 V(		MOT	OR (F	CON or addi		, CEN formation phase	i refer to el	CCNG SCI ectrical specifi 3 wire	HEDULE (cations)	-		
TEM	NAMEPLATE	HP	ĸw	FLA	PHASE	VOLTS	BRANCH		MOTOR Controlli Type/:	R	BRW E	
1	PUMP CWP-1	50	-	65	3	480	HIMCP SEE SPEC.	FEEDER C.B.	FVNR	3	Maine	Ξ
2	PUMP CWP-2	50	-	65	3	480	SEE SPEC.	-	FVNR	3	wa Maine Maine	ΗFD
- 3	FUT PUMP CWP-1	50	-	65	3	480	SEE SPEC.		FVNR	3	System of Star	CTRICAL SCHEDULE
4	Chiller PCH-1		15	27	3	480	SEE SPEC.	40A-3P		-	3 S S S S S S S S S S S S S S S S S S S	Ķ
5	SPARE		-		3	480	SEE SPEC.	-	FVNR	2	alise	FI FCTRICAL
6	SPARE		-		3	480	SEE SPEC.	-	FVNR	1		С Ц
7	SPARE		-		3	480	SEE SPEC.	-	FVNR	1	Athanas Athanas Athanas Athanas Athanas Athanas Is	
8	SPARE		-		3	480	SEE SPEC.	-	FVNR	1	Figure 1 and	Ē
						•						304 S. Franklin St. Drawing Title
											BRA The Ars 311 Ars 311 Ars Waterto 617-25/ Cauffmar Foley Foley	

															I	
5	EX-14	5	-	7.6	3	480	SEE SPEC.	-	FVNR	1	re Wi					
6	SPARE		-		3	480	see spec.	-	FVNR	1	RE					
7	SPARE	1/2	-	1	3	480	see spec.	-	FVNR	1	RE		[], [] [], []		ø	
8	SPARE		-		3	480	see spec.	-	FVNR	1	RE			a to	Project No. F05-4898	8
9	SPARE	1/2	-	1	3	480	SEE SPEC.	-	FVNR	1	RE		Drawing SKE	Revision E5-3	ы П С	Drawn F LMD
10	SPARE	·/-	-	1.8	3	480	SEE SPEC.	-	FVNR	1	RE			ъ	å G	
			ļ								Wil					
													#2			<b>.</b>
	١	NOT						CN—PH Ectrical specifi		ULE			Ę		06/06	, i
480 VC	)LT		<u> </u>			PHASE		WIRE					evisions Addendum			/8"=1'-0
MAIN B	us size: 600 Amps												Revisions Adden		Date 12,	Scale 1
ПЕМ	NAMEPLATE	HP	ĸw	FLA	PHASE	volts	BRANCH ( OVERCURRENT HMCP	ncuit device feeder c.b.	MOTOR Controlli Type/s		BRA					
1	Ð(-1	10	-	14	3	480	SEE SPEC.	-	FVNR	2	RE					
2	EX-7	2	-	3.4	. 3	480	SEE SPEC.	-	FVNR	1	RE					
3	EX-8	1.5	<u> </u>		$A_3$	480	SEE SPEC.		FVNR	1	WH RE WH					
4	EX-10 VIA VFD-17	7.5	<b>م</b> ے	<u>مت</u> ما 11	. 3	480	SEE SPEC.	30A-3P			RE					
5	EX-11	1/2	<u> </u>		<u>A</u> ,	480	SEE SPEC.	-	FVNR	1	RE					
6	EX-16	3/4	<u> </u>	<u>منہ</u> 1.4	3	480	SEE SPEC.	_	FVNR	1	RE					
7	EX-21	7.5	-	11	3	480	SEE SPEC.	_	FVNR	1	WH RE					
8	SF-1	7.5 5	_	7.6	3	480	SEE SPEC.		FVNR	1	Wii Re					
9	SF-2	5	_	7.6	3	480	SEE SPEC.	_	FVNR	1	Wii RE					
9 10		-	-		3	480		- 30A-3P	T VINIX	'	WIF					
	R2PH (VIA XFMR) SPARE					400	SEE SPEC. SEE SPEC.	30A-3P	FVNR	•	SC					
11		-	-	-			SEE SPEU.		r vnik	2						
12	SPARE	-	-	-						1						
13 14	SPARE SPARE	-	-	-	$\left  \right $	$\left  \right $				1						
