Maine Medical Center Hybrid OR & OR #6

22 Bramhall Street, Portland, ME

PROJECT MANUAL

ISSUED FOR PERMIT

21 August 2015

Project # 152168.023

PERKINS+WILL

PROJECT MANUAL

TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

Issued by the Owner and Construction Manager (CM)

SPECIFICATIONS

DIVISION 00 – GENERAL

Section 009113.01 Addendum No. 1

DIVISION 01 - GENERAL REQUIREMENTS

Section 011000	General Requirements
Section 012300	Alternates
Section 016200	Substitution Request Form
Section 017400	Construction Waste Management

DIVISION 02 - EXISTING CONDITIONS

Section 024100 Demolition

DIVISION 05 - METALS

Section 055000 Metal Fabrications

DIVISION 06 - WOOD, PLASTICS AND COMPOSITES

Section 061000	Rough Carpentry
Section 064020	Interior Architectural Woodwork
Section 066400	FRP Paneling

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

Section 076200	Sheet Metal Flashing and Trim
Section 078100	Applied Fireproofing
Section 078410	Penetration Firestopping
Section 079200	Joint Sealants

DIVISION 08 - OPENINGS

Section 081110	Hollow Metal Doors and Frames
Section 081400	Flush Wood Doors
Section 083110	Access Doors and Frames
Section 084110	Aluminum-Framed Entrances and Storefronts
Section 087100	Door Hardware
Section 088000	Glazing

HYBRID OR & OR #6 Maine Medical Center Portland, ME

DIVISION 09 - FINISHES

Section 092110	Gypsum Board Assemblies
Section 095100	Acoustical Ceilings
Section 096510	Resilient Flooring and Accessories
Section 099000	Painting and Coating

DIVISION 10 - SPECIALTIES

Section 102600 Wall and Door Protection

DIVISION 12 - FURNISHINGS

Section 122110 Horizontal Louver Blinds

DIVISION 13 - SPECIAL CONSTRUCTION

Section 134900 Radiation Protection

DIVISION 21 - FIRE SUPPRESSION

Section 210000	Fire Protection General Provisions
Section 210500	Common Work Results for Fire Suppression
Section 210548	Vibration and Seismic Controls for Fire-Suppression Piping and Equipment
Section 211000	Water-Based Fire-Suppression Systems

DIVISION 22 - PLUMBING

Section 220000	Plumbing General Provisions
Section 220500	Common Work Results for Plumbing
Section 220523	General-Duty Valves for Plumbing Piping
Section 220529	Hangers and Supports for Plumbing Piping and Equipment
Section 220548	Vibration and Seismic Controls for Plumbing Piping and Equipment
Section 220553	Identification for Plumbing Piping and Equipment
Section 220700	Plumbing Insulation
Section 221116	Domestic Water Piping
Section 221119	Domestic Water Piping Specialties
Section 221316	Sanitary Waste and Vent and Storm Water Piping
Section 221319	Sanitary Waste Piping Specialties
Section 224000	Plumbing Fixtures
Section 226113	Compressed-Air Piping for Laboratory and Healthcare Facilities
Section 226212	Vacuum Diping for Laboratory and Haalthaara Eagilitian

- Section 226213 Vacuum Piping for Laboratory and Healthcare Facilities
- Section 226313 Gas Piping for Laboratory and Healthcare Facilities

DIVISION 23 - HEATING VENTILATING AND AIR CONDITIONING

- Section 230000 General Provisions for Heating, Ventilating and Air Conditioning
- Section 230001 Supplementary Conditions for Mechanical, Electrical, Plumbing, and Air Conditioning
- Section 230500 Common Work Results for HVAC
- Section 230513 Common Motor Requirements for HVAC Equipment
- Section 230514 Enclosed Controllers
- Section 230516 Expansion Fittings and Loops for HVAC Equipment
- Section 230519 Meters and Gages for HVAC Piping
- Section 230523 General-Duty Valves for HVAC Piping
- Section 230529 Hangers and Supports for HVAC Piping and Equipment

HYBRID OR & OR #6 Maine Medical Center Portland, ME

Section 230548	Mechanical Vibration Isolation and Seismic Controls
Section 230549	Noise Control and Acoustical Performance
Section 230553	Identification for HVAC Piping and Equipment
Section 230593	Testing, Adjusting, and Balancing for HVAC
Section 230700	HVAC Insulation
Section 230800	Commissioning
Section 230900	HVAC Instrumentation and Controls for HVAC
Section 230993	Sequence of Operations
Section 232113	Hydronic Piping
Section 232300	Refrigerant Piping
Section 233113	Sheet Metal Work
Section 233600	Air Terminal Units
Section 233713	Diffusers, Registers, and Grilles
Section 238123	Equipment-Room Air-Conditioners
Section 238123	Equipment-Room Air-Conditioners
Section 238126	Split System Air-Conditioners
	· -

DIVISION 26 - ELECTRICAL

Section 260000	General Provisions for Electrical Work
Section 260001	Supplementary Conditions for Mechanical, Electrical, Plumbing, and Fire Protection Work
Section 260500	Common Work Results for Electrical
Section 260519	Low-Voltage Electrical Power Conductors and Cables
Section 260526	Grounding and Bonding for Electrical Systems
Section 260529	Hangers and Supports for Electrical Systems
Section 260533	Raceway and Boxes for Electrical Systems
Section 260548	Vibration and Seismic Controls for Electrical Systems
Section 260553	Identification for Electrical Systems
Section 260573	Overcurrent Protective Device Coordination Study
Section 260923	Lighting Control Devices
Section 260943	Network Lighting Controls
Section 262200	Low-Voltage Transformers
Section 262416	Panelboards
Section 262417	Isolated Power Systems
Section 262726	Wiring Devices
Section 262816	Enclosed Switches and Circuit Breakers
Section 265100	Interior Lighting
Section 283111	Fire Alarm
Section 284112	Nurse Call System
Section 284113	Public Address System
Section 284114	GPS Wireless Clock Systems/Elapsed Timer

END OF TABLE OF CONTENTS

SECTION 00 91 13.01 - ADDENDUM NO. 1

PART 1 - GENERAL

1.1 SCOPE

- A. This Addendum is issued pursuant to Article 1.1.1 of the AIA General Conditions of the Contract for Construction (A201) in connection with revision of plans and specifications which have been previously issued.
- B. When construction is not under contract, all instructions contained herein shall be reflected in the contract sum and this Addendum will be made a part of the Contract Documents, if, as, and when a Contract is awarded.
- C. This Addendum forms a part of the Contract Documents and modifies the original Bidding Documents dated <u>07.31.2015</u> as noted below. Receipt of this Addendum must be acknowledged in the space provided on the Bid Form. Failure to do so may subject the Bidder to disqualification.

1.2 CHANGES TO THE PRIOR ADDENDA

A. Issued drawings and specifications supersede previous addenda

1.3 CHANGES TO THE BIDDING REQUIREMENTS

A. None

1.4 CHANGES TO THE CONDITIONS OF THE CONTRACT

A. None

1.5 CHANGES TO THE PROJECT SPECIFICATIONS

- SECTION 210548
- SECTION 220548
- SECTION 230993

1.6 CHANGES TO THE PROJECT DRAWINGS

A. ARCHITECTURAL

HYBRID OR & OR #6 Maine Medical Center Portland, ME Addendum #1

- A00-00 COVER SHEET
- A00-10 LIFE SAFETY PLAN
- A00-40 PARTITION TYPES
- A04-0B BASEMENT NEW WORK PLAN HYBRID OR & OR 6
- A05-0B BASEMENT REFLECTED CEILING PLAN HYBRID OR & OR 6
- A06-0B2 BASEMENT POWER & DATA PLAN
- A10-01 HYBRID OR ENLARGED PLAN, RCP & ELEVATIONS
- A10-02 OR #6 ENLARGED PLAN, RCP & ELEVATIONS
- A10-10 INTERIOR ELEVATIONS
- A10-20 MILLWORK DETAILS
- B. MECHANICAL
 - M00-01
 - M02-0B
 - M03-0B
 - M04-0B
 - M04-02
 - M05-00
 - M06-00
- C. PLUMBING
 - P00-01
 - P01-0B
 - P01-0B2
 - P02-0B
 - P02-0B2
 - P04-00
- D. FIRE PROTECTION
 - F00-01
 - F01-0B
- E. ELECTRICAL
 - E00-01
 - E02-0B
 - E03-0B
 - E04-0B
 - E04-02
 - E07-00
 - E07-01

1.7 CLARIFICATIONS AND CONTRACTOR QUESTIONS

A. None

HYBRID OR & OR #6 Maine Medical Center Portland, ME Addendum #1 PERKINS+WILL P+W Project#152168.023 July 31, 2015 August 21, 2015

END OF SECTION

SECTION 011000

GENERAL REQUIREMENTS

- 1.1 Related Documents
- 1.2 Project Requirements
- 1.3 Specification Information
- 1.4 Definitions
- 1.5 Industry Standards
- 1.6 Codes and Regulations
- 1.7 Progress Schedule
- 1.8 Schedule of Values
- 1.9 Payment Requests
- 1.10 Procedures and Controls

- 1.11 Submittals
- 1.12 Warranties
- 1.13 Cutting and Patching
- 1.14 Temporary Facilities and Utilities
- 1.15 Products and Substitutions
- 1.16 Delivery, Storage and Handling
- 1.17 Owner-Furnished (OFCI) Products
- 1.18 Labels
- 1.19 Record Documents
- 1.20 Project Close Out
- 1.21 Final Cleaning and Repair

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. All of the Contract Documents apply to this Section. This Section applies to all Work performed under the Contract.
- 1.2 PROJECT REQUIREMENTS
 - A. Project Identification: Hybrid OR and OR #6, Maine Medical Center, 22 Bramhall Street, Portland, Maine.
 - B. Special Project Requirements. Resinous flooring materials and installation will be by Owner, schedule installation and cooperate with Owner's Contractor.
 - C. Project Requirements for Temporary Utilities and Facilities:
 - 1. Utility Costs: The Contractor shall meter and pay for cost of utility services consumed, including electricity, water, gas and temporary heat.
 - 2. Temporary Offices: A separate field office for the Architect and the Owner's Representative is not required.
 - 3. Toilet Facilities: The Owner will allow designated toilet facilities within the building to be used by Contractor's personnel.
 - D. Permits and Fees: Apply for, obtain, and pay for permits, fees, and utility company backcharges required to perform the work. Submit copies to Architect.
 - E. Codes: Comply with applicable codes and regulations of authorities having jurisdiction. Submit copies of inspection reports, notices and similar communications to Architect.
 - F. Dimensions: Verify dimensions indicated on drawings with field dimensions before fabrication or ordering of materials. Do not scale drawings.

- G. Existing Conditions: Notify Architect of existing conditions differing from those indicated on the drawings.
- H. Contractor's Conduct on Premises: The Contractor and their employees shall behave in a respectful, courteous and safe manner. Abusive, harassing, and lewd behavior is prohibited. Music playing is prohibited. Alcohol, tobacco, and drug use is prohibited.
 - 1. Comply with Owner's security requirements.

1.3 SPECIFICATION INFORMATION

- A. These specifications are a specialized form of technical writing edited from master specifications and contain deviations from traditional writing formats. Capitalization, underlining and bold print is only used to assist reader in finding information and no other meaning is implied.
- B. Except where specifically indicated otherwise, the subject of all imperative statements is the Contractor.
- C. Sections are generally numbered in conformance with Construction Specifications Institute Masterformat System. Numbering sequence is not consecutive. Refer to the table of contents for names and numbers of sections included in this Project.
- D. Pages are numbered separately for each section. Each section is noted with "End of Section" to indicate the last page of a section.

1.4 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "approved," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.

- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.5 INDUSTRY STANDARDS

- A. Referenced standards are part of the Contract Documents and have the same force and effect as if bound with these specifications.
- B. Except where specifically indicated otherwise, comply with the current standard in effect as of the date of the Owner/Contractor Agreement. Obtain copies of industry standards directly from publisher.
- C. The titles of industry standard organizations are commonly abbreviated; full titles may be found in Encyclopedia of Associations or consult Architect.

1.6 CODES AND REGULATIONS

- A. Comply with all applicable codes, ordinances, regulations and requirements of authorities having jurisdiction.
- B. Submit copies of all permits, licenses, certifications, inspection reports, releases, notices, judgments, and communications from authorities having jurisdiction to the Architect.

1.7 PROGRESS SCHEDULE

A. Provide comprehensive bar chart schedule showing all major and critical minor portions of the work, sequence of work and duration of each activity. Update and reissue regularly, but not less than monthly.

1.8 SCHEDULE OF VALUES

A. Prepare Schedule of Values to coordinate with application for payment breakdown. Submit at least 10 days before first payment application. Update and reissue regularly, but not less than monthly.

1.9 PAYMENT REQUESTS

- A. Provide three copies of each request on completely filled out copies of AIA G702 and continuation sheet G703. Substantiate requests with complete documentation; include change orders to date. Provide partial lien waivers for work in progress and full lien waivers for completed work.
- B. Record Drawing Certification: Certify as a part of each application for payment that the project record documents are current at the time of application is submitted. The Contractor shall require such drawings to be current as a condition of approving any payment to the trade Contractor and Subcontractor.
- C. Before first payment application, provide the following:

- 1. List of subcontractors, suppliers and fabricators.
- 2. Schedule of values.
- 3. Progress schedule.
- 4. Submittal schedule keyed to project schedule.
- 5. List of Contractor's key project personnel.
- 6. Copies of permits and other communications from authorities.
- 7. Contractor's certificate of insurance.
- 8. Performance and payment bonds if required.
- 9. Unit price schedule.
- D. Before final payment application, provide and complete the following:
 - 1. Complete closeout requirements.
 - 2. Complete punch list items.
 - 3. Settle all claims.
 - 4. Transmit record documents to Architect.
 - 5. Prove that all taxes, fees and similar obligations have been paid.
 - 6. Remove temporary facilities and surplus materials.
 - 7. Change lock cylinders or cores.
 - 8. Clean the work.
 - 9. Submit consent of surety, if any, for final payment.

1.10 PROCEDURES AND CONTROLS

- A. Project Meetings: Arrange for and attend meetings with the Architect and such other persons as the Architect requests to have present. The Contractor shall be represented by a principal, project manager, general superintendent or other authorized main office representative, as well as by the Contractor's field superintendent. An authorized representative of any subcontractor or sub-subcontractor shall attend such meetings if the representative's presence is requested by the Architect. Such representatives shall be empowered to make binding commitments on all matters to be discussed at such meetings, including costs, payments, change orders, time schedules and manpower. Any notices required under the Contract may be served on such representatives. Written reports of meeting minutes shall be prepared by the Contractor and distributed by the Contractor to attendees, the Architect, and Owner within three business days.
 - 1. Pre-Construction Conference: Attendance by Architect, Contractor, major subcontractors. Agenda shall include: Quality of workmanship, coordination, interpretations, job schedule, submittals, approvals, requisition procedures, testing, protection of construction, and construction waste management.
 - 2. Exterior Envelope Meeting: Attendance by Architect, Contractor, major subcontractors. Agenda shall include as applicable: Review of exterior wall details, wall construction, sample panel preparation, cleaning, control and expansion joints, cold weather procedures.
 - 3. Roofing/Flashings Meeting: Attendance by Architect, Contractor, roofing subcontractor, and representative of roofing manufacturer. Agenda shall include as applicable: Preparation of roof decks, flashing and blocking details, roofing procedures and inspections, bonds and guarantees, weather conditions during roofing, protection of roof membrane during construction.
 - 4. Interior Finishes Meeting: Attendance by Architect, Contractor, major subcontractors. Agenda shall include as applicable: Quality of workmanship, environmental conditions for application of finishes, drywall details, millwork details, condition of surfaces to receive

finishes, tile work, painting work, samples and test areas and approvals, coordination with mechanical and electrical interfaces and penetrations, indoor air quality.

- 5. Progress Meetings: Hold regularly before preparation of payment requests and additional meetings as requested by the Architect. Attendance by Architect, Contractor, and others as determined by Contractor. Agenda shall include work in progress and payment requests.
- 6. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction, as specified. Preinstallation Conferences may be part of Progress Meeting agenda. Attendance by Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow. Agenda shall include a review of progress of other construction activities and preparations for the particular activity under consideration.
- B. Emergency Addresses: Furnish the Owner and Architect, in writing, the names addresses and telephone numbers of individuals to be contacted in the event of an out-of-hours emergency at the building site. Post a similar list readily visible from the outside of the field office or a location acceptable to the Architect.
- C. Layout: Layout work and be responsible for all lines, elevations, and measurements of the building, grading, utilities and other work executed under the contract.
- D. Field Measurements: Verify measurements at the building prior to ordering materials or commencing work. No extra charge or compensation will be allowed because of differences between actual dimensions and measurements indicated on the Drawings. Differences which may be found shall be submitted to the Architect for decision before proceeding with the work.
- E. Field Measurements for Fixed Equipment: Dimensions for fixed equipment to be supplied under this Contract or separate contracts shall be determined by field measurements taken jointly by the Contractor and the equipment supplier involved. A record of the field measurements shall be kept until time of substantial completion of the project, or until the equipment has been fully installed and accepted by the Owner, whichever is later. Responsibility for fixed equipment fabricated accurately to field measurements for proper fit and operation shall be that of the Contractor. Contractor shall pay all costs involved in correcting any misfitting fixed equipment as fabricated.
- F. Project Limit Line: The boundaries of the site do not limit the responsibility of the Contractor to perform the work in its entirety. Make utility connections as indicated.
- G. Matching: Where matching is indicated, the Architect shall be the sole and final judge of what is an acceptable match. Mockups and sample submissions are required.
- H. Observation: Notify the Architect and authorities having jurisdiction at least thirty-six hours in advance of concealing any work.
- I. Utilities: Prior to interrupting utilities, services or facilities, notify the utility owner and the Owner and obtain their written approval a minimum 48 hours in advance.
- J. Furnishings, Fixtures, and Equipment: Cooperate and permit the Owner to install their furnishings and equipment during the progress of the work. Owner's installation of furnishings or equipment does not signify Owner's acceptance of any portion of the work.

- K. Clean-Up: Frequently clean-up all waste, remove from site regularly, and legally dispose of offsite. Comply with requirements of Section 017400 - CONSTRUCTION WASTE MANAGEMENT.
- L. Installer's Acceptance of Conditions: All installers shall inspect substrates and conditions under which work is to be executed and shall report in writing to the Contractor all conditions detrimental to the proper execution and completion of the work. Do not proceed with work until unsatisfactory conditions are corrected. Beginning work means installer accepts previous work and conditions.
- M. Coordination: The Contractor shall be fully responsible for coordinating all trades, coordinating construction sequences and schedules, and coordinating the actual installed location and interface of all work.
 - 1. Prior to beginning mechanical, electrical and fire protection work, the Contractor shall prepare coordination drawings showing the exact alignment, physical location and configuration of the mechanical, electrical and fire protection installations and demonstrating to the Contractor's satisfaction that the installations will clear all obstructions, permit proper clearances for the Work of other trades, and present an orderly appearance where exposed. The Contractor shall be solely liable and responsible for any costs and delays resulting from the Contractor's failure to prepare such coordination drawings or from the negligent preparation of such coordination drawings.
 - 2. Exact locations and groupings of mechanical, electrical and fire protection fixtures, switches, heads and outlets shall be obtained from the Architect before the Work is roughed in. Work installed without such information from the Architect shall be relocated at the Contractor's expense if the Architect so requests.
- N. Request For Interpretation (RFIs):
 - 1. Procedure: Immediately on discovery of the need for interpretation of the Contract Documents, and if not possible to request interpretation at Project meeting, prepare and submit an RFI in the form specified.
 - a. RFIs shall originate with Contractor. RFIs submitted by entities other than Contractor will be returned with no response.
 - 2. Content of the RFI: Include a detailed, legible description of item needing interpretation.
 - 3. Architect's Action: Architect will review each RFI, determine action required, and return it. Allow three working days for Architect's response for each RFI. RFIs received after 1:00 p.m. will be considered as received the following working day.
 - 4. The following RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for coordination information already indicated in the Contract Documents.
 - d. Requests for adjustments in the Contract Time or the Contract Sum.
 - e. Requests for interpretation of Architect's actions on submittals.
 - f. Incomplete RFIs or RFIs with numerous errors.
- O. Existing Articles of Unusual Value: If during demolition, excavation, or disposal work articles of unusual value or of historical or archaeological significance are encountered, the ownership of such articles is retained by the Owner, and information regarding their discovery shall be immediately furnished to the Architect. If the nature of the article is such that work cannot

proceed without danger of damage, work in the area shall be immediately discontinued until the Architect has determined the proper procedure to be followed. Delays in time thereby shall be a condition for which the time of the Contract may be extended. Costs incurred after discovery in the salvaging of such articles shall be borne by the Owner.

1.11 SUBMITTALS

- A. Required Submittals: Submit shop drawings, product data, initial selection samples, verification samples, calculations, coordination drawings, schedules, and all other submittals as specified in individual specification sections.
- B. Submittal Schedule: Within 30 days after award of contract and before first application for payment, prepare list of submittals in chronological sequence showing all submittals and proposed date first due at Architect's office and proposed date due to be returned to Contractor. Note relevant specification section number.
- C. Contractor's Preparation of Submittals: Modify and customize all submittals to show interface with adjacent work and attachment to building. Identify each submittal with name of project, date, Contractor's name, subcontractor's name, manufacturer's name, submittal name, relevant specification section numbers, and Submittal Schedule reference number. Stamp and sign each submittal to show the Contractor's review and approval of each submittal before delivery to Architect's office; unstamped and unsigned submittals will be returned without action by the Architect. Leave 4" x 6" open space for Architect's "action" stamp.
 - 1. Electronic Submittals: Provide a copy of all submittals in electronic format to the Architect. Architect will return a file of reviewed submittal in electronic format to the Contractor for distribution to subcontractors, suppliers, fabricators, governing authorities and others as necessary for proper performance of the Work. Unless otherwise amenable to the Architect, additional hard copies of submittals will not be reviewed by the Architect (or Consultant) and will not be returned to the Contractor.
 - 2. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 3. Name file with submittal number or other unique identifier, including revision identifier.
 - 4. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect and Construction Manager.
 - 5. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Architect.
- D. Product Data: Provide manufacturer's preprinted literature including, without limitation, manufacturer's standard printed description of product, materials and construction, recommendations for application and use, certification of compliance with standards, instructions for installation, and special coordination requirements. Collect data into one submittal for each unit of work or system; mark each copy to show which choices and options are applicable to project.
 - 1. Installer Copy: Verify that the Installer has a current copy of the relevant product data, including installation instructions, before permitting installation to begin.
- E. Shop Drawings: Provide accurately prepared, large scale and detailed shop drawings prepared specifically for this project. Show adjacent conditions and related work. Show accurate field dimensions and clearly note field conditions. Identify materials and products in the work shown. Note special coordination required.

- 1. After Architect's action, follow specified distribution procedure.
- F. Samples: Provide units identical with final materials and products to be installed in the work. Where indicated, prepare samples to match Architect's sample. Label each sample with description, source, generic name or manufacturer's name and model number. Architect will review samples for confirmation of visual design intent, color, pattern, texture and type only; Architect will not test samples for compliance with other Contract requirements which shall remain the exclusive responsibility of the Contractor.
 - 1. Initial Selection Samples Submittal Quantities: For initial selection purposes, submit 1 set of samples showing the complete range of colors and finishes available.
 - 2. Verification Samples Submittal Quantities: For verification of an initial selection, submit 3 sets of samples; one set will be returned to Contractor to be maintained at project site for quality control comparisons.
- G. Timing of Submittals: Submit submittals in a timely fashion to allow at least 10 business days for each office's review and handling. This means that submittals which have to be reviewed by the Architect and one of their consultants require at least 20 business days for review and handling. Add ten business days for each additional consultant who must review a submission.
- H. Architect's Action on Submittals: Architect will review submittals, stamp with "action stamp", mark action, and return to Contractor. Architect will review submittals only for conformance with the design concept of the project. The Contractor is responsible for confirming compliance with other Contract requirements, including without limitation, performance requirements, field dimensions, fabrication methods, means, methods, techniques, sequences and procedures of construction, coordination with other work. The Architect's review and approval of submittals shall be held to the limitations stated in the Owner/Architect Agreement and the Conditions of the Contract. In no case shall approval or acceptance by the Architect be interpreted as a release of Contractor of their responsibilities to fulfill all of the requirements of the Contract Documents.
 - 1. Required Resubmittal: Unless submittal is noted "reviewed" or "reviewed except as noted, resubmission not required," make corrections or changes to original and resubmit to Architect.
 - 2. Distribution: When submittal is noted "reviewed" or "reviewed as noted, resubmittal not required," make prints or copies and distribute to Owner, Subcontractors involved, and to all other parties requiring information from the submittal for performance or coordination of related work.

1.12 WARRANTIES

- A. Warranties Required: Refer to individual trade sections for specific product warranty requirements.
- B. Procurement: Where a warranty is required, do not purchase or subcontract for materials or work until it has been determined that parties required to countersign warranties are willing to do so.
- C. Warranty Forms: Submit written warranty to Owner through Architect for approval prior to execution. Furnish two copies of executed warranty to Owner for their records; furnish two additional conformed copies where required for maintenance manual.

- D. Work Covered: Contractor shall remove and replace other work of project which has been damaged as a result of failure of warranteed work or equipment, or which must be removed and replaced to provide access to work under warranty. Unless otherwise specified, warranty shall cover full cost of replacement or repair, and shall not be pro-rated on basis of useful service life.
- E. Warranty Extensions: Work repaired or replaced under warranty shall be warranted until the original warranty expiration date or for ninety days whichever is later in time.
- F. Warranty Effective Starting Date: Guarantee period for all work, material and equipment shall begin on the date of substantial completion, not when subcontractor has completed their work nor when equipment is turned on. In addition to the one year guarantees for the entire work covered by these Contract Documents, refer to the various sections of the specifications for extended guarantee or maintenance requirements for various material and equipment.
- 1.13 CUTTING AND PATCHING
 - A. Limitations: Do not cut and patch any work in a manner that would result in a failure of the work to perform as intended, decreased energy performance, increased maintenance, decreased operational life, or decreased safety.
 - 1. Structural Work: Do not cut structural work or bearing walls without written approval from Architect. Where cutting and patching of structural work is necessary and approved by Architect, perform work in a manner which will not diminish structural capacity nor increase deflection of member. Provide temporary shoring and bracing as necessary. Ensure the safety of people and property at all times.
 - 2. Roofing Work: Comply with requirements of existing roof warranty. Provide materials compatible with existing and approved by roofing membrane manufacturer.
 - B. Cutting and Patching Materials: Use materials identical to materials to be cut and patched. If identical materials are not available or cannot be used, use materials that match existing materials to the greatest extent possible. Provide finished work that will result in equal to or better than existing performance characteristics.
 - C. Inspection: Before cutting and patching, examine surfaces and conditions under which work is to be performed and correct unsafe and unsatisfactory conditions prior to proceeding.
 - D. Protection: Protect adjacent work from damage. Protect the work from adverse conditions.
 - E. Cutting: Cut work using methods least likely to damage adjoining work. Use tools designed for sawing or grinding, not hammering or chopping. Use saws or drills to ensure neat, accurately formed holes to sizes required with minimum disturbance to adjacent work. Temporarily cover openings; maintain weathertightness and safety.
 - 1. Utilities: Locate utilities before cutting. Provide temporary utilities as needed. Cap, valve, or plug and seal ends of abandoned utilities to prevent entrance of moisture or other foreign matter.
 - F. Patching: Patch with seams and joints which are durable and not visible. Comply with specified tolerances for similar new work; create true even planes with uniform continuous appearance. Restore finishes of patched areas and, if necessary, extend finish restoration onto adjoining unpatched area to eliminate evidence of patching and refinishing. Repaint entire assemblies,

not just patched area. Remove and replace work which has been cut and patched in a visually unsatisfactory manner as determined by the Architect.

G. Qualifications: Retain experienced and specialized firms, original installers if possible, to perform cutting and patching. Workmen shall be skilled in type of cutting and patching required.

1.14 TEMPORARY FACILITIES AND UTILITIES

- A. Scope of Temporary Work: This article is not intended to limit the scope of temporary work required under the Contract. Provide all temporary facilities and utilities needed.
- B. Permits and Fees: Obtain and pay for all permits, fees and charges related to temporary work.
- C. Codes and Authorities Having Jurisdiction for Temporary Facilities and Utilities: Comply with all requirements of authorities having jurisdiction, codes, utility companies, OSHA, and industry standards including, but not limited to the following:
 - 1. NFPA Code 241, Building Construction and Demolition Operations.
 - 2. ANSI-A10 Series, Safety Requirements for Construction and Demolition.
 - 3. NECA National Joint Guideline NJG-6, Temporary Job Utilities and Services.
 - 4. Electrical Service: NEMA, NECA, and UL.
- D. Field Offices: Provide Contractor's field offices as needed. Keep current copies of all Contract Documents and project paperwork neatly on file at jobsite. Permit Architect's unrestricted use of Contractor's field office facilities including copiers, telephones, plan tables, and other equipment. Furnish, maintain, and pay for light, power, phone, fax, and other field office services.
- E. Shops and Sheds: At Contractor's option, provide shops and sheds for Contractor's use as needed. Locate shops and sheds where acceptable to Owner and authorities having jurisdiction. Prior to completion of construction, temporary storage facilities and surplus stored materials shall be removed from the site.
- F. Temporary Heat: Provide temporary heat as needed to protect the work and create a suitable work environment. Provide temporary heat to protect the exterior construction against injury or damage resulting from cold temperature and dampness, to heat materials, and to maintain the minimum temperatures specified herein and in individual specification sections. Protect building from soot, smoke and fire damage. Do not use heaters which would interfere with curing of mortar and grout or damage any materials.
 - 1. Heaters for temporary heat shall be approved temporary steam generators or forced warm air heaters located outside the building or vented to the outside, or other safety type UL approved heating devices acceptable to the Architect.
 - 2. Oil burning salamander type heaters will not be permitted. Non-vented, open flame heaters will not be permitted inside the building once the building is closed-in.
 - 3. Propane type-heaters will not be permitted within the area of the building or near stockpiles of combustible materials.
 - 4. Permanent building equipment shall not be used without written permission from the Owner. If the equipment is used for temporary heating or cooling, it shall be adequately maintained per manufacturer's instructions and protected with filters, strainers, controls, reliefs, and similar items. Prior to turnover to Owner, the equipment shall be in a clean, like new condition. The guarantee period shall not start until the equipment is turned over

to the Owner for their use. Do not invalidate existing warranty by any action or failure to act. Clean and change air filters frequently to prevent construction dust and debris from contaminating system.

- G. Pumping and Drainage: Protect excavations, trenches, buildings and materials from rain water, ground water, backup or leakage of sewers, drains and other piping, and from water of any other origin. Promptly remove any accumulation of water. Provide and operate all pumps, piping and other equipment necessary for pumping, drainage and protection from water.
- H. Equipment and Tools: Provide all equipment including, but not limited to, hoists, lifts, scaffolding, machines, tools and the like, as needed for execution of the work. Provide safe access to all parts of the work.
- I. Temporary Enclosures: Provide temporary enclosures to maintain proper temperatures and to prevent weather damage. Always maintain legal means of egress.
- J. Snow and Ice: Remove all snow and ice which interferes with work or safety.
- K. Streets, Walks and Grounds: Maintain public and private roads and walks clear of debris caused by construction operations. Repair all damage caused to streets, drives, curbs, sidewalks, fences, poles and similar items where disturbed or damaged by building construction and leave them in as good condition after completion of the work as before operations started.
- L. Protection: Protect nearby property and the public from construction activities. Provide and maintain barricades, warning signs and lights, railings, walkways and similar items. Immediately repair damaged property to its condition before being damaged.
- M. Security: Secure site against unauthorized entry at all times. Provide secure, locked temporary enclosures. Protect the work at all times. Provide watchman service, if necessary, to protect the work.
- N. Signs: Erect project identification signs in compliance with details to be provided by Architect. Signs shall be minimum 4' x 8' exterior grade plywood and shall contain the names of the project, Owner, Architect, major Consultants, Contractor, and major financing institution. Except for safety and warning signs, no other signs are permitted. Location as acceptable to the Architect.
- O. Fire Prevention: Take every precaution to prevent fire. Provide and maintain in good operating condition suitable and adequate fire protection equipment and services, and comply with recommendations regarding fire protection made by the representative of the fire insurance company carrying insurance on the Work or by the local fire chief or fire marshal. The area within the site limits shall be kept orderly and clean, and all combustible rubbish shall be promptly removed from the site.
- P. Egress: Maintain safe and legal means of egress at all times. At all times, provide at least two separate means of egress.
- Q. Mold Control and Remediation During Construction: The Contractor shall protect construction materials and building systems from moisture damage and from conditions which promote mold growth during and after construction. The Contractor shall be responsible for mold remediation and replacement of materials which cannot be successfully remediated in accordance with the following requirements:

- 1. Materials which become wet prior to installation shall be cleaned, treated and dried in accordance with EPA Guidelines.
- 2. Materials which exhibit mold growth prior to installation shall not be installed and shall be removed from the site.
- 3. Materials which exhibit mold growth after installation shall be remediated in accordance with EPA Guidelines for Remediating Building Materials with Mold Growth Caused by Clean Water. The Contractor shall engage and pay for a qualified industrial hygienist acceptable to the Owner to determine the cause of the mold growth, and to certify in writing that materials have been successfully remediated. In the event that the industrial hygienist recommends methods of remediation in addition to those in the Guidelines, the Contractor shall also be responsible for the additional remediation. Materials which can not be successfully remediated shall be removed and replaced with new materials at no additional expense to the Owner.
- 4. Prior to the start of construction, the Contractor shall submit the name of the person in the Contractor's organization responsible for ensuring compliance with these requirements for mold control and remediation.
- R. Existing Mold-Contaminated Materials: In the event that mold-contaminated materials are encountered during remodeling operations, the Contractor shall stop work in that area and notify the Owner and Architect in writing. The Owner will engage and pay for an industrial hygienist to evaluation the situation to advise the Contractor on the proper course of action.

1.15 PRODUCTS AND SUBSTITUTIONS

- A. Specified Products: In all cases in which a manufacturer's name, trade name or other proprietary designation is used in connection with materials or articles to be furnished under this Contract, whether or not the phrase "or equal" is used after such name, the Contractor shall provide the product of the named manufacturers without substitution, unless a written request for a substitution has been submitted by the Contractor and approved in writing by the Architect.
- B. Deviations from Detailed Requirements: If the Contractor proposes to use material which, while suitable for the intended use, deviates in any way from the detailed requirements of the Contract Documents, the Contractor shall inform the Architect in writing of the nature of such deviations at the time the materials is submitted for approval, and shall request written approval of the deviation from the requirements of the Contract Documents.
- C. Approval of Substitutions: In requesting approval of deviations or substitutions, the Contractor shall provide evidence, including, but not limited to manufacturer's data, leading to a reasonable certainty that the proposed substitution or deviation will provide a quality of result at least equal to that attainable if the detailed requirements of the Contract Documents were strictly followed. If, in the opinion of the Architect, the evidence presented by the Contractor does not provide a sufficient basis for such reasonable certainty, the Architect may reject such substitution or deviation without further investigation.
- D. Intent of Contract Documents: The Contract Documents are intended to produce a building of consistent character and quality of design. All components of the building including visible items of mechanical and electrical equipment have been selected to have a coordinated design in relation to the overall appearance of the building. The Architect shall judge the design and appearance of proposed substitutes on the basis of the suitability in relation to the overall design of the Project, as well as for their intrinsic merits. The Architect will not approve as equal to materials specified proposed substitutes which in the Architect's opinion, would be out of character, obtrusive, or otherwise inconsistent with the character or quality of design of the

Project. In order to permit coordinated design of color and finishes the Contractor shall furnish the substituted material in any color, finish texture, or pattern which would have been available from the manufacturer originally specified, at no additional cost to the owner.

- E. Additional Costs or Impact: Any additional cost, or any loss or damage arising from the substitution of any material or any method for those originally specified shall be borne by the contractor, notwithstanding approval or acceptance of such substitution by the Owner or the Architect, unless such substitution was made at the written request or direction of the Owner and the Architect. Any decrease in the cost of the substitution shall be returned to the Owner.
- F. Manufacturers: To the greatest degree possible, provide primary materials and products from one manufacturer for each type or kind. Provide secondary materials as recommended by manufacturers of primary materials.
- G. Substitution Requests: Refer to Section 016200 SUBSTITUTION REQUEST FORM. Submit 3 copies. Identify product to be replaced by substitute by reference to specification sections and drawing numbers. Provide Contractor's certification and evidence to prove compliance with Contract Document requirements as acceptable to Architect.
- H. Substitution Conditions: Substitution requests will be returned without action unless one of the following conditions is satisfied. The Contractor shall state which of the following conditions applies to the requested substitution:
 - 1. Request is due to an "or equal" clause.
 - 2. Specified material or product cannot be coordinated with other work.
 - 3. Specified material or product is not acceptable to authorities having jurisdiction.
 - 4. Substantial advantage is offered Owner in terms of cost, time, or other valuable consideration.
 - 5. Specified material or product is not available.
- I. Invalid Substitutions: Contractor's submittal and Architect's acceptance of shop drawings, samples, product data or other submittal is not a valid request for, nor an approval of a substitution unless the Contractor presents the information when first submitted as a Request for Substitution.
- J. Compatibility of Materials Used in the Work:
 - 1. Ensure complete compatibility between materials.
 - 2. Compatibility shall include adhesion, erosion, solubility, differential thermal response, and galvanic action.
 - 3. Provide evidence of compatibility.
 - 4. Provide custom testing where evidence is not available.
 - 5. Where materials are not compatible, provide necessary isolation or transition materials and provide details of same.
 - 6. Correct defects resulting from incompatibility including de-construction and reconstruction of assemblies – whether materials are part of a submittal and substitution process or not.
 - 7. Proposed substitutions may be rejected where compatibility information is not provided; or where compatibility is not adequately addressed, according to the Architect's judgment; or where incompatible materials would negatively impact the project's success.

1.16 DELIVERY, STORAGE AND HANDLING

A. Manufacturer's Instructions: Strictly comply with manufacturer's instructions and recommendations and prevent damage, deterioration and loss, including theft. Minimize long-term storage at the site. Maintain environmental conditions, temperature, ventilation, and humidity within range permitted by manufacturers of materials and products used.

1.17 OWNER-FURNISHED CONTRACTOR-INSTALLED (OFCI) PRODUCTS

- A. Owner will furnish products indicated. The Contractor's Work includes providing support systems to receive Owner's equipment and making plumbing, mechanical, and electrical connections.
 - 1. Owner will arrange for and deliver Shop Drawings, Product Data, and Samples to Contractor.
 - 2. Owner will arrange and pay for delivery of Owner-furnished items according to Contractor's Construction Schedule.
 - 3. After delivery, Owner will inspect delivered items for damage. Contractor shall be present for and assist in Owner's inspection.
 - 4. If Owner-furnished items are damaged, defective, or missing, Owner will arrange for replacement.
 - 5. Owner will arrange for manufacturer's field services and for delivery of manufacturer's warranties to Contractor.
 - 6. Owner will furnish Contractor the earliest possible delivery date for Owner-furnished products. Using Owner-furnished earliest possible delivery dates, Contractor shall designate delivery dates of Owner-furnished items in Contractor's Construction Schedule.
 - 7. Contractor shall review Shop Drawings, Product Data, and Samples and return them to Architect noting discrepancies or anticipated problems in use of product.
 - 8. Contractor is responsible for receiving, unloading, and handling Owner-furnished items at Project site.
 - 9. Contractor is responsible for protecting Owner-furnished items from damage during storage and handling, including damage from exposure to the elements.
 - 10. If Owner-furnished items are damaged as a result of Contractor's operations, Contractor shall repair or replace them.
 - 11. Contractor shall install and otherwise incorporate Owner-furnished items into the Work.
- B. Owner-Furnished Products: As directed by the Architect.

1.18 LABELS

A. Labels, Trademarks, & Tradenames: Locate required labels on inconspicuous surfaces. Do not provide labels, nameplates, or trademarks which are not required. Provide permanent data plate on each item of equipment stating manufacturer, model, serial number, capacity, ratings and all other essential data.

1.19 RECORD DOCUMENTS

A. General: Keep record documents neatly and accurately. Record information as the work progresses and deliver to Architect at time of final acceptance. Include in record documents all field changes made, all relevant dimensions, and all relevant details of the work. Keep record documents up to date with all field orders and change orders clearly indicated.

- B. Drawings: Keep four separate sets of blackline prints at the site, one set each for mechanical, electrical, plumbing, and architectural/structural disciplines. Neatly and accurately note all deviations from the Contract Documents and the exact actual location of the work as installed. Marked-up and colored prints will be used as a guide to determine the progress of the work installed. Requisitions for payment will not be approved until the record documents are accurate and up-to-date.
 - 1. Work Outside Building: Record data outside of building to an accuracy of plus or minus 1 inch and determine and record the invert elevation of all drain lines.
 - 2. At completion of the work, submit one complete set of marked-up prints for review. After acceptance, these marked-up prints shall be used in the preparation of the record drawings.
 - 3. Architect shall furnish Contractor with AutoCAD files for originals of the Contract Drawings. Make modifications to these files as shown on the marked-up prints. Remove superseded data to show the completed installation.
 - 4. Deliver the completed AutoCAD record drawings, in the same version as Contract Drawings, properly titled and dated to the Architect. Indicate preparer of record drawings. These record drawings shall become the property of the Owner.
- C. Specifications: Maintain one clean copy of complete specifications [including addenda, modifications, and bulletins with changes, substitutions, and selected options clearly noted. Circle or otherwise clearly indicate which manufacturer and products are actually used.
- D. Operating and Maintenance Manuals: Manuals shall be submitted which contain the following:
 - 1. Description of the system provided.
 - 2. Handling, storage, and installation instructions.
 - 3. Detailed description of the function of each principal component of the systems or equipment.
 - 4. Operating procedures, including prestartup, startup, normal operation, emergency shutdown, normal shutdown and troubleshooting.
 - 5. Maintenance procedures including lubrication requirements, intervals between lubrication, preventative and repair procedures, and complete spare parts list with cross reference to original equipment manufacturer's part numbers.
 - 6. Control and alarm features including schematic of control systems, control loop electric ladder diagrams, controller operating set points, settings for alarms and shutdown systems, pump curves and fan curves.
 - 7. Safety and environmental considerations.
- E. Copies of Operating and Maintenance Manuals: Three copies of the manuals shall be provided within sufficient time to allow for training of Owner's personnel. Submit one copy of the manuals to the Architect for review no later than 90 calendar days prior to substantial completion, or building turn over, whichever comes first. Submit the remaining five copies within 15 days after first review set is returned to contractor. Progress payment may be withheld if this requirement is not met.
- F. Additional Requirements for Operating and Maintenance Manuals: The requirements for manuals applies to each packaged and field-fabricated operating system. The manuals shall be provided in three-ring side binders with durable plastic covers. The manuals shall contain a detailed table of contents and have tab dividers for major sections and special equipment.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- G. Framed Data: Provide charts and lists of all valves, circuits, switches, controls and equipment. Install on walls under glass at locations directed by Architect.
- 1.20 PROJECT CLOSE OUT
 - A. Complete the following prior to Substantial Completion:
 - 1. Provide Contractor's Punch List of incomplete items stating reason for incompletion and value of incompletion.
 - 2. Advise Owner of insurance change over requirements.
 - 3. Submit all warranties, maintenance contracts, final certificates and similar documents.
 - 4. Obtain Certificate of Occupancy and similar releases which permit the Owner's full and unrestricted use of the areas claimed "Substantially Complete".
 - 5. Submit record documents.
 - 6. Deliver maintenance stocks of materials where specified.
 - 7. Make final change over of lock cylinders or cores and advise Owner of change of security responsibility.
 - 8. Complete startup of all systems and instruct Owner's personnel in proper operation and routine maintenance of systems and equipment.
 - 9. Complete clean up and restoration of damaged finishes.
 - 10. Remove all temporary facilities and utilities that are no longer needed.
 - 11. Request Architect's inspection for Substantial Completion.
 - B. Architect will either issue a Certificate of Substantial Completion or notify Contractor of work which must be performed prior to issue of certificate.
 - C. Complete the following prior to Final Acceptance and payment:
 - 1. Obtain Certificate of Substantial Completion.
 - 2. Submit final application for payment, showing final accounting of changes in the work.
 - 3. Provide final releases and lien waivers not previously submitted.
 - 4. Submit certified copy of final punch list stating that Contractor has completed or corrected each item.
 - 5. Submit final meter readings, record of stored fuel and similar information.
 - 6. Submit Consent of Surety for final payment.
 - 7. Submit evidence of Contractor's continuing insurance coverage (if required by Contract Documents).

1.21 FINAL CLEANING AND REPAIR

- A. Clean Up: Immediately prior to the Architect's inspection for Substantial Completion, the Contractor shall completely clean the premises and clean and prepare the completed work in order for it to be used for its intended purpose in accordance with the Contract Documents. Such work shall include, but not be limited to the following:
 - 1. Concrete and ceramic surfaces shall be cleaned and washed.
 - 2. Resilient coverings shall be cleaned, waxed and buffed as applicable.
 - 3. Woodwork shall be dusted and cleaned.
 - 4. Sash, fixtures and equipment shall be thoroughly cleaned.
 - 5. Stains, spots, dust, marks and smears shall be removed from all surfaces.
 - 6. Hardware and metal surfaces shall be cleaned and polished.
 - 7. Glass and plastic surfaces shall be thoroughly cleaned by professional window cleaners.

- 8. Damaged, broken or scratched glass or plastic shall be replaced by the Contractor at the Contractor's expense.
- 9. Vacuum carpeted and soft surfaces with high efficiency particulate arrestor (HEPA) vacuum.
- 10. Use low-emitting, environmentally friendly cleaning agents and procedures. Do not use ammonia, chlorine bleach, or solvent-based cleaners, unless authorized in writing by Architect.
- B. Repairs: Repair and touch-up all damaged and deteriorated products and surfaces.

PART 2 - PRODUCTS [Not Used]

PART 3 - EXECUTION [Not Used]

END OF SECTION

SECTION 012300

ALTERNATES

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 SUMMARY
 - A. For each of the alternates Scheduled at the end of this Section, state the amount in the proposal to be added to or deducted from the Contract Sum for the work.

1.3 ALTERNATES

- A. Definition: "Alternates" are alternate products, materials, equipment, systems, methods, units of work or major elements of the construction, which may, at the Owner's option and under the terms established by the Contract or Agreement, be selected for the work in lieu of the corresponding requirements of the Contract Documents. Selection may occur prior to the Contract Date, or may, by the Agreement, be deferred for possible selection at a subsequent date.
- B. Alternate Requirements: A Schedule of Alternates is included at the end of this Section. Each alternate is defined using abbreviated language, recognizing that the Contract Documents define the requirements. Coordinate related work to ensure that work affected by each alternate is complete and properly interfaced with work of each selected alternate.
- C. Provide written proposals for each alternate on the Bid Form for Owner's consideration. Each proposal amount shall include the entire cost of the alternate portion of the work including overhead, profit, and other costs including cost of interfacing and coordinating the alternate with related and adjacent work.
- D. Selection of Alternates: Selection of alternates to be included in the work will be by the Owner.
- E. Notification: Immediately following award of Contract, prepare and distribute to each entity a notification of status of each alternate. Indicate which alternates have been accepted, rejected, or deferred for consideration at a later date. Include full description of negotiated modifications to alternates, if any

PART 2 - PRODUCTS [Not Used]

HYBRID OR & OR #6 Maine Medical Center Portland, ME

PART 3 - EXECUTION

- 3.1 SCHEDULE OF ALTERNATES
 - A. Refer to Drawings for Alternates.

END OF SECTION

SECTION 016200

SUBSTITUTION REQUEST FORM

No substitutions will be considered without this completed substitution request form and supporting documentation. Substitutions made without completion of this form will be considered defective work as stated in AIA A201.

Date:

Number: _____

Re:

Request for Substitution

The Contractor proposes the following substitution in accordance with the requirements of the Contract Documents:

Scope of Substitution	
Specification Reference	
Drawing Reference	
Reason for Proposed Substitution	
Benefit to Owner	
Impact on Project Cost	
Impact on Project Schedule	
Impact on Guarantees and Warranties	

HYBRID OR & OR #6	PER	KINS + WILL
Maine Medical Center Portland, ME	#P+W Project J	4152168.023 uly 31, 2015
Coordination and Compatibility Required with Adjacent Materials and System		
List Deviations From Specified Requirements		
	rting documentation sufficient for Architect to evaluate substitution submitted without adequate documentation will be returned witho	
Attachments		
	y which response by Architect is requested to maintain project sch sion of proposed substitution.	edule and
Response Date		
Submitted By		
Firm and Address		
Signature below signifies ac included in this Substitution	ceptance of responsibility for accuracy and completeness of inforr Request Form.	nation

Authorized Signature

HYBRID OR & OR #6 Maine Medical Center Portland, ME

ARCHITECT'S RESPONSE

Notations listed below shall have same meaning as on Architect's approval stamp. Clarifications to or changes in project schedule or time shall be processed using standard project forms.

 Approved
 Approved as Corrected
 Revise and Resubmit
 Rejected
 Returned Without Review

END OF FORM

SECTION 017400

CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS, which are hereby made a part of this Section of the Specifications.

1.2 SUMMARY

- A. This Section includes requirements for the Contractor's implementation of waste management controls and systems for the duration of the Work.
- B. Develop a waste management plan, quantifying material diversion by either weight or volume to recycle and/or salvage non-hazardous construction and demolition debris.

1.3 INTENT

- A. The Owner and Architect have established that this Project shall generate the least amount of waste practical and that processes that ensure the generation of as little waste as possible due to error, poor planning, breakage, mishandling, contamination, or other factors shall be employed.
- B. With regard to these goals the Contractor shall develop, for the Architect's review, a Construction Waste Management Plan (CWMP) for this Project.
- C. Each Subcontractor shall be responsible for segregating his own waste into different dumpsters as directed by the Contractor.
- D. Contractor shall be responsible for ensuring that debris will be disposed of at appropriately designated licensed solid waste disposal facilities.

1.4 SUBMITTALS

- A. Waste Management Plan (WMP): Submit within 21 calendar days after receipt of Notice to Proceed, in a format acceptable to the Owner.
 - 1. Analysis of the proposed jobsite waste to be generated, including types and rough quantities.
 - 2. Landfill Options: The name of the landfills where trash and building debris will be disposed of, the applicable landfill tipping fees, and the projected cost of disposing of all Project waste in the landfills.
 - 3. Landfill Certification: Contractor's statement of verification that landfills proposed for use are licensed for types of waste to be deposited and have sufficient capacity to receive waste from this project.

- 4. Alternatives to Landfilling: A list of each material proposed to be salvaged or recycled during the course of the Project. Include the following and any additional items proposed:
 - a. Cardboard and paper products.
 - b. Clean dimensional wood.
 - c. Beverage containers.
 - d. Concrete.
 - e. Slurry wall materials.
 - f. Bricks and masonry.
 - g. Asphalt.
 - h. Metals from framing, banding, stud trim, ductwork, piping, rebar, roofing, other trim, steel, iron, galvanized sheet steel, stainless steel, aluminum, copper, zinc, lead, brass, and bronze.
 - i. Mechanical and electrical equipment.
 - j. Building components which can be removed relatively intact from existing construction.
 - k. Packaging materials, including cardboard, boxes, plastic sheet and film, polystyrene packaging, wood crates, plastic pails.
 - I. Glass.
 - m. Scraps from new gypsum wall board.
 - n. Carpet and pad.
 - o. Acoustical ceiling panels.
 - p. Plastics.
- 5. Meetings: A description of the regular meetings to be held to address waste management.
- 6. Materials Handling Procedures: A description of the means by which any waste materials identified above will be protected from contamination, and a description of the means to be employed in recycling the above materials consistent with requirements for acceptance by designated facilities.
- 7. Transportation: A description of the means of transportation of the recyclable materials (whether materials will be site-separated and self-hauled to designated centers, or whether mixed materials will be collected by a waste hauler and removed from the site) and destination of materials.
- B. Waste Management Progress Reports: Concurrent with each Application for Payment, submit a written Waste Management Progress Report in the same format as required for Final Report.
- C. Waste Management Final Report: Prior to Substantial Completion, submit a written Waste Management Final Report summarizing the types and quantities of materials recycled and disposed of under the Waste Management Plan. Include the name and location of disposal facilities.
 - 1. Material category.
 - 2. Generation point of waste.
 - 3. Total quantity of waste, by weight.
- D. Other Submittals:
 - 1. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.
 - 2. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.

- Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, and/or receipts.
- 4. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, and/or receipts.
- 5. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.5 CONTRACTORS

- A. Contractor may subcontract work of this Section to a sub-contractor specializing in recycling and salvaging of construction waste.
 - 1. Eco One Solutions, LLC, Natick, MA 01760; tel. 978-270-8950; contact John Gundling, JGundling@EcoOneSolutions.com.
 - 2. Institution Recycling Network, Concord, NH 03301; tel. 603-229-1962; www.irnetwork.com.
 - 3. Commercial Paving and Recycling Co. (CPRC Group), Scarborough, ME 04074; tel. 207-883-3325; www.cpcrs.com.
- B. Gypsum Wallboard Recycling: New, paper-faced gypsum wallboard scrap (cuts from construction not demolition waste) generated at project shall be recycled by Gypsum Recycling America, LLC. Keep scrap dry. Contact Gypsum Recycling America at 617-596-4297 or www.gypsumrecycling.us to coordinate recycling efforts.
- C. Acoustical Ceiling Panel Recycling: Demolition and construction waste pulpable mineral fiber ceiling panels may be recycled by Armstrong World Industries and US Gypsum. Contact Armstrong at 1-877-ARMSTRONG (1-877-276-7876) or www.armstrong.com or contact USG at 1-800-USG-4YOU or www.usg.com, to coordinate recycling efforts, apply for product approvals, and receive reclamation procedure requirements.
- D. Carpet Recycling: Demolition and construction waste carpet and carpet padding may be recycled by Carpet America Recovery Effort (CARE). Visit www.carpetrecovery.org to locate carpet reclaimers in local project area and reclamation procedure requirements.
- PART 2 PRODUCTS [Not Used]

PART 3 - EXECUTION

- 3.1 PLAN IMPLEMENTATION
 - A. General: Implement Waste Management Plan as approved by the Architect. Provide containers, storage, signage, transportation, and other items as required to implement WMP for the entire duration of the Contract.

3.2 WASTE MANAGEMENT PLAN IMPLEMENTATION

- A. Manager: The Contractor shall designate an on-site person responsible for instructing workers and overseeing and documenting results of the Waste Management Plan for the Project.
- B. Distribution: The Contractor shall distribute copies of the Waste Management Plan to the Job Site Foreman, each Subcontractor, the Owner and the Architect.
- C. Instruction: The Contractor shall provide on-site instruction of appropriate separation, handling, and recycling, salvage, reuse, and return methods to be used by all parties at the appropriate stages of the Project.
- D. Separation Facilities: The Contractor shall lay out and label a specific area to facilitate separation of materials for recycling, salvage, reuse, and return. Recycling and waste bin areas are to be kept neat and clean and clearly marked in order to avoid contamination of materials. Location shall be acceptable to the Architect.
- E. Hazardous Wastes: Any unforeseen hazardous wastes shall be separated, stored, and disposed of according to local regulations and as directed by the Owner.

END OF SECTION

SECTION 024100

DEMOLITION

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS, which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included:
 - 1. Demolition and removal of selected portions of buildings and structures and as required for new work. Refer to the Drawings for additional requirements.
 - 2. Salvage of existing items to be reused or turned over to the facility.
 - 3. Removal and legal disposal of demolished materials off site. Except those items specifically designated to be relocated, reused, or turned over to the facility, all existing removed materials, items, trash and debris shall become property of the Contractor and shall be completely removed from the site and legally disposed of at her/his expense. Salvage value belongs to the Contractor. On-site sale of materials is not permitted.
 - 4. Demolition and removal work shall properly prepare for alteration work and new construction to be provided under the Contract.
 - 5. Scheduling and sequencing operations without interruption to utilities serving occupied areas. If interruption is required, obtain written permission from the utility company and the Owner. Provide temporary services as necessary to serve occupied and usable facilities when permanent utilities must be interrupted, or schedule interruption when the least amount of inconvenience will result.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 011000 GENERAL REQUIREMENTS for Temporary Facilities And Controls: a. Maintenance of access, cleaning during construction, dust and noise control.
 - 2. Section 017400 CONSTRUCTION WASTE MANAGEMENT:
 - a. Waste management and recycling.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and salvaged or removed and reinstalled.
- B. Remove and Salvage: Detach items from existing construction and deliver them to the Owner ready for reuse, at a location designated by the Owner. Protect from weather until accepted by Owner.

- C. Remove and Reinstall: Detach items from existing construction, prepare them for reuse, and reinstall them where indicated. Protect from weather until reinstallation.
- D. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

A. Historic items, relics, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques, antiques, and other items of interest or value to Owner that may be encountered during selective demolition remain property of the Owner as applicable. Carefully remove each item or object in a manner to prevent damage and deliver promptly to a location acceptable to the Owner.

1.5 SUBMITTALS

- A. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with early and late starting and finishing dates for each activity. Ensure Owner's on-site operations are uninterrupted if applicable.
 - 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - 4. Use of elevator and stairs.
 - 5. Locations of proposed dust- and noise-control temporary partitions and means of egress, including for other occupants affected by selective demolition operations.
 - 6. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
 - 7. Means of protection for items to remain and items in path of waste removal from building.
- B. Inventory: After selective demolition is complete, submit a list of items that have been removed and salvaged, and turned over the Owner.
- C. Predemolition Videotapes: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by selective demolition operations. Comply with Division 01. Submit before Work begins.
- D. Landfill Records: Provide trip tickets (receipts) indicating receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.
 - 1. Comply with submittal requirements in Section 017400 CONSTRUCTION WASTE MANAGEMENT.

1.6 QUALITY ASSURANCE

A. Examination of Existing Conditions: The Contractor shall examine the Contract Drawings for demolition and removal requirements and provisions for new work. Verify all existing conditions and dimensions before commencing work. The Contractor shall visit the site and examine the existing conditions as he finds them and shall inform herself/himself of the character, extent and type of demolition and removal work to be performed. Submit any questions regarding the extent and character of the demolition and removal work in the manner and within the time period established for receipt of such questions during the bidding period.

- B. Demolition Firm Qualifications: An experienced firm that has specialized in demolition work similar in material and extent to that indicated for this Project.
- C. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.
- D. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- E. Standards: Comply with ANSI A10.6 and NFPA 241.
- F. Predemolition Conference: Conduct conference at Project site to comply with requirements in Section 011000 GENERAL REQUIREMENTS, Project Meetings. Review methods and procedures related to selective demolition including, but not limited to, the following:
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review structural load limitations of existing structure.
 - 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 - 5. Review areas where existing construction is to remain and requires protection.

1.7 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 SALVAGING

- A. Salvaged for Reinstallation: Materials indicated on the Drawings or designated in the field by the Owner to be salvaged and reinstalled shall be carefully removed and stored at a location acceptable to the Architect and Owner.
- B. Salvaged for Storage: Materials indicated on the Drawings or designated in the field by the Owner to be salvaged and stored shall be carefully removed and delivered to the Owner at locations determined by Owner.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Verify that utilities have been disconnected and capped.

- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. Inventory and record the condition of items to be removed and reinstalled and items to be removed and salvaged.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- E. Engage a professional engineer registered in the state that the project is located to survey condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective demolition operations.
- F. Survey of Existing Conditions: Record existing conditions by use of preconstruction videotapes.
 - 1. Before selective demolition or removal of existing building elements that will be reproduced or duplicated in final Work, make permanent record of measurements, materials, and construction details required to make exact reproduction.
- G. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.
- 3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS
 - A. Service/System Requirements: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Arrange to shut off indicated utilities with utility companies and Owner.
 - 2. If services/systems are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 3. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing. Where entire wall is to be removed, existing services/systems may be removed with removal of the wall.
 - 4. Prior to commencing cutting work in existing surfaces, take all precautionary measures to assure that mechanical and electrical services to the particular area have been made inactive. Coordinate with Fire Suppression, Plumbing, HVAC, and Electrical subcontractors. Only licensed tradesmen of that particular trade shall disconnect and cap existing mechanical and electrical items that are to be removed, abandoned and/or relocated.
 - 5. If, during the process of cutting work, existing utility lines are encountered which are not indicated on the Drawings, regardless of their condition, immediately report such items to the Architect. Do not proceed with work in such areas until instructions are issued by the Architect. Continue work in other areas.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Section 011000 GENERAL REQUIREMENTS, Temporary Facilities and Controls.
 - 2. Maintain adequate passage to and from all exits at all times. Before any work is done which significantly alters access or egress patterns, consult with the Architect and obtain approval of code required egress. Under no condition block or interfere with the free flow of people at legally required exits, or in any way alter the required condition of such exits.
- B. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of selective demolition.
 - 2. Remove temporary shoring, bracing and structural supports when no longer required.
 - 3. Post warning signs and place barricades as applicable during placement and removal of temporary shoring.
- C. Conduct demolition operations to prevent injury to people and damage to adjacent buildings and facilities to remain. Ensure safe passage of people around demolition area(s).
 - 1. Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction. Provide temporary barricades as required to limit access to demolition areas.
 - 2. Protect existing site improvements, appurtenances, and landscaping to remain.
- D. Drain, purge, or otherwise remove, collect, and dispose of chemicals, gases, explosives, acids, flammables, or other dangerous materials before proceeding with demolition operations.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 - 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of

hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.

- 5. Maintain adequate ventilation when using cutting torches.
- 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
- 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
- 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- 9. Dispose of demolished items and materials promptly. Comply with requirements in Section 017400 CONSTRUCTION WASTE MANAGEMENT.
- B. Removed and Salvaged Items:
 - 1. Clean salvaged items.
 - 2. Pack or crate items after cleaning. Identify contents of containers.
 - 3. Store items in a secure area until delivery to Owner.
 - 4. Transport items to storage area designated by the Owner.
 - 5. Protect items from damage during transport and storage.
- C. Removed and Reinstalled Items:
 - 1. Clean and repair items to functional condition adequate for intended reuse. Paint equipment to match new equipment.
 - 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 - 3. Protect items from damage during transport and storage.
 - 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.
- E. Items for Re-use and Preservation of Existing Surfaces to Remain:
 - 1. The Contractor shall inspect closely each item specifically designated to be relocated, reused, or turned over to the Owner prior to its removal, and immediately report damages and defects to the Architect and the Owner. The Contractor shall be responsible for any subsequent damage to the same other than latent defects not readily apparent from close inspection, and shall bear responsibility for its repair or same replacement as directed by the Architect, to the satisfaction of the Owner.
 - 2. Unless special surface preparation is specified under other Specification Sections, leave existing surfaces that are to remain in a condition suitable to receive new materials and/or finishes.

3.5 PROTECTION OF PUBLIC AND PROPERTY

A. Provide all measures required by federal, state and municipal laws, regulations, and ordinances for the protection of surrounding property, the public, workmen, and Owner's employees during all demolition and removal operations. Measures are to be taken, but not limited to installation

of sidewalks, sheds, barricades, fences, warning lights and signs, trash chutes and temporary lighting.

- B. Protect all walks, roads, streets, curbs, pavements, trees and plantings, on and off premises, and bear all costs for correcting such damage as directed by the Architect, and to the satisfaction of the Owner.
- C. Demolition shall be performed in such a manner that will insure the safety of adjacent property. Protect adjacent property from damage and protect persons occupying adjacent property from injuries which might occur from falling debris or other cause and so as not to cause interference with the use of other portions of the building, of adjacent buildings or the free access and safe passage to and from the same.
- D. Every precaution shall be taken to protect against movement or settlement of the building, of adjacent buildings, sidewalks, roads, streets, curbs and pavements. Provide and place at the Contractor's own expense, all necessary bracing and shoring in connection with demolition and removal work.
- E. Remove portions of structures with care by using tools and methods that will not transfer heavy shocks to existing and adjacent building structures, both internal and external of the particular work area.
- F. Provide and maintain in proper condition, suitable fire resistive dust barriers around areas where interior demolition and removal work is in progress. Dust barriers shall prevent the dust migration to adjacent areas. Remove dust barriers upon completion of major demolition and removal in the particular work area.

3.6 DISCOVERY OF HAZARDOUS MATERIALS

- A. If hazardous materials, such as chemicals, asbestos-containing materials, or other hazardous materials are discovered during the course of the work, cease work in affected area only and immediately notify the Architect and the Owner of such discovery. Do not proceed with work in such areas until instructions are issued by the Architect. Continue work in other areas.
- B. If unmarked containers are discovered during the course of the work, cease work in the affected area only and immediately notify the Architect and the Owner of such discovery. Do not proceed with work in such areas until instructions are issued by the Architect. Take immediate precautions to prohibit endangering the containers integrity. Continue work in other areas.

3.7 CUTTING

- A. Perform all cutting of existing surfaces in a manner which will ensure a minimal difference between the cut area and new materials when patched. Use extreme care when cutting existing surfaces containing concealed utility lines which are indicated to remain and bear full responsibility for repairing or replacement of all such utilities that are accidentally damaged.
- B. Provide a flush saw cut edge where pavement, curb and concrete removals abut new construction work or existing surfaces to remain undisturbed.

3.8 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Comply with requirements of Section 017400 CONSTRUCTION WASTE MANAGEMENT and the following:
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
- B. Burning: Do not burn demolished materials.
- 3.9 CLEANING
 - A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Premises shall be left in a clean condition and ready to accept alteration work and new construction.

END OF SECTION

SECTION 055000

METAL FABRICATIONS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following. Requirements for materials, hot-dip galvanizing, and shop-applied primers are included with each item as applicable.
 - 1. Galvanized steel lintels with shop-applied primer at exterior locations.
 - 2. Steel lintels with shop-applied zinc-rich primer at interior locations.
 - 3. Miscellaneous steel framing and supports:
 - a. Steel framing and supports with shop applied primer for OR booms.
 - b. Galvanized steel framing and supports for mechanical and electrical equipment.
 - c. Steel framing and supports for applications where framing and supports are not specified in other Sections; galvanized at exterior locations and in exterior walls.
 - d. Prefinished slotted steel channel support framing.
 - e. Steel framing and supports with shop-applied primer for countertops.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 099000 PAINTING AND COATING for field painting work of this section.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design miscellaneous framing and supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- 1.4 SUBMITTALS
 - A. Product Data: For the following:
 - 1. Nonslip aggregates and nonslip-aggregate surface finishes.
 - 2. Paint products.
 - 3. Grout.
 - B. Shop Drawings: Show fabrication and installation details for metal fabrications.

- 1. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.
- 2. Provide templates for anchors and bolts specified for installation under other Sections.
- 3. Where fabrications are to receive sprayed-on fireproofing, include statement that primer is compatible with fireproofing proposed for use.
- C. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- D. Welding certificates.
- E. Qualification Data: For professional engineer.
- 1.5 QUALITY ASSURANCE
 - A. Engineering Responsibility: Preparation of Shop Drawings, design calculations, and other structural data by a qualified professional engineer.
 - B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in the jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of metal fabrications that are similar to those indicated for this Project in material, design, and extent.
 - C. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.3, "Structural Welding Code--Sheet Steel."
 - D. Metal Surfaces, General: Provide materials with smooth, flat surfaces, unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

1.6 PROJECT CONDITIONS

- A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication and indicate measurements on Shop Drawings.
 - 1. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating metal fabrications without field measurements. Coordinate wall and other contiguous construction to ensure that actual dimensions correspond to established dimensions.
 - 2. Provide allowance for trimming and fitting at site.

1.7 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

- B. Coordinate installation of anchorages for metal fabrications. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- C. Coordinate installation of steel weld plates and angles for casting into concrete that are specified in this Section but required for work of another Section. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 FERROUS METALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.
- C. Steel Tubing: ASTM A 500, cold-formed steel tubing.
- D. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40), unless another weight is indicated or required by structural loads.
- E. Slotted Channel Framing: Cold-formed metal channels with continuous slot complying with MFMA-4.
- F. Cast Iron: ASTM A 48/A 48M, Class 30, unless another class is indicated or required by structural loads.

2.2 FASTENERS

- A. General: Unless otherwise indicated, provide Type 316 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 5, at exterior walls. Provide stainless-steel fasteners for fastening aluminum. Select fasteners for type, grade, and class required.
- B. Anchor Bolts: ASTM F 1554, Grade 36. Provide hot-dip or mechanically deposited, zinc-coated anchor bolts where item being fastened is indicated to be galvanized.
- C. Cast-in-Place Anchors in Concrete: Anchors capable of sustaining, without failure, a load equal to four times the load imposed, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
 - 1. Threaded or wedge type; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, hot-dip galvanized per ASTM A 153/A 153M.
- D. Expansion Anchors: Anchor bolt and sleeve assembly with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488,

conducted by a qualified independent testing agency. Anchors shall have an ICC-ES report with approval for use in cracked concrete.

