

ENGINEERS' SUBMITTAL REVIEW STAMP & COMMENTS

Project: MMC Bean AHU Replacement Project					
Submittal Name # 18 - Bean A.H.U. Replacement Project - HVAC Power Ventilators Submittals (5-13- 2015)					
AKF Project No: B140263-000 AKF Log No. H-15					
<u>X</u> Make C Revise a Rejected Returned Checking is or project and ger documents. A plans and spec shall be confirm techniques of	AKF Group, LLC Submittal Stamp orrections Noted - No Resubmission Required and Resubmit d d Without Action hly for general conformance with the design concept of the heral compliance with the information given in the contractor ny action shown is subject to the given requirements of the cifications. Contractor is responsible for: Dimensions which hed and correlated at the job site; fabrication processes and construction; coordination of his work with that of all other satisfactory performance of his work. Date: 6/12/15 By: DPR				

General Comments: Review of submitted shop drawings is limited to system material and function compliance to issued plans, specifications, addendums and bulletins. Specific quantities of necessary material items to provide a complete and functioning system are not being confirmed as part of this review. Ultimate responsibility for quantities of necessary materials to provide a complete and functioning system shall be by the submitting contractor and equipment vendor.

Review Comments:

- 1. Motor for RF-069 shall be 5 HP as scheduled in drawing M-502.
- 2. Motor for EF-193 shall be 5 HP as scheduled in drawing M-502.
- 3. Motors shall be manufactured by Reliance.

Submittal #80.0 23 34 23 - HVAC Power Ventilators

S/D: HVAC Power Ventilators

APPROVERS:	Brandon Romano (Maine Medical Center) David Roberts (AKF)	CREATED BY:	Samantha Loring(Consigli Construction Co., Inc.)
RESPONSIBLE CONTRACTOR:	Johnson & Jordan, Inc Dana Foote (Johnson & Jordan, Inc)	STATUS:	Open
TYPE:	Shop Drawing	SPEC SECTION:	23 34 23 - HVAC Power Ventilators
COPIES TO:			
DESCRIPTION:			
ATTACHMENTS:			

18 - Bean A.H.U. Replacement Project - HVAC Power Ventilators Submittals (5-13-2015).pdf

ARCHITECT'S STAMP

CONTRACTOR'S STAMP

Consigli Construction Co., Inc.				
Approved for A/E Review]	Revise & Resubmit		
Approved as Noted for A/E Rev	view	Rejected		
Spec. Section: 23 34 23	Submittal No.: 80			
Date: 6/4/2015	By: Nick Munro			
If so marked, approval is given for design only. It does no relieve the subcontractor from complying with the requirements of the contract, contract drawings and specifications. The subcontractor shall be responsible for all dimensions, quantities, schedules and field conditions				

SUBMITTAL WORKFLOW

#	NAME	SUBMITTER/ APPROVER	SENT DATE	DUE DATE	RETURNED DATE	RESPONSE	ATTACHMENTS	COMMENTS
1	Nick Munro	Submitter		6/4/2015	6/4/2015	Submitted		
2	David Roberts	Approver	6/4/2015	6/18/2015		Pending		
3	Brandon Romano	Approver		7/2/2015		Pending		

DATE

BY

Johnson and Jordan Mechanical

SUBMITTAL - # 18

PROJECT:	MMC – Bean Air Handler Replacement Project 22 Bramhall Street Portland, Maine 04102 JOB # 15035
Construction Managers:	Maine Medical Center Facilities Development P.M Brandon Romano 22 Bramhall Street Portland, Maine 04102
SUBMITTED BY:	JOHNSON & JORDAN, INC 18 MUSSEY RD. SCARBOROUGH, ME (207) 775–1169
SUBCONTRACTOR:	JOHNSON & JORDAN, INC 18 MUSSEY RD. SCARBOROUGH, ME (207) 775–1169
SUPPLIER:	New England Tech Air 16 Manson Libby Road Scarborough, Maine 04074 207–347–7577
SPECIFICATION SECTION:	<u>233423</u>
PARAGRAPH:	2.2
ITEM:	HVAC Power Ventilators

APPROVED	_ APPROVED AS NOTED
REVIEWED	RE-SUBMIT
SUBJECT TO AR	CHITECTS APPROVAL
DATE 5/13/15	By: <i>Jamie Evans</i>

New England Tech Air/Maine Steel

DATE: 5/12/2015

PROJECT NAME & ADDRESS:		
MMC AHU Replacement Project		
22 Bramhall St		
Portland, Maine 04102		

ENGINEER

AKF

99 Bedford St 2nd Floor

Boston, Ma 02111

ENGINEER PROJECT # B140263-000

MECHANICAL CONTRACTOR

Johnson and Jordan Mechanical Contractors

765 Congress Street 2nd Floor

Portland, ME 04102

J & J Submittal Coordinator: Dana L Foote <u>dfoote@johnsonandjordan.com</u>

MATERIALS:	Fans
SECTION:	230000

SUBMITTED FOR: (X) APPROVAL () RECORD

.....

