Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 1 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Installation Analysis

Harbor Terrace Apartments
 Portland, Maine

Report F8229.01-122-34
Rendered to:
S\&L SPECIALTY CONTRACTING, INC.
315 South Franklin Street
Syracuse, New York 13202
Prepared by:
Joseph A. Reed, P.E.
Daniel C. Culbert

Architectural Testing, Inc.
130 Derry Court
York, Pennsylvania 17406
Phone: (717)-764-7700
May 19, 2016

Joseph A. Reed, P.E.
Director - Engineering
2016.05.20 16:56:12-04'00'

Daniel C. Culbert

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 2 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Scope

Architectural Testing, Inc., an Intertek company, was contracted by S\&L Specialty Contracting, Inc. to perform installation analysis for the windows to be installed at the Harbor Terrace Apartments project in Portland, Maine. Graham Architectural Products 1200 series fixed windows, 6600 series casement windows and 2000 series single hung windows are evaluated as shown in the project shop drawings (see Referenced Drawings).

The analyses performed satisfy the methods and requirements of the following:
2009 International Building Code. International Code Council, 2008.
ASCE 7-05 Minimum Design Loads for Building and Other Structures. American Society of Civil Engineers, 2005.

Aluminum Design Manual 2005, The Aluminum Association, Inc., 2005.
AAMA TIR-A9-14 Design Guide for Metal Cladding Fasteners. American Architectural Manufacturers Association, 2014.

ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service, LLC. July 1, 2015.

The calculations presented herein are for the integrity of the window installations based on wind load. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report. The building substrate is assumed to have the integrity to resist the anchor loads developed by the products. Furthermore, the results of the analyses present a solution that satisfies the scope of the project, but other feasible solutions may exist.

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 3 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Analyses

Design Wind Pressure Analysis

Design wind pressures are determined using the methods of ASCE 7-05 and based on the following conditions:

Building Location:	Portland, Maine
Mean Roof Height:	80 ft
Roof Slope:	0°
Building Risk Category:	II
Exposure:	C
Basic Wind Speed:	100 MPH

The building is considered "enclosed" for the purpose of calculating design wind pressures for components and cladding. Calculations presented on page 10 show that the worst-case design pressure for the windows is $+33.0 /-33.4 \mathrm{psf}$ for windows in Zone 4 (mid-wall) and $+33.0 /-61.2 \mathrm{psf}$ for windows in Zone 5 (corners). For all glazing analyses, a conservative design pressure of $+/-61.2$ psf will be used. For member and anchorage analyses, the Zone 4 pressure or Zone 5 pressure appropriate for the window location on the building will be used.

Architectural Testing	DATE: May 19, 2016	PROUECT NO F8229.01-122-34 SHEET 4 OF 45
	BY: JAR/DCC	PrOJECT NAME: Harbor Terrace Apartments

Glazing Analysis

The glazing load resistance is calculated using ASTM E1300. Glazing type 1 is insulating glass with $1 / 8^{\prime \prime}$ annealed glass to the exterior and interior. Glazing type 2 is insulating glass with $1 / 4^{\prime \prime}$ annealed glass to the exterior and interior. Representative ASTM E1300 analyses are presented on page 11 through page 13 and all analyses summarized in Table 1.

Table 1 Results of Glazing Analyses

Elevation	Location	Glazing Type	Glazing DLO (width x height)	Glazing Resistance
A/WE-01	Single Hung	,	$24^{\prime \prime} \times 27-1 / 2^{\prime \prime}$	141 psf
NB/WE-01 RNB/WE-01	Fixed	2	57-7/8" $\times 53-3 / 8{ }^{\prime \prime}$	89.5 psf
	Single Hung	1	26-1/4" $\times 24-3 / 4{ }^{\prime \prime}$	144 psf
NC/WE-01 NRC/WE-02	Fixed	2	39-3/4" $\times 53-3 / 8{ }^{\prime \prime}$	112 psf
	Single Hung	1	24-3/8" x $24-3 / 4$ "	152 psf
D/WE-02	Fixed	2	$14^{\prime \prime} \times 57-3 / 8{ }^{\prime \prime}$	>209 psf
E/WE-02	Casement	1	$22-1 / 4$ " $24-3 / 8{ }^{\prime \prime}$	163 psf
	Fixed	2	57-7/8" $\times 27-3 / 8{ }^{\prime \prime}$	132 psf
F/WE-02	Casement	1	17-1/2" $\times 24-3 / 8{ }^{\prime \prime}$	183 psf
	Fixed	2	20-1/2" $\times 27-3 / 8{ }^{\prime \prime}$	>209 psf
NG/WE-03 RNG/WE-03	Fixed	2	63-1/4" $\times 53-3 / 8{ }^{\prime \prime}$	83.3 psf
	Single Hung	1	28-7/8" x $24-3 / 4$ "	134 psf
BAY1/WE-04	Fixed	2	$54-3 / 8$ " x 65"	80.4 psf
	Casement	1	23 " x 62 "	53.7 psf
BAY2/WE-05	Fixed	2	$48-3 / 4$ " x 65"	85.0 psf
	Casement	1	20-1/2" x 62"	59.4 psf
BAY3/WE-06	Fixed	2	$48^{\prime \prime} \times 65^{\prime \prime}$	85.4 psf
	Casement	1	18-1/4" x 62"	70.2 psf
BAY4/WE-07	Fixed	2	48 " x 65"	85.4 psf
	Casement		$20^{\prime \prime} \times 6{ }^{\prime \prime}$	61.5 psf
BAY5/WE-08	Fixed	2	$47-3 / 4$ " x 65"	85.6 psf
	Casement	1	$20-5 / 8$ " x 62 "	58.8 psf
BAY6/WE-09	Fixed	2	$46-3 / 8$ " x 65 "	86.5 psf
	Casement	1	$19 \mathrm{x} \times 62^{\prime \prime}$	66.2 psf

For the evaluated glazed panels, the glazing capacity exceeds the worst-case design wind pressure of 61.2 psf thereby validating the glazing with the following exception:

The casement windows at elevations BAY1, BAY2 and BAY 5. However, these elevations are located in zone 4 (mid-wall) and the calculated glazing resistances exceed the worst-case zone 4 design pressure of 33.4 psf .

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 5 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Stress and Deflection

Stress and deflection analyses were conducted for the free-spanning mullions and intermediate members. The members were analyzed as a simply supported beam. The proposed window geometry and design loads are used to verify that the deflections are less than $\ell / 175$ and that stresses are below allowable stress design (ASD) values. The mullions are 6063-T6 aluminum unless noted otherwise. Geometric properties of the mullions are calculated on page 14 through page 21 and summarized in Table 2.

Table 2 Member Geometric Properties

Detail	Section	Part	Material	$\mathrm{I}_{\mathrm{x}}\left(\mathrm{in}^{4}\right)$	$C_{\text {max }}($ in)
2/WD-01	2000 Single Hung Meeting Rail	E200051	6063-T6	0.1434	0.9320
		E200061	6063-T6	0.1838	0.8073
$\begin{aligned} & \text { 5/WD-02 } \\ & \text { 7/WD-02 } \end{aligned}$	2000 Single Hung M-F Mullion	E200030	6063-T6	0.8098	1.8571
		E203031	6063-T6	0.9210	1.8347
$\begin{aligned} & \text { 11/WD-04 } \\ & \text { 13/WD-04 } \end{aligned}$	2000 Single Hung1200 Fixed M-F Mullion	E203031	6063-T6	0.9210	1.8347
		E120010	6063-T6	0.6367	1.7613
$\begin{aligned} & \text { 26/WD-08 } \\ & \text { 33/WD-11 } \end{aligned}$	1200 Fixed-6600 Casement M-F Mullion	E120032	6063-T6	0.7117	1.8135
		E120010	6063-T6	0.6367	1.7613
		E660002	6063-T6	0.3123	1.3317
$\begin{aligned} & \text { 27/WD-09 } \\ & \text { 34/WD-11 } \end{aligned}$	3-Piece Jamb	E120010	6063-T6	0.6367	1.7613
		E200203	6063-T6	1.1218	2.1977
$\begin{aligned} & \text { 28/WD-09 } \\ & \text { 29/WD-09 } \\ & \text { 30/WD-10 } \\ & \text { 31/WD-10 } \end{aligned}$	Ribbon Window Head and Sill	E120010	6063-T6	0.6367	1.7613
32/WD-11	3-Piece Mullion	E120010	6063-T6	0.6367	1.7613
		E200203	6063-T6	1.1218	2.1977
		E120010	6063-T6	0.6367	1.7613

Calculations on page 22 through page 28 confirm that the mullions shown on the project drawings satisfy the stress and deflection requirements for the established wind pressures.

