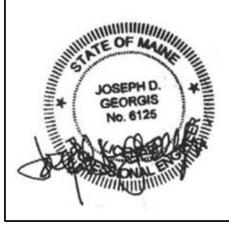

SUBMITTAL - # 12


PROJECT:	Maine Medical Center R – 6 – I. C. U. Renovations 22 Bramhall St. PORTLAND, ME. 04102 JOB # 15221
GENERAL CONTRACTOR:	Hebert Construction LLC 9 Gould Rd. Lewiston, Me 04240
SUBMITTED BY:	JOHNSON & JORDAN, INC 765 Congress St. Portland, Me. 04102 (207) 775-1169
SUBCONTRACTOR:	N/A
SUPPLIER:	Mechanical Control Systems 26 Keewaydin Drive Unit B Salem, New Hampshire PHONE (978) 674–7251 FAX Unk.
SPECIFICATION SECTION:	230548
PARAGRAPH:	All
ITEM:	Seismic

1 of 35		REV.	DESCRIPTION	SOURCE of CHANGE	DATE
			Initial Release		7/20/201
	-				
	12 I I				

SEISMIC CALCULATIONS

Suspended Systems

MECHANICAL CONTROL SYSTEMS 26-B Keeywaydin Drive Salem, NH 03079

JOB: MMC R6 ICU

CUSTOMER: Johnson & Jordan

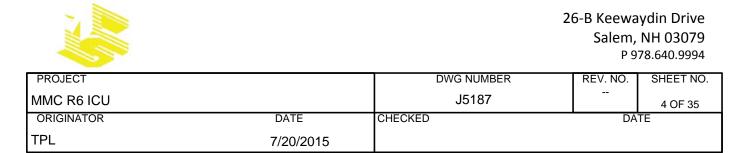
JOB NUMBER: J5187

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		2 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

TABLE I - SCHEDULE						
MMC R6 ICU						
TAG	QTY.	MFG.	MODEL	WT. (lbs.)	COMMENT	
AHU-10	1	Trane	CSAA012UA	3,744		
EF-29	1	Trane	CSAA012UA	1,644		
See TABLE	II for Se	ismic Restraints				

TABLE II - SEISMIC SUMMARY MMC R6 ICU							
		ANCHOR BOLTS	S per TAG				
	C	ONCRETE	STEEL	RESTRAINT	MINIMUM EDGE		
TAG	Dia. (in.)	Embedment (in.)	Dia. (in.)		DISTANCE		
AHU-10	5/8" (8)	4-1/2"	5/8" (8)	(2) Sets - VMC SB-250 w 1/4" AC Cable	6"		
EF-29	5/8" (4)	4-1/2"	5/8" (4)	VMC SB-250 w 1/4" AC Cable	6"		

TABLE III - SCHEDULE FOR VIBRATION ISOLATION MMC R6 ICU					
TAG	QTY.	WT. (lbs.)	ISOLATION	DEFL.	COMMENT
AHU-10	1	3,744	(4) HRSA-1E-1400	1.0"	
EF-29	1	1,644	(4) HRSA-1E-650	1.0"	



PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		3 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

TABLE I - SCHEDULE FOR SEISMIC RESTRAINT CALCULATIONS MMC R6 ICU					
TAG	Trans.	Long.	WT. (lbs)	DETAIL	RESTRAINT
PIPING - UP TO 2-1/2" Dia.	40	80	9.1 lb/lin. Ft.	5/6	VMC - SB-125 W 1/8" CABLE
PIPING - UP TO 4" Dia.	20	20	18.3 lb/lin. Ft.	5/6	VMC - SB-125 W 1/8" CABLE

TABLE II - SEISMIC SUMMARY MMC R6 ICU						
	AN	CHOR BOLTS per	• TAG			
	C	ONCRETE	STEEL	BRACE TYPE	MIN. CONC.	MIN. EDGE
TAG	Dia. (in.)	Embedment (in.)	Dia. (in.)		THICKNESS	DISTANCE
PIPING - UP TO 2-1/2" Dia.	1/2"	4"	1/2"	VMC - SB-125 W 1/8" CABLE	6"	6"
PIPING - UP TO 4" Dia.	1/2"	4"	1/2"	VMC - SB-125 W 1/8" CABLE	6"	6"

Seismic Locations				
Drawings	5	6		
PL-100	1	0		
PL-101	0	0		
PL-102	0	0		
MH-101	8	2		

Table of Contents:				
I. Summary of Critical Assumptions and Directive Statements	5			
II. Purpose	6			
III. Scope	6			
IV. Strategy & Assumptions	6			
V. Exemptions	6			
VI. Allowable Loads	7			
VII. Seismic Forces	7			
VIII. ANALYSES				
AHU-10	9			
EF-29	13			
Pipe	17			

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		5 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

I. Summary of Critical Assumptions and Directive Statements:

1. This analysis does <u>not</u> certify that the equipment is capable of handling the applied seismic loads. Any non-Mechanical Control Systems mounting supports, brackets or other means of attachment must be independently certified. Mechanical Control Systems assumes no responsibility for support structure - for its ability to withstand static or seismic loads, nor for its ability to distribute loads onto restraints.

2. Weight and dimensional data was provided by the customer. The values used in this analysis must be verified. If they vary, disregard these recommendations and notify Mechanical Control Systems of the changes.

3. These calculations will certify seismic restraints for seismic loads identified in Paragraph VI.

4. Housekeeping pads are by others. Per ICC Report ESR-1917, the minimum concrete thickness for Hilti Kwik Bolt TZ is 3-inches or 1.5 x anchor embedment – whichever is greater.

5. Bolt sizes and quantities are the minimum required to withstand the specified seismic forces as applied through the equipment center of gravity. This makes the standard seismic design assumption that all components and modules are connected to respond as a unitary lump mass. Any additional bolting required by the equipment manufacturer must also be installed.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		6 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

II. PURPOSE:

These calculations are submitted to Johnson & Jordan for MMC R6 ICU, to certify that the seismic restraints provided or recommended by Mechanical Control Systems will safely accept loads resulting from seismic forces.

III. SCOPE:

These calculations are for the seismic restraints supplied or specified by Mechanical Control Systems for use on the equipment per the Table II. These calculations certify that the Mechanical Control Systems components and specified hardware, when <u>properly installed</u>, are capable of safely supporting the specified seismic loads. These calculations do not cover equipment supplied by vendors nor the superstructure or substructure to which the Mechanical Control Systems components or specified hardware are attached. If there are any specs that supersede these assumptions, this analysis is invalid.

IV. STRATEGY AND ASSUMPTIONS:

For the purposes of this analysis, we must assume that the building and its internal structure have been designed to perform safely in response to an earthquake and remain intact and functioning after such an event. The equipment must be restrained and not break away from its supports during an earthquake. Therefore, the sum of the forces and moments acting on the equipment must be equal to zero. The problem can be reduced to a static analysis.

The force generated by the earthquake is composed of a vertical component and a horizontal component which act simultaneously about the equipment's center of gravity. The vertical component is taken to be $.2 \times S_{ds}$ multiplied by the equipment weight and added to the weight of the equipment. The compass orientation of the horizontal component is not known, therefore, assume an orientation that produces a worst case loading for a particular system. This information is based upon local and national codes.

V. EXEMPTIONS

PIPE

A. Pipe that passes through a wall or floor penetration. Provide positive attachment. No additional restraint required.

B. Top of pipe is within 12" of the support attachment to the structure. No additional restraint required.

C. Pipe is anchored and/or guided. No additional restraint required.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		7 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

VI. ALLOWABLE LOADS:

Unless otherwise specified, allowable bolt loads are per the Manual of Steel Construction - AISC 360-10. Concrete is assumed to be fc' = 3,000 psi (minimum) – normal weight. ACI 318

For VMC Seismic Bracing, ratings are based on Manufacturers testing

For Tolco Seismic Bracing & Support Systems, ratings are based on OSHPD – OPM-0052-13

For Hilti TZ Anchors, ratings are based on ICC Report ESR-1917.

