												6/95 \$116
					LTER SCHEDU							
				1 1	LILN SUHLDU	ノレレ						
LINUT		1		1	Ι		DENOTIVE TO THE PROPERTY OF TH	l	RESIST	ANCE		1
UNIT NUMBER	LOCATION	EXHAUST	SERVICE	CFM	DESCRIPTION	EFFIC	CENCEY	PRE-		FINAL FILTER	FILTER	NOTES
NOMBER		FAN #				PRE-FILTER	FINAL FILTER	INLET	FINAL	INLET	FINAL	1
FLT-1	LEVEL 5	EX-3	ISOLATION EXHAUST	1900	BG1-1H1W-2GGF-304-D3	60-65	99.99	.30	.60	1.4	2.5	① ② ③
FLT-2	LEVEL 5	EX-4	ISOLATION EXHAUST	1900	BG1-1H1W-2GGF-304-D3	60-65	99.99	.30	.60	1.4	2.5	① ② ③
		•				-	1		1			1

NOTES:

BAG IN / BAG OUT UNITS BASED ON FLANDERS / CSC
 UNITS TO HAVE ON INLETS & OUTLETS BUBBLE TYPE DAMPERS, WITH MOTORIZED ACTUATOR
 PRE-FILTERS TO BE FLANDERS 30% FILTERS

4. HEPA FILTERS TO BE FLANDERS TYPE ALPHA 2000 (HIGH CAPACITY) EFFICIENCY 99.99@.3 MICRONS 5. CARBON FILTER TO BE FLANDERS CINERSORB, M#AG-GG12-101-NP(NUCLEAR GRADE CARBON)

	(GRAVIT'	y intake	<u> </u>	RELIE	F	40C)D :	SCH	HED	ULE	1)	
						THROAT	THROAT	HEIGHT		ŀ	HOOD DAT	Ά		
UNIT NUMBER	LOCATION	SERVICE	STYLE	CFM	SP (IN. H ₂ 0)	AREA (SF)	SIZE (IN.)	ABOVE ROOF (IN.)	W (IN.)	L (IN.)	H (IN.)	# OF TIERS	FACE VELOCITY (FPM)	SIMILAR TO
GHEL-1	R00F (1)	PATIENT ELEV. 1&2	RELIEF VENTILATOR	_	0.10	10.0	36"ø	50"	-	_	_		_	COOK MODEL PR 36
GHEL-2	ROOF 1	SERVICE ELEV. 1&2	RELIEF VENTILATOR	-	0.10	10.0	42"ø	52"	-	-	-		_	COOK MODEL PR 42

1. PROVIDE NORMALLY OPEN DAMPERS HELD SHUT BY ATC DURING NORMAL OPERATION. INTERLOCK DAMPER WITH FIRE ALARM SYSTEM AND SMOKE DETECTOR IN ELEVATOR SHAFT TO OPEN UPON SENSING OF SMOKE. PROVIDE 2'-0" HIGH ROOF CURB WITH AUTOMATED DAMPERS INSTALLED IN ROOF CURB.

		DUPLE	< F	UEL	OIL	PU	MP	S	СН	ED	ULE		
					PUMP DATA ((DUPLEX)							EMERGENCY
UNIT NO.	LOCATION	SERVICE	FUEL	CAPACITY GPH	DISCHARGE PRESSURE	HP	RPM	٧	PH	HZ	SELECTION BASED ON	REMARKS	POWER
FOP-1	GROUND LEVEL MER	BOILERS	#2	1,000	50 psi	1 1/2	1140	480	3	60	PREFERRED UTILITIES L0-206		YES
NOTES:													

