

20. SOILS

In accordance of Section 7 of the City's Technical Manual, Level III Site Plan applications are required to submit a soil survey. The site is located in a developed area of urban fill. In lieu of a soil survey, we are submitting a geotechnical report that has been prepared and stamped by a professional engineer.

Geotechnical data has been collected at the site and a Preliminary Geotechnical Report has been prepared by S.W. Cole Engineering, Inc. A copy of the July 2017 report is attached. Eight test borings were completed in February and March of 2017, and these borings were supplemented by data collected from borings completed in 1995 and 1989. Additional borings are planned for the site to provide supplemental information for the final foundation design.

The geotechnical investigation found that beneath the existing paved surface of the parking lot are layers of urban fill, glaciomarine soils including sand, silt, and clay, and glacial till, with bedrock at depths ranging from 34 to 62 feet. Due to the soil conditions encountered on the site, the garage will be founded on piles.

20.1 Attachments

• Preliminary Geotechnical Report, dated July 11, 2017, by S.W. Cole Engineering, Inc.

REPORT

17-0103 S

July 11, 2017

Explorations and Preliminary Geotechnical Engineering Services

Proposed Parking Structure 222 St. John Street Portland, Maine

Prepared For: Cowcatcher, LLC c/o East Brown Cow Management, Inc. Attention: Denine Leeman 100 Commercial Street, Suite 306 Portland, Maine 04101

Prepared By: S. W. Cole Engineering, Inc. 286 Portland Road Gray, Maine 04039 T: 207-657-2866

Geotechnical Engineering

- Construction Materials Testing and Special Inspections
- GeoEnvironmental Services
- Test Boring Explorations

www.swcole.com

1.0 INTRODUCTION	1
1.1 Scope and Purpose	1
1.2 Site and Proposed Construction	1
2.0 EXPLORATION AND TESTING	2
2.1 Explorations	2
2.1.1 Current Explorations	2
2.1.2 Prior Explorations	2
2.2 Testing	3
2.3 Geophysical Survey	3
3.0 SITE AND SUBSURFACE CONDITIONS	3
3.1 Surficial	3
3.2 Soil and Bedrock	4
3.3 Groundwater	5
3.4 Frost and Seismic	5
4.0 EVALUATION AND RECOMMENDATIONS	5
4.1 General Findings	5
4.2 Foundation and On-Grade Level Considerations	6
4.2.1 Driven Piles	6
4.2.2 Drilled Shafts	8
4.2.3 Ground Improvement	8
4.2.4 On-Grade Level	9
4.3 Excavation and Dewatering Considerations	9
5.0 CLOSURE	10

TABLE OF CONTENTS

Appendix A	Limitations
Appendix B	Figures
Appendix C	Exploration Logs & Key
Appendix D	Laboratory Test Results
Appendix E	Geophysical Survey

www.swcole.com

17-0103 S

July 11, 2017

Cowcatcher, LLC c/o East Brown Cow Management, Inc. Attn: Denine Leeman 100 Commercial Street, Suite 306 Portland, Maine 04101

Subject: Explorations and Preliminary Geotechnical Engineering Services Proposed Parking Structure 222 St. John Street Portland, Maine

Dear Denine,

In accordance with our Proposal, dated February 8, 2017, we have performed subsurface explorations and a geophysical survey for the subject project. This report summarizes our findings and preliminary geotechnical recommendations and its contents are subject to the limitations set forth in Appendix A.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information at the site in order to provide a preliminary geotechnical assessment of feasible foundation types associated with the proposed construction. Our scope of services included a review of prior explorations, performing eight test boring explorations, soils laboratory testing, a geophysical survey, a geotechnical analysis of the subsurface findings and preparation of this report.

1.2 Site and Proposed Construction

The site is a rectangular parking lot at 222 St. John Street in Portland, Maine. Based on the information provided, we understand development plans call for construction of a new eight to ten-story parking structure. We understand the structure will be a pre-cast

286 Portland Road, Gray, ME 04039-9586 • P: (207) 657.2866 • F: (207) 657.2840 • E: infogray@swcole.com

reinforced concrete frame with pre-cast concrete decks and an on-grade, asphalt paved level at approximately elevation 25 to 26 feet (project datum). Based on information provided by Becker Structural Engineers (project structural engineer), we understand the structure will have maximum column loading of about 2,465 kips.

Proposed and existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

2.0 EXPLORATION AND TESTING

2.1 Explorations

S. W. Cole Engineering, Inc. (S.W.COLE) coordinated and logged a test boring exploration program at the site and reviewed prior site exploration data as follows:

2.1.1 Current Explorations

Eight test borings (B-201 through B-206, including B-203A and B-203B) were made at the site on February 27 through March 3, 2017 by S. W. Cole Explorations, LLC, a subsidiary of S. W. Cole Engineering, Inc. (S.W.COLE). The exploration locations were selected in conjunction with Becker Structural Engineers and established in the field by S.W.COLE using measurements from existing site features. The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the test borings and a key to the notes and symbols used on the logs are attached in Appendix C. The elevations shown on the logs were estimated based on topographic information shown on the "Exploration Location Plan".

2.1.2 Prior Explorations

We reviewed explorations made at the site for previously proposed developments, including:

- Seven test borings (B-1 through B-5, including B-2A and B-5A) made in 1989;
- Eight test borings (B-101 through B-108) made in 1995

The approximate locations of these test borings are shown on the "Exploration Location Plan" attached in Appendix B. Logs of these prior explorations are also attached in Appendix C.

2.2 Testing

The test borings were drilled using a combination of solid stem auger and cased washboring techniques. The soils were sampled at 2 to 5 foot intervals using a split spoon sampler and Standard Penetration Testing (SPT) methods. Pocket penetrometer testing (PPT) was performed on split spoon samples of stiffer silty clay soils, where encountered. Shelby tube sampling and Vane Shear Testing (VST) was performed where softer silty clay soils were encountered. SPT blow counts, as well as PPT and VST results, are shown on the logs.

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. Atterberg Limits and moisture content test results are noted on the logs. The results of a one-dimensional laboratory consolidation test, performed as part of the prior 1990 study, are attached in Appendix D.

2.3 Geophysical Survey

Hager-Richter Geoscience, Inc. (Hager-Richter) of Salem, New Hampshire, working under subcontract to S.W.COLE, performed a geophysical survey at the site on June 3 and 4, 2017. The purpose of the survey was to assess shear wave velocities of soil and bedrock beneath the site for use in determining Seismic Soil Site Class per IBC, and to obtain additional depth to bedrock information. A geophysical survey report prepared by Hager-Richter is attached as Appendix E.

3.0 SITE AND SUBSURFACE CONDITIONS

3.1 Surficial

The site is located at 222 St. John Street in Portland, Maine and currently consists of a large paved parking lot. Existing grade is relatively flat and level with existing ground surface varying from about elevation 26 to 27 feet. The site is located adjacent to an active railroad alignment and we understand portions of the site were historically used as a train yard. Existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

3.2 Soil and Bedrock

Available soils mapping and the subsurface findings at the explorations indicate the site is located at the margin of Presumpscot Formation glaciomarine sands, silts, and clays and a marine fan deposit of primarily sand and gravel. Underlying a surficial layer of pavement, the borings generally encountered a thin layer of fill soils overlying the glaciomarine and marine fan deposits, overlying glacial till mantling bedrock at depth. The principal strata encountered are summarized below. Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information.

<u>Fill:</u> Underlying surficial pavement, the borings encountered fill consisting of brown and black sand with varying portions of silt, gravel, and ash-like material. The fill extended to depths varying from approximately 1.5 to 5 feet below the ground surface.

<u>Glaciomarine Soils</u>: Underlying the fill or interbedded in the marine fan sand and gravel, borings B-202, B-204, and B-206, as well as several prior borings made in the northwestern portion of the site, encountered varying thickness of glaciomarine soils consisting of gray to gray-brown sand, silt, and silty clay with some shells. The glaciomarine soils at boring B-202 consisted of relatively soft, compressible gray silty clay at depth intervals of about 2 to 13.5 feet and 30 to 36 feet.

<u>Marine Fan Sand and Gravel:</u> Underlying the fill and underlying or interbedded amongst the glaciomarine soils, the borings encountered brown sand with varying portions of silt, gravel, cobbles and boulders.

<u>Glacial Till</u>: A relatively thin layer of glacial till, up to about 5 feet in thick, was encountered mantling the bedrock surface at the borings. The glacial till consisted of gray sand with varying portions of silt and gravel.

<u>Bedrock</u>: Bedrock was encountered at depths varying from approximately 34 to 62 feet at the borings, and generally appears to be trending deeper to the south. A thin surficial layer of weathered bedrock was penetrated by the drill tooling at some locations. A rock core retrieved at boring B-206 indicates the bedrock consist of gray Phyllite with an RQD of 44.

The Hager-Richter geophysical survey findings generally concur with the depth to bedrock trends encountered at the borings; discussion of depth to bedrock, as well as a bedrock elevation plan (Figure 5) are included in the Hager Richter report, attached as Appendix E.

3.3 Groundwater

Saturated soils or free water were encountered at the borings at depths varying from about 3 to 15 feet. Groundwater likely becomes perched on the relatively impervious silty clay encountered beneath a portion of the site. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate, particularly in response to periods of snowmelt and precipitation, as well as changes in site use.

3.4 Frost and Seismic

The 100-year Air Freezing Index for the Portland, Maine area is about 1,410-Fahrenheit degree-days, which corresponds to a frost penetration depth on the order of 4.5 feet. Based on the Hager-Richter geophysical survey findings, we interpret the site soils to correspond to Seismic Soil Site Class D according to 2009/2015 IBC (shear wave velocity method).

4.0 EVALUATION AND RECOMMENDATIONS

4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint. The principle geotechnical considerations include:

- The proposed parking structure will need to derive support from deep foundations, such as driven H-piles or drilled shafts. Alternatively, the proposed structure may be supported on spread footings bearing on ground improved with rigid inclusions.
- The dead load of the foundation system may be used for uplift resistance. Additionally, rock anchors installed through pipe piles or steel casing may be used to resist structural uplift loading. Battered piles and drilled shafts may be used to resist lateral loads. Lateral earth pressures acting on the sides of foundations may also be used to resist lateral loads.
- The asphalt paved on-grade garage level may be supported on properly prepared

soil subgrades using a conventional asphalt pavement section. If overhead clearance is tight on the ground level, we recommend installing insulation below the paved surface to mitigate potentially adverse frost heaving.

- The site was formerly used for rail operations and ash-like material was observed in the fills at some locations. We recommend the fill soils be characterized for environmental handling purposes prior to construction. As discussed, impacted soils may be able to be reused beneath the first floor ramp to avoid potentially costly export and off-site disposal.
- Imported materials, such as Crushed Stone, Structural Fill, and pavement gravels will be needed for construction.

4.2 Foundation and On-Grade Level Considerations

Given the magnitude of proposed structural loading and the subsurface findings, the parking structure will need to be supported on deep foundations, such as driven H-piles or drilled shafts. Alternatively, the structure may be supported on spread footings bearing on soils improved with rigid inclusions. Discussion of these foundation options follows:

4.2.1 Driven Piles

The proposed structure may be supported on steel H-piles fitted with cast driving tips, driven to end bearing on bedrock. Driven piles should ultimately be designed, sized and installed by a qualified design-build contractor. A driven pile submittal stamped by a Maine licensed professional engineer should be provided for review by the project team. We offer the following H-pile sizes and allowable axial compressive capacities for preliminary design consideration:

RECOMMENDED H-PILE CAPACITIES												
50 ksi Steel H-pile Section Allowable Axial Compressive Capacity (kips)												
HP 10 X 57 225												
HP 12 X 84	345											
HP 14 X 117	500											
Notes: Piles driven to practical refusa	I on hard sound bedrock with cast driving tips and											
0.0625-inch (1/16") corrosion allowance.												

Pipe piles may be installed at discrete locations to allow for installation of drilled rock anchors for uplift resistance.

We recommend that pile caps for columns be supported by at least two piles if laterally tied together by grade beams or tie beams and three piles if laterally isolated. Grade beams supporting walls may be supported by a single line of alternating piles below the grade beam, as deemed necessary by the structural engineer.

Piles should be spaced a minimum center-to-center distance of at least 3 pile diameters, but no less than 30 inches. Pile caps and grade beams exposed to freezing temperatures should be covered with at least 4.5 feet of soil for frost protection.

<u>Lateral Resistance</u>: Battered piles may be driven to resist lateral loads. Alternatively, lateral resistance acting on the sides of grade beams and pile caps backfilled with compacted Structural Fill may provide some lateral resistance. Depending upon the amount of deflection, lateral earth resistance should consider a total unit weight of granular backfill (γ t) of 125 pcf, an angle of internal friction of 30 degrees with an at-rest lateral earth pressure coefficient (Ko) of 0.5 and an ultimate passive lateral earth pressure coefficient (Kp) of 3.0. Additional resistance to lateral loads can be mobilized along the pile shafts, if needed. S.W.COLE can assist with lateral capacities, as deemed necessary by the structural engineer.

<u>Pile Load Test</u>: For piles with a capacity over 40 tons (80 kips), we recommend the contractor coordinate a test pile program including monitoring of several piles with a Pile Driving Analyzer (PDA) to determine pile and driving equipment compatibility as well as to define the "set" criteria and allowable pile capacity. The test pile program should include PDA monitoring of the test piles during re-strikes in order to assess pile capacity. The pile driving contractor should submit a WEAP analysis and information relative to pile driving equipment prior to beginning driving. S.W.COLE should be engaged to observe pile driving and pile load testing activities.

4.2.2 Drilled Shafts

The proposed parking structure may be supported on drilled shafts socketed into bedrock. Drilled shafts should be socketed at least 2 feet into competent bedrock. Deeper rock sockets may be required depending on the load requirements.

The base of the rock sockets should be leveled and cleaned of loose material and soil. We recommend deep foundations be drilled using steel casing within the overburden soils in order to maintain sidewall stability. Prior to installing reinforcing steel, S.W.COLE should observe the base of each drilled foundation. Temporary steel casings should be removed during concrete placement while maintaining a positive head of concrete above the casing bottom to maintain shaft sidewall stability.

Considering the subsurface conditions encountered, we anticipate drilled shaft axial capacity will be controlled by the concrete compressive strength. We recommend an allowable end-bearing pressure of 20 ksf utilizing a factor of safety of 2.0. For piers socketed deeper than two feet, additional axial compressive capacity can be mobilized from skin friction between the pier and rock socket. For a design concrete strength of 4,000 psi, a unit skin friction of 17 ksf is recommended for the portion of the pier socketed greater than two feet into bedrock. For a design concrete strength of 5,000 psi, a unit skin friction of 20 ksf is recommended for the portion of the pier socketed greater than two feet into bedrock.

Uplift resistance of drilled shafts can be developed from skin friction between the drilled shaft and soil and bedrock, as well as the dead weight of the drilled shaft. S.W.COLE can assist with uplift capacities as deemed necessary by the structural engineer.

4.2.3 Ground Improvement

The proposed structure may be supported on spread footing foundations bearing on soils improved by rigid inclusions. Rigid inclusions in granular soils consist of cast-in-place, grouted or cemented aggregate columns, typically installed by rammed or vibroflot methods. Rigid inclusions in clay soils consist of cast-in-place ready mix concrete installed by vibratory mandrel methods under positive pressure to create a concrete shaft. In both cases, load transfer platforms of compacted crushed gravel and geotextile are installed over the improved ground to support spread footings. The rigid inclusions stiffen the soils to reduce settlement and increase bearing capacity for spread footings. Rigid inclusions are designed and installed by a specialty geotechnical contractor. Based on preliminary

discussion with a regional contractor, we understand that net allowable soil bearing pressures of 8 to 10 ksf may be feasible. If the ground improvement option is selected, we recommend a design-phase test program be implemented prior to construction, consisting of full scale installation and modulus testing of several rigid inclusions across the varied subsurface conditions encountered in the test borings drilled at the site.

4.2.4 On-Grade Level

The paved on-grade level may be supported on properly prepared soil subgrades using a conventional asphalt pavement section. Existing pavement, utilities, structures, and foundations will need to be completely removed and replaced with compacted Granular Borrow below new paved areas. Existing fills will need to be proof-rolled and soft areas repaired prior to placing pavement gravels. Woven geotextile will be needed over clayey pavement subgrades in the northwest portion of the garage footprint.

If overhead clearance is less than 6 inches on the ground level, we recommend installing insulation below the paved surface to help mitigate potentially adverse frost heaving.

4.3 Excavation and Dewatering Considerations

Excavation work will generally encounter granular fills with ash-like material, silty clay, sand and gravel. Care must be exercised during construction to reduce strength loss of the native soils from disturbance. Earthwork and grading activities should ideally occur during drier, non-freezing weather of Spring, Summer and Fall. Rubber tired construction equipment should not operate directly on the native clays. Final cuts to subgrade should be performed with a smooth-edged bucket to help reduce soil disturbance.

Sumping and pumping dewatering techniques should be adequate to control groundwater in excavations. Controlling the water levels to at least one foot below planned excavation depths will help stabilize subgrades during construction. Excavations must be properly shored or sloped in accordance with OSHA regulations to prevent sloughing and caving of the sidewalls during construction. Care must be taken to preclude undermining adjacent structures, utilities and roadways. The design and planning of excavations, excavation support systems, and dewatering is the responsibility of the contractor.

The site was formerly used for rail operations and ash-like material was observed in the fills at several exploration locations. We recommend the fill soils be characterized for environmental handling purposes prior to construction. As discussed, impacted soils may

be able to be reused beneath the first floor ramp to avoid potentially costly export and offsite disposal.

5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We recommend a design-phase geotechnical evaluation be undertaken once the site layout and structural layout has been further defined. We look forward to working with you as the project progresses.