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 6 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Anchor Capacities

The modes of failure considered include fastener shear and tension, bearing failure of the member and substrate, pull-out, and pull-over. The pertinent physical and mechanical properties assumed for the anchor components are summarized in Table 3.

Table 3 Component Properties

Substrate	Description/Specification	Properties
Window Frames	6063-T6 Aluminum	$\mathrm{F}_{\mathrm{y}}=25,000 \mathrm{psi}$ $\mathrm{F}_{\mathrm{u}}=30,000 \mathrm{psi}$
Window Accessories	6063-T5 Aluminum	$\mathrm{F}_{\mathrm{y}}=16,000 \mathrm{psi}$ $\mathrm{F}_{\mathrm{u}}=22,000 \mathrm{psi}$
Structural Steel	ASTM A36	$\mathrm{F}_{\mathrm{y}}=36,000 \mathrm{psi}$ $\mathrm{F}_{\mathrm{u}}=58,000 \mathrm{psi}$
Masonry	ASTM C62 Clay Brick	$\mathrm{f}_{\mathrm{m}}=1,500 \mathrm{psi}$
Wood Blocking	Southern Yellow Pine (S-Y-P)	$\mathrm{G}=0.88$

Capacities of the various anchorage details are calculated as shown on page 29 through page 35 . These capacities are compared to member reactions and will be used to establish the anchorage requirements. The calculated anchorage capacities are summarized in Table 4.

Table 4 Anchor Capacities

Detail	Connection	Capacity	Comments
1/WD-01, 3/WD-01, 8/WD-03 9/WD-03, 10/WD-04, 12/WD-04 14/WD-05, 15/WD-05, 16/WD-05 21/WD-07, 22/WD-07, 23/WD-08 24/WD-08	\#12 Wood screw connecting trim clip to wood blocking	186 lb	1. Limited by Yield IIIs 2. $1-1 / 2^{\prime \prime}$ min penetration
$\begin{aligned} & \text { 4/WD-02, 6/WD-02, 17/WD-06 } \\ & \text { 19/WD-06, 20/WD-07, 25/WD-08 } \end{aligned}$	1/4" Powers Tapper+ connecting trim clip to clay brick	270 lb	1. Limited by shear capacity 2. $1-1 / 2^{\prime \prime} \mathrm{min}$ embedment 3. $1-3 / 4$ " min edge distance 4. See Note
18/WD-06	\#12-14 TEKS connecting trim clip to structural steel	307 lb	1. Limited by bearing at trim clip 2. Full penetration $+1 / 2^{\prime \prime}$
All Details Trim Clip Connection	\#10-16 TEKS screw connecting trim clip to window frame	97 lb	1. Limited by pull-over 2. Full penetration $+1 / 2^{\prime \prime}$

Note: Installation to existing clay brick assumes the clay brick substrate has been evaluated for and approved to resist anchorage loads.

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 7 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Perimeter Anchorage Requirements

Anchorage requirements are established by comparing the calculated anchorage capacities to the perimeter reactions caused by the design loads. Perimeter anchor spacing requirements are calculated on page 36 through page 37 and summarized in Table 5 for zone 4 mid-wall anchorage and in Table 6 (page 8) for zone 5 corner anchorage.

Table 5 Perimeter Anchor Spacing for Zone 4 (Mid-Wall)

Elevation	Location	Clip to Substrate		Clip to Frame	
		Fastener	Max Spacing	Fastener	Max Spacing
A/WE-01	Head	\#12 Wood Screw	18"	\#10 TEKS	18"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	18"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	17"
$\begin{aligned} & \text { NB/WE-01 } \\ & \text { RNB/WE-01 } \end{aligned}$	Head	\#12 Wood Screw	18	\#10 TEKS	15"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	15"
	Jamb	\#12 Wood Screw	18"	\#10 TEKS	18"
NC/WE-01 NRC/WE-02	Head	\#12 Wood Screw	18"	\#10 TEKS	16
	Sill	\#12 Wood Screw	18"	\#10 TEKS	$16 "$
	Jamb	\#12 Wood Screw	18	\#10 TEKS	18 "
D/WE-02	Head	\#12-14 TEKS	18"	\#10 TEKS	18 "
	Sill	1/4" Tapper+	18"	\#10 TEKS	18"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	18"
E/WE-02	Head	\#12 Wood Screw	18"	\#10 TEKS	18"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	18"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	18"
F/WE-02	Head	\#12 Wood Screw	18"	\#10 TEKS	18"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	18"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	18"
NG/WE-03 RNG/WE-03	Head	\#12 Wood Screw	18"	\#10 TEKS	15"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	15"
	Jamb	\#12 Wood Screw	18"	\#10 TEKS	18"

Notes:

1. Start anchor placement approximately 3 " from corners, then per spacing in table.
2. Place a minimum of 2 anchors on each side of a window.
3. Anchor spacing calculated greater than 18 " specified as 18 " per project specification.

Table 6 Perimeter Anchor Spacing for Zone 5 (Corners)

Elevation	Location	Clip to Substrate		Clip to Frame	
		Fastener	Max Spacing	Fastener	Max Spacing
A/WE-01	Head	\#12 Wood Screw	17"	\#10 TEKS	9"
	Sill	\#12 Wood Screw	17"	\#10 TEKS	$9{ }^{\prime \prime}$
	Jamb	1/4" Tapper+	18"	\#10 TEKS	8"
$\begin{aligned} & \text { NB/WE-01 } \\ & \text { RNB/WE-01 } \end{aligned}$	Head	\#12 Wood Screw	$14 "$	\#10 TEKS	$7{ }^{\prime \prime}$
	Sill	\#12 Wood Screw	14 "	\#10 TEKS	7"
	Jamb	\#12 Wood Screw	17 "	\#10 TEKS	$9{ }^{\prime \prime}$
$\begin{gathered} \text { NC/WE-01 } \\ \text { NRC/WE-02 } \end{gathered}$	Head	\#12 Wood Screw	15"	\#10 TEKS	8"
	Sill	\#12 Wood Screw	15 "	\#10 TEKS	8"
	Jamb	\#12 Wood Screw	17 "	\#10 TEKS	$9{ }^{\prime \prime}$
D/WE-02	Head	\#12-14 TEKS	18"	\#10 TEKS	18"
	Sill	1/4" Tapper+	18"	\#10 TEKS	18"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	18 "
E/WE-02	Head	\#12 Wood Screw	18"	\#10 TEKS	14"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	14"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	$17{ }^{\prime \prime}$
F/WE-02	Head	\#12 Wood Screw	18"	\#10 TEKS	14"
	Sill	\#12 Wood Screw	18"	\#10 TEKS	14"
	Jamb	1/4" Tapper+	18"	\#10 TEKS	17"
NG/WE-03 RNG/WE-03	Head	\#12 Wood Screw	14 "	\#10 TEKS	7"
	Sill	\#12 Wood Screw	14"	\#10 TEKS	$7{ }^{\prime \prime}$
	Jamb	\#12 Wood Screw	17"	\#10 TEKS	$9{ }^{\prime \prime}$

Notes:

1. Start anchor placement approximately 3 " from corners, then per spacing in table.
2. Place a minimum of 2 anchors on each side of a window.
3. Anchor spacing calculated greater than 18 " specified as 18 " per project specification.