- 1. Acceptable Manufacturers: Kwik-Bolt TZ by Hilti, Inc., TruBolt Wedge Anchor by ITW Red Head, Power-Stud+ by Powers Fasteners, or Strong Bolt by Simpson.
- E. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches by length indicated with anchor straps or studs not less than 3 inches long at not more than 8 inches o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.3 MISCELLANEOUS MATERIALS

- A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- C. Zinc-Rich Primer: Complying with SSPC-Paint 20 or SSPC-Paint 29 and compatible with topcoat.
 - 1. Provide interior, field-applied primer with a VOC content of 250 g/L or less, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.
 - 1. Provide interior, field-applied paint with a VOC content of 250 g/L or less, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Isolation Coating: ASTM D 1187, cold-applied asphalt emulsion, VOC compliant, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.
- F. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.4 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch, unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work true to line and level with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts, unless otherwise indicated. Locate joints where least conspicuous.
- G. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
- 2.5 LOOSE STEEL LINTELS
 - A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Weld adjoining members together to form a single unit where indicated.
 - B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span but not less than 8 inches, unless otherwise indicated.
- 2.6 MISCELLANEOUS FRAMING AND SUPPORTS
 - A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
 - B. Fabricate units from steel shapes, plates, and bars of welded construction, unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction retained by framing and supports. Cut, drill, and tap units to receive hardware, hangers, and similar items.
 - 1. Fabricate units from slotted channel framing where indicated.
 - 2. Furnish inserts if units are installed after concrete is placed.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.7 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal fabrications after assembly.

2.8 STEEL PRIMERS AND FINISHES

- A. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with minimum requirements indicated below for SSPC surface preparation specifications and environmental exposure conditions of installed metal fabrications:
 - 1. Exteriors (SSPC Zone 1B) and Items Indicated to Receive Zinc-Rich Urethane Primer: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 2. Interiors (SSPC Zone 1A): SSPC-SP 7, "Brush Off Blast Cleaning."
 - 3. Apply shop primer to uncoated surfaces of metal fabrications, except those with galvanized finishes and those to be field welded, embedded in concrete or masonry, unless otherwise indicated. Extend priming of partially embedded members to a depth of 2 inches.
 - 4. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 5. Comply with SSPC-PA 2, "Measurement of Dry Coating Thickness with magnetic Gages."
- B. Zinc-Rich Primer: Urethane zinc rich primer compatible with topcoat Specified in Section 099000 - PAINTS AND COATINGS. Provide primer with a VOC content of 340 g/L (2.8 lb/gal.) or less per OTC and HAPS COMPLIANT STANDARDS PER 2007 standards when calculated according to 40 CFR 59, Subpart D (EPA Method 24). Provide Tnemec Series 394 Perimerprime at 3.0 mils DFT or approved equal by DuPont or Carboline.
 - 1. Provide interior, field-applied primer with a VOC content of 250 g/L or less, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.9 HOT-DIP GALVANIZING

- A. Hot-Dip Galvanizing: For steel exposed to the elements, weather or corrosive environments and other steel indicated to be galvanized, provide coating for iron and steel fabrications applied by the hot-dip process.
 - 1. Basis-of-Design: Duragalv by Duncan Galvanizing.
 - 2. Comply with ASTM A 123 for fabricated products and ASTM A 153 for hardware.
 - 3. Provide thickness of galvanizing specified in referenced standards.
 - 4. Galvanizing bath shall contain special high grade zinc and other earthly materials.
 - 5. Fill vent holes after galvanizing, if applicable, and grind smooth.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges

and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag bolts, wood screws, and other connectors.
- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- F. Corrosion Protection: Coat concealed surfaces of steel that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with a heavy coat of isolation coating.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

3.3 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.
- B. Touch-Up and Repair for Galvanized Surfaces: For damaged and field-welded metal coated surfaces, clean welds, bolted connections and abraded areas.
 - 1. For galvanized surfaces, apply organic zinc repair paint complying with requirements of ASTM A 780, modified to 95 percent zinc in dry film. Galvanizing repair paint shall have 95 percent zinc by weight, ZiRP by Duncan Galvanizing. Thickness of applied galvanizing repair paint shall be not less than coating thickness required by ASTM A 123 or A 153 as applicable. Touch-up of galvanized surfaces with silver paint, brite paint, or aluminum paints is not acceptable.
 - 2. For factory-applied finish coatings, field-touch-up shall be performed by factory approved personnel. Touch-up shall be such that repair is not visible from a distance of 6 feet.

3. A touch-up repair kit or touchup instructions shall be provided to the Owner for each type of factory-applied finish.

END OF SECTION

SECTION 061000

ROUGH CARPENTRY

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Wood blocking, cants, and nailers.
 - 2. Plywood backing panels.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 064020 INTERIOR ARCHITECTURAL WOODWORK for interior woodwork not specified in this Section.
 - 2. Section 092110 GYPSUM BOARD ASSEMBLIES for sheet metal backing.

1.3 SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used, net amount of preservative retained, and chemical treatment manufacturer's written instructions for handling, storing, installing, and finishing treated material.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials, both before and after exposure to elevated temperatures when tested according to ASTM D 5516 and ASTM D 5664.
 - 3. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
 - 4. Include copies of warranties from chemical treatment manufacturers for each type of treatment.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Stack lumber, plywood, and other panels; place spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of lumber grading agencies certified by the American Lumber Standards Committee Board of Review.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.
 - 3. Provide dressed lumber, S4S, unless otherwise indicated.
 - 4. Provide dry lumber with 15 percent maximum moisture content at time of dressing for 2inch nominal thickness or less, unless otherwise indicated.
- B. Plywood Panels:
 - 1. Plywood: Either DOC PS 1 or DOC PS 2, unless otherwise indicated.
 - 2. Thickness: As needed to comply with requirements specified but not less than thickness indicated.
 - 3. Factory mark panels according to indicated standard.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with the ground, Use Category UC3b for exterior construction not in contact with the ground, and Use Category UC4a for items in contact with the ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.
 - 2. For exposed items indicated to receive a stained or natural finish, use chemical formulations that do not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.
- B. Kiln-dry material after treatment to a maximum moisture content of 19 percent for lumber and 15 percent for plywood. Do not use material that is warped or does not comply with requirements for untreated material.
- C. Mark each treated item with the treatment quality mark of an inspection agency approved by the American Lumber Standards Committee Board of Review.
- D. Application: Treat items indicated on Drawings, and the following:

- 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
- 2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete in exterior walls.

2.3 FIRE-RETARDANT-TREATED MATERIALS

- A. General: For fire-rated exterior walls and all interior use materials, provide materials that are fire-retardant treated and comply with performance requirements in AWPA C20 (lumber) and AWPA C27 (plywood). Identify fire-retardant-treated wood with appropriate classification marking of UL, U.S. Testing, Timber Products Inspection, or another testing and inspecting agency acceptable to authorities having jurisdiction.
 - 1. Use treatment for which chemical manufacturer publishes physical properties of treated wood after exposure to elevated temperatures, when tested by a qualified independent testing agency according to ASTM D 5664, for lumber and ASTM D 5516, for plywood.
 - 2. Use treatment that does not promote corrosion of metal fasteners.

2.4 MISCELLANEOUS LUMBER

- A. General: Provide lumber for support or attachment of other construction, including the following:
 - 1. Rooftop equipment bases and support curbs.
 - 2. Blocking.
 - 3. Cants.
 - 4. Nailers.
 - 5. Furring.
 - 6. Grounds.
- B. For items of dimension lumber size, provide Construction, Stud, or No. 2 grade lumber with 15 percent moisture content.

2.5 PANEL PRODUCTS

- A. Miscellaneous Concealed Plywood: Exposure 1 sheathing, span rating to suit framing in each location, and thickness as indicated but not less than 1/2 inch.
- B. Telephone and Electrical Equipment Backing Panels: DOC PS 1, Exposure 1, C-D Plugged, fire-retardant treated, in thickness indicated or, if not indicated, not less than 1/2 inch thick.

2.6 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this Article for material and manufacture.
 - 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.
- B. Nails, Wire, Brads, and Staples: ASTM F 1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

- D. Wood Screws: ASME B18.6.1.
- E. Screws for Fastening to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.
- F. Bolts: Steel bolts complying with ASTM A 307, Grade A with ASTM A 563 hex nuts and, where indicated, flat washers.
- G. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency.
 - 1. Material: Carbon-steel components, zinc plated to comply with ASTM B 633, Class Fe/Zn 5; except provide stainless steel complying with ASTM F 593 and ASTM F 594, Alloy Group 1 or 2, where in contact with pressure-preservative treated wood or when exposed to exterior conditions.

2.7 MISCELLANEOUS MATERIALS

- A. Adhesive, Including Gluing Furring and Sleepers to Concrete or Masonry: Formulation complying with ASTM D 3498 that is approved for use indicated by adhesive manufacturer.
 - 1. Use adhesives that have a VOC content of 70 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

- 3.1 INSTALLATION, GENERAL
 - A. Discard units of material with defects that impair quality of carpentry and that are too small to use with minimum number of joints or optimum joint arrangement.
 - B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry to other construction; scribe and cope as needed for accurate fit. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.
 - C. Apply field treatment complying with AWPA M4 to cut surfaces of preservative-treated lumber and plywood.
 - D. Securely attach carpentry work as indicated and according to applicable codes and the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code (IBC).
 - Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.
 - 3. ICC-ES evaluation report for fastener.

- E. Countersink fastener heads on exposed carpentry work and fill holes with wood filler.
- F. Use fasteners of appropriate type and length. Predrill members when necessary to avoid splitting wood.

3.2 WOOD BLOCKING, AND NAILER INSTALLATION

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces, unless otherwise indicated.

END OF SECTION

SECTION 064020

INTERIOR ARCHITECTURAL WOODWORK

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Plastic-laminate casework.
 - 2. Plastic-laminate countertops.
 - 3. Solid-surfacing-material countertops.
 - 4. Closet and utility shelving.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 061000 ROUGH CARPENTRY for wood furring, blocking, shims, and hanging strips required for installing woodwork and concealed within other construction before woodwork installation.

1.3 SUBMITTALS

- A. Product Data: For each type of product specified, including casework hardware and accessories, and finishing materials and processes.
 - 1. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements.
- B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.
 - 1. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
 - a. Provide schedule of blocking required to support the Work of this Section.
 - 2. Show locations and sizes of cutouts and holes for plumbing fixtures, electrical components and other items installed in architectural woodwork.
- C. Samples for Verification:

- 1. Plastic laminates, 8 by 10 inches for each type, color, pattern, and surface finish, with 1 sample applied to core material, and specified edge material applied to 1 edge.
- 2. Solid-surfacing materials, 6 inches square.

1.4 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate products similar to those required for this Project and whose products have a record of successful inservice performance.
- B. Source Limitations: Engage a qualified woodworking firm to assume undivided responsibility for production of interior architectural woodwork with blueprint-matched wood veneers and components.
- C. Quality Standard: Unless otherwise indicated, comply with AWI/AWMAC/WI's "Architectural Woodwork Standards," latest edition, including errata, for grades of interior architectural woodwork indicated for construction, finishes, installation, and other requirements.
- D. Fire-Test-Response Characteristics: Where fire-retardant materials or products are indicated, provide materials and products with specified fire-test-response characteristics as determined by testing identical products per test method indicated by UL, ITS, or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify with appropriate markings of applicable testing and inspecting agency in the form of separable paper label or, where required by authorities having jurisdiction, imprint on surfaces of materials that will be concealed from view after installation.
- E. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- F. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver woodwork until painting and similar operations that could damage woodwork have been completed in installation areas. If woodwork must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in "Project Conditions" Article.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Do not deliver or install woodwork until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
 - 1. The HVAC systems as specified elsewhere may not provide for humidity controls. The expected ranges of relative humidity are expected to be as high as 55% to a low of uncontrolled during the heating system. Comply with AWS Section 2, Care and Storage.

- B. Field Measurements: Where woodwork is indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 - 1. Locate concealed framing, blocking, and reinforcements that support woodwork by field measurements before being enclosed, and indicate measurements on Shop Drawings.
 - 2. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating woodwork without field measurements. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.7 COORDINATION

A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to ensure that interior architectural woodwork can be supported and installed as indicated.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Provide materials that comply with requirements of AWI/AWMAC/WI's "Architectural Woodwork Standards" for each type of woodwork and quality grade specified, unless otherwise indicated.
- B. Wood Products: Comply with the following:
 - 1. Hardboard: AHA A135.4.
 - 2. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade MD, made with binder containing no added urea formaldehyde.
 - 3. Particleboard: ANSI A208.1, Grade M-2-Exterior Glue.
 - 4. Softwood Plywood: DOC PS 1, Medium Density Overlay (MDO).
 - 5. Veneer-Faced Panel Products (Hardwood Plywood): HPVA HP-1, made with adhesive containing no added urea formaldehyde.
 - a. Resin impregnated paper backs are not permitted. Backs shall be of compatible hardwood species and cut. Contact adhesive is not permitted.
- C. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or, if not indicated, as required by woodwork quality standard.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering high-pressure decorative laminates that may be incorporated into the Work include, but are not limited to, the following:
 - a. Abet Laminati, Inc.
 - b. Arborite; Division of ITW Canada, Inc.
 - c. Formica Corporation.
 - d. Lamin-Art, Inc.
 - e. Nevamar Company; a division of Panolam Industries.

INTERIOR ARCHITECTURAL WOODWORK 064020 - 3

- f. Wilsonart International; Div. of Premark International, Inc.
- D. Solid-Surfacing Material: Homogeneous solid sheets of filled plastic resin complying with ANSI SS-1 and ISSFA-2.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Avonite, Inc.
 - b. E. I. du Pont de Nemours and Company; Corian.
 - c. Formica Corporation.
 - d. LG Chemical, Ltd.
 - e. Nevamar Company, LLC; Decorative Products Div.
 - f. Swanstone, The Swan Corporation
 - g. Wilsonart International; Div. of Premark International, Inc.
- E. Solid-Surfacing Material, Quartz-Agglomerate Type: Solid sheets consisting of quartz aggregates bound together with a matrix of filled plastic resin complying with ANSI SS-1 and ISSFA-2.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CaesarStone.
 - b. Cosentino USA; Silestone.
 - c. Dal-Tile; ONE Quartz Surfaces.
 - d. E. I. du Pont de Nemours and Company; Zodiaq.

2.2 FIRE-RETARDANT-TREATED MATERIALS

- A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this Article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified.
 - 1. Do not use treated materials that do not comply with requirements of referenced woodworking standard or that are warped, discolored, or otherwise defective.
 - 2. Use fire-retardant-treatment formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants to distinguish treated materials from untreated materials.
 - 3. Identify fire-retardant-treated materials with appropriate classification marking of UL, U.S. Testing, Timber Products Inspection, or another testing and inspecting agency acceptable to authorities having jurisdiction.
- B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Comply with performance requirements of AWPA C20 (lumber) and AWPA C27 (plywood). Use the following treatment type:
 - 1. Exterior Type: Organic-resin-based formulation thermally set in wood by kiln drying.
 - 2. Mill lumber before treatment and implement special procedures during treatment and drying processes that prevent lumber from warping and developing discolorations from

drying sticks or other causes, marring, and other defects affecting appearance of treated woodwork.

- 3. Kiln-dry materials before and after treatment to levels required for untreated materials.
- C. Fire-Retardant Particleboard: Panels complying with the following requirements, made from softwood particles and fire-retardant chemicals mixed together at time of panel manufacture to achieve flame-spread index of 25 or less and smoke-developed index of 25 or less per ASTM E 84.
 - 1. Fire-Retardant Fiberboard and Particleboard: Provide five ply construction with crossbands to prevent any ammonia fuming from the core to the face veneers.

2.3 CASEWORK HARDWARE AND ACCESSORIES

- A. General: Provide casework hardware and accessory materials associated with architectural casework, except for items specified in Section 087100 DOOR HARDWARE.
- B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602,100 degrees of opening, self-closing.
- C. Back-Mounted Pulls: BHMA A156.9, B02011.
- D. Catches: Push-in magnetic catches, BHMA A156.9, B03131.
- E. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081 or BHMA A156.9, B04102; with shelf brackets, B04112.
- F. Drawer Slides: BHMA A156.9, B05091; side mounted and extending under bottom edge of drawer; full-extension type; epoxy-coated-steel with steel ball-bearings; of the following grades:
 - 1. Box Drawer Slides: Grade 1.
 - 2. File Drawer Slides: Grade 1HD-100.
 - 3. Pencil Drawer Slides: Grade 2.
 - 4. Keyboard Slides: Grade 1.
 - 5. Trash Bin Slides: Grade 1HD-100.
- G. Door Locks: BHMA A156.11, E07121.
- H. Drawer Locks: BHMA A156.11, E07041.
- I. Grommets for Cable Passage through Countertops: Molded-plastic grommets and matching plastic caps with slot for wire passage.
- J. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 - 1. Satin Stainless Steel: BHMA 630.
 - 2. Satin Aluminum, Clear Anodized: BHMA 628.
- K. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.

2.4 MISCELLANEOUS MATERIALS

- A. Furring, Blocking, Shims, and Hanging Strips: Fire-retardant-treated softwood lumber, kiln dried to less than 15 percent moisture content.
- B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide nonferrous-metal or hot-dip galvanized anchors and inserts on inside face of exterior walls and elsewhere as required for corrosion resistance. Provide toothed-steel or lead expansion sleeves for drilled-in-place anchors.
- C. Adhesives, General: Do not use adhesives that contain urea formaldehyde.
- D. VOC Limits for Installation Adhesives and Glues: Use installation adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - 1. Wood Glues: 30 g/L.
 - 2. Contact Adhesives: Not permitted on the Project without Architect's prior approval.

2.5 FABRICATION, GENERAL

- A. Wood Moisture Content: Comply with requirements of referenced quality standard for wood moisture content in relation to ambient relative humidity during fabrication and in installation areas.
- B. Sand fire-retardant-treated wood lightly to remove raised grain on exposed surfaces before fabrication.
- C. Fabricate woodwork to dimensions, profiles, and details indicated. Ease edges to radius indicated for the following:
- D. Complete fabrication, including assembly, finishing, and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
- E. Shop-cut openings to maximum extent possible to receive hardware, appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

2.6 PLASTIC-LAMINATE CASEWORK

- A. Grade: Custom.
- B. AWI Type of Casework Construction: Flush overlay.
- C. Laminate Cladding for Exposed Surfaces: High-pressure decorative laminate complying with the following requirements:
 - 1. Horizontal Surfaces Other Than Tops: Grade HGS.
 - 2. Postformed Surfaces: Grade HGP.

- 3. Vertical Surfaces: Grade HGS.
- 4. Edges: Grade HGS.
- D. Materials for Semiexposed Surfaces:
 - 1. Surfaces Other Than Drawer Bodies: High-pressure decorative laminate, Grade VGS.
 - a. Edges of Plastic-Laminate Shelves: PVC tape, 0.018-inch minimum thickness, matching laminate in color, pattern, and finish.
 - b. For semiexposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, Grade VGS.
 - 2. Drawer Sides and Backs: Solid-hardwood lumber.
 - 3. Drawer Bottoms: Hardwood plywood.
- E. Concealed Backs of Panels with Exposed Plastic Laminate Surfaces: High-pressure decorative laminate, Grade BKL.
- F. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As selected by Architect from laminate manufacturer's full range.

2.7 PLASTIC-LAMINATE COUNTERTOPS

- A. Grade: Custom.
- B. High-Pressure Decorative Laminate Grade: HGS.
- C. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As selected by Architect from manufacturer's full range.
- D. Edge Treatment: As indicated.
- E. Core Material: Exterior-grade plywood.
- F. Backer Sheet: Provide plastic-laminate backer sheet, Grade BKL, on underside of countertop substrate.

2.8 SOLID-SURFACING-MATERIAL COUNTERTOPS

- A. Grade: Custom.
- B. Colors, Patterns, and Finishes: Provide materials and products that result in colors of solidsurfacing material complying with the following requirements:
 - 1. As selected by Architect from manufacturer's full range.
- C. Fabricate tops in one piece, unless otherwise indicated. Comply with solid-surfacing-material manufacturer's written recommendations for adhesives, sealers, fabrication, and finishing.

- 1. Fabricate tops with shop-applied edges of materials and configuration indicated.
- 2. Fabricate tops with loose backsplashes for field application.
- D. Drill holes in countertops for plumbing fittings and soap dispensers in shop.

2.9 CLOSET AND UTILITY SHELVING

- A. Grade: Custom.
- B. Shelf Material: 1-inch plastic laminate-faced panel product with solid-lumber edge.
- C. Cleats: 3/4-inch solid lumber.
- D. Standards for Adjustable Shelf Brackets: BHMA A156.9, B04102; powder-coat-finished steel.
- E. Adjustable Shelf Brackets: BHMA A156.9, B04112; powder-coat-finished steel.
- F. Clothes Rods: 1-5/16-inch-diameter, chrome-plated-steel tubes.
 - 1. Rod Flanges: Chrome-plated steel.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before installation, condition woodwork to average prevailing humidity conditions in installation areas.
- B. Before installing architectural woodwork, examine shop-fabricated work for completion and complete work as required, including removal of packing and backpriming.

3.2 INSTALLATION

- A. Grade: Install woodwork to comply with requirements for the same grade specified in Part 2 for fabrication of type of woodwork involved.
- B. Assemble woodwork and complete fabrication at Project site to comply with requirements for fabrication in Part 2, to extent that it was not completed in the shop.
- C. Install woodwork level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb (including tops) to a tolerance of 1/8 inch in 96 inches.
- D. Scribe and cut woodwork to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- E. Fire-Retardant-Treated Wood: Handle, store, and install fire-retardant-treated wood to comply with chemical treatment manufacturer's written instructions, including those for adhesives used to install woodwork.
- F. Anchor woodwork to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing as required for complete installation. Use

fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork and matching final finish if transparent finish is indicated.

- G. Standing and Running Trim: Install with minimum number of joints possible, using full-length pieces (from maximum length of lumber available) to greatest extent possible. Do not use pieces less than 60 inches long, except where shorter single-length pieces are necessary. Scarf running joints and stagger in adjacent and related members.
 - 1. Fill gaps, if any, between top of base and wall with plastic wood filler, sand smooth, and finish same as wood base if finished.
 - 2. Install standing and running trim with no more variation from a straight line than 1/8 inch in 96 inches.
- H. Casework: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 - 1. Install casework with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
- I. Countertops: Anchor securely by screwing through corner blocks of base casework or other supports into underside of countertop.
 - 1. Align adjacent countertops and form seams to comply with manufacturer's written recommendations using adhesive in color to match countertop. Carefully dress joints smooth, remove surface scratches, and clean entire surface.
 - 2. Install countertops with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.
 - 3. Secure backsplashes to tops with concealed metal brackets at 16 inches and to walls with adhesive.
 - 4. Calk space between backsplash and wall with sealant specified in Section 079200 JOINT SEALANTS.
- J. Touch up finishing work specified in this Section after installation of woodwork. Fill nail holes with matching filler where exposed.

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective woodwork, where possible, to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.
- B. Clean, lubricate, and adjust hardware.
- C. Clean woodwork on exposed and semiexposed surfaces.

END OF SECTION

SECTION 066400

FRP PANELING

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work of this Section includes but is not limited to:
 - 1. Glass-fiber reinforced plastic (FRP) wall paneling and trim accessories.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 061000 ROUGH CARPENTRY for wood furring for installing plastic paneling.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples for Verification: For plastic paneling and trim accessories, in manufacturer's standard sizes.
- 1.4 QUALITY ASSURANCE
 - A. Source Limitations: Obtain plastic paneling and trim accessories from single manufacturer.
 - B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install plastic paneling until spaces are enclosed and weathertight and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PLASTIC SHEET PANELING

- A. General: Gelcoat-finished, glass-fiber reinforced plastic (FRP) panels complying with ASTM D 5319.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crane Composites.
 - b. Marlite.
 - c. Nudo Products, Inc.
 - 2. Nominal Thickness: Not less than 0.075 inch.
 - 3. Surface Finish: Molded pebble texture.
 - 4. Color: As selected by Architect from manufacturer's full range.

2.2 ACCESSORIES

- A. Trim Accessories: Manufacturer's standard one-piece vinyl extrusions designed to retain and cover edges of panels. Provide division bars, inside corners, outside corners, and caps as needed to conceal edges.
 - 1. Color: Match panels.
- B. Exposed Fasteners: Nylon drive rivets recommended by panel manufacturer.
- C. Concealed Mounting Splines: Continuous, H-shaped aluminum extrusions designed to fit into grooves routed in edges of factory-laminated panels and to be fastened to substrate.
- D. Adhesive: As recommended by plastic paneling manufacturer.
 - 1. VOC Content: 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. Sealant: Single-component, mildew-resistant, neutral-curing silicone sealant recommended by plastic paneling manufacturer and complying with requirements in Division 07 Section "Joint Sealants."
 - 1. VOC Content: 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove wallpaper, vinyl wall covering, loose or soluble paint, and other materials that might interfere with adhesive bond.
- B. Prepare substrate by sanding high spots and filling low spots as needed to provide flat, even surface for panel installation.
- C. Clean substrates of substances that could impair bond of adhesive, including oil, grease, dirt, and dust.
- D. Condition panels by unpacking and placing in installation space before installation according to manufacturer's written recommendations.
- E. Lay out paneling before installing. Locate panel joints to provide equal panels at ends of walls not less than half the width of full panels and so that trimmed panels at corners are not less than 12 inches wide.
 - 1. Mark plumb lines on substrate at panel joint locations for accurate installation.
 - 2. Locate trim accessories to allow clearance at panel edges according to manufacturer's written instructions.

3.3 INSTALLATION

- A. Install plastic paneling according to manufacturer's written instructions.
- B. Install panels in a full spread of adhesive.
- C. Install trim accessories with adhesive.
- D. Fill grooves in trim accessories with sealant before installing panels and bed inside corner trim in a bead of sealant.
- E. Maintain uniform space between panels and wall fixtures. Fill space with sealant.
- F. Remove excess sealant and smears as paneling is installed. Clean with solvent recommended by sealant manufacturer and then wipe with clean dry cloths until no residue remains.

END OF SECTION

SECTION 076200

SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Sheet metal flashing and trim for the following applications:
 - a. Flashing at new door.
 - b. Formed low-slope roof flashing and trim.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 061000 ROUGH CARPENTRY for wood nailers, curbs, and blocking.
 - 2. Section 079200 JOINT SEALANTS for field-applied sheet metal flashing and trim sealants.

1.3 PERFORMANCE REQUIREMENTS

- A. General: Install sheet metal flashing and trim to withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failing, rattling, leaking, and fastener disengagement.
- B. Fabricate and install roof edge flashing and copings capable of resisting Wind Zone forces required by Code according to recommendations in FMG Loss Prevention Data Sheet 1-49.
- C. Thermal Movements: Provide sheet metal flashing and trim that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of sheet metal and trim thermal movements. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F material surfaces.
- D. Water Infiltration: Provide sheet metal flashing and trim that do not allow water infiltration to building interior.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below:
 - 1. Sheet Metal Flashing: 12 inches long. Include fasteners, cleats, clips, closures, and other attachments.
 - 2. Trim: 12 inches long. Include fasteners and other exposed accessories.
 - 3. Accessories: Full-size Sample.

1.5 QUALITY ASSURANCE

- A. Sheet Metal Flashing and Trim Standard: Comply with SMACNA's "Architectural Sheet Metal Manual." Conform to dimensions and profiles shown unless more stringent requirements are indicated.
- B. Flashings at roof shall be furnished and installed in compliance with roof warranty and in accordance with roof manufacturer's requirements.
- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
 - 1. Meet with the Owner, Architect and Owner's insurer if applicable, Installer, and installers whose work interfaces with or affects sheet metal flashing and trim including installers of roofing materials, roof accessories, unit skylights, and roof-mounted equipment.
 - 2. Review methods and procedures related to sheet metal flashing and trim.
 - 3. Examine substrate conditions for compliance with requirements, including flatness and attachment to structural members.
 - 4. Document proceedings, including corrective measures and actions required, and furnish copy of record to each participant.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver sheet metal flashing materials and fabrications undamaged. Protect sheet metal flashing and trim materials and fabrications during transportation and handling.
- B. Unload, store, and install sheet metal flashing materials and fabrications in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack materials on platforms or pallets, covered with suitable weathertight and ventilated covering. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.

1.7 COORDINATION

A. Coordinate installation of sheet metal flashing and trim with interfacing and adjoining construction to provide a leakproof, secure, and noncorrosive installation.

PART 2 - PRODUCTS

2.1 SHEET METALS

A. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304, with No. 2D dull, cold-rolled finish. Thickness as specified in this Section.

2.2 UNDERLAYMENT MATERIALS

- A. Felts: ASTM D 226, Type II (No. 30), asphalt-saturated organic felt, nonperforated.
- B. Slip Sheet: Rosin-sized paper, minimum 3 lb/100 sq. ft.

2.3 MISCELLANEOUS MATERIALS

- A. General: Provide materials and types of fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads.
 - 1. Exposed Fasteners: Heads matching color of sheet metal by means of plastic caps or factory-applied coating.
 - 2. Fasteners for Flashing and Trim: Blind fasteners or self-drilling screws, gasketed, with hex washer head.
 - 3. Blind Fasteners: High-strength aluminum or stainless-steel rivets.
- C. Solder for Stainless Steel: ASTM B 32, Grade Sn60, with acid flux of type recommended by stainless-steel sheet manufacturer.
- D. Sealing Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealing tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape.
- E. Elastomeric Sealant: ASTM C 920, elastomeric polyurethane polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.
- F. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- G. Isolation Coating: ASTM D 1187, cold-applied asphalt emulsion, VOC compliant, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.
- H. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.4 FABRICATION, GENERAL

A. General: Custom fabricate sheet metal flashing and trim to comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and

other characteristics of item indicated. Shop fabricate items where practicable. Obtain field measurements for accurate fit before shop fabrication.

- B. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
- C. Fabricate sheet metal flashing and trim without excessive oil canning, buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.
 - 1. Seams: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
- D. Sealed Joints: Form nonexpansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA recommendations.
- E. Expansion Provisions: Where lapped or bayonet-type expansion provisions in the Work cannot be used, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with elastomeric sealant concealed within joints.
- F. Conceal fasteners and expansion provisions where possible on exposed-to-view sheet metal flashing and trim, unless otherwise indicated.
- G. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
 - 1. Thickness: As recommended by SMACNA's "Architectural Sheet Metal Manual" for application but not less than thickness of metal being secured.
- 2.5 LOW-SLOPE ROOF SHEET METAL FABRICATIONS
 - A. Base Flashing: Fabricate from the following material:
 - 1. Stainless Steel: 0.019 inch (0.48 mm) thick.
 - B. Counterflashing: Fabricate from the following material:
 - 1. Stainless Steel: 0.019 inch (0.48 mm) thick.
 - C. Roof-Penetration Flashing: Fabricate from the following material:
 - 1. Stainless Steel: [0.019 inch (0.48 mm) thick.

2.6 WALL SHEET METAL FABRICATIONS

- A. Through-Wall Flashing, Typical: Fabricate continuous flashings in minimum 96-inch-long, but not exceeding 12 foot long, sections, under copings, at shelf angles, and where indicated. Fabricate discontinuous lintel, sill, and similar flashings to extend 6 inches beyond each side of wall openings. Form with 2-inch-high end dams. Fabricate from the following material:
 - 1. Stainless Steel: 0.016 inch (0.40 mm) thick.

2.7 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions and other conditions affecting performance of work.
 - 1. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 - 2. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 1. Torch cutting of sheet metal flashing and trim is not permitted.
- B. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating or by other permanent separation as recommended by fabricator or manufacturers of dissimilar metals.
 - 1. Coat side of stainless-steel sheet metal flashing and trim with isolation coating where flashing and trim will contact wood, ferrous metal, or cementitious construction.
 - 2. Underlayment: Where installing metal flashing directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip-sheet or install a course of polyethylene underlayment.
 - 3. Bed flanges in thick coat of asphalt roofing cement where required for waterproof performance.
- C. Install exposed sheet metal flashing and trim without excessive oil canning, buckling, and tool marks.
- D. Install sheet metal flashing and trim true to line and levels indicated. Provide uniform, neat seams with minimum exposure of solder, welds, and elastomeric sealant.

- E. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 - 1. Space cleats not more than 12 inches apart. Anchor each cleat with two fasteners. Bend tabs over fasteners.
- F. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped or bayonet-type expansion provisions cannot be used or would not be sufficiently watertight, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with elastomeric sealant concealed within joints.
- G. Fasteners: Use fasteners of sizes that will penetrate substrate not less than 1-1/4 inches for nails and not less than 3/4 inch for wood screws.
 - 1. Stainless Steel: Use stainless-steel fasteners.
- H. Seal joints with elastomeric sealant as required for watertight construction.
 - Where sealant-filled joints are used, embed hooked flanges of joint members not less than 1 inch into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is moderate, between 40 and 70 deg F set joint members for 50 percent movement either way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F.
 - 2. Prepare joints and apply sealants to comply with requirements in Section 079200 JOINT SEALANTS.
- I. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pretin edges of sheets to be soldered to a width of 1-1/2 inches except where pretinned surface would show in finished Work.
 - 1. Stainless-Steel Soldering: Pretin edges of uncoated sheets to be soldered using solder recommended for stainless steel and phosphoric acid flux. Promptly wash off acid flux residue from metal after soldering.
 - Do not use open-flame torches for soldering. Heat surfaces to receive solder and flow solder into joints. Fill joints completely. Completely remove flux and spatter from exposed surfaces.

3.3 ROOF FLASHING INSTALLATION

- A. General: Install sheet metal roof flashing and trim to comply with performance requirements[, sheet metal manufacturer's written installation instructions,] and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, set units true to line, and level as indicated. Install work with laps, joints, and seams that will be permanently watertight.
- B. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending a minimum of 4 inches (100 mm) over base flashing. Install stainless steel draw band and tighten.
- C. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend

counterflashing 4 inches over base flashing. Lap counterflashing joints a minimum of 4 inches and bed with elastomeric sealant.

- 1. Secure in a waterproof manner by means of snap-in installation and sealant.
- D. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Install flashing as follows:
 - 1. Seal with elastomeric sealant and clamp flashing to pipes penetrating roof except for flashing on vent piping.
- 3.4 WALL FLASHING INSTALLATION
 - A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to SMACNA recommendations and as indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.
- 3.5 CLEANING AND PROTECTION
 - A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
 - B. Clean and neutralize flux materials. Clean off excess solder and sealants.
 - C. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed. On completion of installation, clean finished surfaces, including removing unused fasteners, metal filings, pop rivet stems, and pieces of flashing. Maintain in a clean condition during construction.
 - D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION

SECTION 078100

APPLIED FIREPROOFING

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to, patching existing fireproofing as required by new construction activities.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 078410 PENETRATION FIRESTOPPING for firestopping and firesafing insulation.
 - 2. Section 092110 GYPSUM BOARD ASSEMBLIES for fire-resistance-rated assemblies.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Qualification Data: For Installer, manufacturer, and testing agency.
- C. Compatibility and Adhesion Test Reports: From material manufacturer indicating the following:
 - 1. Materials have been tested for bond with substrates.
 - 2. Materials have been verified by material manufacturer to be compatible with substrate primers and coatings.
 - 3. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.
- D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for proposed fire-resistive materials.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: A firm or individual certified, licensed, or otherwise qualified by fireresistive material manufacturer as experienced and with sufficient trained staff to install manufacturer's products according to specified requirements.
- B. Provide products containing no detectable asbestos as determined according to the method specified in 40 CFR 763, Subpart E, Appendix E, Section 1, "Polarized Light Microscopy."

APPLIED FIREPROOFING 078100 - 1

- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01. Review methods and procedures related to fire-resistive materials including, but not limited to, the following:
 - 1. Review and finalize construction schedule and verify sequencing and coordination requirements.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver products to Project site in original, unopened packages with intact and legible manufacturers' labels identifying product and manufacturer, date of manufacture, shelf life if applicable, and fire-resistance ratings applicable to Project.

1.6 COORDINATION

A. Sequence and coordinate application of fire-resistive materials with other related work specified in other Sections.

PART 2 - PRODUCTS

2.1 APPLIED FIREPROOFING

A. Patch Kit: Patch existing fireproofing disturbed by construction activities and areas with missing fireproofing in the area of work. Use patching materials and methods per products listed in the UL directory. Areas more than 1 square foot in area will require spray application with patch pump. Comply with manufacturer's recommendations for primers for existing fireproofing, based on testing of existing fireproofing. Verify compatibility with existing fireproofing.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for substrates and other conditions affecting performance of work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Cover other work subject to damage from fallout or overspray of fire-resistive materials during application.
- B. Clean substrates of substances that could impair bond of fire-resistive material, including dirt, oil, grease, release agents, rolling compounds, mill scale, loose scale, and incompatible primers, paints, and encapsulants.

3.3 APPLICATION, GENERAL

- A. Comply with fire-resistive material manufacturer's written instructions for mixing materials, application procedures, and types of equipment used to mix, and apply, as applicable to particular conditions of installation and as required to achieve fire-resistance ratings indicated.
- 3.4 CLEANING, PROTECTING, AND REPAIR
 - A. Protect fire-resistive material, according to advice of product manufacturer and Installer, from damage resulting from construction operations or other causes so fire protection will be without damage or deterioration at time of Substantial Completion.
 - B. Coordinate application of fire-resistive material with other construction to minimize need to cut or remove fire protection. As installation of other construction proceeds, inspect fire-resistive material and patch any damaged or removed areas.
 - C. Repair or replace work that has not successfully protected substrates.

END OF SECTION

SECTION 078410

PENETRATION FIRESTOPPING

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Through-penetration firestop systems for penetrations through fire-resistance-rated constructions, including both empty openings and openings containing penetrating items.
 - B. Related Work: The following items are not included in this Section and will be performed under the designated Sections:
 - 1. Section 079200 JOINT SEALANTS for standard joint sealers.
 - 2. Division 21 FIRE SUPPRESSION for fire-protection piping penetrations.
 - 3. Division 22 PLUMBING for piping penetrations.
 - 4. Division 23 HEATING, VENTILATING AND AIR CONDITIONING for duct and piping penetrations.
 - 5. Division 26 ELECTRICAL for cable and conduit penetrations.

1.3 COORDINATION

- A. Jobsite conditions of each through-penetration firestop system must meet all details of the UL-Classified System selected. If jobsite conditions do not match any UL-classified systems, contact firestop manufacturer for alternative systems or Engineer Judgment Drawings.
- B. Coordinate work with other trades to assure that penetration-opening sizes are appropriate for penetrant locations.
- C. Verify that the schedule is current at the time of construction, and that each referenced system is suitable for the intended application.

1.4 PERFORMANCE REQUIREMENTS

A. General: For penetrations through fire-resistance-rated constructions, including both empty openings and openings containing penetrating items, provide through-penetration firestop systems that are produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated.

- B. Penetrations in Fire-Resistance-Rated Walls: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 - 1. Fire-resistance-rated walls include fire walls, fire-barrier walls, smoke-barrier walls and fire partitions.
 - 2. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
- C. Penetrations in Horizontal Assemblies: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 - 1. Horizontal assemblies include floors, floor/ceiling assemblies and ceiling membranes of roof/ceiling assemblies.
 - 2. F-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated.
 - 3. T-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
- D. Penetrations in Smoke Barriers: Provide penetration firestopping with ratings determined per UL 1479.
 - 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at 0.30-inch wg (74.7 Pa) at both ambient and elevated temperatures.
- E. Exposed Penetration Firestopping:
 - 1. Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.
 - 2. For through-penetration firestop systems exposed to view, traffic, moisture, and physical damage, provide products that, after curing, do not deteriorate when exposed to these conditions both during and after construction.
 - a. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems demonstrating no evidence of water leakage when tested according to UL 1479.
 - b. For floor penetrations with annular spaces exceeding 4 inches in width and exposed to possible loading and traffic, provide firestop systems capable of supporting floor loads involved, either by installing floor plates or by other means.
- F. For penetrations involving insulated piping, provide through-penetration firestop systems not requiring removal of insulation.
- 1.5 SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Shop Drawings: For each through-penetration firestop system, show each type of construction condition penetrated, relationships to adjoining construction, and type of penetrating item. Include firestop design designation of qualified testing and inspecting agency that evidences compliance with requirements for each condition indicated.

- 1. Submit documentation, including illustrations, from a qualified testing and inspecting agency that is applicable to each through-penetration firestop system configuration for construction and penetrating items.
- C. Through-Penetration Firestop System Schedule: Indicate locations of each through-penetration firestop system, along with the following information:
 - 1. Types of penetrating items.
 - 2. Types of constructions penetrated, including fire-resistance ratings and, where applicable, thicknesses of construction penetrated.
 - 3. Through-penetration firestop systems for each location identified by firestop design designation of qualified testing and inspecting agency.
- D. Qualification Data: For Installer.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Either a firm that has been approved by FMG according to FMG 4991, "Approval of Firestop Contractors" or a firm experienced in installing through-penetration firestop systems similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction of a minimum of five projects with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements.
- B. Source Limitations: Obtain through-penetration firestop systems, for each kind of penetration and construction condition indicated, through one source from a single manufacturer.
- C. Fire-Test-Response Characteristics: Provide through-penetration firestop systems that comply with the following requirements and those specified in Part 1 "Performance Requirements" Article:
 - 1. Firestopping tests are performed by a qualified testing and inspecting agency. A qualified testing and inspecting agency is UL or another agency performing testing and follow-up inspection services for firestop systems acceptable to authorities having jurisdiction.
 - 2. Through-penetration firestop systems are identical to those tested per testing standard referenced in "Part 1 Performance Requirements" Article. Provide rated systems complying with the following requirements:
 - a. Through-penetration firestop system products bear classification marking of qualified testing and inspecting agency.
 - b. Through-penetration firestop systems correspond to those indicated by reference to through-penetration firestop system designations listed in the UL "Fire Resistance Directory."
- D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver through-penetration firestop system products to Project site in original, unopened containers or packages with intact and legible manufacturers' labels identifying product and manufacturer, date of manufacture, lot number, shelf life if applicable, qualified testing and

inspecting agency's classification marking applicable to Project, curing time, and mixing instructions for multicomponent materials.

B. Store and handle materials for through-penetration firestop systems to prevent their deterioration or damage due to moisture, temperature changes, contaminants, or other causes.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install through-penetration firestop systems when ambient or substrate temperatures are outside limits permitted by through-penetration firestop system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.
- B. Ventilate through-penetration firestop systems per manufacturer's written instructions by natural means or, where this is inadequate, forced-air circulation.

1.9 COORDINATION

- A. Coordinate construction of openings and penetrating items to ensure that through-penetration firestop systems are installed according to specified requirements.
- B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate through-penetration firestop systems.
- C. Do not cover up through-penetration firestop system installations that will become concealed behind other construction until each installation has been examined building inspector, if required by authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Products: Subject to compliance with requirements, through-penetration firestop systems that may be incorporated into the Work include, but are not limited to the following:
 - 1. Hilti, Inc.
 - 2. BioFireshield; RectorSeal Corporation.
 - 3. Specified Technologies, Inc. (STI).
 - 4. 3M; Fire Protection Products Division.

2.2 FIRESTOPPING MATERIALS

- A. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - 1. Sealants: 250 g/L.
 - 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 - 3. Sealant Primers for Porous Substrates: 775 g/L.
- B. Compatibility: Provide through-penetration firestop systems that are compatible with one another; with the substrates forming openings; and with the items, if any, penetrating through-

penetration firestop systems, under conditions of service and application, as demonstrated by through-penetration firestop system manufacturer based on testing and field experience.

- C. Materials: Provide through-penetration firestop systems containing primary materials and fill materials which are part of the tested assemblies indicated in the approved Through-Penetration Firestop System Schedule submittal. Fill materials are those referred to in directories of referenced testing and inspecting agencies as "fill," "void," or "cavity" materials.
- D. Accessories: Provide components for each through-penetration firestop system that are needed to install fill materials and to comply with Part 1 "Performance Requirements" Article. Use only components specified by through-penetration firestop system manufacturer and approved by qualified testing and inspecting agency for firestop systems indicated

2.3 MIXING

A. For those products requiring mixing before application, comply with through-penetration firestop system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of work. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning: Clean out openings immediately before installing through-penetration firestop systems to comply with firestop system manufacturer's written instructions and with the following requirements:
 - 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of through-penetration firestop systems.
 - 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with through-penetration firestop systems. Remove loose particles remaining from cleaning operation.
 - 3. Remove laitance and form-release agents from concrete.
- B. Priming: Prime substrates where recommended in writing by through-penetration firestop system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- C. Masking Tape: Use masking tape to prevent through-penetration firestop systems from contacting adjoining surfaces that will remain exposed on completion of Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to

remove smears from firestop system materials. Remove tape as soon as possible without disturbing firestop system's seal with substrates.

3.3 THROUGH-PENETRATION FIRESTOP SYSTEM INSTALLATION

- A. General: Install through-penetration firestop systems to comply with Part 1 "Performance Requirements" Article and with firestop system manufacturer's written installation instructions and published drawings for products and applications indicated.
- B. Install forming/damming/backing materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
- C. Install fill materials for firestop systems by proven techniques to produce the following results:
 - 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 - 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 - 3. For fill materials that will remain exposed after completing Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

- A. Inspecting Agency: Engage a qualified, independent inspecting agency to inspect throughpenetration firestops. Independent inspecting agency shall comply with ASTM E 2174 requirements including those related to qualifications, conducting inspections, and preparing test reports.
- B. Where deficiencies are found, repair or replace through-penetration firestop systems so they comply with requirements.
- C. Proceed with enclosing through-penetration firestop systems with other construction only after inspection reports are issued and firestop installations comply with requirements.

3.5 CLEANING AND PROTECTING

- A. Clean off excess fill materials adjacent to openings as Work progresses by methods and with cleaning materials that are approved in writing by through-penetration firestop system manufacturers and that do not damage materials in which openings occur.
- B. Provide final protection and maintain conditions during and after installation that ensure that through-penetration firestop systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated through-penetration firestop systems immediately and install new materials to produce systems complying with specified requirements.

END OF SECTION

SECTION 079200

JOINT SEALANTS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Joint sealants and fillers.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 088000 GLAZING for glazing sealants.
 - 2. Section 092110 GYPSUM BOARD ASSEMBLIES for sealing perimeter joints of gypsum board partitions to reduce sound transmission.
 - Section 095100 ACOUSTICAL CEILINGS for sealing edge moldings at perimeters of acoustical ceilings.

1.3 PERFORMANCE REQUIREMENTS

- A. Provide elastomeric joint sealants that establish and maintain watertight and airtight continuous joint seals without staining or deteriorating joint substrates.
- B. Provide joint sealants for interior applications that establish and maintain airtight and waterresistant continuous joint seals without staining or deteriorating joint substrates.

1.4 SUBMITTALS

- A. Product Data: For each joint-sealant product indicated.
- B. Samples for Verification: For each type and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- wide joints formed between two 6-inch- long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- C. Qualification Data: For Installer.
- D. Product Test Reports: Based on comprehensive testing of product formulations performed by a qualified testing agency, indicating that sealants comply with requirements.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized Installer who is approved or licensed for installation of elastomeric sealants required for this Project.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.

1.6 PROJECT CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer or are below 40 deg F
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

- A. Special Installer's Warranty: Installer's standard form in which Installer agrees to repair or replace elastomeric joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer's standard form in which elastomeric sealant manufacturer agrees to furnish elastomeric joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.
- C. Special warranties specified in this Article exclude deterioration or failure of elastomeric joint sealants from the following:
 - 1. Movement of the structure resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression caused by structural settlement or errors attributable to design or construction.
 - 2. Disintegration of joint substrates from natural causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by sealant manufacturer, based on testing and field experience.
- B. VOC Content of Interior Sealants: Provide interior sealants and sealant primers that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - 1. Architectural Sealants: 250 g/L.
 - 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 - 3. Sealant Primers for Porous Substrates: 775 g/L.
- C. Colors of Exposed Joint Sealants: Provide colors as selected by the Architect from manufacturer's full range of standard and custom colors; maximum of five colors, three standard colors and two custom colors.

2.2 JOINT SEALANTS

- A. Elastomeric Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied chemically curing sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
- B. Stain-Test-Response Characteristics: Elastomeric sealants shall be nonstaining to porous substrates. Provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.
- C. Suitability for Contact with Food: Where elastomeric sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.
- D. Single-Component Neutral-Curing Silicone Sealant:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Corning Corporation; 790.
 - b. GE Silicones; SilPruf LM SCS2700.
 - c. Tremco Inc.; Spectrem 1.
 - d. Pecora Corporation; 864.
 - e. Bondaflex Technologies; Sil 290
 - 2. Extent of Use: Joints in exterior vertical and soffit surfaces.
- E. Single-Component Mildew-Resistant Acid-Curing Silicone Sealant:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Corning Corporation; 786 Mildew Resistant.

- b. GE Silicones; Sanitary SCS1700.
- c. Tremco Inc.; Tremsil 200.
- d. Bondaflex Technologies; Sil 100 WF
- e. Pecora 898NST.
- 2. Extent of Use: Sanitary joints at toilet rooms.
- F. Latex Sealant: Comply with ASTM C 834, Type P, Grade NF.
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Bostik Findley; Chem-Calk 600.
 - b. Pecora Corporation; AC-20+.
 - c. Sonneborn, BASF Building Systems; Sonolac.
 - d. Tremco Inc.; Tremflex 834.
 - e. May National Bondaflex Sil-A 700
 - 2. Extent of Use: Non-moving joints at interior locations.

2.3 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C 1330, Type B (bicellular material with a surface skin) or other type, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.4 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include concrete, masonry and unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following metal, glass, porcelain enamel and glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates, where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

- 1. Do not leave gaps between ends of sealant backings.
- 2. Do not stretch, twist, puncture, or tear sealant backings.
- 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint configuration per Figure 5A in ASTM C 1193, unless otherwise indicated.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION

SECTION 081110

HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Standard hollow-metal steel doors.
 - 2. Standard hollow-metal steel frames.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 087100 DOOR HARDWARE for door hardware for steel doors.
 - 2. Section 088000 GLAZING for glazed lites.
 - 3. Section 099000 PAINTING AND COATING for field painting steel doors and frames.

1.3 SUBMITTALS

- A. Product Data: Include construction details, material descriptions, core descriptions, label compliance, fire-resistance rating, temperature-rise ratings, and finishes for each type of steel door and frame specified.
- B. Shop Drawings:
 - 1. Elevations of each door design.
 - 2. Details of doors, including vertical and horizontal edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of anchorages, joints, field splices, and connections.
 - 7. Details of accessories.
 - 8. Details of moldings, removable stops, and glazing.
 - 9. Details of conduit and preparations for power, signal, and control systems.
- C. Schedule: Provide a schedule of hollow metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with door hardware schedule.
- D. Qualification Data: For Installer.

- E. Product Test Reports: Based on evaluation of comprehensive fire tests performed by a qualified testing agency, for each type of standard steel door and frame.
- 1.4 QUALITY ASSURANCE
 - A. Installer Qualifications: An employer of workers trained and approved by manufacturer.
 - B. Source Limitations: Obtain standard steel doors and frames through one source from a single manufacturer.
 - C. Fire-Rated Door, Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fireprotection ratings and temperature-rise limits indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Smoke- and Draft-Control Assemblies: Provide an assembly with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.
 - D. Fire-Rated, Borrowed-Light Assemblies (Including Sidelights and Transoms): Complying with NFPA 80 and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.
 - E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver doors and frames palletized, wrapped, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
 - C. Store hollow metal work under cover at Project site. Place in stacks of five units maximum in a vertical position with heads up, spaced by blocking, on minimum 4-inch-high wood blocking. Do not store in a manner that traps excess humidity.
 - 1. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

1.6 PROJECT CONDITIONS

- A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.
- 1.7 COORDINATION
 - A. Coordinate installation of anchorages for hollow metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ceco Door Products; an ASSA ABLOY Group Company.
 - 2. CURRIES Company; an ASSA ABLOY Group Company.
 - 3. de LaFontaine
 - 4. Mesker Door Inc.
 - 5. Pioneer Industries, Inc.
 - 6. Philipp Manufacturing Company.
 - 7. Republic Builders Products Company.
 - 8. Steelcraft; an Ingersoll-Rand company.

2.2 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 metallic coating.
- D. Frame Anchors: ASTM A 591/A 591M, Commercial Steel (CS), 40Z coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
- E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
- F. Powder-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow metal frames of type indicated.
- G. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.
- H. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool with 6- to 12-lb/cu. ft. density; with maximum flame-spread and smoke-development indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.
- I. Glazing: Comply with requirements in Section 088000 GLAZING.
- J. Isolation Coating: ASTM D 1187, cold-applied asphalt emulsion, VOC compliant, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.3 STANDARD STEEL DOORS

- A. General: Provide doors of design indicated, not less than thickness indicated; fabricated with smooth surfaces, without visible joints or seams on exposed faces, unless otherwise indicated. Comply with ANSI A250.8.
 - 1. Design: Flush panel.
 - 2. Core Construction: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, mineral-board, or vertical steel-stiffener core that produces doors complying with ANSI A250.8.
 - a. Fire Door Core: As required to provide fire-protection and temperature-rise ratings indicated.
 - b. Thermal-Rated (Insulated) Exterior Doors: Where indicated, provide doors fabricated with thermal-resistance value (R-value) of not less than 4.0 deg F x h x sq. ft./Btu when tested according to ASTM C 1363.
 - 3. Top and Bottom Edges: Closed with flush or inverted 0.042-inch-thick end closures or channels of same material as face sheets.
 - 4. Tolerances: Comply with SDI 117, "Manufacturing Tolerances for Standard Steel Doors and Frames."
- B. Exterior Doors: Face sheets fabricated from metallic-coated steel sheet. Provide doors complying with requirements indicated below by referencing ANSI A250.8 for level and model and ANSI A250.4 for physical-endurance level:
 - 1. Level 3 and Physical Performance Level A (Extra Heavy Duty), Model 2 (Seamless), 1-3/4 inches thick.
- C. Interior Doors: Face sheets fabricated from cold-rolled steel sheet, unless otherwise indicated to comply with exterior door requirements. Provide doors complying with requirements indicated below by referencing ANSI A250.8 for level and model and ANSI A250.4 for physical-endurance level:
 - 1. Level 2 and Physical Performance Level B (Heavy Duty), Model 2 (Seamless), 1-3/4 inches thick.
- D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same material as door face sheets.
- E. Fabricate concealed stiffeners and hardware reinforcement from either cold- or hot-rolled steel sheet.

2.4 STANDARD STEEL FRAMES

- A. General: Comply with ANSI A250.8 and with details indicated for type and profile.
- B. Exterior Frames: Fabricated from metallic-coated steel sheet.
 - 1. Fabricate frames with full profile welded joints.
 - 2. Frames for Level 3 Steel Doors: 0.067-inch-thick steel sheet.

- C. Interior Frames: Fabricated from cold-rolled steel sheet, unless otherwise indicated to comply with exterior frame requirements.
 - 1. Fabricate frames with full profile welded joints.
 - 2. Frames for Level 2 Steel Doors: 0.053-inch-thick steel sheet.
- D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcement plates from same material as frames.

2.5 FRAME ANCHORS

- A. Jamb Anchors:
 - 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch thick, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
 - 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch thick.
 - 3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
 - 4. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inchdiameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.
- B. Floor Anchors: Formed from same material as frames, not less than 0.042 inch (1.0 mm) thick, and as follows:
 - 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 - 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at finish floor surface.

2.6 HOLLOW METAL PANELS

A. Provide hollow metal panels of same materials, construction, and finish as specified for adjoining hollow metal work.

2.7 STOPS AND MOLDINGS

- A. Moldings for Glazed Lites in Doors: Minimum 0.032 inch thick, fabricated from same material as door face sheet in which they are installed.
- B. Fixed Frame Moldings: Formed integral with hollow metal frames, a minimum of 5/8 inch high unless otherwise indicated.
- C. Loose Stops for Glazed Lites in Frames: Minimum 0.032 inch thick, fabricated from same material as frames in which they are installed.

2.8 LOUVERS

A. Provide louvers for interior doors, where indicated, that comply with SDI 111C, with blades or baffles formed of 0.020-inch-thick, cold-rolled steel sheet set into 0.032-inch-thick steel frame.

- 1. Sightproof Louver: Stationary louvers constructed with inverted V-shaped or Y-shaped blades.
- 2. Fire-Rated Automatic Louvers: Louvers constructed with movable blades closed by actuating fusible link, and listed and labeled for use in fire-rated door assemblies of type and fire-resistance rating indicated by same testing and inspecting agency that established fire-resistance rating of door assembly.
- 2.9 ACCESSORIES
 - A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.
 - B. Ceiling Struts: Minimum 1/4-inch-thick by 1-inch-wide steel.
 - C. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

2.10 FABRICATION

- A. Fabricate hollow metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
- B. Tolerances: Fabricate hollow metal work to tolerances indicated in SDI 117.
- C. Hollow Metal Doors:
 - 1. Exterior Doors: Provide weep-hole openings in bottom of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
 - 2. Glazed Lites: Factory cut openings in doors.
 - 3. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted.
- D. Hollow Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 - 1. Full Profile Welded Frames: Weld joints continuously; grind, fill, dress, and make smooth, flush, and not visible.
 - 2. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as doorframe. Fasten members at crossings and to jambs by butt welding.
 - 3. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 4. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
 - 5. Floor Anchors: Weld anchors to bottom of jambs and mullions with at least four spot welds per anchor.
 - 6. Jamb Anchors: Provide number and spacing of anchors as follows:
 - a. Masonry Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:

- 1) Two anchors per jamb up to 60 inches high.
- 2) Three anchors per jamb from 60 to 90 inches high.
- 3) Four anchors per jamb from 90 to 120 inches high.
- 4) Four anchors per jamb plus 1 additional anchor per jamb for each 24 inches or fraction thereof above 120 inches high.
- b. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 - 1) Three anchors per jamb up to 60 inches high.
 - 2) Four anchors per jamb from 60 to 90 inches high.
 - 3) Five anchors per jamb from 90 to 96 inches high.
 - 4) Five anchors per jamb plus 1 additional anchor per jamb for each 24 inches or fraction thereof above 96 inches high.
 - 5) Two anchors per head for frames above 42 inches wide and mounted in metal-stud partitions.
- c. Compression Type: Not less than two anchors in each jamb.
- d. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
- 7. Door Silencers: Except on weather-stripped doors, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- E. Fabricate concealed stiffeners, edge channels, and hardware reinforcement from either cold- or hot-rolled steel sheet.
- F. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates furnished as specified in Section 087100 DOOR HARDWARE.
 - 1. Locate hardware as indicated, or if not indicated, according to ANSI/SDI A250.8.
 - 2. Reinforce doors and frames to receive nontemplated, mortised and surface-mounted door hardware.
 - 3. Comply with applicable requirements in ANSI/SDI A250.6 and ANSI/DHI A115 Series specifications for preparation of hollow metal work for hardware.
 - 4. Coordinate locations of conduit and wiring boxes for electrical connections with Division 26 ELECTRICAL.
- G. Stops and Moldings: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.
 - 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow metal work.
 - 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings, so that each glazed lite is capable of being removed independently.
 - 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.

- 4. Provide loose stops and moldings on inside of hollow metal work.
- 5. Coordinate rabbet width between fixed and removable stops with type of glazing and type of installation indicated.
- 2.11 STEEL FINISHES
 - A. Prime Finish: Apply manufacturer's standard epoxy primer immediately after cleaning and pretreating.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.
 - 2. Refer to Section 099000 PAINTING AND COATING for field-applied coating.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Prior to installation, adjust and securely brace welded hollow metal frames for squareness, alignment, twist, and plumbness to the following tolerances:
 - 1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - 2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - 3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - 4. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.
- C. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

- A. General: Install hollow metal work plumb, rigid, properly aligned, and securely fastened in place; comply with Drawings and manufacturer's written instructions.
- B. Hollow Metal Frames: Install hollow metal frames of size and profile indicated. Comply with ANSI/SDI A250.11.
 - 1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 - a. At fire-protection-rated openings, install frames according to NFPA 80.
 - b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 - c. Install frames with removable glazing stops located on secure side of opening.
 - d. Install door silencers in frames before grouting.
 - e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 - f. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 - g. Field apply isolation coating to backs of frames that are filled with grout.
 - 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with powder-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
 - 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation behind frames.
 - 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
 - 5. Concrete Walls: Solidly fill space between frames and concrete with grout. Take precautions, including bracing frames, to ensure that frames are not deformed or damaged by grout forces.
 - 6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
 - 7. In-Place Gypsum Board Partitions: Secure frames in place with postinstalled expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
 - 8. Ceiling Struts: Extend struts vertically from top of frame at each jamb to overhead structural supports or substrates above frame unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction. Provide adjustable wedged or bolted anchorage to frame jamb members.
 - 9. Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.

- b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
- c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
- d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- C. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - 1. Non-Fire-Rated Standard Steel Doors:
 - a. Jambs and Head: 1/8 inch plus or minus 1/16 inch.
 - b. Between Edges of Pairs of Doors: 1/8 inch plus or minus 1/16 inch .
 - c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch.
 - d. Between Bottom of Door and Top of Finish Floor (No Threshold): Maximum 3/4 inch.
 - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 - 3. Smoke-Control Doors: Install doors according to NFPA 105.
- D. Glazing: Comply with hollow metal manufacturer's written instructions.
 - 1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

3.4 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow metal work immediately after installation.
- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- D. Metallic-Coated Surfaces: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION

SECTION 081400

FLUSH WOOD DOORS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Solid-core doors with wood-veneer faces.
 - 2. Factory finishing for wood doors.
 - 3. Factory fitting flush wood doors to frames and factory machining for hardware.
 - 4. Louvers and glass lites for flush wood doors.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 087100 DOOR HARDWARE for hardware for wood doors.
 - 2. Section 134900 RADIATION PROTECTION for wood door requirements.

1.3 SUBMITTALS

- A. Product Data: For each type of door. Include details of core and edge construction, louvers, and trim for openings. Include factory-finishing specifications.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; location and extent of hardware blocking; and other pertinent data.
 - 1. Indicate dimensions and locations of mortises and holes for hardware.
 - 2. Indicate dimensions and locations of cutouts.
 - 3. Indicate requirements for veneer matching.
 - 4. Indicate doors to be factory finished and finish specifications.
 - 5. Indicate fire ratings for fire doors.
- C. Samples for Verification:
 - 1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches for each material and finish. For each wood species and transparent finish, provide set of three samples showing typical range of finish color, sheen, and grain to be expected in the finished work.
 - 2. Frames for light openings, 6 inches long, for each material, type, and finish required.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain flush wood doors through one source from a single manufacturer.
- B. Quality Standard: In addition to requirements specified, comply with WDMA I.S.1-A, "Architectural Wood Flush Doors."
 - 1. WDMA I.S.1-A Performance Grade: Heavy Duty.
- C. Fire-Rated Wood Doors: Doors complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
 - 1. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.
- D. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control, based on testing according to UL 1784.
- E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Comply with requirements of referenced standard and manufacturer's written instructions.
 - B. Package doors individually in plastic bags.
 - C. Mark each door on top rail with opening number used on Shop Drawings.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install doors until building is enclosed, wet work is complete, and HVAC system is operating and will maintain temperature and relative humidity at occupancy levels during the remainder of the construction period.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form, signed by manufacturer, Installer, and Contractor, in which manufacturer agrees to repair or replace doors that are defective in materials or workmanship, have warped (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section, or show telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.
 - 1. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.
 - 2. Warranty shall include hardware installation and replacement of glass and glazing.
 - 3. Warranty shall be in effect during the following period of time from date of Substantial Completion:

a. Solid-Core Interior Doors: Life of installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Algoma Hardwoods Inc.
 - 2. Eggers Industries; Architectural Door Division.
 - 3. Graham Wood Doors.
 - 4. Marshfield DoorSystems.
 - 5. VT Industries Inc.

2.2 DOOR CONSTRUCTION, GENERAL

- A. Doors for Transparent Finish:
 - 1. Grade: AWI Premium, with AWI Grade AA faces.
 - 2. Species and Cut: Oak, plain sawn/sliced.
 - 3. Match between Veneer Leaves: Book match.
 - 4. Assembly of Veneer Leaves on Door Faces: Center balanced.
 - 5. Pair and Set Match: Provide for doors hung in same opening or separated only by mullions.
 - 6. Transom Match: Continuous match.
 - 7. Stiles: Same species as faces.
 - 8. Cross-Banding: 1/8 in. high density fiberboard, urea formaldehyde free.
 - 9. Adhesives: Type I per WDMA T.M.-6.
- 2.3 SOLID-CORE DOORS
 - A. Cores: Comply with the following requirements:
 - 1. Particle Core: ANSI A 208.1, Grade 1-LD-2.
 - 2. Structural Composite Lumber Core: Timberstrand LSL, WDMA I.S.10.
 - 3. Provide doors with structural composite lumber cores instead of particleboard cores at locations where exit devices are indicated or where light or louver cutouts exceed 40% of the door area.
 - B. Interior Veneer-Faced Doors:
 - 1. Construction: Five plies, hot-pressed, with stiles and rails bonded to core, then entire unit abrasive planed before veneering.
 - C. Fire-Rated Doors:
 - 1. Construction: Construction and core specified above for type of face indicated or manufacturer's standard mineral-core construction as needed to provide fire rating indicated.

- a. Fire Retardant Mineral Core, with no added urea formaldehyde cross-banding.
- 2. Blocking: For mineral-core doors, provide composite blocking with improved screwholding capability approved for use in doors of fire ratings indicated as needed to eliminate through-bolting hardware.
- 3. Edge Construction: At hinge stiles, provide manufacturer's standard laminated-edge construction with improved screw-holding capability and split resistance and with outer stile matching face veneer.
 - a. Screw-Holding Capability: 550 lbf per WDMA T.M.-10.
- 4. Pairs: Provide fire-rated pairs with fire-retardant stiles matching face veneer that are labeled and listed for kinds of applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals.

2.4 LIGHT FRAMES

- A. Wood Beads for Light Openings in Wood Doors:
 - 1. Wood Species: Same species as door faces.
 - 2. Profile: Manufacturer's standard shape.
 - 3. At 20-minute, fire-rated, wood-core doors, provide wood beads and metal glazing clips approved for such use.
- B. Wood-Veneered Beads for Light Openings in Fire Doors: Manufacturer's standard wood-veneered noncombustible beads matching veneer species of door faces and approved for use in doors of fire rating indicated. Include concealed metal glazing clips where required for opening size and fire rating indicated.

2.5 GLAZING SYSTEMS

A. Glazing: Provide factory installed glass products in accordance with requirements in Section 088000 - GLAZING.

2.6 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated, with the following uniform clearances and bevels, unless otherwise indicated:
 - 1. Comply with clearance requirements of referenced quality standard for fitting. Comply with requirements in NFPA 80 for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied. Locate hardware to comply with DHI-WDHS-3. Comply with final hardware schedules, door frame Shop Drawings, DHI A115-W series standards, and hardware templates.
 - 1. Coordinate measurements of hardware mortises in metal frames to verify dimensions and alignment before factory machining. Drill pilot holes for screws for butt hinges and lock fronts at the factory.
 - 2. Metal Astragals: Factory prime and premachine astragals and formed-steel edges for hardware for pairs of fire-rated doors to receive concealed vertical rod exit devices.

- C. Transom and Side Panels: Fabricate matching panels with same construction, exposed surfaces, and finish as specified for associated doors. Finish bottom edges of transoms and top edges of rabbeted doors same as door stiles.
 - 1. Fabricate door and transom panels with full-width, solid-lumber meeting rails. Provide factory-installed spring bolts for concealed attachment into jambs of metal doorframes.
- D. Openings: Cut and trim openings through doors to comply with applicable requirements of referenced standards for kind(s) of door(s) required.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated.
 - 2. Glass: Factory install glass products in prepared openings.

2.7 FACTORY FINISHING

- A. Finish doors at factory that are indicated to receive transparent finish. Factory prime and prepare for field finish doors indicated to receive opaque finish.
- B. Transparent Finish:
 - 1. Grade: Premium.
 - 2. Finish: WDMA TR-6 catalyzed solvent-based polyurethane.
 - 3. Staining: Provide custom color as selected by Architect.
 - 4. Sheen: Satin.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and installed door frames before hanging doors.
 - 1. Verify that frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 - 2. Reject doors with defects.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Hardware: For installation, see Section 087100 DOOR HARDWARE.
- B. Manufacturer's Written Instructions: Install doors to comply with manufacturer's written instructions, referenced quality standard, and as indicated.
 - 1. Install fire-rated doors in corresponding fire-rated frames according to NFPA 80.
 - 2. Install smoke- and draft-control doors according to NFPA 105.
- C. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.3 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Protection: Provide temporary protection to ensure work being without damage or deterioration at time of final acceptance. Remove protections and reclean as necessary immediately before final acceptance.
- C. Finished Doors: Replace doors that are damaged or do not comply with requirements. Doors may be repaired or refinished if work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION

SECTION 083110

ACCESS DOORS AND FRAMES

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Access doors and frames for walls and ceilings.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 087100 DOOR HARDWARE for rim cylinder locks and master keying.