Sincerely,

S. W. Cole Engineering, Inc.

W_L 9

Evan M. Walker, P.E. Geotechnical Engineer

Timothy J. Boyce, P.E. Senior Geotechnical Engineer

EMW:tjb

Appendix A - Limitations

This report has been prepared for the exclusive use of Cowcatcher, LLC for specific application to the proposed Parking Structure at 222 St. John Street in Portland, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

APPENDIX B

FIGURES

	0 60 Feet
S.W.COLE	
COWCAT	CHER, LLC
EXPLORATION I	LOCATION PLAN
PROPOSED PARI 222 ST. JO PORTLAN	KING STRUCTURE HN STREET ID, MAINE
Job No.: 17-0103	Scale: 1" = 30'

Sheet: 1

Date :

03/15/2017

APPENDIX C

EXPLORATION LOGS AND KEY

										BORIN	BORING	NO.: B-201			
VE		S	W/	($^{\sim}$	N E		LIENT: Cow	PROJEC	<u>1 of 2</u> T NO. 17-0103					
	7							ROJECT: PI	ropos	sed Parking St	tructure	DATE ST	TART: 2/27/2017		
		EN	IGINI	i E	<u>t kin</u>	G, IN G	<u> </u>	OCATION: 2	222 8	St. John Stree	t, Portland, Maine	DATE FI	NISH: 2/28/2017		
Drillin LOCA DRILL RIG TY HAMM HAMM WATE	ng Infoi TION: <u></u> ING CO.: YPE: <u>TI</u> IER TYP IER EFFI R LEVEL	rmatic See Exp S. V rack Mo E: <u>Au</u> CIENC DEPT	on ploration V. Cole E ounted C itomatic / CY FACTO THS (ft):		cation Pla orations, 850 tomatic 2 10	in E LLC E / H	ELEVATI DRILLER AUGER II HAMMER HAMMER	DN (FT):26' :56 D/OD:N/A / N 2: WEIGHT (Ibs) 2: DROP (inch):	+/- I/A : <u>14</u> 30	40 / 140 / 30	TOTAL DEPTH (FT): 64.0 LOGGED BY: Evan Walker DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon CASING ID/OD: 4 in / 4 1/2 in CORE BARREL:				
KEY TO AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At ⊻ Af	er <u>Level</u> time of Dr Completic ter Drilling	illin on o	g f Drilling	D = Split S U = Undis R = Rock V = Field	Spoon San turbed Tub Core Sam Vane Shea	nple Pen. = ne Sample Rec. = ple bpf = nr mpf =	= Pen = Rec Blows Minu	etration Length covery Length s per Foot te per Foot	$\label{eq:WOR} \begin{array}{ll} WOR = Weight \text{ of Rods} \\ WOH = Weight \text{ of Hammer} & S_v = Fie \\ RQD = Rock \text{ Quality Designation} & q_U = Un \\ PID = Photoionization Detector & N/A = N \end{array}$	ld Vane Shea confined Con lot Applicable	ar Strength, kips/sq.ft. npressive Strength, kips/sq.ft.		
					SAMPL	E INFO	RMATIC	N	0						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification	H₂0 Depth	Remarks		
25 -	-		1D	$\overline{\mathbf{N}}$	0.5-2.5	24/16	4-6-11-			0.3 Aspha	alt Pavement				
•	t		20	Å	25-15	24/16	12 12_12			2.5 Proba	ble Ash (Fill)				
	Ŧ		20	X	2.5-4.5	24/10	11-10			BIOW	i Sanu anu GRAVEL, liace Sili				
20 -	- 5 - -		3D	X	5-7	24/10	5-6-7-9			Brown	n Gravelly SAND, Some Silt				
- - - - -	- - 10 -		4D	X	10-12	24/10	6-7-9- 10					Ā			
- 10 -	- - 15 -		5D	X	15-17	24/12	6-5-6-7								
5 -	- - 20 -		6D	X	20-22	24/8	10-9-8- 9								
- - 0 -	- - 25 -		7D	X	25-27	24/8	5-4-5-7								
-5 -	- - 30 -		8D	X	30-32	24/10	8-8-8-9								
-10 -	- 35 		9D	X	35-37	24/20	5-5-8-9			35.0 Gray-I	Brown to Gray Sandy SILT, Some Cla	ay			
Stratific	ation lines	repres n soil tv	ent approx pes, transi	ima tion	te s may		1	1	1	1	(Continued Next Page)	I			
be grad made a	ual. Wate t times an	r level re d under	conditions	s sta	been ated. due to										
other fa measur	ctors than rements w	those p ere mad	present at t de.	he f	time							BORING	NO.: B-201		

		S	W Igin		CC) LF g,ing		CLIENT: <u>Com</u> ROJECT: <u>Pr</u> OCATION: <u>2</u>	catc opos	BORING LOG ner, LLC ed Parking Structure it. John Street, Portland, Maine	BORING NO.: _ SHEET: _ PROJECT NO DATE START: _ DATE FINISH: _			B-201 2 of 2 17-0103 2/27/2017 2/28/2017
					SAMPI	E INFO	RMATIO	N	ŋ					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth	Re	marks
-15 — - -	-		10D	X	40-42	24/22	3-3-4- 15			^{40.0} Gray with Black Layering Clayey Silt and SAND with Frequent Sand Layers			Gravell <u>)</u> 41.8' - 4	y Layer 43'
-20 — - -	- 45 - - -		11D	X	45-47	24/20	2-5-10- 8			 ^{45.0} Brown Clayey SILT ^{46.0} Light Brown Fine to Medium SAND, Trace Silt 		-		
-25 — - -	- 50 - -		12D	X	50-52	24/22	9-11- 21-35			50.0 Brown with Orange Staining Fine SAND wi Trace to Some Silt	h			
-30	- 55 - - -		13D	X	55-57	24/22	11-14- 15-17							
-35	- 60 - -		14D	X	60-62	24/20	10-12- 14-36			60.0 Gray Silty SAND, Some Gravel (Glacial Till 61.6 Weathered Bedrock 62.0 Bedrock - Advance by Roller Cone)/			
										Bolloni of Exploration at 64.0 teet				

BORING NO.: B-201

										BORIN	IG NO.: _	B-202	
E	$ \ge $	C	W	($\gamma $	N E		LIENT: Cow	catr	SHEE	1: ECT NO.	1 of 2 17-0103	
K	7		.VV				PI	ROJECT: Pr	оро	sed Parking Structure	DATE	START:	2/28/2017
		ΓEΝ	GINE	ΞĿ	ERIN	G, IN (- ·] L(OCATION: 2	22	St. John Street, Portland, Maine	DATE	FINISH:	2/28/2017
Drillin LOCAT DRILLI RIG TY HAMM HAMM	ng Info TION: ING CO. YPE: IER TYP IER EFF R LEVEI	rmatic See Exp : _S. V rack Me rack Me E: _Au ICIENC L DEPT	Dioration I /. Cole E: Dounted Cf tomatic / Y FACTO THS (ft):	Loc xplo ME Au DR:	cation Pla orations, 850 tomatic	an E LLC E A H	ELEVATIO DRILLER: NUGER ID IAMMER IAMMER	DN (FT):26' 26ff Lee //OD:/A / N WEIGHT (Ibs): DROP (inch):	+/- I/A : <u>1</u> 4 30	TOTAL DEPTH (FT): 47.0 L0 DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 10 / 140 CASING ID/OD: 4 in / 4 1/2 in Co / 30 30 Co Co Co	DGGED	BY: <u>Evan</u>	Walker
GENE	RAL NO	TES:											
AND S	YMBOLS:	Vate ∑ At ∑ At ∑ Af	time of Dri Completio ter Drilling	illing n o	g f Drilling	U = Undist R = Rock (V = Field \	urbed Tube Core Samp /ane Shear	pie Pen. = e Sample Rec. = ble bpf = l r mpf =	= Per = Rec Blow Minu	etration Length WOR = Weight of Rods overy Length WOH = Weight of Hammer $S_v = Fie$ s per Foot RQD = Rock Quality Designation $q_{U} = Un$ te per Foot PID = Photoionization Detector N/A = N	ld Vane S confined (ot Applica	hear Strengt Compressive	h, kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFOR	RMATIO	N	- Bo				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H De	pth Re	marks
25 -			1D	X	0.5-2.5	24/16	6-7-5-3			0.3 4" Asphalt Pavement Brown Gravelly SAND, Some Silt (Fill)		Soils M	loist
-	Ļ		2D	Ø	2.5-4.5	24/20	3-4-3-4			2.2 Gray Clayey SILT, Some Sand, with Frequent Silty Sand Layers		Soils W	/et
- 20 — -	- 5 - -		3D		5-7	24/20	WOH- WOH- WOH- WOH	q⊧=0.5 ksf		5.0 Gray-Brown to Gray Silty CLAY with Occasional Sand Seams	⊻		
- - 15 —	+ - 10		1U		10-12	24/0							
-	+		2U		12-14	24/14				40 F			
- 10 —	- - 15 -		4D	X	15-17	24/6	4-4-5-6	w =27.5 %		^{13.5} Gray SAND, Trace Silt			
- - 5 — -	20		5D	X	20-22	24/16	1-1-1-1			20.0 Gray Silty SAND with Shells			
- - 0 —	25 		6D	X	25-27	24/14	4-6-7-7			25.0 Gray Medium to Coarse SAND, Trace Silt, Trace Fine Gravel			
- -5 — -	30 		7D	X	30-32	24/14	1-2-2-2			^{30.0} Gray Silty CLAY			
- - -10 -	- - - -		8D	X	35-37	24/16	2-2-12- 9			36.0 Gray Silty Fine SAND with Frequent Clayer Seams	,		
Stratific	ation lines	s repres	ent approxi	ma	te					(Continued Next Page)			
be grad made a	ual. Wate	r level re id under	eadings ha	ve t s sta	been ated.								
Fluctua other fa measur	tions of gr ctors thar ements w	oundwa those p ere mad	ter may oc present at t le.	cur he t	time						BORIN	IG NO.:	B-202

		S	GINE	CC erin) LE _{g,in}		Client: <u>Cow</u> Project: <u>Pr</u> Location: <u>2</u>	catch opos 22 S	BORING SHEET: PROJEC DATE ST DATE FI	NO.: _ T NO TART: NISH: _	B-202 2 of 2 17-0103 2/28/2017 2/28/2017	
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	SAMPL	E INFOI Pen./ Rec. (in)	RMATI Blow Coun or RQD	ON t Field / Lab Test Data	Graphic Log	Sample Description & Classification	H₂0 Depth	Re	emarks
-15 — - - -20 —	- - - 45		9D /	40-42	24/24	1-2-3-	6		41.5 Gray Gravelly Silt and SAND (Glacial Till) 44.0 Bedrock - Advance by Roller Cone 47.0 Bottom of Exploration at 47.0 feet			

BORING NO .: B-202

									E	BORIN	NG LOG	BC	RING NO.:	B-203
		S	\mathbf{W}	(CI	IENT: Cow	catcl	ner, LLC				. 17-0103
	7		. V V				- PF	ROJECT: Pr	opos	ed Parking	Structure		TE START	3/1/2017
		EN	GINE	ΞĿ	RIN	G, IN (22 8	St. John Stre	eet, Portland, Maine		TE FINISH:	3/1/2017
Drillin LOCAT DRILLI	ig Info i 10N: <u>§</u> NG CO.: 7 PE: Ti	r matic See Exp : _S. W rack Mo	on oloration I V. Cole E: ounted Ma	Loc xplo	ation Pla prations, l	n E LLC D	ELEVATIO	N (FT):	+/- 1/2 i	n	TOTAL DEPTH (FT): 9.5 DRILLING METHOD: Solid Stem SAMPLER: Standard Split-Spoor	LOGG Auger	ED BY: Eva	n Walker
намм		E: Sa	fety			— н		WEIGHT (lbs):	14	0	CASING ID/OD: N/A /N/A	CORE	BARREL:	
HAMM	ER EFFI R LEVEL		Y FACTO)R:	No Free	H Water Ob	IAMMER	DROP (inch):	30				-	
GENER	RAL NOT	TES:												
KEY TO AND SY	NOTES MBOLS:	<u>Wate</u> ⊈ At ⊈ At ⊈ Af	er Level time of Dri Completio ter Drilling	illing n of	g f Drilling	D = Split S U = Undist R = Rock 0 V = Field V	poon Samp urbed Tube Core Samp (ane Shear	ble Pen. = Sample Rec. = le bpf = I mpf =	Pene Reco Blows Minut	etration Length overy Length per Foot te per Foot		Field Va Jnconfir Not Ap	ne Shear Strer ned Compressi plicable	igth, kips/sq.ft. ve Strength, kips/sq.ft
					SAMPL	E INFOF	RMATION	١	og					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		Sample Description & Classification		H₂0 Depth F	Remarks
25 —	-		1D	\square	0.5-2.5	24/18	6-7-9-			0.2 Aspl	halt Pavement		1	
-	-		2D	A	2.5-4.5	24/14	12 12-20- 16-15			1.5 Brov	wn Gravelly SAND, Some Silt	/		
20 —	- 5 - -		3D	X	5-7	24/15	7-17- 20-30			5.0 Brov Cob	wn Sand and GRAVEL, Some Silt, wi bles	h		
-	_									9.5	Refusal at 9.5 feet			
Stratifica boundar be gradu made at Fluctuati other fac measure	ation lines y between al. Wate times an ions of gr ctors than ements w	s represe n soil ty r level re d under oundwa those p ere mad	ent approxi pes, transit adings ha conditions ter may oc present at to de.	tion ve t sta cur he t	te s may been ated. due to iime							BC	RING NO.:	B-203

		S	W GINB	EERIN			LIENT: <u>Cow</u> ROJECT: <u>Pr</u> OCATION: <u>2</u>	catcl opos	BORIN her, LLC sed Parking St. John Stre	Structure et, Portland, Maine	BORING NC SHEET: PROJECT N DATE STAF DATE FINIS	b:: B-203A 1 of 1 10. 17-0103 RT: <u>3/1/2017</u> H: 3/1/2017		
Drillin Loca DRILL RIG T HAMM HAMM WATE	ng Info TION: ING CO. YPE: IER TYP IER EFF R LEVE	rmatio	Dioration /. Cole E Dounted M fety Y FACTO HS (ft):	Location P xplorations obile B-53 DR: No Fre	lan I s, LLC I ////////////////////////////////////	ELEVATIO DRILLER: AUGER IE HAMMER HAMMER	DN (FT): <u>26'</u> Jeff Lee V/OD: <u>N/A / 4</u> WEIGHT (Ibs): DROP (inch):	+/- 1/2 i : <u>14</u> 30	n 0	TOTAL DEPTH (FT): 8.1 LOGGED BY: Evan Walker DRILLING METHOD: Solid Stem Auger SAMPLER: Standard Split-Spoon CASING ID/OD: N/A /N/A CORE BARREL:				
GENE KEY TI AND S	RAL NO 0 Notes Ymbols:	TES: ⊻ At ⊻ At ⊻ At ⊻ At	<u>er Level</u> time of Dr Completic ter Drilling	illing n of Drilling	D = Split S U = Undis R = Rock V = Field V	Spoon Sam turbed Tub Core Samp /ane Shea	ple Pen. = e Sample Rec. = ble bpf = r mpf =	= Pene = Reco Blows Minut	etration Length overy Length per Foot te per Foot	$\label{eq:WOR} \begin{split} & \text{WOR} = \text{Weight of Rods} \\ & \text{WOH} = \text{Weight of Hammer} & \text{S}_v = \text{F} \\ & \text{RQD} = \text{Rock Quality Designation} & \text{q}_v = \text{U} \\ & \text{PID} = \text{Photoionization Detector} & \text{N/A} = \text{N} \end{split}$	ield Vane Shear St Inconfined Compre Not Applicable	rength, kips/sq.ft. ssive Strength, kips/sq.ft.		
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	SAMF	PLE INFO	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log		Sample Description & Classification	H ₂ 0 Depth	Remarks		
25 -	-								See Strat Auge	Boring B-203 For Approximate Soil a er to 8.1' - No Sampling				
20 -	5 								8.1	Refusal at 8.1 feet				
Stratific bounda be grac made a Fluctua	ation linea ny betwee lual. Wate tt times ar tions of a	s repres n soil ty r level re d under oundwa	ent approxi pes, transi eadings ha conditions ter may oc	mate tions may ve been s stated. cur due to										
other fa measu	ctors than rements w	those pere mad	oresent at t le.	he time							BORING NC	B-203A		

									BORING	NO.: B-203E	3			
		C	XX/	1	$\neg c$	N F		CLIENT: Cow		PROJE	T NO. 17-0103			
	7						F	PROJECT: Pr	opos	sed Parking	Structure	DATE S	TART: 3/1/2017	,
		EN	GIN	ΕE	<u>t k i n</u>	G, IN G	<u> </u>	OCATION: 2	222 \$	St. John Stre	eet, Portland, Maine	DATE F	INISH: <u>3/1/2017</u>	
Drillin LOCA DRILL RIG TY HAMM HAMM WATE	ng Infoi FION: <u>9</u> ING CO.: (PE: <u>TI</u> ER TYPE ER EFFE R LEVEL	rmatic See Exp S. W rack Mo E: Sa CIENC . DEPT	DIO DIORATION V. Cole E Dounted M Ifety / Sat SY FACTO THS (ft):	Loc Exple lobil fety DR:	cation Pla orations, le B-53	an I LLC I //	Elevati Driller Auger I Hammef Hammef	ON (FT):26' ::Jeff Lee D/OD:N/A / N R WEIGHT (Ibs): R DROP (inch):	+/- I/A : <u>14</u> 30	40 / 300 / 16	TOTAL DEPTH (FT): 62.0 L0 DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon CASING ID/OD: 4 in / 4 1/2 in Co	DGGED BY	': Evan Walker	
KEYT	NOTES	Wate	er Level			D = Split S	Spoon Sar	nple Pen. =	= Pen	etration Length	WOR = Weight of Rods			
AND S	YMBOLS:	⊻ At ▼ At ▼ At	time of Dr Completio ter Drilling	rillin on o	g f Drilling	U = Undis R = Rock V = Field	turbed Tub Core Sam Vane Shea	ple Sample Rec. = ple bpf = ar mpf =	= Rec Blows Minu	overy Length s per Foot te per Foot	$\label{eq:WOH} \begin{array}{ll} \text{Weight of Hammer} & \text{S}_v = \text{Fie} \\ \text{RQD} = \text{Rock Quality Designation} & \text{q}_U = \text{Un} \\ \text{PID} = \text{Photoionization Detector} & \text{N/A} = \text{N} \end{array}$	ld Vane She confined Co ot Applicabl	ear Strength, kips/sq.ft. mpressive Strength, kips/ e	/sq.ft.
					SAMPI	LE INFO	RMATIC	N	- B					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		Sample Description & Classification	H ₂ 0 Depti	Remarks	
25 -	-									See Aug	Boring B-203 for Approximate Soil Stra er to 10' - No Sampling	ita		
	- 5 - 10 - 10 - 15 - 15 - 20 - 25 - 25		1D 2D 3D		10-12 15-17 20-22 25-27	24/15 24/14 24/10 24/12	7-9-7-8 8-8-8- 10 13-9- 13-13 10-12- 13-15			10.0 Brov	vn Gravelly SAND, Trace to Some Silt	Σ	Soils Damp	
-10 -10 -	- 30 - 30 - 35 - 35 									30.0 Brov 31.0 Brov 34.5 Graj and	vn SAND, Trace Gravel, Trace Silt vn Fine to Medium SAND, Some Silt y Silty CLAY with Frequent Sand Seam Layers	<u> </u>		
Stratific bounda	ation lines	represent soil ty	ent approx pes, trans	ima ition	ite is may						(Continued Next Page)			
be grad made a	ual. Wate t times an	r level re d under	condition	ave l s sta	been ated.									
other fa	Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made BORING NO.: B-203B											3		
Incasu	0.1101113 W	are mat				1								-