VII. SEISMIC FORCES:

IBC / ASCE-7

Portland, ME

MCE Ground Motion Zip Code - 04102
(sec),(%g)
0.2 , 032.2 ,MCE Value of Ss
1.0,007.8,MCE Value of S1
Spectral Parameters for , Site Class D
Fa = 1.547
Fv = 2.40

- $S_{S} := .322$ $F_{A} := 1.547$ $S_{DS} := \frac{2}{3} \cdot F_{A} \cdot S_{S}$ $S_{DS} = 0.332$ g
 - $$\begin{split} I_p &:= 1.5 \\ D_p := 1.5 \\ a_p := 1 \\ R_p := 2.5 \\ z := 1 \end{split} \begin{split} & \text{Component Importance Factor -} \\ & \text{Component S} \\ & \text{Component Response Modification Factor Table 13.6-1} \\ & \text{R}_p := 2.5 \\ & \text{Component Response Modification Factor Table 13.6-1} \\ & \text{R}_p := 1 \\ & \text{Height in structure at point of attachment} \end{split}$$
 - h := 1 Average roof height relative to base

k is not required to be taken as greater than	$k := 1.6 \cdot S_{DS} \cdot I_p$	k = 0.80
k shall not be taken as less than	$\mathbf{k} := .3 \cdot S_{DS} \cdot I_p$	k = 0.15

				aydin Drive NH 03079 978.640.9994
PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		8 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

Suspended vibration isolation equipment including in-line duct devices and suspended internally isolated components and components & systems isolated using neoprene elements - above grade

 $a_p := 2.5 \qquad R_p := 2.5 \qquad z := 1$

$$\mathbf{k} \coloneqq \frac{.4 \cdot \mathbf{a}_{p} \cdot S_{DS}}{\frac{R_{p}}{I_{p}}} \cdot \left(1 + 2 \cdot \frac{z}{h}\right) \qquad \mathbf{k} = 0.60 \qquad \qquad \mathbf{F}_{p} \coloneqq 0.60 \cdot \mathbf{W}_{p}^{\blacksquare}$$

Piping - above grade (conservatively use Rp = 4.5)

 $R_p \approx 4.5$

$$\mathbf{k} \coloneqq \frac{.4 \cdot \mathbf{a}_{p} \cdot \mathbf{S}_{DS}}{\frac{\mathbf{R}_{p}}{\mathbf{I}_{p}}} \cdot \left(1 + 2 \cdot \frac{\mathbf{z}}{\mathbf{h}}\right) \qquad \mathbf{k} = 0.33 \qquad \mathbf{F}_{p} \coloneqq 0.33 \cdot \mathbf{W}_{p}^{\blacksquare}$$

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		9 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

EQUIPMENT TAG NO. AHU-10

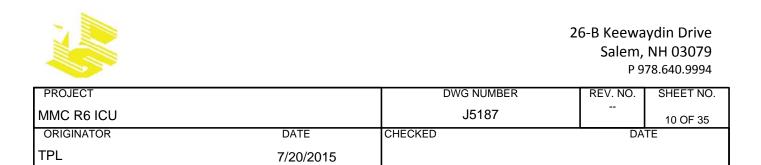
Weight of payload:

 $W_p := 3744$ lbs. $F_p := .60 \cdot W_p$ $F_p = 2246$ lbs.

 $S_{DS} := .332$ g

The vertical component (F pv) is

$$F_{pv} := .2 \cdot S_{DS} \cdot W_p$$
 $F_{pv} = 249$ lbs.


With the (8) point cable arrangement, there will be effectively 2 cables functioning in each direction. Therefore,

$$F_p := \frac{F_p}{2} \qquad F_p = 1123 \qquad \text{lbs.}$$

$$F_{pv} := \frac{F_{pv}}{2} \qquad F_{pv} = 124 \qquad \text{lbs.}$$

SUMMARY - Restraint for Suspended Equipment

Air Handling Units are suspended by threaded rod (by others). They will be restrained with 1/4" AC Cable with the VMC - SB-250 Brace attachment at the structural side and attachment at the equipment side. Attach each brace to exisiting structural steel with (1) 5/8-inch diameter A325 bolt, or to concrete with (1) 5/8-inch diameter Hilti KB TZ wedge anchor. Since there is vibration isolation leave a 1/4" slack in the cable for the unit to deflect.

Evaluate forces on the anchor bolt

When the bracket is subjected to these loads, the bracket tends to pry from the mounting surface. Figure A shows a free body diagram of the bracket with the force vectors. Summing moments and summing forces in the horizontal axis will determine the tensile and shear forces_{vb} fand F_{tb} , respectively.

For SB-250 Bracket, $L_1 := 1.57$ $L_2 := 1.25$ $\theta := 45$, degrees $\theta := \frac{\theta \cdot 2 \cdot \pi}{360}$, radians FIGURE A - Schematic of VMC - SB-250 $F_{restraint} := \frac{F_p}{\cos(\theta)}$ lbs. lbs. $F_{restraint} = 1588$ These forces are within the capability of the Bracket. $\Sigma M = 0 = L_1(F_{cable})(Sin \theta) - (L_2)F_{tb}$ Solving for F_{tb}, $F_{tb} := \frac{L_1 \cdot F_{restraint} \cdot sin(\theta)}{L_2}$ $F_{tb} = 1411$, lbs. Summing forces in the horizontal plane yields the following, Σ Fh = Fvb - Fcable (Cos(θ)) $F_{vb} := F_{restraint} \cdot (\cos(\theta))$ $F_{vb} = 1123$, Ibs.

BOLT SUMMARY -The maximum forces imposed on the single bolt attachment are:

Shear	$F_{vb} = 1123$, Ibs.
Tension	$F_{tb} = 1411$, Ibs.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		11 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

Combined shear and tension check for A325 Bolt by AISC

Root area for 5/8" dia. bolt = 0.202 in.² - AISC ASD 9th ed.

 $f_{tb} := \frac{F_{tb}}{.202} \qquad f_{tb} = 6984 \qquad \text{, psi-tension}$

$$f_{vb} := \frac{\Gamma_{vb}}{.202}$$
 $f_{vb} = 5560$, psi-shear

Maximum allowable shear stress is 21,000 psi. OK

The maximum allowable tension stress is:

$$f_{t2} \coloneqq \sqrt{44^2 - 4.39 \cdot \left(\frac{f_{vb}}{1000}\right)^2} \qquad f_{t2} = 42 \qquad \text{ksi}$$

 $\rm f_{tb}$ is less than $\rm f_{t2,}$ so the bolt is OK. Use 8 Bolts - 5/8-inch diameter - per ASTM A325

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		12 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

SUMMARY: Each anchor mu	istbe capable of	f withstanding the following forces:
Tension:	$F_{tb} = 1411$,lbs.
Shear:	$F_{vb} = 1123$,lbs.
$F_{allT} := 2899$, pour	nds per anchor - (Tension)
$F_{allS} := 3845$, pour	nds per anchor (Shear)

For anchors in concrete, subjected to combined tension and shear loads, the interaction formula is used. The anchorage is considered adequate if the Interaction (I) is less than, or equal to, 1.2.

$$I := \left(\frac{F_{tb}}{F_{alIT}}\right) + \left(\frac{F_{vb}}{F_{alIS}}\right) \qquad I = 0.779 \quad I < 1.2 \text{ and the anchorage is adequate.}$$

Use for HILTI KWIK BOLT TZ

- 5/8- inch diameter
- 4-1/2- inch embedment
- 3,000 psi concrete (min.) normal-weight
- cracked or uncracked concrete

Install per Manufacturer's instructions and ESR-1917.

lbs.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		13 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

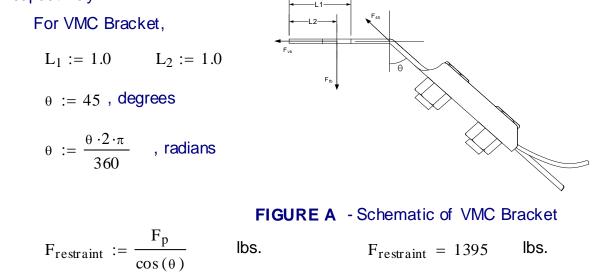
EQUIPM ENT TAG NO. EF-29

Weight of payload:

 $W_p := 1644$ lbs. $F_p := .60 \cdot W_p$ $F_p = 986$

 $S_{DS} := .332$, g

The vertical component (F_{pv}) is


 $F_{pv} := .2 \cdot S_{DS} \cdot W_p$ $F_{pv} = 109$ lbs.

SUMMARY - Restraint for Equipment

Equipment is suspended by threaded rod (by others). They will be restrained with Seismic Cable with VMC SB-250 Brackets at the structure side and on the equipment side. Attach each brace to steel structural with one (1) 5/8-inch diameter A325 bolt.

Evaluate forces on the anchor bolt

When the bracket is subjected to these loads, the bracket tends to pry from the mounting surface. Figure A shows a free body diagram of the bracket with the force vectors. Summing moments and summing forces in the horizontal axis will determine the tensile and shear forces - F $_{vb}$ and F $_{tb}$, respectively.