SUBMITTAL

Job Title:

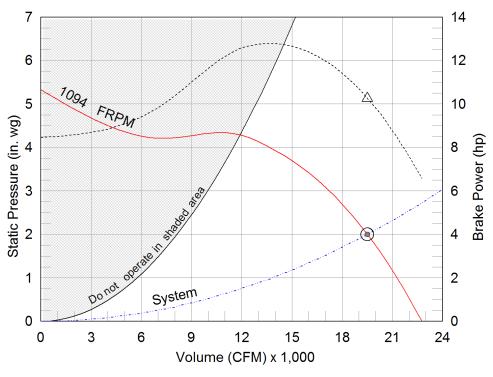
MMC BEAN - AHU RELACEMENT PROJECT

Elevation: (ft) 62 *Date:* 05/11/15 *Submitted By:* Ed Sawyer

> BUCKLEY ASSOCIATES INC 498B WOODFORD STREET PORTLAND, ME 04103-2461 US Phone: (207)773-0078 Fax: (207)773-0074 Email Address: esawyer@buckleyonline.com

SUBMITTAL NOTES:

FANS


P.O. Box 410 Schofiel

Derfermer	
Performar	
Quantity	1
Volume (CFM)	19,500
External SP (in. wg)	2
Total SP (in. wg)	2
Operating Power (hp)	10.26
Start-Up Power (hp)	12.57
Fan RPM	1094
Max Fan RPM	1,587
Oper. Frequency (Hz)	56
Elevation (ft)	62
Start-up Temp.(F)	70
Operating Temp.(F)	70
Fan Configu	ration
Size	33
Arrangement	4
Discharge Position	Horizontal
Mounting	
0	Ceiling Hung
Material Type	Steel
Equipment W	eights
Fan (LMD)(lb)	1,140
Motor/Drive (lb)	391
Accessories (lb)	84
Misc Fan D	Data
FEG	75
Outlet Velocity (ft/min)	1,730
Static Efficiency (%)	60
Wheel WR2 (lb-ft2)	305
Tip Speed (ft/min)	11,525
Motor and D	
Motor Supplier	Greenheck
Size (hp)	15
RPM	1170
Enclosure	TEFC
Voltage	460
Cycle	60
Phase	3
Frame Size	284T
Max Frame Size	365
Location	365 N/A
Location	IN/A

Model: QEID-33-75-B150 Mixed Flow Fan

Operating Performance

Operating Bhp point \triangle

- \bigcirc Operating point at Total SP
- Operating point at External SP •
- Fan curve
- ----- System curve ----- Brake horsepower curve

AMCA WORLDWIDE CERTIFIED RATINGS SOUND PERFORMANCE

Sound Power by Octave Band

Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
Inlet	81	91	90	90	86	84	78	70	92	80	31
Outlet	86	92	94	97	91	87	81	71	97	85	42
LwA - A weighted sound power level, based on ANSI S1.4											

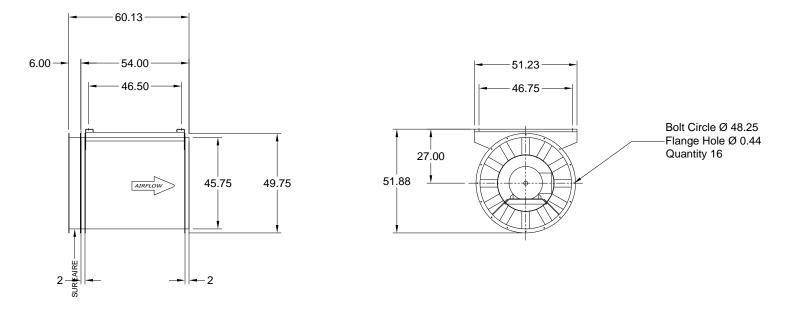
dBA - A weighted sound pressure level, based on 11.5 dB attenuation per octave band at 5 ft- dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5 ft

Model: QEID-33-75-B150

Mixed Flow Fan

Standard Construction Features:

HOUSING: Continuously welded steel housing. Welded steel air straightening vanes. Lifting lugs. Slip-fit inlet and outlet collars. Structural parts are phosphatized and coated with Permatector. WHEEL: Welded construction. Single thickness cambered blades.


Selected Options & Accessories:

NEMA Premium Efficient Motor - meets NEMA Table 12-12 Motor VFD Rated with Shaft Grounding Protection Motor with Shaft Grounding Motor with Class B Insulation Coated with Permatector, Concrete Gray-RAL 7023, Fan and Attached Accessories Hanging, Isolator-Spring, Hanging, 1 Inch Switch - NEMA-1, Toggle, For Indoor Use Only, Ship Separate Access Door - Bolted Sure-Aire Flow Station (With Electronics), 100-240VAC Extended Motor Wiring Inlet Flange - Punched Outlet Flange - Slip Fit Extended Lube Lines - Nylon Housing is not sealed for outdoor use