				X X - X	~	~ ~				E	BORING LOG	BO SHI	RING NO EET:).: _	B-203B 2 of 2
			S	Λ	(√ c	LIENT: Cow	catcl	ier, LLC	PR	DJECT N	ю.	17-0103
		フ						- PI	ROJECT: Pr	opos	ed Parking Structure	DA	TE STAF	₹ Τ: _	3/1/2017
				GINI		- KIIN	G, INC		OCATION: 2	22 8	t. John Street, Portland, Maine	DA	TE FINIS	6H: _	3/1/2017
						SAMPL	.E INFOF	RMATIO	N	g					
	Flev	Depth	Casing				_	Blow		L C L	Sample		H ₂ 0	_	
	(ft)	(ft)	Pen. (bpf)	Sample	ype	Depth	Rec.	Count	Field / Lab	aphi	Description & Classification		Depth	Rer	marks
				INO.		(11)	(in)	RQD	Test Data	ő	Chacomballon				
	15										40.0 Brown Fine SAND, Trace Silt, With				
	-15 -										Occasional Clayey Silt Seams and Layers				
	-	Ļ													
	-	+													
	-	- 45													
	-20	İ.													
	-	Ļ													
	-	ł													
	-	- 50													
	-25 —														
		I													
	-	l													
	-	- 55									55.0 Brown Silty Fine SAND with Occasional				
	-30 —	+									56.0 Clayey Silty Seams				
											Gray Silty CLAY with Frequent Sand Seams				
	-	Ļ									58.0 Increased Drill Resistance - Probable Glacia Till	I			
	-	- 60													
	-35 —	+									^{60.5} Probable Bedrock - Advance By Roller Cone	;			
		I	1								62.0 Bottom of Exploration at 62.0 feet				
2															
5/4/1															
DT															
TE.G															
NPL∕															
TEN															
3WCE															
P. S															
03.G															
17-01															
ELL	Stratific	ation line	s repres	ent approx	ima	te									
3 / WI	be grad	ual. Wate	r level re	eadings ha	ave b	o may been ated									
RING	Fluctuat	tions of gi	roundwa	iter may oc	ccur	due to									
BQ	measur	ements w	ere mad	de.	and l							во	ring no).:	в-203В

										BORING LOG BORING NO.: B-204 SHEET: 1 of 1			
	S.W.COLL CLIENT: O PROJECT:									cher, LLC PROJECT NO. 17-0103 Desed Parking Structure DATE START: 2/27/201	7		
		ΕN	GIN	ΕE	ERIN	G,IN(С.		222 \$	St. John Street, Portland, Maine DATE FINISH: 2/27/2017	7		
Drillin LOCAT DRILLI RIG TY HAMM HAMM WATE GENEI	Drilling Information LOCATION: See Exploration Location Plan ELEVATION (FT): 27' +/- DRILLING CO.: S. W. Cole Explorations, LLC DRILLER: Jeff Lee DRILLING METHOD: Cased Boring RIG TYPE: Track Mounted CME 850 AUGER ID/OD: N/A / N/A HAMMER TYPE: Automatic / Automatic HAMMER WEIGHT (lbs): 140 / 140 HAMMER EFFICIENCY FACTOR: HAMMER DROP (inch): 30 / 30 WATER LEVEL DEPTHS (ft): ¥ 5 GENERAL NOTES: Description Sample Pen = Penetration Length: WOR = Weight of Ports												
KEY TO AND S	KEY TO NOTES AND SYMBOLS: Water Level D = Split Spoon Sample Pen. ↓ At time of Drilling U = Undisturbed Tube Sample Rec. ▼ At Completion of Drilling R = Rock Core Sample bpf = ▼ After Drilling V = Field Vane Shear mpf									$\begin{array}{lll} \mbox{netration Length} & WOR = Weight of Rods \\ \mbox{covery Length} & WOH = Weight of Hammer & S_v = Field Vane Shear Strength, kips/sq.ft. \\ \mbox{vs per Foot} & RQD = Rock Quality Designation & q_u = Unconfined Compressive Strength, kips/ \\ \mbox{ute per Foot} & PID = Photoionization Detector & N/A = Not Applicable \end{array}$	/sq.ft.		
					SAMPL	E INFO	RMATI	ON	g				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Coun or RQD	t Field / Lab Test Data	Graphic Lo	Sample H ₂ 0 Description & Depth Remarks Classification			
-	-		1D	∇	0.5-2.5	24/8	12-8-			0.3 4" Asphalt Pavement			
25 — - -	+ + +		2D		2.5-4.5	24/10	10-9 12-11 14-14	-		Trace Silt (Fill) Gray to Gray-Brown Silty Gravelly SAND with Cobbles and Concrete (Fill)			
20 -	- 5 - -		3D	X	5-7	24/8	5-7-8 10	-		5.0 Brown Gravelly SAND, Some Silt $\underline{\nabla}$			
- - - 15	- 10 - 10		4D	X	10-12	24/14	5-5-4-	2		10.0 Brown SAND, Some Gravel, Trace Silt, with Silty Seams			
- - - 10	- - 15 -		5D	X	15-17	24/3	3-5-5-	8		15.0 Brown Gravel and SAND, Some Silt			
-	- - 20		6D	V	20-22	24/22	WOH	-		18.0 Gray Silty CLAY with Frequent Sand Layers Wash Turned Gray at 18'			
5 — - -	+						3-4			and Clay Seams			
0	- 25 - -		7D	X	25-27	24/18	5-5-3-	4		25.0 Brown with Orange Staining Fine to Medium SAND, Trace Silt			
-5	- - 30 -		8D	X	30-32	24/12	4-5-11 9	-		29.0 Gray Silt and SAND, Some Gravel (Glacial Cobbles/Gravel at Till)			
	- - 35 -									34.0 Bedrock - Advance By Roller Cone			
-10	-	. <u> </u>					1	1		37.0 Bottom of Exploration at 37.0 feet			
Stratific bounda be grad made a Fluctua	ation lines ry betwee ual. Wate t times an tions of gr	s represe n soil typ r level re d under oundwat	ent approx bes, trans adings ha condition ter may o	kima ition ave l s sta ccur	te s may been ated. due to								
measur	ements w	ere mad	esent at	ule	ume					BORING NO.: B-204			

	0		***	~						BORIN	BORING SHEET:	B-205 1 of 2		
		S	λ	(-} c	LIENT: Cow	catc	her, LLC		PROJEC	T NO.	17-0103
		FN		- 		GING	- P	ROJECT: Pr	opos	sed Parking	Structure	DATE S	TART:	3/2/2017
				- 1		u, IIV	<u> </u>	OCATION: _2	22 8	St. John Stre	et, Portland, Maine	DATE F	INISH:	3/2/2017
Drillin LOCAT DRILLI RIG TY HAMM HAMM WATE	ng Infoi FION: <u></u> ING CO.: (PE: <u>T</u> IER TYP IER EFFI R LEVEL	matic See Exp S. V rack Mo E: Sa CIENC DEPT	on ploration V. Cole E ounted M ifety / Saf CY FACTO THS (ft):	Loc xpl obi ety DR:	cation Pla orations, le B-53	in E LLC E F	ELEVATIO DRILLER: AUGER II HAMMER HAMMER	TOTAL DEPTH (FT): 58.0 L DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon CASING ID/OD: 4 in / 4 1/2 in C	OGGED BY	': <u>Evan</u> REL:	Walker			
GENE	RAL NOT	ES:	110 (19)		- 10									
KEY TO AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At ⊻ Af	er Level time of Dr Completic ter Drilling	illin on o	g f Drilling	D = Split S U = Undis R = Rock V = Field V	Spoon Sarr turbed Tub Core Sam Vane Shea	nple Pen. = e Sample Rec. = ple bpf = r mpf =	= Pen = Rec Blows Minu	etration Length overy Length s per Foot te per Foot	$\label{eq:WOR} \begin{array}{ll} WOR = Weight of Rods \\ WOH = Weight of Hammer \\ RQD = Rock Quality Designation \\ PID = Photoionization Detector \\ N/A = I \end{array}$	eld Vane She nconfined Co Not Applicabl	ar Streng mpressive e	th, kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	b B					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification	H ₂ 0 Depti	n Re	emarks
25 —	-		1D		0 5-2 5	24/18	10-12-			0.3 Aspł	nalt Pavement	/		
-	-			X	0.0 2.0	24/10	12-13			1.0 Blac	k Silty SAND, Some Gravel (Fill)	/		
	-		2D	\square	2.5-4.5	24/18	9-10-9-			2.5 Brow	n SAND, Some Gravel, Trace Silt			
-	-			Δ			10							
20			3D	X	5-7	24/18	6-14- 14-11			^{5.0} Brov	n Gravel and SAND, Trace Silt		Soils D	bamp
- - 15 -	- - - - -		4D	X	10-12	24/10	4-9-7-8			Brow	n Gravelly SAND, Some Silt	Ţ		
- - 10 -	- - - - - - -		5D	X	15-17	24/6	5-7-17- 11							
- 5 -	- - 20 -		6D	X	20-22	24/0	8-11- 12-20							
0	- 25		7D	X	25-27	24/3	10-9- 10-11			Brow	n Silty Gravelly SAND with Cobbles			
	- 30		8D	X	30-32	24/12	12-14- 13-19							
-10 - -10 - - 	- 35 - 35 		9D	X	35-36.8	22/2	14-33- 42-50- 4"/4"							
Stratific	ation lines	repres	ent approx	ima tion	ite is mav		L	1	1	1	(Continued Next Page)	I		
be grad made a	ual. Wate t times an	r level re d under	eadings ha	ive l s sta	been ated.									
Fluctuat other fa	tions of gr ctors than	oundwa those p	iter may oc present at t	cur	due to time							BORING	NO ·	B-205
measur	ements w	ere mad	Jê.											D-200

		S	W GINE	(E E	CC E R I N) LF g,ing		CLIENT: PROJEC LOCATIC	<u>Cowc</u> T: <u>Prc</u> DN: 22	BORING LOG wcatcher, LLC Proposed Parking Structure 222 St. John Street, Portland, Maine				NO.: NO ART: IISH:	B-205 2 of 2 17-0103 3/2/2017 3/2/2017
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	SAMPL Depth (ft)	E INFOR Pen./ Rec. (in)	RMAT Blov Cour or RQI	ION v t Test	/ Lab Data	Graphic Log	Sample Description & Classification		H₂0 Depth	Re	marks
-15 - - - -20 - - - - - - - -	- 45		10D 11D	X	40-42	24/20 24/20	9-8-7 10 12-14 12-2	4- 3			0.0 Brown Silty Fine SAND with Silt Sea 6.0 Gray Silty SAND with Frequent Silt L	ams _ayers			
-25 - - -30 - -	- 50 		12D	X	50-52	24/24	3-6-1 34	0-			Gray Silty SAND, Some Gravel (Glav Gray Silty SAND, Some Gravel (Glav S.9 Bedrock - Advance by Roller Cone Bottom of Exploration at 58.0 f	cial Till)			

BORING NO .: B-205

			117		20					BORI	RING LOG				10.: _	B-206 1 of 2
	-	S	\mathbf{M}				- CI	LIENT: Cow	cato	her, LLC				PROJECT	' NO.	17-0103
	フ		CINE	- 		C INC	- PF	PROJECT: Proposed Parking Structure							ART:	3/3/2017
			GINI	- 1		a, in t		DCATION: 2	222	St. John Stre	et, Portland,	Maine		DATE FIN	IISH:	3/3/2017
Drillin Locat Drillin Rig Ty Hamm Hamm Wate	ng Infoi FION: <u>S</u> ING CO.: (PE: <u>T</u> IER TYP IER EFFI R LEVEL	rmatic See Exp : _S. W rack Mo E: _Sa CIENC . DEPT	Dioration Dioration V. Cole E Dunted Ma Sounted Ma Sounte	Loc xplo obil ety DR:	cation Pla orations, le B-53	an E LLC E / H	Elevatic Driller: Auger ID Hammer Hammer	DN (FT):25.(Jeff Lee //OD:N/A / N WEIGHT (Ibs): DROP (inch):	5' +/- I/A : <u>1</u> 4 30	- 40 / 300 / 16	TOTAL DEP DRILLING M SAMPLER: CASING ID/0	TH (FT):45.9 IETHOD:CarStandard Spl OD:4 in / 4 1/2) LC sed Boring it-Spoon 2 in CC	DGGED BY: DRE BARRE	<u>Evan '</u>	Walker
GENE	RAL NOT	TES:														
AND S	YMBOLS:	<u>Wate</u> ∑ At ∑ At ∑ Af	time of Dri Completio ter Drilling	illing on of	g f Drilling	U = Undis R = Rock V = Field	turbed Tube Core Samp /ane Shear	ple Pen. = e Sample Rec. = le bpf = l mpf =	= Per = Rec Blow Minu	tetration Length covery Length s per Foot ute per Foot	WOR = Weig WOH = Weig RQD = Rock PID = Photoio	ght of Rods ght of Hammer Quality Designatio onization Detector	$S_v = Fie$ on $q_U = UnoN/A = N$	ld Vane Shear confined Comp ot Applicable	Strengtl pressive	h, kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	- Bo			0 1				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		De Cl	Sample escription & lassification		H₂0 Depth	Rei	marks
25 —	-		1D	M	0.5-2.5	24/18	6-8-8- 12			0.3 <u>4" A</u> Blac	sphalt Pavem k Silty SAND,	ient , Some Gravel (Fill)			
-			2D	$\left \right $	2.5-4.5	24/18	10-13- 15-13			1.8 Brov 2.5 (Pro Brov	vn SAND, Sor bable Fill) vn Medium to	me Gravel, Trac Coarse SAND,	æ Silt Trace Silt	 \		
20 -	- 5		3D		5-7	24/22	6-6-7-9			6.0 Grav	-Brown Silty S	SAND, Trace G	ravel			
-	- - - -											- ,				
- 15 — -	- 10 -		4D	X	10-12	24/14	3-8-7-8			10.5 Brov Grav	vn Medium to vel, Trace Silt	Coarse SAND,	Trace			
- - 10 — -	- - - - - -		5D	X	15-17	24/6	4-9-9- 12			15.0 Brov	vn Gravelly S/	AND, Some Silt				
- - 5	- - - 20		6D	X	20-22	24/10	5-5-4-7			20.0 Brov	vn SAND, Sor	me Silt, Trace G	Gravel			
- - - 0 — -	- 25		7D	X	25-27	24/22	2-3-3-4			25.0 Gra Sea	v Silty CLAY w	vith Frequent Sa	and and Si	ilt		
- - -5 -	- - - 30		8D	X	30-32	24/15	3-4-19- 34			30.0 Gray Trac	/ Medium to C e Silt	Coarse SAND, T	race Grav	el,		
- - - 10 -	- - - - -		9D	X	35-37	24/2	4-4-5-5			35.0 Gra	v Silty SAND,	Some Gravel ((Glacial Till))		
-	-															
Stratific boundat be grad made a Fluctuat	ation lines ry betwee ual. Wate t times an tions of gr	represe n soil ty r level re d under oundwa	ent approxi pes, transit adings ha conditions ter may oc	ima tion ve t s sta	te s may been ated. due to						(Contin	nued Next Pag	e)			
other factors than those present at the time measurements were made.													BORING N	10.:	B-206	

CLIENT: COWO PROJECT: Project: Project: Project: Project: 22									BORING LOG her, LLC sed Parking Structure St. John Street, Portland, Maine	BOF SHE PRC DAT DAT	RING NO.: _ EET: DJECT NO. FE START: FE FINISH:	B-206 2 of 2 17-0103 3/3/2017 3/3/2017
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	SAMPL e Depth ⊢ (ft)	E INFO Pen./ Rec. (in)	RMATIC Blow Count or RQD	DN Field / Lab Test Data	Graphic Log	Sample Description & Classification		H₂0 Depth R€	emarks
-15 — - - -20 —	- - - - 45		10D 1R	⊻40-40.8 40.9- 45.9	9/9 60/60	8-50- 3"/3" 44			40.8 40.9 Weathered Bedrock - Advance by Roller Cone Bedrock Gray PHYLLITE, medium hard, fine grained closely spaced shallow to steep dipping 45.9 fractures. Light oxidization. Bottom of Exploration at 45.9 feet	I,		

BORING NO .:

B-206

• Geotechnical Engineering • Field & Lab Testing • Scientific & Environmental Consulting

KEY TO THE NOTES & SYMBOLS Test Boring and Test Pit Explorations

All stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight

 $\gamma_{\rm B}$ - buoyant soil weight

Descriptio	n of Proportions:	Description	of Stratified Soils
Trace: Some: "Y" And	0 to 5% 5 to 12% 12 to 35% 35+%	Parting: Seam: Layer: Varved: Occasional: Frequent:	0 to 1/16" thickness 1/16" to ½" thickness ½" to 12" thickness Alternating seams or layers one or less per foot of thickness more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

S.W.	co	LF	, ~^
ENGINEE	RING,	INC.	
GEOTECHNICA	L CONSUL	tants	

ROJECT/CLIENT:

Six Liberty Drive, Bangor, ME 04401 TEL (907) 848-5714 FAX (907) 848-9403

Gray Piaza, P.O. Box 378, Gray, ME 04039 TEL (207) 657-2826, FAX (207) 657-2840 161 Water St., P.O. Box 220, Caribou, ME 04736 TEL (207) 496-1511 FAX (297) 496-1501

TRAIN STATION / CITY OF PORTLAND

BORING NO	B-101
PROJECT NO.	94-716 S
DATE START	7/27/95
DATE FINISH	7/27/95

SURFACE ELEVATION ________

ATION		222 ST. JO	IN STREET	PORTLAND, MAI	NE		
	GREAT	WORKS TEST	BORING, INC.	DRILLER	DAVE DIONNE		
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		WATER LEVEL INFORMATION	
NG	172 A.S. Andre S. Announcement and a statements	Castor Construction		 		NO FREE WATER OBSERVED	
AMPLER	()))))))))))))))))))))))))))))))))))))	An				Banasanan ana sa kanana ka	