1.3 SUBMITTALS

- A. Product Data: For each type of access door and frame indicated. Include construction details, fire ratings, materials, individual components and profiles, and finishes.
- B. Shop Drawings: Show fabrication and installation details of access doors and frames for each type of substrate. Include plans, elevations, sections, details, and attachments to other work.
- C. Samples: For each door face material, at least 3 by 5 inches in size, in specified finish.
- D. Access Door and Frame Schedule: Provide complete access door and frame schedule, including types, locations, sizes, latching or locking provisions, and other data pertinent to installation.
- E. Ceiling Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceilingmounted items including access doors and frames, lighting fixtures, diffusers, grilles, speakers, sprinklers, and special trim are shown and coordinated with each other.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain[each type of access door and frame through one source from a single manufacturer.
- B. Fire-Rated Access Doors and Frames: Units complying with NFPA 80 that are identical to access door and frame assemblies tested for fire-test-response characteristics per the following

test method and that are listed and labeled by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:

- 1. NFPA 252 for vertical access doors and frames.
- 2. ASTM E 119 for horizontal access doors and frames.
- C. Size Variations: Obtain Architect's acceptance of manufacturer's standard-size units, which may vary slightly from sizes indicated.

1.5 COORDINATION

A. Verification: Determine specific locations and sizes for access doors needed to gain access to concealed plumbing, mechanical, or other concealed work, and indicate in the schedule specified in "Submittals" Article.

PART 2 - PRODUCTS

2.1 STEEL MATERIALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 - 1. ASTM A 123/A 123M, for galvanizing steel and iron products.
 - 2. ASTM A 153/A 153M, for galvanizing steel and iron hardware.
- B. Steel Sheet: Electrolytic zinc-coated, ASTM A 879/A 879M with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.
- C. Steel Finishes: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation for Steel Sheet: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, or other contaminants that could impair paint bond. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
 - a. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.
 - 2. Factory-Primed Finish: Apply shop primer immediately after cleaning and pretreating.
- D. Drywall Beads: Edge trim formed from 0.0299-inch zinc-coated steel sheet formed to receive joint compound and in size to suit thickness of gypsum board.

2.2 STAINLESS-STEEL MATERIALS

- A. Rolled-Stainless-Steel Floor Plate: ASTM A 793, manufacturer's standard finish.
- B. Stainless-Steel Sheet, Strip, Plate, and Flat Bars: ASTM A 666, Type 316. Remove tool and die marks and stretch lines or blend into finish.
 - 1. Finish: Directional Satin Finish, No. 4.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.3 ACCESS DOORS AND FRAMES FOR WALLS AND CEILINGS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Acudor Products, Inc.
 - 2. Babcock-Davis; A Cierra Products Co.
 - 3. Dur-Red Products.
 - 4. J. L. Industries, Inc.
 - 5. Karp Associates, Inc.
 - 6. Larsen's Manufacturing Company.
 - 7. Milcor Inc.
 - 8. Nystrom, Inc.
- B. Flush Access Doors and Trimless Frames: Fabricated from steel sheet at typical areas and from stainless-steel sheet at toilet and wet areas.
 - 1. Locations: Wall and ceiling surfaces.
 - 2. Door: Minimum 0.060-inch-thick sheet metal, set flush with surrounding finish surfaces.
 - 3. Frame: Minimum 0.060-inch-thick sheet metal with drywall bead flange.
 - 4. Hinges: Continuous piano.
 - 5. Lock: Cylinder.
 - a. Lock Preparation: Prepare door panel to accept cylinder specified in Section 087100, DOOR HARDWARE.
- C. Recessed Access Doors and Trimless Frames: Fabricated from steel sheet at typical areas and from stainless-steel sheet at toilet and wet areas.
 - 1. Locations: Wall and ceiling surfaces.
 - 2. Door: Minimum 0.060-inch-thick sheet metal in the form of a pan recessed 5/8 inch for gypsum board infill.
 - 3. Frame: Minimum 0.060-inch-thick sheet metal with drywall bead for gypsum board surfaces.
 - 4. Hinges: Concealed pivoting rod hinge.
 - 5. Lock: Cylinder.
 - a. Lock Preparation: Prepare door panel to accept cylinder specified in Section 087100, DOOR HARDWARE.
- D. Fire Rated, Uninsulated, Flush Access Doors and Frames with Exposed Trim: Fabricated from steel at typical areas and from stainless-steel sheet at toilets and wet areas.
 - 1. Locations: Wall surfaces.
 - 2. Fire-Resistance Rating: Not less than that of adjacent construction.
 - 3. Door: Minimum 0.060-inch-thick sheet metal, flush construction.
 - 4. Frame: Minimum 0.060-inch-thick sheet metal with 1-inch-wide, surface-mounted trim.
 - 5. Hinges: Continuous piano.
 - 6. Automatic Closer: Spring type.
 - 7. Lock: Self-latching device with cylinder lock.

a. Lock Preparation: Prepare door panel to accept cylinder specified in Section 087100, DOOR HARDWARE

2.4 FABRICATION

- A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
- B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
- C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish attachment devices and fasteners of type required to secure access panels to types of supports indicated.
 - 1. For trimless frames with drywall bead, provide edge trim for gypsum board and gypsum base securely attached to perimeter of frames.
 - 2. For trimless frames with plaster bead for full-bed plaster applications, provide zinc-coated expanded metal lath and exposed casing bead welded to perimeter of frames.
 - 3. Provide mounting holes in frames for attachment of units to metal or wood framing.
 - 4. Provide mounting holes in frame for attachment of masonry anchors.
- D. Recessed Access Doors: Form face of panel to provide recess for application of applied finish. Reinforce panel as required to prevent buckling.
 - 1. For recessed doors with plaster infill, provide self-furring expanded metal lath attached to door panel.
- E. Latching Mechanisms: Furnish number required to hold doors in flush, smooth plane when closed.
 - 1. For cylinder lock, furnish two keys per lock and key all locks alike.
 - 2. For recessed panel doors, provide access sleeves for each locking device. Furnish plastic grommets and install in holes cut through finish.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with manufacturer's written instructions for installing access doors and frames.
- B. Set frames accurately in position and attach securely to supports with plane of face panels aligned with adjacent finish surfaces.
- C. Install doors flush with adjacent finish surfaces or recessed to receive finish material.
- 3.2 ADJUSTING AND CLEANING
 - A. Adjust doors and hardware after installation for proper operation.

B. Remove and replace doors and frames that are warped, bowed, or otherwise damaged.

END OF SECTION

SECTION 084110

ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Exterior and interior aluminum-framed storefronts.
 - 2. Exterior and interior manual-swing aluminum doors.
 - B. Related Work: The following items are not included in this Section:
 - 1. Section 079200 JOINT SEALANTS for installation of joint sealants installed with aluminum-framed systems and for sealants to the extent not specified in this Section.
 - 2. Section 087100 DOOR HARDWARE for lock cylinders and keying.
 - 3. Section 088000 GLAZING for glazing requirements to the extent not specified in this Section.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design entrance and storefront system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. General: Provide aluminum-framed systems, including anchorage, capable of withstanding, without failure, the effects of the following:
 - 1. Structural loads.
 - 2. Thermal movements.
 - 3. Dimensional tolerances of building frame and other adjacent construction.
 - 4. Failure includes the following:
 - a. Deflection exceeding specified limits.
 - b. Thermal stresses transferred to building structure.
 - c. Framing members transferring stresses, including those caused by thermal and structural movements, to glazing.
 - d. Noise or vibration created by wind and thermal and structural movements.
 - e. Loosening or weakening of fasteners, attachments, and other components.
 - f. Sealant failure.
 - g. Failure of operating units to function properly.

ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS 084110 - 1

- C. Structural Loads: Wind and seismic loads as indicated on the Structural Drawings, but not less than that required by Code.
- D. Deflection of Framing Members:
 - 1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans up to 13 feet 6 inches (and to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 - 2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller, amount not exceeding that which reduces glazing bite to less than 75 percent of design dimension and that which reduces edge clearance between framing members and glazing or other fixed components directly below to less than 1/8 inch and clearance between members and operable units directly below to less than 1/16 inch.
- E. Thermal Movements: Provide aluminum-framed systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
- F. Air Infiltration Test: Test unit in accordance with ASTM E 283, as follows:
 - 1. Static Air Pressure Difference: 6.24 psf for fixed storefront units, and 1.567 psf for doors.
 - 2. Performance: Maximum air leakage shall not exceed the following: fixed storefront units, 1.0 cfm/sf.: glazed entrance door units, 0.3 cfm/sf.
- G. Water Leakage Test: Test fixed framing system in accordance with ASTM E 331.
 - 1. Test Pressure: 8 psf.
 - 2. Performance: No leakage as defined in test method at specified test pressure. No uncontrolled water penetrating system or appearing on normally exposed interior surfaces.
- H. Solar Heat-Gain Coefficient: Provide units with a whole-unit SHGC maximum as required by Code, determined according to NFRC 200 procedures. Submit proof of compliance with submittals as specified.
- I. Thermal Transmittance: Provide window units that have a U-value as required by Code rated in BTU/hour/sq. ft./degrees F at 15-mph exterior wind velocity, when tested in accordance with AAMA 1503.1. Test unit to be 4 ft. x 6 ft. Submit proof of compliance with submittals as specified.
- J. Condensation Resistance: Provide aluminum-framed systems with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 45 for fixed storefront units and not less than 48 for doors when tested according to AAMA 1503.

1.4 SUBMITTALS

A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of product indicated.

- B. Shop Drawings: For aluminum-framed systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Include structural analysis of story drift and deflection from anticipated live loads, and determination whether head receptors are required.
 - 2. Include details of provisions for system expansion and contraction and for draining moisture occurring within the system to the exterior.
 - 3. For entrances, include hardware schedule and indicate operating hardware types, functions, quantities, and locations.
- C. Delegated-Design Submittal: For entrance and storefront systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
- E. Qualification Data: For Installer.
- F. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for aluminum-framed systems.
- G. Performance Reports: Based on systems, components and glazing methods proposed for use on this Project, proof that units as glazed for this Project meet or exceed Code requirements for the following:
 - 1. U-value.
 - 2. Solar heat-gain coefficient.
- H. Maintenance Data: For aluminum-framed systems to include in maintenance manuals.
- I. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. Engineering Responsibility: Preparation of Shop Drawings, design calculations, and other structural data by a qualified professional engineer.
- B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in the jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of entrance and storefront systems that are similar to those indicated for this Project in material, design, and extent.
- C. Installer Qualifications: Capable of assuming engineering responsibility and performing work of this Section and who is acceptable to manufacturer.
- D. Accessible Entrances: Comply with authorities having jurisdiction, local state building code and the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)."

1.6 PROJECT CONDITIONS

- A. Field Measurements: Verify actual locations of structural supports for aluminum-framed systems by field measurements before fabrication and indicate measurements on Shop Drawings.
 - 1. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating aluminum-framed systems without field measurements. Coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.7 WARRANTY

- A. Special Finish Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components on which finishes fail within specified warranty period. Warranty does not include normal weathering.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Storefront, Thermal Break, 2 inch by 4-1/2 inch profile:
 - a. EFCO, a Pella Company, S-403.
 - b. Kawneer North America, VG451T.
 - c. Oldcastle BuildingEnvelope, 3000T.
 - d. Tubelite Inc., E14000 IO.
 - e. United States Aluminum, IT451.
 - f. YKK AP America Inc., YES 45 FT.
 - 2. Doors, Medium Stile:
 - a. EFCO, a Pella Company, D-300.
 - b. Kawneer North America, 350.
 - c. Oldcastle BuildingEnvelope, MS-375.
 - d. Tubelite Inc., Medium.
 - e. United States Aluminum Corp., 400.
 - f. YKK AP America Inc., 35D.
 - 3. Doors, Medium Stile, Thermally-Broken:
 - a. EFCO, a Pella Company, D-302.
 - b. Kawneer North America, Insulclad 360.
 - c. Oldcastle BuildingEnvelope, MS-375T.
 - d. Tubelite Inc., Medium thermal.
 - e. United States Aluminum Corp., 400-T.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

f. YKK AP America Inc., 35XT.

2.2 MATERIALS

- A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 - 1. Sheet and Plate: ASTM B 209.
 - 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 - 3. Extruded Structural Pipe and Tubes: ASTM B 429.
 - 4. Structural Profiles: ASTM B 308/B 308M.
 - 5. Welding Rods and Bare Electrodes: AWS A5.10/A5.10M.
- B. Steel Reinforcement: With manufacturer's standard corrosion-resistant primer complying with SSPC-PS Guide No. 12.00 applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM and prepare surfaces according to applicable SSPC standard.
 - 1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 - 2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 - 3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.3 FRAMING SYSTEMS

- A. Framing Members: Manufacturer's standard extruded-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Construction: Thermal-break.
- B. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- C. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration, use self-locking devices.
 - 2. Reinforce members as required to receive fastener threads.
 - 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
- D. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.
- E. Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials. Form exposed flashing from sheet aluminum finished to match framing and of sufficient thickness to maintain a flat appearance without visible deflection.
- F. Framing System Gaskets and Sealants: Manufacturer's standard recommended by manufacturer for joint type.

2.4 GLAZING SYSTEMS

- A. Glazing: As specified in Section 088000 GLAZING.
- B. Glazing Gaskets: Manufacturer's standard compression types, replaceable, molded or extruded, that maintain uniform pressure and watertight seal.
- C. Spacers and Setting Blocks: Manufacturer's standard elastomeric types.

2.5 DOORS

- A. Doors: Manufacturer's standard glazed doors, for manual swing operation.
 - 1. Door Construction: Mechanical clip fastening, SIGMA deep penetration plus welds and 1-1/8 inch long fillet welds inside and outside of all four corners. Glazing stops shall be hook-in type and EPDM glazing gaskets reinforced with non-stretchable cord.

2.6 DOOR HARDWARE

- A. General: Provide heavy-duty units in sizes and types recommended by entrance system and hardware manufacturers for entrances and uses indicated.
 - 1. Opening-Force Requirements:
 - a. Egress Doors: Not more than 30 lbf required to set door in motion and not more than 15 lbf required to open door to minimum required width.
 - b. Accessible Interior Doors: Not more than 5 lbf.
- B. Hardware Sets: Provide as specified in Section 087100 DOOR HARDWARE.
- C. Weather Stripping: Manufacturer's standard replaceable components.
 - 1. Compression Type: Made of ASTM D 2000, molded neoprene, or ASTM D 2287, molded PVC.
- D. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.

2.7 ACCESSORY MATERIALS

- A. Insulating Materials: As specified in Section 072100 THERMAL INSULATION.
- B. Joint Sealants: Provide manufacturer recommended sealants for seams and joints within aluminum framing system.
- C. Bituminous Paint (Isolation Coating): Cold-applied asphalt-mastic paint complying with ASTM D 1187 requirements, containing no asbestos, formulated for 30-mil thickness per coat.

2.8 FABRICATION

A. Form aluminum shapes before finishing.

- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Framing Members, General: Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.
 - 2. Accurately fitted joints with ends coped or mitered.
 - 3. Means to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.
 - 4. Physical and thermal isolation of glazing from framing members.
 - 5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 - 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Mechanically Glazed Framing Members: Fabricate for flush glazing (without projecting stops).
- E. Door Frames: Reinforce as required to support loads imposed by door operation and for installing hardware.
 - 1. At exterior doors, provide compression weather stripping at fixed stops.
 - 2. At interior doors, provide silencers at stops to prevent metal-to-metal contact. Install three silencers on strike jamb of single-door frames and two silencers on head of frames for pairs of doors.
- F. Doors: Reinforce doors as required for installing hardware.
 - 1. At pairs of exterior doors, provide sliding weather stripping retained in adjustable strip mortised into door edge.
 - 2. At exterior doors, provide weather sweeps applied to door bottoms.
- G. Hardware Installation: Factory install hardware to the greatest extent possible. Cut, drill, and tap for factory-installed hardware before applying finishes.
- H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.9 ALUMINUM FINISHES

- A. General: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
- C. High-Performance Organic Finish (3-Coat Fluoropolymer): AA-C12C40R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: conversion coating; Organic Coating: manufacturer's standard 3-coat, thermocured system consisting of specially formulated inhibitive primer, fluoropolymer color coat, and clear fluoropolymer topcoat, with both color coat and clear topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight).

Prepare, pretreat, and apply coating to exposed metal surfaces to comply with AAMA 2605 and with coating and resin manufacturers' written instructions.

1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General:
 - 1. Comply with manufacturer's written instructions.
 - 2. Do not install damaged components.
 - 3. Fit joints to produce hairline joints free of burrs and distortion.
 - 4. Rigidly secure nonmovement joints.
 - 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration.
 - 6. Seal joints watertight, unless otherwise indicated.
- B. Metal Protection:
 - 1. Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape or installing nonconductive spacers as recommended by manufacturer for this purpose.
 - 2. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- C. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within the system to exterior.
- D. Set continuous sill members and flashing in full sealant bed as specified in Section 079200 JOINT SEALANTS and to produce weathertight installation.
- E. Install components plumb and true in alignment with established lines and grades, without warp or rack.
- F. Install glazing as specified in Section 088000 GLAZING.
 - 1. Structural-Sealant Glazing:
 - a. Prepare surfaces that will contact structural sealant according to sealant manufacturer's written instructions to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.

- b. Install weatherseal sealant according to Section 079200 JOINT SEALANTS and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.
- G. Entrances: Install to produce smooth operation and tight fit at contact points.
 - 1. Exterior Entrances: Install to produce tight fit at weather stripping and weathertight closure.
 - 2. Field-Installed Hardware: Install surface-mounted hardware according to hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.
- H. Erection Tolerances: Install aluminum-framed systems to comply with the following maximum tolerances:
 - 1. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet; 1/4 inch over total length.
 - 2. Alignment:
 - a. Where surfaces abut in line, limit offset from true alignment to 1/16 inch.
 - b. Where surfaces meet at corners, limit offset from true alignment to 1/32 inch.
 - 3. Diagonal Measurements: Limit difference between diagonal measurement to 1/8 inch.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Testing Services: Testing and inspecting of representative areas to determine compliance of installed systems with specified requirements shall take place as follows and in successive stages as indicated on Drawings. Do not proceed with installation of the next area until test results for previously completed areas show compliance with requirements.
 - 1. Air Infiltration: Areas shall be tested for air leakage of 1.5 times the rate specified for laboratory testing under Part 1 "Performance Requirements" Article, but not more than 0.09 cfm/sq. ft. of fixed wall area when tested according to ASTM E 783 at a minimum static-air-pressure difference of 6.24 lbf/sq. ft.
 - 2. Water Penetration: Areas shall be tested according to ASTM E 1105 at a minimum cyclic static-air-pressure difference of 0.67 times the static-air-pressure difference specified for laboratory testing under Part 1 "Performance Requirements" Article, but not less than 4.18 lbf/sq. ft., and shall not evidence water penetration.
 - 3. Water Spray Test: Before installation of interior finishes has begun, a minimum area of 75 feet by 1 story of aluminum-framed systems designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
- C. Repair or remove work where test results and inspections indicate that it does not comply with specified requirements.
- D. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.4 ADJUSTING

- A. Entrances: Adjust operating hardware for smooth operation according to hardware manufacturers' written instructions.
 - 1. For doors accessible to people with disabilities, adjust closers to provide a 3-second closer sweep period for doors to move from a 70-degree open position to 3 inches from the latch measured to the leading door edge.

END OF SECTION

SECTION 087100

DOOR HARDWARE

PART 1 - GENERAL

1.2 SCOPE OF WORK

- A. Furnish the following, for installation under the designated SECTIONS:
 - 1. Finish hardware, for the types set forth in the schedule contained hereunder, SECTION 06 40 23 INTERIOR ARCHITECTURAL WOODWORK.
 - 2. Templates for hardware cutouts and reinforcing in door and frames: To fabricator of such items.
 - 3. Services of a qualified hardware consultant to prepare detailed schedules of hardware required for the project.

1.3 RELATED WORK SPECIFIED ELSEWHERE

- A. The following related work is to be performed under the designated SECTIONS:
 - 1. Metal doors and frames: SECTION 081110 HOLLOW METAL DOORS AND FRAMES.
 - 2. Flush Wood doors: SECTION 081400 FLUSH WOOD DOORS.
 - 3. Hardware for casework and other millwork: SECTION 064020 INTERIOR ARCHITECTURAL WOODWORK.
 - 4. Glass and Glazing: SECTION 088000 GLAZING
 - 5. Electrical: 260000 ELECTRICAL

1.4 SUBMITTALS

- A. Submit the following in accordance with SECTION 011000 GENERAL REQUIREMENTS:
 - 1. Schedule: Submit to the Architect electronically, the complete hardware schedule within fourteen (14) days after the receipt of the contract award. Submit therewith complete catalog cuts and descriptive data of all products specifically schedule therein. No materials shall be ordered or templates issued until the hardware schedule has been approved by the Architect. Form and detail of hardware schedule shall be in vertical format in conformance to the door and hardware industry standards. All hardware sets shall be clearly cross-referenced to the hardware set numbers listed in this specification.
 - 2. Samples: If requested, submit to the Architect for approval a complete line of samples, as directed. Samples shall be plainly marked giving hardware number used in this Specification, the manufacturer's

numbers, types and sizes. The Architect will deliver approved samples to the project site to be stored. Samples will remain with the Architect until delivery of all hardware to the project is complete, after which time they will be turned over to the General Contractor for incorporation into the work.

3. Keying System Submission: Before cylinders are ordered, submit a complete proposed keying system for approval.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Delivery of hardware shall be made to the project by the Hardware Supplier in accordance with the instructions of the General Contractor.
- B. The General Contractor shall provide adequate locked storage space with shelving for the hardware, shall be responsible for all items of hardware after receipt from the Supplier, and shall replace all hardware lost or damaged after delivery and receipt.
- C. The General Contractor shall furnish the Hardware Supplier with receipts for all hardware and accessory items received, and shall send copies of these receipts to the Architect, if requested.

1.6 **REGULATORY REQUIREMENTS**

- A. Conform to all applicable codes. Provide all throws, projections, coatings, knurling, opening and closing forces, and other special functions required by State and Local Building Codes, and all applicable Handicap Code requirements.
- B. For fire rated openings, provide hardware complying with NFPA 80 and NFPA 101 without exception. Provide only hardware tested and listed by UL for the type and size of door installed and fire resistance rating required.

1.7 QUALITY ASSURANCE

- A. Hardware Supplier shall have in his employ one or more members of the Door and Hardware Institute to include at least one certified Architectural Hardware Consultant in good standing, which shall be responsible for preparation of the Finish Hardware Schedule. This Consultant shall be acceptable to the Architect and is to ensure that the intent requirement of this specification is fulfilled, and to certify that the work of this Section meets or exceeds the requirements specified in this Section and the requirements of authorities having jurisdiction.
- B. Hardware Supplier shall warrant and guarantee, in writing, that hardware supplied is free of defective material and workmanship. Supplier shall further warrant and guarantee for a period of one year from Owner's Use and Occupancy that the hardware shall function in a satisfactory manner without binding, collapse, or dislodging of its parts, provided the installation is made to the manufacturer's recommendations.
- C. The Hardware Supplier shall repair or remedy, without charge, any defect of

workmanship or material for which he is responsible hereunder.

1.8 INTENT

A. The intent of the work of this Section is to provide hardware for every door in the project, except as indicated, so that each door functions correctly for its intended use. Provide only hardware that complies with applicable codes and requirements of authorities having jurisdiction including requirements for barrier-free accessibility.

1.9 SPECIAL REQUIREMENTS

- A. Hardware Supplier shall determine conditions and materials of all doors and frames for proper application of hardware.
- B. The Hardware Schedule shall list the actual product series numbers. Bidders are required to follow manufacturer's catalog requirement for the actual size of door closers, brackets and holders. All door opening sizes are as noted on the Door Schedule and all hardware shall be in strict accordance with requirements of height, width, and thickness.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. To establish a standard of quality, design and function, manufacture has been based upon the following manufacturers.
- B. Similar products will be considered for approval by the architect upon receipt of adequate supporting data and samples.

Hinges	McKinney Ives Stanley	Scranton, PA Indianapolis, IN Indianapolis, IN
Locksets (no substitutions)	Sargent	New Haven, CT
Cylinders (no substitutions)	KeyMark by Medeco	
Exit Devices	Sargent Von Duprin Precision	New haven, CT Indianapolis, IN Indianapolis, IN
Door Closers	LCN Sargent Norton	Princeton, IL New Haven, CT Charlotte, NC
Overhead Stops	Sargent Glynn-Johnson	New Haven, CT Indianapolis, IN

DOOR HARDWARE 087100 - 3

	ABH	Itasca, IL
Flush Bolts	Ives Trimco Rockwood	Indianapolis, IN Los Angeles, CA Rockwood, PA
Door Stops	lves Trimco Rockwood	Indianapolis, IN Los Angeles, CA Rockwood, PA
Silencers	Ives Rockwood Hager Companies	Indianapolis, IN Rockwood, PA St. Louis, MO

2.2 MATERIALS AND QUALITY

- A. All hardware shall be of the best grade of solid metal entirely free from imperfections in manufacturer and finish.
- B. Qualities, weights, and sizes given herein are the minimum that will be accepted. It is the responsibility of the Hardware Supplier to supply the specified size and weight of hardware and the proper function of hardware in each case and to provide UL approved hardware at all fire-rated doors.
- C. Provide, as far as possible, locks of one lock manufacturer and hinges of one hinge manufacturer. Modifications to hardware that are necessary to conform to construction shown or specified shall be provided as required for the specified operation and functional features.

2.3 HARDWARE DESIGNATIONS

A. All items of hardware are referenced by manufacturer's names and numbers. The manufacturer's names and numbers are used to define the function, design, and quality of the material to be supplied. Substitution of products other than those listed shall be submitted to the Architect **prior to** the submission of the finish hardware schedule. The Architect shall be the sole judge of any proposed substitution.

2.4 TEMPLATES

A. Hardware supplier shall immediately, but not later than three (3) days after approval of his Schedule by the Architect, furnish the General Contractor with complete template information necessary for the fabrication of doors, frames, etc. No templates shall be furnished prior to the approval of the hardware schedule.

2.5 HARDWARE FOR LABELED FIRE DOORS, EXIT DEVICES AND SMOKE DOORS

A. Hardware shall conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified.
 Labeling and listing by UL Building Materials Directory, for class of door being used will be accepted as evidence of conformance to these requirements.

Install minimum latch throw as specified on label of individual doors. Provide hardware listed by UL except where heavier materials, larger sizes, or better grades are specified herein under paragraph entitled "Hardware Sets". In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements. Specific hardware requirements of door or frame manufacturers which exceed sizes or weights of hardware herein listed shall be provided with no additional charge.

2.6 KEYS AND KEYING

- A. The hardware supplier shall review the specific hardware functions with the Architect and Owner at the time of the keying review, to assure the appropriateness of each of the hardware functions. Failure to make this review does not relieve the hardware supplier from providing the proper functions.
- B. Key System: All cylinders shall be KeyMark as manufactured by Medeco and shall be Master Keyed and/or Grandmaster Keyed to the existing system established as directed by the owner.
 - 1. Master Keys, Grandmaster Keys: Furnish six (6) keys for each set, if required.
 - 2. Furnish three (3) change keys for each cylinder.
 - 3. Master Keys shall be sent to the Owner by registered mail, return receipt required.
 - 4. Supply a bitting list for all change keys and master keys to the Owner.

2.7 FASTENERS

- A. Manufacture hardware to conform to published templates, generally prepared for machine screw installation.
- B. Furnish screws for installation, with each hardware item. Provide Phillips flat-head screws except as otherwise indicated. Furnish exposed screws to match the hardware finish, or, if exposed in surfaces of other work, to match the finish of such other work as closely as possible, except as otherwise indicated.
- C. Provide concealed fasteners for hardware units which are exposed when the door is closed, except to the extent no standard manufactured units of the type specified are available with concealed fasteners. Do not use thru-bolts unless specifically approved by the Architect.
- D. All hardware shall be installed **only** with fasteners supplied by manufacturers of specific products.

2.8 PACKING AND MARKING

A. All hardware shall have the required screws, bolts and fastenings necessary

for proper installation and shall be wrapped in the same package as the hardware item for which it is intended and shall match finish of hardware with which to be used.

B. Each package shall be clearly labeled indicating the portion of the work for which it is intended.

2.9 ENVIRONMENTAL CONCERN FOR PACKAGING

A. The hardware shipped to the jobsite is to be packaged in biodegradable packs such as paper or cardboard boxes and wrapping. If non-biodegradable packing such as plastic, plastic bags or large amounts of styrofoam is utilized, then the Contractor will be responsible for the disposal of the non-biodegradable packing to a licensed or authorized collector for recycling of the non-biodegradable packing.

2.10 FINISH HARDWARE DESCRIPTION

- A. Hardware items shall conform to respective specifications and standards and to requirements specified herein.
- B. Materials and Finish: Materials and Finish shall be:
 - 1. Interior Butts: US26D (BHMA 652)
 - 2. Locksets: US26D (BHMA 626)
 - 2. Door Closers: Sprayed to match hardware finish
 - 3. All other hardware shall be: US26D (BHMA 626), or as scheduled
- C. Hinges and Pivots:
 - 1. Number of hinges or pivots per door: two hinges or pivots are intended to be provided for doors up to and including five feet in height, and an additional hinge for each two-and-one-half feet or fraction thereof, of the height of the door.
 - 2.. Hinges on interior doors shall be steel and sized as follows, unless other wise specified in the hardware sets below:

Door Thickness	Door width	Hinge Weight	Hinge
1-3/4"	40" and under	Regular	4-1/2"
1-3/4"	Over 40"	Extra heavy	5 x 4-1/2"

Width of hinge shall be determined by trim conditions

- 5. All bearing hinges shall have flush bearings and button tips.
- 6. Hinges shall be McKinney, Ives or Stanley as follows:

<u>McKinney</u>	lves	Stanley
TA714	3CB1	CB1900R
TA786	3CB1HW	CB1901R

D. Door Closers:

- 1. Door closers shall have fully hydraulic, full rack and pinion action.
- Hydraulic fluid shall be of a type requiring no seasonal closer adjustment for temperatures ranging from 120 degrees F to -30 degrees F.
- 3. Spring power shall be continuously adjustable over the full range of closer sizes, and allow for reduced opening force for the physically handicapped. Hydraulic regulation shall be by tamper-proof, non-critical valves. Closers shall have separate adjustment for latch speed, general speed, and hydraulic back-check.
- 4. All closers shall have solid forged steel main arms (and forged forearms for parallel arm closers).
- 5. Do not locate closers on the side of doors facing corridors, passageways or similar type areas. Where it is necessary, due to certain conditions and approval of the Architect, to have closers in corridors, provide such closers with parallel or track type arms.
- 6. All door closers shall be adjusted by the installer in accordance with the manufacturer's templates and written instructions. Closers with parallel arms shall have back-check features adjusted prior to installation.
- 7. Closers shall conform to all applicable code requirements relative to setting closing speeds for closers and maximum pressure for operating interior and exterior doors.
- 8. Door closers meeting this specification are as follows:

	LCN	Sargent	Norton
Interior	4011	281-0	7500

- E. Exit Devices:
 - 1. Shall be Von Duprin, Sargent or Precision as follows:

Function	<u>Von Duprin</u>	<u>Sargent</u>	Precision
А	9927EO-F x LBR	12-NB8710	FL2201 x LBR
В	E99L-F	12-8875ET	FL-E2103 x 4903

- F. Flush Bolts:
 - Provide automatic and manual flush bolts with forged bronze face plates, extruded brass levers, and with wrought brass guides and strikes. Provide 12 inch steel or brass rods at doors up to 90 inches in height. Top rods at manual flush bolts for doors over 90 inches in height shall be increased by 6 inches for each additional 6 inches of door height. Provide dust-proof strikes at each bottom flush bolt.
 - 2. Dust Proof Strikes shall be furnished at all floor locations.
- G. Locksets, Latch Sets:
 - 1. Cylindrical type shall be heavy-duty ANSI A156.2, Series 4000, Grade

1 2-3/4" backset, with lever handles, to accept KeyMark by Medeco six pin cylinder. Strikes are to have curved lips and complete with a wrought strike box.

Manufacturer	<u>Series</u>	Lever Design
Sargent	10 Line	LL

2. Lock functions as indicated in the hardware schedule shall be as follows:

Function	Product Number
A (storeroom)	60-10G04
B (privacy)	10U68
C (classroom)	60-10G37
D (privacy)	10U65
E (office)	60-10G05

H. Stops:

- 1. Shall be furnished at all doors. Wherever an opened door or any item of hardware thereon strikes a wall, at 90 degrees. Provide wall umpers, unless otherwise indicated in hardware sets.
- 2. Where wall bumpers cannot be effectively used, a floor stop shall be furnished and installed.

<u>Manufacturer</u>	Wall Bumpers	Floor Stops
lves Rockwood	WS407CCV 409	FS436B, FS438B 440, 442
Trimco	1270WV	1211

3. Where overhead concealed door stops are listed they shall be as follows:

<u>Manufacturer</u>	<u>Series</u>
Glynn-Johnson	410S
Sargent	1530S
ABH	4020

- I Gasketing:
 - 1. Shall be #105 "Cush-N-Seal" as manufactured by Door and Hardware Systems, Inc. Color as selected.
- J. Self-Adhesive Door Astragal Seal:
 - 1. Shall be #SA as manufactured by Door and Hardware Systems, Inc. Color as selected.
- K. Silencers:

1. Provide silencers on all metal and wood frames. Silencers shall be lves SR64 / SR65, Hager 307D / 308D or Rockwood 608/609.

2.11 HARDWARE SETS

A. Hardware Sets listed below represents the complete hardware requirements for one opening (single door or pair of doors). Furnish the quantities required for each set for the work.

<u>Set No. 1</u>

Butts

- 1 Privacy Set (Function A)
- 1 Cylinder KeyMark by Medeco
- 1 Set Weather-stripping
- 1 Threshold
- 1- Door Closer

Set No. 2

Butts

- 1 Power-Assist Door Operators Horton No. 4100LE (operable leaf)
- 1 Power Supply Allegion No. 902-8P-FA
- 1 Hospital Latch (Push/Pull)
- 1 Electric Strike
- 1 Door Closer (fixed leaf)
- 1 Automatic Flush Bolt
- 1 Dust Proof Strike
- 4 Armor Plate
- 2 Touchless Magic Switch BEA MS08
- 4 Silencers

Operational Description: Immediate egress always allowed. Door can be manually or automatically operated. Automatic operation is by power assist door operator which is triggered by actuator which will release electric strike keeper then signal automatic operator to open door.

Set No. 3

Butts

- 1 Hospital Latch (Push/Pull)
- 1 Door Stop
- 1 Door Closer (Reg. arm)
- 2 Kick Plate
- 3 Silencers

HYBRID OR & OR #6 Maine Medical Center Portland, ME

Set No. 5

Butts

- 1 Privacy Set (Function A)
- 1 Cylinder KeyMark by Medeco
- 1 Door Stop
- 1 Door Closer (Reg. arm)
- 1 Kick Plate
- 3 Silencers

PART 3 - EXECUTION

3.1 GENERAL

A. Installation of hardware shall be performed in conformance with the following requirements.

3.2 INSPECTION

A. It shall be the general contractor's responsibility to inspect all door openings and doors to determine that each door and door frame has been properly prepared for the required hardware. If errors in dimensions or preparation are encountered, they are to be corrected by the responsible parties prior to the installation of hardware.

3.3 PREPARATION

A. All doors and frames, requiring field preparation for finish hardware, shall be carefully mortised, drilled for pilot holes, or tapped for machine screws for all items of finish hardware in accordance with the manufacturer's templates and instructions.

3.4 INSTALLATION/ADJUSTMENT/LOCATION

- A. All materials shall be installed in a workmanlike manner following the manufacturer's recommended instructions.
- B. Door Closers shall be installed in accordance with the manufacturer's instructions. Each door closer shall be carefully installed, on each door, at the degree of opening indicated on the hardware schedule. Arm position shall be as shown on the instruction sheets and required by the finish hardware schedule.
- C. The adjustments for all door closers shall be the installer's responsibility and these adjustments shall be made at the time of installation of the door closer. The closing speed and the latching speed valves, shall be adjusted individually to provide a smooth, continuous closing action without slamming. The delayed action feature or back check valve shall also be adjusted so as to permit the correct delayed action cycle or hydraulic back check cushioning of the door in the opening cycle. All valves must be properly adjusted at the

DOOR HARDWARE 087100 - 10 time of installation. Each door closer has adjustable spring power capable of being adjusted, in the field, from size 2 thru 6. It shall be the installer's responsibility to adjust the spring power for each door closer in exact accordance with the spring power adjustment chart illustrated in the door closer installation sheet packed with each door closer.

- D. Installation of all other hardware, including locksets, overhead stops / holders, door stops, plates and other items, shall be carefully coordinated with the hardware schedule and the manufacturer's instruction sheets.
- E. Locations for finish hardware shall be in accordance with dimensions listed in the pamphlet "Recommended locations for Builders' Hardware" published by the Door and Hardware Institute.

3.5 FIELD QUALITY CONTROL

A. Upon completion of the installation of the finish hardware, it shall be the responsibility of the finish hardware supplier to visit the project and to examine the hardware for each door on which he has provided hardware and to verify that all hardware is in proper working order. Should he find items of hardware not operating properly, he should make a report, in writing, to the general contractor, advising him of the problem and the measures required to correct the problem.

3.6 **PROTECTION**

A. All exposed portions of finish hardware shall be carefully protected, by use of cloth, adhesive backed paper or other materials, immediately after installation of the hardware item on the door. The finish shall remain protected until completion of the project. Prior to acceptance of the project by the Architect and owner, the general contractor shall remove the protective material exposing the finish hardware.

3.7 CLEANING

A. It shall be the responsibility of the general contractor to clean all items of finish hardware and to remove any remaining pieces of protective materials and labels.

3.8 INSTRUCTIONS AND TOOLS

- A. It shall be the responsibility of the finish hardware supplier to provide installation and repair manuals and adjusting tools, wrenches, etc. for the following operating products:
 - a. Locksets (all types)
 - b. Door Closers

END OF SECTION

SECTION 088000

GLAZING

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Glass and glazing for the following products and applications:
 - a. Steel doors, frames and sidelights specified in Section 081110 HOLLOW METAL DOORS AND FRAMES.
 - b. Glazed entrances and storefronts specified in Section 084110 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS.
 - c. Interior borrowed lites.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 081400 FLUSH WOOD DOORS for factory glazing for wood doors.
 - 2. Section 134900 RADIATION PROTECTION for glazing requirements.

1.3 DEFINITIONS

- A. Manufacturers of Glass Products: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
- B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
- C. Interspace: Space between lites of an insulating-glass unit that contains dehydrated air or a specified gas.
- D. Deterioration of Coated Glass: Defects developed from normal use that are attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in metallic coating.
- E. Deterioration of Insulating Glass: Failure of hermetic seal under normal use that is attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning insulating glass contrary to manufacturer's written instructions.

GLAZING 088000 - 1 Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

F. Deterioration of Laminated Glass: Defects developed from normal use that are attributed to the manufacturing process and not to causes other than glass breakage and practices for maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1.4 PERFORMANCE REQUIREMENTS

- A. General: Provide glazing systems capable of withstanding normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, and installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Glass Design: Glass thickness designations indicated are minimums and are for detailing only. Confirm glass thicknesses by analyzing Project loads and in-service conditions. Provide glass lites in the thickness designations indicated for various size openings, but not less than thicknesses and in strengths (annealed or heat treated) required to meet or exceed the following criteria:
 - 1. Glass Thicknesses: Select minimum glass thicknesses to comply with ASTM E 1300, according to the following requirements:
 - a. Specified Design Wind Loads: As required by Code.
 - b. Probability of Breakage for Vertical Glazing: 8 lites per 1000 for lites set vertically or not more than 15 degrees off vertical and under wind action.
 - 1) Load Duration: 60 seconds or less.
 - c. Maximum Lateral Deflection: For the following types of glass supported on all 4 edges, provide thickness required that limits center deflection at design wind pressure to 1/50 times the short side length or 1 inch, whichever is less.
 - 1) For monolithic-glass lites heat-treated to resist wind loads.
 - 2) For insulating glass.
 - 3) For laminated-glass lites.
 - d. Minimum Glass Thickness for Exterior Lites: Not less than 6 mm.
- C. Thermal Movements: Provide glazing that allows for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures acting on glass framing members and glazing components. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
- D. Thermal and Optical Performance Properties: Provide glass with performance properties specified based on manufacturer's published test data, as determined according to procedures indicated below:

- 1. For monolithic-glass lites, properties are based on units with lites 6.0 mm thick.
- 2. For laminated-glass lites, properties are based on products of construction indicated.
- 3. For insulating-glass units, properties are based on units with lites 6.0 mm thick and a nominal 1/2-inch-wide interspace.
- 4. Center-of-Glass Values: Based on using LBL-44789 WINDOW 6.3 computer program for the following methodologies:
 - a. U-Factors: NFRC 100 expressed as Btu/ sq. ft. x h x deg F.
 - b. Solar Heat Gain Coefficient: NFRC 200.
 - c. Solar Optical Properties: NFRC 300.

1.5 SUBMITTALS

- A. Product Data: For each glass product and glazing material indicated.
- B. Samples: 12-inch- square Samples for each type of glass and glass assembly, glazing sealants.
- C. Glazing Schedule: Use same designations indicated on Drawings for glazed openings in preparing a schedule listing glass types and thicknesses for each size opening and location.
- D. Product Certificates: Signed by manufacturers of glass and glazing products certifying that products furnished comply with requirements.
 - 1. For solar-control low-e-coated glass, provide documentation demonstrating that manufacturer of coated glass is certified by coating manufacturer.
- E. Qualification Data: For installers.
- F. Preconstruction Adhesion and Compatibility Test Report: From glazing sealant manufacturer indicating glazing sealants were tested for adhesion to glass and glazing channel substrates and for compatibility with glass and other glazing materials.
- G. Product Test Reports: For each type of glazing products:
- H. Warranties: Special warranties specified in this Section.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who has completed glazing similar in material, design, and extent to that indicated for this Project; whose work has resulted in glass installations with a record of successful in-service performance..
- B. Source Limitations for Glass: Obtain the following through one source from a single manufacturer for each glass type: clear float glass, laminated glass and insulating glass.
- C. Source Limitations for Glass Sputter-Coated with Solar-Control Low-E Coatings: Where solarcontrol low-e coatings of a primary glass manufacturer that has established a certified fabricator program is specified, obtain sputter-coated solar-control low-e-coated glass in fabricated units from a manufacturer that is certified by coated-glass manufacturer.
- D. Source Limitations for Glazing Accessories: Obtain glazing accessories through one source from a single manufacturer for each product and installation method indicated.

- E. Elastomeric Glazing Sealant Product Testing: Obtain sealant test results for product test reports in "Submittals" Article from a qualified testing agency based on testing current sealant formulations within a 36-month period.
 - 1. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.
 - 2. Test elastomeric glazing sealants for compliance with requirements specified by reference to ASTM C 920, and where applicable, to other standard test methods.
- F. Preconstruction Adhesion and Compatibility Testing: Submit to elastomeric glazing sealant manufacturers, for testing indicated below, samples of each glazing material type, tape sealant, gasket, glazing accessory, and glass-framing member that will contact or affect elastomeric glazing sealants:
 - 1. Use ASTM C 1087 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of glazing sealants to glass, tape sealants, gaskets, and glazing channel substrates.
 - 2. Submit not fewer than eight pieces of each type of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials.
 - 3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 - 4. For materials failing tests, obtain sealant manufacturer's written instructions for corrective measures, including the use of specially formulated primers.
 - 5. Testing will not be required if elastomeric glazing sealant manufacturers submit data based on previous testing of current sealant products for adhesion to, and compatibility with, glazing materials matching those submitted.
- G. Fire-Protection-Rated Glazing: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on positive-pressure testing according to NFPA 257 or UL 9, including the hose-stream test, and shall comply with NFPA 80.
 - 1. Fire-protection-rated glazing required to have a fire-protection rating of 20 minutes shall be exempt from the hose-stream test, unless required by authorities having jurisdiction.
- H. Safety Glazing Products: Comply with testing requirements in 16 CFR 1201.
 - 1. Subject to compliance with requirements, obtain safety glazing products permanently marked with certification label of the Safety Glazing Certification Council or another certification agency] acceptable to authorities having jurisdiction.
 - 2. Where glazing units, including Kind FT glass and laminated glass, are specified in Part 2 articles for glazing lites more than 9 sq. ft. in exposed surface area of one side, provide glazing products that comply with Category II materials, for lites 9 sq. ft. or less in exposed surface area of one side, provide glazing products that comply with Category I or II materials, except for hazardous locations where Category II materials are required by 16 CFR 1201 and regulations of authorities having jurisdiction.
- I. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. GANA Publications: GANA Laminated Division's "Laminated Glass Design Guide" and GANA's "Glazing Manual."

- 2. IGMA Publication for Insulating Glass: SIGMA TM-3000, "Glazing Guidelines for Sealed Insulating Glass Units."
- J. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of the following testing and inspecting agency:
 - 1. Insulating Glass Certification Council.
- K. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockup for types of windows indicated, in locations shown on Drawings.
- L. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Protect glazing materials according to manufacturer's written instructions and as needed to prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
 - B. For insulating-glass units that will be exposed to substantial altitude changes, comply with insulating-glass manufacturer's written recommendations for venting and sealing to avoid hermetic seal ruptures.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install liquid glazing sealants when ambient and substrate temperature conditions are outside limits permitted by glazing sealant manufacturer or below 40 deg F.

1.9 WARRANTY

- A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer's standard form, made out to the Owner and signed by coated-glass manufacturer agreeing to replace coated-glass units that deteriorate as defined in "Definitions" Article, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 - 1. Warranty Period: Ten years from date of Substantial Completion.
- B. Manufacturer's Special Warranty on Laminated Glass: Manufacturer's standard form, made out to the Owner and signed by laminated-glass manufacturer agreeing to replace laminated-glass units that deteriorate as defined in "Definitions" Article, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 - 1. Warranty Period: Five years from date of Substantial Completion.

- C. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form, made out to the Owner and signed by insulating-glass manufacturer agreeing to replace insulating-glass units that deteriorate as defined in "Definitions" Article, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 - 1. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 INSULATING-GLASS UNITS

- A. Insulating-Glass Units for Vertical Glazing: 1 inch thick (25.0 mm) insulating glass consisting of two lites of 1/4 inch (6 mm) glass, low e coating on the No. 2 surface and argon gas filled. Provide one of the following or equal:
 - 1. VE1-2M by Viracon.
 - a. Visible Light Transmittance: 70 percent.
 - b. Reflectance Visible Light: 11 percent.
 - c. U Value (Winter): 0.25.
 - d. Shading Coefficient: 0.43.
 - e. Solar Heat Gain Coefficient: 0.37.
 - 2. Solarban 60 by PPG Industries.
 - a. Visible Light Transmittance: 70 percent.
 - b. Reflectance Visible Light: 11 percent.
 - c. U Value (Winter): 0.29.
 - d. Shading Coefficient: 0.44.
 - e. Solar Heat Gain Coefficient: 0.38.
 - 3. SN-68 by Guardian Industries.
 - a. Visible Light Transmittance: 68 percent.
 - b. Reflectance Visible Light: 10 percent.
 - c. U Value (Winter): 0.29.
 - d. Shading Coefficient: 0.43.
 - e. Solar Heat Gain Coefficient: 0.37.

2.2 GLASS PRODUCTS

- A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.
- B. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.
 - 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
 - 2. For uncoated glass, comply with requirements for Condition A.
 - 3. For coated vision glass, comply with requirements for Condition C (other coated glass).

- C. Coated Float Glass: Pyrolytic and vacuum deposited coatings on glass in conformance with ASTM C 1376.
- D. Tempered Float Glass: ASTM C 1048; Type I (transparent flat glass); Quality-Q3; Kind FT; 1/4 inch thick unless indicated otherwise.
- E. Laminated Glass: ASTM C 1172, and complying with testing requirements in 16 CFR 1201 for Category II materials, and with other requirements specified. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 - 1. Construction for Framed Units: Laminate glass with polyvinyl butyral interlayer to comply with interlayer manufacturer's written recommendations.
 - 2. Construction for Units with Exposed Edges: Laminate glass with cast-in-place and curedtransparent-resin interlayer to comply with interlayer manufacturer's written recommendations.
 - 3. Interlayer Thickness: 0.030 inch (0.76 mm) thick for vertical glazing, 0.060 inch (1.52 mm) thick for sloped glazing.
 - 4. Interlayer Color: Clear unless otherwise indicated.
- F. Fire-Rated Monolithic Ceramic Glazing Material (Not for Doors or Locations Requiring Safety Glazing): Proprietary product in the form of clear flat sheets of 3/16-inch nominal (5.0 mm) thickness weighing 2.5 lb/sq. ft. and as follows:
 - 1. Fire-Protection Rating: As indicated for the fire window in which glazing material is installed, and permanently labeled by a testing and inspecting agency acceptable to authorities having jurisdiction.
 - 2. Product: "Premium FireLite" (polished on both surfaces) by Nippon Electric Glass Co., Ltd., and distributed by Technical Glass Products.
- G. Fire-Rated Laminated Ceramic Glazing Material for Doors and Locations Requireing Safety Glazing: Category II safety glazing product in the form of 2 lites of clear ceramic glazing material laminated together to produce a laminated lite of 5/16-inch nominal (8.0 mm) thickness; polished on both surfaces; weighing 4 lb/sq. ft. and as follows:
 - 1. Fire-Protection Rating: As indicated for the assembly in which glazing material is installed, and permanently labeled by a testing and inspecting agency acceptable to authorities having jurisdiction.
 - 2. Polished on both surfaces, transparent.
 - 3. Products: Subject to compliance with requirements, provide Technical Glass Products; FireLite Plus or one of the following:
 - a. Safti First; Pyran Platinum L, (for maximum 90 minute-rated openings).
 - b. Vetrotech Saint-Gobain; SGG Keralite FR-L.
- H. Insulating-Glass Units, General: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interpane air space, and complying with ASTM E2190 and with requirements specified in this Section.
 - 1. Provide Kind HS (heat-strengthened) float glass in place of annealed glass where needed to resist thermal stresses induced by differential shading of individual glass lites and to

comply with glass design requirements specified in Part 1 "Performance Requirements" paragraph.

- 2. Provide Kind FT (fully tempered) glass lites where safety glass is indicated.
- 3. Overall Unit Thickness and Thickness of Each Lite: Dimensions indicated for insulatingglass units are nominal and the overall thicknesses of units are measured perpendicularly from outer surfaces of glass lites at unit's edge.
- 4. Sealing System: Dual seal, with primary and secondary sealants as follows:
 - a. Manufacturer's Standard Sealants. Butyl primary and silicone secondary sealants. Secondary sealant shall cover entire spacer bar at IGU perimeter.
- 5. Spacer Specifications: Manufacturer's standard spacer material. Spacer corners shall be bent, soldered, or welded. Keyed spacer corners will not be accepted. Spacer may have a mid-span spacer key located at the midpoint of the insulating glass unit head. Where a mid-span spacer key is used, the key must be fully embedded (all sides) in butyl sealant.
- I. Ceramic-Coated Spandrel Glass: ASTM C 1048, Condition B, Type I, Quality-Q3, and complying with other requirements specified.
 - 1. Glass: Clear float.
 - 2. Ceramic Coating Color: Custom color as selected by the Architect.

2.3 GLAZING SEALANTS

- A. General: Provide products of type indicated, complying with the following requirements:
 - 1. Compatibility: Verify glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, interlayer of laminated glass, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 - 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 - 3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.
 - 4. Adhesives and sealants that are used inside the weatherproofing system shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Structural Glazing Adhesives: 100 g/L.
 - b. Architectural Sealants: 250 g/L.
- B. Elastomeric Glazing Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied chemically curing sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
 - 1. Single-Component Neutral- and Basic-Curing Silicone Glazing Sealants:
 - a. Dow Corning Corporation; 790.
 - b. GE Silicones; SilPruf LM SCS2700.
 - c. Tremco Inc.; Spectrem 1.

GLAZING 088000 - 8 C. Glazing Sealants for Fire-Resistive Glazing Products: Identical to products used in test assemblies to obtain fire-protection rating.

2.4 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based elastomeric tape with a solids content of 100 percent; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; packaged on rolls with a release paper backing; and complying with ASTM C 1281 and AAMA 800 for project conditions.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; packaged on rolls with release liner protecting adhesive; and complying with AAMA 800 for the following types:
 - 1. Type 1, for glazing applications in which tape acts as the primary sealant.
 - 2. Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.5 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.
- D. Spacers: Elastomeric blocks or continuous extrusions with a Shore, Type A durometer hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
- E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- F. Perimeter Insulation for Fire-Resistive Glazing: Identical to product used in test assembly to obtain fire-resistance rating.

2.6 FABRICATION OF GLAZING UNITS

- A. Fabricate glazing units in sizes required to glaze openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
- B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites in a manner that produces square edges with slight kerfs at junctions with outdoor and indoor faces.
- C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing glazing, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep system.
 - 3. Minimum required face or edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Glazing channel dimensions, as indicated on Drawings, provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances. Adjust as required by Project conditions during installation.
- C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.
- D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction sealant-substrate testing.
- E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- G. Provide spacers for glass lites where length plus width is larger than 50 inches as follows:
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

- H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.
- I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

3.4 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
- C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
- E. Do not remove release paper from tape until just before each glazing unit is installed.
- F. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

3.5 SEALANT GLAZING (WET)

- A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
- B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.
- C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.6 CLEANING AND PROTECTION

- A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels, and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations, including weld splatter. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended by glass manufacturer.

- C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.
- D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

END OF SECTION

SECTION 092110

GYPSUM BOARD ASSEMBLIES

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Interior gypsum wallboard.
 - 2. Acoustic insulation in gypsum wallboard assemblies.
 - 3. Non-load-bearing steel framing.
 - 4. Installation of access panels.
 - 5. Marking and identification for fire- and smoke-partitions.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 083110 ACCESS DOORS AND FRAMES for installation in gypsum board assemblies.
 - 2. Section 134900 RADIATION PROTECTION for gypsum board requirements.

1.3 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide fire stop tracks capable of withstanding deflection within limits and under conditions indicated.
 - 1. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure.
- B. Marking and Identification for Fire- and Smoke-Partitions: Fire walls, fire barriers, fire partitions, smoke barriers, smoke partitions and other walls required to have protected openings or penetrations shall be effectively and permanently identified with signs or stenciling. Such identification shall:
 - 1. Be located in accessible concealed floor, floor-ceiling or attic spaces; and
 - 2. Locate within 15 feet of end of each wall and repeat at intervals not exceeding 30 feet measured horizontally along the wall or partition; and
 - 3. Include lettering not less than 3 inches in height with a minimum 3/8 inch stroke in contrasting color, incorporating the suggested wording: "FIRE AND/OR SMOKE BARRIER PROTECT ALL OPENINGS," or other wording.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: Full-size Sample in 12-inch-long length for each trim accessory indicated.
- C. Shop Drawings: If materials and systems other than those specified and those indicated on the Drawings are proposed for use, submit shop drawings signed and sealed by a structural engineer licensed in the jurisdiction of the project certifying proposed systems meet code requirements, project requirements and the following deflection criteria:
 - 1. For gypsum board assemblies without applied rigid finishes L/240; for gypsum board assemblies with applied rigid finishes such as tile, stone, wood paneling L/360. Lateral load 5 psf except at shafts. Lateral load at shafts shall be required based on analysis of equipment and systems using shaft.

1.5 QUALITY ASSURANCE

- A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
- B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.
- C. Drywall Recycling: All new paper-faced gypsum wallboard scrap (cuts from construction but not demolition waste) shall be recycled by Gypsum Recycling America LLC or approved equal.
- D. Mockups: Before beginning gypsum board installation, install mockups of at least 100 sq. ft. in surface area to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Install mockups for the following:
 - a. Each level of gypsum board finish indicated for use in exposed locations.
 - 2. Apply or install final decoration indicated, including painting and wallcoverings, on exposed surfaces for review of mockups.
 - 3. Simulate finished lighting conditions for review of mockups.
 - 4. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against damage from weather, condensation, direct sunlight, construction traffic, and other causes. Stack panels flat to prevent sagging.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Do not install interior products until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

- 2.1 NON-LOAD-BEARING STEEL FRAMING, GENERAL
 - A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 - 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal, unless otherwise indicated.
 - 2. Protective Coating: Manufacturer's standard corrosion-resistant zinc coating, unless otherwise indicated.
- 2.2 SUSPENSION SYSTEM COMPONENTS
 - A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.0625-inch-diameter wire, or double strand of 0.0475-inch-diameter wire.
 - B. Hanger Attachments to Concrete:
 - 1. Anchors: Fabricated from corrosion-resistant materials with holes or loops for attaching wire hangers and capable of sustaining, without failure, a load equal to 5 times that imposed by construction as determined by testing according to ASTM E 488 by an independent testing agency.
 - a. Type: Postinstalled, expansion anchor.
 - C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.162-inch diameter.
 - D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.0538 inch and minimum 1/2-inch-wide flanges with depth as required for span and loading and indicated on Drawings.
 - E. Furring Channels (Furring Members): 0.0538-inch bare-steel thickness, with minimum 1/2-inchwide flanges, 3/4 inch deep.
 - F. Grid Suspension System for Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.

- 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong World Industries, Inc.; Drywall Grid Systems.
 - b. Chicago Metallic Corporation; Drywall Furring System.
 - c. USG Corporation; Drywall Suspension System.

2.3 STEEL FRAMING FOR FRAMED ASSEMBLIES

- A. Steel Studs and Runners: ASTM C 645.
 - 1. Minimum Base-Metal Thickness: 0.0312 inch.
- B. Slip-Type Head Joints: Where indicated, provide one of the following:
 - 1. Single Long-Leg Runner System: ASTM C 645 top runner with 2-inch- deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top runner and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.
 - 2. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch-deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.
 - 3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 - a. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Dietrich Metal Framing; SLP-TRK Slotted Deflection Track.
 - 2) Steel Network Inc. (The); VertiClip Series.
 - 3) Superior Metal Trim; Superior Flex Track System (SFT).
- C. Fire Stop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness compatible with studs and in width to accommodate depth of studs.
 - 1. Grace Construction Products; FlameSafe FlowTrak System.
 - 2. Fire Trak Corp.; Fire Trak attached to studs with Fire Trak Slip Clip.
 - 3. Metal-Lite, Inc.; The System.
- D. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 - 1. Minimum Base-Metal Thickness: 0.0312 inch.
- E. Cold-Rolled Channel Bridging: 0.0538-inch bare-steel thickness, with minimum 1/2-inch- wide flanges.
 - 1. Depth: 1-1/2 inches.
 - 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch-thick, galvanized steel.

- F. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 - 1. Minimum Base Metal Thickness: 0.0312 inch.
 - 2. Depth: 1-1/2 inches.
- G. Resilient Furring Channels: 1/2-inch-deep, steel sheet members designed to reduce sound transmission.
 - 1. Configuration: Asymmetrical or hat shaped.
- H. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches wall attachment flange of 7/8 inch, minimum bare-metal thickness of 0.0179 inch, and depth required to fit insulation thickness indicated.
- I. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
- J. Isolation Strip at Exterior Walls: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.
- 2.4 INTERIOR GYPSUM BOARD
 - A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. USG Corporation.
 - 2. Georgia-Pacific (G-P) Gypsum LLC.
 - 3. National Gypsum Company.
 - B. Gypsum Wallboard: ASTM C 1396.
 - 1. Thickness: 1/2 inch.
 - 2. Long Edges: Tapered.
 - C. Fire-Resistant Type X: ASTM C 1396.
 - 1. Thickness: 5/8 inch.
 - 2. Long Edges: Tapered.
 - D. Ceiling Type: Manufactured to have more sag resistance than regular-type gypsum board.
 - 1. Thickness: 1/2 inch.
 - 2. Long Edges: Tapered.
 - E. Abuse-Resistant Type: ASTM C 1629. Manufactured to produce greater resistance to surface indentation and through-penetration (impact resistance) than standard, regular-type and Type X gypsum board.
 - 1. Core: 5/8 inch, Type X.
 - 2. Long Edges: Tapered.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- F. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396. With moisture- and mold-resistant core and paper surfaces.
 - 1. Core: 5/8 inch, Type X.
 - 2. Long Edges: Tapered.
 - 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.
- 2.5 TRIM ACCESSORIES
 - A. Interior Trim: ASTM C 1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 - 2. Shapes:
 - a. Cornerbead.
 - b. Bullnose bead.
 - c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - d. Expansion (control) joint.
 - B. Aluminum Trim: Extruded accessories of profiles and dimensions indicated.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fry Reglet Corp.
 - b. Gordon, Inc.
 - c. Pittcon Industries.
 - 2. Aluminum: Alloy and temper with not less than the strength and durability properties of ASTM B 221, Alloy 6063-T5.
 - 3. Finish: Corrosion-resistant primer compatible with joint compound and finish materials specified.

2.6 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475/C 475M.
- B. Joint Tape:
 - 1. Interior Gypsum Wallboard: Paper.
- C. Joint Compound for Interior Gypsum Wallboard: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 - 4. Finish Coat: For third coat, use setting-type, sandable topping compound.
 - 5. Skim Coat: For final coat of Level 5 finish, use setting-type, sandable topping compound.

2.7 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
- B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
 - 1. Use adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- D. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- E. Acoustical Sealant: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Acoustical Sealant for Exposed and Concealed Joints:
 - a. Pecora Corp.; AC-20 FTR Acoustical and Insulation Sealant.
 - b. Specified Technologies, Inc.; Smoke N Sound Acoustical Sealant.
 - c. USG Corporation.; SHEETROCK Acoustical Sealant.
 - 3. Acoustical Sealant for Concealed Joints:
 - a. Ohio Sealants, Inc.; Pro-Series SC-170 Rubber Base Sound Sealant.
 - b. Pecora Corp.; BA-98.
 - c. Tremco, Inc.; Tremco Acoustical Sealant.

2.8 IDENTIFICATION LABELS FOR FIRE- AND SMOKE-PARTITIONS

- A. Identification Labels: Vinyl adhesive signs, to comply with applicable local Code.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fire Wall Signs, Inc.
 - b. My Safety Sign.
 - c. Safety Supply Warehouse.

2. Text: "FIRE AND SMOKE BARRIER - PROTECT ALL OPENINGS"

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames and framing, for compliance with requirements and other conditions affecting performance.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.
- B. Coordination with Sprayed Fire-Resistive Materials:
 - 1. Before sprayed fire-resistive materials are applied, attach offset anchor plates or ceiling runners (tracks) to surfaces indicated to receive sprayed fire-resistive materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches o.c.
 - 2. After sprayed fire-resistive materials are applied, remove them only to extent necessary for installation of non-load-bearing steel framing. Do not reduce thickness of fire-resistive materials below that required for fire-resistance ratings indicated. Protect adjacent fire-resistive materials from damage.

3.3 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754. Also comply with requirements in ASTM C 840 that apply to framing installation.
- B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
- C. Install bracing at terminations in assemblies.
- D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING SUSPENSION SYSTEMS

- A. Install suspension system components in sizes and spacings indicated on Drawings, but not less than those required by referenced installation standards for assembly types and other assembly components indicated.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.
- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 - a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 - 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 5. Do not attach hangers to steel roof deck.
 - 6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 - 7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
 - 8. Do not connect or suspend steel framing from ducts, pipes, or conduit.
- D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.
- E. Seismic Bracing: Sway-brace suspension systems with hangers used for support.
- F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.
- G. Installation Tolerances: Install suspension systems that are level to within [1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

3.5 INSTALLING FRAMED ASSEMBLIES

- A. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
- B. Install studs so flanges within framing system point in same direction.
- C. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings, except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on doorframes; install runner track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two studs at each jamb, unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 - c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings, unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 - 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 - a. Firestop Track: Where indicated, install to maintain continuity of fire-resistancerated assembly indicated.
 - 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.
- D. Direct Furring: Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
- E. Z-Furring Members:
 - 1. Erect insulation vertically and hold in place with Z-furring members spaced 24 inches o.c.
 - 2. Except at exterior corners, securely attach narrow flanges of furring members to wall with concrete stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
 - 3. At exterior corners, attach wide flange of furring members to wall with short flange extending beyond corner; on adjacent wall surface, screw-attach short flange of furring channel to web of attached channel. At interior corners, space second member no more than 12 inches from corner and cut insulation to fit.

3.6 APPLYING AND FINISHING PANELS, GENERAL

- A. Comply with ASTM C 840.
- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.
- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- E. Form control and expansion joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.
- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations, and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

3.7 APPLYING INTERIOR GYPSUM BOARD

- A. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing, unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels to minimize end joints.
 - 3. On Z-furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.
 - 4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.
- B. Multilayer Application:
 - 1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints 1 framing member, 16 inches minimum,

from parallel base-layer joints, unless otherwise indicated or required by fire-resistancerated assembly.

- 2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
- 3. On Z-furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at least one furring member. Locate edge joints of base layer over furring members.
- 4. Fastening Methods: Fasten base layers and face layers separately to supports with screws.
- C. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written recommendations and temporarily brace or fasten gypsum panels until fastening adhesive has set.

3.8 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners, unless otherwise indicated.
 - 2. LC-Bead: Use at exposed panel edges.
- D. Aluminum Trim: Install in locations indicated on Drawings.

3.9 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints, rounded or beveled edges, and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except those with trim having flanges not intended for tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below:
 - 1. Level 1: Ceiling plenum areas and concealed areas not exposed to view.
 - 2. Level 4: Panel surfaces that will be exposed to view (typical panels).
 - 3. Level 5: Where indicated on Drawings.

3.10 INSTALLING IDENTIFICATION FOR FIRE- AND SMOKE-PARTITIONS

- A. Marking and Identification for Fire- and Smoke-Partitions: Permanently install as required by Code.
- 3.11 PROTECTION
 - A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
 - B. Remove and replace panels that are wet, moisture damaged, or exhibit mold growth. Repair of damaged panels in place is not acceptable.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION

SECTION 095100

ACOUSTICAL CEILINGS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Acoustical ceiling tiles and panels.
 - 2. Suspension systems, grid systems and ceiling hangers.
 - 3. Acoustical sealant at edge moldings at acoustical ceilings.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 092110 GYPSUM BOARD ASSEMBLIES for gypsum board ceilings and soffits.
 - 2. Division 21 FIRE SUPPRESSION for fire-suppression components located in ceilings.
 - 3. Division 23 HEATING, VENTILATING AND AIR CONDITIONING for air handling and distribution components located in ceilings.
 - 4. Division 26 ELECTRICAL for light fixture and alarm system components located in ceilings.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Coordination Drawings: Reflected ceiling plans drawn to scale and coordinating penetrations and ceiling-mounted items. Show the following:
 - 1. Ceiling suspension members.
 - 2. Method of attaching hangers to building structure. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose installation is specified in other Sections.
 - 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 4. Minimum Drawing Scale: 1/4 inch = 1 foot.
- C. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of size indicated below.
 - 1. Acoustical Panel: Set of 6 inch square Samples of each type, color, pattern, and texture.

- 2. Exposed Suspension System Members, Moldings, and Trim: Set of 12 inch long Samples of each type, finish, and color.
- D. Asbestos Certification: Manufacturer's written certification that acoustical ceiling products contain no asbestos (0.0000%). Product labels indicating that it is the user's responsibility to test the products for asbestos are unacceptable and sufficient cause for rejection of the product on site.
- E. Maintenance Data: For finishes to include in maintenance manuals.
- 1.4 QUALITY ASSURANCE
 - A. Source Limitations:
 - 1. Acoustical Ceiling Panels: Obtain each type through one source from a single manufacturer.
 - 2. Suspension Systems: Obtain each type through one source from a single manufacturer.
 - B. Fire-Test-Response Characteristics: Provide acoustical panel ceilings that comply with the following requirements:
 - 1. Fire-Resistance Characteristics: Where indicated, provide acoustical panel ceilings identical to those of assemblies tested for fire resistance per ASTM E 119 by UL or another testing and inspecting agency acceptable to authorities having jurisdiction.
 - a. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another testing and inspecting agency.
 - b. Identify materials with appropriate markings of applicable testing and inspecting agency.
 - 2. Surface-Burning Characteristics: Provide acoustical panels complying with ASTM E 1264 for Class A materials as determined by testing identical products per ASTM E 84:
 - C. Mockups: Build mockups to verify selections made under sample Submittals and to demonstrate aesthetic effects and qualities of materials and execution.
 - 1. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
 - D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical panels, suspension system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1.7 COORDINATION

A. Coordinate layout and installation of acoustical panels and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

- 2.1 ACOUSTICAL PANELS, GENERAL
 - A. Products: Subject to compliance with specified requirements, provide as indicated on the Finish Schedule and as approved by the Architect.