Model: QEID-33-75-B150

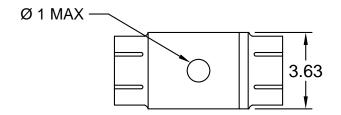
Mixed Flow Fan

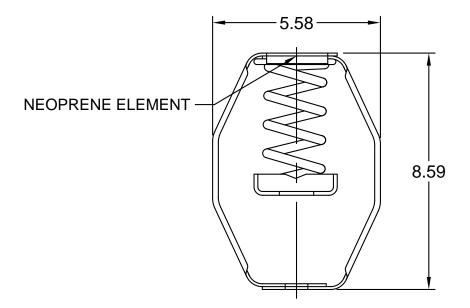
SIDE VIEW

END VIEW

0.69 DIA. MOUNTING HOLES END VIEW SHOWS FROM OUTLET END OF UNIT

Notes: All dimensions shown are in units of in.


Isolators Type: Spring, Hanging, 1 Inch


Standard Construction Features:

The spring hanging isolator is designed to reduce transmission of vibration and noise produced by suspended equipment and piping. The assure stability, the spring element has a minimum lateral stiffness of 1.0 times the rated vertical stiffness. The hanger will allow a support rod misalignment through 30 degree arc and the isolation brackets will carry a 500% overload without failure. The isolator has an epoxy powder coated bracket and spring coil which is color coded according to the load capacity and has a noise isolation pad, all which is assembled into a stamped or welded hanger bracket.

Fan Configuration

Model:	QEID-33-75-B150		
Arrangement:	4	Class:	
Rotation:	N/A	Motor Frame Size:	284T
Motor Position:	N/A	Isolator/Deflection:	Spring, Hanging, 1 Inch
Isolator Color:	Black		

Notes: All dimensions shown are in units of in.

**Isolator dimensions may vary with all aluminum, aluminum airstream, or Spark A construction, external inlet vane damper or with an outlet damper accessory. Consult factory for details.

QEID-33-75-B150 - Electronics Data Sheet

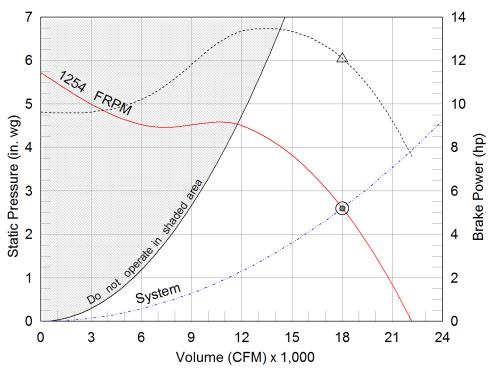
Sure-Aire Flow Equations				
Unit Size	Fan Equation			
9	cfm = 408 *sqrt(dP/density)			
12	cfm = 408 *sqrt(dP/density)			
15	cfm = 603 *sqrt(dP/density)			
16	cfm = 724 *sqrt(dP/density)			
18	cfm = 897 *sqrt(dP/density)			
20	cfm = 1088 *sqrt(dP/density)			
22	cfm = 1321 *sqrt(dP/density)			
24	cfm = 1631 *sqrt(dP/density)			
27	cfm = 1962 *sqrt(dP/density)			
30	cfm = 2400 *sqrt(dP/density)			
33	cfm = 2923 *sqrt(dP/density)			
36	cfm = 3576 *sqrt(dP/density)			
40	cfm = 4331 *sqrt(dP/density)			
44	cfm = 5318 *sqrt(dP/density)			
49	cfm = 6525 *sqrt(dP/density)			
54	cfm = 7891 *sqrt(dP/density)			
60	cfm = 9648 *sqrt(dP/density)			

dP = The differential static pressure between the Sure-Aire high and low taps. Standard Density = 0.075 lb/ft^3.

Installation Notes:

Mount differential pressure transmitter above sensor elevation to eliminate condensation buildup in the differential pressure cell.

Recommended tube size is 0.25 in for runs 25 ft or less. For longer runs, (Max. 100 ft.) use 0.375 in or larger tubing.


Consult factory for wiring diagram or installation instructions.

Performar	ice				
Quantity	1				
Volume (CFM)	18,000				
External SP (in. wg)	2.6				
Total SP (in. wg)	2.6				
Operating Power (hp)	12.07				
Start-Up Power (hp)	12.07				
Fan RPM	1254				
Max Fan RPM	1,670				
Oper. Frequency (Hz)	64				
Elevation (ft)	62				
Start-up Temp.(F)	70				
Operating Temp.(F)	70				
Fan Configu	ration				
Size	30				
Arrangement	4				
Discharge Position	Horizontal				
Mounting	Ceiling Hung				
Material Type	Steel				
Equipment W	eights				
Fan (LMD)(lb)	860				
Motor/Drive (lb)	391				
Accessories (lb)	78				
Misc Fan D	Data				
FEG	71				
Outlet Velocity (ft/min)	1,952				
Static Efficiency (%)	61				
Wheel WR2 (lb-ft2)	185				
Tip Speed (ft/min)	11,978				
Motor and D					
Motor Supplier	Greenheck				
Size (hp)	15				
Size (lip) RPM	1170				
Enclosure	TEFC				
	460				
Voltage Cycle	60				
Phase	3				
Frame Size	3 284T				
Max Frame Size	326				
Location	326 N/A				
Location	11/7				