SING	SING SAMPLE SAMPLER							na table ann an ann an ann ann ann ann ann ann				
PER	NO.	PEN.	REC.	DEPTH	 06	LOWS	PER (3" 18-24	DEPTH	STRATA & TEST DATA		
-001				BOL					2"	ASPHALT		
		24"	18"	2,5'	9	12	13	13	4.0'	LIGHT BROWN SILTY FINE TO MEDIUM SAND W/SC	ME GRAVEL	(FILL)

	2	24"	11"	6.5'	23	85	22	20		W∍ 2.4%		
412-00										BROWN GRAVELLY FINE TO COARSE SAND W/TRA	CE OF SILT	
10507-2010-2010										~ DENSE TO MEDIUM DENSE~		
64 	3	24"	8"	11.5'	7	9	10	13	11,5'			
										BOTTOM OF EXPLORATION AT 11.5'		
uniterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterinoviterin												
*6-00-0												
										•		
na e i successive d'activité												
-												
]						
			{									
**************************************									and the sub-section of the		alion na subalikati subali subali subali subalikati subalikati subalikati subalikati subalikati subalikati suba	
	SO	L CLA	SSIFIE	DBY:		_	RE	MARP	(8:			\bigcirc
DRIL	LER-	VISUA	L LY		X]		STF	RATIFICATION LINES REPRESENT THE			\mathcal{O}
SOIL	. TECH		N-VIS	UALLY	×	{			PROXIMATE BOUNDARY BETWEEN SOIL TYPES,			
LAB	UNNAI (1	mit H	:918		Ľ	l	1	ANI	I HE TR	iangi i kon mat be: Gnadual.	BORING NO.	B-101

C	W	C		F.						Ň				BORING	NO	B-102
<u>)</u> ,				_ ~	\sim		1=		Six Liberty Driv	e, Bangor, ME 04401 TEL	207) 848-5714 FAX (907) 848-9403		PROJEC	T NO.	94-716 S
EOT	BINE ECHNIC		S, ING SULTAN	C. TS	•		× 1	Gray i 61 Water S	лаzа, РО Вох (, РО Вох 92(378, Gray, ME 04039 - TEL 0, Caribou, ME 04736 - TEL :	(207) 657-2866 FAX ((207) 496-1511 FAX (207) 657-28-10 297) 496-1501		DATE S	TART	7/27/95
		_		TRA	IN ST	ΔΤΙΟΙ	N / (OF POR					DATE FI	NISH	26.0
5T7	CUE	NI :		222	ST.	JOHN	STR	EET	PC	ORTLAND. MA	NE			SUHFAC	e elewa	TON
		GF	REAT	WORK	S TE	ST B	ORIN	G. INC			DAVE DI	ONNE				
GI	FIRM							ET 14/	·		E					
		1 1 1 1	E	512	C I.V.	I			/. r	nammen Pall			NO FREE	EVEL INF	OBSER	VED
-	•					-			·····				6			
n	-					•										
G	*****	SAN	PLE			SAM	PLER		<u> </u>	T						74680.63267452762762762762762762762
s	5	DEN	PEC	DEPTH	B	LOWS	PER	6"	DEPTH			STRAT	A & TEST D	ATA		
		- CN.	nev.	вот	0-6	8-12	12-18	18-24	ļ							
-					·		<u> </u>		1	LIGHT BRO				ISOME (
╉		24"	16"	2.5'	3	7	7	6	1	TRACE OF	SILT		SE SAND W	7 SUME (AND
┫								1	4.0'		~~ ME	DIUM DEN	SE ~~	(r)	LL)	
									1							
	2	12"	0	5,5				ļ]	GRAY SILT	Y CLAY					an An
+	IS	30"	30'	8.0'	HYD		P	USH		au= 1.35 ksf		W= 3	0.4%		qp	= 0,5-1.0 ks
1	2x3	VAN	F.	8,5'					Sv= 1.3	8/0.40 ksf	•	WI= 3	3 0.1		••	
1	2x3	VAN	E	9.0'				ĺ	Sv= 1.5	68∕0,40 ksf		Wp=	161			
_				1161	11/01	(15"					~ N					
-	3	24 \// N	24*	12.0,	WOH	/15	1/3	2	12 Sv- 7	52/198 ket		W= 2	28,2%	•		······
	2x3	VAN	E	12.5'				 	Sv= 8	01/2,77 ksf						
									1	GRAY SIL	TY CLAY W		SAND LAYER	s		
_		24"	0.4"	10.51	WO	4 /10			ļ			147. 0	6 7 8/		00.	- O 6 kef
+		24	24	16,5	WUI	M/12		2	1			vv = <i>2</i>	0,1 %		46.	- 0,0 k31
1			· · · · ·										WIL.			
_		04"	24"	0151	WO	1/12	NACH.					W= 2	6.9%		00;	= I.O ksf
+		_24	24	21,3	WOr	1/12	WOR	WOIN								
	·								24'.							
ļ										STIFFEP					MATER	
4								 			ULLI ULAI		- DENGE ORI		MALER	
+																
1									29.5							
4				- (вот	TOM OF EX	PLORATIC	N AT 29.5'			
+				•							R	DD PROBF				
╉											DEPTI	BLOW	'S			
											21.5'-22.	5' 2				
4											22.5-23.	ວ 4 .5 5				
+											24.5'-25	.5' 4				
+											25.5'-26	5 5				
1											27.5'-28	.5' 7				
											28.5'-29	.5' 8	riserum Debitis unna narrowizers turas	na an a	awatana katalajan kata	erien estek alle sinde Mademartik dien b
	SOI	L CLA	SSIFI	ED BY :			R	EMAR	KS :							
સા.	LER-	VISUA	LLY		X]		ST	RATIFIC	TION LINES RE	PRESENT TH	E				ૈ
SOIL TECHNICIAN-VISUALLY X APPROXIMA					ATE BOUNDARY	BETWEEN S	OIL TYPES,		r1							
LABORATORY TESTS X AND THE T					RANSITION MAY	BE GRADUA	L.			BORING	NO. B-102					

<u>S.W.COLE</u>	
ENGINEERING, INC. GEOTECHNICAL CONSULTANTS	

TRAIN STATION / CITY OF PORTLAND

Six Liberty Drive, Bangor, ME 04401 TEL (207) 848-5714 FAX (207) 848-2403

 Six Liberty Unite, Bargor, ME 04401
 TEL (207) 846-5714
 FAX (207) 848-5403

 Gray Piaza, P.O. Box 378, Gay, ME 04039
 TEL (207) 657-9866
 FAX (207) 657-9840

 161 Water St., P.O. Box 290, Canbou, ME 04736
 TEL (207) 496-1511
 FAX (207) 496-1501

PROJECT NO.	94-716 5
DATE START	7/27/95
DATE FINISH	7/27/95
SURFACE ELEVA	100

BORING NO.

B-103

-

HOJECT/CLIE	NT :	TRAIN STAT	ION / CITY OF	PORTLAND			SURFACE ELEVATION	26.0'±
ATTION		222 ST. JO	HN STREET	PORTLAND, MAI	NE			
ALLING FIRM	GREAT	WORKS TEST	BORING, INC.	DRILLER	DAVE DIONNE	100 BAN/2 day law law law		
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		WATER L	EVEL INFORMATION	
₩G	*	and the second state of the second				<u> </u>		pittine gala
MPLER .	*****	Constant of the second				4.4		Rengage

SING	SAMPLE		_	SAM	PLER								
PER	NO.	PEN.	REC.	DEPTH	B	6-12	PER (18-24	DEPTH	STRATA & TEST DATA			
<u>= 001</u>				BOT		<u> </u>			3.5	ASPHALT			
	1	24"	11"	2.5'	7	8	7	8	4.0'	LIGHT BROWN MEDIUM TO COARSE SAND W/SOMI TRACE OF SILT	E GRAVEL AND (FILL)	,	
	2	24"	0	6.5'	1/1	2"	1	2	8.0'	GRAY SILTY CLAY W/SOME FINE SAND			
THE OWNER AND A DECISION OF THE	3	24"	13"	11.5'	1	5	7	9	11.5	BROWN FINE TO MEDIUM SAND W/SOME GRAVEL			
	5									BOTTOM OF EXPLORATION AT 11,5			
SOIL CLASSIFIED BY : REMAI DRILLER-VISUALLY X S' SOIL TECHNICIAN-VISUALLY X Ai LABORATORY TESTS Ai			EMARI STT API ANI	(S : RATIFICA PROXIMA D THE TR	TION LINES REPRESENT THE TE BOUNDARY BETWEEN SOIL TYPES, RANSITION MAY BE GRADUAL.	BORING NO.	4 B-103						

5	W	ſ.			^				_		BORN	NG NOB-104
FN	GINE	FRINC	5. IN	<u> </u>	\sim			Gray	Six Liberty Driv Piaza, P.O. Box	r, Bangor, ME 04401 TEL (207) 848-5714 FAX (207) 848-5403 378, Grey, ME 04039 TEL (207) 657-5866 FAX (207) 657-58-10	PROJ	ECT NO54-718_5
GEOT	ECHNIC	AL CON	SULTAN	ITS		\sim	16	1 Water 5	t,₽Ο Βο×ΩΩ	, Caribou, ME 04736 TEL (207) 496-1511 FAX (297) 496-1501	DATE	START7/27/95
		•									DATE	FMSH 7/27/95
JECT/	CLIE	NT :	in a cura cura	TRA	IN ST	ATIO	N / C	ITY	OF POF	TLAND	SURF/	CE ELEVATION
ATION	Lastration			222	ST. J	IOHN	STRE	ET	PC	RTLAND, MAINE		
LLING	FIRM	GF	REAT	WORK	S TE	ST B	ORING	5, INC		DRILLER DAVE DIONNE		
		Түрі	E	SIZ	e I.D.		HAMM	ER W	Τ. Ι	IAMMER FALL	VATER LEVEL IN	FORMATION
NG				 ,		-				en andere andere andere en	4.1' INSIDE AU	GERS
w.reu	-			Canal State		•				anders and an		nga ang kang kang kang kang kang kang ka
SING		SAM	PLE	al a subsection of the subsection of th		SAM	PLER		T			der sind Marken mit den det det felder folgen in der einer sind für sind anna under gesetzen gesetzen.
PER	NO.	PEN.	REC.	DEPTH	0-6	R-12	12-18	18-24	DEPTH	STRATA & 1	EST DATA	
100				BOT					5	ASPHALT		
									1.3	BLACK GRAVELLY FINE TO MEDIUM SA	ND W/SOME	SILT AND COAL ASH
		24"	18"	2.5	4	<u> </u>	13	18	-			1997 - 19
									1	LIGHT BROWN GRAVELLY FINE TO COA	ARSE SAND W	SOME SILT
	~	24"	16"	65	24	30	22	33	6.5'			
	2	67	10	0,5					1	BOTTOM OF EXPL	ORATION AT	6.5'
]			
								-	4			
Marcal and Control of									1			
-												
]			
<u></u>												
									ļ			
								-				
,												
restanting and												
	······											
										e e e e e e e e e e e e e e e e e e e		
10100000000000000000000000000000000000									erendenstronomonom		un and the annual to be and	
	SO		SSIFI	ED BY :			R	emar	KS :			5
DRIL	LER-	VISUA	LLY		X]		ST	RATIFIC	TION LINES REPRESENT THE		Ů
SOI	TEC		VN-VI	SUALLY	X	-		AP	PROXIM	ATE BOUNDARY BETWEEN SOIL TYPES,	ſ	
LABORATORY TESTS				L		1	AN	ו' אד טו ד	HANSITION MAY BE GRADUAL.		BORING NO. D-104	

S	W	C		, ,	n lis.			5	in Liberty Drive	Borgor, ME 04401 TEL (207) 848-5714 FAX (207) 848-2403 PRO	ING NO	B-10 94-7	05 16 S	
EN	GINE		3, IN SULTAN	C. ns	~~~~``		10	Gray P S1 Water St	haza, P.O. Box 3 , P.O. Box 920,	178, Gray, ME 04039 TEL (207) 657-5857 FAX (207) 657-58-10 Carlbou, ME 04736 TEL (207) 496-1511 FAX (207) 496-1501 DATT	E START	7/27	7/95	
										DATI	FINISH	7/2	7/95	
OJECT	/CLIE	NT : _	n de de cincipa de la desta desta	TRA	IN ST	TLAND SURI	ACE ELEVA		27.0'±					
KTION				222	ST	JOHN	STRE	EET	<u> </u>	RTLAND, MAINE				
ILLING	FIRM	GI	REAT	WORK	STE	SIB	ORING	s, INC	•	DRILLER DAVE DIONNE				
		ТҮР	E	SIZ	E LD.	1	HAMM	ER W	Г. Н	AMMER FALL WATER LEVEL	INFORMATI	ON		
NG		Carbon and a second		Canado Meteoria		-			. , picona	4.0'	<u></u>			
MPLER	•					•	<u> Alexii - an Ternickin</u> a							
SING	[[SAN	PLE		1	SAM	PLER		 		na constanti (con con constante della d	MD BOTH BUTTHERE	an a	
PER	NO.	PEN.	REC.	DEPTH	B	LOWS	PER	6" 	DEPTH	STRATA & TEST DATA				
- <u>oot</u>				BÔT	0-0	6-12	12-18	18-24	ļ	BLACK GRAVELLY FINE TO MEDILIM SAND W (SOM			лен	
AGANCE BORNES	1	24"	17"	2.0'	3	4	6	9	1.3'	~LOOSE~		(FI	LL)	
									1					
-					 		 		ļ					
anio anti di Camponi di						+	+			LIGHT BROWN GRAVELLY FINE TO COARSE SAND	W/SOME	SILT		
99999-0-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	2	24"	14"	6.5'	7	15	15	11		W=14.1%				
4000 000	 					<u> </u>								
	 													
									115'					
	3	24"	15"	11.5	10	12	13	9		BOTTOM OF EXPLORATION AT 11.5'				
·						┼──	<u> </u>							
u				ļ	ļ	<u> </u>	ļ							
						<u> </u>	<u> </u>							
2010/00/00/00/00/00/00/00/00/00/00/00/00/	ļ	ļ			 	<u> </u>	ļ	ļ						
00-lacamentaniharitat	ļ			ļ	 				i					
1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997														
					 	_	 							
						<u> </u>								
anstruktur, sp.														
. :					 									
						 								
n and again the state of the														
	 				 	<u> </u>						1		

.ann gint fachain	L	L	L	L	L						territoriaeren al Mitchiel (Mitchiel Vol	1.71712.A		
	SOIL CLASSIFIED BY : REMARKS												6	
DRI	LLEA-	VISUA	LLY		X	4		STI	RATIFICA	TION LINES REPRESENT THE			U	
50		HNICI/	N-VI Fore	SUALLY	Ķ	4	ł	AP		NTE BOUNDARY BETWEEN SOIL TYPES,				
	n mai		E0 Q		Ľ	1		AN	INE I	RANGH KAY DE UNADUAL.	BORING	NO. ^D	-100	

,
S.W.	CO	LF.	~~~/
ENGINEE	RING, I	NC. ANTS	- ~ ~

-

 Sixt Liberty Drive, Bangor, ME 04401
 TEL (207) 848-5714
 FAX (207) 848 2403

 Gray Para, P.O. Box 378, Gray, ME 04039
 TEL (207) 657-5826
 FAX (207) 657 5610

 161 Water St., P.O. Box 220, Carlbou, ME 04736
 TEL (207) 496-1511
 FAX (207) 496-1501

BORING NO.	B-1	06	
PROJECT NO.	94-7	716 S	
	1		
DATE START	7/27	7/95	
DATE FINISH	7/2	7/95	
SURFACE ELEVAT		38.0'±	

ROJECT/CLI	ENT :	TRAIN STAT	ION / CITY OF	PORTLAND	SURFACE ELEVATION	38.0'±	
ATION		222 ST. JO	HN STREET	PORTLAND, MAI	NE		
	GREAT	WORKS TEST	BORING, INC.	DRILLER	DAVE DIONNE	****	
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		WATER LEVEL INFORMATION	
NG						NO FREE WATER OBSERVED	-
AMPLER	-			an a			

SING		SAM	PLE			SAM	PLER					
PER	NO.	PEN.	REC.	DEPTH	B	LOWS	PER C	10.04	DEPTH	STRATA & TEST DATA		
<u>≂001</u>				вот	0-0	6-12	12-18	18-24	2"			
									~	LIGHT BROWN FINE TO COARSE SAND W/SOME GRAV	VEL AND	
	1	24"	16"	2,5'	6	8	9	12	3.2'	TRACE OF SILT ~ MEDIUM DENSE ~		(FILL)
A12049841-11	2	24"	11"	4.5'	15	19	14	31		TAN BROWN MEDIUM TO COARSE SAND W/SOME GRA	AVEL AND	
	<u> </u>	<u>6.</u> T	11		-13			<u></u>	65'	TRACE OF SILT ~ DENSE TO MEDIUM DENS	SE~~	(FILL)
	3	24"	0	6,5'	8	11	12	11	0,0			
1										LOTTOM OF EXPECTATION AT 6.5		
Fore consideration												
/												
NIK TATING												
]					
Land					······							
											an a	
SOIL CLASSIFIED BY : REM		EMAR	(\$:	х.		$\overline{(7)}$						
DRII	DRILLER-VISUALLY X		STRATIFICATION LINES REPRESENT THE				\cup					
SOI	OR AT		W-VIS	SUALLY	×	-			PROXIMA D THE T	ALE BOUNDARY BE I WEEN SUIL I TPES,	****	B 100
LABORATORY TESTS			1		AUN		THIGHT MAT DE UNALVAL,	BORING NO.	B-102			

S.W.COLE	/
 ENGINEERING, INC. GEOTECHNICAL CONSULTANTS	

Six Liberty Drive, Bangor, ME 04401 TEL (907) 848-5714 FAX (907) 848-9403

Gray Pia/a, P.O. Box 378, Gray, ME 04039 TEL (207) 057-9866 FAX (207) 057-9810 161 Water St, P.O. Box 220, Caribou, ME 04736 TEL (207) 496-1511 FAX (297) 496-1501

TRAIN STATION / CITY OF PORTLAND

BORING NO.	B-107						
PROJECT NO.	94-716 S						
DATE START	7/27/95						
DATE FINISH	7/27/95						
SURFACE ELEVATION 36.0'±							

B-107

ROJECT/CLIE	ENT :	TRAIN STAT	FION / CITY OF	PORTLAND		SURFACE ELEVATION	36.0'±
ATION		222 ST. JO	HN STREET	PORTLAND, MAI	NE		
RILLING FIRM	GREAT	WORKS TEST	BORING, INC.	DRILLER	DAVE DIONNE		
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		WATER LEVEL INFORMATION	
MG		generale tilled with white he finds to				NO FREE WATER OBSERVED	
AMPLER	dates and an over single end of the second	- ·	With the state of				

SING SAMPLE		SAM	PLER										
PER	NO.	PEN.	REC.	DEPTH	BI	Lows	PER	5 *	DEPTH	STRATA & TEST DATA			
<u>=001</u>				BÖT	0-0	8-12	12-18	18-24	2.5"				
									2,5	ASPHALI	TRACE OF		
		24"	16"	25'	9	13	13	14	2.8 [.]	SILT AND COBBLES (FILL) ~MEDIUM DEN	SE~		
	_ _			2,0			.0			LIGHT BROWN GRAVELLY MEDIUM TO COARSE SAN	DW/TRACE C	F	
	2	24'	18"	4.5'	5	5	6	9	4.0'	SILT AND COBBLES (FILL) ~MEDIUM DENS	SE ~~		
te State										LIGHT BROWN MEDIUM TO COARSE SAND W/SOME	GRAVEL AND	SILT	
	3	24"	10"	6,5'	8	7	13	7					
									8.5'				
	4	24"	8"	8.5'	8	12	14	13	0.0	BOTTOM OF EXPLORATION AT 8.5			

1010-2010-2017 (1110-1017)													
,													
				terministi si terministi		 		{					
j													
										,			
3													
							-						
			l								nana ni administrativa Gan Indiana ya ma		
SOIL CLASSIFIED BY :		(5:											
DRIL	LER-	VISUA	LLY		×		1	ST	RATIFICA	TION LINES REPRESENT THE	U U		
BOIL	. TECI	IMICIA	NVIS	UALLY	×	ļ		API	PROXEMA	TE BOUNDARY BETWEEN SOIL TYPES,			
LABORATORY TESTS			1	ANI	d the tr	BORING NO.	B-107						

S.W.COLE	
ENGINEERING, INC.	Gray Piaz
GEOTECHNICAL CONSULTANTS	161 Water St., P

x Liberty Drive, Bangor, ME 04401 TEL (\$07) 848-5714 FAX (\$07) 848-9403 170, P.O. Box 378, Gray, ME 04039 TEL (\$07) 657-9926 FAX (\$07) 657-9916 P.O. Box 390, Canbou, ME 04736 TEL (\$07) 496-1511 FAX (\$97) 496-1501

PROJECT NO.	94-716 S					
DATE START	7/27/95					
DATE FINISH	7/27/95					
SURFACE ELEVATION						

BORING NO.