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 9 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage

Anchorage is required at the ends of the 3-piece mullions located at elevations BAY1 through BAY6. The anchorage is required at both the jamb mullion and the intermediate vertical mullions. The calculations are presented on page 38 through page 44 . The anchorage requirements are as follows:

At the Jambs - One (1) angle per mullion end is required. Each angle is connected to the mullion with two (2) \#12-14 TEKS screws spaced at 1 " on center. At the sill, the angle is connected to the wood blocking substrate with two (2) \#12 wood screws, spaced 1 " on center. At the head, the angle is connected to the steel substrate with two (2) \#12-14 TEKS screws, spaced 1" on center.

At the Intermediate Vertical Mullions - Two (2) angles per mullion end are required. Each angle is connected to the mullion with two (2) \#12-14 TEKS screws spaced at $1^{\prime \prime}$ on center. At the sill, each angle is connected to the wood blocking substrate with one (1) \#12 wood screw. At the head, each angle is connected to the steel substrate with one (1) \#12-14 TEKS screw.

Referenced Drawings

Harbor Terrace Apartments C-01, BE-01 to BE-04, WE-01 to WE-09, WD-01 to WD-11. Specialty Contracting, Inc. Revision -, 04/21/2016. (25 pages)

Architectural	DATE：May 19， 2016	PROJECT NO \qquad F8229．01－122－34 SHEET \qquad 10 OF 45 PROJECT NAME：Harbor Terrace Apartments
	BY：JAR／DCC	

Design Wind Pressures for Components and Cladding
ASCE 7－05
For Buildings $>60 \mathrm{ft}$ tall
Project：Harbor Terrace Apartments Location：Portland，Maine
Building Category Importance
Basic Wind Speed

> | Basic Wind Speed | 100 MPH | |
| ---: | :---: | :---: |
| Exposure Category | C | |
| Building Roof Height | 80 ft | |
| Building Roof Slope | 0.0 degrees | |

> | Basic Wind Speed | 100 MPH | |
| ---: | :---: | :---: |
| Exposure Category | C | |
| Building Roof Height | 80 ft | |
| Building Roof Slope | 0.0 degrees | |

> 0.0 degrees
Width Heigh （чэи！）（чэи！） 0
0
0
\vdots
8

官
숫
in
in

$\stackrel{+}{\sim}$
官
67.0
67.0
II
1.21
1.00
1.00
0.18
psf
30.9 psf
Design Wind Pressures（psf）

$\stackrel{N}{2}$

 $\left(\mathrm{ft}^{2}\right)$
$\stackrel{\infty}{\text { N }}$
$\stackrel{N}{+}$
no
6.6
$\stackrel{\sim}{\infty}$
N゙
 ※ \mathbf{q}_{h}
（ft）
0
ํ
$\begin{array}{llll}0 & 0 & 0 & 0 \\ \stackrel{i}{N} & \stackrel{0}{\sim} & 0\end{array}$
$67.0-10.0$ Width
（inch） \qquad $\stackrel{\circ}{\infty}$ 우 16.0
\circ
∞
∞
운
웅
$\stackrel{\infty}{\stackrel{+}{\mathrm{N}}}$
$\stackrel{\Im}{\grave{j}}$ A／WE－01
NB／WE－01，
RNB／WE－01
NC／WE－01，
NRC／WE－02
D／WE－02 D／WE－02 E／WE－02 F／WE－02 NG／WE－03，
 BAY5／WE－08 BAY6／WE－09

Architectural	DATE: May 19, 2016	PROSECT NO F8229.01-122-34 SHEET 11 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Glass Load Resistance Report -- Harbor Terrace Apts

Glazing Information

Edge Supports: 4 Sides
Glazing Angle: 90°
Lite Dimensions:

Width:	24.0 in.
Height:	27.5 in.

Project Details

Project Name: Harbor Terrace Apts
Location: Portland, Maine
Comments: F8229.01-122-34

Glass Construction (Rectangular)

Double Glazed Insulating Unit

	Air Space: 0.5 in.	
	Outboard Lite	Inboard Lite
Glass Type:	Annealed	Annealed
Nominal Thickness:	$1 / 8 \mathrm{in}$.	1/8 in.

Short Load Duration, Resistance, and Deflection Data

Load ($\sim 3 \mathrm{sec}.):$	61.2 psf
Load Resistance:	141 psf
Approximate center of glass deflection:	0.18 in.

Conclusion

Based on your design information, the load resistance is greater than or equal to the specified loading.

Statement of Compliance

Procedures followed in determining the resistance of this window glass are in accordance with ASTM E1300-09.
Disclaimer:
This software can be used to determine the load resistance of specified glass types exposed to uniform lateral loads of short or long duration subject to the following conditions:

- The glass is free of edge and surface damage and has been properly glazed in the opening in conformance with the manufacturer's recommendations
- Procedures exist to determine load resistance for rectangular glass assemblies that are:
a. Continuously supported along all four edges,
b. Continuously supported along three edges,
c. Continuously supported along two parallel edges, and
d. Continuously supported along one edge
- The software user has the responsibility of selecting the correct procedures for the required application from the software.
- The stiffness of members supporting any glass edge shall be sufficient that under design load, edge deflections shall not exceed L/175, where L denotes that length of the supported edge.
- The manufacturer states that the Safety Plus II 0.090 Polyurethane Large Missile Resistant interlayer is comparable to the PVB interlayer For other limiting conditions that may apply, refer to Section 5 of ASTM E1300 and local building codes.

Neither SDG nor GANA guarantees and each disclaims any responsibility for any particular results relating to the use of the Window Glass Design 5 Software Program. SDG and GANA disclaim any liability for any personal injury or any loss or damage of any kind, including all indirect, special, or consequential damages and lost profits arising out of or relating to the use of the Window Glass Design 5 Software Program.

Prepared by: \qquad on 5/19/2016

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 12 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Glass Load Resistance Report -- Harbor Terrace Apts

Glazing Information

Edge Supports: 4 Sides
Glazing Angle: 90°
Lite Dimensions:

Width:	57.9 in.
Height:	53.4 in.

Project Details

Project Name: Harbor Terrace Apts
Location: Portland, Maine
Comments: F8229.01-122-34

Glass Construction (Rectangular)

Double Glazed Insulating Unit

	Air Space: 0.5 in.$$		
	Outboard Lite		Inboard Lite
			Annealed
Glass Type:	Annealed		$1 / 4 \mathrm{in}$.

Short Load Duration, Resistance, and Deflection Data

Load (3 sec.$):$	61.2 psf
Load Resistance:	89.5 psf
Approximate center of glass deflection:	0.48 in.

Conclusion

Based on your design information, the load resistance is greater than or equal to the specified loading.

Statement of Compliance

Procedures followed in determining the resistance of this window glass are in accordance with ASTM E1300-09.
Disclaimer:
This software can be used to determine the load resistance of specified glass types exposed to uniform lateral loads of short or long duration subject to the following conditions: - The glass is free of edge and surface damage and has been properly glazed in the opening in conformance with the manufacturer's recommendations.

- Procedures exist to determine load resistance for rectangular glass assemblies that are:
a. Continuously supported along all four edges,
b. Continuously supported along three edges,
c. Continuously supported along two parallel edges, and
d. Continuously supported along one edge.