These forces are within the capability of the Bracket.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		14 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

$\Sigma M = 0 = L_1(F_{cable})(Sin \theta) - (L_2)F_{tb}$ Solving for F _{tb} ,
$F_{tb} := \frac{L_1 \cdot F_{restraint} \cdot sin(\theta)}{L_2} \qquad F_{tb} = 986 \qquad \text{, lbs.}$
Summing forces in the horizontal plane yields the follow ing,
Σ Fh = Fvb - Fcable (Cos (θ))
$F_{vb} := F_{restraint} \cdot (cos(\theta))$ $F_{vb} = 986$, lbs.
BOLT SUMMARY - The maximum forces imposed on the single bolt attachment are:
Shear $F_{vb} = 986$, lbs.
Tension $F_{tb} = 986$, lbs.
Combined shear and tension check for A325 Bolt per AISC Root area of 5/8" dia bolt = .202 in 2 - AISC ASD 9th edition
$ f_{tb} := \frac{F_{tb}}{.202} \qquad f_{tb} = 4883 \qquad ,psi $ $ f_{vb} := \frac{F_{vb}}{.202} \qquad f_{vb} = 4883 \qquad ,psi $
$f_{vb} := \frac{F_{vb}}{.202}$ $f_{vb} = 4883$,psi
Maximum allow able shear stress is 21,000 psi. OK
The maximum allow able tension stress is:
$f_{t2} := \sqrt{44^2 - 4.39 \cdot \left(\frac{f_{vb}}{1000}\right)^2} \qquad f_{t2} = 43 \qquad \text{ksi}$

 f_{tb} is less than f $_{t2\!_{\!\!\!,}}$ so the bolt is OK. Use 4 Bolts - 5/8-inch diameter - per ASTM A325

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		15 OF 35
ORIGINATOR	DATE	CHECKED	D DATE	
TPL	7/20/2015			

SUMMARY: Each anchor	must be capable of	of withstanding the following forces:	
Tension:	$F_{tb} = 986$, lbs.	
Shear:	$F_{vb} = 986$, lbs.	
- 5/8- - 4-1/2 - 3,00 - crack - Cond For optimum an		nt n.) - normal-weight oncrete	
$F_{allT} := 2899$, pounds per anchor - (Tension)	
$F_{allS} := 3845$, pounds per anchor (Shear)	

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		16 OF 35
ORIGINATOR	DATE	CHECKED	DA	TE
TPL	7/20/2015			

For anchors in concrete, subjected to combined tension and shear loads, the interaction formula is used. The anchorage is considered adequate if the Interaction (I) is less than, or equal to, 1.2.

 $I := \left(\frac{F_{tb}}{F_{allT}}\right) + \left(\frac{F_{vb}}{F_{allS}}\right) \qquad I = 0.597 \quad I < 1.2 \text{ and the anchorage is adequate.}$

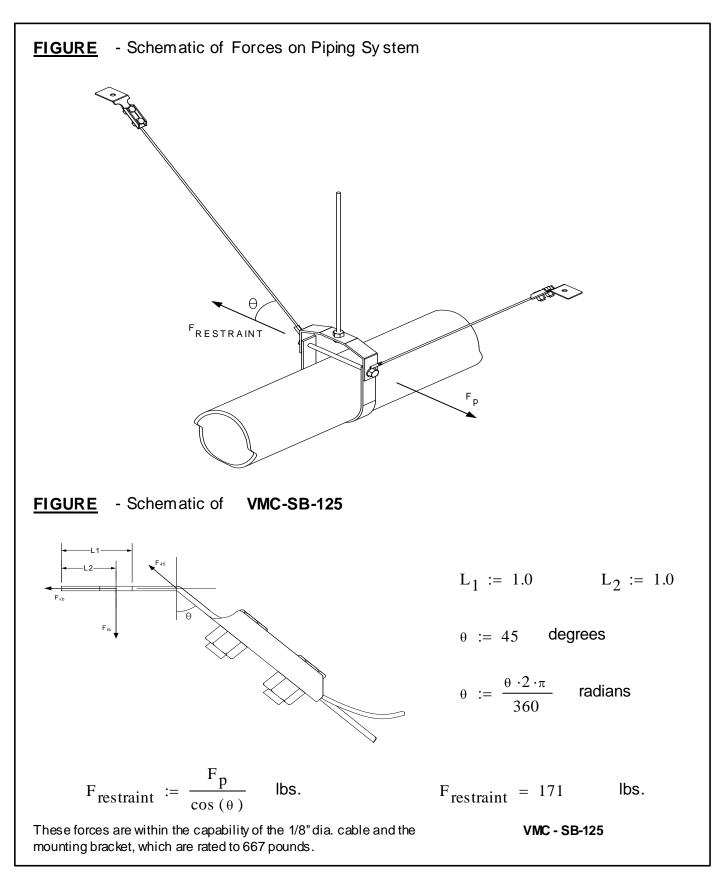
Use HILTI KWIK BOLT TZ

- 5/8 inch diameter -
- 4-1/2 inch embedment -
- 3,000 psi concrete (min.) normal-weight
- cracked or uncracked concrete
- Condition B of ACI-318-05 -

Install per Manufacturer's instructions and ESR-1917.

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		17 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

<u>Equipment Tag:</u>	Piping Locations			
Analysis of the <u>VMC SB-</u> suspended Pipe:	125 Brace Seismic Restraint System, Evaluate 4	-inch		
	ft x 20 ft = 366 lbs. as worst case. All other piping lo ocations as defined on the plan drawings associated			
	Weight of Payload= W_p Horizontal Force= F_p Vertical Force= F_{pv}			
Horizontal Seismic F	orce:			
W _p ≔ 366 lbs	$F_p := .33 \cdot W_p$	$F_{p} = 121$	lbs	
Vertical Seismic For	ce:			
$S_{DS} := .332$ g	$F_{pv} := .2 \cdot S_{DS} \cdot W_p$	$F_{pv} = 24$	lbs	
SUMMARY - Restraint for Piping Piping is suspended by threaded rod (by others). The system will be restrained				


Piping is suspended by threaded rod (by others). The system will be restrained with **VMC SB-125** bracing at the structure side. The eyelet will be attached to the equipment side to the threaded rod. (See attached Details) Attach each brace to existing steel structure with one 1/2- inch diameter A325 bolt.

Evaluate forces on the anchor bolt

The following figures represent the load path & sway diagrams. When the bracket is subjected to these loads, the bracket tends to pry from the mounting surface. Summing moments and summing forces in the horizontal axis will determine the tensile and shear forces - F_{yb} and F_{tb} , respectively.

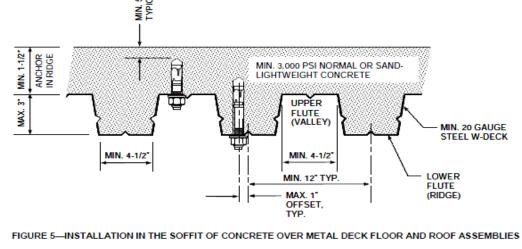
PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		18 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		19 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

 $SM = 0 = L_1 (F_{RESTRAINT}) (Sin \theta) - (L_2) F_{tb}$ $F_{tb} := \frac{L_1 \cdot F_{restraint} \cdot sin(\theta)}{L_2}$ $F_{tb} = 121$ lbs. Summing forces in the horizontal plane yields the following, $SF_h = F_{vb} - F_{RESTRAINT}$ (Cos θ) $F_{vh} := F_{restraint} \cdot \cos(\theta)$ $F_{vb} = 121$ lbs. BOLT SUMMARY - The maximum forces imposed on the single bolt attachment are: Shear $F_{vh} = 121$ lbs. **Tension** $F_{tb} = 121$ lbs. Evaluate bolt attachment to Steel Combined shear and tension check for A325 Bolt by AISC Root are for 1/2" dia. bolt = 0.126 in.² - AISC ASD 9th ed. $f_{tb} := \frac{F_{tb}}{126}$ $f_{tb} = 959$ psi-tension $f_{vb} := \frac{F_{vb}}{126}$ psi-shear $f_{vb} = 959$

Maximum allowable shear stress is 21,000 psi. OK

The maximum allowable tension stress is:


$$f_{t2} := \sqrt{44^2 - 4.39 \cdot \left(\frac{f_{vb}}{1000}\right)^2} \qquad f_{t2} = 44 \qquad \text{ksi}$$

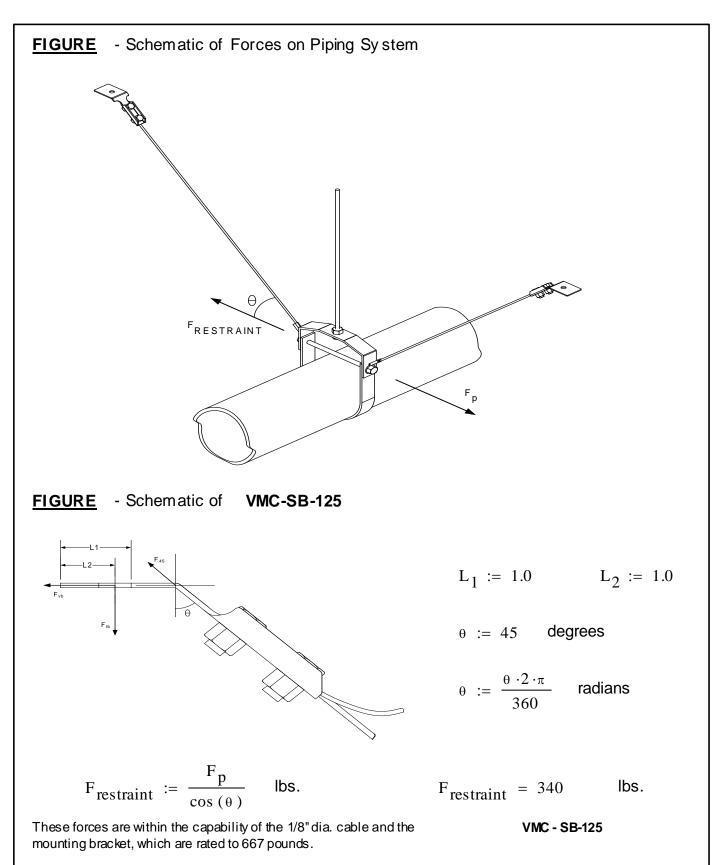
 $\rm f_{tb}$ is less than f $\rm _{t2}$, so the bolt is OK. Use 1/2- inch dia. bolts - per ASTM A325