B-108

							And the second
OJECT/CLI	ENT :	TRAIN STAT	ION / CITY OF	PORTLAND		SURFACE ELEVATION	36.0'±
ATION		222 ST. JOI	HN STREET	PORTLAND, MAI	NE		
ALLING FIRM	GREAT	WORKS TEST	BORING, INC.	DRILLER	DAVE DIONNE		
	TYPE	SIZE I.D.	HAMMER WT.	HAMMER FALL		WATER LEVEL INFORMATION	
MG	Quality comes a management					NO FREE WATER OBSERVED	
MPLER			(2010) of the state of the stat				

SING SAMPLE		_	SAM	PLER									
PER ≊OOT	NO.	PEN.	REC.	DEPTH	B 06	6-12	PER (5" 18-24	DEPTH	STRATA & TEST DATA			
and the second						1	1		2.5	ASPHALT			
		18"	9"	2.0'	9	13	9			LIGHT BROWN GRAVELLY FINE TO COARSE SAND	V/TRACE OF		
									4.0'	~ MEDIUM DENSE ~			
	2	24"	14"	5.5'	15	10		16	5,5'	LIGHT GRAY CLAYEY SILT ~ HARD~	db=	9.0+ ksf	
		27	14	5.5	10	13	1-4	10	7.5'	BROWN CLAYEY SILT ~~ HARD~~	qb=	9,0+ ksf	
	3	24"	15"	7.5'	8	15	15	20		BOTTOM OF EXPLORATION AT 7.5'			
2)))))))))))))))))))))))))))))))))))))													
ta Site to Million product													
,													
éré operation de la companya de la c													
and protocology													
and a													
											at a simple way to be a simple to be		
	SO I	L CLA	SSIFIE	ED BY :			RE	EMAR	(\$:	· · · · · · · · · · · · · · · · · · ·		\bigcirc	
DRI	LER-	VISUA	LLY		X]		STF	ATIFICA	TION LINES REPRESENT THE		٣ ا	
SOI	L TECI ORATI	-INICIA DRY 11	N-VIS	UALLY	X			APF ANI	APPROXIMATE BOUNDARY BETWEEN SOIL TYPES,			3-108	
		1	1			BORING NO.	-100						

1AIN BR	e te: Ewei	ST B R, M		NGS, 044	INC. 12	FI	NT RST ATI	LANTIC				SHEET 1 OF 1 HOLE NO. 8-1		
ULLER	L MCKEE	N	S AND		STOCKED .	PRO.	JECT NA DICAL	ME BUILDIN	IG			LINE & STATION		
т.в. JO 89-23	B NUMBE	R				LOC/ P0	ATION	, MAINE				OFFSET		
ROUN		ER OE	BSERV	ATIONS	6				CAS	SING	SAMPLEF	R CORE DATE START DATE FINIS		
5 0.0 т 0.0	0 FT.	AF AF	TER	0.00 I	HOURS	TYPE SIZE I.D. HAMMER WT. HAMMER FALL			HS 2 1/2	2.	SS 1 3/8" 140 30"	12/28/89 12/28/89 SURFACE ELEVATION NOT AVAILABLE		
ASING LOWS PER FOOT	NO.	S O.D.	A M I PEN.	P L E REC.	DEPT	H	BLO ON	WS PE SAMP	R 6" LER 12-18	VANE READING	DEPTH	STRATUM DESCRIPTION		
)				Co. ALCONT	9		0.0	0-12	12-10	0000000000	0.3	PAVEMENT		
	10	2°•	18"		3.	3.5 16 10 16			16		2.0	BLACK GRAVELY SAND W/SILT MEDIUM DENSE ~ BROWN GRAVELY SILTY SAND		
	20	2.	10*		6	5 20 25			20					
<u> </u>	20		10		0.		<u> </u>		- 20			BROWN GRAVELY SAND W/SOME SILT		
					<u> </u>									
	30	2.	18'		11	.5	15	20	25		10.0			
)	30 2 18											~ DENSE~		
												BROWN COARSE SAND TRACE OF GRAVEL		
	40	2*	18'		16	5.5	10	20	25					
D											5			
											20.0			
	50	2"	18		2	1.5	9	9	11		21.5	BROWN SILLY SAND TRACE OF GRAVEL - MEDIUM DENS		
<u> </u>				ļ	-									
		ļ		İ										
)												BOTTOM OF BORING @ 21.5' Water @ 3.0'		
			[HOLE CAVED @ 4.0'		
			<u> </u>	1				ļ						
<u> </u>								<u> </u>						
)= SP	SAMPLES SPLIT SPOON					SOIL CLASSIFIED BY: DRILLER-VISUALLY SOIL TECHNICIAN-VISUALLY					REMARKS			
S= 3"	2" SHELBY TUBE 3" SHELBY TUBE						ORATO	RY TES	STS					

MAIN	E TE	ST E R, M	BORIN	NGS, 044	INC. 12	F	ENT IRST AT	LANTIC		2			SHEET 1 HOLE NO. B-2	OF 1		
RILLER		.N				PRO							LINE & STATION			
A.T.B. JO		R					CATION						OFFSET			
89-23	32					P	ORTLAND	, MAINE	Support Cold			COPE				
3ROUN	ND WAT	ER O	BSERV	ATIONS	6	_			CAS	SING	SAMPLER	BARREL	DATE START	DATE FINISH		
T 0.0	00 FT. 00 FT.	AF AF	TER	0.00 H	HOURS	SIZ HA	PE ZE I.D. MMER MMER	WT. FALL	2 1/3	2*	55 1 3/8" 140 30"		SURFACE ELEVATI	DN		
CASING		5	6 A M I	PLE	C HOL		BLO	WS PE	R 6″	12.782	and the second					
BLOWS PER FOOT	NO.	O.D.	PEN.	REC.	DEP1 @ BC	TH DT.	ON 0-6	SAMP	LER 12-18	VANE READING	DEPTH	STRA	TUM DESCRI	PTION		
D											0.3	0.3 PAVEMENT				
	10	2	18"		3	5	30	30	16			BROWN GRAVELY SAN	DENSE ~			
													-			
	20 2° 18°						6	5	3		5.5	W=2	6.8%			
											8.0	qp=0.5 ksf				
											0.0	~ MEDIUM DENSE ~				
	30 2° 18°						8	12	15			W=14	4.5%			
D																
												BROWN COARSE SAND	TRACE OF GRAVEL AN	DSILT		
-	40	2'	18	•	1	65	10	18	12							
						••										
)																
	50		10	-		4 5	10		12		21.5					
						1.0					21.5					
		+-														
p			ļ													
		-											2 .			
h	1										1	BOTTOM OF BORING	0 21.5'			
	1	+			+				+			WATER @ 4.2' HOLE CAVED @ 8.2	,			
											1					
D	· · · · · · · · · · · · · · · · · · ·															
								<u> </u>			1					
		-	1								-					
D - 99	S NIT SPO		ŝ			DR	SOIL CL	ASSIFIE	D BY: Y		REMARKS:					
C = 2"	SHELBY	TUBE			X	so	IL TECH	NICIAN	VISUAL	LY				(3		
S = 3"	= 2" SHELBY TUBE = 3" SHELBY TUBE						BUHATC		10		1		HOLEN	IO =_2		

AINE 1 BREW	TES	ST B R, M	ORIN	NGS, E 044 ⁻	INC. 12	FI	NT RST AT	LANTIC						SHEET 1 HOLE NO. B-	OF 1 2A	
	CKEEN					PRO	JECT NA	ME RUTI DTN						LINE & STATION		
T.B. JOB NU	MBEF	1		x=0.30		LOC		MATNE						OFFSET	-	
07-232								, AHING	CAS	SING	SAMPLEF	199	CORE	DATE START	DATE FINISH	
ROUND W T 0.00 F T 0.00 F	VATE FT. FT.	AF AF	iserv. Ter Ter	ATIONS 0.00 H 0.00 H	S HOURS HOURS	TYI SIZ HAI HAI	PE IE I.D. MMER MMER	WT. FALL	HW 4" 300 16"		SS 1 3/8" 140 30"			01/02/90 SURFACE ELEVAT NOT AVAILA	01/02/90 ION BLE	
ASING LOWS PER COOT NO	0.	S 0.D.	A M PEN.	PLE REC.	DEP1 @ BC	TH DT.	BLO ON 0-6	WS PE SAMPI 6-12	R 6" LER 12-18	VANE READING	DEPTH		STRA	RATUM DESCRIPTION		
UGER											0.3	PAVEME BLACK	NT GRAVELY SAND			
9 10	9 10										5.5	BROWN	GRAVELY SAN	ND, TRACE OF COBBLES		
	111	3	1/2"24		7	5	WT	OF 1 M	AN WT D	F 2 MEX	7.8	GRAY S	ILTY CLAY	W = 39.6% $W_1 = 37.1$ $W_2 = 21.5$		
												BOTTOM OF BORING @ 7.8' NO PENATRATION ON VANE				
													ж,			
SAMPLES D = SPLIT SPOON C = 2" SHELBY TUBE S = 3" SHELBY TUBE					XX X X	SOIL CLASSIFIED BY: DRILLER-VISUALLY SOIL TECHNICIAN-VISUALLY					REMARKS				4	

IAIN BR	E TES EWEI	st B R, M	ORIN	IGS, 044	INC. 12	FI	NT RST ATL	ANTIC.			-71		SHEET ¹ HOLE NO. ^{B-3}	OF 1	
TILLER	EL MCKEE	N		2789 Til 1		PRO	DICAL	ME BUILDIN	IG			L	INE & STATION		
T.B. JO 89-2	B NUMBE	R				LOC		. MAINE				c	DFFSET		
									CAS	SING	SAMPLE	CORE	DATE START	DATE FINISH	
F 0.0	00 FT.	AF	TER	0.00	HOURS	TYI SIZ HA	PE Æ I.D. MMER	WT.	HS 2 1/2	2*	SS 1 3/8" 140 30"	5	12/28/89 SURFACE ELEVATIO	12/28/89 DN E	
ASING		AF		PLE	HOURS	HA	BLO	WS PE	R 6″						
LOWS PER FOOT	NO.	0.D.	PEN.	REC.	DEPT		ON 0-6	SAMP	LER	VANE READING	DEPTH	STRAT	TUM DESCRIPTION		
)	2000 BB 8			0.04999.0400		190	0.0	0-12	12-10	1.20% (CR-244) (12)	0.4	PAVEMENT			
	10	2.	6*		2	.5	65				4.0	W = 5.7 % BROWN GRAVELY SAND TRACE OF COBBLES			
	20	2"	10		6	6.5 10 19			17	<u> </u>		~ MEDIU	M DENSE ~		
<u>}</u>			10								v	- 3.3 70			
<u> </u>	<u>3D</u>	2*	18*		1	11.5 4 8			18			W	/=5.9%		
	40	21	10		1	4 5	2	2	2)SE~		
	40	2	10			0.5						BROWN COARSE SAND,			
)											4				
	5D	2"	18	•	2	1.5	6	7	8			~ MEDIU	M DENSE ~		
											-				
)															
	60	2"	18	•	2	26.5	4	5	9		1	~ LOOSE	το		
		-						<u> </u>							
<u> </u>	70	2'	18	•		31.5	4	6	7		31.5	MED	NUM DENSE -		
				-							-		ROD PROBES		
											-	BLOWS INTVL I 32-33 7	BLOWS INTVL E 38-39 51 4	BLOWS INTVL 14-45 28	
-	p								1	+	1	33-34 15	39-40 45	15-46 36	
					+]	34-35 16 35-36 17	4U-41 52 4 41-42 38 4	10=4/ 64 17-48 80	
								_		-	36-37 24 37-38 40	42-43 32 4 43-44 26	18-49 97 19-50 112		
	S S		IS IS		[XX	DR	SOIL CL	ASSIFI	ED BY: Y		REMARKS: 80TION OF BORING @ 50.0'				
C = 2'	SHELBY	TUBE			X	SO	IL TECH		-VISUAL	LY	HOLE CAVED @ 12.5'			•	
5 = 3'	SHELBY	r i UBE				, <u> </u>					1			0 9-2	

MAIN BR	e te: Ewei	ST B R, M	ORIN AINE	IGS, 044 ⁻	INC. 12	FI	NT RST ATL	ANTIC.					SHEET	- 1 NO. 8-4	OF 1		
DARRE		'N				PRO	JECT NA	ME BUILDIN	IG				LINE & STAT	ION			
A.T.B. JO	B NUMBE	R		ter dan ber		LOC		MATNE				,	OFFSET				
									CAS	ING	SAMPLER	CORE	DATE	START	DATE FINISH		
T 0.0	10 WAT 10 FT. 10 FT.	AF AF	TER	0.00 H	, IOURS IOURS	TYI SIZ HA HA	PE ZE I.D. MMER WT. MMER FALL		HS 2 1/2	•	SS 1 3/8" 140 30"	Bruti tess	12/29/ SURFACE NOT	/89 E ELEVATIO AVAILAI	12/29/89 DN BLE		
CASING		S	AM	PLE.	98-3		BLO	WS PE	R 6″								
PER FOOT	NO.	O.D.	PEN.	REC.	DEP1 @ BC	ON SAMPLER OT. 0-6 6-12 12			LER 12-18	VANE READING	DEPTH	STRA	TUM D	ESCRI	PTION		
)											0_4	PAVEMENT					
	10	2.	6"		2	2.5 100					2.0	BLACK GRAVELY SAND					
												~ 1		,			
					<u> </u>	-							N=53%				
)	20	2-	18		<u> </u>	-5		78	3.3			BROWN GRAVELY SA	ND, TRACE O	F COBBLES,	TRACE OF SILT		
													·	·			
	D	2"	0"		1	0 0	50										
											11.0	o					
}																	
	3D	2	18		1	6.5	10	15	13			~ MEDIUM DENSE ~			~		
						6.5			<u> </u>			BROWN COARSE SAN	D, TRACE OF	GRAVEL			
)																	
_																	
	40	2	18	1	- 2	21.5	10	15	15		21.5						
)		+										BOTTOM OF BORING	0 21.5'				
					-							HOLE CAVED @ 10.	0'				
		+		+	+				+	+		WET					
				1	1						1						
}				+	+						-						
										1	1						
							+		+	+	- 1						
					1						1						
)					+						4						
										-							
	ـــــــــــــــــــــــــــــــــــــ		ES		1_	-	SOIL CL	ASSIFI	ED BY:	1	REMARKS:				158.000000000000000000000000000000000000		
D = SF C = 2"	LIT SPO		:		XX	DR SO	ILLER-V	ISUALL	Y -VISUAL	LY					6		
S = 3" SHELBY TUBE						LA	BUHATC	HY TES	515					HOLEN	0 8-4		

MAIN BR	MAINE TEST BORINGS, INC BREWER, MAINE 04412						IRST AT	ANTIC					SHEET 1 HOLE NO. 8-5	OF 1	
	L MCKEE	N	Cargo care an		00023007	PRC	DICAL		G				LINE & STATION		
И.Т.В. JOI 89-23	B NUMBE	R				LOC		, MAINE					OFFSET		
GROUN	D WAT	ER OI	BSERV	ATIONS	6				CAS	ING	SAMPLEI	CORE BARREL	DATE START	DATE FINISH	
ыт 0.0 Ат 0.0	0 FT. 0 FT.	AF AF	TER TER	0.00 H 0.00 H	HOURS	S SIZE I.D. HAMMER WT. HAMMER FALL			2 1/2*		1 3/8" 140 30"		SURFACE ELEVATI	ON BLE	
CASING BLOWS PER FOOT	CASING BLOWS PER FOOT NO. O.D. PEN. REC. @						BLOWS PER 6" ON SAMPLER PTH OT. 0-6 6-12 12-18			VANE READING	DEPTH	STRATUM DESCRIPTION			
p											0.5		ND		
	1D	2"	18*		3	.5	20	30	15		4.0	BROWN GRAVELY SA	DENSE ~		
											REMARKS	REFUSAL @ 4.0'			
D= SP	S LIT SPC	AMPLE ON	ES		XX	DR	ILLER-V	ASSIFIE	то вт: Т		HEMAHKS			(7	
C = 2" S = 3"	D = SPLIT SPOON C = 2" SHELBY TUBE S = 3" SHELBY TUBE							INICIAN	VISUALI	LY			· · · · · ·		