L																
	1	TON	OR	CON	ITROL	CEN	ITER MC	CNG SCI	HEDULE	-						
	ľ		(F	OR ADD	TIONAL INF	ORMATION	REFER TO EL	ECTRICAL SPECIFIC	CATIONS)	-						
480 VC	DLT				3	PHASE	3	WIRE								
MAIN B	us size: 600 AMPS				_											
ITEM	NAMEPLATE	HP	ĸw	FLA	PHASE	volts	BRANCH ( OVERCURRENT HMCP	Xrcuit f Device feeder C.B.	MOTOR Controlli Type/:	ER SIZE	BRA			HOSPITAL		ш
1	PUMP CWP-1	50	-	65	3	480	SEE SPEC.	-	FVNR	3	RE Wi		Maine	OSF		CTRICAL SCHEDULE PANELBOARDS
2	PUMP CWP-2	50	-	65	3	480	see spec.	-	FVNR	3	RE Wii					
3	FUT PUMP CWP-1	50	-	65	3	480	see spec.		FVNR	3	RE		م ا	STAY		OAR OAR
4	CHILLER PCH-1		15	27	3	480	see spec.	40A-3P			3-		te T			ER
5	SPARE		-	1	3	480	see spec.	-	FVNR	2		പ ത	System of	SHORT	<b>Y</b>	ELECTRICAL OF PANELBO
6	SPARE		-	1	3	480	see spec.	-	FVNR	1	re Wi	933 933			미	
7	SPARE		-	1	3	480	see spec.	-	FVNR	1	RE Wif RE Wif RE Wif	24 sincent	itle Health			
8	SPARE		-		3	480	SEE SPEC.	-	FVNR	1	RE Wi	+ Ai Engi 3rle: 7-9				g Title
		•	•	•	•	•	•					Rao Chi Chi Chi	Project [.] Mercy			Drawing '
												Bard, Rao + Athanas Consulting Engineers, LLC on the Charles Street A 02472-5789 A 02472-5789 FAX 617-924-9339	ן ג ≥	ŭ 📼		
												A R S				The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463
												BR+A The Arsenal of BII Arsenal St Watertown, MA 617-254-0016	ļļ			ling, St. St. 13202
												Arse Arse 254	<u>Francis</u> Cauffman		Hoffmann	n Build anklin ( N Y 1 463
	TRANSFOR	MER PRI Ent dev	WRY ICE		1	RANSFORME	r Enclosure —				ł		Francis Cauffm	Foley	Jff	Crowi S. Fra icuse, 423-0,
								\	/ FLDX	CONDU	TT .	©≪⊗∺1	μÊlő	[윤]	피	The 304 Syra 315-

5	EX-14	5	-	7.6	3	480	see spec.	-	FVNR	1	RE	
6	SPARE		-		3	480	see spec.	-	FVNR	1		
7	SPARE	1/2	-	1	3	480	see spec.	-	FVNR	1	RE	Project No. FO5-4898 Drawn Bv
8	SPARE		-		3	480	see spec.	-	FVNR	1		¥48 ₹48
9	SPARE	1/2	-	1	3	480	see spec.	-	FVNR	1	調査 通道 Brawing E5-3	Project FO5-4 Drawn F
10	SPARE	1	-	1.8	3	480	see spec.	-	FVNR	1		د ت م ا
180 M					tional inf		irefer to el	CCN—PH ectrical specify 3 wire circuit		ULE	Revisions	Date 12/06/06 Scale
EM	NAMEPLATE	HP	ĸw	FLA	PHASE	VOLTS	OVERCURREN	t device Feeder C.B.	CONTROLL		BRA	
1	EX-1	10	-	14	3	480	SEE SPEC.	-	FVNR	2	RE Wi	
2	EX-7	2	-	3.4	A 3	480	see spec.	-	FVNR	1	RE	
3	EX-8	1.5	-	2.6 ^Z	₹->3	480	see spec.		FVNR	1	RE	
4	EX-10 VIA VFD-17	7.5	-	11	Å 3	480	see spec.	30A-3P			RE VII	
5	EX-11	1/2	-		23	480	see spec.	-	FVNR	1	RE WI	
