SECTION 15510 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Condensate-drain piping.
 - 4. Air-vent piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Hot-Water Heating Piping: 150 psig (1035kPa) at 300 deg F (149 deg C).
 - 2. Chilled-Water Piping: 150 psig (1035kPa) at 200 deg F (93 deg C).
 - 3. Air-Vent Piping: 200 deg F (93 deg C).
 - 4. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.4 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air control devices.
 - 3. Glycol additive.
 - 4. Hydronic specialties.
- B. Shop Drawings: Detail, at 1/4 (1:50) scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Welding certificates.
- D. Qualification Data: For Installer.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

- G. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.
- 1.5 QUALITY ASSURANCE
 - A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
 - C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

1.6 EXTRA MATERIALS

A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
 - B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
 - C. DWV Copper Tubing: ASTM B 306, Type DWV.
 - D. See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of three subparagraphs and list of manufacturers below. See Division 01 Section "Product Requirements."
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company of America.
 - 2. Grooved-End Copper Fittings: ASTM B 75 (ASTM B 75M), copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F (110 deg C) for use with housing, and steel bolts and nuts.

- E. Copper or Bronze Pressure-Seal Fittings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Stadler-Viega.
 - 2. Housing: Copper.
 - 3. O-Rings and Pipe Stops: EPDM.
 - 4. Tools: Manufacturer's special tools.
 - 5. Minimum 200-psig (1379-kPa) working-pressure rating at 250 deg F (121 deg C).
- F. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. T-DRILL Industries Inc.
- G. Wrought-Copper Unions: ASME B16.22.
- 2.2 STEEL PIPE AND FITTINGS
 - A. Steel Pipe: ASTM A 53/A 53M, Schedule 40 black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
 - B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
 - C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
 - D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
 - E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
 - F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
 - G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
 - H. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Central Sprinkler Company; a division of Tyco Fire & Building Products.
 - c. National Fittings, Inc.
 - d. S. P. Fittings; a division of Star Pipe Products.

- e. Victaulic Company of America.
- 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- 3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- I. Steel Pressure-Seal Fittings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Victaulic Company of America.
 - 2. Housing: Steel.
 - 3. O-Rings and Pipe Stop: EPDM.
 - 4. Tools: Manufacturer's special tool.
 - 5. Minimum 300-psig (2070-kPa) working-pressure rating at 230 deg F (110 deg C).
- J. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.
 - 2. Factory-fabricated union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Flanges:
 - 1. See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of two subparagraphs and list of manufacturers below. See Division 01 Section "Product Requirements."
 - 2. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 3. Factory-fabricated companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
- E. Dielectric-Flange Kits:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 3. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. Calpico, Inc.
- b. Lochinvar Corporation.
- 2. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- G. Dielectric Nipples:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Perfection Corporation; a subsidiary of American Meter Company.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Victaulic Company of America.
 - 2. Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.5 VALVES

- A. Gate, Check, and Ball Valves: Comply with requirements specified in Division 15 Section "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 15 Section "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig (860 kPa).
 - 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.

- c. Flow Design Inc.
- d. Gerand Engineering Co.
- e. Griswold Controls.
- f. Taco.
- g. Tour & Andersson; available through Victaulic Company of America.
- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig (860 kPa).
- 11. Maximum Operating Temperature: 250 deg F (121 deg C).
- E. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Conbraco Industries, Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Inlet Strainer: stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- F. Diaphragm-Operated Safety Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Conbraco Industries, Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.

- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- G. Automatic Flow-Control Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
 - 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: 300 psig (2070 kPa).
 - 9. Maximum Operating Temperature: 250 deg F (121 deg C).

2.6 AIR CONTROL DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amtrol, Inc.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - 4. Taco.
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/8 (DN 6).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 225 deg F (107 deg C).
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/4 (DN 8).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).

- D. In-Line Air Separators:
 - 1. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
 - 2. Maximum Working Pressure: Up to 175 psig (1207 kPa).
 - 3. Maximum Operating Temperature: Up to 300 deg F (149 deg C).

E. Air Purgers:

- 1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
- 2. Maximum Working Pressure: 150 psig (1035 kPa).
- 3. Maximum Operating Temperature: 250 deg F (121 deg C).

2.7 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig (860-kPa) working pressure; 5-gal. (19-L) capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
- B. Propylene Glycol: Industrial grade with corrosion inhibitors and environmental-stabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

2.8 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (860 kPa).
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Spherical, Rubber, Flexible Connectors:
 - 1. Body: Fiber-reinforced rubber body.
 - 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 - 3. Performance: Capable of misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2 (DN 50) and smaller, shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- B. Hot-water heating & Chilled-water cooling piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered or brazed joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- C. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- D. Condensate-Drain Piping: Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- E. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.
- F. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 15 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 15 Section "Expansion Fittings and Loops for HVAC Piping."

- U. Identify piping as specified in Division 15 Section "Identification for HVAC Piping and Equipment."
- 3.4 HANGERS AND SUPPORTS
 - A. Hanger, support, and anchor devices are specified in Division 15 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
 - B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
 - 7. NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
 - 8. NPS 6 (DN 150): Maximum span, 17 feet (5.2 m); minimum rod size, 1/2 inch (13 mm).
 - 9. NPS 8 (DN 200): Maximum span, 19 feet (5.8 m); minimum rod size, 5/8 inch (16 mm).
 - D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.

- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
- J. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.
- K. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.

- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 15 Section "Meters and Gages for HVAC Piping."

3.8 CHEMICAL TREATMENT

Fill systems indicated to have antifreeze or glycol solutions with the following concentrations:
Glycol Heat Recovery-Water Piping: Minimum 40 percent propylene glycol.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.

- Inspect and set operating temperatures of hydronic equipment, such as boilers, and chillers to specified values. Verify lubrication of motors and bearings. 6.
- 7.

END OF SECTION 15510