The software user has the responsibility of selecting the correct procedures for the required application from the software

- The stiffness of members supporting any glass edge shall be sufficient that under design load, edge deflections shall not exceed L/175, where L denotes that length of the supported edge.
- The manufacturer states that the Safety Plus II 0.090 Polyurethane Large Missile Resistant interlayer is comparable to the PVB interlayer. For other limiting conditions that may apply, refer to Section 5 of ASTM E1300 and local building codes.

Neither SDG nor GANA guarantees and each disclaims any responsibility for any particular results relating to the use of the Window Glass Design 5 Software Program SDG and GANA disclaim any liability for any personal injury or any loss or damage of any kind, including all indirect, special, or consequential damages and lost profits arising out of or relating to the use of the Window Glass Design 5 Software Program.

Prepared by: \qquad on 5/19/2016
DCC

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 13 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Glass Load Resistance Report -- Harbor Terrace Apts

Glazing Information

Edge Supports: 4 Sides
Glazing Angle: 90°
Lite Dimensions:

Width:	20.6 in.
Height:	62.0 in.

Project Details

Project Name: Harbor Terrace Apts
Location: Portland, Maine
Comments: F8229.01-122-34

Glass Construction (Rectangular)

Double Glazed Insulating Unit

	Air Space: 0.5		in.
	Outboard Lite		Inboard Lite Glass Type:
Annealed		Annealed	
Nominal Thickness:	$1 / 8 \mathrm{in}$.		$1 / 8 \mathrm{in}$.

Short Load Duration, Resistance, and Deflection Data

Load ($\sim 3 \mathrm{sec}.):$	61.2 psf
Load Resistance:	58.8 psf
Approximate center of glass deflection:	0.29 in.

Conclusion

Based on your design information, the load resistance is less than specified loading.

Statement of Compliance

Procedures followed in determining the resistance of this window glass are in accordance with ASTM E1300-09.

Disclaimer:

This software can be used to determine the load resistance of specified glass types exposed to uniform lateral loads of short or long duration subject to the following conditions:
The glass is free of edge and surface damage and has been properly glazed in the opening in conformance with the manufacturer's recommendations.

- Procedures exist to determine load resistance for rectangular glass assemblies that are:
a. Continuously supported along all four edges,
b. Continuously supported along three edges,
c. Continuously supported along two parallel edges, and
d. Continuously supported along one edge
- The software user has the responsibility of selecting the correct procedures for the required application from the software

The stiffness of members supporting any glass edge shall be sufficient that under design load, edge deflections shall not exceed L/175, where L denotes that length of the supported edge.
The manufacturer states that the Safety Plus II 0.090 Polyurethane Large Missile Resistant interlayer is comparable to the PVB interlayer,
For other limiting conditions that may apply, refer to Section 5 of ASTM E1300 and local building codes.

Neither SDG nor GANA guarantees and each disclaims any responsibility for any particular results relating to the use of the Window Glass Design 5 Software Program. SDG and GANA disclaim any liability for any personal injury or any loss or damage of any kind, including all indirect, special, or consequential damages and lost profits, arising out of or relating to the use of the Window Glass Design 5 Software Program.

Prepared by: \qquad on 5/19/2016
DCC

Architectural	DATE: May 19, 2016	PROUECT NO \qquad F8229.01-122-34 SHEET \qquad 14 OF 45 PROJECT NAME: Harbor Terrace Apartments
	BY: JAR/DCC	

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 15 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

------------ REGIONS
0.5879

Bounding box:
X: -0.7391 -- 1.2609
Y: -0.8073 -- 0.7787
Moments of inertia: $\quad X: 0.1838$
Y: 0.1719
Radii of gyration: $X: 0.5591$
Y: 0.5407

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 16 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

| Architectural |
| :--- | :--- | :--- | :--- |
| Testing |\quad| DATE: May 19, 2016 |
| :--- | :--- |

------------ REGIONS ------------
Area:
0.6412

Bounding box: $\quad X:-1.2567$-- 1.3743
Y: -1.4153 -- 1.8347
Moments of inertia: X: 0.9210
Y: 0.2142
Radii of gyration: X: 1.1985
$Y: 0.5779$

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 18 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Area:
0.4961

Bounding box:

$$
\begin{array}{llll}
X: & -0.7922 & -- & 0.7078 \\
Y:-1.4887 & -- & 1.7613
\end{array}
$$

Maments of inertia: $X: 0.6367$
$Y: 0.0277$
Radii of gyration: $\quad X: 1.1328$
$Y: 0.2365$

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 19 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 20 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

----------- REGIONS
Area: 0.4785
Bounding box:
$X:-0.9928--1.0072$
$Y:-1.3317$-- 0.9183
Moments of inertia: $\quad X: 0.3123$
$Y: 0.0908$
Radii of gyration: $\quad X: 0.8079$
Y: 0.4357

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 21 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Architectural Testing	DATE: May 19, 2016	PROUECT NO F8229.01-122-34 SHEET 22 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product Single Hung Meeting Rail
Size NG/WE-03
Cladding N/A
Reinforcement N/A
Wind DP 61.2 psf

Notes: Mullion is analyzed as a simple supported beam with uniform load. Reinforcement and members behave non-compositely.

Architectural	DATE: May 19, 2016	PROIECT NO F8229.01-122-34 SHEET 23 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product Single Hung-Single Hung M-F Mullion
Size A/WE-01
Cladding N/A
Reinforcement N/A
Wind DP 61.2 psf

Notes: Mullion is analyzed as a simple supported beam with uniform load. Reinforcement and members behave non-compositely.

Architectural Testing	DATE：May 19， 2016	PROJECT NO F8229．01－122－34 SHEET 24 OF 45
	BY：JAR／DCC	PROJECT NAME：Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product Single Hung－Fixed M－F Mullion
Size NG／WE－03
Cladding N／A
Reinforcement N／A
Wind DP 61.2 psf

		Fram	Parts		Claddi	Parts	Reinforcement
Material		6063－T6	Aluminum				
E（psi）	10，000，000						
Fb （psi）	15，152						
	Member 1	Member 2	Member 3	Member 4	Member 5	Member 6	Member 7
Part ID	E203031	E120010					
Max c（in）	1.8347	1.7613	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathrm{I}_{\mathrm{xx}}\left(\mathrm{in}^{4}\right)$	0.9210	0.6367	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathrm{I}_{\text {tot }}$	1.55						
	Window 1		Window 2				
Frame Width，a	2.65		5.432				
Frame Height，H	4.61		4.615				
K	0.28		0.589				
B	6.40		6.000				
					a		a
Load Area	4.36		5.324				
M	3.14		4.094			为	7
Total M	7.23					HO	
Mullion length	4.615					Wr｜a	束
DP Member 1	148.					－	束
DP Member 2	154.					－${ }^{1}$	W8
DP Member 3		SF				Cob	C
DP Member 4		SF				－	W8
DP Member 5		SF				－	束
DP Member 6		SF				＊	为
DP Member 7		SF				为	蒝
Governing DP	148.						
						WH	$\Delta=\mathrm{WH}^{3}$
	62.65		60.00			B	DEI
Deflection at DP	0.25						
Deflection Limit	0.31		L／175				
Stress Governs，DP＝	148.		OK，＞ 61.2 p				
End Reactions at DP	717.						
Scale Reaction to 61 psf	296.						

Notes：Mullion is analyzed as a simple supported beam with uniform load． Reinforcement and members behave non－compositely．

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 25 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product Fixed-Casement M-F Mullion
Size BAY1/WE-04
Cladding N/A
Reinforcement N/A
Wind DP 61.2 psf

Notes: Mullion is analyzed as a simple supported beam with uniform load.
Reinforcement and members behave non-compositely.