Model: QEID-30-85-B150 Mixed Flow Fan

Operating Performance

Operating Bhp point \triangle

- \bigcirc Operating point at Total SP
- Operating point at External SP •
- Fan curve
- ----- System curve
- ----- Brake horsepower curve

Sound Power by Octave Band

Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
Inlet	83	91	91	88	87	82	77	70	91	80	31
Outlet	87	89	90	92	91	85	79	69	94	83	36
LwA - A weighted sound power level, based on ANSI S1.4											

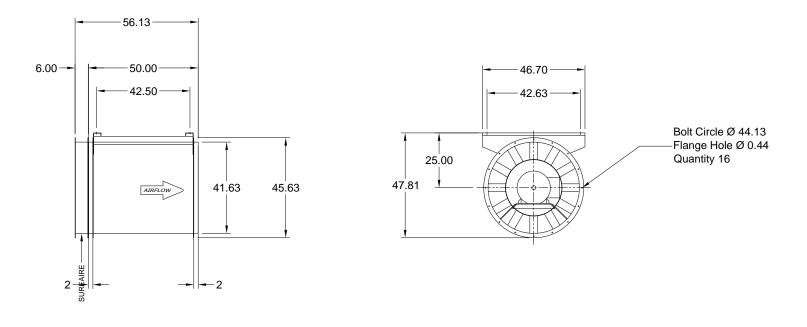
dBA - A weighted sound pressure level, based on 11.5 dB attenuation per octave band at 5 ft- dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5 ft

Model: QEID-30-85-B150

Mixed Flow Fan

Standard Construction Features:

HOUSING: Continuously welded steel housing. Welded steel air straightening vanes. Lifting lugs. Slip-fit inlet and outlet collars. Structural parts are phosphatized and coated with Permatector. WHEEL: Welded construction. Single thickness cambered blades.


Selected Options & Accessories:

NEMA Premium Efficient Motor - meets NEMA Table 12-12 Motor VFD Rated with Shaft Grounding Protection Motor with Shaft Grounding Motor with Class B Insulation Coated with Permatector, Concrete Gray-RAL 7023, Fan and Attached Accessories Hanging, Isolator-Spring, Hanging, 1 Inch Switch - NEMA-1, Toggle, For Indoor Use Only, Ship Separate Access Door - Bolted Sure-Aire Flow Station (With Electronics), 100-240VAC Extended Motor Wiring Inlet Flange - Punched Outlet Flange - Slip Fit Extended Lube Lines - Nylon Housing is not sealed for outdoor use

Model: QEID-30-85-B150

Mixed Flow Fan

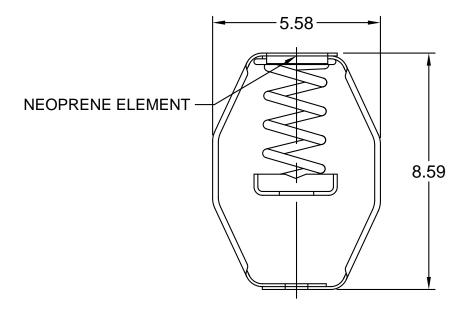
SIDE VIEW

END VIEW

0.69 DIA. MOUNTING HOLES END VIEW SHOWS FROM OUTLET END OF UNIT

Notes: All dimensions shown are in units of in.


Isolators Type: Spring, Hanging, 1 Inch


Standard Construction Features:

The spring hanging isolator is designed to reduce transmission of vibration and noise produced by suspended equipment and piping. The assure stability, the spring element has a minimum lateral stiffness of 1.0 times the rated vertical stiffness. The hanger will allow a support rod misalignment through 30 degree arc and the isolation brackets will carry a 500% overload without failure. The isolator has an epoxy powder coated bracket and spring coil which is color coded according to the load capacity and has a noise isolation pad, all which is assembled into a stamped or welded hanger bracket.

Fan Configuration

Model:	QEID-30-85-B150		
Arrangement:	4	Class:	
Rotation:	N/A	Motor Frame Size:	284T
Motor Position:	N/A	Isolator/Deflection:	Spring, Hanging, 1 Inch
Isolator Color:	Green		

Notes: All dimensions shown are in units of in.

**Isolator dimensions may vary with all aluminum, aluminum airstream, or Spark A construction, external inlet vane damper or with an outlet damper accessory. Consult factory for details.