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		20 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

Evaluate anchor attachment	to concrete
BOLT SUMMARY - The maximum	imum forces imposed on the single bolt attachment are:
Shear	$F_{vb} = 121$ lbs.
Tension	$F_{tb} = 121$ lbs.
Evaluate for HILTI KWIK BOLT - 1/2- inch diameter - 3-5/8 - inch embedme - 3,000 psi concrete (m - cracked or uncracked	ent nin.) - normal-weight
	edge distances, allowable forces in below (from ICC Report ESR-1917):
$F_{allT} := 1050$	pounds per anchor - (Tension)
$F_{alls} := 1490$	pounds per anchor (Shear)
For anchors in concrete, subjected to co interaction formula is used. The anchora (I) is less than, or equal to, 1.2.	ombined tension and shear loads, the age is considered adequate if the Interaction
$I := \left(\frac{F_{tb}}{F_{allT}}\right) + \left(\frac{F_{vb}}{F_{allS}}\right) \qquad I$	= 0.196 I < 1.2 and the anchorage is adequate.
See FIGURE below for dimensional require assemblies	ements for installation under metal deck floor and roof

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		21 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

<u>Equipment Tag:</u>	Piping Locations				
Analysis of the <u>VMC SB</u> suspended Pipe:	-125 Brace Seismic Restraint System, Evaluate	2.5-inch			
	t x 80 ft = 728 lbs. as worst case. All other piping lo ocations as defined on the plan drawings associate				
	Weight of Payload= W_p Horizontal Force= F_p Vertical Force= F_{pv}				
Horizontal Seismic F	Force:				
$W_p := 728$ lbs.	$F_p := .33 \cdot W_p$	$F_p = 240$	lbs		
Vertical Seismic For	ce:				
$S_{DS} := .332$ g	$F_{pv} := .2 \cdot S_{DS} \cdot W_p$	$F_{pv} = 48$	lbs		
SUMMARY - Restraint for Piping					


Piping is suspended by threaded rod (by others). The system will be restrained with **VMC SB-125** bracing at the structure side. The eyelet will be attached to the equipment side to the threaded rod. (See attached Details) Attach each brace to existing steel structure with one 1/2- inch diameter A325 bolt.

Evaluate forces on the anchor bolt

The following figures represent the load path & sway diagrams. When the bracket is subjected to these loads, the bracket tends to pry from the mounting surface. Summing moments and summing forces in the horizontal axis will determine the tensile and shear forces - F $_{vb}$ and F $_{tb}$, respectively.

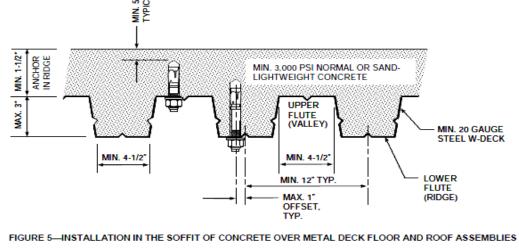
PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		22 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

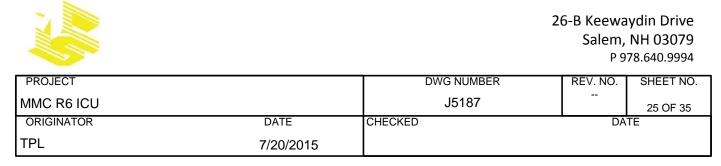
PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		23 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

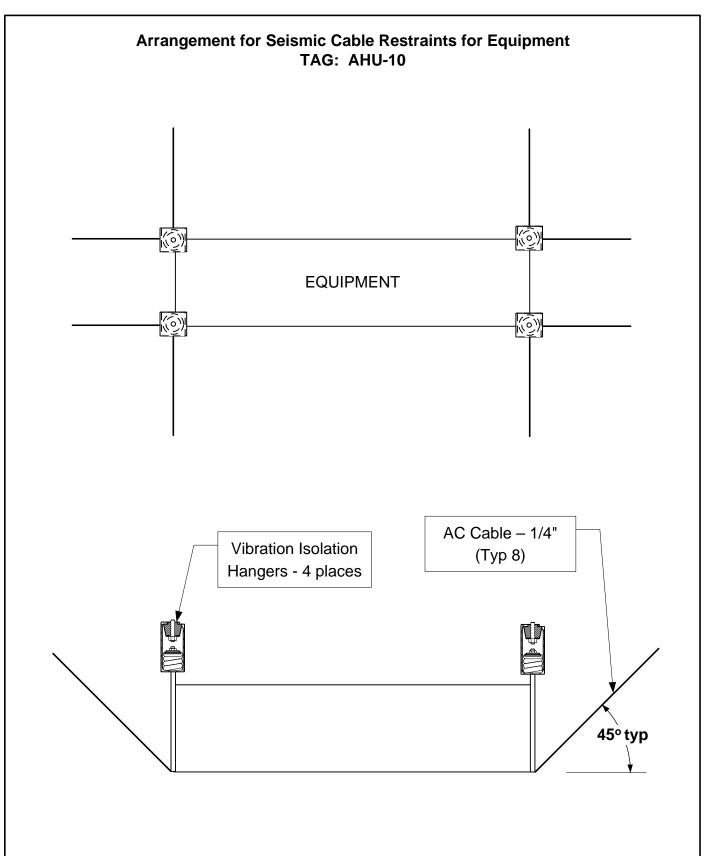
 $SM = 0 = L_1 (F_{RESTRAINT}) (Sin \theta) - (L_2) F_{tb}$ $F_{tb} := \frac{L_1 \cdot F_{restraint} \cdot sin(\theta)}{L_2}$ $F_{th} = 240$ lbs. Summing forces in the horizontal plane yields the following, $SF_h = F_{vb} - F_{RESTRAINT}$ (Cos θ) $F_{vh} := F_{restraint} \cdot \cos(\theta)$ $F_{vh} = 240$ lbs. BOLT SUMMARY - The maximum forces imposed on the single bolt attachment are: Shear $F_{vb} = 240$ lbs. $F_{tb} = 240$ **Tension** lbs. Evaluate bolt attachment to Steel Combined shear and tension check for A325 Bolt by AISC Root are for 1/2" dia. bolt = 0.126 in.² - AISC ASD 9th ed. $f_{tb} := \frac{F_{tb}}{126}$ $f_{tb} = 1907$ psi - tension $f_{vb} := \frac{F_{vb}}{126}$ psi-shear $f_{vb} = 1907$

Maximum allowable shear stress is 21,000 psi. OK

The maximum allowable tension stress is:

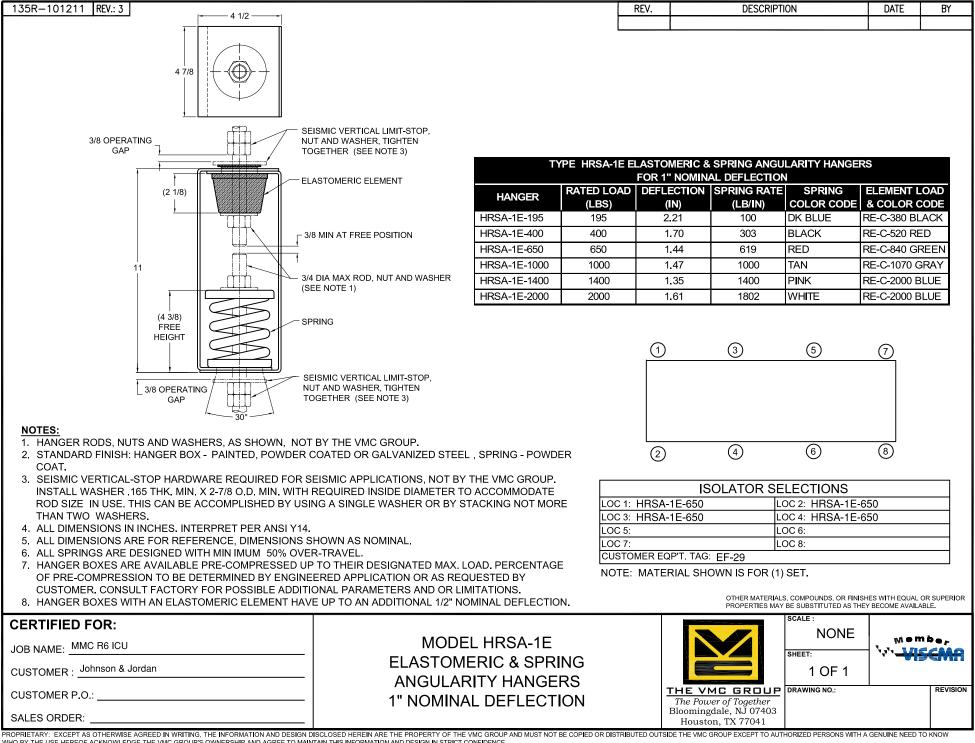

$$f_{t2} := \sqrt{44^2 - 4.39 \cdot \left(\frac{f_{vb}}{1000}\right)^2} \qquad f_{t2} = 44 \qquad \text{ksi}$$