Architectural	DATE：May 19， 2016	PROJECT NO F8229．01－122－34 SHEET 26 OF 45
	BY：JAR／DCC	PROJECT NAME：Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product 3 Piece Jamb
Size BAY1／WE－04
Cladding N／A
Reinforcement N／A
Wind DP 61.2 psf

		Fram	Parts		Cladd	Parts	Reinforcement
Material		6063－T6	Aluminum				
E（psi）	10，000，000						
Fb （psi）	15，152						
	Member 1	Member 2	Member 3	Member 4	Member 5	Member 6	Member 7
Part ID	E120010	E200203					
Max c（in）	1.7613	2.1977	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathrm{I}_{\mathrm{xx}}\left(\mathrm{in}^{4}\right)$	0.6367	1.1218	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathrm{I}_{\text {tot }}$	1.75						
	Window 1		Window 2				
Frame Width，a	4.69		0.000				
Frame Height，H	5.58		5.583				
K	0.42		0.000				
B	6.070		7.999				
					a		a
Load Area	7.59		0.000				
M	6.98		0.000			\＃	7
Total M	6.98					HO	
Mullion length	5.58					Wr｜a	束
DP Member 1	180.					－	束
DP Member 2	144.					－${ }^{1}$	W8
DP Member 3		SF				Cob	C
DP Member 4		SF				－	W8
DP Member 5		SF				－	束
DP Member 6		SF				＊	为
DP Member 7		SF					
Governing DP	144.6					8	
						WH	$\Delta=\mathrm{WH}^{3}$
C	60.2		76.67			B	DEI
Deflection at DP	0.31						
Deflection Limit	0.38		L／175				
Stress Governs，DP＝	144.6		OK，＞ 61.2 p				
End Reactions at DP	549.2						
Scale Reaction to 61 psf	232.5						

Notes：Mullion is analyzed as a simple supported beam with uniform load． Reinforcement and members behave non－compositely．

Architectural	DATE: May 19, 2016	PROIECT NO F8229.01-122-34 SHEET 27 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product Ribbon Window Head/Sill
Size BAY1/WE-04
Cladding N/A
Reinforcement N/A
Wind DP 61.2 psf

Notes: Mullion is analyzed as a simple supported beam with uniform load. Reinforcement and members behave non-compositely.

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 28 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Mullion Design Pressure Calculator

Standard Vertical or Horizontal Mullion
Manufacturer Graham Architectural Products
Project Harbor Terrace Apartments
Product 3 Piece Mullion
Size BAY1/WE-04
Cladding N/A
Reinforcement N/A
Wind DP 61.2 psf

Notes: Mullion is analyzed as a simple supported beam with uniform load. Reinforcement and members behave non-compositely.

Architectural	DATE: May 19, 2016	PRONECT NO F8229.01-122-34 SHEET 29 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

1/WD-01

\#12 Wood Screw
1-1/2" Minimum Penetration

1/16" thick 6063-T5 Trim Clip
Southern Yellow Pine (S-Y-P) Wood Blocking

Allowable Shear of \#12 Wood Screw

$$
\mathrm{Z}^{\prime}=186 \mathrm{lb} \quad \text { (Limited by Yield Mode IIIs, see following } 2 \text { pages) }
$$

Bearing of \#12 Wood Screw on Trim Clip

$\mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}}$
$\mathrm{V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)\left(0.063^{\prime \prime}\right)(22,000 \mathrm{psi}) / 1.95$
$\mathrm{V}_{\mathrm{a}}=307 \mathrm{lb}$.

Capacity of Connection is 186 lb

Also Qualifies 3/WD-01, 8/WD-03, 9/WD-03, 10/WD-04, 1, 2/WD-04, 14/WD-05
15/WD-05, 16/WD-05, 21/WD-07, 22/WD-07, 23/WD-08, 24/WD-08

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 30 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

1/WD-01 (Continued)

Lateral Design Strength of Wood Connections

Data

Calculations

Lateral Bearing Factors

Lateral Bearing Factors			
D	$=$	0.152	in.
ℓ_{m}	$=$	1.500	in.
K_{θ}	$=$	1.25	
$\mathrm{~K}_{\mathrm{D}}$	$=$	2.20	
R_{e}	$=$	0.202	
R_{t}	$=$	23.81	
k_{1}	$=$	1.8950	
k_{2}	$=$	0.5944	
k_{3}	$=$	10.62	

ANSI / AF\&PA NDS-2005

Table 11.3.2

Aluminum Design Manual 2005

Table 11.3.1B
Table 11.3.1B
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 31 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

1/WD-01 (Continued)

Yield Mode	\mathbf{R}_{d}
$\mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{s}}$	2.20
II	2.20
$\mathrm{III}_{\mathrm{m}}, \mathrm{II} \mathrm{I}_{\mathrm{s}}, \mathrm{IV}$	2.20

Lateral Design Values, Z

Lateral Design Values, Z		
Mode $\mathrm{I}_{\mathrm{m}}=$	575	lbf
Mode $\mathrm{I}_{\text {S }}=$	120	lbf
Mode II =	227	lbf
Mode $\mathrm{III}_{\mathrm{m}}=$	244	lbf
Mode III $_{\text {s }}=$	117	lbf
Mode IV	165	lbf
$\mathrm{C}_{\mathrm{D}}=$	1.6	
Wet Service Factor		
Fabrication/In-Service	Dry/Dry	
$\mathrm{C}_{\mathrm{M}}=$	1.0	
In service temperature		$\leq 100^{\circ} \mathrm{F}$
$\mathrm{C}_{\mathrm{t}}=$	1.0	
$\mathrm{C}_{\mathrm{g}}=$	1.0	
$\mathrm{C}_{\Delta}=$	1.0	
Is fastener installed in end grain?	No	
$\mathrm{C}_{\text {eg }}=$	1.00	
Is fastener part of a diaphragm?	No	
$\mathrm{C}_{\mathrm{di}}=$	1.0	
Is fastener toe-nailed?	No	
$\mathrm{C}_{\mathrm{tn}} \quad=$	1.00	
Z' =	186	lbf

Table 11.3.1B
Table 11.3.1B
Table 11.3.1B

Eq 11.3-1
Eq 11.3-2
Eq 11.3-3
Eq 11.3-4
Eq 11.3-5
Eq 11.3-6
B. 2

Table 10.3.3

Table 10.3.4
10.3.6
11.5.1
11.5.2
11.5.3
11.5.4

Table 10.3.1

Architectural	DATE: May 19, 2016	PRONECT NO F8229.01-122-34 SHEET 32 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

4/WD-02

1/4" Powers Tapper+ Screw Anchor

1-1/2" Minimum Embedment, 1-3/4" Minimum Edge Distance
1/16" thick 6063-T5 Trim Clip
$\mathrm{f}^{\prime}{ }_{\mathrm{m}}=1,500 \mathrm{psi}$ ASTM C62 Clay Brick Masonry

Allowable Shear of 1/4" Tapper+

$$
\mathrm{V}_{\mathrm{a}}=270 \mathrm{lb} \quad \text { (Powers Technical Data) }
$$

Bearing of $1 / 4$ " Tapper+ on Trim Clip

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.25^{\prime \prime}\right)\left(0.063^{\prime \prime}\right)(22,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=355 \mathrm{lb} .
\end{aligned}
$$

Capacity of Connection is 270 lb

Also Qualifies 6/WD-02, 17/WD-06, 19/WD-06, 20/WD-07, 25/WD-08

Installation to existing clay brick assumes the clay brick substrate has been evaluated for and approved to resist anchorage loads.