QEID-30-85-B150 - Electronics Data Sheet

Sure-Aire Flow Equations									
Unit Size	Fan Equation								
9	cfm = 408 *sqrt(dP/density)								
12	cfm = 408 *sqrt(dP/density)								
15	cfm = 603 *sqrt(dP/density)								
16	cfm = 724 *sqrt(dP/density)								
18	cfm = 897 *sqrt(dP/density)								
20	cfm = 1088 *sqrt(dP/density)								
22	cfm = 1321 *sqrt(dP/density)								
24	cfm = 1631 *sqrt(dP/density)								
27	cfm = 1962 *sqrt(dP/density)								
30	cfm = 2400 *sqrt(dP/density)								
33	cfm = 2923 *sqrt(dP/density)								
36	cfm = 3576 *sqrt(dP/density)								
40	cfm = 4331 *sqrt(dP/density)								
44	cfm = 5318 *sqrt(dP/density)								
49	cfm = 6525 *sqrt(dP/density)								
54	cfm = 7891 *sqrt(dP/density)								
60	cfm = 9648 *sqrt(dP/density)								

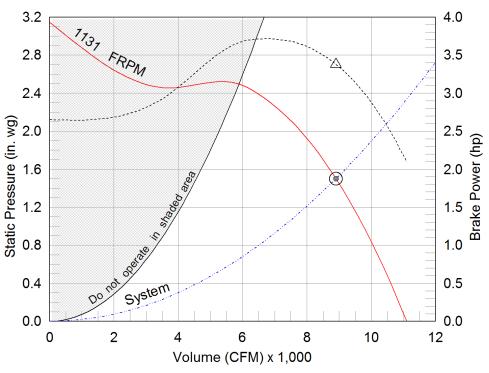
dP = The differential static pressure between the Sure-Aire high and low taps. Standard Density = 0.075 lb/ft^3.

Installation Notes:

Mount differential pressure transmitter above sensor elevation to eliminate condensation buildup in the differential pressure cell.

Recommended tube size is 0.25 in for runs 25 ft or less. For longer runs, (Max. 100 ft.) use 0.375 in or larger tubing.

Consult factory for wiring diagram or installation instructions.



Performar	
Quantity	1
Volume (CFM)	8,900
External SP (in. wg)	1.5
Total SP (in. wg)	1.5
Operating Power (hp)	3.38
Start-Up Power (hp)	3.74
Fan RPM	1131
Max Fan RPM	2,036
Oper. Frequency (Hz)	58
Elevation (ft)	62
Start-up Temp.(F)	70
Operating Temp.(F)	70
Fan Configu	ration
Size	24
Arrangement	4
Discharge Position	Horizontal
Mounting	Ceiling Hung
Material Type	Steel
Equipment W	/eights
Fan (LMD)(lb)	480
Motor/Drive (lb)	294
Accessories (lb)	46
Misc Fan D	
FEG	71
Outlet Velocity (ft/min)	1,433
Static Efficiency (%)	62
Wheel WR2 (lb-ft2)	67
Tip Speed (ft/min)	8,886
Motor and D	Prives
Motor Supplier	Greenheck
Size (hp)	7 1/2
RPM	1170
Enclosure	TEFC
Voltage	460
Cycle	60
Phase	3
Frame Size	254T
Max Frame Size	256
Location	N/A

Model: QEID-24-85-B75

Mixed Flow Fan

Operating Performance

Operating Bhp point \triangle

- \bigcirc Operating point at Total SP
- Operating point at External SP •
- Fan curve
- System curve _..._..
- ----- Brake horsepower curve

Sound Power by Octave Band

	Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
	Inlet	74	84	82	79	78	74	68	61	83	71	18.8
	Outlet	80	82	81	84	82	76	70	61	86	74	22
LwA - A weighted sound power level, based on ANSI S1.4												

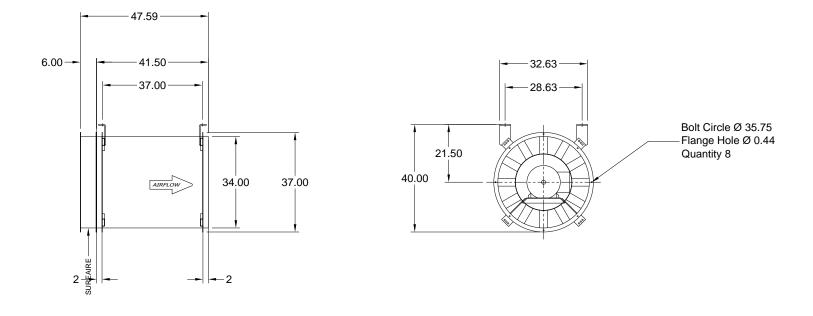
dBA - A weighted sound pressure level, based on 11.5 dB attenuation per octave band at 5 ft- dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5 ft

Model: QEID-24-85-B75

Mixed Flow Fan

Standard Construction Features:

HOUSING: Continuously welded steel housing. Welded steel air straightening vanes. Lifting lugs. Slip-fit inlet and outlet collars. Structural parts are phosphatized and coated with Permatector. WHEEL: Welded construction. Single thickness cambered blades.