2.2 METAL SUSPENSION SYSTEMS

- A. Metal Suspension System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635.
 - 1. Manufacturer: USG, Armstrong, CertainTeed Ceilings, or Chicago Metallic.
 - 2. Structural Classification: Intermediate-duty system.
 - 3. End Condition of Cross Runners: Override (stepped) or butt-edge type.
 - 4. Face Design: Flat, flush.
 - 5. Cap Material: Steel or aluminum cold-rolled sheet.
 - 6. Color: White, prefinished.
 - 7. Grid Face Width: As specified with ACT type.
- B. Attachment Devices: Size for five times the design load indicated in ASTM C 635, Table 1, "Direct Hung," unless otherwise indicated.
 - 1. Anchors in Concrete: Anchors with holes or loops for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to five times that imposed by ceiling construction, as determined by testing per ASTM E 488 or ASTM E 1512 as applicable, conducted by a qualified testing and inspecting agency; zinc-plated for Class SC1 service.
 - 2. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hangers of type indicated, and with capability to sustain, without failure, a load equal to 10 times that imposed by ceiling construction, as determined by testing per ASTM E 1190, conducted by a qualified testing and inspecting agency.
- C. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:

- 1. Zinc-Coated Carbon-Steel Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper.
- Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.106 diameter wire.
- D. Hold-Down Clips: At vestibules and areas subject to wind uplift, provide manufacturer's standard hold-down clips spaced 24 inches on all cross tees.

2.3 METAL EDGE MOLDINGS AND TRIM

- A. Roll-Formed Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that fit acoustical panel edge details and suspension systems indicated; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension system runners.
 - 1. For lay-in panels with reveal edge details, provide stepped edge molding that forms reveal of same depth and width as that formed between edge of panel and flange at exposed suspension member.
 - 2. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.
 - 3. For narrow-face suspension systems, provide suspension system and manufacturer's standard edge moldings that match width and configuration of exposed runners.
- B. Suspension Trim: Subject to compliance with requirements, provide one of the following:
 - 1. Armstrong World Industries, Inc.; Axiom.
 - 2. CertainTeed Ceilings; Approved equal.
 - 3. USG Interiors, Inc.; Compasso.

2.4 ACOUSTICAL SEALANT

A. Acoustical Sealant for Concealed Joints: Manufacturer's standard nondrying, nonhardening, nonskinning, nonstaining, gunnable, synthetic-rubber sealant, with a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24), recommended for sealing interior concealed joints to reduce airborne sound transmission.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION

- A. General: Install acoustical panel ceilings to comply with ASTM C 636 per manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
 - 4. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
 - 6. Do not attach hangers to steel deck tabs.
 - 7. Space hangers not more than 48 o.c. along each member supported directly from hangers, unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
- C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
 - 3. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- D. Install suspension system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- E. Install acoustical panels with undamaged edges and fit accurately into suspension system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.

- 1. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.
- 2. Install hold-down clips in areas indicated, in areas required by authorities having jurisdiction, and for fire-resistance ratings; space as recommended by panel manufacturer's written instructions, unless otherwise indicated.

3.4 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION

SECTION 096510

RESILIENT FLOORING AND ACCESSORIES

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Rubber sheet floor covering.
 - 2. Resilient wall base and accessories.
 - 3. Substrate preparation for resilient flooring and accessories.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For each type of floor covering. Include floor covering layouts, locations of seams, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 - 1. Show details of special patterns.
- C. Samples for Verification: Full-size units of each color and pattern of resilient flooring required.
 - 1. Resilient Wall Base and Accessories: Manufacturer's standard-size Samples, but not less than 12 inches long, of each resilient product color and pattern required.
 - 2. For heat-welding bead, manufacturer's standard-size Samples, but not less than 9 inches long, of each color required.
- D. Seam Samples for Sheet Flooring: For seamless-installation technique indicated and for each floor covering product, color, and pattern required; with seam running lengthwise and in center of 6-by-9-inch. Sample applied to a rigid backing and prepared by Installer for this Project.
- E. Maintenance Data: For resilient products to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Provide products identical to those tested for fire-exposure behavior per test method indicated by a testing and inspecting agency acceptable to authorities having jurisdiction.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store tiles on flat surfaces.

1.6 PROJECT CONDITIONS

- A. Maintain temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F in spaces to receive floor tile during the following time periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After postinstallation period, maintain temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
- C. Close spaces to traffic during floor covering installation.
- D. Close spaces to traffic for 48 hours after floor covering installation.
- E. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 RUBBER SHEET FLOOR COVERING

- A. Rubber Sheet Floor Covering: ASTM F 1859, Type I (homogeneous rubber sheet).
 - 1. American Biltrite.
 - 2. Johnsonite, a division of Tarkett.
 - 3. Mondo USA.
 - 4. Nora Systems, Inc.
 - 5. R.C.A. Rubber Co.
- B. Style and Colors: As indicated on the Finish Legend.
- C. Thickness: 0.125 inch min.
- D. Wearing Surface: Molded pattern.
 - 1. Molded-Pattern Figure: Raised discs.
- E. Sheet Width: As standard with manufacturer.
- F. Seaming Method: Welded.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.2 RESILIENT WALL BASE

- A. Wall Base: ASTM F 1861.
 - 1. Armstrong World Industries, Inc.
 - 2. Burke Flooring Products.
 - 3. Johnsonite, a division of Tarkett.
 - 4. Marley Flexco (USA), Inc.
 - 5. Nora Systems, Inc.
 - 6. Roppe Corporation.
- B. Style and Colors: As indicated on the Finish Legend.
- C. Type (Material Requirement): TS (rubber, vulcanized thermoset) or TP (rubber, thermoplastic).
- D. Shape: Straight (toeless) at carpet and coved at resilient flooring.
- E. Minimum Thickness: 0.125 inch.
- F. Height: 4 inches.
- G. Lengths: Cut lengths 48 inches long or coils in manufacturer's standard length.
- H. Outside Corners: Premolded.
- I. Inside Corners: Premolded.
- J. Surface: Smooth.
- 2.3 RESILIENT MOLDING ACCESSORY
 - A. Types Include the Following as Applicable: Cap for cove carpet, cap for cove resilient sheet floor covering, carpet edge for glue-down applications, nosing for carpet, nosing for resilient floor covering, reducer strip for resilient floor covering, joiner for tile and carpet
 - 1. Burke Flooring Products.
 - 2. Endura
 - 3. Johnsonite, a division of Tarkett.
 - 4. Mondo Rubber International, Inc.
 - 5. Nora Systems, Inc.
 - 6. Roppe Corporation.
 - B. Material: Rubber.
 - C. Profile and Dimensions: As indicated.
- 2.4 INSTALLATION MATERIALS
 - A. Trowelable Leveling and Patching Compounds: Latex-modified, Portland cement based or blended hydraulic cement based formulation provided or approved by resilient product manufacturer for applications indicated.

- B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated.
 - 1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - a. Cove Base Adhesives: 50 g/L.
 - b. Rubber Floor Adhesives: 60 g/L.
- C. Seamless-Installation Accessories:
 - 1. Heat-Welding Bead: Manufacturer's solid-strand product for heat welding seams.
 - a. Color: Match floor covering.
- D. Integral-Flash-Cove-Base Accessories:
 - 1. Cove Strip: 1-inch radius provided or approved by manufacturer.
 - 2. Cap Strip: Provided or approved by manufacturer.
- E. Metal Edge Strips: Extruded aluminum with mill finish of width shown, of height required to protect exposed edges of tiles, and in maximum available lengths to minimize running joints.
- F. Floor Polish: Provide protective liquid floor polish products as recommended by manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for installation tolerances, moisture content, and other conditions affecting performance.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.
 - 2. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare substrates according to manufacturer's written recommendations to ensure adhesion of resilient products.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Alkalinity and Adhesion Testing: Perform tests recommended by flooring manufacturer. Proceed with installation only after substrate alkalinity falls within a range on pH scale not less than 5 or more than 9 pH, or as otherwise required in writing by manufacturer of flooring.
 - 3. Moisture Vapor Emission Testing:

- a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours, or as otherwise required in writing by manufacturer of flooring.
- 4. Relative Humidity Testing:
 - a. Perform relative humidity test, ASTM F 2170. Proceed with installation only after substrates have a maximum relative humidity level of 75 percent, or as otherwise required in writing by manufacturer of flooring.
- 5. Perform tests indicated above and as recommended by flooring manufacturer. Proceed with installation only after substrates pass testing.
- C. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
- D. Use trowelable leveling and patching compound to fill cracks, holes, and depressions in substrates.
- E. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation.
 - 1. Do not install resilient products until they are same temperature as space where they are to be installed.
- F. Sweep and vacuum clean substrates to be covered by resilient products immediately before installation. After cleaning, examine substrates for moisture, alkaline salts, carbonation, and dust. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 SHEET INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor coverings.
- B. Unroll floor coverings and allow them to stabilize before cutting and fitting.
- C. Lay out floor coverings as follows:
 - 1. Maintain uniformity of floor covering direction.
 - 2. Minimize number of seams; place seams in inconspicuous and low-traffic areas, at least 6 inches away from parallel joints in floor covering substrates.
 - 3. Match edges of floor coverings for color shading at seams.
 - 4. Avoid cross seams.
- D. Scribe and cut floor coverings to butt neatly and tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, and door frames.
- E. Extend floor coverings into toe spaces, door reveals, closets, and similar openings.

- F. Maintain reference markers, holes, or openings that are in place or marked for future cutting by repeating on floor coverings as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install floor coverings on covers for telephone and electrical ducts and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of floor coverings installed on covers and adjoining floor covering. Tightly adhere floor covering edges to substrates that abut covers and to cover perimeters.
- H. Adhere floor coverings to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
- I. Seamless Installation:
 - 1. Heat-Welded Seams: Comply with ASTM F 1516. Rout joints and use welding bead to permanently fuse sections into a seamless floor covering. Prepare, weld, and finish seams to produce surfaces flush with adjoining floor covering surfaces.
- J. Integral-Flash-Cove Base: Cove floor coverings up vertical surfaces as indicated on Drawings. Support floor coverings at horizontal and vertical junction by cove strip. Butt at top against cap strip.
- 3.4 RESILIENT WALL BASE INSTALLATION
 - A. Apply wall base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
 - B. Install wall base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned.
 - C. Tightly adhere wall base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
 - D. Do not stretch wall base during installation.
 - E. On masonry surfaces or other similar irregular substrates, fill voids along top edge of wall base with manufacturer's recommended adhesive filler material.
 - F. Premolded Corners: Install premolded corners before installing straight pieces.
- 3.5 RESILIENT ACCESSORY INSTALLATION
 - A. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor coverings that would otherwise be exposed.
- 3.6 CLEANING AND PROTECTION
 - A. Perform the following operations immediately after completing resilient product installation:
 - 1. Remove adhesive and other blemishes from exposed surfaces.

- 2. Sweep and vacuum surfaces thoroughly.
- 3. Damp-mop surfaces to remove marks and soil.
 - a. Do not wash surfaces until after time period recommended by manufacturer.
- B. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period. Use protection methods recommended in writing by manufacturer.
 - 1. Apply protective floor polish to horizontal surfaces that are free from soil, visible adhesive, and surface blemishes if recommended in writing by manufacturer.
 - a. Coordinate selection of floor polish with the Owner's maintenance service.
 - 2. Cover products installed on horizontal surfaces with undyed, untreated building paper until Substantial Completion.
 - 3. Do not move heavy and sharp objects directly over surfaces. Place hardboard or plywood panels over flooring and under objects while they are being moved. Slide or roll objects over panels without moving panels.

END OF SECTION

SECTION 099000

PAINTING AND COATING

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Field painting of exposed interior items and surfaces.
 - 2. Surface preparation for painting.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 055000 METAL FABRICATIONS for shop priming ferrous metal.
 - 2. Section 081110 HOLLOW METAL DOORS AND FRAMES for factory priming steel doors and frames.
 - 3. Section 081400 FLUSH WOOD DOORS for factory finishing.
 - 4. Section 092110 GYPSUM BOARD ASSEMBLIES for surface preparation of gypsum board.

1.3 DEFINITIONS AND EXTENT

- A. General: Standard coating terms defined in ASTM D 16 apply to this Section.
 - 1. Flat refers to a lusterless or matte finish with a gloss range below 15 when measured at an 85-degree meter.
 - 2. Eggshell refers to low-sheen finish with a gloss range between 20 and 35 when measured at a 60-degree meter.
 - 3. Semigloss refers to medium-sheen finish with a gloss range between 35 and 70 when measured at a 60-degree meter.
 - 4. Full gloss refers to high-sheen finish with a gloss range more than 70 when measured at a 60-degree meter.
- B. This Section includes surface preparation and field painting of exposed exterior and interior items and surfaces.
 - 1. Surface preparation, priming, and finish coats specified in this Section are in addition to shop priming and surface treatment specified in other Sections.

- C. Paint exposed surfaces, except where these Specifications indicate that the surface or material is not to be painted or is to remain natural. If an item or a surface is not specifically mentioned, paint the item or surface the same as similar adjacent materials or surfaces. If a color of finish is not indicated, Architect will select from standard colors and finishes available.
 - 1. Painting includes field painting of exposed bare and covered pipes and ducts (including color coding), hangers, exposed steel and iron supports, and surfaces of mechanical and electrical equipment that do not have a factory-applied final finish.
- D. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and labels.
 - 1. Prefinished items include the following factory-finished components:
 - a. Architectural woodwork.
 - b. Toilet enclosures.
 - c. Metal lockers.
 - d. Kitchen appliances.
 - e. Elevator entrance doors and frames.
 - f. Elevator equipment.
 - g. Finished mechanical and electrical equipment.
 - h. Light fixtures.
 - 2. Concealed surfaces include walls or ceilings in the following generally inaccessible spaces:
 - a. Foundation spaces.
 - b. Furred areas.
 - c. Ceiling plenums.
 - d. Utility tunnels.
 - e. Pipe spaces.
 - f. Duct shafts.
 - g. Elevator shafts.
 - 3. Finished metal surfaces include the following:
 - a. Anodized aluminum.
 - b. Stainless steel.
 - c. Chromium plate.
 - d. Copper and copper alloys.
 - e. Bronze and brass.
 - 4. Operating parts include moving parts of operating equipment and the following:
 - a. Valve and damper operators.
 - b. Linkages.
 - c. Sensing devices.
 - d. Motor and fan shafts.
 - 5. Labels: Do not paint over UL, FMG, or other code-required labels or equipment name, identification, performance rating, or nomenclature plates.

1.4 SUBMITTALS

- A. Product Data: For each paint system indicated. Include block fillers and primers.
 - 1. Material List: An inclusive list of required coating materials. Indicate each material and cross-reference specific coating, finish system, and application. Identify each material by manufacturer's catalog number and general classification.
 - 2. Manufacturer's Information: Manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material.
- B. Samples for Verification: For each color and material to be applied, with texture to simulate actual conditions, on representative Samples of the actual substrate.
 - 1. Provide stepped Samples, defining each separate coat, including block fillers and primers. Use representative colors when preparing Samples for review. Resubmit until required sheen, color, and texture are achieved.
 - 2. Provide a list of materials and applications for each coat of each Sample. Label each Sample for location and application.
 - 3. Submit two eight inch by 12 inch Samples for each type of finish coating for Architect's review of color and texture only.
- C. Qualification Data: For Applicator.

1.5 QUALITY ASSURANCE

- A. Applicator Qualifications: A firm or individual experienced in applying paints and coatings similar in material, design, and extent to those indicated for this Project, whose work has resulted in applications with a record of successful in-service performance.
- B. Source Limitations: Obtain block fillers and primers for each coating system from the same manufacturer as the finish coats.
- C. Mockups: Provide a full-coat benchmark finish sample for each type of coating and substrate required. Comply with procedures specified in PDCA P5. Duplicate finish of approved sample Submittals.
 - 1. Architect will select one room or surface to represent surfaces and conditions for application of each type of coating and substrate.
 - a. Wall Surfaces: Provide samples on at least 100 sq. ft.
 - b. Small Areas and Items: Architect will designate items or areas required.
 - 2. Apply benchmark samples, according to requirements for the completed Work, after permanent lighting and other environmental services have been activated. Provide required sheen, color, and texture on each surface.
 - a. After finishes are accepted, Architect will use the room or surface to evaluate coating systems of a similar nature.
 - 3. Final approval of colors will be from benchmark samples.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to Project site in manufacturer's original, unopened packages and containers bearing manufacturer's name and label and the following information:
 - 1. Product name or title of material.
 - 2. Product description (generic classification or binder type).
 - 3. Manufacturer's stock number and date of manufacture.
 - 4. Contents by volume, for pigment and vehicle constituents.
 - 5. Thinning instructions.
 - 6. Application instructions.
 - 7. Color name and number.
 - 8. VOC content.
- B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum ambient temperature of 45 deg F. Maintain storage containers in a clean condition, free of foreign materials and residue.
 - 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste daily.

1.7 PROJECT CONDITIONS

- A. Apply waterborne paints only when temperatures of surfaces to be painted and surrounding air are between 50 and 90 deg F.
- B. Apply solvent-thinned paints only when temperatures of surfaces to be painted and surrounding air are between 45 and 95 deg F.
- C. Do not apply paint in snow, rain, fog, or mist; or when relative humidity exceeds 85 percent; or at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
 - 1. Painting may continue during inclement weather if surfaces and areas to be painted are enclosed and heated within temperature limits specified by manufacturer during application and drying periods.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work are listed in the Finish Schedule at the end of this Section.
- 2.2 PAINT MATERIALS, GENERAL
 - A. Material Compatibility: Provide block fillers, primers, and finish-coat materials that are compatible with one another and with the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
 - B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified that are factory formulated and recommended by manufacturer for application

indicated. Paint-material containers not displaying manufacturer's product identification will not be acceptable.

- 1. Proprietary Names: Use of manufacturer's proprietary product names to designate colors or materials is not intended to imply that products named are required to be used to the exclusion of equivalent products of other manufacturers. Furnish manufacturer's material data and certificates of performance for proposed substitutions.
- C. Colors: Refer to Finish Schedule.
- D. VOC Content for Interior Paints and Coatings: Products shall comply with VOC limits of authorities having jurisdiction and, for interior paints and coatings applied at Project site, the following VOC limits, exclusive of colorants added to a tint base, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 1. Flat Paints and Coatings: 50 g/L.
 - 2. Nonflat Paints and Coatings: 150 g/L.
 - 3. Dry-Fog Coatings: 400 g/L.
 - 4. Primers, Sealers, and Undercoaters: 200 g/L.
 - 5. Anticorrosive and Antirust Paints Applied to Ferrous Metals: 250 g/L.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 g/L.
 - 7. Pretreatment Wash Primers: 420 g/L.
 - 8. Floor Coatings: 100 g/L.
 - 9. Shellacs, Clear: 730 g/L.
 - 10. Shellacs, Pigmented: 550 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for paint application.
 - 1. Proceed with paint application only after unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 - 2. Start of painting will be construed as Applicator's acceptance of surfaces and conditions within a particular area.
- B. Coordination of Work: Review other Sections in which primers are provided to ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.
 - 1. Notify Architect about anticipated problems when using the materials specified over substrates primed by others.

3.2 PREPARATION

A. General: Remove hardware and hardware accessories, plates, machined surfaces, lighting fixtures, and similar items already installed that are not to be painted. If removal is impractical or impossible because of size or weight of the item, provide surface-applied protection before surface preparation and painting.

PAINTING AND COATING 099000 - 5

- 1. After completing painting operations in each space or area, reinstall items removed using workers skilled in the trades involved.
- B. Cleaning: Before applying paint or other surface treatments, clean substrates of substances that could impair bond of the various coatings. Remove oil and grease before cleaning.
 - 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
- C. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions and technical bulletins for each particular substrate condition and as specified.
 - 1. Provide barrier coats over incompatible primers or remove and reprime.
 - Cementitious Materials: Prepare concrete, concrete unit masonry, cement plaster, and mineral-fiber-reinforced cement panel surfaces to be painted. Remove efflorescence, chalk, dust, dirt, grease, oils, and release agents. Roughen as required to remove glaze. If hardeners or sealers have been used to improve curing, use mechanical methods of surface preparation.
 - a. Use abrasive blast-cleaning methods if recommended by paint manufacturer.
 - b. Determine alkalinity and moisture content of surfaces by performing appropriate tests. If surfaces are sufficiently alkaline to cause the finish paint to blister and burn, correct this condition before application. Do not paint surfaces if moisture content exceeds that permitted in manufacturer's written instructions.
 - c. Clean concrete floors to be painted with a 5 percent solution of muriatic acid or other etching cleaner. Flush the floor with clean water to remove acid, neutralize with ammonia, rinse, allow to dry, and vacuum before painting.
 - 3. Wood: Clean surfaces of dirt, oil, and other foreign substances with scrapers, mineral spirits, and sandpaper, as required. Sand surfaces exposed to view smooth and dust off.
 - a. Scrape and clean small, dry, seasoned knots, and apply a thin coat of white shellac or other recommended knot sealer before applying primer. After priming, fill holes and imperfections in finish surfaces with putty or plastic wood filler. Sand smooth when dried.
 - b. Prime, stain, or seal wood to be painted immediately on delivery. Prime edges, ends, faces, undersides, and back sides of wood, including cabinets, counters, cases, and paneling.
 - c. If transparent finish is required, backprime with spar varnish.
 - d. Backprime paneling on interior partitions where masonry, plaster, or other wet wall construction occurs on back side.
 - e. Seal tops, bottoms, and cutouts of unprimed wood doors with a heavy coat of varnish or sealer immediately on delivery.
 - 4. Ferrous Metals: Clean ungalvanized ferrous-metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with SSPC's recommendations.
 - a. Exterior Exposed Steel: Clean steel surfaces in accordance with SSPC-SP 6/NACE No. 3 Commercial Blast Cleaning. Abrasive blast cleaned surfaces shall

exhibit a uniform, angular profile of 1.5-3.0 mils. Prime cleaned surfaces within 8 hours and prior to surface rusting.

- b. Interior Exposed Steel, in Humid Environments: Clean steel surfaces in accordance with SSPC-SP 6/NACE No. 3 Commercial Blast Cleaning. Abrasive blast cleaned surfaces shall exhibit a uniform, angular profile of 1.5-3.0 mils. Prime cleaned surfaces within 8 hours and prior to surface rusting.
- c. Interior Exposed Steel, in Dry Environments: Clean steel surfaces in accordance with SSPC-SP2 or SP3 Hand or Power Tool Cleaning.
- 5. Galvanized Surfaces: Clean galvanized surfaces in accordance with SSPC-SP16 Brush off Blast Cleaning of Galvanized Steel and NonFerrous Metals, to achieve a minimum 1 mil anchor profile.
- D. Material Preparation: Mix and prepare paint materials according to manufacturer's written instructions.
 - 1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.
 - 2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.
 - 3. Use only thinners approved by paint manufacturer and only within recommended limits.
- E. Tinting: Tint each undercoat a lighter shade to simplify identification of each coat when multiple coats of same material are applied. Tint undercoats to match the color of the finish coat, but provide sufficient differences in shade of undercoats to distinguish each separate coat.

3.3 APPLICATION

- A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.
 - 1. Paint colors, surface treatments, and finishes are indicated in the paint schedules.
 - 2. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.
 - 3. Provide finish coats that are compatible with primers used.
 - 4. The term "exposed surfaces" includes areas visible when permanent or built-in fixtures, grilles, convector covers, covers for finned-tube radiation, and similar components are in place. Extend coatings in these areas, as required, to maintain system integrity and provide desired protection.
 - 5. Paint surfaces behind movable equipment and furniture the same as similar exposed surfaces. Before final installation of equipment, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 6. Paint interior surfaces of ducts with a flat, nonspecular black paint where visible through registers or grilles.
 - 7. Paint backsides of access panels and removable or hinged covers to match exposed surfaces.
 - 8. Finish exterior doors and doors in wet areas on tops, bottoms, and side edges the same as exterior faces.
 - 9. Sand lightly between each succeeding enamel or varnish coat.

- B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.
 - 1. The number of coats and film thickness required are the same regardless of application method. Do not apply succeeding coats until previous coat has cured as recommended by manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.
 - 2. Omit primer over metal surfaces that have been shop primed and touchup painted.
 - 3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure that edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.
 - 4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, and does not deform or feel sticky under moderate thumb pressure, and until application of another coat of paint does not cause undercoat to lift or lose adhesion.
- C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.
 - 1. Brushes: Use brushes best suited for type of material applied. Use brush of appropriate size for surface or item being painted.
 - 2. Rollers: Use rollers of carpet, velvet-back, or high-pile sheep's wool as recommended by manufacturer for material and texture required.
 - 3. Spray Equipment: Use airless spray equipment with orifice size as recommended by manufacturer for material and texture required.
- D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturer's recommended spreading rate to achieve dry film thickness indicated. Provide total dry film thickness of the entire system as recommended by manufacturer.
- E. Mechanical and Electrical Work: Painting of mechanical and electrical work is limited to items exposed in equipment rooms and occupied spaces.
- F. Mechanical items to be painted include, but are not limited to, the following:
 - 1. Uninsulated metal piping.
 - 2. Uninsulated plastic piping.
 - 3. Pipe hangers and supports.
 - 4. Tanks that do not have factory-applied final finishes.
 - 5. Visible portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets.
 - 6. Duct, equipment, and pipe insulation having "all-service jacket" or other paintable jacket material.
 - 7. Mechanical equipment that is indicated to have a factory-primed finish for field painting.
- G. Electrical items to be painted include, but are not limited to, the following:
 - 1. Switchgear.
 - 2. Panelboards.
 - 3. Electrical equipment that is indicated to have a factory-primed finish for field painting.

- H. Block Fillers: Apply block fillers to concrete masonry block at a rate to ensure complete coverage with pores filled.
- I. Prime Coats: Before applying finish coats, apply a prime coat, as recommended by manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn-through or other defects due to insufficient sealing.
- J. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections will not be acceptable.
- K. Transparent (Clear) Finishes: Use multiple coats to produce a glass-smooth surface film of even luster. Provide a finish free of laps, runs, cloudiness, color irregularity, brush marks, orange peel, nail holes, or other surface imperfections.
 - 1. Provide satin finish for final coats.
- L. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.
- 3.4 FIELD QUALITY CONTROL
 - A. The Owner reserves the right to invoke the following test procedure at any time and as often as the Owner deems necessary during the period when paint is being applied:
 - 1. The Owner will engage a qualified independent testing agency to sample paint material being used. Samples of material delivered to Project will be taken, identified, sealed, and certified in the presence of Contractor.
 - 2. Testing agency will perform appropriate tests for the following characteristics as required by the Architect.
 - 3. The Architect may direct Contractor to stop painting if test results show material being used does not comply with specified requirements. Contractor shall remove noncomplying paint from Project site, pay for testing, and repaint surfaces previously coated with the noncomplying paint. If necessary, Contractor may be required to remove noncomplying paint from previously painted surfaces if, on repainting with specified paint, the two coatings are incompatible.

3.5 CLEANING

- A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from Project site.
 - 1. After completing painting, clean glass and paint-spattered surfaces. Remove spattered paint by washing and scraping without scratching or damaging adjacent finished surfaces.

3.6 PROTECTION

- A. Protect work of other trades, whether being painted or not, against damage from painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.
- B. Provide "Wet Paint" signs to protect newly painted finishes. After completing painting operations, remove temporary protective wrappings provided by others to protect their work.
 - 1. After work of other trades is complete, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

3.7 PAINT SCHEDULE

- A. Schedule: Provide products and number of coats specified. Use of manufacturer's proprietary product names to designate colors, materials, generic class, standard of quality and performance criteria and is not intended to imply that products named are required to be used to the exclusion of equivalent performing products of other manufacturers.
- B. Interior Paint Schedule:
 - 1. Interior Gypsum Wallboard, Latex Paint Finish:
 - a. One Coat, Primer:
 - 1) Moore Eco Spec WB Interior Latex Primer 372.
 - 2) Duron Genesis Latex Primer.
 - 3) S-W ProMar 200 Zero-VOC Latex Wall Primer.
 - 4) PPG Pure Performance Latex Primer.
 - 5) California Paint Envirotech Zero VOC Primer 646.
 - b. And Two Coats, Flat Finish: At ceilings, and elsewhere as indicated.
 - 1) Moore Eco Spec WB Interior Latex Flat 373.
 - 2) Duron Genesis Latex Flat.
 - 3) S-W ProMar 200 Zero-VOC Latex Flat.
 - 4) PPG Pure Performance Latex Eggshell.
 - 5) California Paint Envirotech Zero VOC Flat 633.
 - or
 - c. And Two Coats, Eggshell Finish: At walls, and elsewhere as indicated.
 - 1) Moore Eco Spec WB Interior Latex Eggshell 374.
 - 2) Duron Genesis Latex Eggshell.
 - 3) S-W ProMar 200 Zero-VOC Latex Eggshell.
 - 4) PPG Pure Performance Latex Eggshell.
 - 5) California Paint Envirotech Zero VOC Eggshell 631.
 - or
 - d. And Two Coats, Semi-Gloss Finish: At toilet rooms, other wet areas, and elsewhere as indicated.
 - 1) Moore Eco Spec WB Interior Latex Semi-Gloss 376.

- 2) Duron Genesis Latex Semi-Gloss.
- 3) S-W ProMar 200 Zero-VOC Latex Semi-Gloss.
- 4) PPG Pure Performance Latex Semi-Gloss.
- 5) California Paint Envirotech Zero VOC Semi-Gloss 663.
- 2. Interior Gypsum Wallboard at OR, Urethane Coating:
 - a. Surface Preparation: Cured, clean and dry, free of surface contaminants.
 - b. One Coat:
 - 1) Tnemec 201 Epoxoprime at 3.0- 4.0 mils DFT.
 - 2) PPG PMC Amerlock Sealer at 3.0 to 4.5 mils DFT.
 - 3) Dupont Hi-Solids Colar primer at 3.0 to 4.0 mils DFT.
 - 4) International Interseal 670 HS at 3.0 to 4.0 mils DFT.
 - c. And One Coat:
 - 1) Tnemec 280 Tneme-glaze at 6.0 to 8.0 mils DFT.
 - 2) PPG PMC Amercoat 351 Epoxy at 6.0 to 8.0 mils DFT.
 - 3) Dupont 100 % Solids Epoxy at 8.0-10.0 mils.
 - 4) International Interseal 670 HS at 3.0 to 4.0 mils DFT.
 - d. And One Coat:
 - 1) Tnemec 1080 or 1081 Endurashield WB at 3.0 to 3.5 mils DFT.
 - 2) PPG PMC AmerShield VOC at 2.0 to 3.0 mils DFT.
 - 3) Dupont WB Urethane at 3.5 to 4.0 mils DFT.
 - 4) International Water Borne Urethane at 3.0 to 4.0 mils DFT.
- 3. Interior Concrete Masonry Units, Epoxy/Urethane Coating:
 - a. Surface Preparation: Cured, clean and dry, free of surface contaminants.
 - b. One Coat:
 - 1) Tnemec 130 Envirofil at 100 sqft/gal.
 - 2) PPG PMC Nu-Klad 965 at 100 sqft/gal.
 - 3) Dupont 25P at 100 sq/ft/gal.
 - 4) International Acrylic Cementitious Block Filler at 80 sqft/gal.
 - c. And One Coat:
 - 1) Tnemec 280 Tneme-Glaze at 6.0 8.0 mils DFT.
 - 2) PPG PMC Amercoat 351 6.0 to 8.0 mils DFT.
 - 3) Dupont 100% Solids Epoxy at 7.0 to 9.0 mils DFT.
 - 4) International Interseal 670 HS at 8.0 to 10.0 mils DFT.
 - d. And One Coat:
 - 1) Tnemec 1080 or 1081 EnduraShield at 3.0 to 4.0 mils DFT.
 - 2) PPG PMC AmerShield VOC at 3.0 to 4.0 mils DFT.
 - 3) Dupont Imron WB Urethane at 3.0 to 4.0 mils DFT.
 - 4) International Water Borne Urethane at 3.0 to 4.0 mils DFT.

PAINTING AND COATING 099000 - 11

- 4. Interior Concrete Walls Exposed to View, Urethane Coating:
 - a. Surface Preparation: Cured, clean and dry, free of surface contaminants.
 - b. And One Coat:
 - 1) Tnemec 201 Epoxoprime at 3.0- 4.0 mils DFT.
 - 2) PPG PMC Amerlock Sealer at 3.0 to 4.5 mils DFT.
 - 3) Dupont Hi-Solids Colar primer at 3.0 to 4.0 mils DFT.
 - 4) International Interseal 670 HS at 3.0 to 4.0 mils DFT.
 - c. And One Coat:
 - 1) Tnemec 280 Tneme-glaze at 6.0 to 8.0 mils DFT.
 - 2) PPG PMC Amercoat 351 Epoxy at 6.0 to 8.0 mils DFT.
 - 3) Dupont 100 % Solids Epoxy at 8.0-10.0 mils.
 - 4) International Interseal 670 HS at 3.0 to 4.0 mils DFT.
 - d. And One Coat:
 - 1) Tnemec 1080 or 1081 EnduraShield at 3.0 to 3.5 mils DFT.
 - 2) PPG PMC AmerShield VOC at 2.0 to 3.0 mils DFT.
 - 3) Dupont WB Urethane at 3.5 to 4.0 mils DFT.
 - 4) International Water Borne Urethane at 3.0 to 4.0 mils DFT.
- 5. Interior Metals (Not specified to receive other coating systems/not shop finished), Epoxy Painted Finish:
 - a. One Coat: Approved primer, in shop under other Sections (where specified). If not shop primed, provide primer recommended by finish coating manufacturer.
 - b. And One Coat:
 - 1) Tnemec 1029 Enduratone at 2.0 mils DFT.
 - 2) PPG PMC Amerlock 400 at 2.0 to 4.0 mils DFT.
 - 3) Dupont 25P at 3.0 to 4.0 mils DFT.
 - 4) International Interseal 670 HS at 3.0 mils DFT.
 - c. And One Coat:
 - 1) Tnemec 1029 Enduratone at 2.0 to 3.0 mils DFT.
 - 2) PPG PMC Amerlock 400 at 2.0 to 4.0 mils DFT.
 - 3) Dupont High Solids Acrylic Coating 3.0 mils DFT.
 - 4) International Intercryl 530 at 3.0 to 4.0 mils DFT.
- 6. Mechanical and Electrical Work: Paint all exposed items throughout the project except factory finished items with factory-applied baked enamel finishes which occur in mechanical rooms or areas, and excepting chrome or nickel plating, stainless steel, and aluminum other than mill finished. Paint all exposed ductwork and inner portion of all ductwork. Same as specified for other interior metals, hereinabove.

END OF SECTION

PAINTING AND COATING 099000 - 12

SECTION 102600

WALL AND DOOR PROTECTION

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Corner guards.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 087100 DOOR HARDWARE for metal armor, kick, mop, and push plates.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 - 1. Corner Guards: 12 inches long.
- C. Maintenance Data: For each impact-resistant wall protection unit to include in maintenance manuals.
 - 1. Include recommended methods and frequency of maintenance for maintaining optimum condition of plastic covers under anticipated traffic and use conditions. Include precautions against using cleaning materials and methods that may be detrimental to plastic finishes and performance.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain impact-resistant wall protection units from single source from single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of impactresistant wall protection units and are based on the specific system indicated. Refer to Division 01 Sections.

- 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
- C. Surface-Burning Characteristics: Provide impact-resistant, plastic wall protection units with surface-burning characteristics as determined by testing identical products per ASTM E 84, NFPA 255, or UL 723 by UL or another qualified testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Store impact-resistant wall protection units in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.
 - 1. Maintain room temperature within storage area at not less than 70 deg F during the period plastic materials are stored.
 - 2. Keep plastic sheet material out of direct sunlight.
 - 3. Store plastic wall protection components for a minimum of 72 hours, or until plastic material attains a minimum room temperature of 70 deg F.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install impact-resistant wall protection units until building is enclosed and weatherproof, wet work is complete and dry, and HVAC system is operating and maintaining temperature at 70 deg F for not less than 72 hours before beginning installation and for the remainder of the construction period.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless-Steel Sheet: ASTM A 240/A 240M.
- B. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.
- C. Adhesive: Type recommended by manufacturer for use with material being adhered to substrate indicated.
- D. Adhesives, General: Do not use adhesives that contain urea formaldehyde.
- E. VOC Limits for Installation Adhesives and Glues: Use installation adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 - 1. Wood Glues: 30 g/L.
 - 2. Contact Adhesive: 80 g/L.
 - 3. Special Purpose Contact Adhesive: 250 g/L.

2.2 CORNER GUARDS

- A. Surface-Mounted, Metal Corner Guards: Fabricated from 1-piece, formed or extruded metal with formed edges; with 90- or 135-degree turn to match wall condition.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Balco, Inc.
 - b. Boston Retail Products.
 - c. Construction Specialties, Inc.
 - d. IPC Door and Wall Protection Systems; Division of InPro Corporation.
 - e. Korogard Wall Protection Systems; Division of RJF International Corporation.
 - f. Pawling Corporation.
 - 2. Material: Stainless steel, Type 304.
 - a. Thickness: Minimum 0.0781 inch.
 - b. Finish: Directional satin, No. 4.
 - 3. Wing Size: Nominal 3-1/2 by 3-1/2 inches.
 - 4. Corner Radius: 1/8 inch.
 - 5. Mounting: Flat-head, countersunk screws through factory-drilled mounting holes.

2.3 FABRICATION

- A. Fabricate impact-resistant wall protection units to comply with requirements indicated for design, dimensions, and member sizes, including thicknesses of components.
- B. Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.
- C. Fabricate components with tight seams and joints with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.4 METAL FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Remove tool and die marks and stretch lines or blend into finish.
 - 2. Grind and polish surfaces to produce uniform, directionally textured, polished finish indicated, free of cross scratches. Run grain with long dimension of each piece.
- B. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
- C. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

2.5 STAINLESS-STEEL FINISHES

- A. Remove tool and die marks and stretch lines or blend into finish.
- B. Grind and polish surfaces to produce uniform, polished finish indicated, free of cross scratches.
 - 1. Run grain of directionally textured finishes with long dimension of each piece.
- C. Directional Satin Finish: No. 4 finish.
- D. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Examine walls to which impact-resistant wall protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Complete finishing operations, including painting, before installing impact-resistant wall protection system components.
- B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION

- A. General: Install impact-resistant wall protection units level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.
 - 1. Provide mounting hardware, anchors, and other accessories required for a complete installation.

3.4 CLEANING

A. Immediately after completion of installation, clean plastic covers and accessories using a standard, ammonia-based, household cleaning agent.

END OF SECTION

WALL AND DOOR PROTECTION 102600 - 4

SECTION 122110

HORIZONTAL LOUVER BLINDS

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Miniblinds with aluminum louver slats between glass at OR.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 061000 ROUGH CARPENTRY for wood blocking and grounds for mounting horizontal louver blinds and accessories.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include styles, material descriptions, construction details, dimensions of individual components and profiles, features, finishes, and operating instructions.
- B. Shop Drawings: Show location and extent of horizontal louver blinds. Include elevations, sections, details, and dimensions not shown in Product Data. Show installation details, mountings, attachments to other Work, operational clearances, and relationship to adjoining work.
- C. Samples for Verification: Louver slat in specified color, minimum 12 inches long.
- D. Window Treatment Schedule: Include horizontal louver blinds in schedule using same room designations indicated on Drawings.
- E. Maintenance Data: For horizontal louver blinds to include in maintenance manuals. Include the following:
 - 1. Methods for maintaining horizontal louver blinds and finishes.
 - 2. Precautions about cleaning materials and methods that could be detrimental to finishes and performance.
 - 3. Operating hardware.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain horizontal louver blinds through one source from a single manufacturer.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver blinds in factory packages, marked with manufacturer and product name, and location of installation using same room designations indicated on Drawings and in a window treatment schedule.
- 1.6 PROJECT CONDITIONS
 - A. Environmental Limitations: Do not install horizontal louver blinds until construction and wet and dirty finish work in spaces, including painting, is complete and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
 - B. Field Measurements: Where horizontal louver blinds are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operable glazed units' operation hardware throughout the entire operating range. Notify Architect of discrepancies. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Hunter Douglas Window Fashions.
 - 2. Levolor Contract; a Newell Company; Levolor.
 - 3. Springs Window Fashions Division, Inc.; Graber.
 - 4. Verosol USA, Inc.

2.2 HORIZONTAL LOUVER BLINDS, ALUMINUM LOUVER SLATS

- A. Louver Slats: Aluminum, alloy and temper recommended by producer for type of use and finish indicated; with crowned profile and radiused corners.
 - 1. Nominal Slat Width: 1 inch for miniblinds.
 - 2. Nominal Slat Thickness: Not less than 0.008 inch.
 - 3. Slat Finish: Two colors as indicated, one per side of slat.
- B. Headrail: Formed steel or extruded aluminum; long edges returned or rolled; fully enclosing operating mechanisms on three sides and ends
- C. Tilt Control: Consisting of enclosed worm gear mechanism[, slip clutch or detachable wand preventing overrotation, and linkage rod, for the following operation:

- 1. Tilt Operation: Manual with clear plastic wand
- 2. Length of Tilt Control: Length required to make operation convenient from floor level.
- 3. Tilt: Full.
- D. Lift Operation: Manual, cord lock; locks pull cord to stop blind at any position in ascending or descending travel.
- E. Ladders: Evenly spaced to prevent long-term louver sag; braided string.
- F. Mounting: As indicated on Drawings, mounting permitting easy removal and replacement without damaging blind or adjacent surfaces and finishes; with spacers and shims required for blind placement and alignment indicated.
 - 1. Provide intermediate support brackets if end support spacing exceeds spacing recommended by manufacturer for weight and size of blind.
- G. Hold-Down Brackets and Hooks or Pins: Manufacturer's standard, as indicated.
- H. Colors, Textures, Patterns, and Gloss: As selected by the Architect.
- 2.3 HORIZONTAL LOUVER BLINDS FABRICATION
 - A. Product Standard and Description: Comply with AWCMA Document 1029, unless otherwise indicated, for each horizontal louver blind designed to be self-leveling and consisting of louver slats, rails, ladders, tapes, lifting and tilting mechanisms, cord, cord lock, tilt control, and installation hardware.
 - B. Concealed Components: Noncorrodible or corrosion-resistant-coated materials.
 - 1. Lifting and Tilting Mechanisms: With permanently lubricated moving parts.
 - C. Unit Sizes: Obtain units fabricated in sizes to fill window and other openings as follows, measured at 74 deg F:
 - 1. Blind Units Installed between (Inside) Jambs: Width equal to 1/4 inch per side or 1/2 inch total, plus or minus 1/8 inch, less than jamb-to-jamb dimension of opening in which each blind is installed. Length equal to 1/4 inch, plus or minus 1/8 inch, less than head-to-sill dimension of opening in which each blind is installed.
 - D. Installation Brackets: Designed for easy removal and reinstallation of blind, for supporting headrail and operating hardware, and for hardware position and blind mounting method indicated.
 - E. Installation Fasteners: Not fewer than two fasteners per bracket, fabricated from metal noncorrosive to blind hardware and adjoining construction; type designed for securing to supporting substrate; and supporting blinds and accessories under conditions of normal use.
 - F. Color-Coated Finish: For components exposed to view, apply manufacturer's standard baked finish complying with manufacturer's written instructions for surface preparation including pretreatment, application, baking, and minimum dry film thickness.

G. Component Color: Provide rails, cords, ladders, and exposed-to-view metal and plastic matching or coordinating with slat color, unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HORIZONTAL LOUVER BLIND INSTALLATION

A. Install blinds level and plumb and aligned with adjacent units according to manufacturer's written instructions, and located so exterior louver edges in any position are not closer than 1 inch to interior face of glass. Install intermediate support as required to prevent deflection in headrail. Allow clearances between adjacent blinds and for operating glazed opening's operation hardware, if any.

3.3 ADJUSTING

- A. Adjust horizontal louver blinds to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.
- 3.4 CLEANING AND PROTECTION
 - A. Clean blind surfaces after installation, according to manufacturer's written instructions.
 - B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that horizontal louver blinds are without damage or deterioration at time of Substantial Completion.
 - C. Replace damaged blinds that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

END OF SECTION

SECTION 134900

RADIATION PROTECTION

PART 1 - GENERAL

- 1.1 GENERAL PROVISIONS
 - A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.
- 1.2 DESCRIPTION OF WORK
 - A. Work Included: Provide labor, materials and equipment necessary to complete the work of this Section, including but not limited to the following:
 - 1. Lead sheet, strip, and plate.
 - 2. Lead glass.
 - 3. Lead-lined building materials and products including the following:
 - a. Gypsum board.
 - b. Steel hollow-metal doors and door frames.
 - c. Wood doors.
 - d. Observation-window frames.
 - 4. Informational signs.
 - B. Related Work: The following items are not included in this Section and are specified under the designated Sections:
 - 1. Section 087100 DOOR HARDWARE for door hardware for lead-lined steel hollow-metal doors.
 - 2. Section 092110 GYPSUM BOARD ASSEMBLIES for metal framing and furring for leadlined gypsum board and for finishing materials, accessories, and trim applied to leadlined gypsum board.
 - 3. Section 099000 PAINTING AND COATING for field finishing doors and frames.
 - 4. Division 26 ELECTRICAL for electrical connections including conduit and wiring for neutron-shielding door controls and operators.

1.3 DEFINITIONS

- A. Lead Equivalence: The thickness of lead that provides the same attenuation (reduction of radiation passing through) as the material in question under the specified conditions.
 - 1. Lead equivalence specified for materials used in diagnostic x-ray rooms is as measured at 100 kV unless otherwise indicated.

1.4 PERFORMANCE REQUIREMENTS

- A. Provide materials and workmanship, including joints and fasteners, that maintain continuity of radiation protection at all points and in all directions equivalent to materials specified in thicknesses and locations indicated.
 - 1. Materials, thicknesses, and configurations indicated are based on radiation protection design prepared by Owner's radiation health physicist. This design is available to Contractor on request.
- B. Lead-Lined Assemblies: Unless otherwise indicated, provide lead thickness in doors, door frames, window frames, penetration shielding, joint strips, film transfer cabinets, and other items located in lead-lined assemblies not less than that indicated for assemblies in which they are installed.
- C. Lead Glazing: Unless otherwise indicated, provide lead equivalence not less than that indicated for assembly in which glazing is installed.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show layout of radiation-protected areas. Indicate lead thickness or lead equivalence of components. Show components and installation conditions not fully dimensioned or detailed in product data.
 - 1. Show ducts, pipes, conduit, and other objects that penetrate radiation protection; include details of penetrations.
 - a. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Qualification Data: For qualified Installer.
- E. Warranty: Sample of special warranty.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Fabricator of products.
- B. Source Limitations: Obtain each type of radiation protection product from single source from single manufacturer unless otherwise indicated.
- C. Forest Certification: Provide doors made from wood products obtained from forests certified by an FSC-accredited certification body to comply with FSC 1.2, "Principles and Criteria."
- D. Fire-Rate and Smoke-Control Door and Frame Assemblies: Comply with Section 081110 HOLLOW METAL DOORS AND FRAMES and Section 081400 FLUSH WOOD DOORS.
- E. Glazing: Comply with requirements in Division 08 Section "Glazing."

- F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01.
 - 1. Review methods and procedures related to radiation protection including, but not limited to, the following:
 - a. Sequence and schedule of radiation protection work in relation to other work.
 - b. Supplementary lead shielding at duct, pipe, and conduit penetrations of radiation protection.
 - c. Methods of attaching other construction and equipment to lead-lined finishes.
 - d. Notification procedures for work that requires modifying radiation protection.
 - e. Requirements for field quality control.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Lead-Lined Gypsum Panels: Neatly stack panels flat to prevent deformation.
 - B. Lead-Lined Steel Doors and Frames: Comply with requirements in Section 081110 HOLLOW METAL DOORS AND FRAMES for delivery, storage, and handling.
 - C. Lead-Lined Wood Doors: Comply with requirements in Section 081400 FLUSH WOOD DOORS for delivery, storage, and handling.
- 1.8 PROJECT CONDITIONS
 - A. Environmental Limitations: Do not deliver or install radiation protection until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - B. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.9 WARRANTY

A. Comply with requirements in Section 081400 - Flush Wood Doors.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Lead Sheet, Strip, and Plate: ASTM B 749, alloy UNS No. L51121 (chemical-copper lead).
- B. Lead Glass: Lead-barium, polished float glass containing not less than 60 percent heavy metal oxides, including not less than 48 percent lead oxide by weight.

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Amerope Enterprises, Inc.
 - b. McGrory Glass, Inc.
 - c. Schott North America, Inc.
- 2. Safety Glass: Laminated float glass.
 - a. Outer Lite: Clear float glass; thickness as indicated.
 - b. Interlayer: Clear polyvinyl butyral or cured resin of manufacturer's standard thickness indicated with a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after laminating glass lites and installation.
 - c. Inner Lite: Lead-barium, polished float glass; thickness as indicated.
- C. Lead-Lined Gypsum Board: 5/8-inch-thick gypsum board complying with Section 092110 GYPSUM BOARD ASSEMBLIES, of width and length required for support spacing and to prevent cracking during handling, and with a single sheet of lead laminated to the back of the board.
 - 1. Provide lead sheet lining the full width and length of board.
 - 2. Provide 5/8-inch lead disks for covering screw heads.
 - 3. Provide lead-headed nails for fastening gypsum board, accessories, and trim to wood members.
- D. Accessories and Fasteners: Provide manufacturer's standard fasteners and accessories as required for installation, maintaining same lead equivalence as rest of system.
- E. Asphalt Coating: Cold-applied asphalt emulsion complying with ASTM D 1187.
- F. Asphalt Felt: ASTM D 226.

2.2 LEAD-LINED STEEL HOLLOW-METAL DOORS

- A. General: Steel doors complying with ANSI/NAAMM-HMMA 861, except with a single continuous sheet of lead of thickness not less than that required for partition in which door is installed and extending from top to bottom and edge to edge, installed either between back-to-back stiffeners or between stiffeners and stop face of door.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Deronde Products.
 - b. Karpen Steel Custom Doors & Frames.
 - c. A & L Shielding Inc.
 - d. El Dorado Metals, Inc.
 - e. New Shield.
 - f. Ray-Bar Engineering Corp.

- 2. Line inverted channels at top and bottom of doors with lead sheet of same thickness used in door and close with filler channels to provide flush top and bottom edges.
- 3. Shield cutouts for locksets with lead sheet of same thickness used in door. Lap lining of cutouts with door lining .
- 4. Provide removable stops for glazed openings.
- 5. Factory fit doors to suit frame-opening sizes indicated with 1/16-inch clearance at heads and jambs and minimum clearance at bottom.
- 6. Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating.

2.3 LEAD-LINED STEEL HOLLOW-METAL DOOR FRAMES

- A. General: Steel door frames complying with ANSI/NAAMM-HMMA 861, except 0.0667 inch thick, and lined with lead sheet of thickness not less than that required for doors and walls where frames are used.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Deronde Products.
 - b. Karpen Steel Custom Doors & Frames.
 - c. Aaccurate Radiation Shielding, Inc.
 - d. A & L Shielding Inc.
 - e. El Dorado Metals, Inc.
 - f. Fluke Biomedical; Radiation Management Services.
 - g. Mayco Industries; a Metalico company.
 - h. NELCO, Inc.
 - i. New Shield.
 - j. Radiation Protection Products, Inc.
 - k. Ray-Bar Engineering Corp.
 - 2. Provide additional reinforcements and internal supports to adequately carry the weight of lead-lined doors. Install reinforcements and supports before installing lead lining.
 - 3. Form lead sheet to match frame contour, continuous in each jamb and across the head, lapping the stops. Form lead shields around areas prepared to receive hardware. Fabricate lead lining wide enough to maintain an effective lap with lead of adjacent shielding.
 - 4. Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating.

2.4 LEAD-LINED WOOD DOORS

- A. General: Flush solid-core wood doors with lead lining, thickness not less than that required for partition in which door is installed.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Algoma Hardwoods, Inc.
 - b. Eggers Industries; Architectural Door Div.
 - c. Marshfield DoorSystems, Inc.
 - d. VT Industries Inc.

- 2. Door Construction: Comply with requirements of Section 081400 FLUSH WOOD DOORS.
- 3. Lead Lining: One or more continuous sheets of lead extending from top to bottom and edge to edge, constructed either in the core or between the core and faces, at manufacturer's option.

2.5 LEAD-LINED OBSERVATION-WINDOW FRAMES

- A. General: Fabricate from 0.043-inch-thick, formed-steel sheet or 0.064-inch-thick aluminum extrusions with mitered corners, welded or bolted with concealed fasteners.
 - 1. Line with lead sheet formed to match frame contour, continuous in each jamb and across head and sill, lapping the stops, and fabricated wide enough to maintain an effective lap with lead of adjoining assemblies.
 - 2. Construct so lead lining overlaps glazing material perimeter by at least 3/8 inch and provide removable stops.
 - 3. Form sill with an opening for sound transmission. Offset sound passage to make opening lightproof and to maintain required lead equivalence at all points and in all directions.

2.6 INFORMATIONAL SIGNS

- A. Informational Signs, General:
 - 1. Color: As selected by Architect from manufacturer's full range of colors.
 - 2. Provide copy indicated or as directed. Provide signs of sufficient size to contain required information.
 - 3. Indicate lead equivalence in millimeters and heights of radiation protection in inches.
- B. Informational Signs, General: Fabricate signs by engraving lettering in high-pressure-laminate engraving stock with contrasting face and core. Machine engrave copy using high-speed cutters mechanically positioned by master templates for accurately formed letters, numbers, and symbols.
 - 1. Color: As selected by Architect from manufacturer's full range of colors.
 - 2. Provide copy indicated or as directed. Provide signs of sufficient size to contain required information.
 - 3. Indicate lead equivalence in millimeters and heights of radiation protection in inches.
- C. Rooms Where the Level of Protection Is Uniform Throughout: Provide one sign for each room indicating lead equivalence of partitions, ceilings, floors, doors, and other portions of radiation protection enclosure. Indicate height of radiation protection above floor or indicate that partitions are radiation protected to full height.
- D. Rooms Where the Level of Protection Is Not Uniform Throughout: Provide one sign for each room with different lead equivalences in different locations. Indicate, in tabular form, lead equivalence of each wall, partition, ceiling, floor, door, and window. Indicate height of radiation protection above floor or indicate that partitions are radiation protected to full height. Indicate where lead equivalence changes or is not continuous.

- E. Rooms Where Some Partitions Are without Radiation Protection: Provide one sign for each partition that contains radiation protection and indicate its lead equivalence. Indicate height of radiation protection above floor or indicate that partitions are radiation protected to full height.
- F. Rooms Where Only the Door Has Radiation Protection: Provide one sign for each door indicating its lead equivalence.

2.7 DOOR AND DOOR FRAME FABRICATION

A. Hardware Preparation: Factory prepare doors and frames to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates furnished as specified in Section 087100 - DOOR HARDWARE.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates in areas to receive radiation protection, with Installer present, for compliance with requirements, installation tolerances, and other conditions affecting performance of radiation protection.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. Concrete Surfaces: Proceed with installation only after surfaces are clean, dry, and free of depressions and sharp projections that could damage or penetrate lead sheet.

3.2 INSTALLATION OF LEAD-LINED GYPSUM BOARD

- A. Install with long edge parallel to supports and lead lining facing supports. Provide blocking at end joints.
- B. Fastening to Metal Supports: Use steel drill screws spaced as recommended in writing by gypsum board manufacturer. Install lead strips covering face of framing and wrap around flange to cover points of screws.
 - 1. Where possible, install lead-lined gypsum board before installing gypsum board on other side of partition, and do not fold lead strips back over inside of flange until after lead-lined gypsum board is applied.
 - 2. Apply lead disks recessed flush with surface of board over heads of screws securing trim.
- C. Fastening to Metal Supports: Use steel drill screws spaced as recommended in writing by gypsum board manufacturer. Apply lead disks over screw heads and recess flush with surface of board.
 - 1. Install lead strips, 1-1/2 inches wide minimum and same thickness as lead lining, to face of supports and blocking where joints occur. Secure lead strips with construction adhesive. Provide shims at intermediate supports.
 - 2. Apply lead disks recessed flush with surface of board over heads of screws securing trim.

- D. Fastening to Wood Supports: Use lead-headed nails spaced as recommended in writing by gypsum board manufacturer. Drill pilot holes to prevent deforming nails or distorting board. Drive nail heads slightly below exposed surface.
 - 1. Install lead strips, 1-1/2 inches wide minimum and same thickness as lead lining, to face of supports and blocking where joints occur. Secure lead strips with construction adhesive. Provide shims at intermediate supports.
 - 2. Fasten accessories and trim to wood supports with lead-headed nails as specified above for fastening gypsum board.
- E. Two-Layer System: Apply a facing sheet of gypsum board vertically over base sheet using laminating adhesive recommended in writing by gypsum board manufacturer. Offset joints in finish layer from joints in base layer and fasten at top and bottom of sheet to support finish panel until adhesive has set.
 - 1. Locate fasteners above ceiling or behind wall base and cover fasteners with lead disks recessed flush with surface of board.
- F. Openings: Extend lead-lined gypsum board into frames of openings, lapping lead lining with lead frames or frame linings at least 1 inch. Arrange board around openings so neither horizontal nor vertical joints occur at corners of openings.
- G. Install control and expansion joints where indicated, with appropriate trim accessories. Install lead strip on face of framing, extending across joint, and lap with lead lining of gypsum board.

3.3 INSTALLATION OF LEAD-LINED DOORS AND DOOR FRAMES

- A. Install lead-lined steel doors and door frames according to Section 081110 HOLLOW METAL DOORS AND FRAMES.
 - 1. Apply a coat of asphalt mastic or paint to lead lining in door frames where lead will come in contact with masonry or grout.
- B. Install lead-lined wood doors according to Section 081400 FLUSH WOOD DOORS.
- C. Glazing: Comply with installation requirements in Division 08 Section "Glazing" and with door manufacturer's written instructions.
- D. Frames: Comply with HMMA 840 unless otherwise indicated. Except for frames located in existing walls or partitions, place frames before constructing walls. Set frames accurately in position, plumb, and brace securely until permanent anchors are set.
 - 1. Provide three anchors per jamb, located adjacent to hinge on hinge jamb and at corresponding heights on strike jamb.
 - 2. In masonry construction, use wire or T-strap anchors and apply a coat of asphalt mastic or paint to lead lining where lead will come in contact with masonry or grout.
 - 3. In metal stud construction, use wall anchors attached to studs with screws.
 - 4. In wood stud construction, use strap anchors attached to studs with screws.
- E. Lap lead lining of frames over lining in walls at least 1 inch.

- F. Lead Lining of Frames: Line inside of frames with lead of thickness not less than that required in doors and walls where frames are used. Form lead to match frame contour, continuous in each jamb and across the head, lapping the stops. Form lead shields around areas prepared to receive hardware. Lap lining over lining in walls at least 1 inch.
- G. Install doors in frames level and plumb, aligned with frames and with uniform clearance at each edge.
- H. Line astragals with lead sheet.
- I. Hardware: Line covers, escutcheons, and plates to provide effective shielding at cutouts and penetrations of frames and doors. See Division 08 Section "Door Hardware" for other installation requirements.
- J. Touch up damaged finishes with compatible coating after sanding smooth.
- K. Operation: Rehang or replace doors that do not swing or operate freely. Check and readjust operating hardware items, leaving doors and frames undamaged and in proper operating condition.
- 3.4 INSTALLATION OF LEAD-LINED OBSERVATION WINDOWS
 - A. Install observation windows according to manufacturer's written installation instructions.
 - 1. Apply a coat of asphalt mastic or paint to lead lining in frames where lead will come in contact with masonry or grout.
 - B. Install windows level, plumb, square, true to line, and anchored securely in place to structural support.
 - C. Install leaded side of frame on radiation side of wall. Lap lead lining of frames over lining in walls at least 1 inch.
 - D. Glazing: Comply with installation requirements in Section 088000 GLAZING and with manufacturer's written instructions.
- 3.5 INSTALLATION OF PENETRATING ITEMS
 - A. At penetrations of lead linings, provide lead shields to maintain continuity of protection.
 - B. Provide lead linings, sleeves, shields, and other protection in thickness not less than that required in assembly being penetrated.
 - C. Secure shields at penetrations using adhesive or wire ties but not penetrating fasteners unless indicated on Drawings.
 - D. Outlet Boxes and Conduit: Cover or line with lead sheet lapped over adjacent lead lining at least 1 inch. Wrap conduit with lead sheet for a distance of not less than 10 inches from box.
 - E. Duct Openings: Unless otherwise indicated, line or wrap ducts with lead sheet for distance from partition/ceiling equal to three times the largest opening dimension. Lap lead sheet with adjacent lead lining at least 1 inch.

- F. Piping: Unless otherwise indicated, wrap piping with lead sheet for a distance of not less than 10 inches from point of penetration.
- 3.6 FIELD QUALITY CONTROL
 - A. Testing Agency: Owner may engage a qualified testing agency to perform tests and inspections after radiology equipment has been installed and placed in operating condition.
 - B. Correct deficiencies in or remove and replace radiation protection that inspection reports indicate does not comply with specified requirements.
- 3.7 PROTECTION
 - A. Lock radiation-protected rooms once doors and locks are installed and limit access to only those persons performing work in the rooms.

END OF SECTION

TABLE OF CONTENTS

FIRE PROTECTION

SECTION NUMBER	SECTION TITLE
210000	FIRE PROTECTION GENERAL PROVISIONS
210500	COMMON WORK RESULTS FOR FIRE SUPPRESSION
210548	VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
211000	WATER-BASED FIRE-SUPPRESSION SYSTEMS

SECTION 210000

FIRE PROTECTION GENERAL PROVISIONS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Work under this Section as shown or specified shall be in accordance with the requirements of the Contract Documents.

1.2 DEFINITIONS

- A. "Provide": to supply, install and make complete, safe, and operable, the particular work referred to unless specifically indicated otherwise.
- B. "Install": to erect, mount, and make complete with all related accessories.
- C. "Furnish" or "supply": to purchase, procure, acquire, and deliver complete with related accessories.
- D. "Work": labor, materials, equipment, services, and all related accessories necessary for the proper and complete installation of complete systems.
- E. "Piping": pipe, tube, fittings, flanges, valves, controls, strainers, hangers, supports, unions, traps, drains, insulation and all related accessories.
- F. "Wiring": raceway, fittings, wire, boxes and all related accessories.
- G. "Indicated," "shown" or "noted": as indicated, shown, or noted on drawings or specifications.
- H. "Similar" or "equal": of base bid manufacturer, equal in quality materials, weight, size, performance, design, and efficiency of specified product, conforming with "Base Bid Manufacturers".
- I. "Reviewed" "satisfactory," "accepted", or "directed": as reviewed, satisfactory, accepted, or directed by Architect and/or Engineer.
- J. "Motor Controllers": manual or magnetic starters with or without switches, individual pushbuttons or hand-off-automatic (HOA) switches controlling the operation of motors.
- K. "Control or Actuating Devices": automatic sensing and switching devices such as thermostats, pressure, float, flow operation of equipment.
- L. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.
- M. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

- N. Exposed, Exterior Installations: Exposed to view outdoors, or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- O. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- P. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants, but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- Q. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. NP: Nylon plastic.
 - 4. PE: Polyethylene plastic.
 - 5. PVC: Polyvinyl chloride plastic.
- R. The following are industry abbreviations for rubber materials:
 - 1. CR: Chlorosulfonated polyethylene synthetic rubber.
 - 2. EPDM: Ethylene propylene diene terpolymer rubber.

1.3 WORK INCLUDED

- A. The work covered by this section includes the construction described in the Contract Documents including all labor necessary to perform and complete such construction, all materials and equipment incorporated or to be incorporated in such construction, and all services, facilities, tools and equipment necessary or used to perform and complete such construction. The work includes, but is not limited to the following:
 - 1. Sprinkler Systems and Equipment.
 - 2. Piping, Valves and Fittings.
 - 3. Identification System.
 - 4. Hydraulic Calculations.
 - 5. Cutting, Patching and Equipment Painting.
 - 6. Hangers, Supports and Guides.
 - 7. Alarm Wiring, except for Fire Alarm.
 - 8. Rigging of Equipment.
 - 9. Furnishing access Doors and Frames to be installed under another section.

- 10. Fire Stopping for Pipe Penetration.
- 11. Pipe Penetration.
- 12. Alarm Initiating Devices.
- B. Related Work not Included in this Division but Specified Elsewhere
 - 1. Fire Alarm Wiring.
 - 2. Finish painting, except for pre-finished equipment or as otherwise specified.
 - 3. Installation of access doors and frames.

1.4 COORDINATION OF WORK

- A. The fire protection drawings show the general arrangement of piping and appurtenances. Follow these drawings as closely as the actual construction will permit. Conform the fire protection work to the requirements shown on the drawings. Provide offsets, fittings, and accessories, which may be required but not shown on the drawings. Investigate the site, structural and finish ground conditions affecting the work, and arrange the work accordingly. Provide such work and accessories as may be required to meet such conditions.
- B. Certain materials will be provided by other trades. Examine the Contract Documents to ascertain these requirements.
- C. Carefully check space requirements with other trades to insure that all material can be installed in the spaces allotted thereto including finished suspended ceilings.
- D. Transmit to other trades all information required for work to be provided under their sections, in ample time for installation.
- E. Wherever work interconnects with work of other trades, coordinate with the General Contractor to insure that necessary information is presented so all the necessary connections and equipment may be properly installed. Identify all items (valves, piping, equipment, etc.) In order that the General Contractor will know where to install access doors and panels.
- F. Consult with other trades regarding equipment so that, wherever possible, motors, motor controls, pumps and valves are of the same manufacturer.
- G. Furnish and set all sleeves for passage of pipes and conduits through structural masonry and concrete walls and floors and elsewhere as will be required for the proper protection of each pipe passing through building surfaces.
- H. Provide required supports and hangers for piping and equipment, designed so as not to exceed allowable loadings of structures.
- I. Examine and compare the contract drawings and specifications with the drawings and specifications of other disciplines and report any discrepancies between them to the General Contractor and obtain from him written instructions for changes necessary in the work of this section. Install and coordinate the work of this section in cooperation with the General Contractor installing interrelated work. Before installation, take proper provisions to avoid interferences. All

changes required in the work of the contractor, caused by his neglect to do so, are to be made by him at his own expense.

- J. Wherever the work is of sufficient complexity, prepare additional detail drawings to scale similar to that of the design drawings, prepared on tracing medium of the same size as contract drawings. With these layouts, coordinate the work with the work of the General Contractor. Such detailed work is to be clearly identified on the drawings as to the area to which it applies. Submit these drawings to the Engineer for review. At completion, however, include a set of such drawings with each set of as-built drawings. When directed by the Engineer, submit drawings for review, clearly showing the work of this section and its relation to the work of other disciplines before commencing shop fabrication or erection in the field.
- K. Before commencing work, examine all adjoining work on which this work is in any way dependent for perfect workmanship and report any conditions, which prevent performance of first class work. Become thoroughly familiar with actual existing conditions to which connections must be made or which must be changed or altered.
- L. Provide required anchor bolts, sleeves, inserts and supports. Direct location of anchor bolts, sleeves, inserts and supports to insure that they are properly installed. Any expense resulting from the improper location or installation of anchor bolts, sleeves, inserts and supports to be paid for by the contractor.
- M. Slots, chases, openings and recesses through floors, walls, ceilings, and roofs will be provided by the various trades in their respective materials. Properly locate such openings and be responsible for any cutting and patching caused by the neglect to do so.
- N. Adjust location of pipes, panels, equipment, etc., to accommodate the work to prevent interferences, both anticipated and encountered. Determine the exact route and location of each pipe prior to fabrication.
 - 1. Right-of-Way: Lines that pitch have the right-of-way over those that do not pitch, i.e., plumbing drains. Lines whose elevations cannot be changed have right-of-way over lines whose elevations can be changed.
 - 2. Make offsets, transitions and changes in direction in pipes as required to maintain proper head room and pitch on sloping lines whether or not indicated on the drawings. Furnish and install all air vents, drains, etc., as required to affect these offsets, transitions and changes in direction.
- O. Install all fire protection work to permit removal (without damage to other parts) of all other parts requiring periodic replacement or maintenance. Arrange pipes and equipment to permit access to valves, cocks, starters, motors, and control components, and to clear the openings of swinging doors and access panels.
- P. Provide access panels in equipment as required for inspection and maintenance of internal parts, etc.
- Q. This contractor shall coordinate his work with the work of other trades.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

R. Coordinated Composite Drawings

1. The Contractor shall prepare full coordinated composite drawings for the mechanical, electrical and fire protection trades. The Contractor shall overlay each trade's work (in separate colors) on a sepia set of sheetmetal drawings. All conflicts and potential conflicts shall be clearly identified on the sepia sheetmetal drawings. This shall include but not be limited to conflicts with lights, equipment, piping, ductwork and supports of other trades, as well as conflicts with architectural and structural walls, columns, ceilings and structural beams. Contractor shall have representatives of each trade attend a weekly job site coordination meeting in the Contractor's field office. All trades shall resolve conflicts at these meetings and sign off each sepia sheetmetal drawing indicating acceptance and satisfactory resolution to all conflicts. All conflicts that cannot be resolved shall be brought to the attention of the Engineer for resolution.