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 33 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

18/WD-06

\#12-14 TEKS Screw
1/16" thick 6063-T5 Trim Clip
1/8" thick ASTM A36 Steel Lintel

Allowable Shear of \#12-14 TEKS Screw

$$
\mathrm{P}_{\mathrm{ss}} / \Omega=724 \mathrm{lb}(\text { ESR-1976 })
$$

Bearing of \#12-14 TEKS Screw on Trim Clip

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)(0.063 \text { " })(22,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=307 \mathrm{lb} .
\end{aligned}
$$

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 34 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

18/WD-06 (Continued)

Bearing of \#12-14 TEKS Screw on Lintel

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2.7 \mathrm{DtF}_{\mathrm{tu}} / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=2.7\left(0.216^{\prime \prime}\right)\left(0.1255^{\prime \prime}\right)(58,000 \mathrm{psi}) / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=1,409 \mathrm{lb} .
\end{aligned}
$$

Tilting of \#12-14 TEKS Screw

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=4.2\left(\mathrm{t}_{2}{ }^{3} \mathrm{D}\right)^{1 / 2} \mathrm{~F}_{\mathrm{tu}} / \mathrm{n}_{\mathrm{s}} \\
& \mathrm{~V}_{\mathrm{a}}=4.2\left(0.125^{\prime 3} \times 0.216^{\prime \prime}\right)^{1 / 2}(58,000 \mathrm{psi}) / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=1,668 \mathrm{lb} .
\end{aligned}
$$

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 35 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

All Details Trim Clip Connection

\#10-16 TEKS Screw

1/16" thick 6063-T5 Trim Clip
1/16" thick 6063-T6 Window Frame

Allowable Tension of \#10-16 TEKS Screw

$$
\mathrm{P}_{\mathrm{ts}} / \Omega=885 \mathrm{lb} \text { (ESR-1976) }
$$

Pull-Over of \#10-16 TEKS Screw

$$
\begin{aligned}
& \mathrm{P}_{\text {nov }}=\mathrm{C}_{\text {pov }} \mathrm{t}_{1} \mathrm{~F}_{\text {tu1 }}\left(\mathrm{D}_{\mathrm{ws}}-\mathrm{D}_{\mathrm{h}}\right) / 3.0 \\
& \mathrm{P}_{\text {nov }}=1.0\left(0.063^{\prime \prime}\right)(22,000 \mathrm{psi})\left(0.400^{\prime \prime}-0.190^{\prime \prime}\right) / 3.0 \\
& \mathrm{P}_{\text {nov }}=97 \mathrm{lb}
\end{aligned}
$$

Pull-Out of \#10-16 TEKS Screw

$$
\begin{aligned}
& \mathrm{P}_{\text {not }}=\mathrm{K}_{\mathrm{s}} \mathrm{DL}_{\mathrm{e}} \mathrm{~F}_{\text {ty }} / 3.0 \\
& \mathrm{P}_{\text {not }}=1.01\left(0.190^{\prime \prime}\right)\left(0.0633^{\prime \prime}\right)(25,000 \mathrm{psi}) / 3.0 \\
& \mathrm{P}_{\text {not }}=101 \mathrm{lb}
\end{aligned}
$$

Anchorage Requirements
Zone 4 Mid-Wall Spacing

Punched Opening Anchor Reactions

Roark's Formulas for Stress \& Strain (Sixth Ed.) Table 26-1a

Elevation	Design Pressure	Location	Fastener	Anchor Capacity	Width, w (inch)	$\begin{gathered} \text { Height, h } \\ \text { (inch) } \end{gathered}$	w/h	gamma	$\begin{gathered} \mathrm{R} \\ \text { (lb/inch) } \\ \hline \end{gathered}$	Anchor Spacing	Specified Spacing
A/WE-01	33.4 psf	Head	\#12 Wood Screw	186 lb	54.00	54.00	1.00	0.420	5.26	35.4'	18'
		Sill	\#12 Wood Screw	186 lb	54.00	54.00	1.00	0.420	5.26	35.4'	18 "
		Jamb	1/4" Tapper+	270 lb	54.00	60.88	1.13	0.444	5.56	48.5'	18"
NB/WE-01 RNB/WE-01	33.4 psf	Head	\#12 Wood Screw	186 lb	89.00	55.38	1.61	0.492	6.31	29.5'	18"
		Sill	\#12 Wood Screw	186 lb	89.00	55.38	1.61	0.492	6.31	29.5'	$18^{\prime \prime}$
		Jamb	\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	5.39	34.5"	$18^{\prime \prime}$
NC/WE-01 NRC/WE-02	33.4 psf	Head	\#12 Wood Screw	186 lb	69.00	55.38	1.25	0.461	5.93	31.4'	18'
		Sill	\#12 Wood Screw	186 lb	69.00	55.38	1.25	0.461	5.93	31.4'	18'
			\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	5.39	34.5'	18"
D/WE-02	33.4 psf	Head	\#12-14 TEKS Screw	307 lb	16.00	16.00	1.00	0.420	1.56	197.0"	18'
		Sill	1/4" Tapper+	270 lb	16.00	16.00	1.00	0.420	1.56	173.2"	18"
		Jamb	1/4" Tapper+			59.38	3.71	0.503	1.87	144.6"	
E/WE-02	33.4 psf	Head	\#12 Wood Screw	186 lb	89.00	29.38	3.03	0.505	3.44	54.1 '	18 "
		Sill	\#12 Wood Screw	186 lb	89.00	29.38	3.03	0.505	3.44	54.1 '	$18{ }^{\prime \prime}$
		Jamb	1/4" Tapper+	270 lb	29.38	29.38	1.00	0.420	2.86	94.4'	18"
F/WE-02	33.4 psf	Head	\#12 Wood Screw	186 lb	45.00	29.38	1.53	0.487	3.32	56.0 '	18 "
		Sill	\#12 Wood Screw	186 lb	45.00	29.38	1.53	0.487	3.32	56.0 "	18 "
		Jamb	1/4" Tapper+	270 lb	29.38	29.38	1.00	0.420	2.86	94.4"	18"
NG/WE-03 RNG/WE-03	33.4 psf	Head	\#12 Wood Screw	186 lb	97.00	55.38	1.75	0.498	6.39	29.1'	$18^{\prime \prime}$
		Sill	\#12 Wood Screw	186 lb	97.00	55.38	1.75	0.498	6.39	29.1"	$18^{\prime \prime}$
		Jamb	\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	5.39	34.5'	18'

$\begin{array}{lc}\text { Design Pressure } & 33.4 \mathrm{psf} \\ \text { Anchor Capacity } & 97 \mathrm{lb} \quad \text { \#10 TEKS Screw }\end{array}$

Elevation	Location	Width, w (inch)	Height, h (inch)	w/h	gamma	$\begin{gathered} \hline R \\ \text { (lb/inch) } \\ \hline \end{gathered}$	Anchor Spacing	Specified Spacing
A/WE-01	Head	54.00	54.00	1.00	0.420	5.26	18.4"	18"
	Sill	54.00	54.00	1.00	0.420	5.26	18.4"	18 "
	Jambs	54.00	60.88	1.13	0.444	5.56	17.4"	17"
NB/WE-01 RNB/WE-01	Head	89.00	55.38	1.61	0.492	6.31	15.4"	15 "
	Sill	89.00	55.38	1.61	0.492	6.31	15.4"	$15 "$
	Jambs	55.38	55.38	1.00	0.420	5.39	18.0"	18 "
NC/WE-01 NRC/WE-02	Head	69.00	55.38	1.25	0.461	5.93	16.4"	16 "
	Sill	69.00	55.38	1.25	0.461	5.93	16.4"	$16 "$
	Jambs	55.38	55.38	1.00	0.420	5.39	18.0"	18 "
D/WE-02	Head	16.00	16.00	1.00	0.420	1.56	62.2'	18 "
	Sill	16.00	16.00	1.00	0.420	1.56	62.2"	18 "
	Jambs	16.00	59.38	3.71	0.503	1.87	51.9"	18 "
E/WE-02	Head	89.00	29.38	3.03	0.505	3.44	28.2"	18 "
	Sill	89.00	29.38	3.03	0.505	3.44	28.2"	18 "
	Jambs	29.38	29.38	1.00	0.420	2.86	33.9"	18 "
F/WE-02	Head	45.00	29.38	1.53	0.487	3.32	29.2"	18 "
	Sill	45.00	29.38	1.53	0.487	3.32	29.2"	18 "
	Jambs	29.38	29.38	1.00	0.420	2.86	33.9'	18"
NG/WE-03 RNG/WE-03	Head	97.00	55.38	1.75	0.498	6.39	15.2'	15 "
	Sill	97.00	55.38	1.75	0.498	6.39	15.2"	15 "
	Jambs	55.38	55.38	1.00	0.420	5.39	18.0"	18"