Selected Options & Accessories:

NEMA Premium Efficient Motor - meets NEMA Table 12-12 Motor VFD Rated without Shaft Grounding Protection Motor with Class B Insulation Coated with Permatector, Concrete Gray-RAL 7023, Fan and Attached Accessories Hanging, Isolator-Spring, Hanging, 1 Inch Switch - NEMA-1, Toggle, For Indoor Use Only, Ship Separate Access Door - Bolted Sure-Aire Flow Station (With Electronics), 100-240VAC Extended Motor Wiring Inlet Flange - Punched Outlet Flange - Slip Fit Housing is not sealed for outdoor use

Model: QEID-24-85-B75

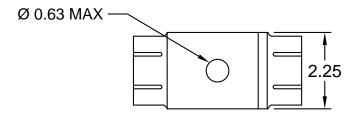
Mixed Flow Fan

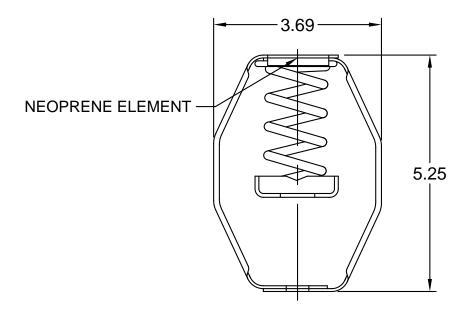
SIDE VIEW

END VIEW

0.56 DIA. MOUNTING HOLES END VIEW SHOWS FROM OUTLET END OF UNIT

Notes: All dimensions shown are in units of in.


Isolators Type: Spring, Hanging, 1 Inch


Standard Construction Features:

The spring hanging isolator is designed to reduce transmission of vibration and noise produced by suspended equipment and piping. The assure stability, the spring element has a minimum lateral stiffness of 1.0 times the rated vertical stiffness. The hanger will allow a support rod misalignment through 30 degree arc and the isolation brackets will carry a 500% overload without failure. The isolator has an epoxy powder coated bracket and spring coil which is color coded according to the load capacity and has a noise isolation pad, all which is assembled into a stamped or welded hanger bracket.

Fan Configuration

Model:	QEID-24-85-B75		
Arrangement:	4	Class:	
Rotation:	N/A	Motor Frame Size:	254T
Motor Position:	N/A	Isolator/Deflection:	Spring, Hanging, 1 Inch
Isolator Color:	Orange		

Notes: All dimensions shown are in units of in.

**Isolator dimensions may vary with all aluminum, aluminum airstream, or Spark A construction, external inlet vane damper or with an outlet damper accessory. Consult factory for details.

QEID-24-85-B75 - Electronics Data Sheet

Sure	e-Aire Flow Equations
Unit Size	Fan Equation
9	cfm = 408 *sqrt(dP/density)
12	cfm = 408 *sqrt(dP/density)
15	cfm = 603 *sqrt(dP/density)
16	cfm = 724 *sqrt(dP/density)
18	cfm = 897 *sqrt(dP/density)
20	cfm = 1088 *sqrt(dP/density)
22	cfm = 1321 *sqrt(dP/density)
24	cfm = 1631 *sqrt(dP/density)
27	cfm = 1962 *sqrt(dP/density)
30	cfm = 2400 *sqrt(dP/density)
33	cfm = 2923 *sqrt(dP/density)
36	cfm = 3576 *sqrt(dP/density)
40	cfm = 4331 *sqrt(dP/density)
44	cfm = 5318 *sqrt(dP/density)
49	cfm = 6525 *sqrt(dP/density)
54	cfm = 7891 *sqrt(dP/density)
60	cfm = 9648 *sqrt(dP/density)

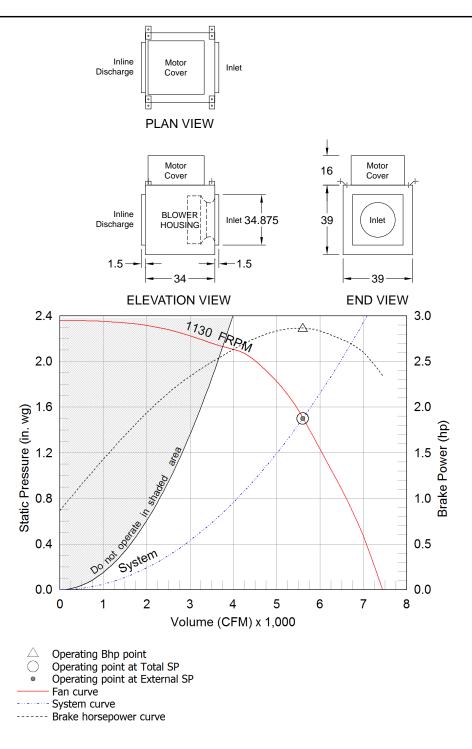
dP = The differential static pressure between the Sure-Aire high and low taps. Standard Density = 0.075 lb/ft^3.

Installation Notes:

Mount differential pressure transmitter above sensor elevation to eliminate condensation buildup in the differential pressure cell.

Recommended tube size is 0.25 in for runs 25 ft or less. For longer runs, (Max. 100 ft.) use 0.375 in or larger tubing.

Consult factory for wiring diagram or installation instructions.