1.5 CONTRACTOR'S RESPONSIBILITY FOR EVALUATION

- A. The Engineer and Owner make no representations, regarding the character or extent of the subsoils, water levels, existing structural, mechanical and electrical installations, above or below ground or other subsurface conditions which may be encountered during the Work. The contractor must make his own evaluation of existing conditions, which may affect methods or cost of performing the Work, based on his own examination of the facility or other information. Failure to examine the drawings or other information shall not relieve the contractor of his responsibility for satisfactory accomplishment of the Work.
- B. The locations of existing services are believed to be as indicated on the drawings. The contractor shall verify the actual location of these services and notify the Engineer of any discrepancies prior to commencing work.

1.6 ACCESS TO FIRE PROTECTION EQUIPMENT

A. The contractor shall not interfere with access to hydrants, fire exits, fire hose stations, fire extinguishers, and fire alarm pull stations. In no case shall the contractor's material or equipment be within twenty-five (25) feet of a hydrant or fire alarm pull station.

1.7 EQUIPMENT AND MATERIALS

- A. If products and materials are specified or indicated on the drawings for a specific item or system, the contractor shall use those products or materials. If products and materials are not listed in either of the above, use first class products and materials, in accordance with shop drawings.
- B. All products and materials shall be new, clean, free of defects and free of damage and corrosion.
- C. No permanent equipment shall be used to provide temporary services during construction.
- D. Ship and store all products and materials in a manner which will protect them from damage, weather and entry of debris. If items are damaged, do not install, but take immediate steps to obtain replacement or repair.
- E. Make certain that all materials selected directly, or by suppliers, conform to the requirements of the contract drawings and specification. Transmittal of such specifications and drawings, information to persons manufacturing and supplying materials to the project, and rigid adherence

thereto, is the contractor's responsibility. Acceptance of a manufacturer's name by the Engineer does not release the contractor of the responsibility for providing materials, which comply in all respects with the requirements in the Contract Documents.

- F. Applicable equipment and materials to be listed by Underwriters' Laboratories and Manufactured in accordance with ASME, AWWA, NFPA or ANSI standards, and as approved by the local authorities having jurisdiction.
- G. Locate valves, access doors, etc., to be easily accessible, either in mechanical spaces or through access panels specified herein.
- H. Follow manufacturers' instructions for installing, connecting, and adjusting all equipment. Provide one copy of such instructions to the Engineer before installing any equipment. Provide a copy of such instructions at the equipment during any work on the equipment. Provide all special valves, piping, wiring and accessories.

1.8 QUALITY ASSURANCE

- A. Codes Standards and Fees:
 - 1. Codes and Standards:
 - a. Comply with all current governing codes, ordinances and regulations, as well as with requirements of NFPA, UL and all other applicable codes.
 - b. Comply with the requirements of the State adopted Building Code, NFPA and other agencies or authorities having jurisdiction over any part of the Work and secure all necessary permits.
 - c. Where codes or standards are listed herein, the applicable portions apply.
 - d. Plans, specifications, codes and standards are all minimum requirements. Where requirements differ, apply the more stringent.
 - e. Should any change in plans or specifications be required to comply with governing regulations, the contractor is to notify the Engineer at the time of submitting his bid.
 - f. The codes and standards listed in the Specifications can be obtained from the organizations listed as follows:
 - 1) OSHA Occupational Safety and Health Act
 - 2) ANSI American National Standard Institute, Inc.
 - 3) ASME American Society of Mechanical Engineers
 - 4) ASTM American Society for Testing and Materials
 - 5) AWWA American Water Works Association
 - 6) UL Underwriters Laboratories, Inc.

- 7) ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers
- 8) NFPA National Fire Protection Association
- 9) NEMA National Electrical Manufacturers Association
- 10) AIA American Insurance Association
- 11) AWS American Welding Society
- 12) ASA American Standards Association
- 13) IEEE Institute of Electrical and Electronics Engineers
- 14) NEC National Electrical Code
- g. The particular specification will be identified by appropriate prefix and number only with the latest revision being applicable unless otherwise noted.
- 2. Fees
 - a. Pay all required permit and/or inspection fees.
 - b. Pay royalties or fees required in connection with the use of patented devices and systems.
- 3. Furnish all materials and equipment new, free from defects and with listings or labels of Underwriter's Laboratories, Inc. or other nationally approved testing laboratory.
- 4. All items of a given type shall be the product of the same manufacturer.
- 5. All materials and equipment shall be the product of manufacturers regularly engaged in their manufacture.

1.9 SHOP DRAWINGS

- A. Prepare and submit detailed shop drawings for piping work and other distribution services, including locations and sizes of all openings in floor walls and roofs.
- B. The work described in any shop drawing submission to be carefully checked for all clearances (including those required for maintenance and servicing), field conditions, maintenance of architectural conditions and proper coordination with all trades on the job.
- C. Each submitted shop drawing to include a certification that all related job conditions have been checked and that no conflict exists.
- D. All drawings are to be submitted sufficiently in advance of field requirements to allow ample time for checking. All submittals to be complete and contain all required and detailed information. Shop drawings with multiple parts to be submitted as a package.
- E. If submittals differ from the Contract Document requirements, make specific mention of such difference in a letter of transmittal, with request for substitution, together with reasons for same.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- F. Review of any submitted data or shop drawings for material, equipment, apparatus, devices, arrangement and layout shall not relieve the contractor from responsibility of furnishing same of proper dimensions and weight, capacities, sizes, quantity, quality and installation details to efficiently perform the requirements and intent of the Work. Such review shall not relieve the contractor from responsibility for errors, omissions or inadequacies of any sort on submitted data or shop drawings.
- G. Each shop drawing to contain job title, the names and phone numbers of the General Contractor and the contractor reference to the applicable design drawing or specification article, date and scale.
- H. Within 15 days after award of Contract, submit for review, a list of all material and equipment manufacturers whose products are proposed, as well as names of all subcontractors whom the General Contractor proposes to employ.
- I. Within three (3) weeks after award of Contract, submit a list of all shop drawings, which will be submitted in the course of the project. List to show disposition of each item, including date of submission, review, and the like. List to be kept up-to-date throughout entire construction period.
- J. Submit shop drawings and manufacturer's data for the following items in accordance with the Contract Documents:
 - 1. Coordinated, detailed shop layout drawings of all mechanical rooms, services and distribution systems, including plans, profiles and sections.
 - 2. Details of piping supports, elbows, anchors and miscellaneous appurtenances.
 - 3. Hangers, supports, inserts, anchors, guides and foundations.
 - 4. Valves.
 - 5. Pressure gauges.
 - 6. Corrosion protective coatings.
 - 7. Location and size of sleeves for openings in floors and walls.
 - 8. Schedule of pipe and fittings, materials and application, valves, escutcheons, air vents, valve tags and schedules, strainers, and water specialties.
 - 9. Access doors.
 - 10. Equipment identification and certificates.
 - 11. Sprinkler heads and accessories.
 - 12. Other shop drawings and submittals as requested within the specification.

1.10 SAMPLES

- A. Submit samples of all items with exposed finishes for review.
- B. Allow sufficient time for consideration without interfering with job schedule.

- C. Duplicate quality and finish to type to be supplied under contract.
- D. Identify similar to shop drawings.

1.11 ELECTRONIC COPIES OF AKF DRAWINGS

- A. Upon award of contract, contractor shall submit list of drawings that they will require. AKF will provide drawings in (.PDF) format only.
- B. If the contractor requires (.dwg) format, there will be a charge of \$200 for each drawing supplied plus shipping and handling for preparation and processing. After preparation the drawings will be forwarded only upon receipt of signed acceptance of terms form. Permission from the architect must first be obtained for AKF to include the architectural background as reference. The contractor is to obtain the architects latest drawings directly from the architect.
- C. These files are being issued for the convenience of the contractor and the contractor remains responsible for all contract requirements related to the normal shop drawing preparation process.

1.12 SUBMISSIONS:

- A. Provide all coordination drawings and shop drawings in 'AutoCad" format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. If paper submissions are to be provided the following shall be adhered to.
 - Submissions 11 in. X 17 in. or smaller: If the submission is a catalog cut, then the contractor shall submit one original and one copy. Otherwise, they shall submit two copies. The architect will forward the original and one copy (two copies when no original is received) to the engineer. All catalog cuts shall be complete.
 - 2. Submissions larger than 11 in. X 17 in.: submit two copies to the architect. The architect will forward to the engineer.
- C. Indicate on each submission: project name and location, architect and engineer, item identification and approval stamp of prime contractor, subcontractor names and phone numbers, reference to the applicable design drawing or specification article, date and scale.
- D. The work described in all shop drawing submission shall be carefully checked for all clearances (including those required for maintenance and servicing), field conditions, maintenance of architectural conditions and proper coordination with all trades on the job.
- E. Each submitted shop drawing is to include a certification that all related job conditions have been checked and verified and that there are no conflicts.
- F. All shop drawings are to be submitted to allow ample time for checking in advance of field requirements. All submittals to be complete and contain all required and detailed information. Shop drawings with multiple parts shall be submitted as a package.
- G. If submittals differ from the contract document requirements, make specific mention of such difference in a letter of transmittal, with request for substitution, together with reasons for same.

1.13 AS-BUILTS AND EQUIPMENT OPERATION INSTRUCTIONS

- A. Provide all coordination drawings and shop drawings in AutoCad format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. On completion and acceptance of work, this contractor shall furnish written instructions, equipment manuals and demonstrate to the owner the proper operation and maintenance of all equipment and apparatus furnished under this contract.
- C. The contractor shall give one copy of the instructions to the owner and one copy to the engineer.
- D. Final "as-built" drawings indicating as installed conditions shall be provided to the architect and engineer after completion of the installation.

1.14 START-UP

- A. Check and clean all pipes of dirt and debris.
- B. Prepare each piece of equipment in accordance with manufacturer's installation instructions and have a copy at the equipment.
- C. Have representatives of each manufacturer present when hereinafter specified, so that equipment will be started up by manufacturer.

1.15 ACCESS DOORS IN FINISHED CONSTRUCTION

- A. Furnish access doors as required for operation and maintenance of concealed equipment and coordinate their delivery with the installing trade.
- B. Coordinate and prepare a location, size and function schedule of access doors required and deliver to the General Contractor and the Architect for review.
- C. Doors shall be of a size required for operating and repacking valves, and shall be as manufactured by Karp Associates, Nystrom Inc. or Mifab.
- D. Unless otherwise indicated, minimum size to be 18" x 18".
- E. Furnish color coded buttons or tabs to indicate location of valves or other equipment located above removable type ceilings where access doors are not required.

1.16 SYSTEMS IDENTIFICATION

- A. Piping:
 - 1. All exposed fire protection piping shall be finish painted red in color unless otherwise directed.
 - 2. All piping, exposed or concealed, shall be identified as to its service in accordance with OSHA and ANSI Standards by one of the following methods:

- a. Installation of manufactured adhesive band type identification markers, similar to "Quick-Label" by W.H. Brady Company.
- 3. Piping identification markings shall be installed as follows:
 - a. In each room.
 - b. All valve locations.
 - c. At shaft walls.
 - d. Every 40 feet on continuous runs.
- B. Valves:
 - 1. Valves shall be identified by tag system utilizing brass tags at 2-inch minimum diameter and attached to the valves using brass chain.
 - a. The new valve tag identification numbers shall be permanently added to all existing valve tag charts.
 - 2. The service and function of all fire protection valves shall be identified at the valve by signs, similar to Potter Roemer Series 6300, attached to the valves by brass chains.

1.17 OPERATING & MAINTENANCE INSTRUCTION

- A. Prepare an operating and maintenance instruction manual which includes the following:
 - 1. Alphabetical list of all system components, with the name, address, and 24-hour phone number of the company responsible for servicing each item during the first year of operation.
 - 2. Operating instructions for complete system, including:
 - a. Normal starting, operating, and shut-down.
 - 3. Maintenance instructions, including:
 - a. Valve tag list and equipment tag list.
 - b. Required cleaning, replacement and/or adjustment schedule.
 - 4. Manufacturer's data on each piece of equipment, including:
 - a. Installation instructions.
 - b. Drawings and specifications.
 - c. Parts list, including recommended items to be stocked.
 - d. Marked or revised prints locating all concealed parts and all variations from the original system design.

- e. Test and inspection certificates.
- 5. Specific equipment data including, but not limited to, the following:
 - a. Piping.
 - b. Valves.
 - c. Accessories.
 - d. Sprinkler heads.
 - e. Tamper switches.
 - f. Flow switches.
- B. Provide instruction of operating personnel.
 - 1. Instruct Owner's operating personnel in proper starting sequences, operation, shutdown, and maintenance procedures, including normal and emergency procedures.
 - 2. Instruction to be by personnel skilled in operation of equipment. Instructions for major equipment to be by equipment manufacturers' representatives.
 - 3. Make arrangements to give instructions by system and not by building areas.
 - 4. Provide five (5) instruction sessions not to exceed six (6) hours each.
 - 5. Instructions on automatic controls to be by manufacturer's representative.
- C. Submittals.
 - 1. Shop Drawings: Submit three copies for review prior to final issuance.
 - 2. Provide 6 copies of each operation and maintenance manual.
 - a. Manuals to be 8-1/2" x 11" size in hard-back, 3-ring loose-leaf binders. Use more than one volume if required. Do not overfill binders.
 - b. Manuals to be completed and delivered to the Engineer for approval at least 20 days prior to instruction of operating personnel.
 - 3. Prepare separate manuals for the fire protection systems.

1.18 TOOLS FOR OPERATION, ADJUSTMENT AND MAINTENANCE

- A. Deliver to Owner's representative all special tools needed for proper operation, adjustment and maintenance of equipment.
- 1.19 RECORD DRAWINGS

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- A. The contractor shall maintain a complete set of "Record Drawings" reflecting an accurate dimensional record of all work. These drawings shall be marked up to show the precise location of concealed work and equipment, including concealed piping and valves and all changes and deviations in the plumbing work from that shown on the contract drawings. This requirement shall not be construed as authorization for the contractor to make changes in the layout or work without written definite instruction from the Architect or Engineer.
- B. Record dimensions shall clearly and accurately delineate the work as installed; location shall be suitably identified by at least two dimensions to permanent structures.
- C. The contractor shall stamp all "Record Drawings" and certify for correctness by signing and dating them.
- D. Record drawings submitted to Owner shall consist of 1 set of mylars and 1 set of compact disk's (CD's) with all work provided on Autocad 2000 format.
- E. Prior to final acceptance, contractor shall submit certified "Record Drawings" to the Architect/Engineer for review and make changes, corrections or additions as noted by Architect/Engineer. After this review, the drawing shall be delivered to the Owner.

PART 2 - PRODUCTS

(NOT APPLICABLE)

PART 3 - EXECUTION

(NOT APPLICABLE)

END OF SECTION

SECTION 210500

COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Sleeves.
 - 3. Escutcheons.
 - 4. Fire-suppression equipment and piping demolition.
 - 5. Equipment installation requirements common to equipment sections.
 - 6. Painting and finishing.
 - 7. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Mechanical sleeve seals.
 - 2. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

2.4 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.5 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated .
- C. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated .
- D. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- E. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes or as required to facilitate positive drainage of piping.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece , cast-brass type with polished chrome-plated finish.
 - e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - f. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 - g. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- M. Sleeves are not required for core-drilled holes.

- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 6 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. SteelPipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PAINTING

- A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

END OF SECTION

SECTION 210548

VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Restraining braces.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D
 - 2. Assigned Seismic Use Group or Building Design Category as Defined in the IBC: C
 - a. Component Importance Factor: 1.50
 - b. Component Response Modification Factor: 6.0
 - c. Component Amplification Factor: 2.5
 - 3. Design Spectral Response Acceleration at Short Periods (0.123 Second): 0.327
 - 4. Design Spectral Response Acceleration at 1-Second Period: 0.077

- 1.5 SUBMITTALS
 - A. Product Data: For the following:
 - 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
 - B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 - 2. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
 - C. Welding certificates.
 - D. Qualification Data: For professional engineer and testing agency.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC and NFPA 13 unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti, Inc.
 - 5. Kinetics Noise Control.
 - 6. Loos & Co.; Cableware Division.
 - 7. Mason Industries.
 - 8. TOLCO Incorporated; a brand of NIBCO INC.
 - 9. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- F. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless

steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.2 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127 and NFPA 13.

- 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
- 3. Brace a change of direction longer than 12 feet (3.7 m).
- B. Install cables so they do not bend across edges of adjacent equipment or building structure.
- C. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- E. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 13 Section "Water-Based Fire-Suppression Systems" for piping flexible connections.

END OF SECTION

SECTION 211000

WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following fire-suppression piping inside the building:
 - 1. Automatic wet-type, Class I standpipe systems.
 - 2. Wet-pipe sprinkler systems.
- B. Related Sections include the following:
 - 1. Division 10 Section "Fire Extinguisher Cabinets" and "Fire Extinguishers" for cabinets and fire extinguishers.
 - 2. Division 28 Section "Fire Detection and Alarm" for alarm devices not specified in this Section.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. High-Pressure Piping System: Fire-suppression piping system designed to operate at working pressure higher than standard 175 psig (1200 kPa).
- C. PE: Polyethylene plastic.
- D. Underground Service-Entrance Piping: Underground service piping below the building.

1.4 SYSTEM DESCRIPTIONS

- A. Combined Standpipe and Sprinkler System: Fire-suppression system with both standpipe and sprinkler systems. Sprinkler system is supplied from standpipe system.
- B. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 (DN 65) hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.
- C. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply. Water discharges immediately from sprinklers when they are

opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

- A. Standard Piping System Component Working Pressure: Listed for at least 175 psig (1200 kPa).
- B. Fire-suppression standpipe system design shall be approved by authorities having jurisdiction.
 - 1. Minimum residual pressure at each hose-connection outlet is the following:
 - a. NPS 2-1/2 (DN 65) Hose Connections: 100 psig (690 kPa).
 - 2. Unless otherwise indicated, the following is maximum residual pressure at required flow at each hose-connection outlet:
 - a. NPS 2-1/2 (DN 65) Hose Connections: 175 psig (1200 kPa).
- C. Fire-suppression sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications:
 - a. Building Service Areas: Ordinary Hazard, Group 1.
 - b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 - c. General Storage Areas: Ordinary Hazard, Group 1.
 - d. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 - e. Office and Public Areas: Light Hazard.
 - f. Patient Areas: Light Hazard
 - 3. Minimum Density for Automatic-Sprinkler Piping Design:
 - a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. (6.3 mL/s over 139-sq. m) area.
 - b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 2500-sq. ft. (9.5 mL/s over 139-sq. m) area.
 - 4. Maximum Protection Area per Sprinkler:
 - a. Office Spaces and Patient Areas: 225 sq. ft. (20.9 sq. m).
 - b. Storage Areas: 130 sq. ft. (12.1 sq. m).
 - c. Mechanical Equipment Rooms: 130 sq. ft. (12.1 sq. m).
 - d. Electrical Equipment Rooms: 130 sq. ft. (12.1 sq. m).
 - e. Other Areas: According to NFPA 13 recommendations, unless otherwise indicated.
 - 5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13, unless otherwise indicated:
 - a. Light-Hazard Occupancies: 250 gpm (6.3 L/s) for 30 minutes.

- b. Ordinary-Hazard Occupancies: 250 gpm (15.75 L/s) for 60 to 90 minutes.
- D. Seismic Performance: Fire-suppression piping shall be capable of withstanding the effects of earthquake motions determined according to NFPA 13 and IBC 2006.

1.6 SUBMITTALS

- A. Product Data: For the following:
 - 1. Piping materials, including sprinkler specialty fittings.
 - 2. Pipe hangers and supports, including seismic restraints.
 - 3. Valves, including listed fire-protection valves, unlisted general-duty valves, and specialty valves and trim.
 - 4. Sprinklers, escutcheons, and guards. Include sprinkler flow characteristics, mounting, finish, and other pertinent data.
 - 5. Hose connections, including size, type, and finish.
 - 6. Alarm devices, including electrical data.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Fire pump flow test report.
- D. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations.
- E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13 and NFPA 14. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- F. Welding certificates.
- G. Field quality-control test reports.
- H. Operation and Maintenance Data: For standpipe and sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing fire-suppression systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

- C. NFPA Standards: Fire-suppression-system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 14, "Installation of Standpipe, Private Hydrant, and Hose Systems."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE AND FITTINGS

- A. Threaded-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed threaded ends.
 - 1. Cast-Iron Threaded Flanges: ASME B16.1.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
 - 3. Gray-Iron Threaded Fittings: ASME B16.4.
 - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe hot-dip galvanized where indicated. Include ends matching joining method.
 - 5. Steel Threaded Couplings: ASTM A 865 hot-dip galvanized-steel pipe where indicated.
- B. Plain-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795.
 - 1. Steel Welding Fittings: ASTM A 234/A 234M, and ASME B16.9 or ASME B16.11.

- 2. Steel Flanges and Flanged Fittings: ASME B16.5.
- C. Grooved-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed, roll-grooved ends.
 - 1. Grooved-Joint Piping Systems:
 - a. Manufacturers:
 - 1) National Fittings, Inc.
 - 2) Victaulic Co. of America.
 - 3) Ward Manufacturing.
 - b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
 - c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts.

2.3 DIELECTRIC FITTINGS

- A. Assembly shall be copper alloy, ferrous, and insulating materials with ends matching piping system.
- B. Dielectric Unions: Factory-fabricated assembly, designed for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C). Include insulating material that isolates dissimilar materials and ends with inside threads according to ASME B1.20.1.
 - 1. Manufacturers:
 - a. Epco Sales, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Zurn Industries, Inc.; Wilkins Div.
- C. Dielectric Flanges: Factory-fabricated companion-flange assembly, for 175-psig (1200-kPa) minimum working-pressure rating as required for piping system.
 - 1. Manufacturers:
 - a. Epco Sales, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
- D. Dielectric Flange Insulation Kits: Components for field assembly shall include CR or phenolic gasket, PE or phenolic bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Central Plastics Company.
 - c. Pipeline Seal and Insulator, Inc.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.4 SPRINKLER SPECIALTY FITTINGS

- A. Sprinkler specialty fittings shall be UL listed or FMG approved, with 175-psig (1200-kPa) minimum working-pressure rating, and made of materials compatible with piping. Sprinkler specialty fittings shall have 300-psig (2070-kPa) working-pressure rating if fittings are components of high-pressure piping system.
- B. Outlet Specialty Fittings:
 - 1. Manufacturers:
 - a. National Fittings, Inc.
 - b. Star Pipe Products; Star Fittings Div.
 - c. Victaulic Co. of America.
 - d. Ward Manufacturing.
 - 2. Mechanical-T and -Cross Fittings: UL 213, ductile-iron housing with gaskets, bolts and nuts, and threaded, locking-lug, or grooved outlets.
- C. Sprinkler Drain and Alarm Test Fittings: Cast- or ductile-iron body; with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.
 - 1. Manufacturers:
 - a. Viking Corp.
- D. Sprinkler Inspector's Test Fitting: Cast- or ductile-iron housing with threaded inlet and drain outlet and sight glass.
 - 1. Manufacturers:
 - a. AGF Manufacturing Co.
 - b. G/J Innovations, Inc.

2.5 LISTED FIRE-PROTECTION VALVES

- A. Valves shall be UL listed or FMG approved, with 175-psig (1200 kPa) minimum pressure rating. Valves shall have 300-psig (2070-kPa) pressure rating if valves are components of highpressure piping system.
- B. Ball Valves: Comply with UL 1091, except with ball instead of disc.
 - 1. NPS 1-1/2 (DN 40) and Smaller: Bronze body with threaded ends.
 - 2. NPS 2 and NPS 2-1/2 (DN 50 and DN 65): Bronze body with threaded ends or ductileiron body with grooved ends.
 - 3. NPS 3 (DN 80): Ductile-iron body with grooved ends.
 - 4. Manufacturers:
 - a. NIBCO.
 - b. Milwaukee
 - c. Stockham

- 5. NPS 2-1/2 (DN 65) and Larger: Bronze, cast-iron, or ductile-iron body; wafer type or with flanged or grooved ends.
 - a. Manufacturers:
 - 1) McWane, Inc.; Kennedy Valve Div.
 - 2) Mueller Company.
 - 3) NIBCO.
 - 4) Milwaukee
- C. Check Valves NPS 2 (DN 50) and Larger: UL 312, swing type, cast-iron body with flanged or grooved ends.
 - 1. Manufacturers:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Grinnell Fire Protection.
 - d. Hammond Valve.
 - e. McWane, Inc.; Kennedy Valve Div.
 - f. Mueller Company.
 - g. NIBCO.
 - h. Stockham.
- D. Gate Valves: UL 262, OS&Y type.
 - 1. NPS 2 (DN 50) and Smaller: Bronze body with threaded ends.
 - a. Manufacturers:
 - 1) Crane Co.; Crane Valve Group; Crane Valves.
 - 2) Hammond Valve.
 - 3) NIBCO.
 - 2. NPS 2-1/2 (DN 65) and Larger: Cast-iron body with flanged ends.
 - a. Manufacturers:
 - 1) Crane Co.; Crane Valve Group; Crane Valves.
 - 2) Crane Co.; Crane Valve Group; Jenkins Valves.
 - 3) Milwaukee Valve Company.
 - 4) Mueller Company.
 - 5) NIBCO.
- E. Indicating Valves: UL 1091, with integral indicating device and ends matching connecting piping.
 - 1. Indicator: Electrical, 115-V ac, prewired, 2-circuit, supervisory switch Visual.
 - 2. NPS 2 (DN 50) and Smaller: Ball or butterfly valve with bronze body and threaded ends.
 - a. Manufacturers:
 - 1) Milwaukee Valve Company.

- 2) NIBCO.
- 3) Victaulic Co. of America.
- 3. NPS 2-1/2 (DN 65) and Larger: Butterfly valve with cast- or ductile-iron body; wafer type or with flanged or grooved ends.
 - a. Manufacturers:
 - 1) McWane, Inc.; Kennedy Valve Div.
 - 2) Milwaukee Valve Company.
 - 3) NIBCO.

2.6 UNLISTED GENERAL-DUTY VALVES

- A. Ball Valves NPS 2 (DN 50) and Smaller: MSS SP-110, 2-piece copper-alloy body with chromeplated brass ball, 600-psig (4140-kPa) minimum CWP rating, blowout-proof stem, and threaded ends.
- B. Check Valves NPS 2 (DN 50) and Smaller: MSS SP-80, Type 4, Class 125 minimum, swing type with bronze body, nonmetallic disc, and threaded ends.
- C. Gate Valves NPS 2 (DN 50) and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, solid wedge, and threaded ends.
- D. Globe Valves NPS 2 (DN 50) and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, nonmetallic disc, and threaded ends.

2.7 SPRINKLERS

- A. Sprinklers shall be UL listed or FMG approved, with 175-psig (1200-kPa) minimum pressure rating. Sprinklers shall have 300-psig (2070-kPa) pressure rating if sprinklers are components of high-pressure piping system.
- B. Manufacturers:
 - 1. Viking Corp.
- C. Automatic Sprinklers: With heat-responsive element complying with the following:
 - 1. UL 199, for nonresidential applications.
- D. Sprinkler Types and Categories: Nominal 1/2-inch (12.7-mm) orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.
- E. Sprinkler types, features, and options as follows:
 - 1. Concealed ceiling sprinklers, including cover plate.
 - 2. Flush ceiling sprinklers, including escutcheon.
 - 3. Pendent sprinklers.
 - 4. Pendent, dry-type sprinklers.
 - 5. Quick-response sprinklers.

- 6. Upright sprinklers.
- F. Sprinkler Finishes: Chrome plated, bronze, and painted.
- G. Special Coatings: Wax, lead, and corrosion-resistant paint.
- H. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, 2 piece, with 1-inch (25-mm) vertical adjustment.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
- I. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler.

2.8 HOSE CONNECTIONS

- A. Manufacturers:
 - 1. Elkhart Brass Mfg. Co., Inc.
 - 2. Fire-End and Croker Corp.
 - 3. McWane, Inc.; Kennedy Valve Div.
 - 4. Potter-Roemer; Fire-Protection Div.
- B. Description: UL 668, brass or bronze, 300-psig (2070-kPa) minimum pressure rating, hose valve for connecting fire hose. Include anglepattern design; female NPS inlet and male hose outlet; and lugged cap, gasket, and chain. Include NPS 2-1/2 (DN 40 or DN 65) as indicated, and hose valve threads according to NFPA 1963 and matching local fire department threads.
 - 1. Valve Operation: Nonadjustable type, unless pressure-regulating type is indicated.
 - 2. Finish: Rough metal.

2.9 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Flow Indicator: UL 346, electrical-supervision, paddle-operated-type, water-flow detector with 250-psig (1725-kPa) pressure rating and designed for horizontal or vertical installation. Include two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 1. Manufacturers:
 - a. Grinnell Fire Protection.
 - b. Potter Electric Signal Company.
 - c. System Sensor.
 - d. Viking Corp.
- C. Valve Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled valve is in other than fully open position.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- 1. Manufacturers:
 - a. McWane, Inc.; Kennedy Valve Div.
 - b. Potter Electric Signal Company.
 - c. System Sensor.

2.10 PRESSURE GAGES

- A. Manufacturers:
 - 1. AMETEK, Inc.; U.S. Gauge.
 - 2. Dresser Equipment Group; Instrument Div.
 - 3. Marsh Bellofram.
 - 4. WIKA Instrument Corporation.
- B. Description: UL 393, 3-1/2- to 4-1/2-inch- (90- to 115-mm-) diameter, dial pressure gage with range of 0 to 300 psig (0 to 2070 kPa).
 - 1. Water System Piping: Include caption "WATER" or "AIR/WATER" on dial face.
 - 2. Air System Piping: Include retard feature and caption "AIR" or "AIR/WATER" on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire pump flow test according to NFPA 13, NFPA 14, and NFPA 291. Use results for system design calculations required in Part 1 "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 EXAMINATION

- A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.
- B. Examine walls and partitions for suitable thicknesses, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.3 PIPING APPLICATIONS, GENERAL
 - A. Shop weld pipe joints where welded piping is indicated.
 - B. Do not use welded joints for galvanized-steel pipe.

C. Flanges, flanged fittings, unions, nipples, and transition and special fittings with finish and pressure ratings same as or higher than system's pressure rating may be used in aboveground applications, unless otherwise indicated.

3.4 STANDPIPE SYSTEM PIPING APPLICATIONS

- A. Standard-Pressure, Wet-Type Standpipe System, 175-psig (1200-kPa) Maximum Working Pressure:
 - 1. NPS 2" and Smaller: Threaded-end, black, standard-weight steel pipe; cast- or malleable-iron threaded fittings; and threaded joints.
 - 2. NPS 2 ¹/₂" to 4": Grooved-end, black, schedule 10 steel pipe with roll-grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
 - 3. NPS 6" and larger: Grooved-end, black, schedule 10 steel pipe with roll-grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

3.5 SPRINKLER SYSTEM PIPING APPLICATIONS

- A. Standard-Pressure, Wet-Pipe Sprinkler System, 175-psig (1200-kPa) Maximum Working Pressure:
 - 1. NPS 2"and Smaller: Threaded-end, black, standard-weight steel pipe; cast- or malleableiron threaded fittings; and threaded joints.
 - 2. NPS 2 ½" and larger: Grooved-end, black, Schedule 10 steel pipe; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

3.6 VALVE APPLICATIONS

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Listed Fire-Protection Valves: UL listed and FMG approved for applications where required by NFPA 13 and NFPA 14.
 - a. Shutoff Duty: Use ball, butterfly, or gate valves.
 - 2. Unlisted General-Duty Valves: For applications where UL-listed and FMG-approved valves are not required by NFPA 13 and NFPA 14.
 - a. Shutoff Duty: Use ball, butterfly, or gate valves.
 - b. Throttling Duty: Use ball alves.

3.7 JOINT CONSTRUCTION

A. Refer to Division 21 Section "Common Work Results for Fire Suppression" for basic piping joint construction.

- B. Threaded Joints: Comply with NFPA 13 for pipe thickness and threads. Do not thread pipe smaller than NPS 8 (DN 200) with wall thickness less than Schedule 40 unless approved by authorities having jurisdiction and threads are checked by a ring gage and comply with ASME B1.20.1.
- C. Grooved Joints: Assemble joints with listed coupling and gasket, lubricant, and bolts.
 - 1. Ductile-Iron Pipe: Radius-cut-groove ends of piping. Use grooved-end fittings and grooved-end-pipe couplings.
 - 2. Steel Pipe: Groove piping as indicated. Use grooved-end fittings and rigid, grooved-endpipe couplings, unless otherwise indicated.
- D. Dissimilar-Metal Piping Joints: Construct joints using dielectric fittings compatible with both piping materials.
 - 1. NPS 2 (DN 50) and Smaller: Use dielectric unions, couplings, or nipples.
 - 2. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric flanges.
 - 3. NPS 5 (DN 125) and Larger: Use dielectric flange insulation kits.

3.8 PIPING INSTALLATION

- A. Refer to Division 21 Section "Common Work Results for Fire Suppression" for basic piping installation.
- B. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- C. Use approved fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller. Unions are not required on flanged devices or in piping installations using grooved joints.
- E. Install flanges or flange adapters on valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger connections.
- F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, sized and located according to NFPA 13.
- G. Install sprinkler piping with drains for complete system drainage.
- H. Install sprinkler zone control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- I. Install drain valves on standpipes.
- J. Install alarm devices in piping systems.

- K. Hangers and Supports: Comply with NFPA 13 for hanger materials.
 - 1. Install standpipe system piping according to NFPA 14.
 - 2. Install sprinkler system piping according to NFPA 13.
- L. Earthquake Protection: Install piping according to NFPA 13 to protect from earthquake damage.
- M. Install pressure gages on each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 (DN 8) and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- N. Fill wet-standpipe system piping with water.
- O. Fill wet-pipe sprinkler system piping with water.

3.9 VALVE INSTALLATION

- A. Install listed fire-protection valves, unlisted general-duty valves, specialty valves and trim, controls, and specialties according to NFPA 13 and NFPA 14 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire department connections. Install permanent identification signs indicating portion of system controlled by each valve.

3.10 SPRINKLER APPLICATIONS

- A. Drawings indicate sprinkler types to be used. Where specific types are not indicated, use the following sprinkler types:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Concealed sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Pendent, dry sprinklers.
 - 5. Sprinkler Finishes:
 - a. Upright, Pendent, and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.
 - b. Concealed Sprinklers: Rough brass, with factory-painted cover plate, Color by Architect
 - c. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 - d. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.

3.11 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels and tiles.

B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space.

3.12 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Connect piping to specialty valves, hose valves, specialties, fire department connections, and accessories.
- D. Electrical Connections: Power wiring is specified in Division 26.
- E. Connect alarm devices to fire alarm.
- F. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- H. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.13 LABELING AND IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13 and NFPA 14.

3.14 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 - 5. Coordinate with fire alarm tests. Operate as required.
 - 6. Coordinate with fire-pump tests. Operate as required.
 - 7. Verify that equipment hose threads are same as local fire department equipment.
- B. Report test results promptly and in writing to Architect and authorities having jurisdiction.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.15 CLEANING AND PROTECTION

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.
- C. Protect sprinklers from damage until Substantial Completion.

END OF SECTION

TABLE OF CONTENTS

PLUMBING

SECTION NUMBER	SECTION TITLE
220000	PLUMBING GENERAL PROVISIONS
220500	COMMON WORK RESULTS FOR PLUMBING
220523	GENERAL-DUTY VALVES FOR PLUMBING PIPING
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220700	PLUMBING INSULATION
221116	DOMESTIC WATER PIPING
221119	DOMESTIC WATER PIPING SPECIALTIES
221316	SANITARY WASTE AND VENT AND STORM WATER PIPING
221319	SANITARY WASTE PIPING SPECIALTIES
224000	PLUMBING FIXTURES
226113	COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES
226213	VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES
226313	GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

SECTION 22 00 00

PLUMBING GENERAL PROVISIONS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. Work of this Section, as shown or specified, shall be in accordance with the requirements of the Contract Documents.

1.2 DEFINITIONS

- A. "Provide": to supply, install, and make complete, safe, and operable, the particular work referred to unless specifically indicated otherwise.
- B. "Install": to erect, mount, and make complete with all related accessories.
- C. "Furnish" or "supply": to purchase, procure, acquire, and deliver complete with related accessories.
- D. "Work": labor, materials, equipment, services, and all related accessories necessary for the proper and complete installation of complete systems.
- E. "Piping": pipe, tube, fittings, flanges, valves, controls, strainers, hangers, supports, unions, traps, drains, insulation and all related accessories.
- F. "Wiring": raceway, fittings, wire, boxes and all related accessories.
- G. "Indicated," "shown," or "noted": as indicated, shown, or noted on drawings or specifications.
- H. "Similar" or "equal": of base bid manufacture, equal in quality materials, weight, size, performance, design, and efficiency of specified product, conforming with "Base Bid Manufacturers."
- I. "Reviewed" "satisfactory," "accepted," or "directed": as reviewed, satisfactory, accepted, or directed by Architect and/or Engineer.
- J. "Motor Controllers": manual or magnetic starters with or without switches, individual pushbuttons or hand-off-automatic (HOA) switches controlling the operation of motors.
- K. "Control or Actuating Devices": automatic sensing and switching devices such as thermostats, pressure, float, flow, operation of equipment.
- L. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawl spaces, and tunnels.
- M. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

- N. Exposed, Exterior Installations: Exposed to view outdoors, or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- O. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- P. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants, but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- Q. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. NP: Nylon plastic.
 - 4. PE: Polyethylene plastic.
 - 5. PVC: Polyvinyl chloride plastic.
- R. The following are industry abbreviations for rubber materials:
 - 1. CR: Chlorosulfonated polyethylene synthetic rubber.
 - 2. EPDM: Ethylene propylene diene terpolymer rubber.

1.3 WORK INCLUDED

- A. The work covered by this section includes the construction described in the Contract Documents including all labor necessary to perform and complete such construction, all materials and equipment incorporated or to be incorporated in such construction, and all services, facilities, tools and equipment necessary or used to perform and complete such construction. The work includes, but is not limited to the following:
 - 1. Domestic and Non-Domestic Water Systems.
 - 2. Soil, Waste, Vent and Storm Water Systems.
 - 3. Piping, Valves and Fittings
 - 4. Backflow Prevention Devices
 - 5. Insulation.
 - 6. Medical Gas Pipe and Valves.
 - 7. Medical Gas Outlets.
 - 8. Medical Gas Alarms.
 - 9. Identification System.

- 10. Cutting, Patching and Equipment Painting.
- 11. Hangers, Supports and Guides.
- 12. Alarm Wiring, except for Fire Alarm.
- 13. Furnishing access Doors and Frames to be installed by the General Contractor.
- 14. Fire Stopping for Pipe Penetration.
- 15. Pipe Penetration and Drains Counterflashing.
- 16. Alarm Initiating Devices.
- B. Related Work not Included in this Division but Specified Elsewhere
 - 1. Fire alarm wiring.
 - 2. Finish painting, except for prefinished equipment or as otherwise specified.
 - 3. Concrete work, except equipment inertia and floating bases.
 - 4. Base flashing for piping and drains.
 - 5. Toilet accessories.
 - 6. Waterproofing.
 - 7. Power wiring for motors and motor controllers.
 - 8. Installation of access doors and frames.

1.4 COORDINATION OF WORK

- A. The plumbing drawings show the general arrangement of piping and appurtenances. Follow these drawings as closely as the actual construction will permit. Conform the plumbing work to the requirements shown on the drawings. Provide offsets, fittings, and accessories, which may be required but not shown on the drawings. Investigate the site, structural and finish ground conditions affecting the work, and arrange the work accordingly. Provide such work and accessories as may be required to meet such conditions.
- B. Certain materials will be provided by other trades. Examine the Contract Documents to ascertain these requirements.
- C. Carefully check space requirements with other trades to insure that all material can be installed in the spaces allotted thereto including finished suspended ceilings.
- D. Transmit to other trades all information required for work to be provided under their sections, in ample time for installation.
- E. Wherever work interconnects with work specified of other trades, coordinate with the General Contractor to insure that all necessary information is presented so that all the necessary connections and equipment may be properly installed. Identify all items (valves, piping,

equipment, etc.) in order that the General Contractor know where to install access doors and panels.

- F. Consult with other trades regarding equipment so that, wherever possible, motors, motor controls, pumps and valves are of the same manufacturer.
- G. Furnish and set all sleeves for passage of pipes and conduits through structural masonry and concrete walls and floors and elsewhere as will be required for the proper protection of each pipe passing through building surfaces.
- H. Provide required supports and hangers for piping and equipment, designed so as not to exceed allowable loadings of structures.
- I. Examine and compare the contract drawings and specifications with the drawings and specifications of other disciplines, and report any discrepancies between them to the General Contractor and obtain from him written instructions for changes necessary in the work of this Section. Install and coordinate the work of this section in cooperation with installing interrelated work. Before installation, take proper provisions to avoid interferences. All changes required in the work of the contractor, caused by his neglect to do so, to be made by him at his own expense.
- J. Wherever the work is of sufficient complexity, prepare additional detail drawings to scale similar to that of the design drawings, prepared on tracing medium of the same size as contract drawings. With these layouts, coordinate the work with the work of the contractor. Such detailed work is to be clearly identified on the drawings as to the area to which it applies. Submit these drawings to the Engineer for review. At completion, however, include a set of such drawings with each set of as-built drawings. When directed by the Engineer, submit drawings for review, clearly showing the work of this section and its relation to the work of other disciplines before commencing shop fabrication or erection in the field.
- K. Before commencing work, examine all adjoining work on which this work is in any way dependent for perfect workmanship and report any conditions, which prevent performance of first class work. Become thoroughly familiar with actual existing conditions to which connections must be made or which must be changed or altered.
- L. Provide required anchor bolts, sleeves, inserts and supports. Direct location of anchor bolts, sleeves, inserts and supports to insure that they are properly installed. Any expense resulting from the improper location or installation of anchor bolts, sleeves, inserts and supports to be paid for by the contractor.
- M. Slots, chases, openings and recesses through floors, walls, ceilings, and roofs will be provided by the various trades in their respective materials. Properly locate such openings and be responsible for any cutting and patching caused by the neglect to do so.
- N. Adjust location of pipes, panels, equipment, etc., to accommodate the work to prevent interferences, both anticipated and encountered. Determine the exact route and location of each pipe prior to fabrication.
 - 1. Right-of-Way: Lines, which pitch has the right-of-way over those that do not pitch, i.e., plumbing drains. Lines whose elevations cannot be changed have right-of-way over lines whose elevations can be changed.

- 2. Make offsets, transitions and changes in direction in pipes as required to maintain proper head room and pitch on sloping lines whether or not indicated on the drawings. Furnish and install all traps, air vents, drains, etc., as required to affect these offsets, transitions and changes in direction.
- O. Install all plumbing work to permit the removal (without damage to other parts) of vacuum pumps and all other equipment requiring periodic replacement or maintenance. Arrange pipes and equipment to permit access to valves, cocks, starters, motors, and control components, and to clear the openings of swinging doors and access panels.
- P. Provide access panels in equipment as required for inspection and maintenance of internal parts, etc.
- Q. The contractor shall coordinate his work with the work of other trades.
- R. Coordinated Composite Drawings
 - 1. The Contractor shall prepare full coordinated composite drawings for the mechanical, electrical and fire protection trades. The Contractor shall overlay each trade's work (in separate colors) on a sepia set of sheetmetal drawings. All conflicts and potential conflicts shall be clearly identified on the sepia sheetmetal drawings. This shall include but not be limited to conflicts with lights, equipment, piping, ductwork and supports of other trades, as well as conflicts with architectural and structural walls, columns, ceilings and structural beams. Contractor shall have representatives of each trades, as well as conflicts with architectural walls, columns, ceilings and structural beams. Contractor shall have representatives of each trade a weekly job site coordination meeting in the Contractor's field office. All trades shall resolve conflicts at these meetings and sign off each sepia sheetmetal drawing indicating acceptance and satisfactory resolution to all conflicts. All conflicts that cannot be resolved shall be brought to the attention of the Engineer for resolution.

1.5 USE OF SITE AND LOAD LIMITATIONS

A. The contractor shall review all available data on the location and types of pipelines and other underground utilities. The contractor shall not operate equipment over the facilities and shall take care not to damage them or otherwise impair their use. The contractor shall make investigation to verify the location of these facilities before proceeding with construction and/or operations in their vicinity.

1.6 CONTRACTOR'S RESPONSIBILITY FOR EVALUATION

- A. The Engineer and Owner make no representations, regarding the character or extent of the subsoils, water levels, existing structural, mechanical and electrical installations, above or below ground or other subsurface conditions which may be encountered during the Work. The contractor must make his own evaluation of existing conditions, which may affect methods or cost of performing the Work, based on his own examination of the facility or other information. Failure to examine the drawings or other information shall not relieve the contractor of his responsibility for satisfactory accomplishment of the Work.
- B. The locations of existing services are believed to be as indicated on the plans. The contractor shall verify the location of these services prior to commencing any work and notify the Engineer of any discrepancies.

1.7 ACCESS TO FIRE PROTECTION EQUIPMENT

A. The contractor shall not interfere with access to hydrants, fire exits, fire hose stations, fire extinguishers and fire alarm pull stations. In no case shall the contractor's material or equipment be within twenty-five (25) ft of a hydrant or fire alarm pull station.

1.8 EQUIPMENT AND MATERIALS

- A. If products and materials are specified or indicated on the drawings for a specific item or system, the contractor shall use those products or materials. If products and materials are not listed in either of the above, use first class products and materials, in accordance with shop drawings.
- B. All products and materials shall be new, clean, free of defects and free of damage and corrosion.
- C. No permanent equipment shall be used to provide temporary services during construction.
- D. Ship and store all products and materials in a manner which will protect them from damage, weather and entry of debris. If items are damaged, do not install, but take immediate steps to obtain replacement or repair.
- E. Make certain that all materials selected directly, or by suppliers, conform to the requirements of the contract drawings and specification. Transmittal of such specifications and drawings, information to persons manufacturing and supplying materials to the project, and rigid adherence thereto, is the Contractor's responsibility. Acceptance of a manufacturer's name by the Engineer does not release the Contractor of the responsibility for providing materials, which comply in all respects with the requirements in the Contract Documents.
- F. Applicable equipment and materials to be listed by Underwriters' Laboratories and Manufactured in accordance with ASME, AWWA, or ANSI standards, and as approved by local authorities having jurisdiction.
- G. Fully lubricate all equipment when installed and prior to final acceptance.
- H. Do not operate water systems until piping has been tested and cleaned.
- I. Secure equipment with bolts, washers and locknuts of ample size to support equipment. Embedded anchor bolts to have bottom plate and pipe sleeves. Grout all machinery set in concrete under the entire bearing surface. After grout has set, remove all wedges, shims and jack bolts and fill space with grout.
- J. Locate valves, traps, access doors, etc., to be easily accessible, either in mechanical spaces or through access panels specified herein.
- K. Follow manufacturers' instructions for installing, connecting, and adjusting all equipment. Provide one copy of such instructions to the Engineer before installing any equipment. Provide a copy of such instructions at the equipment during any work on the equipment. Provide all special valves, piping, wiring and accessories.
- 1.9 QUALITY ASSURANCE
 - A. Codes, Standards and Fees
 - 1. Codes and Standards:

- a. Comply with all current governing codes including NFPA and USP, ordinances and regulations, UL and all other applicable codes.
- b. Comply with the requirements of the State adopted Building Code, and other agencies or authorities having jurisdiction over any part of the Work and secure all necessary permits.
- c. Where codes or standards are listed herein, the applicable portions apply.
- d. Plans, specifications, codes and standards are all minimum requirements. Where requirements differ, apply the more stringent.
- e. Should any change in plans or specifications be required to comply with governing regulations, the contractor is to notify the Engineer at the pre-bid meeting.
- f. The codes and standards listed in the Specifications can be obtained from the organizations listed as follows:
 - 1) OSHA Occupational Safety and Health Act
 - 2) ANSI American National Standard Institute, Inc.
 - 3) ASME American Society of Mechanical Engineers
 - 4) ASTM American Society for Testing and Materials
 - 5) AWWA American Water Works Association
 - 6) UL Underwriters Laboratories, Inc.
 - 7) ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers
 - 8) NEMA National Electrical Manufacturers Association
 - 9) AIA American Insurance Association
 - 10) AWS American Welding Society
 - 11) ASA American Standards Association
 - 12) IEEE Institute of Electrical and Electronics Engineers
 - 13) NEC National Electrical Code
- g. The particular specification will be identified by appropriate prefix and number only with the latest revision being applicable unless otherwise noted.
- 2. Fees
 - a. Pay all required fees.

- b. Pay royalties or fees required in connection with the use of patented devices and systems.
- B. Furnish all materials and equipment new, free from defects and with listings or labels of Underwriter's Laboratories, Inc. or other nationally approved testing laboratory.
- C. All items of a given type shall be the product of the same manufacturer.
- D. All materials and equipment shall be the product of manufacturers regularly engaged in their manufacture.
- 1.10 SHOP DRAWINGS
 - A. Prepare and submit detailed shop drawings for piping work and other distribution services, including locations and sizes of all openings in floor walls and roofs.
 - B. The work described in any shop drawing submission to be carefully checked for all clearances (including those required for maintenance and servicing), field conditions, maintenance of architectural conditions and proper coordination with all trades on the job. Each submitted shop drawing to include a certification that all related job conditions have been checked and that no conflict exists.
 - C. All drawings to be submitted sufficiently in advance of field requirements to allow ample time for checking. All submittals to be complete and contain all required and detailed information. Shop drawings with multiple parts to be submitted as a package.
 - D. If submittals differ from the Contract Document requirements, make specific mention of such difference in a letter of transmittal, with request for substitution, together with reasons for same.
 - E. Review of any submitted data or shop drawings for material, equipment apparatus, devices, arrangement and layout shall not relieve the contractor from responsibility of furnishing same of proper dimensions and weight, capacities, sizes, quantity, quality and installation details to efficiently perform the requirements and intent of the Work. Such review shall not relieve the contractor from responsibility for errors, omissions or inadequacies of any sort on submitted data or shop drawings.
 - F. Each shop drawing is to contain the job title, the names and phone numbers of the General Contractor and the contractor, references to the applicable design drawing or specification article, date and scale.
 - G. Within fifteen (15) days after award of Contract, submit for review, a list of all material and equipment manufacturers whose products are proposed, as well as names of all Subcontractors whom the General Contractor proposes to employ.
 - H. Within three (3) weeks after award of Contract, submit a list of all shop drawings, which will be submitted in the course of the project. List to show disposition of each item, including date of submission, review, and the like. List to be kept up-to-date throughout entire construction period.
 - I. Submit shop drawings and manufacturer's data for the following items in accordance with the Contract Documents:
 - 1. Coordinated, detailed shop layout drawings of all mechanical rooms, services and distribution systems, including plans, profiles and sections.

- 2. Details of piping supports, elbows, anchors and miscellaneous appurtenances.
- 3. Hangers, supports, inserts, anchors, guides and foundations.
- 4. Valves.
- 5. Pressure gauges and thermometers.
- 6. Corrosion protective coatings.
- 7. Equipment and piping layouts at 3/8 in. scale for the building.
- 8. Location and size of sleeves for openings in floors and walls.
- 9. Schedule of pipe and fittings, materials and application, valves, escutcheons, air vents, valve tags and schedules, strainers, and water specialties.
- 10. Equipment identification and certificates.
- 11. Plumbing fixture and trim.
- 12. Medical Gas Equipment Outlets, Valves and Alarms.
- 13. Other shop drawings and submittals as requested within the specification.

1.11 SAMPLES

- A. Submit samples of all items with exposed finishes for review.
- B. Allow sufficient time for consideration without interfering with job schedule.
- C. Duplicate quality and finish to type to be supplied under contract.
- D. Identify similar to shop drawings.
- 1.12 ELECTRONIC COPIES OF AKF DRAWINGS
 - A. Upon award of contract, contractor shall submit list of drawings that they will require. AKF will provide drawings in (.PDF) format only.
 - B. If the contractor requires (.dwg) format, there will be a charge of \$200 for each drawing supplied plus shipping and handling for preparation and processing. After preparation the drawings will be forwarded only upon receipt of signed acceptance of terms form. Permission from the architect must first be obtained for AKF to include the architectural background as reference. The contractor is to obtain the architects latest drawings directly from the architect.
 - C. These files are being issued for the convenience of the contractor and the contractor remains responsible for all contract requirements related to the normal shop drawing preparation process.
- 1.13 SUBMISSIONS:

- A. Provide all coordination drawings and shop drawings in 'AutoCad" format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. If paper submissions are to be provided the following shall be adhered to.
 - Submissions 11 in. X 17 in. or smaller: If the submission is a catalog cut, then the contractor shall submit one original and one copy. Otherwise, they shall submit two copies. The architect will forward the original and one copy (two copies when no original is received) to the engineer. All catalog cuts shall be complete.
 - 2. Submissions larger than 11 in. X 17 in.: submit two copies to the architect. The architect will forward to the engineer.
- C. Indicate on each submission: project name and location, architect and engineer, item identification and approval stamp of prime contractor, subcontractor names and phone numbers, reference to the applicable design drawing or specification article, date and scale.
- D. The work described in all shop drawing submission shall be carefully checked for all clearances (including those required for maintenance and servicing), field conditions, maintenance of architectural conditions and proper coordination with all trades on the job.
- E. Each submitted shop drawing is to include a certification that all related job conditions have been checked and verified and that there are no conflicts.
- F. All shop drawings are to be submitted to allow ample time for checking in advance of field requirements. All submittals to be complete and contain all required and detailed information. Shop drawings with multiple parts shall be submitted as a package.
- G. If submittals differ from the contract document requirements, make specific mention of such difference in a letter of transmittal, with request for substitution, together with reasons for same.

1.14 AS-BUILTS AND EQUIPMENT OPERATION INSTRUCTIONS

- A. Provide all coordination drawings and shop drawings in AutoCad format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. On completion and acceptance of work, this contractor shall furnish written instructions, equipment manuals and demonstrate to the owner the proper operation and maintenance of all equipment and apparatus furnished under this contract.
- C. The contractor shall give one copy of the instructions to the owner and one copy to the engineer.
- D. Final "as-built" drawings indicating as installed conditions shall be provided to the architect and engineer after completion of the installation.
- 1.15 ACCESS DOORS IN FINISHED CONSTRUCTION
 - A. Furnish access doors as required for operation and maintenance of concealed equipment, clean-outs, valves, shock absorbers, controls, etc., and coordinate their delivery with the installing trade.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- B. Coordinate and prepare a location, size and function schedule of access doors required and deliver to the General Contractor and the Architect for review.
- C. Doors shall be of a size required for operating and repacking valves, and shall be as manufactured by Karp Associates, Nystrom Inc., or Mifab.
- D. Unless otherwise indicated, minimum size to be 18" x 18".
- E. Furnish color coded buttons or tabs to indicate location of valves or other equipment located above removable type ceilings where access doors are not required.
- F. Access doors shall have a fire rating compatible with the wall construction in which they are located.
- 1.16 SYSTEM IDENTIFICATION
 - A. Piping:
 - 1. All piping, exposed or concealed shall be identified as to its service in accordance with OSHA and ANSI Standards by one of the following methods:
 - a. Installation of manufactured adhesive band type identification markers, similar to "Quick-Label" by W.H. Brady Company.
 - 2. Piping identification markings shall be installed as follows:
 - a. In each room.
 - b. All valve locations.
 - c. At shaft walls.
 - d. Every 40 feet on continuous runs.
 - 3. Valves:
 - a. Valves shall be identified by a tag system utilizing brass tags at 2 inch minimum diameter and attached to the valves using brass chain.
 - 1) The new valve tag identification numbers shall be permanently added to all existing valve tag charts within the building.

1.17 OPERATING & MAINTENANCE INSTRUCTION

- A. Prepare operating and maintenance instructions manual including operating instructions, maintenance instructions, manufacturer's data, specific equipment data.
- B. Provide an alphabetical list of all system components, with the name, address, and 24-hour phone number of the company responsible for servicing each item during the first year of operation.
- C. Provide operating instructions for complete system, including:

- 1. Normal starting, operating, and shut-down
- 2. Emergency procedures for fire or failure of major equipment
- D. Provide maintenance instructions, including:
 - 1. Valve tag list and equipment tag list
 - 2. Required cleaning, replacement and/or adjustment schedule
- E. Provide manufacturer's data on each piece of equipment, including:
 - 1. Installation instructions.
 - 2. Drawings and specifications.
 - 3. Parts list, including recommended items to be stocked.
 - 4. Marked or revised prints locating all concealed parts and all variations from the original system design.
 - 5. Test and inspection certificates.
- F. Provide specific equipment data including, but not limited to, the following:
 - 1. For Plumbing Systems:
 - a. Valves.
 - b. Piping.
 - c. Accessories.
 - d. Toilet fixtures and supports.
 - e. Toilet fixture trim.
 - f. Electric wiring.
 - g. Medical, valves outlets and alarms.
- G. Provide instruction of operating personnel.
 - 1. Instruct Owner's operating personnel in proper starting sequences, operation, shutdown, and maintenance procedures, including normal and emergency procedures.
 - 2. Instruction to be by personnel skilled in operation of equipment. Instructions for major equipment to be by equipment manufacturers' representatives.
 - 3. Make arrangements to give instructions by system and not by building areas.
 - 4. Provide five (5) instruction sessions not to exceed six (6) hours each.

- 5. Instructions on automatic controls to be by manufacturer's representative.
- H. Submittals
 - 1. Shop Drawings: Submit three copies for review prior to final issuance.
 - 2. Provide six (6) copies of each operation and maintenance manual.
 - a. Manuals to be 8-1/2" x 11 size in hard-back, 3-ring loose leaf binders. Use more than one volume if required. Do not overfill binders.
 - b. Manuals to be completed and delivered to the Engineer for approval at least 20 days prior to instruction of operating personnel.
 - 3. Prepare separate manuals for the Plumbing system.
- 1.18 TOOLS FOR OPERATION, ADJUSTMENT AND MAINTENANCE
 - A. Deliver to Owner's representative all special tools needed for proper operation, adjustment and maintenance of equipment.
- 1.19 RECORD DRAWINGS
 - A. The contractor shall maintain a complete set of "Record Drawings" reflecting an accurate dimensional record of all work. These drawings shall be marked up to show the precise location of concealed work and equipment, including concealed piping and valves and all changes and deviations in the plumbing work from that shown on the contract drawings. This requirement shall not be construed as authorization for the contractor to make changes in the layout or work without written definite instruction from the Architect or Engineer.
 - B. Record dimensions shall clearly and accurately delineate the work as installed; location shall be suitably identified by at least two dimensions to permanent structures.
 - C. The contractor shall stamp all "Record Drawings" and certify for correctness by signing and dating them.
 - D. Record drawings submitted to Owner shall consist of 1 set of mylars and 1 set of compact disk's (CD's) with all work provided on Autocad 2000 format.
 - E. Prior to final acceptance, contractor shall submit certified "Record Drawings" to the Architect/Engineer for review and make changes, corrections or additions as noted by Architect/Engineer. After this review, the drawing shall be delivered to the Owner.
- PART 2 PRODUCTS
- (NOT APPLICABLE)
- PART 3 EXECUTION

(NOT APPLICABLE)

END OF SECTION

PLUMBING GENERAL PROVISIONS 22 00 00 - 13

SECTION 220500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Sleeves.
 - 3. Escutcheons.
 - 4. Plumbing demolition.
 - 5. Equipment installation requirements common to equipment sections.
 - 6. Painting and finishing.
 - 7. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

- F. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. PE: Polyethylene plastic.
 - 4. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Dielectric fittings.
 - 2. Escutcheons.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
- 2.2 PIPE, TUBE, AND FITTINGS
 - A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
 - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- C. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035or 2070-kPa) minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035or 2070-kPa) minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated .
- C. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated .
- D. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.
- E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw, and chrome-plated finish.
- F. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- G. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piececast brass type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
 - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - g. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 - h. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- M. Sleeves are not required for core-drilled holes.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.

- a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 6 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- 3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. SteelPipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
- 4. Seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using leadfree solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.
 1.

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

C. Field Welding: Comply with AWS D1.1.

END OF SECTION

SECTION 22523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze swing check valves.
 - 2. Bronze ball valves.
- B. Related Sections:
 - 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.
- 1.4 SUBMITTALS
 - A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 4. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller.
- E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 - 1. Gate Valves: With rising stem.

- 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.
 - 4. Threaded: With threads according to ASME B1.20.1.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig (1035 kPa).
 - c. CWP Rating: 600 psig (4140 kPa).
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.

2.3 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig (1380 kPa).

- c. Body Design: Horizontal flow.
- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: PTFE or TFE.
- B. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 300 psig (2070 kPa).
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: PTFE or TFE.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.

- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly, or gate valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solderjoint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 (DN 125) and Larger: Flanged ends.
 - 4. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC AND NON-DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 (DN 50) and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 3. Bronze Swing Check Valves: Class 150, nonmetallic disc.

END OF SECTION

SECTION 220529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for plumbing system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for firesuppression piping.
 - 3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
 - 4. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
 - 4. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. Carpenter & Paterson, Inc.
 - 3. Grinnell Corp.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. Power-Strut Div.; Tyco International, Ltd.
 - 3. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- (690-kPa-) minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. Pipe Shields, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.

- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Hilti, Inc.
 - c. ITW Ramset/Red Head.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
- 2. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8 (DN 20 to DN 200).
- 3. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 4. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 5. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
- 6. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 4. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 5. C-Clamps (MSS Type 23): For structural shapes.
 - 6. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 7. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 8. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.

- 9. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 10. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
- 11. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 12. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- L. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:

- 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- L. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:

- a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
- b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
- c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
- d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
- e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
- 5. Pipes NPS 8 (DN 200) and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 220548

VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Elastomeric hangers.
 - 2. Spring hangers.
 - 3. Spring hangers with vertical-limit stops.
 - 4. Resilient pipe guides.
 - 5. Seismic snubbers.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D
 - 2. Assigned Seismic Use Group or Building Design Category as Defined in the IBC: C
 - a. Component Importance Factor: 1.50
 - b. Component Response Modification Factor: 6.0
 - c. Component Amplification Factor: 2.5
 - 3. Design Spectral Response Acceleration at Short Periods (0.123 Second): 0.327
 - 4. Design Spectral Response Acceleration at 1-Second Period: 0.077

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
 - 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
 - 2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 - 3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
 - 4. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
- C. Coordination Drawings: Show coordination of seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
- D. Welding certificates.

- E. Qualification Data: For professional engineer and testing agency.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For air-mounting systems to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproved by ICC-ES, or preapproved by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti, Inc.
 - 5. Kinetics Noise Control.
 - 6. Loos & Co.; Cableware Division.
 - 7. Mason Industries.
 - 8. TOLCO Incorporated; a brand of NIBCO INC.

- 9. Unistrut; Tyco International, Ltd.
- D. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- E. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch (6-mm) air gap, and minimum 1/4-inch- (6-mm-) thick resilient cushion.
- F. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- G. Restraint Cables: ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- H. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- I. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- J. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- K. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- L. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- M. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.2 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
 - 3. Brace a change of direction longer than 12 feet (3.7 m).

- B. Install cables so they do not bend across edges of adjacent equipment or building structure.
- C. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- E. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 22 Section "Domestic Water Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.

- 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
- 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
- 5. Test to 90 percent of rated proof load of device.
- 6. Measure isolator restraint clearance.
- 7. Measure isolator deflection.
- 8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

END OF SECTION

SECTION 220553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Stencils.
 - 4. Valve tags.
 - 5. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.3 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch (19 mm) for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Fiberboard or metal.
 - 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
 - 1. Tag Material: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook .
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.
 - 2. Valve-tag schedule(s) shall be mounted in locations to be directed by Owner. Mountings shall be in a metal frame with plexi-glass (clear) cover.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

END OF SECTION

SECTION 220700

PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Flexible elastomeric.
 - b. Mineral fiber.
 - 2. Adhesives.
 - 3. Sealants.
 - 4. Factory-applied jackets.
 - 5. Field-applied jackets.
 - 6. Tapes.
 - 7. Securements.
 - 8. Corner angles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail field application for each equipment type.

- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Sample Sizes:
 - a. Preformed Pipe Insulation Materials: 12 inches (300 mm) long by NPS 2 (DN 50).
 - b. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.
- D. Qualification Data: For qualified Installer.
- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- F. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-testresponse characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- G. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000(Pipe Insulation.
 - c. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied

ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- H. Mineral-Fiber, Pipe Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJcomplying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 Ib/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. RBX Corporation; Rubatex Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.

- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.3 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Insert manufacturer's name; product name or designation.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.

2.4 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Zeston.

- b. P.I.C. Plastics, Inc.; FG Series.
- c. Proto PVC Corporation; LoSmoke.
- d. Speedline Corporation; SmokeSafe.
- 2. Adhesive: As recommended by jacket material manufacturer.
- 3. Color: White.
- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.5 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.6 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing or closed seal.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Aluminum, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

- 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, aluminumsheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.

2.7 FIRE WRAP

A. Provide 3µ fire wrap for all piping required to meet fire resistences rating.

2.8 PLENUM WRAP

A. Provide 3µ Plenum wrap for all piping required to meet fire smoke density requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.

- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" firestopping and fire-resistive joint sealers.
- D. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets,

valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.

- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.9 FINISHES

- A. Equipment and Pipe Insulation with ASJ, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Twofinish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.

- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect field-insulated equipment, randomly selected by Architect, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, locations of threaded strainers, locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic and Non-Domestic Cold Water:
 - 1. NPS 1 (DN 25) and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch (13 mm) thick.

- 2. NPS 1-1/4 (DN 32) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- B. Domestic Hot and Recirculated Hot Water:
 - NPS 1-1/4 (DN 32) and Smaller: Insulation shall be the following:

 Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
 - 2. NPS 1-1/2 (DN 40) and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- C. Stormwater and Overflow:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- D. Roof Drain and Overflow Drain Bodies and Horizontal Offsets:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
- E. Exposed Sanitary Drains, Domestic and Non-Domestic Cold Water, Domestic and Non-Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1/2 inch (13 mm) thick.
- F. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- G. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet (3 m) of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch (13 mm) thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

C. Piping, Exposed:

- 1. None.
- 2. PVC: 20 mils (0.5 mm) thick.

END OF SECTION

SECTION 221116

DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 - 2. Specialty valves.
 - 3. Flexible connectors.
 - 4. Escutcheons.
 - 5. Sleeves and sleeve seals.
 - 6. Wall penetration systems.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Domestic water piping and support and installation shall withstand effects of earthquake motions determined according to SEI/ASCE 7.

1.4 SUBMITTALS

- A. Product Data: For the following products:
 - 1. Specialty valves.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Flexible connectors.
 - 5. Backflow preventers and vacuum breakers.
 - 6. Escutcheons.
 - 7. Sleeves and sleeve seals.
- B. Water Samples: Specified in "Cleaning" Article.
- C. Coordination Drawings: For piping in equipment rooms and other congested areas, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Fire-suppression-water piping.

- 2. Domestic water piping.
- 3. Medical gas and vacuum piping.
- 4. HVAC hydronic piping.
- D. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 61 for potable domestic water piping and components.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Ownerno fewer than five days in advance of proposed interruption of water service.
 - 2. Do not proceed with interruption of water service without Owner'swritten permission.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) water tube, drawn temper.
 - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
 - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
 - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
 - 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-andsocket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
 - 5. Grooved-Joint Copper-Tube Appurtenances:

- a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Victaulic Company.
- b. Copper Grooved-End Fittings: ASTM B 75 (ASTM B 75M) copper tube or ASTM B 584 bronze castings.
- c. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.
- B. Soft Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) water tube, annealed temper.
 - 1. Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.4 SPECIALTY VALVES

- A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
- B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.5 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

- b. Zurn Plumbing Products Group; Wilkins Water Control Products.
- 2. Description:
 - a. Pressure Rating: 150 psig (1035 kPa) at 180 deg F (82 deg C).
 - b. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Factory-fabricated, bolted, companion-flange assembly.
 - b. Pressure Rating: 175 psig (1200 kPa) minimum.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - 2. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig (1035 kPa).
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.
- E. Dielectric Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.
 - 2. Description:
 - a. Galvanized-steel coupling.
 - b. Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 - c. End Connections: Female threaded.
 - d. Lining: Inert and noncorrosive, thermoplastic.
- F. Dielectric Nipples:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Precision Plumbing Products, Inc.
 - b. Victaulic Company.
- 2. Description:
 - a. Electroplated steel nipple complying with ASTM F 1545.
 - b. Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 - c. End Connections: Male threaded or grooved.
 - d. Lining: Inert and noncorrosive, propylene.

2.6 ESCUTCHEONS

- A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.
- B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.
- C. One Piece, Deep Pattern: Deep-drawn, box-shaped brass with chrome-plated finish.
- D. Split Casting, Cast Brass: Polished, chrome-plated finish with concealed hinge and setscrew.
- E. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
- F. Split-Casting Floor Plates: Cast brass with concealed hinge.

2.7 SLEEVES

- A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- C. Molded-PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- D. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinccoated, with plain ends.
- E. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.8 SLEEVE SEALS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Calpico, Inc.
 - 2. Metraflex, Inc.
 - 3. Thunderline.
- B. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Plastic.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install shutoff valve immediately upstream of each dielectric fitting.
- C. Install domestic water piping level and plumb.
- D. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- E. Install seismic restraints on piping. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- I. Install piping adjacent to equipment and specialties to allow service and maintenance.
- J. Install piping to permit valve servicing.

- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

3.2 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Copper-Tubing Grooved Joints: Roll groove end of tube. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for roll-grooved joints.
- F. Steel-Piping Grooved Joints: Rollgroove end of pipe. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- H. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures

that do not have supply stops. Use ball or gate valves for piping NPS 2 (DN 50) and smaller. Use gate valves for piping NPS 2-1/2 (DN 65) and larger.

- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
 - 2. Stop-and-Waste Drain Valves: Instead of hose-end drain valves where indicated.
- D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for calibrated balancing valves.

3.4 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric couplings.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric flange kits.
- D. Dielectric Fittings for NPS 5 (DN 125) and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 (DN 20) and Smaller: 60 inches (1500 mm) with 3/8-inch (10-mm) rod.

- 2. NPS 1 and NPS 1-1/4 (DN 25 and DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
- 3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
- 4. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
- 5. NPS 3 to NPS 5 (DN 80 to DN 125): 10 feet (3 m) with 1/2-inch (13-mm) rod.
- 6. NPS 6 (DN 150): 10 feet (3 m) with 5/8-inch (16-mm) rod.
- 7. NPS 8 (DN 200): 10 feet (3 m) with 3/4-inch (19-mm) rod.
- E. Install supports for vertical copper tubing every 10 feet (3 m).
- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 (DN 32) and Smaller: 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 4. NPS 2-1/2 (DN 65): 11 feet (3.4 m) with 1/2-inch (13-mm) rod.
 - 5. NPS 3 and NPS 3-1/2 (DN 80 and DN 90): 12 feet (3.7 m) with 1/2-inch (13-mm) rod.
 - 6. NPS 4 and NPS 5 (DN 100 and DN 125): 12 feet (3.7 m) with 5/8-inch (16-mm) rod.
 - 7. NPS 6 (DN 150): 12 feet (3.7 m) with 3/4-inch (19-mm) rod.
 - 8. NPS 8 to NPS 12 (DN 200 to DN 300): 12 feet (3.7 m) with 7/8-inch (22-mm) rod.
- G. Install supports for vertical steel piping every 15 feet (4.5 m).
- H. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 - 2. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 (DN 65) and larger.

3.7 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors.
- B. Escutcheons for New Piping:
 - 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.

- 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish .
- 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
- 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chromeplated finish .
- 5. Bare Piping in Equipment Rooms: One piece, cast brass .
- 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.
- C. Escutcheons for Existing Piping:
 - 1. Chrome-Plated Piping: Split casting, cast brass with chrome-plated finish.
 - 2. Insulated Piping: Split plate, stamped steel with concealed hinge and spring clips.
 - 3. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
 - 4. Bare Piping at Ceiling Penetrations in Finished Spaces: Split casting, cast brass with chrome-plated finish.
 - 5. Bare Piping in Unfinished Service Spaces: Split casting, cast brass with polished chrome-plated finish.
 - 6. Bare Piping in Equipment Rooms: Split casting, cast brass.
 - 7. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting floor plate.

3.8 SLEEVE INSTALLATION

- A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.
- B. Sleeves are not required for core-drilled holes.
- C. Permanent sleeves are not required for holes formed by removable PE sleeves.
- D. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.
- E. Install sleeves in new partitions, slabs, and walls as they are built.
- F. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- G. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- H. Seal space outside of sleeves in concrete slabs and walls with grout.
- I. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.
- J. Install sleeve materials according to the following applications:
 - 1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.

- 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe Stack sleeve fittings.
 - a. Extend sleeves 6 inches (152.4 mm) above finished floor level.
 - b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
- 3. Sleeves for Piping Passing through Gypsum-Board Partitions:
 - a. Steel pipe sleeves for pipes smaller than NPS 6 (DN 150).
 - b. Galvanized-steel sheet sleeves for pipes NPS 6 (DN 150) and larger.
 - c. Exception: Sleeves are not required for water supply tubes and waste pipes for individual plumbing fixtures if escutcheons will cover openings.
- 4. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.
- 5. Sleeves for Piping Passing through Exterior Concrete Walls:
 - a. Steel pipe sleeves for pipes smaller than NPS 6 (DN 150).
 - b. Cast-iron wall pipe sleeves for pipes NPS 6 (DN 150) and larger.
 - c. Install sleeves that are large enough to provide 1-inch (25-mm) annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
 - d. Do not use sleeves when wall penetration systems are used.
- 6. Sleeves for Piping Passing through Interior Concrete Walls:
 - a. Steel pipe sleeves for pipes smaller than NPS 6 (DN 150).
 - b. Galvanized-steel sheet sleeves for pipes NPS 6 (DN 150) and larger.
- K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.9 SLEEVE SEAL INSTALLATION

- A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
- B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.10 WALL PENETRATION SYSTEM INSTALLATION

A. Assemble wall penetration system components with sleeve pipe. Install so that end of sleeve pipe and face of housing are flush with wall. Adjust locking devices to secure sleeve pipe in housing.

3.11 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Piping Inspections:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- C. Piping Tests:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and for corrective action required.
- D. Domestic water piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.13 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide flow of hot water in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.14 CLEANING

- A. Clean and disinfect potable and non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- B. Prepare and submit reports of purging and disinfecting activities.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.15 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Aboveground domestic water piping, NPS 2 (DN 50) and smaller, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B); cast-copper solder-joint fittings; and solderedjoints.
- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100), shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B); cast- or wrought- copper solder-joint fittings; and brazedjoints.
 - 2. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B) grooved-joint copper-tube appurtenances; and grooved joints.

3.16 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 (DN 50) and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 (DN 50) and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Memory-stop balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION

SECTION 221119

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Hose bibbs.
 - 6. Drain valves.
 - 7. Water hammer arresters.
 - 8.
- B. Related Sections include the following:
 - 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 - 2. Division 22 Section "Domestic Water Piping" for water meters.
 - 3. Division 22 Section "Healthcare Plumbing Fixtures" for thermostatic mixing valves for sitz baths, thermostatic mixing-valve assemblies for hydrotherapy equipment, and outlet boxes for dialysis equipment.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig (860 kPa), unless otherwise indicated.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

- 2.1 VACUUM BREAKERS
 - A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1001.
 - 3. Size: NPS 1/4 to NPS 3 (DN 8 to DN 80), as required to match connected piping.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: Threaded.
 - 6. Finish: Chrome plated.
 - B. Hose-Connection Vacuum Breakers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. MIFAB, Inc.
 - c. Watts Industries, Inc.; Water Products Div.
 - d. Woodford Manufacturing Company.
 - e. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1011.

- 3. Body: Bronze, nonremovable, with manual drain.
- 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 5. Finish:Rough bronze.

2.2 BACKFLOW PREVENTERS

- A. Intermediate Atmospheric-Vent Backflow Preventers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; SPX Valves & Controls.
 - c. Watts Industries, Inc.; Water Products Div.
 - d. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1012.
 - 3. Operation: Continuous-pressure applications.
 - 4. Size: NPS 3/4 (DN 20).
 - 5. Body: Bronze.
 - 6. End Connections: Union, solder joint.
 - 7. Finish: Rough bronze.
- B. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1013.
 - 3. Operation: Continuous-pressure applications.
 - 4. Pressure Loss: 12 psig (83 kPa) maximum, through middle 1/3 of flow range.
 - 5. Size: As shown on the drawings.
 - 6. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 (DN 65) and larger.
 - 7. End Connections: Threaded for NPS 2 (DN 50) and smaller; flangedfor NPS 2-1/2 (DN 65) and larger.
 - 8. Configuration: Designed for horizontal, straight through flow.
 - 9. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 (DN 50) and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 (DN 65) and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- C. Hose-Connection Backflow Preventers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Woodford Manufacturing Company.
- 2. Standard: ASSE 1052.
- 3. Operation: Up to 10-foot head of water (30-kPa) back pressure.
- 4. Inlet Size: NPS 1/2 or NPS 3/4 (DN 15 or DN 20).
- 5. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
- 6. Capacity: At least 3-gpm (0.19-L/s) flow.
- D. Backflow-Preventer Test Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; SPX Valves & Controls.
 - c. Watts Industries, Inc.; Water Products Div.
 - d. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

2.3 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1003.
 - 3. Pressure Rating: Initial working pressure of 150 psig (1035 kPa).
 - 4. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3 (DN 65 and DN 80).
 - 5. Valves for Booster Heater Water Supply: Include integral bypass.
 - 6. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 and NPS 3 (DN 65 and DN 80).
- B. Water Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CLA-VAL Automatic Control Valves.

- b. Watts Industries, Inc.; Ames Fluid Control Systems.
- c. Watts Industries, Inc.; Watts ACV.
- d. Zurn Plumbing Products Group; Wilkins Div.
- 2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
- 3. Pressure Rating: Initial working pressure of 150 psig (1035 kPa) minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
- 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
- 5. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.

2.4 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ITT Industries; Bell & Gossett Div.
 - b. NIBCO INC.
 - c. Taco, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
 - 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
 - 3. Body: bronze,
 - 4. Size: Same as connected piping, but not larger than NPS 2 (DN 50).
 - 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- C. Memory-Stop Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 3. Pressure Rating: 400-psig (2760-kPa) minimum CWP.
 - 4. Size: NPS 2 (DN 50) or smaller.
 - 5. Body: Copper alloy.
 - 6. Port: Standard or full port.
 - 7. Ball: Chrome-plated brass.
 - 8. Seats and Seals: Replaceable.
 - 9. End Connections: Solder joint or threaded.
 - 10. Handle: Vinyl-covered steel with memory-setting device.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

- A. Primary, Thermostatic, Water Mixing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lawler Manufacturing Company, Inc.
 - b. Leonard Valve Company.
 - c. Powers; a Watts Industries Co.
 - 2. Standard: ASSE 1017.
 - 3. Pressure Rating: 125 psig (860 kPa).
 - 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
 - 5. Material: Bronze body with corrosion-resistant interior components.
 - 6. Connections: Threaded inlets and outlet.
 - 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 - 8. Valve Pressure Rating: 125 psig (860 kPa) minimum, unless otherwise indicated.
 - 9. Tempered-Water Setting: 125 deg F (deg C).
 - 10. Tempered-Water Design Flow Rate: 69.44
 - 11. Valve Finish: Rough bronze.
 - 12. Piping Finish: Copper.

2.6 HOSE BIBBS

- A. Hose Bibbs:
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 1/2 or NPS 3/4 (DN 15 or DN 20) threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig (860 kPa).
 - 7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 - 9. Finish for Service Areas: Chrome or nickel plated.
 - 10. Finish for Finished Rooms: Chrome or nickel plated.
 - 11. Operation for Equipment Rooms: Wheel handle or operating key.
 - 12. Operation for Service Areas: Wheel handle Operating key.
 - 13. Operation for Finished Rooms: Operating key.
 - 14. Include operating key with each operating-key hose bibb.
 - 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.7 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.

DOMESTIC WATER PIPING SPECIALTIES 221119 - 6

- 3. Size: NPS 3/4 (DN 20).
- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.8 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. PPP Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - g. Tyler Pipe; Wade Div.
 - h. Watts Drainage Products Inc.
 - i. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Copper tube with piston.
 - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.

- C. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
- D. Install water control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.
- E. Install balancing valves in locations where they can easily be adjusted.
- F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- G. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.
 - 1. Install shutoff valve on outlet if specified.
 - Install cabinet-type units recessed in or surface mounted on wall as specified. Install 2by-4-inch (38-by-89-mm) fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."
- H. Install water hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.
 - 2. Intermediate atmospheric-vent backflow preventers.
 - 3. Reduced-pressure-principle backflow preventers.
 - 4. Water pressure-reducing valves.
 - 5. Calibrated balancing valves.
 - 6. Primary, thermostatic, water mixing valves.
 - 7. Manifold, thermostatic, water-mixing-valve assemblies.
 - 8. Hose stations.
 - 9. Supply-type, trap-seal primer valves.

DOMESTIC WATER PIPING SPECIALTIES 221119 - 8 B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and prepare test reports:
 - 1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer and double-check backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.
- B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION

SECTION 221316

SANITARY WASTE AND VENT AND STORM WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following for soil, waste, and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.
 - 3. Encasement for underground metal piping.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. LLDPE: Linear, low-density polyethylene plastic.
- D. NBR: Acrylonitrile-butadiene rubber.
- E. PE: Polyethylene plastic.
- F. PVC: Polyvinyl chloride plastic.
- G. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 - 1. Soil, Waste, and Storm Water and Vent Piping: 10-foot head of water (30 kPa).
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall be capable of withstanding the effects of seismic events determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures."

1.5 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Shop Drawings:
 - 1. Design Calculations: Signed and sealed by a qualified professional engineer for selecting seismic restraints.
 - 2. Sovent Drainage System: Include plans, elevations, sections, and details.
- C. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-drain" for plastic drain piping; "NSF-tubular" for plastic continuous waste piping; and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

- A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.
- 2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 - A. Pipe and Fittings: ASTM A 74, Service and Extra-Heavy class(es).
 - B. Gaskets: ASTM C 564, rubber.
 - C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
- C. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - 1. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve.
 - a. Manufacturers:
 - 1) ANACO.
 - 2) Clamp-All Corp.
 - 3) Tyler Pipe; Soil Pipe Div.

2.5 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.
- B. Drainage Fittings: ASME B16.12, galvanized, threaded, cast-iron drainage pattern.
- C. Pressure Fittings:
 - 1. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, galvanized, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-andsocket, metal-to-metal, bronze seating surface; and female threaded ends.
 - 3. Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, galvanized, standard pattern.
 - 4. Cast-Iron Flanges: ASME B16.1, Class 125.
 - 5. Cast-Iron, Flanged Fittings: ASME B16.1, Class 125, galvanized.
- D. Grooved-Joint Systems:
 - 1. Manufacturers:
 - a. Anvil International.
 - b. Star Pipe Products; Star Fittings Div.
 - c. Victaulic Company.
 - d. Ward Manufacturing, Inc.
 - 2. Grooved-End, Steel-Piping Fittings: ASTM A 47/A 47M, galvanized, malleable-iron casting; ASTM A 106, galvanized-steel pipe; or ASTM A 536, galvanized, ductile-iron casting; with dimensions matching steel pipe.
 - 3. Grooved-End, Steel-Piping Couplings: AWWA C606, for steel-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

SANITARY WASTE AND VENT PIPING 221316 - 3

2.6 COPPER TUBE AND FITTINGS

- A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 - 1. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
- B. Hard Copper Tube: ASTM B 88, Types L and M (ASTM B 88M, Types B and C), water tube, drawn temper.
 - 1. Copper Pressure Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wroughtcopper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 3. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.7 SPECIAL PIPE FITTINGS

- A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - a. Fernco, Inc.
 - b. Mission Rubber Co.
 - c. Plastic Oddities, Inc.
 - 2. Sleeve Materials:
 - a. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- B. Rigid, Unshielded, Nonpressure Pipe Couplings: ASTM C 1461, sleeve-type reducing- or transition-type mechanical coupling molded from ASTM C 1440, TPE material with corrosion-resistant-metal tension band and tightening mechanism on each end.
 - 1. Manufacturers:
 - a. ANACO.
- C. Pressure Pipe Couplings: AWWA C219 metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
 - 1. Manufacturers:
 - a. Dresser, Inc.; DMD Div.
 - b. EBAA Iron Sales, Inc.
 - c. Romac Industries, Inc.
 - 2. Center-Sleeve Material: Ductile iron.

- 3. Gasket Material: Natural or synthetic rubber.
- 4. Metal Component Finish: Corrosion-resistant coating or material.
- D. Flexible Ball Joints: Ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include gasketed ball-joint section and ductileiron gland, rubber gasket, and steel bolts.
 - 1. Manufacturers:
 - a. EBAA Iron Sales, Inc.
- E. Expansion Joints: Two or three-piece, ductile-iron assembly consisting of telescoping sleeve(s) with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 1. Manufacturers:
 - a. EBAA Iron Sales, Inc.
 - b. Romac Industries, Inc.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- B. Aboveground, soil and waste and storm water piping NPS 4 (DN 100) and smaller shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings;heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
 - 3. Copper DWV tube, copper drainage fittings, and soldered joints.
 - 4. Dissimilar Pipe-Material Couplings: Flexible nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.
- C. Aboveground, soil, waste and storm water piping NPS 5 (DN 125) and larger shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings; shielded, stainless-steel couplings; and hublesscoupling joints.
 - 3. Dissimilar Pipe-Material Couplings: Flexible nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.
- D. Aboveground, vent piping NPS 4 (DN 100) and smaller shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.

- 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
- 3. Copper DWV tube, copper drainage fittings, and soldered joints.
 - a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2 (DN 65 and DN 90): Hard copper tube, Type M (Type C); copper pressure fittings; and soldered joints.
- 4. Dissimilar Pipe-Material Couplings: Flexible nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.
- E. Aboveground, vent piping NPS 5 (DN 125) and larger shall be the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints.
 - 3. [Solid-wall] [Cellular-core] PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: [Flexible,] [Shielded,] nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

3.2 PIPING INSTALLATION

- A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- C. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
- D. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- E. Make changes in direction for soil, waste drainage, storm and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- F. Install soil, waste and storm drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Sanitary Piping: 2 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- G. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- C. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
- D. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.
- E. Grooved Joints: Assemble joint with keyed coupling, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Install individual, straight, horizontal piping runs according to the following:
 - a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet (30 m), if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3 (DN 80): 60 inches (1500 mm) with 1/2-inch (13-mm) rod.

- 3. NPS 4 and NPS 5 (DN 100 and DN 125): 60 inches (1500 mm) with 5/8-inch (16-mm) rod.
- 4. NPS 6 (DN 150): 60 inches (1500 mm) with 3/4-inch (19-mm) rod.
- 5. NPS 8 to NPS 12 (DN 200 to DN 300): 60 inches (1500 mm) with 7/8-inch (22-mm) rod.
- G. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).
- H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 (DN 32): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1-1/2 (DN 40): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 2 (DN 50): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 4. NPS 2-1/2 (DN 65): 11 feet (3.4 m) with 1/2-inch (13-mm) rod.
 - 5. NPS 3 (DN 80): 12 feet (3.7 m) with 1/2-inch (13-mm) rod.
 - 6. NPS 4 and NPS 5 (DN 100 and DN 125): 12 feet (3.7 m) with 5/8-inch (16-mm) rod.
 - 7. NPS 6 (DN 150): 12 feet (3.7 m) with 3/4-inch (19-mm) rod.
 - 8. NPS 8 to NPS 12 (DN 200 to DN 300): 12 feet (3.7 m) with 7/8-inch (22-mm) rod.
- I. Install supports for vertical steel piping every 15 feet (4.5 m).
- J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 (DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
 - 4. NPS 3 to NPS 5 (DN 80 to DN 125): 10 feet (3 m) with 1/2-inch (13-mm) rod.
 - 5. NPS 6 (DN 150): 10 feet (3 m) with 5/8-inch (16-mm) rod.
 - 6. NPS 8 (DN 200): 10 feet (3 m) with 3/4-inch (19-mm) rod.
- K. Install supports for vertical copper tubing every 10 feet (3 m).
- L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.

- 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
- 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 (DN 65) and larger.

3.6 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg (250 Pa). Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.7 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION

SECTION 221319

SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
 - 1. Cleanouts.
 - 2. Through-penetration firestop assemblies.
 - 3. Miscellaneous sanitary drainage piping specialties.
 - 4. Flashing materials.
- B. Related Sections include the following:
 - 1. Division 22 Section "Plumbing Fixtures".

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. FOG: Fats, oils, and greases.
- C. FRP: Fiberglass-reinforced plastic.
- D. HDPE: High-density polyethylene plastic.
- E. PE: Polyethylene plastic.
- F. PP: Polypropylene plastic.
- G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

- A. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.
 - 1. Wiring Diagrams: Power, signal, and control wiring.

- B. Field quality-control test reports.
- C. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Metal Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASME A112.36.2M for cast iron ASME A112.3.1 for stainless steel for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch and Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass cast-iron plastic plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Closure: Stainless-steel plug with seal.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- B. Cast-Iron Wall Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hub-and-spigot, cast-iron soil pipe T-branch and Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass cast-iron plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
 - 8. Wall Access: Round wall-installation frame and cover.

2.2 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ProSet Systems Inc.
 - 2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 3. Size: Same as connected soil, waste, or vent stack.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.

- 2. Locate at each change in direction of piping greater than 45 degrees.
- 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
- 4. Locate at base of each vertical soil and waste stack.
- C. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION

SECTION 224000

PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following conventional plumbing fixtures and related components:
 - 1. Faucets for lavatories.
 - 2. Laminar-flow faucet-spout outlets.
 - 3. Flushometers.
 - 4. Toilet seats.
 - 5. Protective shielding guards.
 - 6. Fixture supports.
 - 7. Water closets.
 - 8. Urinals.
 - 9. Lavatories.
 - 10. Commercial sinks.
 - 11. Service sinks.
 - 12. Owner-furnished fixtures.
- B. Related Sections include the following:
 - 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
 - 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
 - 3. Division 22 Section "Healthcare Plumbing Fixtures."
 - 4. Division 22 Section "Emergency Plumbing Fixtures."

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

PLUMBING FIXTURES 224000 - 1

- D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
- E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.
- F. FRP: Fiberglass-reinforced plastic.
- G. PMMA: Polymethyl methacrylate (acrylic) plastic.
- H. PVC: Polyvinyl chloride plastic.
- I. Solid Surface: Nonporous, homogeneous, cast-polymer-plastic material with heat-, impact-, scratch-, and stain-resistance qualities.

1.4 SUBMITTALS

- A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
- D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities "Americans with Disabilities Act" for plumbing fixtures for people with disabilities.
- D. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.

- E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 - 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 - 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
 - 3. Slip-Resistant Bathing Surfaces: ASTM F 462.
 - 4. Solid-Surface-Material Lavatories and Sinks: ANSI/ICPA SS-1.
 - 5. Stainless-Steel Commercial, Handwash Sinks: NSF 2 construction.
 - 6. Vitreous-China Fixtures: ASME A112.19.2M.
 - 7. Water-Closet, Flush Valve, ASME A112.19.5.
- H. Comply with the following applicable standards and other requirements specified for lavatory faucets:
 - 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 - 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 - 3. Diverter Valves for Faucets with Hose Spray: ASSE 1025.
 - 4. Faucets: ASME A112.18.1.
 - 5. Hose-Connection Vacuum Breakers: ASSE 1011.
 - 6. Hose-Coupling Threads: ASME B1.20.7.
 - 7. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
 - 8. NSF Potable-Water Materials: NSF 61.
 - 9. Pipe Threads: ASME B1.20.1.
 - 10. Sensor-Actuated Faucets and Electrical Devices: UL 1951.
 - 11. Supply Fittings: ASME A112.18.1.
 - 12. Brass Waste Fittings: ASME A112.18.2.
- I. Comply with the following applicable standards and other requirements specified for shower faucets:
 - 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 - 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
 - 3. Faucets: ASME A112.18.1.
 - 4. Hand-Held Showers: ASSE 1014.
 - 5. High-Temperature-Limit Controls for Thermal-Shock-Preventing Devices: ASTM F 445.
 - 6. Hose-Coupling Threads: ASME B1.20.7.
 - 7. Manual-Control Antiscald Faucets: ASTM F 444.
 - 8. Pipe Threads: ASME B1.20.1.
 - 9. Pressure-Equalizing-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
 - 10. Thermostatic-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
- J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

- 1. Atmospheric Vacuum Breakers: ASSE 1001.
- 2. Brass and Copper Supplies: ASME A112.18.1.
- 3. Manual-Operation Flushometers: ASSE 1037.
- 4. Brass Waste Fittings: ASME A112.18.2.
- 5. Sensor-Operation Flushometers: ASSE 1037 and UL 1951.
- K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Flexible Water Connectors: ASME A112.18.6.
 - 2. Floor Drains: ASME A112.6.3.
 - 3. Hose-Coupling Threads: ASME B1.20.7.
 - 4. Off-Floor Fixture Supports: ASME A112.6.1M.
 - 5. Pipe Threads: ASME B1.20.1.
 - 6. Plastic Toilet Seats: ANSI Z124.5.
 - 7. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.6 WARRANTY

- A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures of unit shell.
 - b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Period for Commercial Applications: 1 year from date of Substantial Completion.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
 - 3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 12 6 of each type.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS

- A. Lavatory Faucets:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Chicago Faucets.
 - 4. Description: Two-handle mixing valve. Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 - a. Body Material: Commercial, solid brass.
 - b. Finish: Polished chrome plate.
 - c. Maximum Flow Rate: 0.5 gpm (1.5 L/min.).
 - d. Centers: 4 inches (102 mm).
 - e. Mounting: Deck, exposed.
 - f. Valve Handle(s): Wrist blade, 4 inches (102 mm).
 - g. Inlet(s): NPS 1/2 (DN 15) male shank] [NPS 1/2 (DN 15) female shank.
 - h. Spout: Rigid, gooseneck type.
 - i. Spout Outlet: Aerator, 0.5 gpm (1.5L/min.).
 - j. Operation: Compression, manual.
 - k. Drain: Grid.
 - I. Tempering Device: Not required.

2.2 SINK FAUCETS

- A. Sink Faucets:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Chicago Faucets.

- 4. Description: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 - a. Body Material: Commercial, solid brass
 - b. Finish: Polished chrome plate
 - c. Maximum Flow Rate: 2.5 gpm (9.5 L/min.), unless otherwise indicated.
 - d. Mixing Valve: Two-lever handle.
 - e. Backflow Protection Device for Hose Outlet: Not required.
 - f. Backflow Protection Device for Side Spray: Not required
 - g. Centers: 4 inches (102 mm)
 - h. Mounting: Deck
 - i. Handle(s): Wrist blade, 4 inches (102 mm)
 - j. Inlet(s): NPS 1/2 (DN 15) female shank
 - k. Spout Type: Rigid gooseneck
 - I. Spout Outlet: Aerator
 - m. Vacuum Breaker: Not required
 - n. Operation: Compression, manual.
 - o. Drain: Grid

2.3 LAMINAR-FLOW FAUCET-SPOUT OUTLETS

- A. Laminar-Flow Faucet-Spout Outlets:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Chronomite Laboratories, Inc.
 - 4. Description: Chrome-plated-brass faucet-spout outlet that produces nonaerating, laminar stream. Include male or female thread that mates with faucet outlet for attachment to faucets where indicated and flow-rate range that includes flow of faucet.

2.4 FLUSHOMETERS

- A. Flushometers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Sloan Company.
- 4. Description: Flushometer for urinal and water-closet-type fixture. Include brass body with corrosion-resistant internal components, non-hold-open feature, control stop with check valve, vacuum breaker, copper or brass tubing, and polished chrome-plated finish on exposed parts.
 - a. Internal Design: Diaphragm operation.
 - b. Style: Exposed
 - c. Inlet Size: [NPS 3/4 (DN 20)] [NPS 1 (DN 25)].
 - d. Trip Mechanism: Oscillating, lever-handle actuator
 - e. Consumption: 1.6 gal./flush (6.0 L/flush)
 - f. Tailpiece Size: NPS 1-1/2 (DN 40) length to top of bowl.

2.5 TOILET SEATS

- A. Toilet Seats:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Church Seats.
 - 4. Description: Toilet seat for water-closet-type fixture.
 - a. Material: Molded, solid plastic with antimicrobial agent
 - b. Configuration: Open front without cover.
 - c. Size: Elongated
 - d. Hinge Type: CK, check
 - e. Class: Heavy-duty commercial.
 - f. Color: White

2.6 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. TRUEBRO, Inc.
- 3. Description: Manufactured plastic wraps for covering plumbing fixture hotand cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
- B. Protective Shielding Piping Enclosures:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. TRUEBRO, Inc.
 - 3. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

2.7 FIXTURE SUPPORTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Company.
 - 2. Smith, Jay R. Mfg. Co.
 - 3. Tyler Pipe; Wade Div.
 - 4. Zurn Plumbing Products Group; Specification Drainage Operation.
- C. Water-Closet Supports:
- D. Urinal Supports:
 - 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting, urinal-type fixture. Include steel uprights with feet.
 - 2. Accessible-Fixture Support: Include rectangular steel uprights.
- E. Lavatory Supports:
 - 1. Description: Type III, lavatory carrier with hanger plate and tie rod for wallmounting, lavatory-type fixture. Include steel uprights with feet.
 - 2. Accessible-Fixture Support: Include rectangular steel uprights.

F. Sink Supports:

1. Description: Type I, sink carrier with exposed arms and tie rods for sink-type fixture. Include steel uprights with feet.

2.8 WATER CLOSETS

- A. Water Closets:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - 4. Description Accessible, floor mounting, floor-outlet, vitreous-china fixture designed for flushometer valve operation.
 - a. Style: One piece.
 - 1) Bowl Type: Elongated with siphon-jet design.
 - 2) Design Consumption: 1.6 gal./flush (6 L/flush)
 - 3) Trip Mechanism: Lever-handle actuator.
 - 4) Color: White.
 - b. Supply: 1 1/4" chrome-plated brass or copper with screwdriver stop.
 - c. Style: Flushometer valve.
 - 1) Bowl Type: Elongated with siphon-jet design.
 - 2) Design Consumption: 1.6 gal./flush (6 L/flush).
 - 3) Color: White.

2.9 URINALS

- A. Urinals:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
- 4. Description: Accessible, wall-mounting, back-outlet, vitreous-china fixture designed for flushometer valve operation.
 - a. Type: Siphon jet.
 - b. Strainer or Trapway: Integral cast strainer with integral trap.
 - c. Design Consumption: 1 gal./flush (3.8 L/flush).
 - d. Color: White.
 - e. Supply Spud Size: NPS 1-1/4 (DN 32).
 - f. Outlet Size: NPS 2 (DN 50)

2.10 LAVATORIES

- A. Lavatories:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - 4. Description: Accessible, wall-mounting, vitreous-china fixture.
 - a. Type: Slab.
 - b. Size: 20 by 18 inches (508 by 457 mm) rectangular.
 - c. Faucet Hole Punching: Three holes, 4-inch (102-mm) centers.
 - d. Faucet Hole Location: Top.
 - e. Pedestal: Not required.
 - f. Color: White.
 - g. Faucet: Lavatory.
 - h. Supplies: NPS 3/8 (DN 10) chrome-plated copper with stops.
 - i. Drain: Grid.
 - 1) Location: Near back of bowl.
 - j. Drain Piping: chrome-plated, cast-brass P-trap; NPS 1-1/2 (DN 40), thick tubular brass waste to wall; and wall escutcheon.

2.11 COMMERCIAL SINKS

- A. Commercial Sinks:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Elkay Manufacturing Co.
 - b. Just Manufacturing Company.
 - 4. Description: One-compartment, counter-mounting, stainless-steel commercial sink with backsplash.
 - a. Overall Dimensions: 22" x 19" x 7 1/2"
 - b. Metal Thickness: 0.050 inch (1.3 mm).
 - c. Compartment:
 - 1) Dimensions: As shown on drawings
 - 2) Drain: Grid with NPS 2 (DN 50) tailpiece and twist drain
 - a) Location: Near back of compartment.

2.12 SERVICE SINKS

- A. Service Sinks:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. Eljer.
 - c. Kohler Co.
 - 4. Description: Floor-mounting, Molded stone fixture with rim guard on front and sides.
 - a. Size: 24 by 20 inches (610 by 510 mm).
 - b. Color: White.
 - c. Faucet: Sink.

d. Drain: Grid with NPS 3 (DN 80) outlet.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install floor-mounting, back-outlet water closets attached to building floor substrate and wall bracket and onto waste fitting seals.
- G. Install counter-mounting fixtures in and attached to casework.
- H. Install fixtures level and plumb according to roughing-in drawings.
- I. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

- 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- J. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- K. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- L. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- M. Install toilet seats on water closets.
- N. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- O. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- P. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- Q. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- R. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- S. Set shower receptors and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."
- T. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- E. Install fresh batteries in sensor-operated mechanisms.

3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Operate and adjust disposers. Replace damaged and malfunctioning units.
- C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- D. Replace washers and seals of leaking and dripping faucets and stops.
- E. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
- B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.7 PROTECTION

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION

SECTION 226113

COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Medical air piping and specialties, designated "medical air," operating at 50 to 55 psig (345 to 380 kPa).

1.3 DEFINITIONS

- A. D.I.S.S.: Diameter-index safety system.
- B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- C. Medical Compressed-Air Piping Systems: Include medical air and medical laboratory air piping systems.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Compressed-air tubes and fittings.
 - 2. Compressed-air valves and valve boxes.
 - 3. Medical compressed-air service connections.
 - 4. Medical compressed-air alarm system components.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Piping Material Certification: Signed by Installer certifying that medical compressed-air piping materials comply with NFPA 99 requirements.
- D. Qualification Data: For Installer.
- E. Brazing certificates.
- F. Field quality-control test reports.

G. Operation and Maintenance Data: For compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Compressed-Air Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010.
 - 2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.
- C. Source Limitations: Obtain compressed-air service connections of same type and from same manufacturer as service connections provided for in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."
- D. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- F. ASME Compliance:
 - 1. Comply with ASME B31.1, "Power Piping," for laboratory compressed-air piping operating at more than 150 psig (1035 kPa).
 - 2. Comply with ASME B31.9, "Building Services Piping," for laboratory compressed-air piping operating at 150 psig (1035 kPa) or less.
- G. Comply with NFPA 99, "Health Care Facilities," for medical compressed-air system materials and installation in healthcare facilities.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate medical compressed-air service connections with other service connections. Medical vacuum service connections are specified in Division 22 Section "Vacuum Piping for Laboratory and Healthcare Facilities," and medical gas service connections are specified in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical compressed-air pressure outlets.
 - a. Medical Compressed-Air Service Connections: Equal to 10 percent of amount installed.
 - 2. D.I.S.S. Connections: Furnish complete noninterchangeable medical compressed-air pressure outlets complying with CGA V-5.
 - a. Compressed-Air D.I.S.S. No. 1160: Equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Copper Medical Gas Tube: ASTM B 819,Type L, seamless, drawn temper, that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in green for Type K tube and in blue for Type L tube.
 - 1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
 - 2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.
 - 3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.

2.2 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.
- B. Threaded-Joint Tape: PTFE.
- 2.3 VALVES
 - A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
 - B. Ball Valves: MSS SP-110, 3-piece body, brass or bronze.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the followina:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - BeaconMedaes. a.
 - b. Conbraco Industries, Inc.
 - c. NIBCO INC.
- 4. Pressure Rating: 300 psig (2070 kPa) minimum.
- Ball: Full-port, chrome-plated brass. 5.
- Seats: PTFE or TFE. 6.
- Handle: Lever type with locking device. 7.
- Stem: Blowout proof with PTFE or TFE seal. 8.
- 9. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- C. Check Valves: In-line pattern, bronze.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following: а
 - BeaconMedaes.
 - Conbraco Industries, Inc. b.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Operation: Spring loaded.
 - Ends: Manufacturer-installed ASTM B 819, copper-tube extensions. 6.
- D. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - Amico Corporation. a.
 - b. BeaconMedaes.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Ball: Full-port, chrome-plated brass.
 - Seats: PTFE or TFE. 6.
 - Handle: Lever type with locking device. 7.
 - Stem: Blowout proof with PTFE or TFE seal. 8.
 - Ends: Manufacturer-installed ASTM B 819, copper-tube extensions. 9.
 - 10. Pressure Gage: Manufacturer installed on one copper-tube extension.

- E. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Interior Finish: Factory-applied white enamel.
 - 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 - 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- F. Zone Valve Boxes: Formed or extruded aluminum with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Beacon Medaes.
 - b. Amico
 - 4. Interior Finish: Factory-applied white enamel.
 - 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 - 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- G. Safety Valves: Bronze-body, ASME-construction, poppet, pressure-relief type with settings to match system requirements.
- H. Pressure Regulators: Bronze body and trim; spring-loaded, diaphragm-operated relieving type; manual pressure-setting adjustment; rated for 250-psig (1725-kPa) minimum inlet pressure; and capable of controlling delivered air pressure within 0.5 psig for each 10-psig (5.0 kPa for each 100-kPa) inlet pressure.
- I. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig (1380-kPa) minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket where wall mounting is indicated.

2.4 MEDICAL COMPRESSED-AIR SERVICE CONNECTIONS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Allied Healthcare Products, Inc.; Chemetron Div.
 - 2. Amico Corporation.
 - 3. BeaconMedaes.
- D. Connection Devices: For specific medical compressed-air pressure and service listed. Include roughing-in assemblies, finishing assemblies, and cover plates. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate. Furnish recessedtype units made for concealed piping unless otherwise indicated.
 - 1. Roughing-in Assembly:
 - a. Steel outlet box for recessed mounting and concealed piping.
 - b. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed.
 - c. Double seals that will prevent air leakage.
 - d. ASTM B 819, NPS 3/8 (DN 10) copper outlet tube brazed to valve with service marking and tube-end dust cap.
 - 2. Finishing Assembly:
 - a. Brass housing with primary check valve.
 - b. Double seals that will prevent air leakage.
 - c. Cover plate with gas-service label.
 - 3. Quick-Coupler Service Connections: Pressure outlet with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.
 - 4. D.I.S.S. Service Connections: Pressure outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - a. Medical Air Service Connections: CGA V-5, D.I.S.S. No. 1160.
 - 5. Cover Plates: One piece, stainless steel, with NAAMM AMP 503, No. 4 finish and permanent, color-coded, identifying label matching corresponding service.

2.5 MEDICAL COMPRESSED-AIR-PIPING ALARM SYSTEMS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Amico Corporation.
 - 2. BeaconMedaes.
- D. Panels for medical compressed-air piping systems may be combined in single panels with medical vacuum and medical gas piping systems.
- E. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.
- F. Dew Point Monitors: Continuous line monitoring, having panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, factory- or field-installed valved bypass, and visual and cancelable audio signal for dryer site and master alarm panels. Alarm signals when pressure dew point rises above 39 deg F (4 deg C) at 55 psig (380 kPa).
 - 1. Operation: Chilled-mirror method or hygrometer moisture analyzer with sensor probe.
- G. Pressure Switches or Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 - 1. Low-Pressure Operating Range: 0- to 100-psig (0- to 690-kPa).
 - 2. High-Pressure Operating Range: Up to 250-psig (1725-kPa).
- H. Carbon Monoxide Monitors: Panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, and factory- or field-installed valved bypass. Alarm signals when carbon monoxide level rises above 10 ppm.
- I. General Requirements for Medical Compressed-Air Alarm Panels: Factory wired with audible and color-coded visible signals to indicate specified functions.
 - 1. Mounting: Recessed installation.
 - 2. Enclosures: Fabricated from minimum 0.047-inch- (1.2-mm-) thick steel or minimum 0.05-inch- (1.27-mm-) thick aluminum, with knockouts for electrical and piping connections.
- J. Anesthetizing-Area Alarm Panels: Separate trouble alarm signals, pressure gages, and indicators for medical compressed-air piping systems.
 - 1. Include alarm signals when the following conditions exist:
 - a. Medical Air: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa).

- K. Area Alarm Panels: Separate trouble alarm signals, pressure gages, and indicators for medical compressed-air piping systems.
 - 1. Include alarm signals when the following condition exists:
 - a. Medical Air: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa).

2.6 COMPUTER INTERFACE CABINET

A. Description: Wall-mounting, welded-steel control cabinet with gasketed door, mounting brackets, grounding device, and white-enamel finish for connection of medical compressed-air-piping-system alarms to facility computer. Include factory-installed signal circuit boards, power transformer, circuit breaker, wiring terminal board, and internal wiring capable of interfacing 20 alarm signals.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

- A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.
- B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chromeplated finish.
- C. One-Piece, Cast-Brass Escutcheons: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated
- E. One-Piece, Stamped-Steel Escutcheons: With set screw and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw, and chrome-plated finish.
- G. One-Piece, Floor-Plate Escutcheons: Cast iron.

H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.9 NITROGEN

A. Description: Comply with USP 28 - NF 23 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."
 - Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb (0.453 kg) of chemical to 3 gal. (11.3 L) of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

- A. Connect new tubing to existing tubing with memory-metal couplings.
- B. Medical Air Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- C. Medical Laboratory Air Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- D. Drain Piping: Use the following piping materials:
 - 1. Copper water tube, cast- or wrought-copper fittings, and soldered joints.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Comply with ASSE Standard #6010 for installation of compressed-air piping.

COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES 226113 - 9

- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install air and drain piping with 1 percent slope downward in direction of flow.
- H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications below unless otherwise indicated.
- I. Install eccentric reducers, if available, where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- J. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.
- K. Install piping to permit valve servicing.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install medical compressed-air piping to medical compressed-air service connections specified in this Section, to medical compressed-air service connections in equipment specified in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical compressed-air service.
- O. Install seismic restraints on compressed-air piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- P. Install compressed-air service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- Q. Connect compressed-air piping to air compressors and to compressed-air outlets and equipment requiring compressed-air service.
- R. Install unions in copper compressed-air tubing adjacent to each valve and at final connection to each piece of equipment, machine, and specialty.

3.4 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from compressed-air equipment and specialties.

- B. Install check valves to maintain correct direction of compressed-air flow from compressed-air equipment.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install safety valves on compressed-air receivers where required by NFPA 99 and where recommended by specialty manufacturers.
- F. Install pressure regulators on compressed-air piping where reduced pressure is required.
- G. Install automatic drain valves on equipment, specialties, and piping with drain connection. Run drain piping to floor drain so contents spill over or into it.
- H. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.

3.5 JOINT CONSTRUCTION

- A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- B. Threaded Joints: Apply appropriate tape to external pipe threads.
- C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter. Continuously purge joint with oil-free dry nitrogen during brazing.
- D. Pressure-Sealed Joints: Join copper tube and press-type fittings with tools recommended by fitting manufacturer.
- E. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.

3.6 MEDICAL COMPRESSED-AIR-PIPING ALARM SYSTEM INSTALLATION

- A. Alarm panels for medical compressed-air piping systems may be combined in single panels with medical vacuum piping systems and medical gas piping systems.
- B. Install alarm system components for medical compressed-air-piping according to and in locations required by NFPA 99.
- C. Install area alarm panels for medical compressed-air piping system where indicated.
- D. Install computer interface cabinet with connection to medical compressed-air-piping alarm system and to facility computer.

3.7 SLEEVE INSTALLATION

- A. Sleeves are not required for core-drilled holes.
- B. Permanent sleeves are not required for holes formed by removable PE sleeves.
- C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe.
 - 1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
 - 2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- D. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- E. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - 1. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - 2. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger penetrating gypsum board partitions.
 - 3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - a. Seal space outside of sleeve fittings with grout.
- F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.8 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 - e. Bare Piping in Equipment Rooms: One piece, cast brass Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.9 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet (30 m): MSS Type 43, adjustable, roller hangers.
- E. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within 12 inches (300 mm) of each fitting and coupling.
- H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 (DN 8): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/8 and NPS 1/2 (DN 10 and DN 15): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 3/4 (DN 20): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1 (DN 25): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/4 (DN 32): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 6. NPS 1-1/2 (DN 40): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 7. NPS 2 (DN 50): 11 feet (3.4 m) with 3/8-inch (10-mm) rod.
 - 8. NPS 2-1/2 (DN 65): 13 feet (4 m) with 1/2-inch (13-mm) rod.
 - 9. NPS 3 (DN 80): 14 feet (4.3 m) with 1/2-inch (13-mm) rod.
 - 10. NPS 3-1/2 (DN 90): 15 feet (4.6 m) with 1/2-inch (13-mm) rod.
 - 11. NPS 4 (DN 100): 16 feet (4.9 m) with 1/2-inch (13-mm) rod.
 - 12. NPS 5 (DN 125): 18 feet (5.5 m) with 1/2-inch (13-mm) rod.
 - 13. NPS 6 (DN 150): 20 feet (6 m) with 5/8-inch (16-mm) rod.
 - 14. NPS 8 (DN 200): 23 feet (7 m) with 3/4-inch (19-mm) rod.
- J. Install supports for vertical copper tubing every 10 feet (3 m).

3.10 LABELING AND IDENTIFICATION

- A. Install identifying labels and devices for nonmedical laboratory compressed-air piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for medical compressed-air piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Medical Air: Black letters on yellow background.
 - 2. Dental Air: Black letters on yellow-and-white diagonal stripe background.
 - 3. Instrument Air: White letters on red background.
 - 4. Medical Laboratory Air: Black letters on yellow-and-white checkerboard background.

3.11 FIELD QUALITY CONTROL FOR COMPRESSED-AIR PIPING IN NONMEDICAL LABORATORY FACILITIES

- A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of compressed-air piping in nonmedical laboratory facilities and prepare test reports.
- B. Perform tests and inspections of compressed-air piping in nonmedical laboratory facilities and prepare test reports.
- C. Tests and Inspections:
 - Piping Leak Tests for Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry nitrogen to pressure of 50 psig (345 kPa) above system operating pressure, but not less than 150 psig (1035 kPa). Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect filters and pressure regulators for proper operation.

3.12 FIELD QUALITY CONTROL FOR MEDICAL COMPRESSED-AIR PIPING IN HEALTHCARE FACILITIES

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical compressed-air piping in healthcare facilities and prepare test reports.
- B. Perform tests and inspections of medical compressed-air piping systems in healthcare facilities and prepare test reports.
- C. Tests and Inspections:
 - 1. Medical Compressed-Air Testing Coordination: Perform tests, inspections, verifications, and certification of medical compressed-air piping systems concurrently with tests, inspections, and certification of medical vacuum piping and medical gas piping systems.
 - 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:

- a. Initial blowdown.
- b. Initial pressure test.
- c. Cross-connection test.
- d. Piping purge test.
- e. Standing pressure test for positive-pressure medical compressed-air piping.
- f. Repair leaks and retest until no leaks exist.
- 3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical compressed-air piping systems and perform the following tests and inspections:
 - a. Standing pressure test.
 - b. Individual-pressurization cross-connection test.
 - c. Valve test.
 - d. Master and area alarm tests.
 - e. Piping purge test.
 - f. Piping particulate test.
 - g. Piping purity test.
 - h. Final tie-in test.
 - i. Operational pressure test.
 - j. Medical air purity test.
 - k. Verify correct labeling of equipment and components.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- D. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.13 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain medical compressed-air alarm systems. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 226213

VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Medical surgical vacuum piping and specialties, designated "medical vacuum" operating at 15 inches mercury (380 mm mercury or 50.7 kPa vacuum).
 - 2. Waste anesthetic gas disposal piping and specialties, designated "WAGD evacuation" operating at 14 inches mercury (355 mm mercury or 47.2 kPa vacuum.
 - 3. Healthcare laboratory vacuum piping and specialties, designated "medical laboratory vacuum" operating at 12 inches mercury (40.6 kPa vacuum).
- B. Related Sections include the following:
 - 1. Division 12 Section "Healthcare Casework" for vacuum outlets in metal medical casework.
 - 2. Division 22 Section "Vacuum Equipment for Laboratory and Healthcare Facilities" for medical vacuum producers.
- C. Related Sections include the following:
 - 1. Division 15 Section "Medical Air and Vacuum Equipment" for medical vacuum producers.

1.3 DEFINITIONS

- A. D.I.S.S.: Diameter-index safety system.
- B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- C. WAGD: Waste anesthetic gas disposal.
- D. Medical vacuum piping systems include medical vacuum, WAGD evacuation and medical laboratory vacuum piping systems.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Vacuum tubes and fittings.
 - 2. Vacuum valves and valve boxes.
 - 3. Medical vacuum service connections and vacuum-bottle brackets.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Piping Material Certification: Signed by Installer certifying that medical vacuum piping materials comply with NFPA 99 requirements.
- D. Qualification Data: For Installer.
- E. Brazing certificates.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For vacuum piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Vacuum Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010.
 - 2. Extruded-Tee Outlet Procedure: Qualify operators according to training provided by T-DRILL Industries Inc., for making branch outlets.
 - 3. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.
- C. Source Limitations: Obtain vacuum service connections of same type and from same manufacture as service connections provided for in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."
- D. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- F. Comply with ASME B31.9, "Building Services Piping," for vacuum piping in laboratory facilities.
- G. NFPA Compliance: Comply with NFPA 99, "Health Care Facilities," for medical vacuum system materials and installation in healthcare facilities.

1.6 COORDINATION

A. Coordinate medical vacuum service connections with other service connections. Medical compressed-air service connections are specified in Division 22 Section "Compressed-Air Piping for Laboratory and Healthcare Facilities," and medical gas service connections are specified in Division 22 Section "Gas Piping for Laboratory and Healthcare Facilities."

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical vacuum suction inlets.
 - a. Medical Vacuum Service Connections: Equal to 10 percent of amount installed.
 - b. WAGD Evacuation Service Connections: Equal to 10 percent of amount installed.
 - 2. D.I.S.S. Connections: Furnish complete noninterchangeable medical vacuum suction inlets complying with CGA V-5.
 - a. Medical Vacuum D.I.S.S. No. 1220: Equal to 10 percent of amount installed
 - b. WAGD Evacuation D.I.S.S. No. 2220: Equal to 10 percent of amount installed.
 - 3. Medical Vacuum Bottle Brackets: Equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in blue.
 - 1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
 - 2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.

- 3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.
- 4. Press-Type Fittings:
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Viega; Plumbing and Heating Systems.
 - c. NPS 2 (DN 50) and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 - d. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
- B. Memory-Metal Couplings: Cryogenic compression fitting made of ASTM F 2063, nickeltitanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Smart Technology, Inc.

2.2 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.
- B. Threaded-Joint Tape: PTFE.
- C. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness, full-face type.
- D. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.
- 2.3 VALVES
 - A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
 - 1. Exception: Factory cleaning and bagging are not required for valves for WAGD service.
 - B. Copper-Alloy Ball Valves: MSS SP-110, 3-piece body, brass or bronze.

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. BeaconMedaes.
 - b. Conbraco Industries, Inc.
 - c. NIBCO INC.
- 4. Pressure Rating: 300 psig (2070 kPa) minimum.
- 5. Ball: Full-port, chrome-plated brass.
- 6. Seats: PTFE or TFE.
- 7. Handle: Lever type with locking device.
- 8. Stem: Blowout proof with PTFE or TFE seal.
- 9. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- C. Bronze Check Valves: In-line pattern.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. BeaconMedaes.
 - b. Conbraco Industries, Inc.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Operation: Spring loaded.
 - 6. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- D. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Ball: Full-port, chrome-plated brass.
 - 6. Seats: PTFE or TFE.

- 7. Handle: Lever type with locking device.
- 8. Stem: Blowout proof with PTFE or TFE seal.
- 9. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- 10. Vacuum Gage: Manufacturer installed on one copper-tube extension.
- E. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with vacuum gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Interior Finish: Factory-applied white enamel.
 - 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 - 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- F. Zone Valve Boxes: Formed or extruded aluminum with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with vacuum gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. BeaconMedaes.
 - b. Chemetron
 - c. Amico Corporation
 - 4. Interior Finish: Factory-applied white enamel.
 - 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 - 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- G. Safety Valves: Bronze-body, ASME-construction, pressure-relief type with settings to match system requirements.

H. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig (1380-kPa) minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket where wall mounting is indicated.

2.4 MEDICAL VACUUM SERVICE CONNECTIONS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Amico Corporation.
 - 2. BeaconMedaes.
- D. Connection Devices: For specific medical vacuum service listed. Include roughing-in assemblies, finishing assemblies, and cover plates. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate. Furnish recessed-type units made for concealed piping unless otherwise indicated.
 - 1. Roughing-in Assembly:
 - a. Steel outlet box for recessed mounting and concealed piping.
 - b. Brass-body inlet block.
 - c. Seals that will prevent vacuum leakage.
 - d. ASTM B 819, NPS 3/8 (DN 10) copper outlet tube brazed to valve with service marking and tube-end dust cap.
 - 2. Finishing Assembly:
 - a. Brass housing with primary check valve.
 - b. Seals that will prevent vacuum leakage.
 - c. Cover plate with gas-service label.
 - 3. Quick-Coupler Service Connections: Suction inlets for medical vacuum and WAGD evacuation service outlets with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.
 - 4. D.I.S.S. Service Connections: Suction inlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - a. Medical Vacuum Service Connections: CGA V-5, D.I.S.S. No. 1220.
 - b. WAGD Evacuation Service Connections: CGA V-5, D.I.S.S. No. 2220.
 - 5. Vacuum Bottle Brackets: One piece, with pattern and finish matching corresponding service cover plate.

6. Cover Plates: One piece, stainless steel, with NAAMM AMP 503, No. 4 finish and permanent, color-coded, identifying label matching corresponding service.

2.5 MEDICAL VACUUM PIPING ALARM SYSTEMS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Amico Corporation.
 - 2. BeaconMedaes.
- D. Panels for medical vacuum piping systems may be combined in single panels with medical compressed-air and medical gas piping systems.
- E. Components: Designed for continuous service and to operate on power supplied from 120 -V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.
- F. Vacuum Switches or Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 - 1. Vacuum Operating Range: 0- to 30-in. Hg (0- to 101-kPa vacuum).
- G. General Requirements for Medical Vacuum Alarm Panels: Factory wired with audible and color-coded visible signals to indicate specified functions.
 - 1. Mounting: Recessed installation.
 - 2. Enclosures: Fabricated from minimum 0.047-inch- (1.2-mm-) thick steel or minimum 0.05-inch- (1.27-mm-) thick aluminum, with knockouts for electrical and piping connections.
- H. Master Alarm Panels: With separate trouble alarm signals, vacuum gages, and indicators for medical vacuum piping systems.
 - 1. Include alarm signals when the following conditions exist:
 - a. Medical Vacuum: Vacuum drops below 12-in. Hg (40 kPa vacuum) and backup vacuum pump is in operation.
 - b. WAGD Evacuation: Vacuum drops below 12-in. Hg (40 kPa vacuum).
- I. Anesthetizing-Area Alarm Panels: Separate trouble alarm signals; vacuum gages; and indicators for medical vacuum piping systems.
 - 1. Include alarm signals when the following conditions exist:

- a. Medical Vacuum: Vacuum drops below 12-in. Hg (40 kPa vacuum).
- b. WAGD Evacuation: Vacuum drops below 12-in. Hg (40 kPa vacuum).
- J. Area Alarm Panels: Separate trouble alarm signals; vacuum gages; and indicators for medical vacuum piping systems.
 - 1. Include alarm signals when the following condition exists:
 - a. Medical Vacuum: Vacuum drops below 12-in. Hg (40 kPa vacuum).

2.6 COMPUTER INTERFACE CABINET

A. Description: Wall-mounting, welded-steel, control cabinet with gasketed door, mounting brackets, grounding device, and white-enamel finish for connection of medical vacuum piping system alarms to facility computer. Include factory-installed signal circuit boards, power transformer, circuit breaker, wiring terminal board, and internal wiring capable of interfacing 20 alarm signals.

2.7 FLEXIBLE PIPE CONNECTORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mercer Rubber Co.
 - 2. Metraflex, Inc.
 - 3. Unaflex.
- C. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: 200 psig (1380 kPa) minimum.
 - 2. End Connections: Threaded copper pipe or plain-end copper tube.

2.8 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.9 ESCUTCHEONS

- A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.
- B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chromeplated finish.
- C. One-Piece, Cast-Brass Escutcheons: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.
- E. One-Piece, Stamped-Steel Escutcheons: With set screw and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw, and chrome-plated finish.
- G. One-Piece, Floor-Plate Escutcheons: Cast iron.
- H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.10 NITROGEN

A. Description: Comply with USP 28 - NF 23 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."
 - Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb (0.453 kg) of chemical to 3 gal. (11.3 L) of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

- A. Connect new copper tubing to existing tubing with memory-metal couplings.
- B. Medical Vacuum Piping: Use the following piping materials for each size range:
 - 1. NPS 4 (DN 100) and Smaller: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
 - 2. NPS 5 to NPS 8 (DN 125 to DN 200): Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- C. WAGD Evacuation Piping: Use the following piping materials for each size range:
 - 1. NPS 4 (DN 100) and Smaller: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
 - 2. NPS 5 to NPS 8 (DN 125 to DN 200): Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- D. Medical Laboratory Vacuum Piping: Use the following piping materials for each size range:
 - 1. NPS 4 (DN 100) and Smaller: Type[L, copper medical gas tube; wrought-copper fittings; and brazed joints.
 - 2. NPS 5 to NPS 8 (DN 125 to DN 200): Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- E. Drain Piping: Use the following piping materials:
 - 1. Copper water tube, cast- or wrought-copper fittings, and soldered joints.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Comply with ASSE Standard #6010 for installation of vacuum piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install vacuum and drain piping with 1 percent slope downward in direction of flow.

- H. Install nipples, unions, and special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications below unless otherwise indicated.
- I. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- J. Provide drain leg and drain trap at end of each main and branch and at low points.
- K. Install thermometer and vacuum gage on inlet piping to each vacuum producer and on each receiver. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping."
- L. Install piping to permit valve servicing.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.
- O. Install medical vacuum piping to medical vacuum service connections specified in this Section and to equipment specified in other Sections requiring medical vacuum service.
- P. Install seismic restraints on vacuum piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- Q. Install medical vacuum service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- R. Install medical vacuum bottle bracket adjacent to each wall-mounted medical vacuum service connection suction inlet.
- S. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.
- T. Install unions, in copper vacuum tubing adjacent to each valve and at final connection to each piece of equipment, machine, and specialty.

3.4 VALVE APPLICATIONS

A. Valves for Copper Vacuum Tubing: Use copper alloy ball and bronze check types.

3.5 VALVE INSTALLATION

- A. Install shutoff valve at each connection to and from vacuum equipment and specialties.
- B. Install check valves to maintain correct direction of vacuum flow to vacuum-producing equipment.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.

- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install safety valves on vacuum receivers, where required by NFPA 99, and where recommended by specialty manufacturers.
- F. Install automatic drain valves on equipment, specialties, and piping with drain connection. Run drain piping to floor drain, so contents spill over or into it.
- G. Install flexible pipe connectors in suction inlet piping to each vacuum producer.

3.6 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Apply appropriate tape to external pipe threads.
- E. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter. Continuously purge joint with oil-free dry nitrogen during brazing.
- F. Soldered Joints: Apply ASTM B 813, water-flushable flux to tube end. Join copper tube and fittings according to ASTM B 828.
- G. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.

3.7 MEDICAL VACUUM PIPING ALARM SYSTEM INSTALLATION

- A. Panels for medical vacuum piping systems may be combined in single panels with medical compressed-air piping systems and medical gas piping systems.
- B. Install medical vacuum piping system alarm system components in locations required by and according to NFPA 99.
- C. Install medical vacuum piping system area and master alarm panels where indicated.
- D. Install computer interface cabinet with connection to medical vacuum piping alarm system and to facility computer.

3.8 SLEEVE INSTALLATION

A. Sleeves are not required for core-drilled holes.

- B. Permanent sleeves are not required for holes formed by removable PE sleeves.
- C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe.
 - 1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
 - 2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- D. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- E. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - 1. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - 2. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum board partitions.
 - 3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - a. Seal space outside of sleeve fittings with grout.
- F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.9 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 - e. Bare Piping in Equipment Rooms: One piece, cast brass.
 - f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.10 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

- B. Vertical Piping: MSS Type 8 or 42, clamps.
- C. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet (30 m): MSS Type 43, adjustable, roller hangers.
- D. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- E. Base of Vertical Piping: MSS Type 52, spring hangers.
- F. Support horizontal piping within 12 inches (300 mm) of each fitting and coupling.
- G. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 (DN 8): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/8 and NPS 1/2 (DN 10 and DN 15): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 3/4 (DN 20): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1 (DN 25): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/4 (DN 32): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 6. NPS 1-1/2 (DN 40): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 7. NPS 2 (DN 50): 11 feet (3.4 m) with 3/8-inch (10-mm) rod.
 - 8. NPS 2-1/2 (DN 65): 13 feet (4 m) with 1/2-inch (13-mm) rod.
 - 9. NPS 3 (DN 80): 14 feet (4.3 m) with 1/2-inch (13-mm) rod.
 - 10. NPS 3-1/2 (DN 90): 15 feet (4.6 m) with 1/2-inch (13-mm) rod.
 - 11. NPS 4 (DN 100): 16 feet (4.9 m) with 1/2-inch (13-mm) rod.
 - 12. NPS 5 (DN 125): 18 feet (5.5 m) with 1/2-inch (13-mm) rod.
 - 13. NPS 6 (DN 150): 20 feet (6 m) with 5/8-inch (16-mm) rod.
 - 14. NPS 8 (DN 200): 23 feet (7 m) with 3/4-inch (19-mm) rod.
- I. Install supports for vertical copper tubing every 10 feet (3 m).

3.11 LABELING AND IDENTIFICATION

- A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for medical vacuum piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Medical Vacuum: Black letters on white background.
 - 2. WAGD: White letters on violet background.

3. Medical Laboratory Vacuum: Black boxed letters on white-and-black checkerboard background.

3.12 FIELD QUALITY CONTROL FOR LABORATORY FACILITY NONMEDICAL VACUUM PIPING

- A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of vacuum piping in nonmedical laboratory facilities.
- B. Perform tests and inspections of vacuum piping in nonmedical laboratory facilities.
- C. Tests and Inspections:
 - 1. Piping Leak Tests for Vacuum Piping: Test new and modified parts of existing piping. Cap and fill vacuum piping with oil-free, dry nitrogen. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - a. Test Pressure for Copper Tubing: 150 psig (1035 kPa).
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect filters for proper operation.
- D. Prepare test reports.

3.13 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL VACUUM PIPING

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical vacuum piping systems in healthcare facilities and prepare test reports.
- B. Perform tests and inspections of medical vacuum piping systems in healthcare facilities and prepare test reports.
- C. Tests and Inspections:
 - 1. Medical Vacuum Testing Coordination: Perform tests, inspections, verifications, and certification of medical vacuum piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical gas piping systems.
 - 2. Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blow down.
 - b. Initial pressure test.
 - c. Cross-connection test.
 - d. Piping purge test.
 - e. Standing pressure test for vacuum systems.
 - f. Repair leaks and retest until no leaks exist.
 - 3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical vacuum piping systems and perform the following tests and inspections:

- a. Standing pressure test.
- b. Individual-pressurization cross-connection test.
- c. Valve test.
- d. Master and area alarm tests.
- e. Piping purge test.
- f. Final tie-in test.
- g. Operational vacuum test.
- h. Verify correct labeling of equipment and components.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- D. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.14 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain medical vacuum alarm systems. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 226313

GAS PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Nitrogen piping and specialties designated "medical nitrogen" operating at 160 to 185 psig (1100 to 1275 kPa).
 - 2. Nitrous oxide piping and specialties designated "medical nitrous oxide" operating at 50 to 55 psig (345 to 380 kPa).
 - 3. Oxygen piping and specialties designated "medical oxygen" operating at 50 to 55 psig (345 to 380 kPa).
- B. Owner-Furnished Material:
 - 1. Ceiling columns and panels.
 - 2. Owner will furnish gases for medical gas concentration testing specified in this Section.
 - 3. Supply of gases in cylinders or containers as appropriate for manifolds.
 - 4. Initial supply of liquid oxygen.
 - 5. Bulk cryogenic systems. Coordinate all plumbing and alarm connections to the bulk gas source, source start-up and system testing, providing the owner with systems ready for use.
- C. Related Sections include the following
 - 1. Division 22 Section "Compressed-Air Piping for Laboratory and Healthcare Facilities" for compressed-air piping systems for laboratory and healthcare facilities.
 - 2. Division 22 Section "Vacuum Piping for Laboratory and Healthcare Facilities" for vacuum piping systems for laboratory and healthcare facilities.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. D.I.S.S.: Diameter-index safety system.
- C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

- D. Medical gas piping systems include medical carbon dioxide, medical nitrogen, medical nitrous oxide and medical oxygen nonflammable gas for healthcare facility patient care or for healthcare laboratory applications.
- E. Specialty Gas: Gas, other than medical gas, for nonmedical laboratory facility applications.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Gas manifolds and bulk gas storage tanks and piping shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Tubes and fittings.
 - 2. Valves and valve boxes.
 - 3. Medical gas service connections.
 - 4. Electrical service connections.
 - 5. Medical nitrogen pressure control panels.
 - 6. Ceiling columns. Include integral service connections.
 - 7. Medical gas alarm system components.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Piping Material Certification: Signed by Installer certifying that medical gas piping materials comply with NFPA 99 requirements.
- D. Qualification Data: For Installer.
- E. Brazing certificates.
- F. Manufacturer Seismic Qualification Certification: Submit certification that gas manifolds and bulk gas storage tanks, accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- G. Certificates of Shop Inspection and Data Report for Bulk Gas Storage Tanks: As required by ASME Boiler and Pressure Vessel Code.
- H. Field quality-control test reports.
- I. Operation and Maintenance Data: For medical gas piping specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Gas Piping Systems for Healthcare Facilities: Qualify installers according to ASSE Standard #6010 for installers.
 - 2. All materials used shall be new and of the best grade and quality obtainable and workmanship shall be first class in every respect. Contractor shall be responsible for compliance with all local, state or federal codes.
 - 3. Provide all elements and accessories required for complete system per NFPA 99 most recent edition.
 - 4. Contractor shall make all necessary connections to owner furnished equipment.
 - 5. Install all piping as shown on drawings, as described herein and as described in section 1050, basic materials and methods, using methods of fabrication, grading, testing, repairing, cleaning and other procedures as described.
 - 6. Electrical power wiring for vacuum pumps, medical air compressors, WAGD producers, ceiling columns, alarms and modular accessories associated with the system shall be part of the electrical contract. Any equipment supplied by this contractor that require additional electrical services shall be the responsibility of this contractor to supply these services.
 - 7. Perform installer pressure testing, cross connection testing and final testing per NFPA 99 most recent edition and using procedures as specified.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the medical gas piping testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for inspectors and ASSE Standard #6030 for verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. ASME Compliance: Fabricate and label bulk medical gas storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- F. NFPA Compliance:
 - 1. Comply with NFPA 50, "Bulk Oxygen Systems at Consumer Sites," for bulk oxygen storage tanks.

- 2. Comply with NFPA 99, "Health Care Facilities," for medical gas piping system materials and installation.
- G. CGA Compliance: Comply with CGA G-8.1, "Nitrous Oxide Systems at Consumer Sites," for bulk nitrous oxide storage tanks.
- H. UL Compliance:
 - 1. Comply with UL 498, "Attachment Plugs and Receptacles," for electrical service connections.
 - 2. Comply with UL 544, "Medical and Dental Equipment," for medical gas specialties.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate medical gas service connections with other service connections. Compressed-air service connections are specified in Division 22 Sections "Compressed-Air Piping for Laboratory and Healthcare Facilities" and "Vacuum Piping for Laboratory and Healthcare Facilities."
- C. Work with metal and stud partition installer and/or mason to ensure anchors, sleeves and similar items are provided in sufficient time to avoid delays, chases and openings are properly sized and prepared.
- D. Medical gas contractor shall supply and install the master alarm system and area alarm systems, including the signal wiring. The electrical contractor shall provide power wiring to each alarm panel. The medical gas contractor is responsible for proper termination, testing and marking of alarm panels. Termination shall be done under supervision of manufacturer of alarm panels.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Quick-Coupler Service Connections: Furnish complete noninterchangeable medical gas pressure outlets and suction inlets.
 - a. Medical Air: Equal to 10 percent of amount installed.
 - b. Medical Carbon Dioxide: Equal to 10 percent of amount installed.
 - c. Medical Nitrous Oxide: Equal to 10 percent of amount installed.
 - d. Medical Oxygen: Equal to 10 percent of amount installed.
 - e. Medical Vacuum: Equal to 10 percent of amount installed.
 - f. WAGD Evacuation: Equal to 10 percent of amount installed.
 - 2. D.I.S.S. Service Connections: Furnish complete noninterchangeable medical gas pressure outlets and suction inlets complying with CGA V-5.

- a. Medical Air D.I.S.S. No. 1160: Equal to 10 percent of amount installed.
- b. Medical Carbon Dioxide D.I.S.S. No. 1080: Equal to 10 percent of amount installed.
- c. Medical Nitrogen D.I.S.S. No. 1120: Equal to 10 percent of amount installed.
- d. Medical Nitrous Oxide D.I.S.S. No. 1040: Equal to 10 percent of amount installed.
- e. Medical Oxygen D.I.S.S. No. 1240: Equal to 10 percent of amount installed.
- f. Medical Vacuum D.I.S.S. No. 1220: Equal to 10 percent of amount installed.
- g. WAGD Evacuation D.I.S.S. No. 2220: Equal to 10 percent of amount installed.
- 3. Vacuum Bottle Brackets: Equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Copper Medical Gas Tube: ASTM B 819, Types K and L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in green for Type K tube and blue for Type L tube.
 - 1. General Requirements for Copper Fittings: Manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
 - 2. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, with dimensions for brazed joints.
 - 3. Copper Unions: ASME B16.22 or MSS SP-123, wrought copper or cast-copper alloy.
 - 4. Press-Type Fittings:
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Viega; Plumbing and Heating Systems.
 - c. NPS 2 (DN 50) and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 - d. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
 - 5. Memory-Metal Couplings: Cryogenic compression fitting made of ASTM F 2063, nickeltitanium, shape-memory-alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Smart Technology, Inc.