IAIN BR	E TES EWEI	ST B R, M	ORIN	NGS, 044	INC. 12	F	ENT IRST ATL	ANTIC.					SHEET 1 HOLE NO. 8-5A	OF 1	
DARRE	EL MCKEE	N				PRC	DJECT NA	ME BUILDIN	16				LINE & STATION		
т.в. JO 89-23	B NUMBE	R				LOC		, MAINE					OFFSET		
BOUN			SERV			0.00			CAS	SING	SAMPLEF	CORE BARREL	DATE START	DATE FINISH	
Б 0.(т 0.()0 FT.	AF AF	TER	0.00	HOURS	TY SIZ HA HA	PE E I.D. MMER MMER	WT. FALL	HS 2 1/2	2"	55 1 3/8" 140 30"		12/29/89 SURFACE ELEVATIO NOT AVAILABLE	12/29/89 N	
ASING LOWS PER FOOT	NO.	S O.D.	A M I PEN.	P L E REC.	DEPT	ГН ТТ	BLO ON	WS PE SAMP	R 6" LER	VANE READING	DEPTH	STRA	TUM DESCRIF	PTION	
-	13467				@ 80	<u>л.</u>	0-6	6-12	12-18		0.5	PAVEMENT			
						_					2.0	BLACK GRAVELY SAN	ND		
	10	2"	18.		6	6.5 15 40 40			7.0	WEDIUS BROWN GRAVELY SAI W= 3	M DENSE TO DEN ND TRACE OF COBBLES AN .3%	SÊ ~ ID SILT			
											/_0			inaliy - alah - ang - alah 1986 isang -	
	20	2*	18'		1	1.5	11	21	32			~ ME	DIUM DENSE ~	•	
) <u> </u>															
_	3D	2"	18		1	6.5	17	17	17			W=1	5.0%		
J												GRAVELLY BROWNACOARSE SAN	ID TRACE OF GRAVEL SILT		
	4D	2"	18		2	1.5	8	15	8						
0	50	2	19		,	6.5	9	10	14						
	60	21	19	•		21 5	10	12	14		31.5				
													5 8 31 5'		
D												DUITUN UT DURING	a æ jr.j		
							SOIL CL	ASSIFIE	ED BY:		REMARKS				
)= SF	SAMPLES = SPLIT SPOON 2" SHELBY TUBE					DR SO	ILLER-VI	SUALL' NICIAN	Y -VISUAL	LY				8	
S= 3"	SHELBY	TUBE				LA	BORATO	RY TES	STS		ļ		HOLE NO	D. R-54	

APPENDIX D

LABORATORY TEST RESULTS

JOB NO: 88-116.15

D

b

1

D

D

D

(II)

D

В

D

D

D

D

D

D

(12)

JOB NO. : 94-716 S

OF SILT

II.

APPENDIX E

GEOPHYSICAL SURVEY

HAGER-RICHTER GEOSCIENCE, INC.

GEOPHYSICAL SURVEY PROPOSED PARKING STRUCTURE 222 ST. JOHN STREET PORTLAND, MAINE

Prepared for:

S. W. Cole Engineering, Inc. 286 Portland Road Gray, Maine 04039-9586

Prepared by:

Hager-Richter Geoscience, Inc. 8 Industrial Way - D10 Salem, New Hampshire 03079

File 17J53 June 2017

© 2017 Hager-Richter Geoscience, Inc.

HAGER-RICHTER GEOSCIENCE, INC.

June 27, 2017 File 17J53

Evan M. Walker, P.E. Geotechnical Engineer S. W. Cole Engineering, Inc. 286 Portland Road Gray, Maine 04039-9586

Phn: (207) 657-2866 Fax: (207) 657-2840 Email: ewalker@swcole.com

RE: Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine

Dear Mr. Walker:

In this letter, we report the results of a surface geophysical survey conducted by Hager-Richter Geoscience, Inc. (H-R) at the above referenced site in Portland, Maine in June, 2017. The survey was conducted to support a geotechnical investigation of the site by S.W. Cole Engineering, Inc. (SW Cole) for possible future development. The scope of the survey and the area of interest were specified by SW Cole.

INTRODUCTION

The Site is an active parking lot located on the west side of St. John Street in Portland, Maine. The general location of the Site is shown in Figure 1. The site is an existing parking lot measuring about 650 feet by 200 feet. According to information provided by S.W. Cole, the subsurface at the site consists of varying amounts of sand and silt over a thin layer of till and phyllite bedrock. The depth of bedrock varies from about 35 feet to about 65 feet across the site.

As part of a geotechnical investigation of the Site for possible future construction, S.W. Cole required a geophysical survey to provide information on site specific shear wave velocity information as a function of depth for the soil and rock to a depth of 100 feet, and the depth and configuration of the bedrock surface. The geophysical survey consisted of shear wave velocity testing and seismic refraction along five transects. The work was conducted over a weekend to minimize disruption to the parking lot and to minimize vehicular interference with the seismic testing.

OBJECTIVE

The objectives of the surface geophysical survey were to: 1) provide information on site specific shear wave velocity information as a function of depth for the soil and rock to a depth of 100 feet, and 2) determine the depth and configuration of the bedrock surface within the specified area of interest at the site.

THE SURVEY

Jeffrey Reid, P.G., and Bryan Carnahan of Hager-Richter conducted the seismic refraction survey on June 3-4, 2017. The fieldwork was coordinated with Evan M. Walker, P.E., of SW Cole who was present for the initiation of the field work. The locations of the seismic transects were selected in consultation with SW Cole. Data analysis and interpretation were completed at the Hager-Richter offices. Original data and field notes will be retained in the Hager-Richter files for a minimum of three years.

The geophysical survey consisted of passive shear wave velocity testing (pVs) and seismic refraction along five traverses totaling approximately 1,500 linear feet. The positions of the seismic transects were recorded using a Trimble Geo 7X CM GPS receiver outfitted with a Zephyr 2 external antenna. The locations of the transects are shown in Figure 2.

EQUIPMENT & PROCEDURES

pVs Survey. We used a 48-channel digital seismograph (Geometrics Geode) coupled to 48 low frequency (4.5 Hz) geophones to acquire the pVs data for the subject testing. pVs data were acquired along five transects. Lines 1 and 2 are composed of two segments or spreads and Lines 3-5 are composed of single spreads. The geophones are installed along a straight line and connected to a seismograph. A five-foot geophone spacing was used for Lines 1 and 2 and a four-foot spacing was sued for Lines 3-5.

Ambient noise is recorded for 30 seconds two or three times, and examined to be sure that noise of sufficiently low frequency is present. If the noise is sufficient, then 10 to 15 such records are acquired. If the noise spectra do not reach sufficiently low frequencies, then one walks or runs along the testing line during data acquisition to add low frequency noise to the ambient noise. The surface waves used in the pVs method, considered noise in seismic refraction and seismic reflection surveys, are enhanced during data acquisition and processing for the pVs method. The seismic data are analyzed using SeisOpt[®] ReMiTM, a commercially licensed software package developed by Optim, Inc. located at the University of Nevada at Reno. Results are normally presented as 1-D plots or in tabular form showing shear wave velocity as a function

HAGER-RICHTER GEOSCIENCE, INC.

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Page 3

of depth for the center point of the seismic line. The pVs method yields a simple vertical shear wave velocity profile for the mid point of each testing line.

Determination of Average Shear Wave Velocity for Building Code Purposes. The pVs method determines (a) the shear wave velocity at the mid point along a survey line for several layers, averaged over the length of the survey line, and (b) the average shear wave velocity V_{avg} for site classification for seismic design in accordance with building codes. Similar calculations can be performed with the results of the shear wave velocity survey. The average value V_{avg} is determined using the equation 16-44 of the IBC as follows:

$$V_{avg} = \left(\sum_{i=1}^{N} d_i\right) / \sum_{i=1}^{N} d_i / V_i$$

where d_i is thickness of layer I

V_i is shear wave velocity of layer I N denotes the total number of layers

The Seismic Site Class, *based solely on average shear wave velocity*, is defined by the IBC as follows:

Site Class	Soil Profile Name	Soil Shear Wave Velocity (ft/s)
А	Hard rock	$V_{s} > 5000$
В	Rock	$2500 < V_s \le 5000$
С	Very dense soil and soft rock	$1200 \leq V_s \leq 2500$
D	Stiff soil profile	$600\leqV_s\leq1200$
Е	Soft soil profile	$V_{s} < 600$

Although the IBC provides other methods to determine the Site Class, such as standard penetration resistance (blow counts) and soil undrained shear strength, this report provides shear wave velocity data only. There is no consideration of other factors that may affect a site class such as liquefaction. The final determination of seismic site class should be made by the project engineer.

Seismic Refraction. For the seismic refraction survey, we used a 48-channel seismograph (two 24-channel Geometrics Geodes) coupled to 48 geophones to acquire seismic refraction records. The seismograph was connected to, and controlled by, a notebook PC computer. The software provides for the acquisition, display, plotting, filtering, and storage of

seismic data. Seismic refraction data were acquired along five transects totaling approximately 1,500 linear feet. Geophone spacing was 5 feet for Lines 1 and 2 and was 4 feet for Lines 3-5. Line 1 and 2 consisted of two seismic spreads configured end to end and Lines 3-5 consisted of a single seismic spread. Seven shot points were used for most seismic spreads - three located internal to the spread, one at each end of the spread, and, where possible, two offset shots located in-line with but beyond the ends of the spread of geophones. This configuration allows for providing reversed profiles. The seismic source was a 12-pound sledgehammer striking a metal plate. The number of stacks per shot point was variable, and the quality of the stacked seismic signal for each shot point was verified in the field. The data were recorded digitally.

The seismic data were interpreted with the Generalized Reciprocal Method, commonly referred to as GRM. GRM allows the depth to bedrock to be determined for *each* geophone location (i.e., generally every 4 or 5 feet at this site), rather than only at the shot points as for most other methods, and it is less sensitive than are most other methods to the presence of dipping interfaces and hidden layers.

LIMITATIONS OF THE METHODS

pVs. As with all physical measurements, there is experimental error in the velocities that are determined using the passive shear wave velocity method. For the pVs method, the accuracy of V_{avg} is stated by Optim, Inc. to be 5-15%.

The depth of investigation is a function of the noise spectrum, and long wave lengths (low frequencies) are required to determine velocity at large depths. Noise levels can be improved by a person running along the seismic spread during data acquisition.

Seismic Refraction. As with all geophysical methods, the seismic refraction method is based on the assumption that the local geology is relatively uncomplicated. In particular, the seismic refraction method assumes that interfaces between geologic materials correlate with sharp increases in seismic velocity and that the interfaces between geologic units are relatively flat-lying. The method is not very sensitive to lateral variations within layers, and relatively subtle features such as fracture zones within bedrock generally cannot be detected unless there is a topographic expression of the feature and/or a significant drop in bedrock velocity. The accuracy of the method is degraded in areas with strong topographic relief and/or where the interfaces have apparent dips greater than about 20°. *In general, the accuracy of depths determined is stated to be about 10% or 2 feet, whichever is greater.*

Where two materials do not exhibit contrasting velocities, or where velocities gradually increase with depth, a clear refracted signal is not generated, and the seismic refraction method

cannot be used to distinguish the two materials. In some cases, the "geophysical contact" between materials with contrasting velocities does not correlate exactly with the "geologic contact." For example, where a highly weathered bedrock is overlain by a dense material such as till, the velocity range of the weathered bedrock might overlap or approach the velocity range of the till, and the two materials cannot be distinguished seismically. In such cases, the depth determined by seismic refraction is the depth of *competent* bedrock, which might be located at some depth below the geologic contact.

The depth relations of the water table and bedrock may constitute a significant problem for the seismic refraction technique. This problem is that of a "blind layer." A blind layer occurs where the thickness of the saturated overburden is less than about half the depth of bedrock. In such cases, the water-saturated material immediately above bedrock is "blind" in the sense that no refracted seismic energy from it will be received as a first arrival of seismic energy, and all methods used to reduce the seismic data to determine the depth of bedrock, the objective of this survey, use *only* first arrivals. Thus, the saturated layer will not be detected where it is close to bedrock, and most methods of seismic data reduction will indicate that bedrock is considerably shallower than it actually is. Although GRM, the method used by Hager-Richter to reduce the seismic refraction data, does not use first arrivals through the water saturated zone (because there is none to use) in such cases, GRM determines the depth of bedrock correctly by using the *average* velocity of the saturated and unsaturated zones.

A "hidden layer" occurs where a lower velocity material underlies a higher velocity material, a common situation in stratified sediments. An example is where sands are present under layers of clay or till. As in the case of a "blind layer," most methods of seismic refraction data reduction will indicate that bedrock is deeper than it actually is, if a hidden layer is present but not detected. Internal tests in the seismic refraction data reduction software that we use (IXRefraX by Interpex) indicate that such layers might be present, and an average velocity of the two layers is used to determine the depth of bedrock.

RESULTS

The geophysical survey consisted of passive shear wave velocity testing (pVs) and seismic refraction along five traverses totaling approximately 1,500 linear feet. The positions of the seismic transects were recorded using a Trimble Geo 7X CM GPS receiver outfitted with a Zephyr 2 external antenna.

Figure 2 is a site plan showing the locations of the seismic refraction transects and center points for the shear wave velocity profiles. Figures 3 and 4 show the seismic refraction results in profile form and Figure 5 is a color contour model of bedrock topography compiled from the

seismic refraction results and available boring information provided by SW Cole. Table 1 lists the results of the pVs survey and Table 2 lists the results of the seismic refraction survey.

pVs Survey. Based on boring logs provided by S.W. Cole, the subsurface at the site consists of varying amounts of sand and silt over a thin layer of till and phyllite bedrock. The depth of bedrock varies from about 35 feet to about 65 feet across the site. The locations of the borings are shown in Figure 2.

The quality for the pVs data at the subject site is judged to be very good. The results of the pVs testing are reported in Table 1. For modeling purposes, the subsurface stratigraphy was divided into four discrete units. The velocity units do not necessarily correlate with specific lithologic units identified in the boring log provided by S.W. Cole. The layer thicknesses that provide the best statistical fit to the dispersion curve are used for the seismic lines. No attempt was made to "force" a specific model to the boring data.

The shear wave velocities for the individual stratigraphic modeled units are provided in Table 1. The average values of the velocities of shear waves for the depth interval of 0-100 ft based on Equation 1 of the IBC, Vs_{100} , vary between 1,035 and 1,376 fps. The root mean square errors for the fit of the dispersion curves versus the measured data using the model velocities are also reported in Table 1 and vary between 1.8% and 3.8%.

Seismic Refraction Survey. The quality of the seismic refraction data ranges from very good to excellent. A measure of the accuracy of the data can be obtained by comparing the bedrock depths determined seismically with depths reported from nearby borings that encountered bedrock, or by comparing bedrock depths at the intersections of seismic refraction lines. Table 3 shows a comparison between bedrock elevations determined seismically and reported in nearby borings. For the present survey, six (6) borings that reported bedrock depths were located within 40 feet of a seismic line and were used for the comparison. An examination of Table 3 shows that the bedrock elevations determined for locations on seismic lines differ by an average of about 2 feet, or 5% from the bedrock elevations reported in boring logs. The standard deviation for the differences is about 1 foot or 2%.

Table 3 also shows a comparison of seismically determined bedrock elevations at six (6) seismic line intersections. Bedrock elevations determined at the seismic line intersections differ by an average of less than a foot, or 1% relative to bedrock depth. The standard deviation for the differences is about 1 foot or 1%. Based on the results of comparing seismically determined elevations at intersecting seismic lines and with nearby borings, and on the results from other similar seismic refraction surveys, we estimate the accuracy (standard deviation) of the *depths* of

HAGER-RICHTER GEOSCIENCE, INC.

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Page 7

competent bedrock determined by the seismic refraction survey to be about $\pm 10\%$ of the depth of bedrock, or ± 2 feet), whichever is greater.

The results of the seismic refraction survey for the site are shown in profile form in Figures 3 and 4 and in tabular form in Table 2. Materials with three distinct velocity ranges were detected at the Site. The upper material exhibits a velocity range of 1,100 to 1,750 feet per second (fps) and is interpreted to consist of unsaturated soil. The middle material exhibits a velocity range of 4,800 to 5,200 fps and is interpreted to be saturated soil. The lower material exhibits a velocity range of 10,500 to 14,100 fps and is interpreted to be bedrock. Where the top of bedrock is highly fractured and/or deeply weathered, it might exhibit lower velocities that cannot be detected as a distinct layer on the basis of the seismic refraction data. Thus, the top of rock determined on the basis of seismic refraction data generally is the top of competent bedrock, which might be located somewhat below the geologic contact between the overburden and bedrock.

The depth of competent bedrock along Seismic Lines 1 through 5 varies between about 36 feet and 67 feet below ground surface, and the elevation of competent bedrock varies between approximately -40 feet and -10 feet, an *apparent* total relief of 30 feet. Figure 5 is a color contour plot of the bedrock elevation model generated from the seismic refraction survey and the boring data provided by SW Cole. The contours shown on Figure 5 represent interpolations based on the seismic data and available boring information relative to NAVD88. The contours shown represent non-unique models for bedrock elevation (i.e., different valid conceptual models can be developed to fit the data set), and the elevation of competent bedrock at any particular location may differ from that shown. Bedrock elevations based on additional data, such as additional borings or seismic data, may differ significantly from those shown on Figure 5.

Examination of the seismic profiles and the bedrock topographic model shows that bedrock is generally deeper at the south end of the site and shallower to the north. A small N-S bedrock trough is present near the center of the site.

CONCLUSIONS

Based upon the results of geophysical survey conducted by Hager-Richter Geoscience, Inc. at 222 St. John Street, Portland, Maine in June, 2017, we conclude:

- The average values of the velocities of shear waves along Lines 1-5 for the depth interval of 0-100 ft based on Equation 1 of the IBC, Vs_{100} , vary between 1,035 and 1,376 fps.
- The root mean square errors for the fit of the dispersion curves versus the measured data

vary between 1.8% and 3.8%.