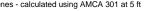

Model: BSQ-240HP-30

Belt Drive Centrifugal Inline Fan

Dimensional									
Quantity	1								
Weight w/o Acc's (lb)	431								
Weight w/ Acc's (lb)	487								
Max T Motor Frame Size	215								

Performance	ce
Requested Volume (CFM)	5,600
Actual Volume (CFM)	5,600
External SP (in. wg)	1.5
Total SP (in. wg)	1.5
Fan RPM	1130
Operating Power (hp)	2.86
Elevation (ft)	62
Airstream Temp.(F)	70
Air Density (ft3)	0.075
Drive Loss (%)	4.4
Tip Speed (ft/min)	7,249
Static Eff. (%)	48

Motor	
Motor Mounted	Yes
Size (hp)	3
V/C/P	460/60/3
Enclosure	ODP
Motor RPM	1725
Windings	1
NEC FLA* (Amps)	4.8


Sound Power by Octave Band

Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
Inlet	85	85	85	81	76	73	70	66	83	72	21
Radiated	88	86	81	75	68	58	52	50	77	66	15.0

Notes:

All dimensions shown are in units of in. *FLA - based on tables 150 or 148 of National Electrical Code 2002. Actual motor FLA may vary, for sizing thermal overload, consult factory. LwA - A weighted sound power level, based on ANSI S1.4 dBA - A weighted sound pressure level, based on 11.5 dB

attenuation per Octave band at 5 ft - dBA levels are not licensed by AMCA International Sones - calculated using AMCA 301 at 5 ft

Model: BSQ-240HP-30

Belt Drive Centrifugal Inline Fan

Standard Construction Features:

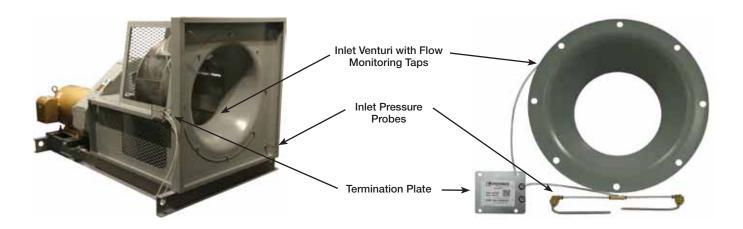
- Galvanized steel housing - Backward inclined aluminum wheel - Two bolted access panels - Integral duct connection flanges - Ball bearing motors - Adjustable motor pulley - Adjustable motor plate - Fan shaft mounted in ball bearing pillow blocks - Static free belts - Corrosion resistant fasteners

Selected Options & Accessories:

NEMA Premium Efficient Motor - meets NEMA Table 12-12 Motor VFD Rated with Shaft Grounding Protection Motor with Shaft Grounding Switch, NEMA-1, Toggle, Junction Box Mounted & Wired Motor Cover Isolators & Brackets, Spring Hanging (1 Kit(s): Qty 4, PN: 850346) (Shipped Loose) Bearings with Grease Fittings, L10 life of 100,000 hrs (L50 avg. life 500,000 hrs) Unit Warranty: 1 Yr (Standard)

Flow Monitoring System Sure-AireTM for Centrifugal, Mixed Flow and Plenum Fans • Accurate • No System Effect • Reliable

March 2013


The Sure-Aire[™] airflow monitoring system is ideal for HVAC applications where flow verification is required for proper system balancing, improving air quality, and controlling industrial processes.

Typical Applications

- Packaged, custom or built-up air handlers
- Clean rooms
- Fume exhaust systems
- Stairwell pressurization
- Isolation rooms
- General exhaust, supply or return air systems

Sure-Aire Advantages

- Flow accuracy to within 3%
- Multiple pressure taps provide a true averaged
 pressure drop reading
- No increase in the fan energy consumption or sound levels
- Ships completely assembled from factory
- Includes termination plate with low pressure and high pressure taps

Sure-Aire Operation

The Sure-Aire system determines airflow by measuring the pressure drop across the fan inlet venturi. The airflow is then calculated based on the pressure drop and a K factor specific to each fan size. This is the same approach used by accredited laboratories for certifying fan performance. The Sure-Aire method measures the flow without causing turbulence in the venturi resulting in accurate flow measurement without increased energy consumption or higher sound levels.

Noninvasive Probes

Sure-Aire System

Noninvasive pitot type probes and static pressure taps are installed to measure the pressure drop through the inlet venturi.

Airflow CFM is calculated based on the resulting pressure drop through the venturi.

Termination plate includes high and low pressure ports along with an airflow calibration equation specific to each fan.

Termination Plate

Disadvantage of Traditional Invasive Flow Probes

Measurements within the inlet cone are desirable because of the uniform, high velocity airflow through the cone. For this reason, traditional flow probes are generally mounted into the smallest diameter of the inlet cone. Mounting the flow probes in this fashion causes turbulence and increases the system resistance. This can significantly detract from the fan's performance and cause the system to under perform. To compensate for the added pressure loss, the fan RPM and horsepower must increase. This results in additional energy consumption and higher overall sound levels.