6	EX-16	3/4	-	1.4	3	480	see spec.	-	FVNR	1	RE	
7	EX-21	7.5	-	11	3	480	see spec.	-	FVNR	1	RE	
8	SF-1	5	-	7.6	3	480	see spec.	-	FVNR	1	RE Wit	
9	SF-2	5	-	7.6	3	480	see spec.	-	FVNR	1	RE	
10	R2PH (MA XFMR)	-	-	-	3	480	see spec.	30A-3P			RESC	
11	SPARE	-	-	-			see spec.		FVNR	2		
12	SPARE	-	-	-						1		
13 14	SPARE SPARE	-	-	-						1		
		MOT	OR (F	CON or addi		CEN FORMATION PHASE	refer to el	CCNG SCH ectrical specifi 3 wire	HEDULE Cations)	-		
180 V												
	BUS SIZE: 600 AMPS						BRANCH	CIRCUIT	MOTOR			
win e	BUS SIZE: 600 AMPS	HP	ĸw	FLA	PHASE	VOLTS	OVERCURREN	f device Feeder C.B.	MOTOR Controll Type/	ER SIZE		
min e		HP 50	KW -	FLA 65	PHASE 3	480			CONTROLLI TYPE/: FVNR	ER SIZE 3	aine Mai	
win e Em	NAMEPLATE					-	HMCP	FEEDER C.B.			Maine HOSPI	
em Em 1 2	NAMEPLATE PUMP CWP-1	50	-	65	3	480	HMCP SEE SPEC.	FEEDER C.B.	FVNR	3		
em Em 1 2	NAMEPLATE PUMP CWP-1 PUMP CWP-2	50 50	-	65 65	3	480 480	HMCP SEE SPEC. SEE SPEC.	FEEDER C.B.	FVNR FVNR	3 3	f and f	
WIN E EM 1 2 3	NAMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1	50 50	-	65 65 65	3 3 3	480 480 480	HMCP SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B.	FVNR FVNR	3 3	al 4 laals	TOTICI CONTRAINE
EM 1 2 3 4	NAMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1 CHILLER PCH-1	50 50	- - 15	65 65 65	3 3 3 3	480 480 480 480	HNCP SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B. - - 40A-3P	FVNR FVNR FVNR	3 3 3	al 4 laals	
IAIN E IEM 1 2 3 4 5	NMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1 CHILLER PCH-1 SPARE	50 50	- - 15 -	65 65 65	3 3 3 3 3 3	480 480 480 480 480	HIMCP SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B. - - 40A-3P -	FVNR FVNR FVNR FVNR	3 3 3 2	al 4 laals	
EM 1 2 3 4 5 6	NAMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1 CHILLER PCH-1 SPARE SPARE	50 50	- - 15 -	65 65 65	3 3 3 3 3 3 3	480 480 480 480 480 480	HMCP SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B 40A-3P	FVNR FVNR FVNR FVNR FVNR	3 3 3 2 1	al 4 laals	
EM E EM 1 2 3 4 5 6 7	NMMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1 CHILLER PCH-1 SPARE SPARE SPARE	50 50	- - 15 - -	65 65 65	3 3 3 3 3 3 3 3 3	480 480 480 480 480 480 480	HMCP SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B. - - 40A-3P - - -	FVNR FVNR FVNR FVNR FVNR FVNR	3 3 3 2 1 1	al 4 laals	Drawing Title Fir