										\bigcirc	LN			۸ Т	тг	- 1	1.1	ATODC							9/21/9	99 S300.DWG
										201	J۱۱	\mathbb{I}	1	41		<u> </u>	U	ATORS								
						MININ	MUM D	YNAMI	C INSI	ERTION LOS	SS										MAXI	MUM S	ELF NO	ISE		
NUMBER	MAX AIRFLOW	MAX FACE VELOCITY	LENGHTH FEET	MAX PRESSURE DROP	1 63	2 125	3 250	4 500	5 1000	6 7 2000 4000	8 8000	STANDARD LINNING	HOSPITAL GRADE LINING	PACKLESS	GALVANIZED	ALUMINUM	STAINLESS STEEL	SIMILAR TO IAC MODEL	1 63	2 125	3 250	4 500	5 1000	6 2000	7 4000	8 8000
SA-1	72,000		3																							
SA-2	65,000		3																							
SA-3	18,000		3																							
SA-4	3,400		3																							
SA-5	6,000		3																							
SA-6																										
SA-7																										
SA-8																										
SA-9																										
SA-10																										

NOTES:
1. STATE SPECIAL CONDITIONS AND REQUIREMENTS.

PROCESS CHILLER SCHEDULE UNIT NOM TONS VOLTS (39) MAX. CIRC. AMP. 12.5 460 70.1 55 45 30 WATER - - - - - 4 2 10 - - - FILTRINE - YES NOTES:

NOTES:
1. PCH-1 TO BE LOCATED AT GRADE, REFER TO PLANS.
2. 40% PROPYLENE GLYCOL.

PACKAGE UNIT SHALL INCLUDE A DIFFERENTIAL PRESSURE BYPASS FOR FLOW CONTROL.
 PROCESS CHILLER SELECTION BASED ON FILTRINE MODEL TPCP-1000-122-AWP-RED.

5. PROCESS CHILLER SHALL HAVE STAND BY PUMP.6. UNIT SHALL BE INSTALLED ON HOUSEKEEPING PAD.7. UNIT SHALL BE WEATHER PROOF TO BE INSTALLED OUTDOORS.

NOTES:

1. TWO SPEED

2. SELECTION BASED ON LOW SPEED

3. PROVIDED WITH CONDENSATE PUMP WITH 69 GPH CAPACITY © 10 FT HD

4. MODEL BASED ON LIEBERT DATAMATE DME027E W/HUMIDIFIER & REHEAT

				SF	PEC	ΆΚ	LIZ	ZED	CON	1PI	JTER	R	001	M AIF	?	C(DNDIT	101	IING	S	/ S ⁻	ΓΕΙ	M	S	CHE	DUL	ΞS		
	EVAPORATOR UNIT DATA																												
LINIT N	IOMINAI	SPACE	SPACE	TOTAL	FSP		FANS	TOTAL	SENSIBI F		EVAPORATO	R COIL		FILTER	H	OT W	ATER REHEAT		HUMIDIFIER		ELEC.	FRICAL	DATA ((TOT.)	MODEL NO.	ODEL NO. BASED ON LIEBERT) EMERGENCY UNIT POWER STYLE REMARK		P5141P14	
UNIT N	TONS	SERVED	CONDITIONS FDB/ FWB	TOTAL CFM	(IN H ₂ 0)) QTY.	HP (EA	.) HEAT(MBH)	SENSIBLE HEAT (MBH)	ROW	FACE AREA (SQ. FT.)	GPM	ΔΡ	(ASHRAE 52-76) мвн	GPM	△P (IN H ₂ 0)	LBS/HR	STEAM (PSIG)	KW	٧	PH	HZ	F.L.A.	(BASED ON LIEBERT)	POWER	STYLE	REMARK	REMARK
CAC-1	-	MRI EQUIP.	72/60	5250	0.3	1	2.0	80.7	80.3	3	11.7	17.6	11.7	-	470	5	8.1	14	5	-	208	1	60	7.5	-	YES	-	_	SEE NOTES 2,5,6,7,8,9,10
CAC-2	2	DEMARC. RM.	72	750	-	2	0.20	23.5	19.5	3	3.9	5.1	2.3	-	_	-	-	3	-	1.3	208	1	60	24.3	-	YES	-	_	SEE NOTES 2,3,4,6
			l l		'			<u> </u>	l l					ı								-							