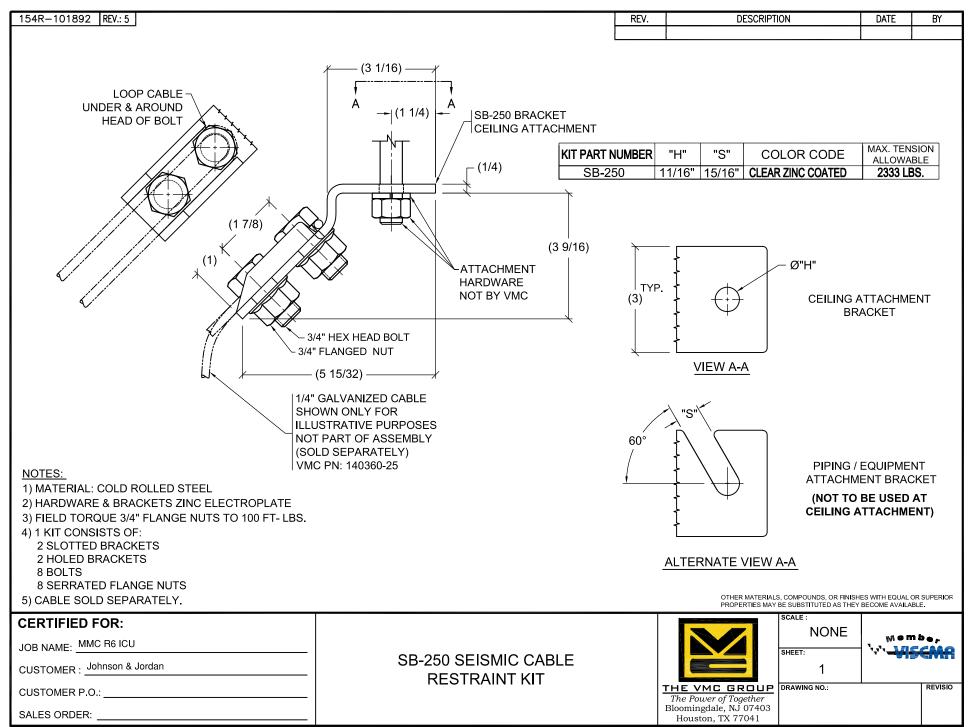

 $\rm f_{tb}$ is less than f $\rm _{t2}$, so the bolt is OK. Use 1/2- inch dia. bolts - per ASTM A325