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 37 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Anchorage Requirements (Continued)

Zone 5 Corner Spacing

Punched Opening Anchor Reactions

Roark's Formulas for Stress \& Strain (Sixth Ed.) Table 26-1a

Elevation	Design Pressure	Location	Fastener	Anchor Capacity	$\begin{gathered} \text { Width, w } \\ \text { (inch) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Height, h } \\ \text { (inch) } \\ \hline \end{gathered}$	w/h	gamma	R (lb/inch)	Anchor Spacing	Specified Spacing
A/WE-01	66.2 psf	Head	\#12 Wood Screw	186 lb	54.00	54.00	1.00	0.420	10.43	17.8'	17'
		Sill	\#12 Wood Screw	186 lb	54.00	54.00	1.00	0.420	10.43	17.8'	17"
		Jamb	1/4" Tapper+	270 lb	54.00	60.88	1.13	0.444	11.03	24.5 "	18"
NB/WE-01 RNB/WE-01	66.2 psf	Head	\#12 Wood Screw	186 lb	89.00	55.38	1.61	0.492	12.52	14.9"	14 "
		Sill	\#12 Wood Screw	186 lb	89.00	55.38	1.61	0.492	12.52	14.9"	$14^{\prime \prime}$
		Jamb	\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	10.69	17.4"	17"
NC/WE-01 NRC/WE-02	66.2 psf	Head	\#12 Wood Screw	186 lb	69.00	55.38	1.25	0.461	11.74	15.8'	15"
		Sill	\#12 Wood Screw	186 lb	69.00	55.38	1.25	0.461	11.74	15.8'	$15^{\prime \prime}$
		Jamb	\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	10.69	17.4'	17'
D/WE-02	66.2 psf	Head	\#12-14 TEKS Screw	307 lb	16.00	16.00	1.00	0.420	3.09	99.4'	18'
		Sill	1/4" Tapper+	270 lb	16.00	16.00	1.00	0.420	3.09	87.4'	18'
		Jamb	1/4" Tapper+	270 lb	16.00	59.38	3.71	0.503	3.70	72.9"	18"
E/WE-02	66.2 psf	Head	\#12 Wood Screw	186 lb	89.00	29.38	3.03	0.505	6.82	27.3"	18'
		Sill	\#12 Wood Screw	186 lb	89.00	29.38	3.03	0.505	6.82	27.3"	18'
		Jamb	1/4" Tapper+		29.38	29.38	1.00	0.420	5.67	47.6"	18"
F/WE-02	66.2 psf	Head	\#12 Wood Screw	186 lb	45.00	29.38	1.53	0.487	6.58	28.3"	18"
		Sill	\#12 Wood Screw	186 lb	45.00	29.38	1.53	0.487	6.58	28.3"	18'
		Jamb	1/4" Tapper+	270 lb	29.38	29.38	1.00	0.420	5.67	47.6"	$18^{\prime \prime}$
NG/WE-03 RNG/WE-03	66.2 psf	Head	\#12 Wood Screw	186 lb	97.00	55.38	1.75	0.498	12.67	14.7'	$14{ }^{\prime \prime}$
		Sill	\#12 Wood Screw	186 lb	97.00	55.38	1.75	0.498	12.67	14.7'	14'
			\#12 Wood Screw	186 lb	55.38	55.38	1.00	0.420	10.69	17.4'	17"

Design Pressure 66.2 psf
Anchor Capacity 97 lb \#10 TEKS Screw

Elevation	Location	Width, w (inch)	Height, h (inch)	w/h	gamma	$\begin{gathered} \hline R \\ \text { (lb/inch) } \\ \hline \end{gathered}$	Anchor Spacing	Specified Spacing
A/WE-01	Head	54.00	54.00	1.00	0.420	10.43	9.3"	9"
	Sill	54.00	54.00	1.00	0.420	10.43	9.3 "	9"
	Jambs	54.00	60.88	1.13	0.444	11.03	8.8"	8"
$\begin{gathered} \text { NB/WE-01 } \\ \text { RNB/WE-01 } \end{gathered}$	Head	89.00	55.38	1.61	0.492	12.52	7.8"	7"
	Sill	89.00	55.38	1.61	0.492	12.52	7.8"	7"
	Jambs	55.38	55.38	1.00	0.420	10.69	9.1 "	9"
$\begin{gathered} \text { NC/WE-01 } \\ \text { NRC/WE-02 } \end{gathered}$	Head	69.00	55.38	1.25	0.461	11.74	8.3"	8"
	Sill	69.00	55.38	1.25	0.461	11.74	8.3"	8"
	Jambs	55.38	55.38	1.00	0.420	10.69	9.1 "	9"
D/WE-02	Head	16.00	16.00	1.00	0.420	3.09	31.4'	18'
	Sill	16.00	16.00	1.00	0.420	3.09	31.4'	18'
	Jambs	16.00	59.38	3.71	0.503	3.70	26.2'	18'
E/WE-02	Head	89.00	29.38	3.03	0.505	6.82	14.2'	14'
	Sill	89.00	29.38	3.03	0.505	6.82	14.2"	14'
	Jambs	29.38	29.38	1.00	0.420	5.67	17.1'	17'
F/WE-02	Head	45.00	29.38	1.53	0.487	6.58	14.7'	14'
	Sill	45.00	29.38	1.53	0.487	6.58	14.7'	14'
	Jambs	29.38	29.38	1.00	0.420	5.67	17.1"	17'
$\begin{gathered} \text { NG/WE-03 } \\ \text { RNG/WE-03 } \end{gathered}$	Head	97.00	55.38	1.75	0.498	12.67	7.7"	7"
	Sill	97.00	55.38	1.75	0.498	12.67	7.7"	7"
	Jambs	55.38	55.38	1.00	0.420	10.69	9.1 "	9"

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 38 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage

All BAY elevations are in Zone 4
$\mathrm{Jamb}_{\max }=(232.5 \mathrm{lb})(33.4 \mathrm{psf}) /(61.2 \mathrm{psf})=127 \mathrm{lb}$
Vertical Intermediate $\mathrm{R}_{\max }=(462.2 \mathrm{lb})(33.4 \mathrm{psf}) /(61.2 \mathrm{psf})=252 \mathrm{lb}$
One (1) Angle per mullion end 3 Piece Mullion at Jambs
Two (2) Angles per mullion end 3 Piece Mullion at Vertical Intermediates

Angle to Mullion Connection

Two (2) \#12-14 TEKS Screws, Spaced 1" On Center
1/8" Thick 6063-T5 Angle
0.093 " thick 6063-T6 Mullion Wall

Allowable Shear of \#12-14 TEKS Screw

$$
\mathrm{P}_{\mathrm{ss}} / \Omega=724 \mathrm{lb} \text { (ESR-1976) }
$$

Bearing of \#12-14 TEKS Screw on Angle

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)\left(0.1255^{\prime \prime}\right)(22,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=609 \mathrm{lb} .
\end{aligned}
$$