NOTES:

1. TWO SPEED

2. SELECTION BASED ON LOW SPEED

3. PROVIDED WITH CONDENSATE PUMP WITH 69 GPH CAPACITY © 10 FT HD

4. MODEL BASED ON LIEBERT DATAMATE DME027E W/HUMIDIFIER & REHEAT

5. MODEL BASED ON LIEBERT DELUXE SYSTEM 3 FH/UH147C

6. PROVIDE W/ OPTIONAL STEAM GRID.

8. PROVIDE W/ OPTIONAL HOT WATER REHEAT.

9. PROVIDE PLENUM W/ GRILLE

10. PROVIDE W/ CONDENSATE PUMP.

															9/21/99 S253.D
				Γ I Λ C	ЪП.	$T \Lambda N$		CCL)UL F	_				
			Γ	LAS	ЭΠ	A	IN	J U I	ヿロレ	/ULE	_				
					TAN	k size	OUTLET	LBS/HR				PIPE SIZ	ES (INS	.)	
NUMBER	LOCATION	INLET PSIG	OUTLET PSIG	INLET LBS/HR	DIAMETER	LENGTH	LPS	LPR	SAFETY RELIEF VALVE	BACK PRESSURE VALVE	LPS	LPR	MPR	VENT	REMARKS
FT-1	BASEMENT MER	60	n	25,000	72"	108"	_	22,500	_	_	_	6"	6"	6"	VENT TO ATMOSPHERE
11-1	DASEMENT MEN	00	"		12	100		<u> </u>				"	<u> </u>	0	AIMOSPHERE
FT-2	D&T BLDG. LEVEL 1	60	0	6,000	24"	48"	_	5,400	_	_	_	3"	2" & 1	2 1/2"	VENT TO ATMOSPHERE
										1					

STEAM PRESSURE REDUCING VALVE SCHEDULE SILENCER REQUIREMENT NOTES
SEE
BELOW inlet Temp OUTLET PSIG INLET PSIG LOCATION SERVICE LBS/HR SIMILAR TO NUMBER PRV-1 BOILER RM SYSTEM 307 11,000 SPENCE 4" ED 60 307 4,000 PRV-2 SPENCE 2-1/2" ED YES BOILER RM SYSTEM 60

<u>NOTES:</u> 1. 2/3 STATION 2. 1/3 STATION

		•					
	DUCT	PRF	FL SENT	OW The fire	URE		
UNIT NUMBER	SIZE	MAX CFM	MIN CFM	MAX MIN CFM CFM	SIMILAR TO	REMARKS	
FMS-1	96x54	80,000	_	_	_	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-1 SUPPLY
FMS-2	_	36,000	_	_	_	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-1 RETURN
FMS-3	-	36,000	_	_	-	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-1 RETURN
FMS-4	30x14	3,750	_	_	-	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-1 SUPPLY STATIC SENSOR
FMS-5	96x54	80,000	_	_	-	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-2 SUPPLY
FMS-6	-	31,000	_	_	_	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-2 RETURN
FMS-7	-	31,000	_	_	_	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-2 RETURN
FMS-8	28x14	2,300	_	_	_	VOLU PROBE/VS STATION BY AIR MONITOR CO.	AHU-2 SUPPLY STATIC SENSOR

							D	EAEF	RATO	R				9/21/99 S251.D	
NUMBER	NUMBER CAPACITY GALLONS RATING RELIGHT LEG HEIGHT LEG HEIGHT LIN W LI CONTROLS SCHEDULE) PSIG SCHEDULE) OPERATING PRESSURE SETTING CONNECTIONS CONNECTIONS ACCESSORIES SIMILAR TO														
DEA-1	900	RATING 125	HEIGHT 5'-0"	L 129	W 75	H 120	UNIT MOUNTED	UNIT MOUNTED	PSIG 5	SETTING 25	055		S/S VENT CONDENSER		