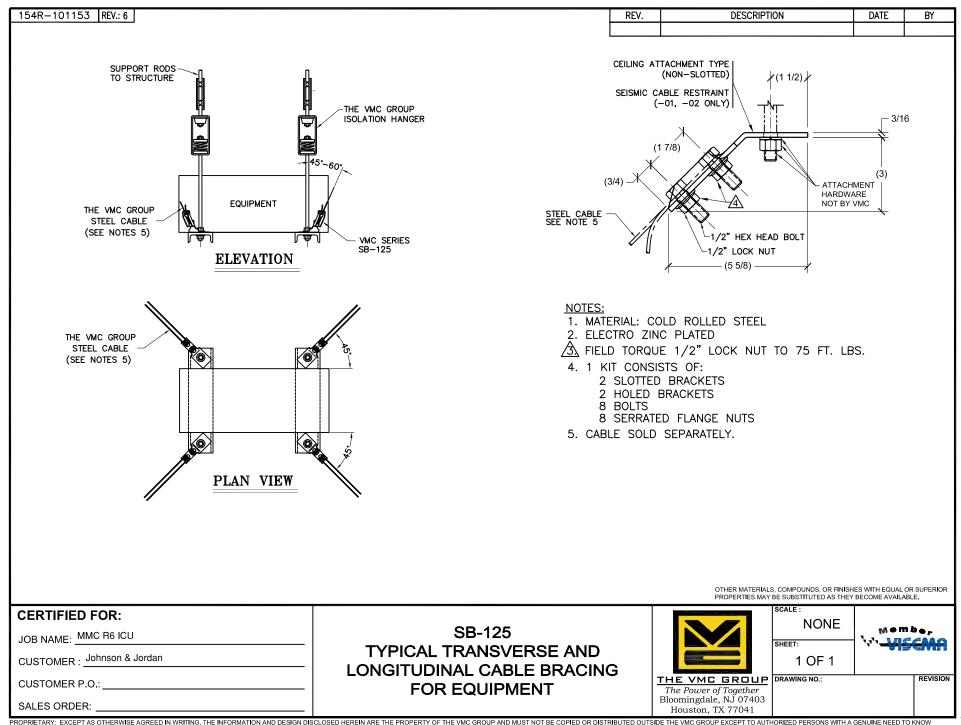


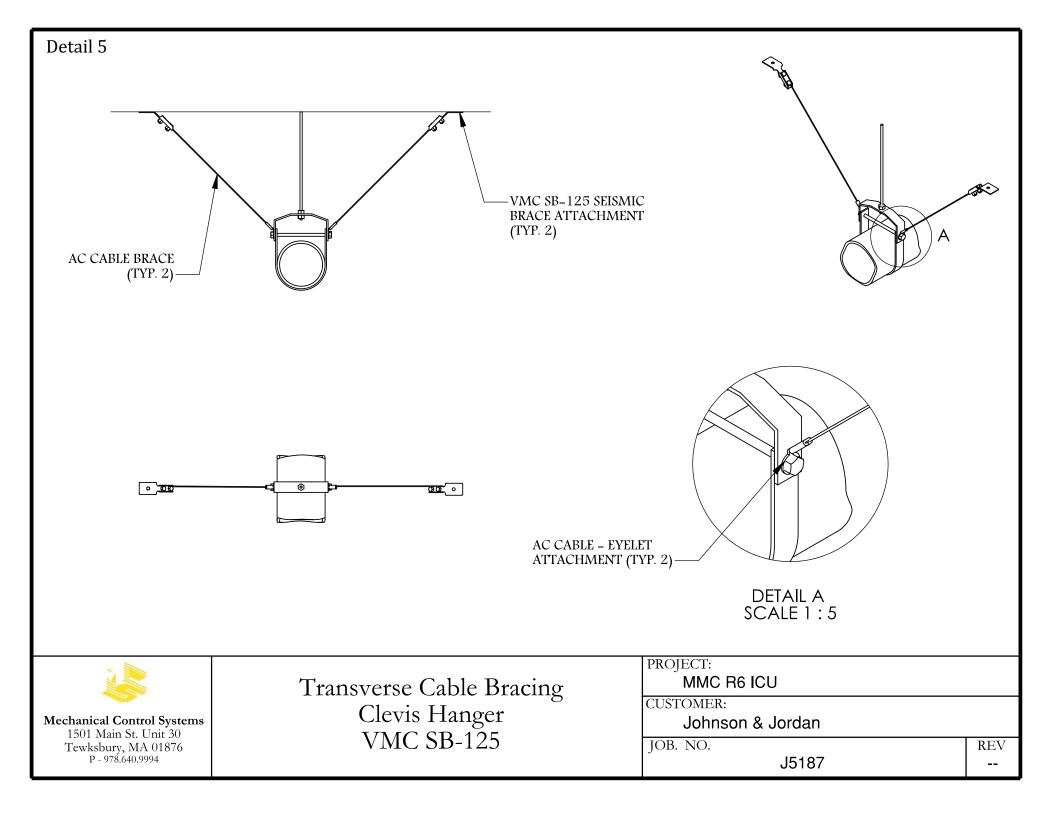

PROJECT		DWG NUMBER	REV. NO.	SHEET NO.
MMC R6 ICU		J5187		24 OF 35
ORIGINATOR	DATE	CHECKED	DATE	
TPL	7/20/2015			

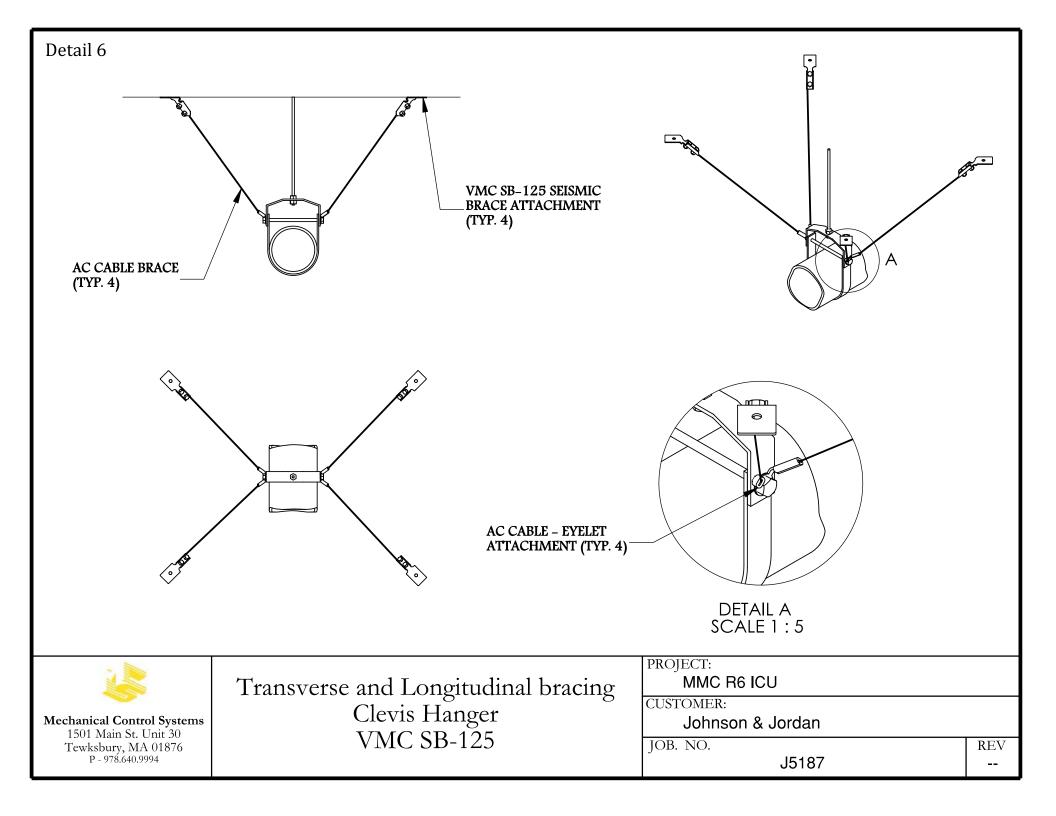
Evaluate anchor attachment	to concrete		
BOLT SUMMARY - The maxing	mum forces imposed on the single bolt attachment are:		
Shear	$F_{vb} = 240$ lbs.		
Tension	$F_{tb} = 240$ lbs.		
Evaluate for HILTI KWIK BOLT - 1/2- inch diameter - 3-5/8 - inch embedme - 3,000 psi concrete (m - cracked or uncracked o	nt in.) - normal-weight		
	edge distances, allowable forces in below (from ICC Report ESR-1917):		
$F_{allT} := 1050$	pounds per anchor - (Tension)		
$F_{allS} := 1490$	pounds per anchor (Shear)		
For anchors in concrete, subjected to co interaction formula is used. The anchora (I) is less than, or equal to, 1.2.	ombined tension and shear loads, the age is considered adequate if the Interaction		
$I := \left(\frac{F_{tb}}{F_{allT}}\right) + \left(\frac{F_{vb}}{F_{allS}}\right) \qquad I$	= 0.39 I < 1.2 and the anchorage is adequate.		
See FIGURE below for dimensional requirer assemblies	ments for installation under metal deckfloor and roof		

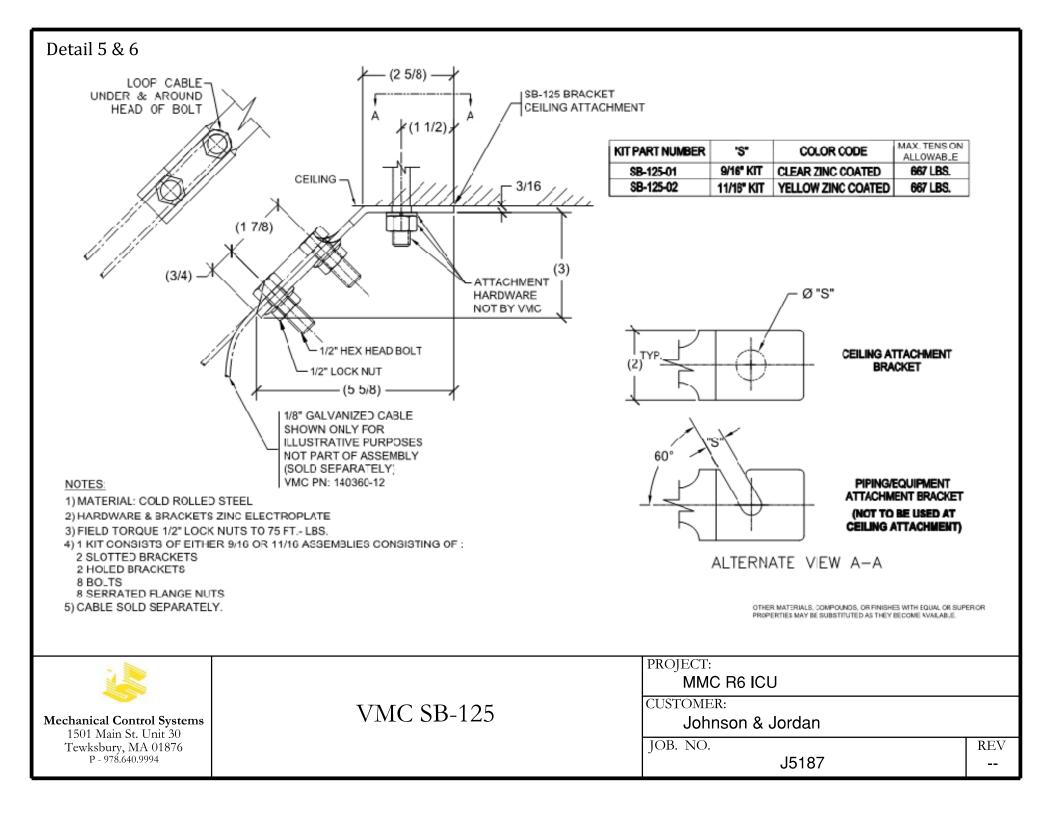




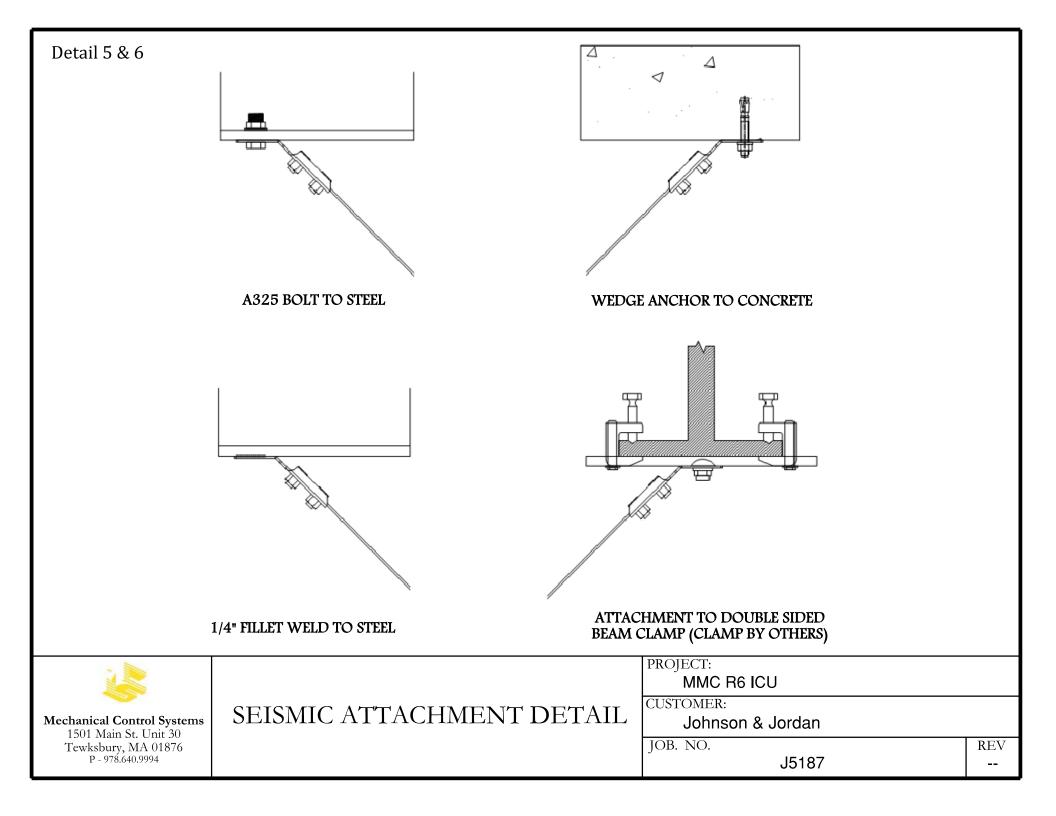

WHO BY THE USE HEREOF ACKNOWLEDGE THE VMC GROUP'S OWNERSHIP AND AGREE TO MAINTAIN THIS INFORMATION AND DESIGN IN STRICT CONFIDENCE.