Bearing of \#12-14 TEKS Screw on Mullion

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)\left(0.0933^{\prime \prime}\right)(30,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=618 \mathrm{lb} .
\end{aligned}
$$

Tilting of \#12-14 TEKS Screw

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=4.2\left(\mathrm{t}_{2}{ }^{3} \mathrm{D}\right)^{1 / 2} \mathrm{~F}_{\mathrm{tu}} / \mathrm{n}_{\mathrm{s}} \\
& \mathrm{~V}_{\mathrm{a}}=4.2\left(0.093^{\prime 3} \times 0.216^{\prime \prime}\right)^{1 / 2}(30,000 \mathrm{psi}) / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=554 \mathrm{lb} .
\end{aligned}
$$

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 39 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Angle to Steel Lintel at Head

Two (2) \#12-14 TEKS Screws per Angle at Jamb Spaced 1" OC
One (1) \#12-14 TEKS Screw per Angle at Intermediate Vertical
1/8" Thick 6063-T5 Angle
1/8" thick ASTM A36 Steel Lintel

Allowable Shear of \#12-14 TEKS Screw

$$
\mathrm{P}_{\mathrm{ss}} / \Omega=724 \mathrm{lb} \text { (ESR-1976) }
$$

Bearing of \#12-14 TEKS Screw on Angle

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)\left(0.125^{\prime \prime}\right)(22,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=609 \mathrm{lb} .
\end{aligned}
$$

Bearing of \#12-14 TEKS Screw on Lintel

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2.7 \mathrm{DtF}_{\text {tu }} / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=2.7\left(0.216^{\prime \prime}\right)\left(0.1255^{\prime \prime}\right)(58,000 \mathrm{psi}) / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=1,409 \mathrm{lb} .
\end{aligned}
$$

Tilting of \#12-14 TEKS Screw

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=4.2\left(\mathrm{t}_{2}{ }^{3} \mathrm{D}\right)^{1 / 2} \mathrm{~F}_{\mathrm{tuz}} / \mathrm{n}_{\mathrm{s}} \\
& \mathrm{~V}_{\mathrm{a}}=4.2\left(0.125^{\prime \prime 3} \times 0.216^{\prime \prime}\right)^{1 / 2}(58,000 \mathrm{psi}) / 3.0 \\
& \mathrm{~V}_{\mathrm{a}}=1,668 \mathrm{lb} .
\end{aligned}
$$

Capacity of Fastener is 609 lb

Capacity of Jamb Connection is $405 \mathrm{lb} \boldsymbol{>} 127 \mathrm{lb}$, OK (See Following Page)

Capacity of Intermediate Vertical Connection is $(2)(609 \mathrm{lb})=\mathbf{1 , 2 1 8} \mathbf{~ l b} \boldsymbol{>} \mathbf{2 5 2} \mathbf{~ l b}, \mathbf{O K}$

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 40 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 41 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Clip to Wood Blocking at Sill

Two (2) \#12-14 TEKS Screws per Angle at Jamb Spaced 1" OC
One (1) \#12-14 TEKS Screw per Angle at Intermediate Vertical
1-1/2" Minimum Penetration
1/8" thick 6063-T5 Angle
Southern Yellow Pine (S-Y-P) Wood Blocking

Allowable Shear of \#12 Wood Screw
$Z^{\prime}=194 \mathrm{lb} \quad$ (Limited by Yield IIIs, see following 2 pages)

Bearing of \#12 Wood Screw on Angle

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=2 \mathrm{DtF}_{\mathrm{u}} / \mathrm{n}_{\mathrm{u}} \\
& \mathrm{~V}_{\mathrm{a}}=2\left(0.216^{\prime \prime}\right)\left(0.1255^{\prime \prime}\right)(22,000 \mathrm{psi}) / 1.95 \\
& \mathrm{~V}_{\mathrm{a}}=609 \mathrm{lb} .
\end{aligned}
$$

Capacity of Fastener is 194 lb

Capacity of Jamb Connection is 129 lb > 127 lb, OK (See Following Page)

Capacity of Intermediate Vertical Connection is (2)(194 lb) = $338 \mathrm{lb} \mathbf{~ > ~} 252 \mathrm{lb}$, OK

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 42 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 43 _OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Lateral Design Strength of Wood Connections

ANSI / AF\&PA NDS-2005

Fastener			
Fastener	$=$	\#10 Wood Screw	
Shank Dia	=	0.190	in.
Root Dia.	$=$	0.152	in.
F_{yb}	=	80,000	psi
Fastener length	=	2.500	in.
Main Member			
Material	$=$		SYP
G	=	0.55	
θ	=	90	$<=\left(\right.$ Angle of load to grain $0^{\circ} \leq \theta \leq 90^{\circ}$)
F_{e}	=	5,550	psi
Thickness	=	1.500	in.
Side Member			
Material	$=$	Aluminum 6063-T5	
G	=	N/A	
θ	=	0	$<=\left(\right.$ Angle of load to grain $0^{\circ} \leq \theta \leq 90^{\circ}$)
$\mathrm{F}_{\text {es }}$	=	27,500	psi
Thickness	=	0.125	in.

Calculations

Lateral Bearing Factors

D	$=$
ℓ_{m}	$=$
K_{θ}	$=$
K_{D}	$=$
R_{e}	$=$
R_{t}	$=$
	1.500
	in.
k_{1}	$=120$
k_{2}	$=12.00$
k_{2}	$=0.9497$
k_{3}	$=0.5944$

Yield Mode	$\mathbf{R}_{\mathbf{d}}$
$\mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{s}}$	2.20
II	2.20
$\mathrm{III}_{\mathrm{m}}, \mathrm{III}_{\mathrm{s}}, \mathrm{IV}$	2.20

Table 11.3.1B
Table 11.3.1B
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A
Table 11.3.1A

Table 11.3.1B
Table 11.3.1B
Table 11.3.1B

Architectural	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 44 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

3-Piece Mullion Anchorage (Continued)

Lateral Design Values, Z			
Mode $_{\mathrm{m}}$	$=$	575	lbf
Mode $_{\mathrm{s}}$	$=$	238	lbf
Mode II	$=$	226	lbf
Mode III $_{\mathrm{m}}$	$=$	244	lbf
Mode III $_{\mathrm{s}}$	$=$	121	lbf
Mode IV	$=$	165	lbf
C_{D}	$=$	1.6	

Wet Service Factor

Fabrication/In-Service	$\begin{gathered} \text { Dry/Dry } \\ 1.0 \end{gathered}$
In service temperature	$\mathrm{T} \leq 100^{\circ} \mathrm{F}$
$\mathrm{C}_{\mathrm{t}}=$	1.0
$\mathrm{C}_{\mathrm{g}}=$	1.0
$\mathrm{C}_{\Delta}=$	1.0
Is fastener installed in end grain?	No
$\mathrm{C}_{\text {eg }}=$	1.00
Is fastener part of a diaphragm?	No
$\mathrm{C}_{\mathrm{di}}=$	1.0
Is fastener toe-nailed?	No
$\mathrm{C}_{\text {tn }}$	1.00
Z'	194 lbf

Eq 11.3-1
Eq 11.3-2
Eq 11.3-3
Eq 11.3-4
Eq 11.3-5
Eq 11.3-6
B. 2

Table 10.3.3

Table 10.3.4
10.3.6
11.5.1
11.5.2
11.5.3
11.5.4

Table 10.3.1

Architectural Testing	DATE: May 19, 2016	PROJECT NO F8229.01-122-34 SHEET 45 OF 45
	BY: JAR/DCC	PROJECT NAME: Harbor Terrace Apartments

Revision Log

Rev. \# Date Page(s) Revision(s)
 $0 \quad 05 / 19 / 16$ N/A

Original report issue