- The depth of competent bedrock along Seismic Lines 1 through 5 varies between about 36 feet and 67 feet below ground surface, and the elevation of competent bedrock varies between approximately -40 feet and -10 feet, an *apparent* total relief of 30 feet.
- Materials with three distinct compressional wave velocity ranges were detected at the Site: an upper material exhibiting a velocity range of 1,100 to 1,700 fps and interpreted to consist of unsaturated sediments, a middle material exhibiting a velocity range of 4,800 to 5,200 fps and interpreted to consist of saturated sediments, and a lower material exhibiting a velocity range of 10,500 to 14,100 fps and interpreted to be bedrock.
- Bedrock is generally deeper at the south end of the site and shallower to the north.
- A small north-south bedrock trough is present near the center of the site.

LIMITATIONS

This report was prepared for the exclusive use of S. W. Cole Engineering, Inc. (Client). No other party shall be entitled to rely on this Report or any information, documents, records, data, interpretations, advice or opinions given to Client by Hager-Richter Geoscience, Inc. (H-R) in the performance of its work. The Report relates solely to the specific project for which H-R has been retained and shall not be used or relied upon by Client or any third party for any variation or extension of this project, any other project or any other purpose without the express written permission of H-R. Any unpermitted use by Client or any third party shall be at Client's or such third party's own risk and without any liability to H-R.

H-R has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by H-R should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

HAGER-RICHTER GEOSCIENCE, INC.

Except as expressly provided in this limitations section, H-R makes no other representation or warranty of any kind whatsoever, oral or written, expressed or implied; and all implied warranties of merchantability and fitness for a particular purpose, are hereby disclaimed.

If you have any questions or comments on this report, please contact us at your convenience. It has been a pleasure to work with you on this project. We look forward to working with you again in the future.

Sincerely yours, HAGER-RICHTER GEOSCIENCE, INC.

ACRO

Jeffrey Reid, P.G. Vice President/Senior Geophysicist

Attachments: Tables 1-3 Figures 1-5

Soway Rith

Dorothy Richter, P.G. President

TABLE 1 pVs RESULTS

Geologic Unit *	Depth Interval (ft)	Vs** (ft/s)
pVs Test	t Line 1A @ 1+15	
Soft Loam and Sand	0 - 10	966
Sand	10 - 20	520
Silty Sand	20 - 64	939
Till or Bedrock?	64+	2,714
Vs_{100} (ft/s)	1,0	35
RMS	3.8	%
pVs Tes	t Line 1B @ 3+50	
Soft Loam and Sand	0 - 10	388
Silty Sand	10 - 20	495
Silty Sand - More Dense	20 - 45	956
Till or Bedrock?	45+	2,948
Vs_{100} (ft/s)	1,0	96
RMS	2.9	%
pVs Test	t Line 2A @ 1+15	
Soft Loam and Sand	0 - 10	846
Sand	10 - 29	645
Silty Sand	29 - 63	1,403
Till or Bedrock?	63+	2,837
Vs_{100} (ft/s)	1,2	74
RMS	3.5	%

The pVs method yields a simple vertical shear wave velocity profile for the mid point of each testing line. Although the IBC provides other methods to determine the Site Class, such as standard penetration resistance (blow counts) and soil undrained shear strength, this report provides shear wave velocity data only. There is no consideration of other factors that may affect a site class such as liquefaction. The final determination of seismic site class should be made by the project engineer.

HAGER-RICHTER GEOSCIENCE, INC.

pVs Test Li	ne 2B @ 3+50			
Soft Loam and Sand	0 - 53	583		
Silty Sand	5 - 14	494		
Silty Sand - More Dense	14 - 34	783		
Till or Bedrock?	34+	3,240		
Vs ₁₀₀ (ft/s)	1,	376		
RMS	2.	5 %		
pVs Test L	ine 3 @ 0+96			
Soft Loam and Sand	0 - 7	853		
Silty Sand	7 - 22	540		
Silty Sand - More Dense	22 - 50	929		
Till or Bedrock?	50+	1,967		
$\mathrm{Vs}_{\mathrm{100}}(\mathrm{ft/s})$	1,	092		
RMS	2.	0%		
pVs Test L	ine 4 @ 0+96			
Soft Loam and Sand	0 - 7	1,333		
Sand	7 - 22	540		
Silty Sand - More Dense	22 - 57	1,034		
Till/Bedrock?	57+	2,356		
$Vs_{100}({ m ft/s})$	1,	175		
RMS	1.	8%		
pVs Test L	ine 5 @ 0+96			
Soft Loam and Sand	0 - 7	853		
Sand	7 - 22	540		
Silty Sand - More Dense	22 - 50	929		
Till/Bedrock?	50+	1,967		
$Vs_{100}(\mathrm{ft/s})$	1,092			
RMS	2.0%			

The pVs method yields a simple vertical shear wave velocity profile for the mid point of each testing line. Although the IBC provides other methods to determine the Site Class, such as standard penetration resistance (blow counts) and soil undrained shear strength, this report provides shear wave velocity data only. There is no consideration of other factors that may affect a site class such as liquefaction. The final determination of seismic site class should be made by the project engineer.

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)
			Seismic	c Line 1			
2922775.0	297267.0	0	14.1	63.5	27.0	12.9	-36.5
2922774.0	297271.9	5	14.1	63.1	27.0	12.9	-36.1
2922773.2	297276.8	10	14.1	62.5	27.0	12.9	-35.5
2922772.2	297281.8	15	14.1	61.8	27.0	12.9	-34.8
2922771.5	297286.7	20	14.1	62.2	27.0	12.9	-35.2
2922770.5	297291.6	25	14.1	62.0	27.0	12.9	-35.0
2922769.8	297296.5	30	14.1	63.8	27.0	12.9	-36.8
2922768.8	297301.4	35	14.1	64.6	27.0	12.9	-37.6
2922767.8	297306.4	40	14.1	64.0	27.0	12.9	-37.0
2922767.0	297311.3	45	14.1	63.8	27.0	12.9	-36.8
2922766.0	297316.2	50	14.1	62.7	27.0	12.9	-35.7
2922765.2	297321.1	55	14.1	62.5	27.0	12.9	-35.5
2922764.2	297326.0	60	14.1	61.0	27.0	12.9	-34.0
2922763.5	297331.0	65	14.1	60.4	27.0	12.9	-33.4
2922762.5	297335.9	70	14.1	61.8	27.0	12.9	-34.8
2922761.8	297340.8	75	14.1	64.0	27.0	12.9	-37.0
2922760.8	297345.7	80	14.1	63.3	27.0	12.9	-36.3
2922759.8	297350.6	85	14.1	66.1	27.0	12.9	-39.1
2922759.0	297355.6	90	14.1	66.4	27.0	12.9	-39.4
2922758.0	297360.5	95	14.0	66.0	27.0	13.0	-39.0
2922757.2	297365.4	100	14.0	66.2	27.0	13.0	-39.2
2922756.2	297370.3	105	14.0	66.8	27.0	13.0	-39.8
2922755.5	297375.2	110	14.0	63.8	27.0	13.0	-36.8

TABLE 2SEISMIC REFRACTION RESULTS

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)
			Seismic Li	ne 1 (cont.)			
2922754.5	297380.2	115	14.1	63.4	27.0	12.9	-36.4
2922753.5	297385.1	120	14.1	62.7	27.0	12.9	-35.7
2922752.8	297390.0	125	13.8	62.5	27.0	13.2	-35.5
2922751.8	297394.9	130	13.3	63.3	27.0	13.7	-36.3
2922751.0	297399.8	135	13.2	62.9	27.0	13.8	-35.9
2922750.0	297404.8	140	12.8	61.4	27.0	14.2	-34.4
2922749.2	297409.7	145	12.9	62.7	27.0	14.1	-35.7
2922748.2	297414.6	150	13.1	60.9	27.0	13.9	-33.9
2922747.5	297419.5	155	13.9	61.6	27.0	13.1	-34.6
2922746.5	297424.4	160	14.6	60.3	27.0	12.4	-33.3
2922745.5	297429.3	165	14.9	60.5	27.0	12.1	-33.5
2922744.8	297434.3	170	15.4	58.8	27.0	11.6	-31.8
2922743.8	297439.2	175	16.2	58.6	27.0	10.8	-31.6
2922743.0	297444.1	180	16.1	56.8	27.0	10.9	-29.8
2922742.0	297449.0	185	16.6	55.8	27.0	10.4	-28.8
2922741.2	297454.0	190	16.6	52.7	27.0	10.4	-25.7
2922740.2	297458.9	195	14.8	53.0	27.0	12.2	-26.0
2922739.2	297463.8	200	14.9	51.0	27.0	12.1	-24.0
2922738.5	297468.7	205	15.1	49.1	27.0	11.9	-22.1
2922737.5	297473.6	210	15.2	47.1	27.0	11.8	-20.1
2922736.8	297478.6	215	15.1	47.1	27.0	11.9	-20.1
2922735.8	297483.5	220	15.1	46.0	27.0	11.9	-19.0
2922735.0	297488.4	225	15.1	45.0	27.0	11.9	-18.0
2922734.0	297493.3	230	15.1	45.0	27.0	11.9	-18.0

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)			
Seismic Line 1 (cont.)										
2922733.0	297498.2	235	15.1	45.2	27.0	11.9	-18.2			
2922732.2	297503.2	240	15.0	46.5	27.0	12.0	-19.5			
2922731.2	297508.1	245	15.0	44.5	27.0	12.0	-17.5			
2922730.5	297513.0	250	14.9	44.3	27.0	12.1	-17.3			
2922729.5	297517.9	255	14.9	46.5	27.0	12.1	-19.5			
2922728.8	297522.8	260	14.8	45.4	27.0	12.2	-18.4			
2922727.8	297527.8	265	14.7	44.7	27.0	12.3	-17.7			
2922727.0	297532.7	270	14.7	44.5	27.0	12.3	-17.5			
2922726.0	297537.6	275	14.6	43.5	27.0	12.4	-16.5			
2922725.0	297542.5	280	14.5	43.9	27.0	12.5	-16.9			
2922724.2	297547.4	285	14.5	45.4	27.0	12.5	-18.4			
2922723.2	297552.3	290	14.4	44.5	27.0	12.6	-17.5			
2922722.5	297557.3	295	14.4	45.0	27.0	12.6	-18.0			
2922721.5	297562.2	300	14.3	44.5	27.0	12.7	-17.5			
2922720.8	297567.1	305	14.3	43.5	27.0	12.7	-16.5			
2922719.8	297572.0	310	14.2	44.5	27.0	12.8	-17.5			
2922718.8	297577.0	315	14.1	43.5	27.0	12.9	-16.5			
2922718.0	297581.9	320	14.1	44.3	27.0	12.9	-17.3			
2922717.0	297586.8	325	14.0	44.1	27.0	13.0	-17.1			
2922716.2	297591.7	330	14.0	45.2	27.0	13.0	-18.2			
2922715.2	297596.6	335	13.7	43.5	27.0	13.3	-16.5			
2922714.5	297601.6	340	13.7	42.0	27.0	13.3	-15.0			
2922713.5	297606.5	345	13.6	42.4	27.0	13.4	-15.4			
2922712.5	297611.4	350	13.6	44.5	27.0	13.4	-17.5			

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)			
Seismic Line 1 (cont.)										
2922711.8	297616.3	355	13.6	43.2	27.0	13.4	-16.2			
2922710.8	297621.2	360	13.5	45.4	27.0	13.5	-18.4			
2922710.0	297626.2	365	13.5	45.8	27.0	13.5	-18.8			
2922709.0	297631.1	370	13.5	43.5	27.0	13.5	-16.5			
2922708.2	297636.0	375	13.4	44.3	27.0	13.6	-17.3			
2922707.2	297640.9	380	13.4	45.8	27.0	13.6	-18.8			
2922706.5	297645.8	385	13.3	44.5	27.0	13.7	-17.5			
2922705.5	297650.8	390	13.3	45.0	27.0	13.7	-18.0			
2922704.5	297655.7	395	13.2	45.8	27.0	13.8	-18.8			
2922703.8	297660.6	400	13.2	46.3	27.0	13.8	-19.3			
2922702.8	297665.5	405	13.1	46.9	27.0	13.9	-19.9			
2922702.0	297670.4	410	13.1	45.6	27.0	13.9	-18.6			
2922701.0	297675.3	415	13.0	46.3	27.0	14.0	-19.3			
2922700.2	297680.3	420	13.0	45.8	27.0	14.0	-18.8			
2922699.2	297685.2	425	12.9	45.4	27.0	14.1	-18.4			
2922698.2	297690.1	430	12.9	46.9	27.0	14.1	-19.9			
2922697.5	297695.0	435	12.9	44.7	27.0	14.1	-17.7			
2922696.5	297700.0	440	12.8	45.8	27.0	14.2	-18.8			
2922695.8	297704.9	445	12.8	44.3	27.0	14.2	-17.3			
2922694.8	297709.8	450	12.7	43.7	27.0	14.3	-16.7			
2922694.0	297714.7	455	12.7	42.6	27.0	14.3	-15.6			
2922693.0	297719.6	460	12.6	43.3	27.0	14.4	-16.3			
2922692.2	297724.6	465	12.6	43.2	27.0	14.4	-16.2			
2922691.2	297729.5	470	12.6	43.2	27.0	14.4	-16.2			

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)			
Seismic Line 2										
2922962.2	297327.2	0	13.5	64.2	27.0	13.5	-37.2			
2922961.2	297332.1	5	13.4	62.5	27.0	13.6	-35.5			
2922960.2	297337.0	10	13.3	62.9	27.0	13.7	-35.9			
2922959.2	297341.9	15	13.1	63.3	27.0	13.9	-36.3			
2922958.2	297346.8	20	13.0	63.8	27.0	14.0	-36.8			
2922957.2	297351.7	25	12.9	61.6	26.9	14.0	-34.7			
2922956.2	297356.6	30	12.8	60.4	26.9	14.1	-33.5			
2922955.5	297361.5	35	12.6	60.6	26.9	14.3	-33.7			
2922954.5	297366.4	40	12.5	59.7	26.9	14.4	-32.8			
2922953.5	297371.3	45	12.4	59.6	26.9	14.5	-32.7			
2922952.5	297376.2	50	12.3	61.2	26.9	14.6	-34.3			
2922951.5	297381.1	55	12.1	60.6	26.9	14.8	-33.7			
2922950.5	297386.0	60	12.0	59.5	26.9	14.9	-32.6			
2922949.5	297390.9	65	11.9	60.0	26.9	15.0	-33.1			
2922948.5	297395.8	70	11.8	61.4	26.9	15.1	-34.5			
2922947.5	297400.7	75	11.7	61.5	26.8	15.1	-34.7			
2922946.5	297405.6	80	11.5	61.5	26.8	15.3	-34.7			
2922945.5	297410.5	85	11.4	61.8	26.8	15.4	-35.0			
2922944.5	297415.4	90	11.3	62.6	26.8	15.5	-35.8			
2922943.5	297420.3	95	11.2	61.1	26.8	15.6	-34.3			
2922942.8	297425.2	100	11.2	61.5	26.8	15.6	-34.7			
2922941.8	297430.2	105	11.1	61.7	26.8	15.7	-34.9			
2922940.8	297435.1	110	11.0	61.4	26.8	15.8	-34.6			
2922939.8	297439.9	115	10.9	62.9	26.8	15.9	-36.1			

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)			
Seismic Line 2 (cont.)										
2922938.8	297444.8	120	10.8	63.5	26.7	15.9	-36.8			
2922937.8	297449.8	125	10.7	64.3	26.7	16.0	-37.6			
2922936.8	297454.7	130	10.6	65.1	26.7	16.1	-38.4			
2922935.8	297459.6	135	10.5	65.9	26.7	16.2	-39.2			
2922934.8	297464.5	140	10.4	66.9	26.7	16.3	-40.2			
2922933.8	297469.4	145	10.4	65.7	26.7	16.3	-39.0			
2922932.8	297474.3	150	10.3	62.9	26.7	16.4	-36.2			
2922931.8	297479.2	155	10.2	62.9	26.7	16.5	-36.2			
2922930.8	297484.1	160	10.1	63.3	26.7	16.6	-36.6			
2922930.0	297489.0	165	10.0	63.8	26.6	16.6	-37.2			
2922929.0	297493.9	170	9.9	63.8	26.6	16.7	-37.2			
2922928.0	297498.8	175	9.6	64.2	26.6	17.0	-37.6			
2922927.0	297503.7	180	9.3	62.5	26.6	17.3	-35.9			
2922926.0	297508.6	185	9.1	62.0	26.6	17.5	-35.4			
2922925.0	297513.5	190	8.8	60.5	26.6	17.8	-33.9			
2922924.0	297518.4	195	8.5	59.8	26.6	18.1	-33.2			
2922923.0	297523.3	200	8.3	55.2	26.6	18.3	-28.6			
2922922.0	297528.2	205	8.0	53.5	26.6	18.6	-26.9			
2922921.0	297533.1	210	7.8	51.0	26.6	18.8	-24.4			
2922920.0	297538.0	215	7.7	48.6	26.5	18.8	-22.1			
2922919.0	297542.9	220	7.7	44.9	26.5	18.8	-18.4			
2922918.0	297547.8	225	7.7	41.3	26.5	18.8	-14.8			
2922917.2	297552.7	230	7.6	39.3	26.5	18.9	-12.8			
2922916.2	297557.6	235	7.6	39.6	26.5	18.9	-13.1			

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 2 (cont.)									
2922915.2	297562.5	240	7.6	39.7	26.5	18.9	-13.2		
2922914.2	297567.4	245	7.5	40.6	26.5	19.0	-14.1		
2922913.2	297572.3	250	7.5	42.3	26.5	19.0	-15.8		
2922912.2	297577.2	255	7.5	42.6	26.5	19.0	-16.1		
2922911.2	297582.1	260	7.4	42.8	26.4	19.0	-16.4		
2922910.2	297587.0	265	7.4	43.2	26.4	19.0	-16.8		
2922909.2	297591.9	270	7.4	41.7	26.4	19.0	-15.3		
2922908.2	297596.8	275	7.3	42.2	26.4	19.1	-15.8		
2922907.2	297601.8	280	7.3	41.2	26.4	19.1	-14.8		
2922906.2	297606.7	285	7.3	42.0	26.4	19.1	-15.6		
2922905.2	297611.6	290	7.2	42.5	26.4	19.2	-16.1		
2922904.5	297616.5	295	7.2	42.6	26.4	19.2	-16.2		
2922903.5	297621.3	300	7.2	43.1	26.4	19.2	-16.7		
2922902.5	297626.2	305	7.1	42.5	26.4	19.3	-16.1		
2922901.5	297631.2	310	7.1	40.0	26.3	19.2	-13.7		
2922900.5	297636.1	315	7.1	39.8	26.3	19.2	-13.5		
2922899.5	297641.0	320	7.0	38.9	26.3	19.3	-12.6		
2922898.5	297645.9	325	7.0	37.2	26.3	19.3	-10.9		
2922897.5	297650.8	330	7.0	37.8	26.3	19.3	-11.5		
2922896.5	297655.7	335	6.9	38.9	26.3	19.4	-12.6		
2922895.5	297660.6	340	6.9	38.8	26.3	19.4	-12.5		
2922894.5	297665.5	345	6.9	38.3	26.3	19.4	-12.0		
2922893.5	297670.4	350	6.8	36.7	26.3	19.5	-10.4		
2922892.5	297675.3	355	7.0	35.9	26.2	19.2	-9.7		