EM E EM 1 2 3 4 5 6 7	NMMEPLATE PUMP CWP-1 PUMP CWP-2 FUT PUMP CWP-1 CHILLER PCH-1 SPARE SPARE SPARE	50 50 50	- - 15 - - -	65 65 65	3 3 3 3 3 3 3 3 3	480 480 480 480 480 480 480 480 480	HMCP SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC. SEE SPEC.	FEEDER C.B. - - 40A-3P - - -	FVNR FVNR FVNR FVNR FVNR FVNR	3 3 3 2 1 1	A Bard, Rao + Athanas Consulting Engineers, LLC al on the Charles al Street t, MA 02472-5789 0016 FAX:617-924-9339 0016 FAX:617-924-9339 Project Title Mercy Health System of FORE RIVER SHORT STAY	

TRANSFORMER PRIMARY OVERCURRENT DEVICE	T	RANSFORMER ENCLOSURE -

L = 40	REEDICEDATOR	1 /0		40.01	1001/	204 45	alla		KD011 0	0#4
E-16	REFRIGERATOR	1/2	-	12.0A	120V	20A-1P	•		KP211-2	2#1
E-17A	EXHAUST HOOD	-	-	10A	120V	20A-1P		•	KP211-4	2#1
E-17B	EXHAUST HOOD	_	-	10A	120V	20A-1P		•	KP211-50	2#1
E-18A	FIRE SUPPRESSION SYSTEM	-	-	15A	120V	20A-1P		•	LS2G1-1	2#1
E-18B	FIRE SUPPRESSION SYSTEM	-	-	15A	120V	20A-1P		•	LS2G1-3	2#1
E-19	3-WELL HOT FOOD UNIT	-	3.7	10.3A	208V–3ø	20A-3P		•	KP212-7,9,11	3 <b>#</b> 1
E-20	TOASTER	-	1.8	15A	120V	20A-1P	•		KP212-13	2#1
E-21	REFRIGERATED SANDWICH UNIT	1/3	-	8.6A	120V	20A-1P	•		KP212-15	2#1
E-22	HEATED PLATE DISPENSER	-	3.2	16.3	208V–1ø	20A-2P	•		KP212-17,19	2#1
E-23	INDUCTION CHARGER	-	1.8	15A	120V	20A-1P	•		KP212-21	2#1
E-24	MICROWAVE OVEN	-	1.2	17.8A	120V	30A-1P	•		KP212-23	2#1
E-25	CUBE ICE MAKER	-	- (	5.5A	208V-1ø	20A-2P	Δ	• /2	KP212-63,65	2#1
E-26	ICED TEA BREWER	-	-	15A	120V	20A-1P	٠		KP212-27	2 <b>#</b> 1
E-27	COFFEE BREWER	-	-	30A	120/208V-1ø	40A-2P	۰		KP212-29,31	3 <b>#</b> 8
E-28	REFRIGERATOR	1/3	-	12.0A	120V	20A-1P	٠		KP212-33	2#1
E-29	CONVEYOR	3/4	-	13.8A	208V–1ø	20A-2P		•	KP212-35,37	2#1
E-30	DISPOSER WITH CONTROL	2.0	-	12.1A	208V–1ø	20A-2P		•	KP212-2,4	2#1
E-31	DISHMACHINE	3- 1/6	-	59.4A	208V–3ø	80A-3P		•	DP211-5	3 <b>#</b> 3
E-32	BOOSTER HEATER	-	36	100	208V–3ø	125A-3P		•	DP211-6	3#1
E-33	AIR CURTAIN REFRIGERATOR	-	-	16.1A	208V-1ø	20A-2P	•		KP212-8,10	2#1
E-34	2-WELL HOT/COLD FOOD UNIT	1/4	1.9	13.9A	120/208V-1ø	20A-2P		•	KP211-8,10	3#1
E-35	REFRIGERATED SANDWICH UNIT	1/5	-	7.2A	120V	20A-1P	•		KP211-12	2#1



Francis Revisions Drawing No. Project Title SKE-24 Addendum #2 Mercy Health System of Maine Cauffman FORE RIVER SHORT STAY HOSPITAL Revision to : Foley E5-6 **N** Hoffmann Date 12/06/06 Project No. F05-4898 The Crown Building, Suite 201 304 S. Franklin St. Syracuse, N.Y. 13202 315-423-0463 Scale Drawing Title Drawn By ELECTRICAL KITCHEN EQUIPMENT SCHEDULE NONE LMD