Single Width Centrifugal or Plenum Fan (Wheel Diameter)	Max Class I	Max Class II	Max Class III
	Static Pressure Loss (in. wg)		
20	1.2	2.0	3.2
36	0.8	1.3	2.1
73	0.4	0.7	1.1

Expected pressure loss based on fan size and class due to invasive flow probes. Performance taken at 70% wide open volume (%WOV) and at maximum class RPM.

Visit www.greenheck.com/library/videos to observe the Sure-Aire and pressure drop demonstration.

Optional Electronics Package

The Greenheck Sure-Aire airflow measurement system is available with electronics for reading the fan performance. Resulting data can be tied to the facility Building Automation System (BAS).

- Real time digital LCD display that shows fan performance
- NEMA-4 (IP 56) enclosure suitable for indoor or outdoor use
- Provides a 4-20 mA or 2-10 VDC signal linear to differential pressure for interfacing
- Accuracy to 0.5% of full scale at 77°F
- Two available input options: 100 240 volt, AC 24 volt, AC or DC
- Compatible with most Building Automation Systems (BAS)
- Ships loose for field mounting and wiring

Traditional Invasive Flow Probes

Programmable Differential Pressure Controller

Note: The differential pressure controller should be mounted within 75 feet of termination plate.

Applicable Products for the Sure-Aire[™] System

QEI Mixed Flow Fans

QEP/QEM Plenum Fans

BISW/AFSW Single Width Centrifugal Fans

BIDW/AFDW Double Width Centrifugal Fans

HPA Plenum Fans

The Sure-Aire flow monitoring system is also available on Greenheck Vektor[®] products. Consult the Flow Monitoring System, Sure-Aire™ for Vektor Laboratory Exhaust Systems catalog for specific information.

Specifications

Fans equipped with Sure-Aire™ Flow Monitoring shall include the following:

Flow monitoring station shall monitor the pressure difference between the fan inlet and the smallest diameter of the inlet cone.

Volumetric flow to be calculated from empirically derived formulas based on testing by the fan manufacturer.

Flow monitoring station shall not use air restricting probes that reduce fan performance or create additional fan sound.

Four (4) low-pressure sensor orifices, equidistantly spaced, shall be located at the smallest diameter of the inlet cone venturi. Flow tubes from each venturi sensor to extend to a termination plate mounted on the fan housing.

Technical Details

Flow Element

- 1. Accuracy Within +/- 3.0% of actual flow
- 2. Resistance to Airflow No measurable amount
- 3. Effect on Sound No measurable amount
- 4. Operating Velocity Range 100 to 20,000 fpm (0.5 to 100 m/s)
- 5. Material and Temperature Limits Static Probes - 6061 Aluminum Tube Fittings:
 - Housing: PBT Resin
 - O-ring: NBR
 - Release Button: POM
 - Grab Ring: Stainless Steel
 - Tubing:
 - Nylon 1/4 inch (standard) -60-200°F (-51-82°C)
 - Copper 1/4 inch (optional) 0-200°F (-17-93°C)
- 6. Humidity

All elements 0-100% non-condensing

- 7. Corrosion Resistance Good air and mild acid gas resistance, excellent solvent and aromatic hydrocarbon resistance
- 8. Output Signal Calibrated for the following ranges: 0-8.30, 0-22.14, 0-41.52, 0-83.04, 0-138.40 in. wg
- Termination Plate Output Connections 1/4 inch push connector

Our Commitment

As a result of our commitment to continuous improvement, Greenheck reserves the right to change specifications without notice.

Specific Greenheck product warranties are located on greenheck.com within the product area tabs and in the Library under Warranties.

High-pressure flow probe(s) to be mounted in low velocity zone near fan inlet. Flow probe(s) from the high-pressure sensor shall extend to a termination plate mounted on the fan housing.

Termination plate shall include a low-pressure connection, a high-pressure connection and a listing of the empirically determined flow rate coefficient.

Flow monitoring station shall accurately measure the pressure differential to within +/- 3%.

Flow monitoring station to be installed by the fan manufacturer as part of the standard fan assembly.

Optional: Flow monitoring station to be supplied with electronics package that includes pressure transmitter and LCD digital readout.

Optional Electronics

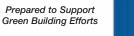
1. Input Power

- 100 240 VAC, 50-60 Hz
- 24 VDC, 24 VAC
- 2. Input Process Connections
 - 1/4 inch quick connect
- 3. Input Range
 - 0-8.30, 0-22.14, 0-41.52, 0-83.04, 0-138.40
- 4. Enclosure

NEMA-4 (IP 56) indoor or outdoor use, field mounted

- 5. Transmitter
 - Accuracy +/- 0.5% of full scale at 77°F
 - Pressure Limit: 70 psi (1938 in. wg)
 - Temperature Limit: 32-140°F (0-60°C)
- 6. Digital Display
 - 2.8 inch 320x240 TFT LCD display
 - Programmed for CFM reading
- 7. Analog Output
 - 4-20 mA DC into 900 ohms max or 2-10 VDC
 - Linear to the differential pressure

The Sure-Aire electronics package requires field mounting.


Building Value in Air.