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 2 (cont.)									
2922891.8	297680.2	360	7.1	36.8	26.2	19.1	-10.6		
2922890.8	297685.1	365	7.3	38.7	26.2	18.9	-12.5		
2922889.8	297690.0	370	7.4	39.5	26.2	18.8	-13.3		
2922888.8	297694.9	375	7.6	41.3	26.2	18.6	-15.1		
2922887.8	297699.8	380	7.8	40.7	26.2	18.4	-14.5		
2922886.8	297704.7	385	7.9	41.3	26.2	18.3	-15.1		
2922885.8	297709.6	390	8.1	41.2	26.2	18.1	-15.0		
2922884.8	297714.5	395	8.2	42.6	26.2	18.0	-16.4		
2922883.8	297719.4	400	8.4	42.9	26.1	17.7	-16.8		
2922882.8	297724.3	405	8.5	42.5	26.1	17.6	-16.4		
2922881.8	297729.2	410	8.7	41.9	26.1	17.4	-15.8		
2922880.8	297734.1	415	8.8	43.3	26.1	17.3	-17.2		
2922879.8	297739.0	420	9.0	42.8	26.1	17.1	-16.7		
2922879.0	297743.9	425	9.1	41.7	26.1	17.0	-15.6		
2922878.0	297748.8	430	9.2	40.2	26.1	16.9	-14.1		
2922877.0	297753.8	435	9.3	42.0	26.1	16.8	-15.9		
2922876.0	297758.6	440	9.5	40.0	26.1	16.6	-13.9		
2922875.0	297763.5	445	9.6	41.4	26.1	16.5	-15.3		
2922874.0	297768.4	450	9.8	40.0	26.0	16.2	-14.0		
2922873.0	297773.3	455	9.8	39.3	26.0	16.2	-13.3		
2922872.0	297778.2	460	9.7	38.5	26.0	16.3	-12.5		
2922871.0	297783.2	465	9.7	38.1	26.0	16.3	-12.1		
2922870.0	297788.1	470	9.7	36.6	26.0	16.3	-10.6		
Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 9 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 3									
2922754.8	297380.2	0	14.8	64.2	27.0	12.2	-37.2		
2922758.8	297381.1	4	14.7	64.6	27.0	12.3	-37.6		
2922762.5	297382.0	8	15.0	63.8	27.0	12.0	-36.8		
2922766.5	297382.9	12	14.3	62.0	27.0	12.7	-35.0		
2922770.2	297383.8	16	14.4	62.7	27.0	12.6	-35.7		
2922774.2	297384.8	20	13.6	61.5	27.0	13.4	-34.5		
2922778.0	297385.7	24	13.4	60.3	27.0	13.6	-33.3		
2922782.0	297386.6	28	13.4	59.3	27.0	13.6	-32.3		
2922786.0	297387.5	32	13.8	57.8	27.0	13.2	-30.8		
2922789.8	297388.4	36	13.7	58.4	27.0	13.3	-31.4		
2922793.8	297389.3	40	13.7	58.1	27.0	13.3	-31.1		
2922797.5	297390.2	44	14.2	56.6	27.0	12.8	-29.6		
2922801.5	297391.2	48	13.9	57.6	26.9	13.0	-30.7		
2922805.2	297392.1	52	13.4	58.6	26.9	13.5	-31.7		
2922809.2	297393.0	56	13.2	58.4	26.9	13.7	-31.5		
2922813.2	297393.9	60	13.5	56.7	26.9	13.4	-29.8		
2922817.0	297394.8	64	13.3	56.8	26.9	13.6	-29.9		
2922821.0	297395.7	68	13.4	55.8	26.9	13.5	-28.9		
2922824.8	297396.7	72	13.0	56.9	26.9	13.9	-30.0		
2922828.8	297397.6	76	13.1	56.6	26.9	13.8	-29.7		
2922832.8	297398.5	80	13.0	56.9	26.9	13.9	-30.0		
2922836.5	297399.4	84	12.9	56.9	26.9	14.0	-30.0		
2922840.5	297400.3	88	12.9	56.6	26.9	14.0	-29.7		
2922844.2	297401.2	92	12.9	56.3	26.9	14.0	-29.4		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 10 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 3 (cont.)									
2922848.2	8.2 297402.1 96 12.6 57.1 26.9 14.3								
2922852.0	297403.0	100	12.6	56.8	26.9	14.3	-29.9		
2922856.0	297404.0	104	12.7	56.2	26.9	14.2	-29.3		
2922860.0	297404.9	108	12.4	57.1	26.9	14.5	-30.2		
2922863.8	297405.8	112	12.1	57.6	26.9	14.8	-30.7		
2922867.8	297406.7	116	11.9	58.1	26.9	15.0	-31.2		
2922871.5	297407.6	120	13.0	57.0	26.9	13.9	-30.1		
2922875.5	297408.5	124	13.2	55.9	26.9	13.7	-29.0		
2922879.2	297409.4	128	13.3	56.1	26.9	13.6	-29.2		
2922883.2	297410.3	132	14.2	57.5	26.9	12.7	-30.6		
2922887.2	297411.3	136	15.0	57.5	26.9	11.9	-30.6		
2922891.0	297412.2	140	15.9	57.3	26.9	11.0	-30.4		
2922895.0	297413.1	144	15.9	57.4	26.8	10.9	-30.6		
2922898.8	297414.0	148	15.9	57.2	26.8	10.9	-30.4		
2922902.8	297414.9	152	15.8	58.9	26.8	11.0	-32.1		
2922906.5	297415.8	156	15.7	58.1	26.8	11.1	-31.3		
2922910.5	297416.8	160	15.6	58.5	26.8	11.2	-31.7		
2922914.5	297417.7	164	15.5	58.9	26.8	11.3	-32.1		
2922918.2	297418.6	168	15.4	59.9	26.8	11.4	-33.1		
2922922.2	297419.5	172	15.3	61.2	26.8	11.5	-34.4		
2922926.0	297420.4	176	15.2	60.9	26.8	11.6	-34.1		
2922930.0	297421.3	180	15.1	61.6	26.8	11.7	-34.8		
2922934.0	297422.2	184	15.0	60.7	26.8	11.8	-33.9		
2922937.8	297423.2	188	14.9	60.5	26.8	11.9	-33.7		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 11 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 4									
2922732.5	5 297498.1 0 8.7 45.1					18.3	-18.1		
2922736.5	297499.0	4	8.7	44.4	27.0	18.3	-17.4		
2922740.2	297499.8	8	8.7	45.7	27.0	18.3	-18.7		
2922744.2	297500.7	12	8.7	44.7	26.9	18.2	-17.8		
2922748.0	297501.5	16	8.7	46.0	26.9	18.2	-19.1		
2922752.0	297502.4	20	8.7	47.5	26.9	18.2	-20.6		
2922756.0	297503.3	24	8.7	46.7	26.9	18.2	-19.8		
2922759.8	297504.1	28	8.7	45.7	26.9	18.2	-18.8		
2922763.8	297505.0	32	8.7	45.3	26.8	18.1	-18.5		
2922767.8	297505.8	36	8.7	46.4	26.8	18.1	-19.6		
2922771.5	297506.7	40	8.8	46.8	26.8	18.0	-20.0		
2922775.5	297507.6	44	8.8	48.8	26.8	18.0	-22.0		
2922779.2	297508.4	48	8.8	49.1	26.7	17.9	-22.4		
2922783.2	297509.3	52	8.8	47.8	26.7	17.9	-21.1		
2922787.2	297510.2	56	8.8	48.0	26.7	17.9	-21.3		
2922791.0	297511.0	60	8.8	48.1	26.7	17.9	-21.4		
2922795.0	297511.9	64	8.8	47.5	26.7	17.9	-20.8		
2922799.0	297512.8	68	8.9	48.0	26.6	17.7	-21.4		
2922802.8	297513.6	72	8.9	47.3	26.6	17.7	-20.7		
2922806.8	297514.5	76	8.9	50.7	26.6	17.7	24.1		
2922810.5	297515.3	80	8.9	49.6	26.6	17.7	-23.0		
2922814.5	297516.2	84	8.9	51.5	26.6	17.7	-24.9		
2922818.5	297517.1	88	8.9	49.3	26.5	17.6	-22.8		
2922822.2	297517.9	92	9.0	49.1	26.5	17.5	-22.6		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 12 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 4 (cont.)									
2922826.2	297518.8	17.5	-24.7						
2922830.2	297519.7	100	9.0	51.7	26.5	17.5	-25.2		
2922834.0	297520.5	104	9.0	50.7	26.4	17.4	-24.3		
2922838.0	297521.4	108	9.0	50.4	26.4	17.4	-24.0		
2922841.8	297522.2	112	9.0	49.3	26.4	17.4	-22.9		
2922845.8	297523.1	116	9.0	49.9	26.4	17.4	-23.5		
2922849.8	297524.0	120	9.1	50.4	26.4	17.3	-24.0		
2922853.5	297524.8	124	9.1	49.4	26.3	17.2	-23.1		
2922857.5	297525.7	128	9.1	49.1	26.3	17.2	-22.8		
2922861.5	297526.5	132	9.1	48.5	26.3	17.2	-22.2		
2922865.2	297527.4	136	9.1	50.1	26.3	17.2	-23.8		
2922869.2	297528.3	140	9.1	48.8	26.3	17.2	-22.5		
2922873.0	297529.1	144	9.1	50.6	26.2	17.1	-24.4		
2922877.0	297530.0	148	9.2	51.7	26.2	17.0	-25.5		
2922881.0	297530.8	152	9.2	48.3	26.2	17.0	-22.1		
2922884.8	297531.7	156	9.2	49.3	26.2	17.0	-23.1		
2922888.8	297532.6	160	9.2	49.6	26.1	16.9	-23.5		
2922892.8	297533.4	164	9.2	48.6	26.1	16.9	-22.5		
2922896.5	297534.3	168	9.2	48.1	26.1	16.9	-22.0		
2922900.5	297535.2	172	9.2	47.7	26.1	16.9	-21.6		
2922904.2	297536.0	176	9.2	48.5	26.1	16.9	-22.4		
2922908.2	297536.9	180	9.2	47.3	26.0	16.8	-21.3		
2922912.2	297537.8	184	9.2	47.2	26.0	16.8	-21.2		
2922916.0	297538.6	188	9.2	44.6	26.0	16.8	-18.6		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 13 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 5									
2922712.5	297611.4	0	7.7	44.1	27.0	19.3	-17.1		
2922716.5	297612.2	4	7.7	45.5	27.0	19.3	-18.5		
2922720.2	297613.0	8	7.7	45.5	27.0	19.3	-18.5		
2922724.2	297613.8	12	7.7	45.4	26.9	19.2	-18.5		
2922728.2	297614.6	16	7.8	45.5	26.9	19.1	-18.6		
2922732.0	297615.3	20	7.8	43.8	26.9	19.1	-16.9		
2922736.0	297616.1	24	8.3	45.4	26.9	18.6	-18.5		
2922740.0	297616.9	28	8.8	45.2	26.9	18.1	-18.3		
2922743.8	297617.7	32	8.0	46.0	26.8	18.8	-19.2		
2922747.8	297618.5	36	8.3	46.4	26.8	18.5	-19.6		
2922751.8	297619.3	40	8.5	47.2	26.8	18.3	-20.4		
2922755.8	297620.1	44	8.0	47.9	26.8	18.8	-21.1		
2922759.5	297620.8	48	7.8	48.6	26.7	18.9	-21.9		
2922763.5	297621.7	52	8.7	49.5	26.7	18.0	-22.8		
2922767.5	297622.4	56	8.7	48.6	26.7	18.0	-21.9		
2922771.2	297623.2	60	8.7	49.0	26.7	18.0	-22.3		
2922775.2	297624.0	64	9.1	48.1	26.7	17.6	-21.4		
2922779.2	297624.8	68	9.3	50.3	26.6	17.3	-23.7		
2922783.0	297625.6	72	9.4	50.4	26.6	17.2	-23.8		
2922787.0	297626.4	76	8.9	51.3	26.6	17.7	-24.7		
2922791.0	297627.2	80	8.2	51.5	26.6	18.4	-24.9		
2922794.8	297627.9	84	8.3	48.6	26.6	18.3	-22.0		
2922798.8	297628.7	88	8.4	47.6	26.5	18.1	-21.1		
2922802.8	297629.5	92	8.5	44.9	26.5	18.0	-18.4		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 2 - Page 14 of 14

HAGER-RICHTER GEOSCIENCE, INC.

Easting (ft)	Northing (ft)	Station (ft)	Layer 1 Depth (ft)	Bedrock Depth (ft)	Surface Elevation (ft)	Layer 1 Elevation (ft)	Bedrock Elevation (ft)		
Seismic Line 5 (cont.)									
2922806.5	297630.3	17.8	-16.1						
2922810.5	297631.1	100	8.8	42.6	26.5	17.7	-16.1		
2922814.5	297631.9	104	9.0	42.6	26.4	17.4	-16.2		
2922818.5	297632.7	108	9.1	42.1	26.4	17.3	-15.7		
2922822.2	297633.5	112	9.3	41.7	26.4	17.1	-15.3		
2922826.2	297634.2	116	9.5	41.8	26.4	16.9	-15.4		
2922830.2	297635.0	120	9.6	40.2	26.4	16.8	-13.8		
2922834.0	297635.8	124	9.8	40.9	26.3	16.5	-14.6		
2922838.0	297636.6	128	10.0	37.8	26.3	16.3	-11.5		
2922842.0	297637.4	132	10.2	36.9	26.3	16.1	-10.6		
2922845.8	297638.2	136	10.3	36.2	26.3	16.0	-9.9		
2922849.8	297639.0	140	10.5	36.1	26.3	15.8	-9.8		
2922853.8	297639.8	144	10.2	37.0	26.2	16.0	-10.8		
2922857.5	297640.5	148	10.1	37.5	26.2	16.1	-11.3		
2922861.5	297641.3	152	10.1	37.8	26.2	16.1	-11.6		
2922865.5	297642.1	156	9.4	39.4	26.2	16.8	-13.2		
2922869.2	297642.9	160	9.4	39.9	26.1	16.7	-13.8		
2922873.2	297643.7	164	9.6	39.7	26.1	16.5	-13.6		
2922877.2	297644.5	168	9.9	39.3	26.1	16.2	-13.2		
2922881.2	297645.3	172	10.2	39.0	26.1	15.9	-12.9		
2922885.0	297646.1	176	10.0	39.4	26.1	16.1	-13.3		
2922889.0	297646.8	180	10.3	39.1	26.0	15.7	-13.1		
2922893.0	297647.6	184	10.3	39.2	26.0	15.7	-13.2		
2922896.8	297648.4	188	10.3	39.4	26.0	15.7	-13.4		

Geophysical Survey Proposed Parking Structure 222 St. John Street Portland, Maine File 17J53 Table 3 - Page 1

TABLE 3COMPARISON OF BEDROCK ELEVATIONS

Comparison of Seismically Determined Bedrock Elevations with Bedrock Elevations Reported in Boring Logs									
Seismic Line and Location	/	Boring	Distance from Seismic Line to Boring	Bedrock Depth (feet)			Difference		
				Seismic Line	Boring	Feet	Percent		
SL1 0+30	/	B-201	32' E	64	62	2	3		
SL1 4+70	/	B-202	40' NE	43	44	1	2		
SL2 0+12	/	B-203B	15' W	63	61	2	3		
SL2 4+70	/	B-204	27' N	37	34	3	9		
SL3 0+99	/	B-205	1' S	57	54	3	6		
SL5 1+02	/	B-206	41' N	43	41	2	5		
	Average 2 5								
	Standard Deviation 1 2								

Comparison of Seismically Determined Bedrock Elevations at Seismic Line Intersections								
Seismic Line A / Seism and Location and		Seismi and L	c Line B ocation	Distance from Seismic Line A to	Bedrock Depth (feet)		Difference	
				Seismic Line B	Seismic Line A	Seismic Line B	Feet	Percent
SL1 1+15	/	SL3	0+00	-	64	64	0	0
SL1 2+35	/	SL4	0+00	-	45	45	0	0
SL1 3+50	/	SL5	0+00	-	45	44	1	2
SL2 0+99	/	SL3	1 + 88	-	62	61	1	2
SL2 2+19	/	SL4	1 + 88	-	45	45	0	0
SL2 3+34	/	SL5	1 + 88	-	39	39	0	0
						Average	0	1
	Standard Deviation 1 1							

Boring information provided by S.W. Cole. The absolute differences in feet reflect the absolute difference between bedrock depth determined for a location on a seismic line and bedrock depth reported for a nearby boring. The percentage differences were calculated by dividing the absolute differences in feet by the bedrock depth reported in the boring log.

<u>LEGEND</u>

Unsaturated soils

Competent bedrock

Compression wave

Velocity (fps)

Saturated soils

10600-12600

seismic refraction data Intersecting seismic line with depth of bedrock

Interface determined from

Boring with identification, distance from traverse, and depth of bedrock based on logs provided by S. W. Cole Engineering, Inc.

NOTES:

- 1. Estimated accuracy (standard deviation) of depth of bedrock is $\pm 10\%$ or 2 feet, whichever is greater.
- 2. The depths determined for bedrock are depths of competent rock; weathered and/or fractured bedrock might occur at shallower depths.
- 3. Surface elevations determined from plans provided by S. W. Cole Engineering, Inc.
- 4. Data were analyzed using the Generalized Reciprocal Method.

Figur Seismic Lir Proposed Pa Portlanc	re 3 nes 1 & 2 rking Garage I, Maine				
File 17J53	June, 2017				
HAGER-RICHTER Salem, NH Fords, NJ					

-50

4+50

WOODARDCUITAN.COM