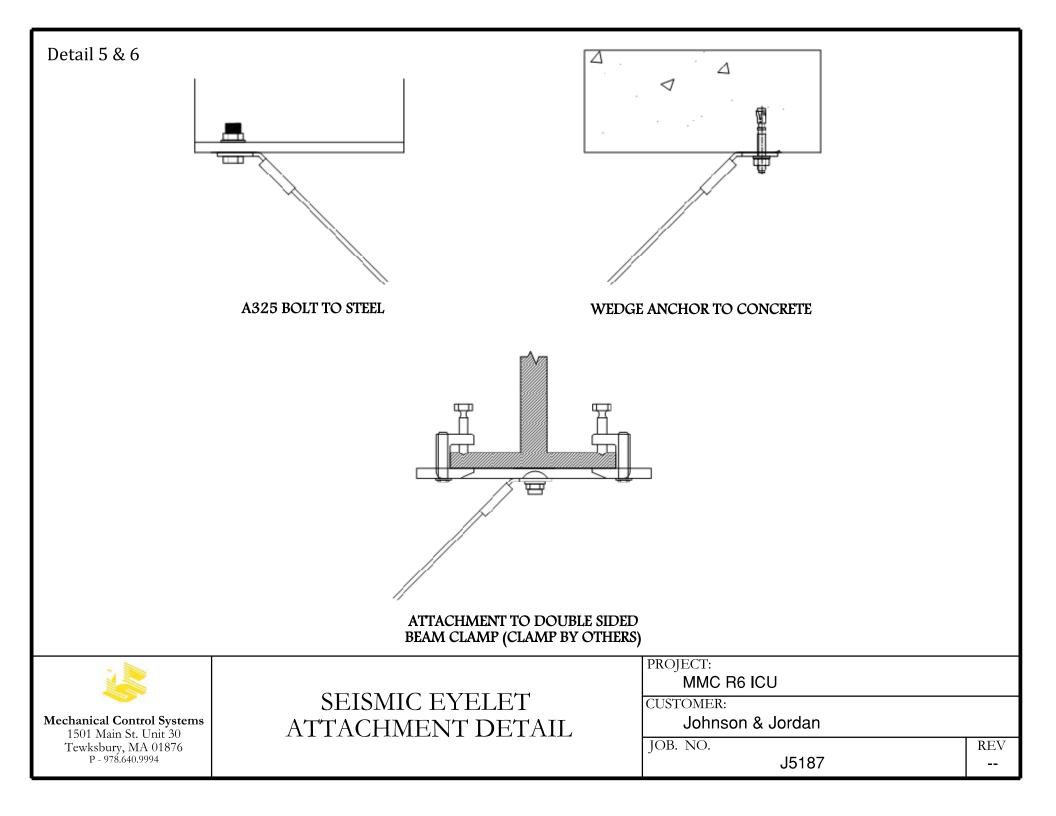

WHO BY THE USE HEREOF ACKNOWLEDGE THE VMC GROUP'S OWNERSHIP AND AGREE TO MAINTAIN THIS INFORMATION AND DESIGN IN STRICT CONFIDENCE.

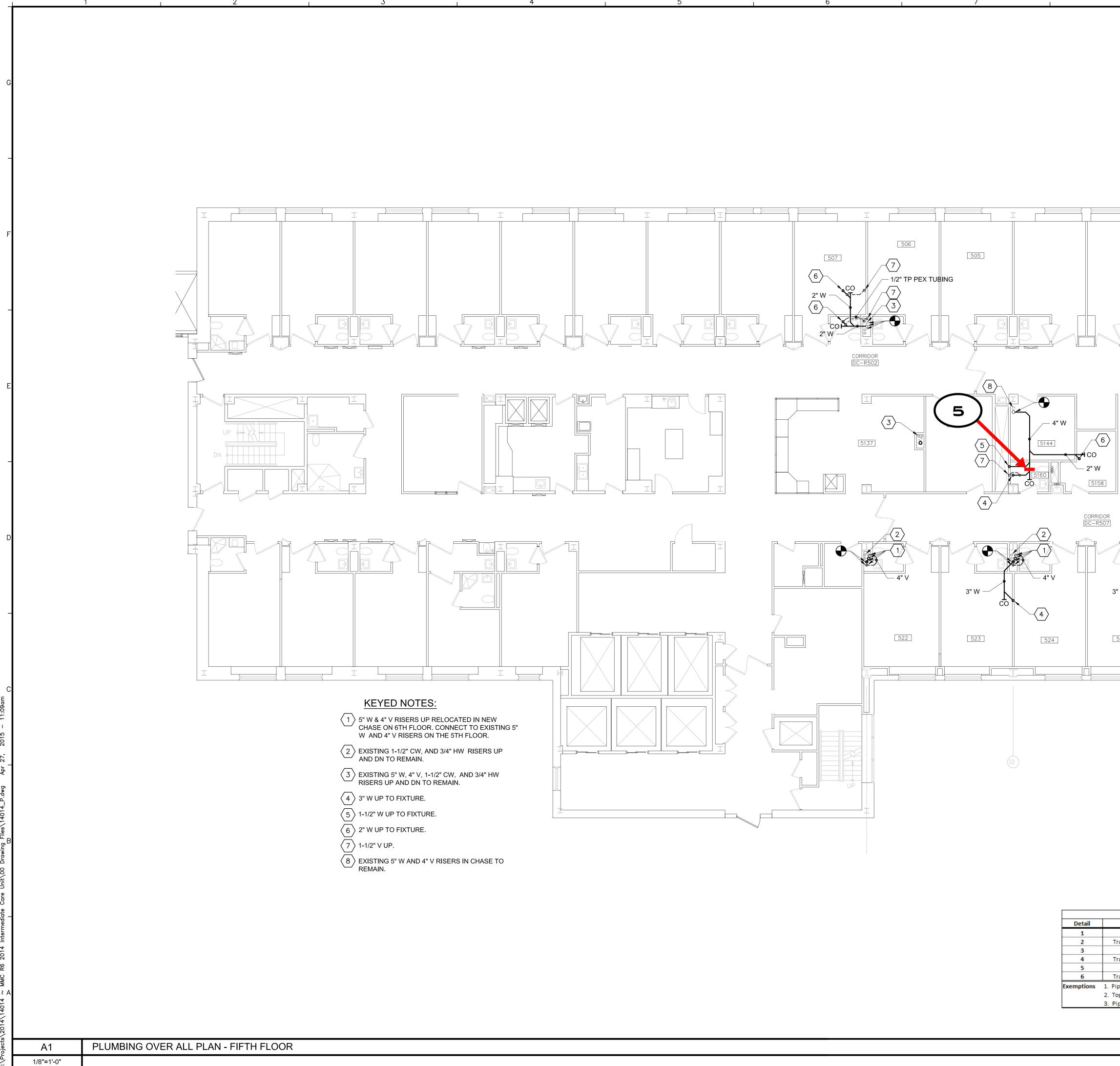



PROPRIETARY: EXCEPT AS OTHERWISE AGREED IN WRITING, THE INFORMATION AND DESIGN DISCLOSED HEREIN ARE THE PROPERTY OF THE VMC GROUP AND MUST NOT BE COPIED OR DISTRIBUTED OUTSIDE THE VMC GROUP EXCEPT TO AUTHORIZED PERSONS WITH A GENUINE NEED TO KNOW WHO BY THE USE HEREOF ACKNOWLEDGE THE VMC GROUP'S OWNERSHIP AND AGREE TO MAINTAIN THIS INFORMATION AND DESIGN IN STRICT CONFIDENCE.