NOTES:
1. CLEAVER BROOKS SPRAYMASTER DEARATOR SIZE SM-45

NUMBER	DRIVEN EQUIPMENT	MHP	DRIVE TYPE	NUMBER OF PULSES INPUT	5% LINE REACTOR	BYPASS	LUGS OVERSIZED	ADDITIONAL DEVICES TO REDUCE HARMONICS (CURRENT AND VOLTAGE)	SIMILAR TO	REMARKS
VFD-1	HWP-1	20.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-2	HWP-2	20.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITE
VFD-3	CHP-1	30.0.	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-4	CHP-2	30.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-5 (FUTURE)	CHP-3	30.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-6	AHU-1 SUPPLY	100.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-7	AHU-1 SUPPLY	100.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITI
VFD-8	AHU-1 RETURN	40.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-9	AHU-1 RETURN	40.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITE
VFD-10	AHU-2 SUPPLY	100.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	_	PASSIVE FILTERS ARE NOT PERMITI
VFD-11	AHU-2 SUPPLY	100.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITE
VFD-12	AHU-2 RETURN	40.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITE
VFD-13	AHU-2 RETURN	40.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITI
VFD-14	AHU-3	25.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITI
VFD-15	EX-3 ISOLATION EXH.	3.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMITI
VFD-16	EX-4 ISOLATION EXH.	3.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMIT
VFD-17	EX-10 KITCHEN	10.0	PWM	6 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMIT
VFD-18	CT-1	30.0	PWM	18 OR MORE	YES	YES	YES	AS REQUIRED TO MEET THE SPECIFIED	-	PASSIVE FILTERS ARE NOT PERMIT
'FD-19 (FUTURE)	CT-2	_	-	_	-	-	-	-	-	_
'FD-18 (FUTURE)	CT-3	_	_	_	_	_	_	_	_	_

PROJECT NORTH

Revisions

Consultant
CIVIL ENGINEER
DeLuca—Hoffman Associates, Inc.
778 Main Street, Suite 8
South Portland, ME 04106
Phone: (207) 775—1121
Fax:(207) 879—0896

Consultant

ASSOCIATE ARCHITECT/STRUCTURAL ENGINEER SMRT
144 Fore Street P.O. Box 618
Portland, Maine 04104
Phone: (207) 772-3846
Fax: (207) 772-1070

Consultant

MECHANICAL/ELECTRICAL ENGINEER
Bard, Rao + Athanas Consulting Engineers, LLC
The Arsenal on the Charles
311 Arsenal Street
Watertown, MA 02472-5789
Phone: 617.254.0016
Fax: 617.924.9339

Consultant

EQUIPMENT PLANNING
Gene Burton & Associates
1893 General George Patton Drive
Franklin, Tennessee 37067
Phone: (615) 376-3100
Fax:(615) 376-3114

Consultant
CONSTRUCTION MANAGER
Gilbane Building Company
7 Jackson Walkway
Providence, Rhode Island 02903
Phone: (401) 456-5905
Fax: (401) 456-5516

Consultant
FOOD SERVICE
Inman Foodservice, LLC
1808 West End Ave. Suite 1400
Nashville, TN 37203
Phone: (615) 321-5591
Fax: (615) 321-5689

It is the responsibility of the Construction Manager/General Contractor and all Sub—Contractors to verify all dimensions and accept conditions of prior work by related trades before proceeding with any work.

Date

11/10/06 Final—Issued for Construction

Drawn By

EPV

Francis

Cauffman

Foley

Hoffmann

Francis Cauffman 2120 Arch Street
Foley Hoffmann Philadelphia, PA 19103
Architects Ltd. 215—568—8250

Project Title

Mercy Health Care System of Maine

FORE RIVER SHORT STAY HOSPITAL

Project Number
F05-4898

Drawing Title and Number
HVAC
SCHEDULES

H0.03

JOBS\2523000.CW\HVAC\CW-H0.03.DWG 11-08-2006 16:37:31 -