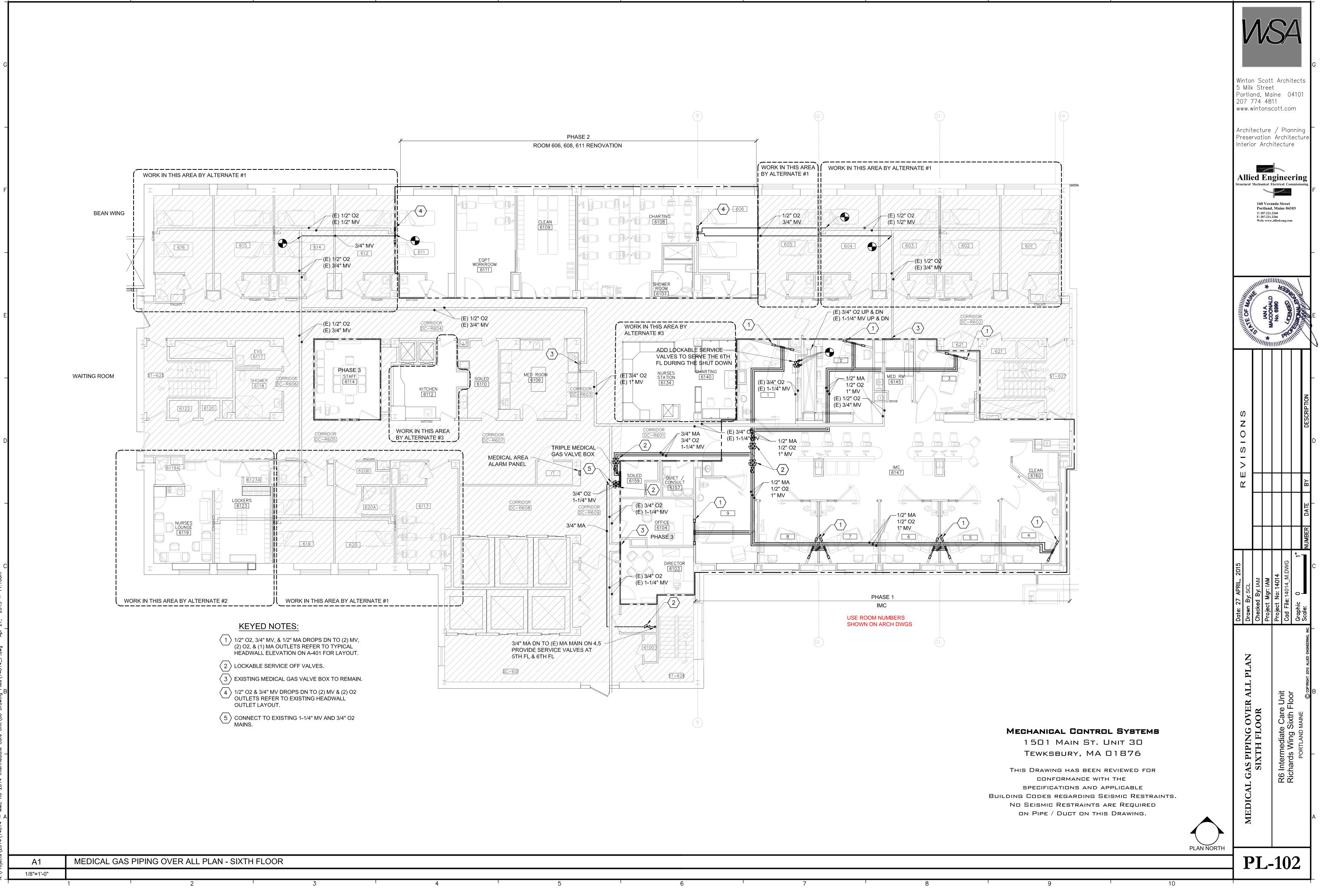


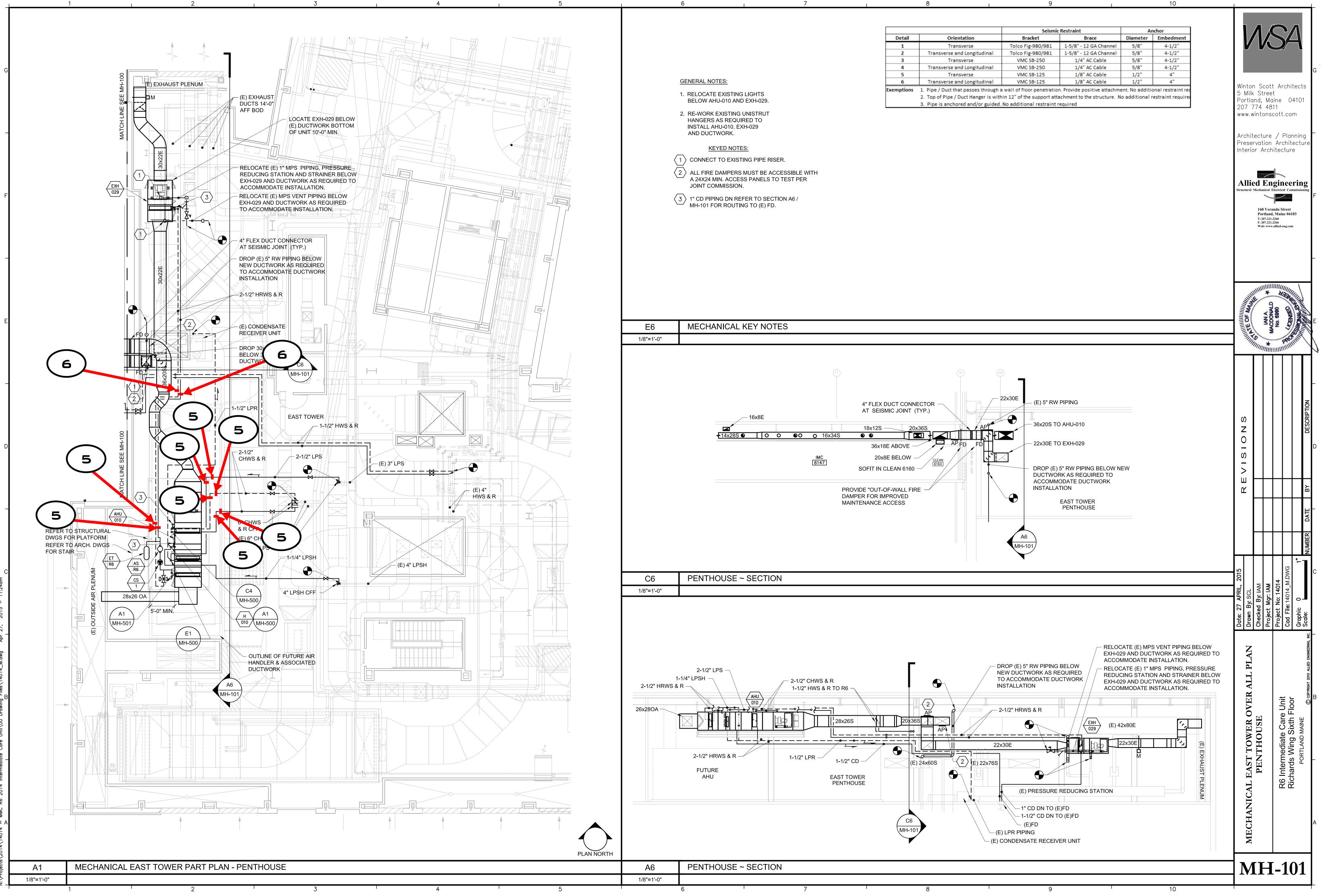

PROPRIETARY: EXCEPT AS OTHERWISE AGREED IN WRITING, THE INFORMATION AND DESIGN DISCLOSED HEREIN ARE THE PROPERTY OF THE VMC GROUP AND MUST NOT BE COPIED OR DISTRIBUTED OUTSIDE THE VMC GROUP EXCEPT TO AUTHORIZED PERSONS WITH A GENUINE NEED TO KNOW WHO BY THE USE HEREOF ACKNOWLEDGE THE VMC GROUP'S OWNERSHIP AND AGREE TO MAINTAIN THIS INFORMATION AND DESIGN IN STRICT CONFIDENCE.











8 1	9	<u> 10 </u>	VX	SA
			Winton Scott 5 Milk Stree Portland, Ma 207 774 48 www.wintonso	t ine 04101 11
			Architecture Preservation Interior Arch	/ Planning Architecture
			Portland T: 207.221. F: 207.221.	Hectrical Commissioning hereit haine 04103 12260
			A NACDONALD *	
5158 CORRIDOR DC-R507 2 1 4"V 3"W CO 4 525 526			REVISIONS	BER DATE BY DESCRIPTION
			Date: 27 APRIL, 2015 Drawn By: SCL Checked By: IAM Project Mgr: IAM	Project No: 14014 Cad File: 14014_M.DWG Cad File: 14014_M.DWG 1" Graphic 0 1" I O 1"
	Seismic RestraintBracketBraceTolco Fig-980/9811-5/8" - 12 GA ChanneTolco Fig-980/9811-5/8" - 12 GA ChanneVMC SB-2501/4" AC CableVMC SB-2501/4" AC CableVMC SB-2501/4" AC CableVMC SB-1251/8" AC Cablea wall of floor penetration. Provide positive attacc	el 5/8" 4-1/2" 5/8" 4-1/2" 5/8" 4-1/2" 1/2" 4" 1/2" 4" 1/2" 4" nment. No additional restraint rec	PLUMBING OVER ALL PLAN FIFTH FLOOR	R6 Intermediate Care Unit Richards Wing Sixth Floor PORTLAND MAINE © COPTRIGHT 2010 ALLED ENGINEERING.
	hin 12" of the support attachment to the structure			А