2.2 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
- B. Threaded-Joint Tape: PTFE.

2.3 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
- B. Ball Valves: MSS SP-110, 3-piece body, brass or bronze.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide a comparable product by one of the following:
 - a. BeaconMedaes.
 - b. Conbraco Industries, Inc.
 - c. NIBCO INC.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Ball: Full-port, chrome-plated brass.
 - 6. Seats: PTFE or TFE.
 - 7. Handle: Lever type with locking device.
 - 8. Stem: Blowout proof with PTFE or TFE seal.
 - 9. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- C. Check Valves: In-line pattern, bronze.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - a. BeaconMedaes.
 - b. Conbraco Industries, Inc.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Operation: Spring loaded.
 - 6. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

- D. Zone Valves: MSS SP-110, 3-piece-body, brass or bronze ball valve with gage.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Pressure Rating: 300 psig (2070 kPa) minimum.
 - 5. Ball: Full-port, chrome-plated brass.
 - 6. Seats: PTFE or TFE.
 - 7. Handle: Lever type with locking device.
 - 8. Stem: Blowout proof with PTFE or TFE seal.
 - 9. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
 - 10. Pressure Gage: Manufacturer-installed on one copper-tube extension.
- E. Zone Valve Boxes: Formed steel with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Interior Finish: Factory-applied white enamel.
 - 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
 - 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- F. Zone Valve Boxes: Formed or extruded aluminum with anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - a. Tri-Tech Medical.
 - b. BeaconMedaes.
 - c. Chemetron Div.
- 4. Interior Finish: Factory-applied white enamel.
- 5. Cover Plate: Aluminum or extruded-anodized aluminum with frangible or removable windows.
- 6. Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- G. Emergency Oxygen Connections: Low-pressure oxygen inlet assembly for connection to building oxygen piping systems.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - a. Amico Corporation.
 - b. BeaconMedaes.
 - 4. Enclosure: Weatherproof hinged locking cover with caption similar to "Emergency Low-Pressure Gaseous Oxygen Inlet."
 - 5. Inlet: Manufacturer-installed, NPS 1 or NPS 1-1/4 (DN 25 or DN 32), ASTM B 819, copper tubing with NPS 1 (DN 25) minimum ball valve and plugged inlet.
 - 6. Safety Valve: Bronze-body, pressure relief valve set at 75 or 80 psig (520 or 550 kPa).
 - 7. Instrumentation: Pressure gage.
- H. Safety Valves: Bronze-body, ASME-construction, poppet, pressure-relief type with settings to match system requirements.
- I. Pressure Regulators: Bronze body and trim; spring-loaded, diaphragm-operated, relieving type; manual pressure-setting adjustment; rated for 250-psig (1725-kPa) minimum inlet pressure; and capable of controlling delivered gas pressure within 0.5 psig for each 10-psig (5.0 kPa for each 100-kPa) inlet pressure.

2.4 MEDICAL GAS SERVICE CONNECTIONS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - 1. Amico Corporation.
 - 2. BeaconMedaes.
- D. General Requirements for Medical Gas Service Connections,: For specific medical gas pressure and suction service listed. Include roughing-in assemblies, finishing assemblies, and cover plates. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate. Furnish recessed-type units made for concealed piping unless otherwise indicated.
 - 1. Roughing-in Assembly:
 - a. Steel outlet box for recessed mounting and concealed piping.
 - b. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed. Suction inlets to be without secondary valve.
 - c. Double seals that will prevent gas leakage.
 - d. ASTM B 819, NPS 3/8 (DN 10) copper outlet tube brazed to valve with service marking and tube-end dust cap.
 - 2. Finishing Assembly:
 - a. Brass housing with primary check valve.
 - b. Double seals that will prevent gas leakage.
 - c. Cover plate with gas-service label.
 - 3. Quick-Coupler Service Connections: Pressure outlets for nitrogen service connections with noninterchangeable keyed indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment, and with positive-locking ring that retains equipment stem in valve during use.
 - 4. D.I.S.S. Service Connections: Pressure outlets, complying with CGA V-5, with threaded indexing to prevent interchange between services, constructed to permit one-handed connection and removal of equipment.
 - a. Medical Nitrogen Service Connections: D.I.S.S. No. 1120.
 - 5. Cover Plates: One piece, stainless steel, with NAAMM AMP 503, No. 4 finish and permanent, color-coded, identifying label matching corresponding service.

2.5 MEDICAL NITROGEN PRESSURE CONTROL PANELS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:

- 1. BeaconMedaes (Nitrogen Control Panel Series 6-120276-XX) (IA Control Panel Series 6-12-274-00) (Air Control Panel Series 6-120881-00)
- D. Description: Steel box and support brackets for recessed roughing-in with stainless-steel or anodized-aluminum cover plate with printed operating instructions. Include manifold assembly consisting of inlet supply valve, inlet supply pressure gage, line-pressure control regulator, outlet supply pressure gage, D.I.S.S. service connection, and piping outlet for remote service connection.
 - 1. Minimum Working Pressure: 200 psig (1380 kPa).
 - 2. Line-Pressure Control Regulator: Self-relieving diaphragm type with precision manual adjustment.
 - 3. Pressure Gages: 0- to 300-psig (0- to 2070-kPa) range.
 - 4. Service Connection: CGA V-5, D.I.S.S. No. 1120, nitrogen outlet.
 - 5. Before final assembly, provide temporary dust shield and U-tube for testing.
 - 6. Label cover plate "Nitrogen Pressure Control."

2.6 MEDICAL GAS PIPING ALARM SYSTEMS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings a comparable product by one of the following:
 - 1. Amico Corporation.
 - 2. BeaconMedaes.
- D. Panels for medical gas piping systems may be combined in single panels with medical compressed-air and medical vacuum piping systems.
- E. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.
- F. Pressure Switches or Pressure Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 - 1. Low-Pressure Operating Range: 0- to 100-psig (0- to 690-kPa).
 - 2. High-Pressure Operating Range: Up to 250-psig (1725-kPa).
- G. General Requirements for Medical Gas Alarm Panels: Factory wired with audible and colorcoded visible signals to indicate specified functions.
 - 1. Mounting: Recessed installation.
 - 2. Enclosures: Fabricated from minimum 0.047-inch- (1.2-mm-) thick steel or minimum 0.05-inch- (1.27-mm-) thick aluminum, with knockouts for electrical and piping connections.

- H. Master Alarm Panels: With separate trouble alarm signals, pressure gages, and indicators for medical gas piping systems.
 - 1. Include alarm signals when the following conditions exist:
 - a. Medical Carbon Dioxide: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa) and changeover is made to alternate bank.
 - b. Medical Nitrogen: Pressure drops below 145 psig (1000 kPa) or rises above 200 psig (1380 kPa) and changeover is made to alternate bank.
 - c. Medical Nitrous Oxide: Liquid level is low, pressure downstream from main shutoff valve drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa), changeover is made to reserve, reserve is in use, and reserve level is low.
 - d. Medical Nitrous Oxide: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa) and changeover is made to alternate bank.
 - e. Medical Oxygen: Liquid level is low, pressure downstream from main shutoff valve drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa), changeover is made to reserve, reserve is in use, reserve level is low, and reserve pressure is low.
 - f. Medical Oxygen: Pressure downstream from main shutoff valve drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa) and changeover is made to alternate bank.
- I. Anesthetizing-Area Alarm Panels: Separate trouble alarm signals; pressure gages; and indicators for medical gas piping systems.
 - 1. Include alarm signals when the following conditions exist:
 - a. Medical Nitrous Oxide: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa).
 - b. Medical Nitrogen: Pressure drops below 145 psig (1000 kPa) or rises above 200 psig (1380 kPa).
 - c. Medical Oxygen: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa).
- J. Area Alarm Panels: Separate trouble alarm signals; pressure and vacuum gages; and indicators for medical gas piping systems.
 - 1. Include alarm signals when the following conditions exist:
 - a. Oxygen: Pressure drops below 40 psig (275 kPa) or rises above 60 psig (415 kPa).

2.7 COMPUTER INTERFACE CABINET

A. Description: Wall-mounting, welded-steel, control cabinet with gasketed door, mounting brackets, grounding device, and white-enamel finish for connection of medical gas system alarms to facility computer. Include factory-installed signal circuit boards, power transformer, circuit breaker, wiring terminal board, and internal wiring capable of interfacing 20 alarm signals.

2.8 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.9 ESCUTCHEONS

- A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.
- B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chromeplated finish.
- C. One-Piece, Cast-Brass Escutcheons: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.
- E. One-Piece, Stamped-Steel Escutcheons: With set screw and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw, and chrome-plated finish.
- G. One-Piece, Floor-Plate Escutcheons: Cast iron.
- H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.10 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.11 NITROGEN

A. Description: Comply with USP 28 - NF 23 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing are not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction, perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb (0.453 kg) of chemical to 3 gal. (11.3 L) of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING APPLICATIONS

- A. Medical Gas Piping: Use Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- B. Medical Nitrogen Piping: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
- C. Medical Nitrogen Piping NPS 2-1/2 (DN 65) and Smaller: Type K, copper medical gas tube; wrought-copper fittings; and brazed joints.
- D. Medical Nitrogen Piping NPS 3 (DN 80) and Larger: Type K, copper tube; wrought-copper fittings; and brazed joints.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of gas piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Comply with ASSE Standard #6010 for installation of medical gas piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install nipples, unions, and special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications below unless otherwise indicated.
- H. Install piping to permit valve servicing.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Install medical gas piping to medical gas service connections specified in this Section, to medical gas service connections in equipment specified in this Section, and to equipment specified in other Sections requiring medical gas service.
- L. Install exterior, buried medical gas piping in protective conduit fabricated with PVC pipe and fittings. Do not extend conduit through foundation wall.
- M. Install seismic restraints on gas piping. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- N. Install medical gas service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- O. Connect gas piping to gas sources and to gas outlets and equipment requiring gas service.
- P. Install unions, in copper tubing adjacent to each valve and at final connection to each piece of equipment and specialty.

3.4 VALVE INSTALLATION

- A. Install shutoff valve at each connection to gas laboratory and healthcare equipment and specialties.
- B. Install check valves to maintain correct direction of gas flow from laboratory and healthcare gas supplies.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install pressure regulators on gas piping where reduced pressure is required.
- F. Install emergency oxygen connection with pressure relief valve and full-size discharge piping to outside, with check valve downstream from pressure relief valve and with ball valve and check valve in supply main from bulk oxygen storage tank.

3.5 JOINT CONSTRUCTION

- A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- B. Threaded Joints: Apply appropriate tape to external pipe threads.
- C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter. Continuously purge joint with oil-free, dry nitrogen during brazing.
- D. Pressure-Sealed Joints: Join copper tube and press-type fittings with tools recommended by fitting manufacturer.
- E. Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of memory-metal coupling joints.

3.6 GAS SERVICE COMPONENT INSTALLATION

- A. Assemble patient service console with service connections. Install with supplies concealed, in walls. Attach console box or mounting bracket to substrate.
- B. Install nitrogen pressure-control panels in walls. Attach to substrate.
- C. Assemble ceiling columns and install anchored to substrate. Provide structural steel, hanger rods, anchors, and fasteners in addition to components furnished with specialties necessary to fabricate supports.
- D. Assemble ceiling assemblies and install anchored to substrate. Provide structural steel, hanger rods, anchors, and fasteners in addition to components furnished with specialties necessary to fabricate supports.
- E. Install gas manifolds anchored to substrate.
- F. Install gas cylinders and connect to manifold piping.
- G. Install gas manifolds with seismic restraints as indicated.
- H. Install bulk gas storage tanks and reserve supply tanks level on concrete bases. Set tanks and connect gas piping to tanks. Install tanks level and plumb, firmly anchored to concrete bases; maintain NFPA 50 and tank manufacturer's recommended clearances. Orient tanks so controls and devices are accessible for servicing.
- I. Install bulk gas storage tanks and reserve supply tanks with seismic restraints.

3.7 MEDICAL GAS PIPING ALARM SYSTEM INSTALLATION

- A. Install medical gas alarm system components in locations required by and according to NFPA 99.
- B. Install medical gas area and master alarm panels where indicated.

C. Install computer interface cabinet with connection to medical gas piping alarm system and facility computer.

3.8 SLEEVE INSTALLATION

- A. Sleeves are not required for core-drilled holes.
- B. Permanent sleeves are not required for holes formed by removable PE sleeves.
- C. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs using galvanized-steel pipe.
 - 1. Wall Penetrations: Cut sleeves to length for mounting flush with both surfaces.
 - 2. Floor Penetrations: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
- D. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- E. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - 1. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - 2. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum board partitions.
 - 3. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - a. Seal space outside of sleeve fittings with grout.
- F. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.9 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - c. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - d. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 - e. Bare Piping in Equipment Rooms: One piece, cast brass.

f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.10 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.
- B. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- C. Vertical Piping: MSS Type 8 or 42, clamps.
- D. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet (30 m): MSS Type 43, adjustable, roller hangers.
- E. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- F. Base of Vertical Piping: MSS Type 52, spring hangers.
- G. Support horizontal piping within 12 inches (300 mm) of each fitting and coupling.
- H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
- I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 (DN 8): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 - 2. NPS 3/8 and NPS 1/2 (DN 10 and DN 15): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 - 3. NPS 3/4 (DN 20): 84 inches (2100 mm) with 3/8-inch (10-mm) rod.
 - 4. NPS 1 (DN 25): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 - 5. NPS 1-1/4 (DN 32): 108 inches (2700 mm) with 3/8-inch (10-mm) rod.
 - 6. NPS 1-1/2 (DN 40): 10 feet (3 m) with 3/8-inch (10-mm) rod.
 - 7. NPS 2 (DN 50): 11 feet (3.4 m) with 3/8-inch (10-mm) rod.
 - 8. NPS 2-1/2 (DN 65): 13 feet (4 m) with 1/2-inch (13-mm) rod.
 - 9. NPS 3 (DN 80): 14 feet (4.3 m) with 1/2-inch (13-mm) rod.
 - 10. NPS 3-1/2 (DN 90): 15 feet (4.6 m) with 1/2-inch (13-mm) rod.
 - 11. NPS 4 (DN 100): 16 feet (4.9 m) with 1/2-inch (13-mm) rod.
 - 12. NPS 5 (DN 125): 18 feet (5.5 m) with 1/2-inch (13-mm) rod.
 - 13. NPS 6 (DN 150): 20 feet (6 m) with 5/8-inch (16-mm) rod.
 - 14. NPS 8 (DN 200): 23 feet (7 m) with 3/4-inch (19-mm) rod.
- J. Install supports for vertical copper tubing every 10 feet (3 m).

3.11 LABELING AND IDENTIFICATION

- A. Install identifying labels and devices for specialty gas piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for healthcare medical gas piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Carbon Dioxide: Black or white letters on gray background.
 - 2. Nitrogen: White letters on black background.
 - 3. Nitrous Oxide: White letters on blue background.
 - 4. Oxygen: White letters on green background or green letters on white background.

3.12 FIELD QUALITY CONTROL FOR LABORATORY FACILITY SPECIALTY GAS

- A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of specialty gas piping for nonhealthcare laboratory facilities and prepare test reports.
- B. Perform field tests and inspections of specialty gas piping for nonhealthcare laboratory facilities and prepare test reports.
- C. Tests and Inspections:
 - Piping Leak Tests for Specialty Gas Piping: Test new and modified parts of existing piping. Cap and fill specialty gas piping with oil-free, dry nitrogen to pressure of 50 psig (345 kPa) above system operating pressure, but not less than 150 psig (1035 kPa). Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect specialty gas regulators for proper operation.

3.13 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL GAS

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical gas piping systems in healthcare facilities and prepare test reports.
- B. Perform tests and inspections of medical gas piping systems in healthcare facilities and prepare test reports.
- C. Tests and Inspections:
 - 1. Medical Gas Piping Testing Coordination: Perform tests, inspections, verifications, and certification of medical gas piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical vacuum piping systems.
 - 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blow down.
 - b. Initial pressure test.
 - c. Cross-connection test.

- d. Piping purge test.
- e. Standing pressure test for positive pressure medical gas piping.
- f. Standing pressure test for vacuum systems.
- g. Repair leaks and retest until no leaks exist.
- 3. System Verification: Comply with requirements in NFPA 99, ASSE Standard #6020, and ASSE Standard #6030 for verification of medical gas piping systems and perform the following tests and inspections:
 - a. Standing pressure test.
 - b. Individual-pressurization cross-connection test.
 - c. Valve test.
 - d. Master and area alarm tests.
 - e. Piping purge test.
 - f. Piping particulate test.
 - g. Piping purity test.
 - h. Final tie-in test.
 - i. Operational pressure test.
 - j. Medical gas concentration test.
 - k. Medical air purity test.
 - I. Verify correct labeling of equipment and components.
 - m. Verify the following source equipment:
 - 1) Medical gas supply sources.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- D. Remove and replace components that do not pass tests and inspections and retest as specified above.
- 3.14 DEMONSTRATION
 - A. Train Owner's maintenance personnel to adjust, operate, and maintain bulk gas storage tanks and medical gas alarm system. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

TABLE OF CONTENTS

HEATING VENTILATING AND AIR CONDITIONING

SECTION NUMBER	SECTION TITLE
230000	GENERAL PROVISIONS FOR HEATING, VENTILATING AND AIR CONDITIONING
230001	SUPPLEMENTARY CONDITIONS FOR MECHANICAL, ELECTRICAL, PLUMBING AND AIR CONDITIONING
230500	COMMON WORK RESULTS FOR HVAC
230513	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230514	ENCLOSED CONTROLLERS
230516	EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING
230519	METERS AND GAGES FOR HVAC PIPING
230523	GENERAL-DUTY VALVES FOR HVAC PIPING
230529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230548	MECHANICAL VIBRATION ISOLATION AND SEISMIC CONTROLS
230549	NOISE CONTROL AND ACOUSTICAL PERFORMANCE
230553	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593	TESTING, ADJUSTING, AND BALANCING FOR HVAC
230700	HVAC INSULATION
230800	COMMISSIONING
230900	HVAC INSTRUMENTATION AND CONTROLS FOR HVAC
230993	SEQUENCE OF OPERATIONS
232113	HYDRONIC PIPING
232300	REFRIGERANT PIPING
233113	SHEET METAL WORK
233600	AIR TERMINAL UNITS
233713	DIFFUSERS, REGISTERS, AND GRILLES
238123	EQUIPMENT-ROOM AIR-CONDITIONERS
238126	SPLIT SYSTEM AIR-CONDITIONERS

SECTION 230000

GENERAL PROVISIONS FOR HEATING, VENTILATING AND AIR CONDITIONING WORK

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Work in this Section includes the providing of labor, materials, equipment and services necessary for a complete and safe installation in accordance with the contract documents and all applicable codes and authorities having jurisdiction for heating, ventilating and air conditioning work covered by all sections within Division 23 of the specifications (including but not limited to HVAC systems and equipment).
- B. Provide cutting and patching, except as noted in "AIA Document A210" and "Supplementary Conditions for Mechanical and Electrical Work."
- C. Provide piping extensions and connections from capped Plumbing terminations, for makeup water and other such services.
- D. Provide drainage from noted equipment to floor drains, roof, sink, or funnel drains.
- E. Provide piping connections to equipment, as required, for kitchens, sterilizers, kitchenettes, and as indicated.
- F. Provide 3/8" coordinated shop drawings with a sheetmetal construction drawing as the base drawing; and overlay plumbing, fire protection, and electrical systems for coordination.
- G. Related Work And Requirements
 - 1. Requirements of general conditions, supplementary conditions for mechanical and electrical work and Division No. 1.
 - 2. Requirements noted under other Divisions of Work

1.2 WORK NOT INCLUDED:

- A. Providing temporary heat.
- B. Providing finish painting.
- C. Installing building construction access door filler.
- D. Providing trench covers and frames.
- E. Cutting and patching, except as noted in "AIA Document A201" and "Supplementary Conditions for Mechanical and Electrical Work."
- F. Excavating and backfilling under building.
- G. Excavating and backfilling.

- H. Providing exterior louvers.
- I. Providing undercut and louvers in doors.
- J. Providing exterior wall louvers intake, screens and exterior attenuation panels.
- K. Providing plenums other than sheet metal.
- L. Providing flashing.
- M. Providing shaft gratings.
- N. Providing equipment platforms
- 1.3 DESCRIPTION OF BID DOCUMENTS
 - A. Specifications, in general, describe quality and character of materials and equipment.
 - B. Drawings, in general are diagrammatic and indicate sizes, locations, connections to equipment and methods of installation. Provide additional offsets, fittings, hangers, supports, valves, drains as required for construction and coordination with work of other trades.
 - C. Scaled and indicated dimensions are approximate and are for estimating purposes only. Before proceeding with work, check and verify all dimensions.
 - D. Make adjustments that may be necessary or requested in order to resolve space problems, preserve headroom, and avoid architectural openings, structural members and work of other trades.
 - E. Typical details, where shown on the drawings, apply to each and every item of the project where such items are applicable. Typical details are not repeated in full on the plans, and are diagrammatic only, but with the intention that such details shall be incorporated in full.
 - F. If any part of Specifications or Drawings appears unclear or contradictory, consult Architect and/or Engineer for interpretation and decision as early as possible during bidding period. Do not proceed with work without the Architect's and/or Engineer's decision.

1.4 DEFINITIONS

- A. "Furnish" or "provide": to supply, install and make complete, safe, and operable, the particular work referred to unless specifically indicated otherwise.
- B. "Install": to erect, mount and make complete with all related accessories.
- C. "Supply": to purchase, procure, acquire, and deliver complete with related accessories.
- D. "Work": includes labor, materials, equipment, services, and all related accessories necessary for the proper and complete installation of complete systems.
- E. "Piping": includes pipe, tube, fittings, flanges, valves, controls, strainers, hangers, supports, unions, traps, drains, insulation, and all related accessories.
- F. "Wiring": includes raceway, fittings, wire, boxes, and all related accessories.

- G. "Concealed": not in view, installed in masonry or other construction, within furred spaces, double partitions, hung ceilings, trenches, crawl spaces, or enclosures.
- H. "Exposed": in view, not installed underground or "concealed" as defined above.
- I. "Indicated," "shown," or "noted": as indicated, shown or noted on drawings or specifications.
- J. "Similar" or "equal" of base bid manufacturer, equal in quality, materials, weight, size, performance, design and efficiency of specified product, conforming with "Base Bid Manufacturers."
- K. "Reviewed," "satisfactory," "accepted," or "directed" as reviewed, satisfactory, accepted, or directed by or to Architect and/or Engineer.
- L. "Motor Controllers": includes manual or magnetic starters with or without switches, individual pushbuttons or hand-off-automatic (HOA) switches controlling the operation of motors.
- M. "Control or Actuating Devices": includes automatic sensing and switching devices such as thermostats, pressure, float, flow, electro-pneumatic switches and electrodes controlling operation of equipment.

1.5 QUALITY ASSURANCE

- A. All equipment and accessories shall be the product of manufacturers regularly engaged in their manufacture. All items of a given type shall be the products of the same manufacturer.
- B. Furnish all equipment and accessories new and free from defects.
- C. All electrical equipment shall be listed by Underwriters' Laboratories, Inc. (UL) or bear UL labels.
- D. Supply all equipment and accessories in complete compliance with and in accordance with the applicable standards listed in reference standards of this Section and with all applicable national, state and local codes.

1.6 JOB CONDITIONS

- A. Inspection of Site Conditions:
 - 1. Before starting work, visit the site and examine the conditions under which the work has to be performed. Report in writing any conditions which might adversely affect the work.
- B. Hazardous locations:
 - 1. Provide required material, equipment and installation applicable for hazardous location defined by codes.
 - 2. Provide material, equipment and installation as required for Class, Division and Group noted.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.7 REFERENCE STANDARDS

- A. Published specifications, standards tests, or recommended methods of trade, industry or governmental organizations apply to work in all Sections as noted below:
 - 1. ASHRAE American Society of Heating, Refrigerating and Air Conditioning engineers.
 - 2. AABC Associated Air Balance Controls.
 - 3. AMCA Air Moving and Conditioning Association.
 - 4. ADC Air Diffuser Council.
 - 5. NEMA National Electrical Manufacturers' Association.
 - 6. ANSI American National Standards Institute.
 - 7. ASME American Society of Mechanical Engineers.
 - 8. ASTM American Society for Testing and Materials.
 - 9. NFPA National Fire Protection Association.
 - 10. ARI Air-Conditioning and Refrigeration Institute.
 - 11. UL Underwriters' Laboratories, Inc.
 - 12. OSHA Occupational Safety and Health Administration Regulations.

B. Codes:

- 1. This installation is to abide by all applicable codes including, but not limited to:
 - a. International Building Code-2009/Maine State Building Code including all amendments.

1.8 SUBMITTALS

- A. Submit shop drawings product data, samples and certificates of compliance required by contract documents, "AIA Document 201" and "SUPPLEMENTARY CONDITIONS FOR MECHANICAL AND ELECTRICAL WORK."
- B. Operating instructions, maintenance manuals and parts lists.
 - 1. Provide five sets of manufacturer's equipment brochures and service manuals consisting of the following:
 - a. Descriptive literature for equipment and components.
 - b. Model number and performance data.
 - c. Installation and operating instructions.
 - d. Maintenance and repair instructions.
 - e. Recommended spare parts lists.
 - 2. Assemble manufacturers' equipment manuals in chronological order following the specifications' numbering system using heavy duty three ring binders.
 - 3. Submit valve tag chart.
 - 4. Submit three sets of field test reports including instrument set points and normal operating valves.
- C. Submit to the Construction Manager all testing and certification documentation as required to comply in all respects with the U.S. Green Building Council/LEED®.

1.9 AS-BUILT DRAWINGS

A. Provide as-built drawings of all work modified from the construction documents in the field during the construction phase.

1.10 CLEARANCE FROM ELECTRICAL EQUIPMENT

- A. Piping and ductwork is prohibited in electric and telephone rooms and closets, elevator machine rooms, and for installations over or within 5 ft of transformers, substations, switchboards, motor control centers, standby power plants, and motors.
- B. Branch piping to equipment is acceptable when installed over or within 5 ft of motors.

1.11 DRIP PANS

- A. Provide drip pans under piping when installation over or within 5 ft of electrical apparatus is unavoidable or in rooms containing electrical equipment. Pan shall be reinforced, properly supported and made watertight. Provide enclosed type for pressure piping. Extend 1-1/4 in. drain pipe from pan to spill over nearest floor drain, janitors sink or as indicated.
 - 1. Construction shall be 18 gauge galvanized sheet steel. Pans shall be constructed to retain 3 inches of water minimum.
 - 2. BMS Contractor shall install a waterflow detector for BMS alarm in case of a water leak.

1.12 PRODUCT, DELIVERY, HANDLING AND STORAGE

- A. Ship materials and equipment in crated sections of sizes to permit passing through available space, where required
- B. Deliver equipment with protective crating and shrink-wrapped covering.
- C. Receive and accept materials and equipment at the site, properly handle, house, and protect them from damage and the weather until installation. Replace equipment damaged in the course of handling without additional charge.
- D. Store to prevent damage and protect from weather, dirt, fumes, water, and construction debris in clean dry space
- E. Arrange for and provide storage space or area at the job site for all materials and equipment to be received and/or installed in this project
- F. All exposed openings of equipment, piping and ductwork are to be covered nightly and/or when no work is anticipated for more than 4 hours.
- G. Handle according to manufacturer's written rigging and installation instructions for unloading, transporting, and setting in final location
- H. Protect units from physical damage. Leave factory shipping covers in place until installation
- 1.13 TEMPORARY HEAT
 - A. Temporary heat will be provided under General Construction Work.

1.14 ACCESSIBILITY

- A. Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Minor deviations from the drawings may be made to accomplish this, but changes of substantial magnitude shall not be made without written approval.
- B. Group concealed valves, expansion joints, controls, dampers, and equipment requiring access, so as to be freely accessible through access doors.
- 1.15 SPECIAL TOOLS
 - A. Provide one set of any special tools required to operate, adjust, dismantle or repair equipment furnished under this Division for the Owner's use at the completion of the work.
 - B. Provide one pressure grease gun with adapters for each type of grease required.
 - C. Provide one suitable tool case for special tools.

1.16 CUTTING AND PATCHING

A. Provide all carpentry, cutting and patching required for proper installation of materials and equipment specified. Do not cut or drill structural members without review by Architect and Structural Engineer.

1.17 PROTECTION OF MATERIALS

A. Protect from damage, water, dust, etc., materials, equipment and apparatus provided under this trade, both in storage and installed

1.18 SUBSTITUTIONS

A. No substitute material or manufacturer of equipment shall be permitted without a formal written submittal to the Construction Manager and Architect which includes all dimensional, performance and material specifications and is approved in writing by the engineer. Any changes in layout or design brought about by the use of a substitution shall be submitted to the Construction Manager and Architect fully designed for review in conjunction with the submittal of the alternate. Any substitution must be submitted with an explanation why a substitution is being proposed. If the substitute is being proposed for financial reasons, the associated credit must be simultaneously submitted. Final acceptance or rejection of any substitution is subject to the owner's review.

1.19 STANDARDS:

A. If any item in the specification, as furnished by the contractor, is manufactured in a location which does not certify ASME/ANSI standards, the contractor is to pay the Construction Manager/Owner for ALL expenses incurred by the Construction Manager/Owner for an outside testing company to confirm such compliance.

1.20 COORDINATION

A. Arrange for pipe spaces, duct spaces, space for equipment, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations.

- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for mechanical items requiring access that are concealed behind finished surfaces.
- D. Provide coordination drawing for all areas of the work. The drawings shall have the following qualities:
 - 1. Minimum 3/8" scale
 - 2. Clearly show all the work for each trade including, but not limited to hangers, valves, dampers, actuators, access doors and service access requirements for all items.
 - 3. Indicate bottom elevations of all ductwork, electrical conduit, raceways, cable trays, control wiring and piping.
 - 4. Ductwork, piping, and conduit 3 inches and smaller may be shown in single line.
 - 5. Ductwork, piping, and conduit greater than 3 inches shall be shown in double line.
 - 6. Color scheme:
 - a. Architectural and structural background: Light grey.
 - b. Ductwork: Black.
 - c. Equipment and pads: Purple.
 - d. HVAC piping and equipment: Green.
 - e. Electrical conduits and equipment: Blue.
 - f. Plumbing: Orange.
 - g. Fire protection: Red.
 - h. Control wiring: Pink.

1.21 GUARANTEE

- A. In accordance with General Conditions (AIA Document 201) & Supplementary Conditions for Mechanical & Electrical Work.
- B. The Contractor shall furnish a written guarantee to replace or repair promptly and assume responsibility for all expenses incurred for any workmanship and equipment in which defects develop within one year from the date of final certificate for payment and/or from date or actual use of equipment or occupancy of spaces by Owner included under the various parts of work, whichever date is earlier. This work shall be done as directed by the Owner. This guarantee shall also provide that where defects occur, the Contractor will assume responsibility for all expenses incurred in repairing and replacing work of other trades affected by defects, repairs or replacements in equipment supplied by the Contractor.

1.22 PERMITS AND FEES

- A. In accordance with General Conditions (AIA Document 201) & Supplementary Conditions for Mechanical & Electrical Work.
- B. The Contractor shall give necessary notice, file drawings and specifications with the department having jurisdiction, obtain permits or licenses necessary to carry out this work and pay all fees therefore. The Contractor shall arrange for inspection and test of any or all parts of the work if so required by authorities and pay all charges for same. The Contractor shall pay all costs for, furnish to the Owner before final billing, all certificates necessary as evidence that the work installed conforms with all regulations where they apply to this work.

1.23 RIGGING

- A. This contractor shall provide all required rigging, hoisting and bracing to install the equipment as indicated on the plans. This work shall be performed by an insured certified licensed rigging company that is experienced in rigging equipment of the type indicated for the areas shown on the construction documents. This contractor shall submit rigging plans for approval prior to proceeding with the work.
- B. All permits required from the authorities and agencies involved to perform the rigging are the responsibilities of this contractor.
- C. All structural supports, modifications or additions are to be submitted to the structural engineer for approval prior to proceeding with the work. All supplemental structural supports, elevator charges /modifications, bracing and protection required for the rig is the responsibility of this contractor
- D. The rigging contractor shall hire and pay for all charges and services of the building elevator contractor for the rigging of the equipment

1.24 COMMISSIONING

- A. Provisions Included
 - 1. Include Division 00 and applicable parts of Division 01 for conditions and requirements which may affect the work of this Section.
 - 2. Examine all other Sections of the specifications for requirements which affect work under this Section whether or not such work is specifically mentioned in this Section.
 - 3. Coordinate work with that of all other Trades affecting, or affected by work of this Section. Cooperate with such Trades to ensure the steady progress of all work under the Contract.
 - 4. This scope is not all inclusive of the overall effort necessary to fully commission this project but rather serves as a guide. Refer to the Commissioning Plane and Section provided by the Construction Manager for further details. Refer to Sections 019100-Commissioning and Section 230800- Commissioning of HVAC for further scope and responsibility required.
- B. Commissioning Effort
 - 1. The Construction Manager shall be the prime contractor which is responsible for the overall commissioning program.
 - 2. The Construction Manager and all Contractors/Subcontractors shall completely assist the Commissioning Agent in establishing and maintaining the schedule of commissioning events, as developed for the complete check out of each individual mechanical and electrical sub-system and the integration of all building systems.
 - 3. The Contractor, BMS Contractor and TAB Contractor responsible for all work, installation, testing, balancing and controls under this Division shall be responsible to provide all set up, testing and services required in the commissioning of the systems under this Division.
- C. Commissioning Team
 - 1. A representative of each of the following parties shall be designated as a member of the Commissioning Team.

- 2. Each member must attend weekly "schedule of events" meetings, in accordance with the Commissioning Agent's schedule.
- 3. Each member must be closely associated with this design project to accommodate the actual scheduling of events upon mechanical and electrical systems which have been "completed" and thus in proper operation to be commissioned.
- 4. Commissioning Team
- 5. Commissioning Agent
 - a. Construction Manager
 - b. HVAC Contractor
 - c. BMS Contractor
 - d. Testing and Balancing Contractor (TAB)
 - e. Plumbing Contractor
 - f. Fire Protection Contractor
 - g. Electrical Contractor
 - h. Selective Equipment Manufacturers
 - i. Owners Designated Representative
- D. Substantial Completion
 - 1. The Construction Manager shall submit written notice that the project is substantially complete. Provide a detailed punch list of items not yet in conformance with the contract documents which require attention.
 - 2. Submit preliminary copies of the Operation and Maintenance Manuals.
 - 3. Submit the as-built drawings.
 - 4. Submit warranties, workmanship/maintenance bonds, maintenance agreements, final certifications, and similar documents.
 - 5. Obtain and submit releases enabling Owner's full and unrestricted use of the work and access to services and utilities, including occupancy permits, operating certifications, and similar releases.
 - 6. The Contractor shall have completed all commissioning requirements in Division 21, 22, 23 and 26 except Functional Performance Testing of systems.
 - 7. The Contractor shall have completed all training required for Owner's staff.
 - 8. Submit a letter to the Architect requesting inspection and the Certificate of Substantial Completion, which will be signed and submitted to the Owner.
- E. Functional Completion
 - 1. The Construction Manager shall submit commissioning acceptance procedures test check-off sheets, signed by the Commissioning Agent, and the Commissioning Agent's letter recommending Functional Completion.
 - 2. Formal records of all test procedures and results shall be included, as specified, in binders organized for convenient future reference by the Owner's operations staff.
 - 3. The Commissioning Agent will submit a final commissioning report recommending Function Completion when all requirements have been met and when the final report is accepted by the Client. The Commissioning Agent's report will be a comprehensive summary regarding the commissioning program, which shall also include formal records and data accumulated by the Commissioning Agent during the commissioning process.
 - 4. All Contractors shall participate in assisting the commissioning agent in indicating system compliance by performance ALL system tests to the satisfaction of the commissioning agent.
- F. Final Completion And Final Acceptance

- 1. Final Completion occurs when the work is fully and finally completed in accordance with the Contract Documents and all deficiencies have been corrected. Final Acceptance is the written acceptance issued to the Contractor by the Construction Manager and Owner after the Contractor has achieved Final Completion. The specific requirements are:
 - a. Submit "Consent of Surety to Final Payment". This letter is to be completed by the surety and mailed to the Owner.
 - b. Submit final payment request with final releases and supporting documentation not previously submitted or accepted.
 - c. Submit a copy of the Architect's final punch list of itemized work to be completed or corrected, stating that each item is complete (or otherwise resolved) for acceptance, endorsed and dated by the Architect.
 - d. Deliver tools, spare parts, extra stock of materials, and similar physical items to the Owner.
 - e. Make the final change-over of locks and transmit the new keys to the Owner. Return any loaned construction access keys. Advise Owner's personnel regarding change-over in security provisions.
 - f. Discontinue and remove from the project site temporary facilities and services, along with construction tools and facilities, mock-ups, and similar elements.
 - g. Complete final cleaning requirements, including touch-up of marred surfaces, and repair, restore and touch-up exposed finishes.
 - h. Submit a letter to the Architect requesting inspection and the Certificate of Final Acceptance, which will be signed and submitted to the Owner.
- G. Commissioning Schedule
 - 1. The Construction Managers schedule for construction, control implementation and completion, start, and point-by-point checkout must be complete for Owner occupancy, in accordance with the Construction Managers schedule.
- H. Responsibilities
 - 1. The Contractors shall cooperate with the Construction Manager and Commissioning Agent to accomplish the following tasks:
 - a. Review and approve all functional performance tests, results, and documentation required by the contract documents, for all equipment and systems, as performed by subcontractors, vendors, etc.
 - b. Develop schedules for all testing, integrate testing into the master construction activity schedule and coordinate all subcontractor testing as required.
 - c. Assist and participate in all equipment tests, system functional tests, and cross system functional tests. Test procedures shall be in accordance with equipment manufacturer's recommendations, where applicable. Test procedures shall fully describe system configuration and steps required for each test, appropriately documented so that another party can repeat the tests with virtually identical results.
 - d. Submit test procedure schedule, procedures, forms and other documentation to the Construction Manager and Owner for approval three months prior to starting any testing required and stipulated by the construction Manager.
 - e. Coordinate directly with subcontractor on the project specific to their responsibilities and contractual obligations.

- f. Provide qualified personnel for participation in commissioning tests, including seasonal testing required after the initial commissioning.
- g. Provide engineering and technical expertise to oversee and direct the correction of deficiencies found during the commissioning process.
- h. Provide all start-up and initial testing of all systems and equipment by the Contractor and subcontractors, and then all final tests of equipment and systems in accordance with the Commissioning Agent procedures.
- i. Manage all cross system testing such as HVAC, building fire alarm, emergency power, life safety, elevators, etc.
- j. Note any inconsistencies or deficiencies in system operations and enforce system compliance or recommend to the Architect modifications to system design which will enhance system performance.
 - 1) Coordinate with the Commissioning Agent and Construction Manager the required A/E and Owner testing participation and approval procedures, after verifying that pretests have been satisfactorily conducted and final testes are ready to be performed.
 - 2) In the event that a functional test fails, the cause of failure shall be determined and rectified as soon as possible, and then retested. If more than three functional tests of the same system(s) are required, the Contractor shall reimburse all associated costs for the extraordinary participation of the A/E, Commissioning Agent, Construction Manager and Owner's staff, as required by the particular test being performed.
 - 3) Review operation and maintenance information and as-built drawings provided by the various subcontractors and vendors for verification, organization and distribution.
 - 4) Obtain all documentation from tests and assemble a final test report to be submitted to the Construction Manager, Commissioning Agent, Architect and the Owner for approval.
 - 5) Oversee and/or provide training for the systems specified in the Division with coordination by the Division 23 Subcontractors.
- I. Related Work
 - 1. All start-up and testing procedures and documentation requirements specified within Divisions 21, 22, 23 and 26.
 - 2. The Test, Adjust and Balance (TAB) firm shall provided the following:
 - a. Allow sufficient time before final commissioning dates so that testing, adjusting and balancing can be accomplished.
 - b. Put all heating, ventilating and air conditioning equipment and systems into full operation and continue the operation during each working day of testing, adjusting and balancing and commissioning so they are fully functional. This includes the complete installation of all equipment, materials, pipe, duct, wire, insulation, controls, etc., per the contract documents and related directives, clarifications, change orders, etc.
 - 3. A commissioning plan will be developed by the Commissioning Agent. Divisions, 21, 22, 23 and 26 are obligated to assist the Commissioning Agent in preparing the commissioning plan by providing all necessary information pertaining to the actual equipment and installation. If system modifications/clarifications are in the contractual requirements of this and related sections of work, they will be made at no additional cost to the Owner. If Contractor initiated system changes have been made that alter the

commissioning process, the Test Engineer will notify the Commissioning Agent and Owner's Representative for approval.

- 4. Normal start-up services required to bring each system into a fully operational state. This includes cleaning, filling, purging, leak testing, motor rotation check, control sequences of operation, full and part load performance, etc. The TAB firm will not begin the TAB work until each system is complete, including normal contractor start-up. The Commissioning Agent will not begin the commissioning process until each system is complete, including normal contractor start-up.
- 5. Provide labor and material to make corrections when required, without undue delay.
- 6. The HVAC Contractor shall include the cost of exchanged sheaves and belts as may be required by the TAB firm.
- 7. Provide test holes in ducts and plenums where directed or necessary for pitot tubes to take air measurements and to balance the air systems. Test holes shall be provided with an approved removable plug or seal. At each location where ducts or plenums are insulated, test holes shall be provided with an approved extension with plug fitting.
- 8. Provide pressure and temperature taps as indicated on construction documents in locations as required by the TAB firm to adequately test and/or balance the hydronic systems.
- 9. The Contractor shall include a minimum of two week "flush out" period, in which the air handling systems are sequenced into a 100% outside air mode, to assist in the removal of any construction material off-gasing, in accordance with LEEDS.
- J. Test Equipment
 - 1. Provide test equipment as necessary for start-up and commissioning of the mechanical equipment and systems. The TAB firm will provide the test equipment required to perform their service.
- K. Test Equipment Proprietary
 - 1. Proprietary test equipment required by the manufacturer, whether specified or not, shall be provided by the manufacturer of the equipment. Manufacturer shall provide the test equipment, demonstrate its use, and assist the Commissioning Test Engineer in the commissioning process. Proprietary test equipment shall become the property of the Owner upon completion of commissioning.
 - 2. Identify the proprietary test equipment required in the test procedures submittals and in a separate list of equipment to be included in the operations and maintenance manuals.
- L. Work Prior To Commissioning
 - 1. Complete all phases of work so the system can be started, tested, adjusted, balanced, controlled and otherwise commissioned. Divisions 21, 22, 23 and 26 have primary startup responsibilities with obligations to complete systems, including all sub-systems completion will not relieve these Divisions from completing those systems as per the Construction and Commissioning schedule.
- M. Work To Resolve Deficiencies
 - 1. In some systems, mis-adjustments, misapplied equipment and/or deficient performance under varying loads will result in additional work being required by the Contractors to commission the systems. This work will be completed under the direction of the Construction Manager, Architect and Owner's Representative, with input from the Contractor, equipment supplier, and Commissioning Agent. Whereas all members will

GENERAL PROVISIONS FOR HEATING, VENTILATING AND AIR CONDITIONING 230000 - 12 have input and the opportunity to discuss the work and resolve problems, the Architect will have final jurisdiction on the necessary work to be done to achieve performance.

- 2. Corrective work shall be completed in a timely fashion to permit timely completion of the commissioning process. Experimentation to render system performance will be permitted. If the Commissioning Agent deems the experimentation work to be ineffective or untimely as it relates to the commissioning process, the Commissioning Agent will notify the Owner indicating the nature of the problem, expected steps to be taken, and the deadline for completion of activities. If deadlines pass without resolution of the problem, the Owner reserves the right to obtain supplementary services and/or equipment to resolve the problem. Costs incurred to solve the problems in an expeditious manner will be the Contractor's responsibility.
- N. Seasonal Commissioning And Occupancy Variations
 - 1. Seasonal commissioning pertains to testing under full-load conditions during peak heating and peak cooling seasons, as well as part-load conditions in the spring and fall. Initial commissioning will be done as soon as contract work is completed regardless of season. Subsequent commissioning may be undertaken at any time thereafter to ascertain adequate performance during the different seasons.
 - 2. All equipment and systems will be tested and commissioned in a peak season to observe full-load performance. Heating equipment will be tested during winter design extremes. Cooling equipment will be tested during summer design extremes, with a fully occupied building. Each Contractor and supplier will be responsible to participate in the initial and the alternate peak season test of the systems required to demonstrate performance, as scheduled by the Commission Agent, with three day (minimum) advance notification.
 - 3. Subsequent commissioning may be required under conditions of minimum and/or maximum occupancy or use. All equipment and systems affected by occupancy variations will be tested and commissioned at the minimum and peak loads to observe system performance. The Contractor will be responsible to participate in the occupancy sensitive testing of systems to provide verification of adequate performance.
- O. Recommissioning
 - 1. Upon notification by the Commissioning Agent of successful system/equipment performance/checkout test, the Owner shall witness Test No. 1. If any system/equipment/component/device fails to perform correctly during Test No. 1, the Contractor and/or equipment supplier must correct any systems/wiring deficiencies, and must incur any travel/airfares/food/hotel expenses of the designated Agent, to be available for the Retest No. 1.
- P. Training
 - 1. Participate in the training of the Owner's engineering and maintenance staff, as required in Divisions 01, 21, 22, 23 and 26, on each system and related components. Training, in part, will be conducted in a classroom setting, with system and component documentation, and suitable classroom training aids.
 - 2. Training will be conducted jointly by the Commissioning Agent, the Contractor, and the equipment vendors. The Test Engineer will be responsible for highlighting system peculiarities specific to this project.

Q. Systems Documentation

- In addition to the requirements of Division 01, The Contractor shall update contract documents to incorporate field changes and revisions to system designs to account for actual constructed configurations. All drawings shall be red-lined on two sets. Divisions 21, 22, 23 and 26 as-built drawings shall include architectural floor plans, elevations, and details, and the individual mechanical or electrical systems in relation to actual building layout.
- 2. Maintain as-built red-lines as required by Division 01. Given the size and complexity of this project, red-line drawings at completion of construction, based on memory of key personnel, is not satisfactory. Continuous and regular red-lining of drawings is considered essential and mandatory.
- R. Miscellaneous Support
 - 1. Divisions 21, 22, 23 and 26 shall remove and replace covers of mechanical equipment, open access panels, etc., to permit the Commissioning Agent, Architect and Owner's representative to observe equipment and controllers provided. Furnish ladders and flashlights as necessary.
- S. Systems To Be Commissioned
 - 1. HVAC
 - a. Each air flow station.
 - b. Each DDC terminal box.
 - c. Equipment room A.C.System.
 - d. Verify the final accuracy of the air and water test and balancing report.
 - e. Verify the air distribution of the operating rooms system for both summer and winter operations. (termperature, humidity and pressurization)
 - f. BMS functional and operational control sequences.
 - g. Moisture sensor system at drain pans.
 - h. Each individual lighting control interface.
 - i. Each kilowatt metering interface.
 - 2. Plumbing/Fire Protection
 - a. Each alarm valve.
 - b. Flow Restriction Devices
 - c. Reduced Pressure Backflow Devices
 - 3. Electrical
 - a. Circuit breaker trip setting verification.
 - b. Lighting controls.
 - c. Fire alarm interface to HVAC/ATC.
 - d. Security interface.
 - e. Emergency Power
- T. Post Occupancy Commissioning
 - 1. This Contractor shall fully cooperate in all regards with this phase of commissioning.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- 2. The Commissioning Agent will prepare a complete building operations review within ten (10) months after substantial completion with the owners operating personnel and note in the report any outstanding construction and/or operational deficiencies that are identified during this post occupancy review. This report shall be provided to the owner, Construction Manager and A/E. This Post-Occupancy deficiency list shall be corrected by the Construction Manager under the one year guarantee/warranty period and shall be submitted as being completed by the Contractor and Equipment Suppliers. The Commissioning Agent shall also procure all equipment manufacturer test data verifying post-occupancy equipment efficiencies and compare all such data to the information published by the manufacturer. This data shall be used to verify overall equipment efficiency against the contract specifications.
- 3. Divisions 21, 22, 23 and 26 shall correct any and all system deficiencies noted by the Commissioning Agent during the first one year after substantial completion and as noted by the Commissioning Agent during the 10th month building operating review.

PART 2 - PRODUCTS

2.1 BASE BID MANUFACTURERS

- A. Base bid on materials or equipment are specified by name of manufacturer, brand or trade name and catalog reference.
- B. The choice will be optional with bidder where two or more manufacturers are named.
- C. The following are base bid manufacturers for items under this Section:
 - 1. Access doors: Karp Associates, Inc., Higgins Mfg. Co., Milcor Steel Co., and Walsh-Spencer Co.
 - 2. Inserts: F and S Mfg Co., Fee and Mason and Grinnell.
 - 3. Hangers and supports: I.T.T. Grinnell, Carpenter and Patterson, Inc., and Fee & Mason.
 - 4. Paint: Sherwin-Williams, Pittsburgh Paint Co., Pratt and Lambert, and Rust-Oleum.
 - 5. Gratings: Irving Grating IKG Industries and Ryerson Inland Steel Co.

2.2 INSERTS AND SUPPORTS

- A. Support all HVAC work from building construction by providing inserts, beam clamps, steel fishplates (in concrete fill only), and acceptable brackets. Submit all methods for review.
- B. Provide trapeze hangers of bolted angles or channels for grouped lines and services.
- C. Provide additional framing where building construction is inadequate. Submit for review.
- D. Inserts shall be steel, slotted type and factory-painted.
 - 1. Single rod shall be similar to Grinnell Fig. 281.
 - 2. Multi-rod shall be similar to Fee & Mason Series 9000 with end caps and closure strips.
 - 3. Clip form nails flush with inserts.
 - 4. Maximum loading including pipe, contents and covering shall not exceed 75 percent of rated insert capability.

- E. Supports from steel decks:
 - 1. Pipes:
 - a. Sizes up to 3" diameter maximum hanger spacing: 10' centers maximum.
 - b. Beyond 3" diameter provide support steel, hanger spacing: 10' centers.
 - 2. Ductwork:
 - a. Hangers spacing: maximum 10' centers and/or every change in direction.
- 2.3 SUPPLEMENTARY STEEL, CHANNELS AND SUPPORTS:
 - A. Furnish supplementary steel, channels and supports required for proper installation, mounting and support of all HVAC work.
 - B. Connect supplementary steel and channels firmly to building construction in an acceptable manner.
 - C. Determine type and size of supporting channels and supplementary steel. Supplementary steel and channels shall be of sufficient strength and size to allow only a minimum deflection in conformance with manufacturer's requirements of loading.
 - D. Install supplementary steel and channels in a neat and workmanlike manner parallel to walls, floors, and ceiling construction.
 - E. All supplementary steel, channels, supports shall be submitted to Structural Engineer for review.
- 2.4 EXPANSION ANCHORS
 - A. Provide smooth wall, non-self-drilling internal plug expansion type anchors constructed of AISC 12L14 steel and zinc plated in accordance with Fed. Spec. QQ-A-325 Type 1, Class 3.
 - B. Do not exceed 1/4 of average valves for a specific anchor size using 2000 psig (13,800 kpa) concrete only, for maximum working load.
 - C. Provide spacing and install anchors in accordance with manufacturer's recommendations.

2.5 ACCESS DOORS

- A. This contractor shall submit to the architect for approval a plan indicating the size (minimum 18" x 18") and location of all building construction access doors required for operation and maintenance of all concealed equipment, devices, valves, dampers and controls. Contractor shall arrange for furnishing of all access doors in finished construction and include costs in the bid.
- B. Flush type access doors shall be similar to Karp Type DSC-211 with No. 13 USSG steel doors and trim and No. 16 USSG steel frame, metal wings for keying into construction, concealed hinges and screwdriver operated stainless steel cam lock. Provide lift off type access doors, similar to Karp Type DSC-212, where door cannot swing open.

- C. In acoustic tile ceilings, factory finished white access doors shall be similar to Karp Type DSC-210, with No. 13 USSG steel frame, No. 16 USSG steel pan door suitable for receiving tile thickness and hinges that are not visible when door is closed. Access door shall have screwdriver operated stainless steel cam locks finishing flush with tile with a minimum of 2 per door.
- D. In plaster ceilings recessed access doors shall be similar to Karp DSC-210-PL, with recess to receive plaster.
- E. In fire rated construction provide fire rated access doors, similar to Karp KRP-150-FR, in accordance with applicable code requirements.
- F. Access doors shall have one coat of shop-painted zinc chromate primer.
- 2.6 ACCESS TILE IDENTIFICATION:
 - A. In removable ceiling tiles, provide buttons, tabs, and markers to identify location of concealed work. Submit for review.
- 2.7 EQUIPMENT PLATFORMS
 - A. Equipment platforms will be provided under General Construction Work.

2.8 LADDERS

A. Ladders will be provided under General Construction Work except those inside air handling units which shall be provided as an integral part of the unit.

2.9 SHAFT GRATINGS

- A. Shaft gratings will be provided under General Construction Work.
- 2.10 TAGS:
 - A. Provide 2 in. round valve tags on all valves and controls of No. 18 BS gauge aluminum with stamped numbers and letters filled in with black paint.
 - B. Indicate identifying number and system letter on tags, and fasten by heavy aluminum or brass "S" hooks or chains.
 - C. Tags shall be similar to Seton Name Plate Corporation.

2.11 CHARTS

- A. Provide valve tag chart indicating valve number, system, type, size, location and function for all valves.
- B. Mount in aluminum frame and glass.
- C. Letter and number valves and controls to correspond with designations on metal tags.
- D. Fasten charts permanently in locations, as directed, with four brass screws.

2.12 NAMEPLATES

- A. Provide nameplates with inscriptions, subject to review, indicating building abbreviations, equipment number and capacity (CFM and/or GPM). Fasten with epoxy cement or chrome plated screws. Nameplate shall be black Lamicoid sheet with white lettering.
- PART 3 EXECUTION
- 3.1 MECHANICAL IDENTIFICATION
 - A. Refer to identification Section.

3.2 FOUNDATIONS

- A. Foundations and concrete will be provided under General Construction Work.
- B. Coordinate foundations for:
 - 1. Floor mounted control panels.
 - 2. Motor controllers; VFD's, Disconnect Switches, etc.
 - 3. Motors.
 - 4. Air cooled chillers and/or compressor/condensers units.
 - 5. Control Panels.
- 3.3 WATERPROOFING
 - A. Waterproofing will be provided under General Construction Work.
- 3.4 FIELD QUALITY CONTROL
 - A. Perform tests as noted, and in the presence of Architect and/or Construction Manager, Engineer and authorities having jurisdiction.
 - B. Provide required labor, material, equipment, and connections necessary for tests and submit results for review.
 - C. Repair or replace defective work and pay for restoring or replacing damaged work due to tests, as directed.
- 3.5 CLEANING
 - A. Brush and clean work prior to concealing, painting and acceptance. Perform in stages if directed.
 - B. Clean and repair painted exposed work, soiled or damaged, to match adjoining work before final acceptance.
 - C. Remove debris from inside and outside of material and equipment.

END OF SECTION

SECTION 23 00 01

SUPPLEMENTARY CONDITIONS FOR MECHANICAL, ELECTRICAL, PLUMBING AND FIRE PROTECTION WORK

PART 1 - GENERAL

- 1.1 The "GENERAL CONDITIONS OF THE CONTRACT FOR CONSTRUCTION", AIA Document A201-2007, is part of this Contract.
- 1.2 SUPPLEMENTARY CONDITIONS
 - A. These SUPPLEMENTARY CONDITIONS amend or supplement the GENERAL CONDITIONS and other provisions of the Contract Documents as indicated below. All provisions which are not so amended or supplemented remain in full force and effect. AIA document A201-2007 Edition is referenced
- 1.3 GENERAL PROVISIONS
 - A. THE SPECIFICATIONS
 - 1. For additional definitions, see "General Provisions" section of each trade.
 - B. CORRELATION AND INTENT OF CONTRACT DOCUMENTS
 - 1. No reassignment of division of responsibility for work as specified for the respective trades shall be made without prior written acceptance by Engineer.

1.4 CONTRACTOR

A. SUPERINTENDENT

 Contractor shall arrange for Subcontractors for Heating, Ventilation and Air Conditioning work, Electrical Work, Fire Protection Work, Plumbing Work, or any other division of work, to each supply services of a competent project manager who shall act as assistants to the Superintendent and who shall be in attendance at the Project site during the progress of the Work. Such project managers shall be satisfactory to the Engineer, and shall not be changed except with the consent of the Architect

B. DOCUMENTS AND SAMPLES AT THE SITE

1. Dimension underground utilities from permanent identifiable benchmarks on Record Drawings.

C. RECORD DRAWINGS

- 1. Before commencing work, procure complete reproducible set of Contract Drawings.
- Conspicuously indicate major deviations in Mechanical Equipment Rooms by specific reference to shop drawings of these rooms and submit reproducibles of such shop drawings.

- 3. Submit up-to-date "in progress" prints, to Architect when requesting 25 percent, 50 percent, 75 percent and 95 percent payment of work installed.
- 4. Upon completion of work, submit signed certified reproducibles of Record and reference shop drawings, along with marked-up prints of in-progress drawing to Architect for acceptance. Also provide an electronic version of the as-built drawings using Auto CADD

D. SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

- 1. Any Shop Drawing, Product Data or Sample submitted without Contractor's approval will not be processed for approval by the Architect, but will be returned to the Contractor for his compliance with the above procedures, in which event it will be deemed that the Contractor has not complied with the provisions herein specified and the Contractor shall bear risk of all delays as if no Shop Drawing, Product Data or Sample had been submitted
- 2. Shop Drawings, Product Data, and Samples shall include complete dimensional accuracy; the Contractor shall verify that he has checked to insure that work contiguous with and having bearing on the work shown on the Shop Drawings is accurately and clearly shown, that he has checked the Shop Drawings against the Composite Drawings prepared by the Contractor, and that the work has been coordinated and that the equipment will fit into the assigned spaces
- 3. Prior to shop drawings and sample submissions, and within 30 days after award of contract, submit lists of proposed manufacturers names, shop drawings and samples with proposed schedule of submission dates referenced by Specification Section, Article Numbers and Contract Drawing Number. Contractor shall be responsible for any delays resulting from failure to submit such lists
- 4. Submit shop drawings and samples for materials, equipment and systems as noted in each respective specification section for each trade
- 5. Any construction and/or design changes as a result of any approved substitution shall be made at no additional cost to the Owner
- 6. Composite Drawings:
 - a. In the interest of coordination and to expedite the work in critical areas, the Contractor shall prepare and submit, to the Architect for review, Composite Drawings incorporating the work of the various trades and/or subcontractor involved. After review, the Contractor shall distribute prints of reviewed Composite Drawings to affected trades and/or subcontractors. The Contractor shall require that the involved trades and/or subcontractors cooperate in preparation of the Composite Drawings to assure proper coordination between trades and/or subcontractors. The participating parties shall indicate their approval on these drawings, in addition to the Contractor
- 7. Provide composite shop drawings 3/8 inch per foot scale or as approved of areas where contractors proposed installation is at variance with the Contract Drawings or Specifications. Ductwork, piping layout and distribution drawings are required for all below listed specific areas
 - a. Equipment Rooms
 - b. Plenums
 - c. Shafts
 - d. Roof Level
 - e. All Floors

- 8. Indicate dimensioned layouts, elevations and sections of the following, on composite shop drawings
 - a. Piping and valves
 - b. Raceways
 - c. Pull boxes
 - d. Lighting
 - e. Equipment
 - f. Connections
 - g. Access for servicing
 - h. Building construction (floor, ceiling, beams and columns)
- 9. Plan work to allow sufficient time for coordination and for compliance with construction schedule
- 10. Catalog, model and serial numbers will be assumed to represent equipment complying with Contract Drawings and Specifications, unless otherwise noted
- 11. Submit additional shop drawings (other than noted) when directed, during progress of project
- 12. Shop drawing resubmissions are required within 30 days of receipt of review comments from Architect
- 13. Replace all material and equipment which was installed prior to shop drawing review when directed by Architect
- 14. Before submitting shop drawings and samples, check material and equipment against drawings for clearance, connections, accessibility, servicing and maintenance
- 15. Submit shop drawings with:
 - a. Marked notation of any deviations from the Contract Documents and reasons for same. Indicate such deviations in a conspicuous manner including component, material and system variations, additions and deletions revised equipment locations, hung ceiling heights and headroom conditions
 - b. Manufacturer's specifications including: materials, type, performance characteristics, voltage, phase and capacity. Specifications for project shall be tailored to reflect the requirements of the contract documents
 - c. Certified dimensional drawings, indicating sizes, component parts and installation details
 - d. Wiring diagrams when applicable
- 16. Identify with:
 - a. Project name and number.
 - b. Names of Architect and Engineer.
 - c. Identification of applicable items on each submission.
 - d. Applicable Contract Specification Section and Article Numbers.
 - e. Applicable Contract Drawing Numbers.
- 17. Minimum copies of shop drawing submissions:
 - a. 8-1/2 inch by 14 inch and smaller: Eight (8) copies
 - b. Larger than 8-1/2 inch by 14 inch: 1 reproducible plus eight (8) print
- 18. All fire walls and smoke partitions must be highlighted on the sheet metal drawings for appropriate coordination

E. CLEANING UP

- 1. Remove broken or scratched glass and replace with new glass, remove paint drippings, spots, stains, and dirt from finished surfaces and clean fixtures, hardware, floors and equipment. Contractor shall keep interior of the building free of stored or unattended combustible material
- F. INDEMNIFICATION
 - 1. Relieve Owner of all claims in connection with use of facilities, conveniences or services supplied by other parties

1.5 ADMINISTRATION OF THE CONTRACT

A. ARCHITECT

1. Whenever the word "Architect" occurs, the word "Engineer" shall be also stipulated, and shall mean the firm of AKF Group, LLC or its authorized representative

1.6 PROTECTION OF PERSONS AND PROPERTY

A. SAFETY OF PERSONS AND PROPERTY

- 1. Close open ends of work with temporary covers or plugs during construction to prevent entry of obstructing materials
- 2. Storage areas will be designated by Architect or Building Owner
- B. PARTIAL OCCUPANCY OR USE
 - 1. No equipment intended for permanent installation shall be operated for temporary purposes without written permission of, and complete agreement with stipulation as set forth by, the Architect

1.7 DEVIATIONS

- A. When deviations to Contract Documents are requested by the Contractor and accepted by the Architect, Contractor shall be responsible for all affected work and costs, including that of other contracts.
- B. Interference with Owner's Operations
 - 1. Contractors shall take whatever action is necessary to avoid interference with owner's use of the building or damage to existing facilities equipment
 - 2. Except as otherwise specified herein, contractors may work during normal working hours. In the event that noisy work interferes with owner's operations, owner may direct contractor to stop that work. If the workers involved cannot be used on other work, Contractor shall be paid for the lost time in accordance with a schedule of hourly rates to be included in the contract. Owner's representative will determine the duration of the stoppage and whether compensation therefor is warranted

- 3. Contractor shall include with his proposal a schedule of hourly rates and overtime premiums
- 4. Maintain all existing site utility and building services in operation

1.8 PROJECT CLOSEOUT PROCEDURES

- A. The requirements of this section are in addition to and supplement the requirements outlined in Division 1
 - 1. It shall be each contractor's responsibility to personally hand-deliver all of the required project closeout checklist items and to obtain Owner's authorized representative(s) signed receipt on all items requiring Owner sign-off
- B. Project Closeout Checklist
 - 1. Review requirements of each section of the specifications and submit for approval to Architect the sign-off forms which shall become the project closeout checklist. These, at a minimum, shall include the following information shown in attached Project Closeout Checklist Example. The Architect and/or Owner may incorporate additional specific items to the following checklist which shall become part of the project requirements
 - 2. Closeout Checklist Example:

PROJECT CLOSETOUT						
PROJECT:						
DIVISION NO.:						
CONTRACTOR:						
ITEM 1	DATES		OWNER'S SIGN-			
	COMPLETED	RECEIVED BY OWNER	OFF			
Permits						
City and State Inspection						
Manufacturer's warranties						
Contractor's Warranties						
State Fire Rating Data						
Copy of Final Shop Drawings						
List and Possession of Spare Parts						
Pressure Tests (Ductwork)						
Pressure Tests (Piping)						
Equipment Tests Required by Specs						
O & M Manuals						
Record Documents						
Coordination Drawings						
Sanitization Reports						
Commissioning and LEED®						
Reports/Letters/Forms						
On-Site Training Complete						
Protective Device Settings						
Valve Tags and Charts						

PROJECT CLOSETOUT				
PROJECT:				
DIVISION NO.:				
CONTRACTOR:				
Final BMS Installation Drawings				
Insurance Underwriters Approvals				
Final Punch List (Initialed by contractor				
that items are complete)				
Building Certificate of Occupancy				
(C.O.)				
24-Hour Phone No. for Service During				
Guarantee Period				

Part 2- PRODUCTS

(Not Applicable)

Part 3- EXECUTION

(Not Applicable)

END OF SECTION

SECTION 230500

COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Painting and finishing.
 - 10. Concrete bases.
 - 11. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. CPVC: Chlorinated polyvinyl chloride plastic.
 - 2. PE: Polyethylene plastic.
 - 3. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates
- C. Welding: Before proceeding, submit the following for review and approval;
 - 1. Proposed procedure conforming to latest revision of:
 - a. ANSI/ASME B31.1, Pressure Piping Chapter V.
 - b. ANSI/ASME B31.9, Building Services Piping
 - c. ANSI 249.1 Safety in Welding and Cutting
 - 2. List of welders qualified per section IX of ASME. Boiler and Pressure Vessel Code including, but not limited to, the following information:
 - a. Welder's name
 - b. Welder's Social Security Number
 - c. Employer's name
 - d. Name of testing laboratory
 - e. Procedure tested for including, but not limited to, the following:
 - 1) Date of test

- 2) Wall thickness
- 3) Base metal material
- 4) Electrode
- 5) Position
- f. Procedure tested for including, but not limited to, the following:
 - 1) Type of test performed
 - 2) Result of test
 - 3) Welder's identification symbol
 - 4) Sample of each identification device
 - 5) Certify that each welder has either worked in the procedure or successfully tested in the procedure within the past six month
- 3. No reports from any welding inspection agency shall be accepted unless each agency has first requested and obtained qualifications from the office in accordance with rule 16-1 of the Board of Standards and Appeals welding rule.
- D. Brazing: Before proceeding, submit the following for review and approval;
 - 1. Proposal procedure conforming to latest revision of:
 - a. Section IX, ASME Boiler and Pressure Vessel Code, Welding and Brazing Qualifications.
 - b. ANSI/AWS B2.2 Standard for Brazing Procedure and Performance Qualification
 - 2. List of brazers qualified per section IX of ASME. Boiler and Pressure Vessel Code including, but not limited to, the following information:
 - a. Brazer's name
 - b. Brazer's Social Security Number
 - c. Employer's name
 - d. Name of testing laboratory
 - e. Procedure tested for including, but not limited to, the following:
 - 1) Date of test
 - 2) Wall thickness
 - 3) Base metal material
 - 4) Brazing filler material

- 5) Position
- 6) Type of test performed
- 7) Result of test
- 8) Brazer's identification symbol
- 9) Sample of each identification device
- 10) Certify that each Brazer has either worked in the procedure or successfully tested in the procedure within the past six months

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 Piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 Piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: In lieu of dielectric unions, use brass unions between different pipe materials.

2.5 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Thunderline Link-seal
 - 2. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.6 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.7 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.
- E. One-Piece, Stamped-Steel Type: With spring clips and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Type: With concealed hinge, spring clips, and chrome-plated finish.
- G. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.8 GROUT

- A. General Purpose Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 14000 / 19000-psi, 36 hours @70 degrees compressive strength.
 - 3. Packaging: factory packaged for field mixing.
- B. Pump Mounting: High flow, high strength epoxy machine-based grout: ASTM C 881, CRD-C 590.
 - 1. Characteristics: Two to Three-component, highly flowable, epoxy-based grout that produces high performance strength plus chemical inertness and excellent bonding properties.
 - 2. Design Mix: ASTM-C 579, 14,000 / 19,000 psi , 36 hours @72 degree F compressive strength.
 - 3. Packaging: Factory packaged for field mixing.
 - 4. Products: Chocfast by ITW Philadelphia resins, ESCOWELD or approved equal.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
 - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 - f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 - g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type and set screw.

- h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
- i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with spring clips.
- j. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
- k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with spring clips.
- I. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- M. Sleeves are not required for core-drilled holes except at all Penthouse and/or roof penetrations.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves except at all Penthouse and/or roof penetrations.
- O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of the Penthouse and/or mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed. Air seal all penetrations at all supply and return air plenums.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions 16 Gauge
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble

COMMON WORK RESULTS FOR HVAC 230500 - 9 mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

- R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- T. Verify final equipment locations for roughing-in.
- U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel or groove (on applicable systems) plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
 - 3. Threaded fittings not allowed in glycol system.

- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Grooved Joints: Install in accordance with the manufacturer's (Victaulic or Engineer Approved Equal) guidelines and recommendations. All grooved couplings, fittings, valves and specialties shall be supplied by a single manufacturer. Grooving tools shall be supplied by the same manufacturer as the grooved components. The gasket style and elastomeric material (grade) shall be verified as suitable for the intended service as specified. Gaskets shall be developed and supplied by the manufacturer. Grooved end shall be clean and free from indentations, projections and roll marks in the area from pipe end to groove. A Victaulic factory trained field representative shall provide on-site training to contractor's field personnel in the installation of grooved piping products. Factory trained representative shall periodically review the product installation. Contractor shall remove and replace any improperly installed products.
 - Install the Victaulic AGS piping system in accordance with the latest Victaulic installation instructions. Use Victaulic grooving tools with AGS roll sets to groove the pipe. Follow Victaulic guidelines for tool selection and operation. Coupling installation shall be complete when visual metal-to-metal contact is reached. AGS products shall not be installed with standard grooved end pipe or components. Installing AGS products in combination with standard grooved end products could result in joint separation and/or leakage.
 - 2. Grooved joints not allowed on Hot Water system

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, or grooved joints, in piping NPS 2-1/2 and larger, adjacent to flanged or grooved end valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install brass unions to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install brass unions to connect piping materials of dissimilar metals.

3.4 DUCT SYSTEMS – COMMON REQUIREMENTS

- A. Install ductwork according to the following requirements and Division 23 Sections specifying metal ducts, casings, duct accessories and related components.
- B. Drawing plans, schematics and diagram indicate general location and arrangement of duct systems. Indicated locations and arrangements were used to size ducts and calculate friction loss, expansion, fan sizing and other design considerations. Install ductwork as indicated unless deviations to layout are approved on Coordination Drawings.

COMMON WORK RESULTS FOR HVAC 230500 - 11

- C. Install ductwork in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install ductwork indicated to be exposed and ductwork in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install ductwork above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install ductwork to permit servicing of C.V. boxes, VAV boxes, dampers, actuators, filters, valves, and as required.
- G. Install with indicated horizontal and vertical offset.
- H. Install ductwork free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install ductwork to allow application of insulation.
- K. Select system components with pressure class equal to or greater than system operating pressure.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

- 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
- 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
- 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
- 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.9 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION

SECTION 230513

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes general requirements for single-phase and three-phase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.
- B. The mechanical contractor is to provide motor, motor controllers, fused disconnect switches and VFD's. The mechanical contractor to install motor, motor controllers, disconnect switches and VFD's. The Electrical contractor is to wire all motors, fused disconnect switches, motor controllers and VFD's. Electrical contractor to furnish and install all fuses in disconnect switches.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers and fused disconnect switches.
 - 2. Variable frequency motor controllers.
 - 3. Torque, speed, and horsepower requirements of the load.
 - 4. Ratings and characteristics of supply circuit and required control sequence.
 - 5. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 BASE BID MANUFACTURERS

- A. Motors: Toshiba, Lincoln Motors.
- B. Motor controllers and disconnect switches:
 - 1. Division 260000-"Enclosed Switches and Circuit Breakers" and "Enclosed Controllers".

2.2 MOTORS

- A. Motors shall be in accordance with NEMA, IEEE, UL and ANSI C50 standards with minimum indicated horsepower and the ability to operate the drive device under all conditions without overload. Motors shall be of the same manufacturer, except those provided integrally with equipment.
- B. Motors shall be designed for continuous load to operate in ambient temperature of 104 deg F and service factor of 1.15.
- C. Efficiency of motor shall be IEEE standard 112, 1978 Test Method B. Unless noted otherwise motors shall be of high efficiency, in order to qualify for the local utility company rebate program for New Construction.
 - 1. All motors shall have guaranteed minimum efficiencies as follows or the minimum efficiencies for a rebate, whichever is greater:

HP	GUARANTEED MIN. EFFICIENCY	<u>HP</u>	GUARANTEED MIN. EFFICIENCY
1	85.5%	1-1/2	86.5%
2	86.5%	3	89.5%
5	89.5%	7-1/2	90.2%
10	91.7%	15	91.7%
20	93%	25	93%
30	94.1%	40	94.1%
50	94.5%	60	95%
75	95%	100	95.4%
125	95.4%		

- D. Except as noted, motors below ½ hp shall be 120 volts, 60 Hertz, single phase and motors ½ hp and larger shall be 460 volts, 60 hertz, 3 phase.
- E. Except as noted, motors shall be squirrel-cage induction type, open dripproof, 1750 rpm Class B insulation. Motors mounted on equipment outdoors shall be totally enclosed fan cooled (TEFC), weatherproof, 1750 rpm, class F insulation.
- F. Motor mounted outdoor and in areas where condensation can occur shall be with electrical heaters.
- G. Provide, sealed, permanently lubricated bearings for motors.
- H. Except as noted, multispeed motors shall be variable torque type.

- I. Coordinate all motor types and sizes with motor controller types and sizes. Coordinate size and location of terminal box with electrical work. Terminal box shall be clear of ventilation openings and shall be of size to receive electrical circuit wiring.
- J. Provide foundation slide base and shaft for belt-connected motors as required for aligning pulleys.
- K. Fractional horsepower motors shall be furnished with built in overload protection, where respective controllers are without overload protection.

2.3 MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.4 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Test all motors for proper operation after installation and wiring.

END OF SECTION

SECTION 230514

ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes ac, enclosed controllers rated 600 V and less, of the following types:
 - 1. Across-the-line, manual and magnetic controllers.
 - 2. Reduced-voltage controllers.
 - 3. Multispeed controllers.
 - 4. All with fused disconnect switches.

1.3 WORK INCLUDED

- A. The mechanical contractor is to provide motor, motor controllers and VFD's. The mechanical contractor to install motor, motor controllers and VFD's. The Electrical contractor is to wire all motors and motor controllers.
- B. The mechanical contractor shall be responsible for coordinating all requirements of the motor and controller manufacturer.
- C. If this contractor elects to substitute or increase motor horsepower over that specified, the cost of motor, motor controllers and electrical changes shall be borne by this contractor
- D. Each motor except as noted, shall be provided with a combination fused disconnection means and across-the-line magnetic starter with push button stations mounted on cover or variable frequency drive. Coordinate requirements between trades (electrical and mechanical contractors).
- E. For automatically or remotely controlled motors, furnish hand off auto (HOA) selector switches in place of the push buttons.
- F. Provide manually operated motor starters of the proper size for all motors less than 1/2 hp which are not automatically controlled. Starters for motors 175 watts or less shall consist of a snap switch with thermal overload protection where such protection is not an integral part of the motor.

- G. Combination magnetic starters for all motors shall have thermal overload, pilot light, low voltage protection in all three phases. Include a control transformer for each magnetic starter to provide 120 volt control power with 3 sets of spare normally closed or normally open contacts
- H. Starters for motors 75 hp and above shall be solid state electronic soft start type starters.
- I. All disconnect switches shall be provided by this contractor and shall be fused suitable for the motor or equipment served.
- J. Provide enclosures for motor controllers suitable for operating environment.
- K. Where a motor control center is indicated on plans, individually mounted motor controllers shall not be utilized. Please review electrical drawings for all motor control center starters, which will be provided by others.
- 1.4 Related Sections include the following:
 - 1. Division 26 Section "Electrical Power Monitoring and Control" for interfacing communication and metering requirements.
 - 2. Division 23 Section 230515 "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on constant torque loads in ranges up to 200 hp.
 - 3. All division 230000 sections.
 - 4. Division 26 Section "Enclosed Controllers".

1.5 SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each enclosed controller.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.
 - d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

ENCLOSED CONTROLLERS 230514 - 2

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.
- B. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer. Coordinate with the project electrical contractor so all equipment is compatiable.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.
- B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

1.9 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
- D. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.
- E. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.10 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
 - 2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, and compatibility with the electrical system equipment being provided, provide products by one of the following:
 - 1. ABB Power Distribution, Inc.; ABB Control, Inc. Subsidiary.
 - 2. Danfoss Inc.; Danfoss Electronic Drives Div.
 - 3. Eaton Corporation; Cutler-Hammer Products.
 - 4. Rockwell Automation; Allen-Bradley Co.; Industrial Control Group.
 - 5. Square D.

2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS

- A. Manual Controller: NEMA ICS 2, general purpose, Class A, with "quick-make, quick-break" toggle or pushbutton action, and marked to show whether unit is "OFF," "ON," or "TRIPPED."
 - 1. Overload Relay: Ambient-compensated type with inverse-time-current characteristics and NEMA ICS 2, Class 10 tripping characteristics. Relays shall have heaters and sensors in each phase, matched to nameplate, full-load current of specific motor to which they connect and shall have appropriate adjustment for duty cycle.
- B. Magnetic Controller: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated.
 - 1. Control Circuit: 120 V; obtained from integral control power transformer of sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity.

- 2. Overload Relay: Ambient-compensated type with inverse-time-current characteristic and NEMA ICS 2, Class 10 tripping characteristic. Provide with heaters or sensors in each phase matched to nameplate full-load current of specific motor to which they connect and with appropriate adjustment for duty cycle.
- 3. Adjustable Overload Relay: Dip switch selectable for motor running overload protection with NEMA ICS 2, Class 10 tripping characteristic, and selected to protect motor against voltage and current unbalance and single phasing. Provide relay with Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
- C. Combination Magnetic Controller: Factory-assembled combination controller and fused disconnect switch.
 - 1. Fusible Disconnecting Means: NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 947-4-1, as certified by an NRTL.
 - 2. Nonfusible Disconnecting Means: NEMA KS 1, heavy-duty, nonfusible switch.
 - 3. Circuit-Breaker Disconnecting Means: NEMA AB 1, motor-circuit protector with fieldadjustable, short-circuit trip coordinated with motor locked-rotor amperes.

2.3 REDUCED-VOLTAGE ENCLOSED CONTROLLERS

- A. Star-Delta Controller: NEMA ICS 2, closed transition with adjustable time delay.
- B. Part-Winding Controller: NEMA ICS 2, closed transition with separate overload relays for starting and running sequences.
- C. Autotransformer Reduced-Voltage Controller: NEMA ICS 2, closed transition.
- D. Solid-State, Reduced-Voltage Controller: NEMA ICS 2, suitable for use with NEMA MG 1, Design B, polyphase, medium induction motors.
 - 1. Adjustable acceleration rate control utilizing voltage or current ramp, and adjustable starting torque control with up to 500 percent current limitation for 20 seconds.
 - 2. Surge suppressor in solid-state power circuits providing 3-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 - 3. LED indicators showing motor and control status, including the following conditions:
 - a. Control power available.
 - b. Controller on.
 - c. Overload trip.
 - d. Loss of phase.
 - e. Shorted silicon-controlled rectifier.
 - 4. Motor running contactor operating automatically when full voltage is applied to motor.

2.4 ENCLOSURES

- A. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 3. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.5 ACCESSORIES

- A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
- B. Push-Button Stations, Pilot Lights, and Selector Switches: NEMA ICS 2, heavy-duty type.
- C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factoryapplied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- D. Control Relays: Auxiliary and adjustable time-delay relays.
- E. Auxillary contacts (normally open/ normally closed) for Building Management System (BMS) interface and control.

2.6 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
- B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

- A. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."
- B. Install freestanding equipment on concrete bases.
- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- D. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."

3.4 CONCRETE BASES

- A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.
- B. Concrete base is specified in Division 26 Section "Hangers and Supports for Electrical Systems," and concrete materials and installation requirements are specified in Division 03.

3.5 IDENTIFICATION

A. Identify enclosed controller, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."

3.6 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 - 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.7 CONNECTIONS

A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - 3. Perform test to demonstrate that controllers are operational and functioning in accordance with the manufacturer's recommendations and the contract documents.
- 3.9 ADJUSTING
 - A. Set field-adjustable switches and circuit-breaker trip ranges.

END OF SECTION

SECTION 230516

EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal-bellows expansion joints.
 - 2. Expansion compensators.
 - 3. Flexible-hose expansion joints.
 - 4. Packed slip expansion joints.
 - 5. Flexible ball joints.
 - 6. Pipe bends and loops.
 - 7. Alignment guides and anchors.

1.3 DEFINITIONS

- A. BR: Butyl rubber.
- B. Buna-N: Nitrile rubber.
- C. CR: Chlorosulfonated polyethylene synthetic rubber.
- D. CSM: Chlorosulfonyl-polyethylene rubber.
- E. EPDM: Ethylene-propylene-diene terpolymer rubber.
- F. NR: Natural rubber.
- G. PTFE: Polytetrafluoroethylene plastic.

1.4 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping system fluids, materials, working pressures, and temperatures.
- B. Capability: Products shall absorb 200 percent of maximum axial movement between anchors.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and bends.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint
 - 5. Coordination:
 - a. Coordinate the location of all anchors, guides and expansion devices with the structural engineer.
 - b. Submit details for attachment to the building structure to the structural engineer including all loads and supplemental steel.
 - c. Coordinate the location of items in this section with access requirements for equipment, valves, dampers, as required for work in other sections, and as indicated on the drawings.
- C. Welding certificates.
- D. Product Certificates: For each type of pipe expansion joint, signed by product manufacturer.
- E. Maintenance Data: For pipe expansion joints to include in maintenance manuals.
- F. Grooved joint couplings and fittings shall be shown on drawings and product submittals, and be specifically identified with the applicable Victaulic style or series number.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. Steel Shapes and Plates: AWS D1.1, "Structural Welding Code Steel."
 - 2. Welding to Piping: ASME Boiler and Pressure Vessel Code: Section IX.
- B. Engineering Responsibility: Design and preparation of Shop Drawings and calculations for expansion fittings and loops by a qualified professional engineer
 - 1. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of expansion fittings and loops that are similar to those indicated for this Project in material, design, and extent.

C. To assure uniformity and compatibility of piping components in grooved piping systems, all grooved products utilized shall be supplied by a single manufacturer. Grooving tools shall be supplied by the same manufacturer as the grooved components.

PART 2 - PRODUCTS

2.1 EXPANSION JOINTS

- A. Metal-Bellows Expansion Joints: ASTM F 1120, circular-corrugated-bellows type with external tie rods.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing, LLC.
 - b. Badger Industries.
 - c. Hyspan Precision Products, Inc.
 - d. Metraflex, Inc.
 - 2. Metal-Bellows Expansion Joints for Copper Piping: Single- or multiple-ply phosphorbronze bellows, copper pipe end connections, and brass shrouds.
 - 3. Metal-Bellows Expansion Joints for Stainless-Steel Waterway: Single-ply stainless-steel bellows, stainless-steel-pipe end connections, and steel shroud.
 - 4. Metal-Bellows Expansion Joints for Steel Piping: Single- or multiple-ply stainless-steel bellows, steel pipe end connections, and carbon-steel shroud.
 - 5. Minimum Pressure Rating: 150 psig unless otherwise indicated.
 - 6. Configuration: Single- or double bellows type with base, unless otherwise indicated.
 - 7. End Connections: Flanged welded or Brazed.
- B. Expansion Compensators: Double-ply corrugated steel, stainless-steel, or copper-alloy bellows in a housing with internal guides, antitorque device, and removable end clip for positioning.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing, LLC.
 - b. Hyspan Precision Products, Inc.
 - c. Metraflex, Inc.
 - 2. Minimum Pressure Rating: 150 psig unless otherwise indicated.
 - 3. Configuration for Copper Piping: Two-ply phosphor-bronze or stainless-steel bellows and bronze or stainless-steel shroud.
 - 4. Configuration for Steel Piping: Two-ply stainless-steel bellows and carbon-steel shroud.
 - 5. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
 - 6. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Solder joint .
 - 7. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 - 8. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Flanged, threaded or Welded.

- C. Flexible-Hose Expansion Joints: Manufactured assembly with two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose; with inlet and outlet elbow fittings, corrugated-metal inner hoses, and braided outer sheaths.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flexicraft Industries.
 - b. Metraflex, Inc.
 - 2. Flexible-Hose Expansion Joints for Copper Piping: Copper-alloy fittings with solder- joint end connections.
 - a. NPS 2 and Smaller: Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 - b. NPS 2-1/2 to NPS 4: Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.
 - 3. Flexible-Hose Expansion Joints for Copper Piping: Copper-alloy fittings with solder- joint end connections.
 - a. NPS 2 and Smaller: Bronze hoses and double-braid bronze sheaths with 700 psig at 70 deg F and 500 psig at 450 deg F ratings.
 - b. NPS 2-1/2 to NPS 4: Stainless-steel hoses and double-braid, stainless-steel sheaths with 420 psig at 70 deg F and 315 psig at 450 deg F ratings.
 - 4. Flexible-Hose Expansion Joints for Steel Piping: Carbon-steel fittings with threaded end connections for NPS 2 and smaller and flanged or weld end connections for NPS 2-1/2 and larger.
 - a. NPS 2 and Smaller: Stainless-steel hoses and single-braid, stainless-steel sheaths with 450 psig at 70 deg F and 325 psig at 600 deg F ratings.
 - b. NPS 2-1/2 to NPS 6: Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.
 - c. NPS 8 to NPS 12: Stainless-steel hoses and single-braid, stainless-steel sheaths with 125 psig at 70 deg F and 90 psig at 600 deg F ratings.
 - 5. Flexible-Hose Expansion Joints for Steel Piping: Carbon-steel fittings with threaded end connections for NPS 2 and smaller and flanged or weld end connections for NPS 2-1/2 and larger.
 - a. NPS 2 and Smaller: Stainless-steel hoses and double-braid, stainless-steel sheaths with 700 psig at 70 deg F and 515 psig at 600 deg F ratings.
 - b. NPS 2-1/2 to NPS : Stainless-steel hoses and double-braid, stainless-steel sheaths with 275 psig at 70 deg F and 200 psig at 600 deg F ratings.
 - c. NPS 8 and Larger: Stainless-steel hoses and double-braid, stainless-steel sheaths with 165 psig at 70 deg F and 120 psig at 600 deg F ratings.
- D. Packed Slip Expansion Joints: ASTM F 1007, carbon-steel, packing type designed for repacking under pressure and pressure rated for 250 psig at 400 deg F minimum. Include asbestos-free PTFE packing, compound limit stops, and drip connection if used for steam piping.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing, LLC. Type RJ
 - b. Advanced Thermal Systems, Inc. Thermal Pak-Type TP2
 - c. Hyspan Precision Products, Inc.
- 2. Configuration: Single- and double joint class with base, unless otherwise indicated.
- 3. End Connections: Flanged or weld ends to match piping system.
- E. Packed type: Provide single or double slip, with anchor base except as noted. Provide internal and external guides integral with stuffing box; wrought steel with chromium plating applied directly to polished steel surface. Provide butt weld ends, except as noted.
 - 1. Provide limit stops, capable of holding against full internal thrust.
 - 2. Packing: Provide self-lubricating asbestos-free polytetrafluoroethylene or asbestos-free reinforced teflon type, which can be injected under full line pressure, contained by minimum of 3 teflon non-asbestos rings at each side.
 - 3. Provide joints body of weldable quality carbon steel, ASTM 53 grade B seamless pipe with drip connection if used for steam service.
 - 4. Slip requirements: Provide ASTM A 53 grade B seamless pipe up to and including 12 inch: Schedule 80 and 16 inch through 24 inch: Schedule 60.
 - a. Provide wall thickness after machining not reduced more than 1/8 inch.
 - b. Provide double layer of chrome plating with minimum thickness 0.001 inch each after buffing. First layer: crack-free hard chrome; second layer: standard hard chrome.
 - 5. Provide welded steel packing cylinder with internal acme thread and male threaded plunger with cylinder welded directly to stuffing box. Minimum number of packing cylinders as follows:

Expansion Joint Size	Number of Packing Cylinders
	1
1-1/2 inch thru 4 inch	
	3
5 inch and 6 inch	
	4
8 inch and 10 inch	
	5
12 inch and 14 inch	
	6
16 inch and 18 inch	
	8
20 inch and 24 inch	

- 6. Pressure ratings:
 - a. All piping: 150 lb.

- 7. Provide all welding in accordance with Section IX of ASME Boiler and Pressure Vessel Code.
- F. Flexible Ball Joints: Carbon-steel assembly with asbestos-free composition packing, designed for 360-degree rotation and angular deflection, and 250 psig at 400 deg F minimum pressure rating; complying with ASME Boiler and Pressure Vessel Code: Section II, "Materials," and with ASME B31.9, "Building Services Piping," for materials and design of pressure-containing parts and bolting.
 - 1. Angular Deflection for NPS 6 and Smaller: 30-degree minimum.
 - 2. Angular Deflection for NPS 8 and Larger: 15-degree minimum.
 - 3. End Connections for NPS 2 and Smaller: Threaded.
 - 4. End Connections for NPS 2-1/2 and Larger: Flanged.
 - 5. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advanced Thermal Systems, Inc.
 - b. Hyspan Precision Products, Inc.
- G. Grooved End Expansion Joints for Steel Piping: Use in water piping systems 2-1/2" and larger that are installed within enclosures where a pipe bend or loop cannot be applied. Grooved joints not to be used on hot water systems.
 - 1. Manufacturers: Subject to compliance with requirements provide products by one of the following:
 - a. Victaulic Company
 - 2. 2" Through 6": Packless, gasketed, slip-type expansion joint with grooved end telescoping body for installation with Victaulic Style 07 rigid couplings. Provides axial end movement to 3", designed for water services up to 230°F and working pressure to 350 psi. Victaulic Style 150 Mover®.
 - 3. 2" Through 24: Combination of short nipples and Victaulic Style 75 or 77 flexible couplings joined in tandem for increased expansion. Joint movement and expansion capabilities dependent on number of couplings/nipples used in the joint. Pressure rating dependent on size and style of flexible couplings used. Victaulic Style 155.

2.2 ALIGNMENT GUIDES

- A. Description: Steel, factory fabricated, with bolted two-section outer cylinder and base for alignment of piping and two-section guiding spider for bolting to pipe.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adsco Manufacturing, LLC.
 - b. Advanced Thermal Systems, Inc.
 - c. B-Line systems, Inc.
 - d. Grinnell Corp.

2.3 MATERIALS FOR ANCHORS

- A. Steel Shapes and Plates: ASTM A 36/A 36M.
- B. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel, hex head.
- C. Washers: ASTM F 844, steel, plain, flat washers.
- D. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, and tension and shear capacities appropriate for application.
 - 1. Stud: Threaded, zinc-coated carbon steel.
 - 2. Expansion Plug: Zinc-coated steel.
 - 3. Washer and Nut: Zinc-coated steel.
- E. Chemical Fasteners: Insert-type-stud bonding system anchor for use with hardened portland cement concrete, and tension and shear capacities appropriate for application.
 - 1. Bonding Material: ASTM C 881, Type IV, Grade 3, 2-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - 2. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud, unless otherwise indicated.
 - 3. Washer and Nut: Zinc-coated steel.
- F. Concrete: Portland cement mix, 3000 psi minimum. Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for formwork, reinforcement, and concrete.
- G. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink, nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

- A. Install manufactured, nonmetallic expansion joints according to FSA's "Technical Handbook: Non-Metallic Expansion Joints and Flexible Pipe Connectors."
- B. Install expansion joints of sizes matching size of piping in which they are installed.
- C. Install alignment guides to allow expansion and to avoid end-loading and torsional stress.
- D. Grooved joint piping systems shall be installed in accordance with the manufacturer's guidelines and recommendations. All grooved couplings, fittings, valves and specialties shall be supplied by a single manufacturer. Grooving tools shall be supplied by the same manufacturer as the grooved components. The gasket style and elastomeric material (grade) shall be verified as suitable for the intended service as specified. Gaskets shall be developed and supplied by the manufacturer. Grooved end shall be clean and free from indentations, projections and roll

marks in the area from pipe end to groove. A factory trained field representative shall provide on-site training to contractor's field personnel in the installation of grooved piping products. Factory trained representative shall periodically review the product installation. Contractor shall remove and replace any improperly installed products.

3.2 PIPE BEND AND LOOP INSTALLATION

- A. Install pipe bends and loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Expansion: Install piping to permit free expansion and contraction without damaging piping or construction.
 - Provide offsets, expansion loops, anchors, guides and supports to permit expansion, with stress limits of ASME Code for Pressure Piping for temperature range of 40 deg F to minimum of 20 deg F above maximum system temperature.
- C. Attach pipe bends and loops to anchors.
 - 1. Steel Anchors: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Concrete Anchors: Attach by fasteners. Follow fastener manufacturer's written instructions.

3.3 SWING CONNECTIONS

- A. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.
- B. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.
- C. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.4 ALIGNMENT-GUIDE INSTALLATION

- A. Install guides on piping adjoining pipe expansion fittings and loops.
- B. Attach guides to pipe and secure to building structure.

3.5 ANCHOR INSTALLATION

- A. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- B. Fabricate and install steel anchors by welding steel shapes, plates, and bars to piping and to structure. Comply with ASME B31.9 and AWS D1.1.

- C. Construct concrete anchors of poured-in-place concrete of dimensions indicated and include embedded fasteners.
- D. Install pipe anchors according to expansion-joint manufacturer's written instructions if expansion joints or compensators are indicated.
- E. Use grout to form flat bearing surfaces for expansion fittings, guides, and anchors installed on or in concrete.

3.6 PAINTING

- A. Touching Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 230519

METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Thermometers.
 - 2. Thermometer wells.
 - 3. Gages.
 - 4. Test plugs.
 - 5. Thermal Energy Meters
- B. This Contractor shall provide all devices, piping, valving, relays, end switches, control components, power wiring, control wiring and interlock wiring as required to accomplish the sequence of operations for the specified meters and instrumentation and thereby provide a fully operational system
- 1.3 DEFINITIONS
 - A. CR: Chlorosulfonated polyethylene synthetic rubber.
 - B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated; include performance curves.
- B. Shop Drawings: Schedule for thermometers, gages and flowmeters indicating manufacturer's number, scale range, and location for each.
- C. Product Certificates: For each type of thermometer, gage and flowmeter, signed by product manufacturer.
- D. Operation and Maintenance Data: For flowmeters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Product options: Drawings indicate size, profiles and connections for instrumentation and are based on the specific types and models indicated.
- B. Electrical components, devices and accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- C. Standards: If any item in this specification as furnished by the contractor is manufactured in a location which does not certify ASME/ANSI standards, the contractor is to pay the owner for all expenses incurred by the owner for an outside testing company to confirm such compliances.
- D. Pressure and temperature rating:
 - 1. Each meter and gauge shall be rated and suitable for the piping system that it is being installed in.
 - 2. Refer to applicable piping section for service temperature and pressure rating of systems that meters and gauges are to be installed in.
 - 3. Minimum upstream and downstream straight pipe diameters for meters shall be provided as per manufacturer's published recommendations.

1.6 COORDINATION

- A. Coordinate the location and installation of all items furnished under this specification with and including but not limited to the following:
 - 1. Equipment installation details.
 - 2. Purchased equipment.
 - 3. Piping shop drawings.
 - 4. Field conditions.

PART 2 - PRODUCTS

- 2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Trerice, H. O. Co.
 - 2. Weiss Instruments, Inc.
 - 3. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 4. Miljoco Corporation
 - B. Case: Die-cast aluminum 9 inches long.
 - C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens, silicone shock mounted.
 - D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

METERS AND GAGES FOR HVAC PIPING 230519 - 2

- E. Window: Plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 DIRECT-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 2. KOBOLD Instruments, Inc.
 - 3. Trerice, H. O. Co.
 - 4. Weiss Instruments, Inc.
 - 5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div
 - 6. Miljoco Corporation
- B. Case: Dry type, stainless steel , 4-1/2-inch diameter.
- C. Element: Bourdon tube or other type of pressure element.
- D. Movement: Mechanical, connecting element and pointer.
- E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- F. Pointer: Red metal.
- G. Window: Plastic.
- H. Ring: Stainless steel .
- I. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- J. Thermal System: Liquid- filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.
- K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.
- 2.3 REMOTE-MOUNTING, VAPOR-ACTUATED DIAL THERMOMETERS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AMETEK, Inc.; U.S. Gauge Div.
 - 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.

METERS AND GAGES FOR HVAC PIPING 230519 - 3

- 3. Miljoco Corp.
- 4. Trerice, H. O. Co.
- 5. Weiss Instruments, Inc.
- 6. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Dry type, stainless steel, 4-1/2-inch diameter with holes for panel mounting.
- C. Element: Bourdon tube or other type of pressure element.
- D. Movement: Mechanical, connecting element and pointer.
- E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- F. Pointer: Red metal.
- G. Window: Plastic.
- H. Ring: Stainless steel.
- I. Connector: Back union type.
- J. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem for thermowell installation and of length to suit installation.
- K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.
- 2.4 BIMETALLIC-ACTUATED DIAL THERMOMETERS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 2. Miljoco Corp.
 - 3. Trerice, H. O. Co.
 - 4. Weiss Instruments, Inc.
 - 5. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 6. WIKA Instrument Corporation.
 - B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.
 - C. Case: Liquid-filled type, stainless steel with 5-inch (127-mm) diameter.
 - D. Element: Bimetal coil.
 - E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - F. Pointer: Red metal.
 - G. Window: Plastic.

- H. Ring: Stainless steel.
- I. Connector: Adjustable angle type.
- J. Stem: Metal, for thermowell installation and of length to suit installation.
- K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.5 THERMOWELLS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Miljoco Corp.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 5. WIKA Instrument Corporation.
- B. Manufacturers: Same as manufacturer of thermometer being used.
- C. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.6 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Miljoco Corp.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Dry type for steam only, liquid-filled case type for all other services.
- C. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Liquid-filled type, cast aluminum , 4-1/2-inch diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red metal.
 - 7. Window: Plastic.
 - 8. Ring: Aluminum .
 - 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
 - 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
 - 11. Range for Fluids under Pressure: Two times operating pressure.

METERS AND GAGES FOR HVAC PIPING 230519 - 5

- D. Remote-Mounting, Dial-Type Pressure Gages: ASME B40.100, indicating-dial type.
 - 1. Case: Dry type, cast aluminum, 4-1/2-inch diameter with holes for panel mounting.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red metal.
 - 7. Window: Plastic.
 - 8. Ring: Aluminum.
 - 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
 - 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
 - 11. Range for Fluids under Pressure: Two times operating pressure.
- E. Provide single gauge for pump installations mounted to a 4-port trumpet valve
- F. Pressure-Gage Fittings:
 - 1. Valves: NPS 1/4 brass or stainless-steel needle type.
 - 2. Syphons: NPS 1/4 coil of brass tubing with threaded ends.
 - 3. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.7 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Trerice, H. O. Co.
 - 2. Watts Industries, Inc.; Water Products Div.
- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- D. Core Inserts: One or two self-sealing rubber valves.
 - 1. Insert material for air, water, oil, or gas service at 20 to 200 deg F shall be CR.
 - 2. Insert material for air or water service at minus 30 to plus 275 deg F shall be EPDM.
- E. Test Kit: Furnish one test kit containing one pressure gage and adaptor, two thermometer(s), and carrying case. Pressure gage, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping.
 - 1. Pressure Gage: Small bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be 0 to 200 psig.

- 2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F.
- 3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch-diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F.
- 4. Carrying case shall have formed instrument padding.
- 2.8 INSERTION-TURBINE, THERMAL-ENERGY METER SYSTEMS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Data Industrial Corp.
 - 2. ONICON Incorporated.
 - B. Description: Flow sensor, strainer, two temperature sensors, transmitter, meter, and connecting wiring.
 - C. Flow Sensor: Insertion-type turbine or paddle-wheel element with corrosion-resistant-metal body and transmitter.
 - 1. Pressure Rating: 125 psig (860 kPa).
 - 2. Temperature Range: 40 to 250 deg F (5 to 121 deg C).
 - D. Meter: Solid-state integrating type.
 - 1. Data Output: Six-digit electromechanical counter with readout in kilowatts per hour or British thermal units (joules).
 - 2. Accuracy: Plus or minus 1 percent.
 - 3. Battery Pack: Five-year lithium battery.
 - E. Strainer: Full size of main line piping.
- PART 3 EXECUTION
- 3.1 THERMOMETER APPLICATIONS
 - A. Install liquid-in-glass thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - B. Install direct-mounting, vapor-actuated dial thermometers in locations where temperature sensing bulb is more than 5 feet from viewing position.
 - C. Install remote-mounting, vapor-actuated dial thermometers in cabinets and panels.
 - D. Install liquid-filled-case-type, bimetallic-actuated dial thermometers at suction and discharge of each pump.

- E. Provide the following temperature ranges for thermometers:
 - 1. Heating Hot Water: 30 to 240 deg F, with 2-degree scale divisions.
 - 2. Chilled Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

A. Install liquid-filled-type pressure gauges at suction and discharge of each pump and all other services.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.
- C. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees where thermometers are indicated.
- D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- E. Install remote-mounting pressure gages on panel.
- F. Install needle-valve and snubber fitting in piping for each pressure gage for fluids (except steam).
- G. Install needle-valve and syphon fitting in piping for each pressure gage for steam.
- H. Install test plugs in tees in piping.
- I. Install flow indicators, in accessible positions for easy viewing, in piping systems.
- J. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters as prescribed by manufacturer's written instructions.
- K. Install flowmeter elements in accessible positions in building chilled water piping systems.
- L. Install differential-pressure-type flowmeter elements with at least minimum straight lengths of pipe upstream and downstream from element as prescribed by manufacturer's written instructions.

3.4 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

3.5 ADJUSTING

A. Calibrate meters according to manufacturer's written instructions, after installation.

B. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION

SECTION 230523

GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - a. Bronze gate valves.
 - b. Bronze globe valves.
 - c. Bronze swing check valves.
 - d. Bronze needle valves.
 - e. Iron gate valves.
 - f. Iron globe valves.
 - g. Iron swing check valves.
 - h. Iron grooved-end check valves.
 - i. Bronze ball valves.
 - j. Steel ball valves.
 - k. Cast iron plug valves.
 - I. Iron butterfly valves.
 - m. Iron grooved-end butterfly valves.
 - n. Calibrated balancing valves.
 - o. Electric valve actuators.
- B. Related Sections:
 - 1. Division 23 HVAC piping Sections for specialty valves applicable to those Sections only.
 - 2. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and schedules.
- 1.3 DEFINITIONS
 - A. CWP: Cold working pressure.
 - B. EPDM: Ethylene propylene copolymer rubber.
 - C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 - D. NRS: Nonrising stem.
 - E. OS&Y: Outside screw and yoke.
 - F. RS: Rising stem.

- G. SWP: Steam working pressure.
- H. PTFE: Polytetrafluoroethylene plastic.
- I. WOG: Water, oil, or gas.
- J. TFE: Tetrafluoroethylene plastic
- 1.4 SUBMITTALS
 - A. Product Data:
 - 1. For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
 - 2. For each type of special duty valve indicated include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves and automatic flow control valves.
 - B. Maintenance Data.
 - 1. Furnish maintenance manuals as specified in Division 1.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. Standards: If any item in this specification, as furnished by the contractor is manufactured in a location which does not certify ASME / ANSI standards, the contractor is to pay the owner for <u>all</u> expenses incurred by the owner for an outside testing company to confirm such compliances.
- D. To assure uniformity and compatibility, all grooved end valves and adjoining couplings and fittings shall be supplied by Victaulic.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends. with wooden flange covers or with screwed plugs / caps as required.
 - 3. Set gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.

GENERAL-DUTY VALVES FOR HVAC PIPING 230523 - 2

- 5. Set butterfly valves closed or slightly open.
- 6. Block check valves in either closed or open position.
- 7. Protect instrumentation from damage.
- 8. Clean flanges and exposed metal surfaces and treat with anti-corrosive compound before assembly and testing.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points

1.7 WARRANTY

A. General warranty: Special warranty specified in this article shall not deprive the owner of the other rights Owner may have under other provisions of the Contract Documents and shall be in addition to and run concurrent with other warranties made by Contractor under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves (Part 3 "Valve Applications Schedule".
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 (DN 200) and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller except plug valves.
 - 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug-valve head.
 - 5. Chainwheel: Device for attachment to valve handwheel, stem, or other actuator; of size and with chain for mounting height, as indicated in the "Valve Installation" Article.
 - 6. Electric motor: As indicated on the drawings.
- E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

- 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves
 - 2. Flanged: With flanges according to ASME B16.24 for bronze valves.
 - 3. Grooved: With grooves according to AWWA C606.
 - 4. Solder Joint: With sockets according to ASME B16.18.
 - 5. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 VALVE DESCRIPTIONS

- A. BRONZE GATE VALVES, 2 INCHES AND SMALLER, MSS SP-80 TYPE 1
 - 1. Manufacturers -Bronze gate valves
 - a. Crane Co.; Crane Valve Group; Jenkins Valves
 - b. Crane Co; Crane Valve Group; Crane Valves
 - c. Crane Co; Crane Valve Group; Stockham Division.
 - d. Grinnell Corporation
 - e. Walworth Company
 - f. NIBCO Inc.
 - 2. Class 150 psi steam, 300 psi cold working pressure (CWP)
 - a. ASTM B 62 cast-bronze body and bonnet
 - b. Union bonnet
 - c. Solid-bronze wedge
 - d. Copper-silicon alloy rising stem
 - e. Teflon-impregnated packing with bronze packing nut
 - f. Threaded (steel piping) end connection -SCHEDULE VALVE NO. 0101
 - g. Soldered (copper piping) end connection SCHEDULE VALVE NO. 0102
 - h. Aluminum or malleable-iron handwheel
- B. BRONZE GLOBE VALVES, 2 INCHES AND SMALLER, MSS SP-80 TYPE 3
 - 1. Manufactures-Bronze globe valves
 - a. Crane Co; Crane Valve Group; Jenkins Valves
 - b. Crane Co; Crane Valve Group; Crane Valves
 - c. Crane Co; Crane Valve Group; Stockham Division.
 - d. Grinnell Corporation
 - e. Walworth Company
 - f. NIBCO Inc.
 - 2. Class 150 psi steam, 300 psi cold working pressure (CWP)
 - a. ASTM B 62 cast-bronze body and bonnet
 - b. Union bonnet
 - c. Stainless steel disc

- d. Stainless steel seat
- e. Copper-silicon alloy rising stem
- f. Teflon-impregnated packing with bronze packing nut
- g. Threaded end connection
- h. Aluminum or malleable-iron handwheel
- i. SCHEDULE VALVE NO. 0201

C. BRONZE SWING CHECK VALVES, 2 INCHES AND SMALLER, MSS SP-80

- 1. Manufacturers Bronze check valves, Horizontal and Vertical
 - a. Horizontal
 - 1) Crane Co.; Crane Valve Group; Jenkins Valves
 - 2) Crane Co.; Crane Valve Group; Crane Valves
 - 3) Crane Co.; Crane Valve Group; Stockham Division
 - 4) Grinnell Corporation
 - 5) Walworth Company
 - 6) NIBCO Inc.
 - b. Vertical
 - 1) Crane Co.; Crane Valve Group; Jenkins Valves
 - 2) Crane Co.; Crane Valve Group; Crane Valves
 - 3) Cincinnati Valve Co
- 2. Class 150 psi steam, 300 psi cold working pressure (CWP)
 - a. ASTM B 62 cast-bronze body and cap
 - b. "Y" pattern
 - c. Stainless steel free floating hinge pin
 - d. Threaded cap
 - e. Regrinding seat
 - f. Bronze disc
 - g. Threaded (steel piping) end connection SCHEDULE VALVE NO. 0301
 - h. Soldered (copper piping) end connection SCHEDULE VALVE NO. 0302
- D. Bronze needle valves, 1/8 inch to 3/4 inch, MSS SP-80
 - 1. Manufacturers Bronze Needle Valves
 - a. Crane Co.; Crane Valve Group; Jenkins Valves
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Class 200 psi steam, 400 psi cold working pressure (CWP)
 - a. ASTM B 62 cast-bronze body and bonnet
 - b. Screwed bonnet
 - c. Bronze ASTM B 150 rising stem & needle
 - d. Integral bronze seat
 - e. Graphite packing with bronze packing nut
 - f. Threaded end connection

GENERAL-DUTY VALVES FOR HVAC PIPING 230523 - 5

- g. Globe or angle pattern
- h. Aluminum or malleable-iron handwheel
- i. SCHEDULE VALVE NO. 0501

E. IRON GATE VALVES

- 1. Manufacturers Iron gate valves
 - a. Crane Co.; Crane Valve Group; Jenkins Valves
 - b. Crane Co.; Crane Valve Group; Crane Valves
 - c. Crane Co.; Crane Valve Group; Stockham Division
 - d. Grinnell Corporation
 - e. Cincinnati Valve Co.
 - f. NIBCO Inc.
- 2. 2 inch and smaller, MSS SP 25, MSS SP-70 type 1
 - a. Class 125 psi steam, 200 psi cold working pressure (CWP)
 - 1) ASTM A 126 class B cast-iron body and bonnet
 - 2) Bolted bonnet
 - 3) Outside screw & yoke
 - 4) Rising stem
 - 5) Solid bronze disc
 - 6) Bronze stem
 - 7) Renewable bronze seat rings
 - 8) Threaded end connection
 - 9) Non-asbestos packing and gaskets
 - 10) Aluminum or malleable-iron handwheel
 - 11) SCHEDULE VALVE NO. 0601
 - b. Class 250 psi steam, 500 psi cold working pressure (CWP)
 - 1) ASTM A 126 class B cast-iron body and bonnet
 - 2) Bolted bonnet
 - 3) Outside screw & yoke
 - 4) Rising stem
 - 5) Solid bronze disc
 - 6) Steel stem
 - 7) Renewable bronze seat rings
 - 8) ANSI 250 flat face flanged ends
 - 9) Non-asbestos packing and gaskets
 - 10) Aluminum or malleable-iron handwheel
 - 11) SCHEDULE VALVE NO. 0602

F. IRON, GROOVED-END SWING CHECK VALVES

- 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 - a. Victaulic Company.

- 2. Description:
 - 1) CWP Rating: NPS 2 through NPS 12: 300 psig (2070 kPa).
 - 2) Body Material: ASTM A 536, ductile iron.
 - 3) Seal: EPDM.
 - 4) Disc: Spring operated, ductile iron or stainless steel.
 - 5) Victaulic Styles 716H, 716, 779

G. BRONZE BALL VALVES, 3 INCHES AND SMALLER

- 1. Manufacturers Bronze ball valves
 - a. Conbraco Industries Inc.; Apollo Division
 - b. Crane Co.; Crane Valve Group; Jenkins Valves
 - c. Crane Co.; Crane Valve Group; Stockham Division
 - d. Jamesbury Inc.
 - e. Milwaukee Valve Company
- 2. 2 piece, class 150 psi steam, 600 psi cold working pressure (CWP), standard port
 - a. ASTM B584 cast bronze body
 - b. Stainless steel ball and stem
 - c. Chrome plated brass ball with brass stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. PTFE stem packing
 - g. Zinc plated steel lever with vinyl covered grip
 - h. Threaded ends SCHEDULE VALVE NO. 1811
 - i. Solder ends SCHEDULE VALVE NO. 1812
- 3. 3 piece, class 150 psi steam, 600 psi cold working pressure (CWP), full port
 - a. ASTM B584 cast bronze body
 - b. Stainless steel ball and stem
 - c. Chrome plated brass ball with brass stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. PTFE stem packing
 - g. Zinc plated steel lever with vinyl covered grip
 - h. Threaded ends
 - i. SCHEDULE VALVE NO. 1821

H. CARBON STEEL BALL VALVES

- 1. Manufacturers Steel ball valves
 - a. Conbraco Industries Inc.; Apollo Division
 - b. Crane Co.; Crane Valve Group; Stockham Division
 - c. Jamesbury Inc.
 - d. Cooper Cameron Corp.; Cooper Cameron Valves Div.

GENERAL-DUTY VALVES FOR HVAC PIPING 230523 - 7

- e. Milwaukee Valve Company
- 2. 2 piece, class 150 psi steam, 3000 psi cold working pressure (CWP), full port, 2_inches and smaller
 - a. ASTM A108 carbon steel body
 - b. Stainless steel ball and stem
 - c. ASTM A108 chrome plated ball and stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. PTFE stem packing
 - g. Zinc plated steel lever with vinyl covered grip
 - h. Threaded ends
 - i. SCHEDULE VALVE NO. 1901
- 3. 3 piece, class 150 psi steam, 1000 psi cold working pressure (CWP), full port, 2_inches and smaller
 - a. ASTM A108 carbon steel body
 - b. Stainless steel ball and stem
 - c. ASTM A108 chrome plated ball and stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. PTFE stem packing
 - g. Zinc plated steel lever with vinyl covered grip
 - h. Threaded ends SCHEDULE VALVE NO. 1911
 - i. Socket weld ends SCHEDULE VALVE NO. 1912
- 4. ANSI flanged, class 150 psi steam, 285 psi cold working pressure (CWP), reduced port, 2¹/₂ inches to 10 inches
 - a. ASTM A216 WCB cast carbon steel body
 - b. ASTM A216 WCB chrome plated ball
 - c. ASTM A108 carbon steel stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. Graphite stem packing
 - g. Galvanized pipe lever
 - h. Raised face flange ends
 - i. SCHEDULE VALVE NO. 1921
- 5. ANSI flanged, class 300 psi steam, 740 psi cold working pressure (CWP), reduced port, 3 inches to 10 inches
 - a. ASTM A216 WCB cast carbon steel body
 - b. ASTM A216 WCB chrome plated ball
 - c. ASTM A108 carbon steel stem
 - d. Blow out proof stem design
 - e. PTFE seats
 - f. Graphite stem packing
 - g. Galvanized pipe lever

- h. Raised face flange ends
- i. SCHEDULE VALVE NO. 1941
- I. SPRING LOADED LIFT DISC CHECK VALVES
 - 1. Manufacturers Spring loaded lift disc check valves.
 - a. Mueller Steam Specialty Co.
 - b. Milwaukee Valve Co.
 - c. Titan Flow Control, Inc.
 - 2. 2 inch and smaller
 - a. 200 psi cold working pressure (CWP) up to 150°F
 - 1) Cast iron body and cap
 - 2) Screwed cap
 - 3) EPDM seal
 - 4) Stainless steel stem
 - 5) Stainless steel spring
 - 6) Brass disc
 - 7) Threaded ends
 - 8) SCHEDULE VALVE NO. 2401
 - b. 400 psi cold working pressure (CWP) up to 150°F
 - 1) Bronze body and cap
 - 2) Screwed cap
 - 3) EPDM seal
 - 4) Stainless steel stem
 - 5) Stainless steel spring
 - 6) Brass disc
 - 7) Threaded ends
 - 8) SCHEDULE VALVE NO. 2402

J. CALIBRATED BALANCING VALVES

- 1. Manufacturers Calibrated balancing valves
 - a. Taco
 - b. Macon, Tunstall Corp.
 - c. Nexus
- 2. 2 inch and smaller
 - a. 200 psi cold working pressure (CWP) up to 250°F
 - 1) Bronze body, straight through ball valve design
 - 2) Brass ball
 - 3) Carbon filled TFE seat rings
 - 4) Read out ports with internal EPT insert and check valve
 - 5) ¼ inch NPT tapped drain port

GENERAL-DUTY VALVES FOR HVAC PIPING 230523 - 9

- 6) Memory stop feature
- 7) Calibrated nameplate
- 8) Sweat ends
- 9) SCHEDULE VALVE NO. 2501

2.3 Electric MOTOR ACTUATORS

- A. Manufacturers Electric valve actuators
 - 1. Limitorque Corporation
 - 2. Rotork Controls, Inc.
 - 3. Belimo Air Controls, Inc.
 - 4. EIM Company, Inc.
- B. Motor valve operators.
- C. Provide as follows:
 - 1. Mount operators on side or top of valve at factory or at site under manufacturer's supervision. Provide gear operated single or double reduction. For 90 deg (1/4 turn) application, adjustable mechanical stops shall prevent travel of more than 90 deg
 - 2. Grease or oil lubricated.
 - 3. 120 Volt, 1 phase, 60 hertz
 - 4. Control circuit: 24 volt, transformer as required.
 - 5. Assembly:
 - Motor shall be high speed, high torque, totally enclosed non-ventilated, Class B or F insulation and operational at up to 10 percent above or below nominal voltage. Motor shall be prelubricated, anti-friction bearing type with thermal overload protection.
 - b. Limit switches shall be integral to the unit. Gearing shall be bronze or stainless steel. Steel switches shall be fully adjustable and shall trip anywhere between full open and full close, as required. Switches shall be heavy duty, open contact type with rotary wiping action. Provide minimum spare contacts 2 normally open, 2 normally closed.
 - c. Torque switch shall have torque protection either direction, fully adjustable and shall shut off actuator motor when a predetermined amount of torque is reached.
 - d. Stem nut shall be high tensile bronze or material compatible to the valve stem and shall be constructed for easy removal without disassembling gear case.
 - e. Handwheel for manual operation: Handwheel shall declutch automatically when motor is energized. Rimpull shall not exceed a maximum of 80 lb. Handwheel shall be similar to Limitorque SMB and SMC.
 - 6. For open/closed operation: All valves shall have integral control package including control transformer with fused secondary, motor reversing contactor (mechanically interlocked), limit switch compartment heater and terminal strip.
 - a. Indicating lights shall be:
 - 1) Red light glows when valve closed.

- 2) Green light glows when valve open.
- 3) Intermediate position indication.
- b. Pushbutton station: Provide selector switch if required and momentary or maintained contacts as required.
- 7. For modulating service shall be controlled by analog signal 4-20 ma DC with momentary pushbuttons.
 - a. Controls shall be mounted inside the actuator.
 - b. Provide single phase power supply:
 - 1) Comparator circuit module.
 - 2) Mechanical dial position indicator with 1,000 ohm potentiometer feedback.
 - 3) 2 position (auto/manual) selector switch.
 - 4) Limit switch compartment heater.
 - 5) Motor: 2100 rpm D.C. in lieu of A.C.; class F insulation; 20 percent run valve duty.
 - 6) Mounted and wired, similar to Limitorque Modutronic 10A and 10B.
- 8. Closing time:
 - a. Gate shall be 12 inches per minute, minimum 1 minute.
 - b. Globe shall be 4 inches per minute, minimum 1 minute.
 - c. Butterfly shall be 1/4 turn per minute.
- 9. Provide remote open-close buttons and open-close indicating lights for installation on control board in Division 15 Section "Automatic Controls System".
- 10. Final field adjustment of valve operation shall be made by manufacturer's representative.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

- F. Do not attempt to repair defective valves; replace with new valves.
- G. Examine grooved ends for conditions that might cause leakage. Ends should be free from indentations or projections in the area from valve end to groove

3.2 VALVE INSTALLATION

- A. Install valves with unions flanges, or Victaulic couplings (on authorized systems) at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 - 1. Shutoff Service except Steam: Ball, or gate valves.
 - 2. Shutoff service, Steam: gate valves.
 - 3. Throttling Service except Steam: Ball, butterfly, plug valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.
- D. Install balancing valves in the return water line of each heating or cooling element and elsewhere as required to facilitate system balancing.
- E. Install spring loaded check valves at each pump discharge and elsewhere as required to control flow direction.

3.5 VALVE SCHEDULE

- A. The valve numbers listed in the tables below correspond to the valve numbers listed in the products section for each valve type.
- B. Table abbreviations
 - 1. CHW Chilled water
 - 2. HW hot water
 - 3. LPS low pressure steam
 - 4. MPS medium pressure steam, classified as high pressure steam, however the requirements may vary
 - 5. HPS high pressure steam
 - 6. The pressures are listed next to the service (i.e. <125 psig is less than 125 psig:, 126-250 is between 126 and 250 psig, >251 is greater than 251 psig).

C. Gate valve	es
---------------	----

Service pressure	< 2"thread	< 2"solder	< 2"flange	> 2"flange	< 2"weld	> 2"weld
CHW< 125	0101 0601	0102	na	0611	na	na
HW < 125	0101 0601	0102	na	0611	na	na
LPS < 15	0101 0601	na	na	0611	na	na
MPS 16-125	0101 0601	na	na	0611	na	na
HPS 126- 250	0111	na	na	1411	1102	1412
LPR	0101 0601	na	na	0611	na	na
HPR	0111	na	na	1411	1102	1412
MU	0101 0601	0102	na	0611	na	na

D. Check valves

Service pressure	< 2"thread	< 2"solder	< 2"flange	> 2"flange	< 2"weld	> 2"weld	>2" grooved
CHW< 125	0301	0302	na	0811	na	na	716/779/W715
HW < 125	0301	0302	na	0811	na	na	
LPS < 15	0301	na	na	0811	na	na	
MPS 16- 125	0301	na	na	1601	na	na	
HPS 126- 250	0311 0801	na	na	1611	1302	1612	
LPR	0301	na	na	0811	na	na	
HPR	0311	na	na	1611	1302	1612	
MU	0301	0302	na	0811	na	na	

E. Needle valves

Service pressure	< ¾ "thread			
CHW	0501			
HW	0501			
MU	0501			

F. Stop check valves

Service pressure		> 2"flange	> 2"weld
LPS < 15		1001	1702
MPS 16-125		1701	 1702
HPS 126-300		1701	1702

G. Ball valves

Service pressure	< 3"thread	< 3"solder	> 2"flange	< 2" weld	
CHW< 125	1811 1821 1901	1812	1921	1912	
HW < 125	1811 1821 1901	1812	1921	1912	
LPS < 15	1811 1821 1901	na	1921	1912	
LPR	1811 1821 1901	1812	1921	1912	
MU	1811 1821 1901	1812	1921	na	

H. Spring loaded lift disc check valves

Service pressure	< 2"	2 ½ " – 12"	12" – 24"		
CHW < 200	2401	2411	2422		
HW < 125	2401	2411	2422		

I. Automatic flow control valves

Service pressure	< 2" thread	2 ½" – 3"	3" – 14"	16" – 24"	
CHW < 200	na	na	2821	2831	
HW < 200	na	na	2821	2831	

J. Solenoid valves

Service pressure	< 2" thread			
CHW < 125	2901 2902			
HW < 125	2901 2902			
MU	2901 2902			

END OF SECTION

SECTION 230529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following hangers and supports for HVAC system piping and equipment:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Equipment supports.
- B. Related Sections include the following:
 - 1. Division 23 Section " Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 2. Division 23 Section " Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
 - 3. Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Design seismic-restraint hangers and supports for piping and equipment.

1.5 SUPPLEMENTARY STEEL

- A. Furnish supplementary steel as required for proper installation, mounting and support of HVAC work.
- B. Connect supplementary steel firmly to building construction in an acceptable manner.
- C. Determine type and size of supplementary steel. Supplementary steel shall be of sufficient strength and size to allow a minimum deflection of 1/360 of the span and in conformance with manufacturer's requirements of loading.
- D. Install supplementary steel in a neat and workmanlike manner parallel to walls, floors and ceiling construction.
- E. All supplementary steel and channel supports shall be submitted to the structural engineer for review

1.6 EXPANSION ANCHORS

- A. Provide smooth wall, non-self-drilling internal plug expansion type anchors constructed of AISC 12L14 steel and zinc plated in accordance with Fed. Spec. QQ-A-325 Type 1, Class 3.
- B. Do no exceed 1/4 of average values for a specific anchor size using 2,000 psig (13,800 kpa) concrete only for maximum working load.
- C. Provide spacing and install anchors in accordance with manufacturer's recommendations.

1.7 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Equipment supports.

- C. Submit to the structural engineer:
 - 1. Details of all proposed methods of attachment to the building structure for all hangers and supports.
 - 2. All forces and weights that will be imposed on the building structure by the hangers and supports.
- D. Welding certificates.
- 1.8 QUALITY ASSURANCE
 - A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."
 - B. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - C. Engineering Responsibility: Design and preparation of Shop Drawings and calculations for each multiple pipe support, trapeze, and seismic restraint by a qualified professional engineer.
 - 1. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of hangers and supports that are similar to those indicated for this Project in material, design, and extent

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. B-Line Systems, Inc.; a division of Cooper Industries.
 - 3. Carpenter & Paterson, Inc.
 - 4. Empire Industries, Inc.
 - 5. Globe Pipe Hanger Products, Inc.
 - 6. Grinnell Corp.
 - 7. GS Metals Corp.
 - 8. National Pipe Hanger Corporation.
 - 9. PHD Manufacturing, Inc.
 - 10. Piping Technology & Products, Inc.
 - 11. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. GS Metals Corp.
 - 4. Power-Strut Div.; Tyco International, Ltd.
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc.
 - 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- 2.5 THERMAL-HANGER SHIELD INSERTS
 - A. Description: 100-psig- (690-kPa-) minimum, compressive-strength insulation insert encased in sheet metal shield.

- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24 (DN 15 to DN 600), if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4 (DN 15 to DN 100), to allow off-center closure for hanger installation before pipe erection.

- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8 (DN 20 to DN 200).
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2 (DN 15 to DN 50).
- 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8 (DN 10 to DN 200).
- 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3 (DN 10 to DN 80).
- 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
- 16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36 (DN 65 to DN 900), if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20 (DN 65 to DN 500), from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN 50 to DN 1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24 (DN 50 to DN 600), if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30 (DN 50 to DN 750), if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.

- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

- 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
 - 5. Pipes NPS 8 (DN 200) and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.6 PAINTING

- A. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 23 05 48

MECHANICAL VIBRATION ISOLATION AND SEISMIC RESTRAINT SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. It is the objective of this Specification to provide the necessary design requirements for the control of excessive noise and vibration in the buildings due to the operation of machinery or equipment, and/or due to interconnected piping, ductwork or conduit. It is also the objective of this specification to provide the design criteria for seismic restraints for all isolated and non-isolated equipment.
- B. Work in this section includes the providing of labor, materials, equipment and services necessary for a complete and safe installation in of vibration isolation systems and seismic restraints for every mechanical system including piping and ductwork within and on the roof of the building, complete, as shown and specified per the contract documents and all applicable codes and authorities having jurisdiction.
- C. The work of this section includes, but is not limited to the following:
 - 1. Vibration isolation elements for piping and equipment.
 - 2. Equipment isolation bases.
 - 3. Piping flexible connections.
 - 4. Seismic restraints for isolated and non-isolated piping, tanks, stacks, ductwork, VAV boxes, and equipment.
- D. Related Sections:
 - 1. All Division 23000 Sections as issued for this project.
- E. Seismic restraints:
 - 1. All equipment, piping and ductwork shall be adequately restrained to resist seismic forces. This specification is in addition to the specified vibration isolation for this project. Restraint devices shall be designed and selected to meet seismic requirements as defined in the latest issue of the state and local codes and other authorities having jurisdiction.
 - 2. Anchor bolt calculations, signed and stamped by a registered Professional Engineer, shall be submitted showing adequacy of the bolt sizing and type. Calculations shall include anchor embedment, minimum edge distance and minimum center distance. The design lateral forces shall be distributed in proportion to the mass distribution of the equipment. Calculations shall be furnished for anchors on restraint devices, cables, isolators and on

rigid mounted equipment. The seismic designer must perform final jobsite inspection to verify anchor installation.

- 3. Contractor shall supply all supplemental steel required for all equipment, ductwork and piping including roof mounted equipment.
- 4. All isolators and equipment shall meet OSHPD requirements and contain approval from OSHPD.
- F. This specification shall be supplemented by all local codes and ordinance which shall take precedence in the event of the existence of any conflict between same and this specification. Where methods or materials specified are equivalent to the code requirements specified, comply with the specified requirements.
- G. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D
 - 2. Assigned Seismic Use Group or Building Design Category as Defined in the IBC: C
 - a. Component Importance Factor: 1.50
 - b. Component Response Modification Factor: 6.0
 - c. Component Amplification Factor: 2.5
 - 3. Design Spectral Response Acceleration at Short Periods (0.123 Second): 0.327
 - 4. Design Spectral Response Acceleration at 1-Second Period: 0.077

1.3 SUBMITTALS

- A. In addition to the requirements of the section on Mechanical General Provisions, the submittal material shall include descriptive data for all products and materials including, but not limited to, the following:
 - 1. Descriptive Data:
 - a. Catalog cuts and data sheets on specific vibration isolators and seismic restraints to be utilized showing compliance with the specifications.
 - b. An itemized list showing the items of equipment or piping to be isolated, the isolator type and model number selected, isolator loading and deflection, and reference to specific drawings showing seismic restraints, base and construction where applicable.
 - c. An itemized list of non-isolated equipment, piping, and ductwork to be seismically restrained.
 - d. Seismic restraint calculations.
 - e. Riser supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
 - f. Structural or civil engineer's stamp verifying design and calculations for seismic restraining systems used.

- 2. Shop Drawings:
 - a. Drawings showing equipment base constructions for each machine, including dimensions, structural member sizes and support point locations.
 - b. Drawings showing methods of suspension, support guides for piping and ductwork.
 - c. Drawings showing methods for isolation of pipes and ductwork piercing walls and slabs.
 - d. Concrete and steel details for bases, including anchor bolt locations.
 - e. Number and location of seismic restraints and anchors for each piece of equipment and of ductwork and piping.
 - f. Specific details of restraints, including anchor bolts for mounting and maximum loading at each location for each piece of equipment and lengths of ductwork and piping.

1.4 CODE AND REFERENCE STANDARD REQUIREMENTS

- A. All equipment supplied under this specification shall conform in all respects to the rules and regulations of:
 - 1. SMACNA "Guidelines for Seismic Restraints of Mechanical Systems and Plumbing Piping Systems." 1982
 - 2. 2003 ASHRAE GUIDE, Chapter 47, and Chapter 54
 - 3. All applicable state and local codes and authorities having jurisdiction.
 - 4. American Society for Testing and Materials:
 - a. ASTM A 36/a 36M-96: Specification for Carbon Structural Steel.
 - b. ASTM E 488-96: Test Methods for Strength of Anchors in Concrete and Masonry Elements.
 - 5. American Welding Society:
 - a. ASW D1.1-98: Structural Welding Code Steel.

1.5 QUALITY ASSURANCE

- A. All vibration isolation and seismic restraint devices shall be the product of a single manufacturer. Products of other manufacturer's are acceptable provided that their systems comply with the design intent for system performance, static deflection and structural design of the base manufacturer.
- B. Vibration isolation firms having a minimum ten years experience designing and supervising the installation of vibration isolation and seismic restraint systems shall be qualified to provide the materials and installation required by this section. Project listings shall be provided including geographical location and a reference contact.
- C. The installation of all vibration isolation units, and associated seismic restraints, hangers and bases, shall be under the direct supervision of the vibration isolation manufacturer's representative. The isolation manufacturer is to send a letter stating that they have inspected all of the vibration isolation units installed and they are installed properly and operating.

- D. Substitution of internally isolated mechanical equipment in lieu of the specified isolation of this Section must be approved for individual equipment units and is acceptable only if above acceleration loads are certified in writing by the equipment manufacturer and stamped and sealed by a licensed civil or structural engineer.
- E. Purchased and/or fabricated equipment must be designed to safely accept external forces of 1.0 g load in any direction for all rigidly and resiliently supported equipment, piping and ductwork without failure and permanent displacement of the equipment. Life safety equipment such as fire pumps, smoke exhaust fans, emergency generators and other life safety designated equipment must be capable of accepting external forces of up to 1.5 g in any direction without permanent displacement or failure of the equipment.
- F. Standards: If any item in this specification as furnished by the contractor is manufactured in a location which does not certify the referenced standards as defined in paragraph 1.4 of this specification, the contractor is to pay the owner for <u>all</u> expenses incurred by the owner for an outside testing company top confirm such compliances.
- G. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel."
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver each item as a factory-assembled unit with protective crating and covering.
 - B. Store in a dry location.
 - C. Provide disassembly and re-assembly as required to accommodate rigging and shipping.
 - D. Comply with the manufacturer's written rigging and installation instructions for unloading, transporting and setting in final location.
 - E. All equipment with shaft bearings (pump, fans, etc..) must have the shaft rotated every 2 weeks and the equipment must be stored inside.

1.7 SUBSTITUTIONS

- A. Any proposed substitution must be submitted at the time the bid is submitted. No substitute material or manufacturer of equipment shall be permitted without a formal written submittal to the engineer which includes all dimensional, performance and material specifications and is approved in writing by the engineer. Any changes in layout or design brought about by the use of a substitution shall be submitted to the engineer fully designed for review in conjunction with the submittal of the alternate. Any substitutions must be submitted with an explanation why a substitution is being proposed. If the substitute is being proposed for financial reasons the associated credit must be simultaneously submitted.
- B. Final acceptance or rejection of any substitution is subject to the Owner's review.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base. Coordinate with the architect and structural engineer for concrete, reinforcement, and formwork requirements.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. The following are approved manufacturers, provided their systems strictly comply with the design intent for performance, deflection and structural capacity of this specification.
 - 1. Mason Industries, Inc., Hauppauge, NY
 - 2. Vibration Mountings & Controls, Inc., Bloomingdale, NJ
 - 3. Kinetics Noise Control, Dublin, OH
 - 4. Vibration Eliminator Co., Inc., Capiague, NY
 - 5. Amber Booth, Houston, TX

2.2 DESCRIPTION

- A. All vibration isolators shall have either known undeflected heights or calibration markings so that, after adjustment, when carrying their load, the deflection under load can be verified, thus determining that the load is within the proper range of the device and that the correct degree of vibration isolation is being provided according to the design.
- B. All isolators shall operate in the linear portion of their load versus deflection curve. Load versus deflection curves shall be furnished by the manufacturer, and must be linear over a deflection range of not less than 50% above the design deflection.
- C. Where spring isolation systems are described in the following specifications, the mounting assemblies shall utilize bare springs with the spring diameter not less than 0.8 of the loaded operating height of the spring. Each spring isolator shall be designed and installed so that the ends of the springs remain parallel. The minimum deflection from loaded operating height to spring solid height shall be 50% of the rated static deflection of the spring.
- D. Where neoprene-in-shear isolation systems are described in the following specifications, the mounting assemblies shall utilize bare neoprene elements with unit type design molded in oil resistant neoprene. The neoprene shall be compounded to meet the following:
 - 1. Shore hardness of 35 to 65 ±5, after minimum aging of 20 days or corresponding oven-aging.
 - 2. Minimum tensile strength of 2000 PSI.
 - 3. Minimum elongation of 300 %.
 - 4. Maximum compression at 25 % of original deflection.
- E. The isolator ratio of lateral to vertical stiffness shall not be less than 0.9 nor more than 1.5.
- F. The theoretical vertical natural frequency for each support point, based upon load per isolator and isolator stiffness, shall not differ from the design objectives for the equipment as a whole by more than ±10%.
- G. All mounting systems, including seismic restraints, exposed to weather and other corrosive environments shall be protected with factory corrosion resistance. All metal parts of mountings

(except springs and hardware) to be hot dip galvanized. Springs shall be powder coated and neoprene coated. Nuts and bolts shall be cadmium plated.

H. All roof-mounted isolators shall be bolted or welded to building steel and anchored to the structure to resist 110 mph wind loads.

2.3 MANUFACTURER RESPONSIBILITIES

- A. Manufacturer of vibration isolation and seismic restraint equipment shall have the following responsibilities:
 - 1. Determine vibration isolation and seismic restraint sizes and locations.
 - 2. Provide piping and equipment isolation systems and seismic restraints as scheduled or specified.
 - 3. Guarantee specified isolation system deflection.
 - 4. Provide installation instructions, drawings and field supervision to assure proper installation and performance.

2.4 VIBRATION ISOLATORS

- A. Type A: Bare spring isolators shall incorporate the following:
 - 1. Minimum 1/4" (6 mm) thick neoprene acoustical base pad on underside, unless designated otherwise.
 - 2. Non-resonant with equipment forcing frequencies or support structure natural frequencies.
 - 3. Requires seismic restraint type II
 - 4. Spring isolators to be Mason Type SLF, or as approved.
- B. Type B: Spring isolators shall be same as Type A, except:
 - 1. Provide built-in vertical limit stops with minimum 1/4" clearance under normal operation.
 - 2. Tapped holes in top plate for bolting to equipment. All hot dipped galvanized for outdoor installation such as at the air cooled chiller and centrifugal exhaust fans.
 - 3. Capable of supporting equipment at a fixed elevation during equipment erection. Installed and operating heights shall be identical.
 - 4. Shall incorporate snubbing restraint in all directions. Cast or aluminum housings are unacceptable. System to be field bolted or welded to deck with ability to resist forces of 1.5 g acceleration.
 - 5. Mason Type SLR, or as approved.
- C. Type C: Spring hanger rod isolators shall incorporate the following:
 - 1. Spring element seated on a steel washer within a neoprene cup incorporating a rod isolation bushing.
 - 2. Steel retainer box encasing the spring and neoprene cup.
 - 3. Provide sufficient clearance between retainer box and spring hanger rod to permit minimum 15 degree allowable rod misalignment in any direction, total 30 degrees.
 - 4. Requires seismic restraint type III
 - 5. Mason Type TPC-30N, or as approved.
 - 6. Where operating weight differs from installed weight, provide built-in adjustable limit stops to prevent equipment rising when weight is removed. Stops shall not be in contact during normal operation.

- D. Type D: Elastomer Mounting Types/Elastomer Isolators, shall incorporate the following:
 - 1. Bolt holes for bolting to equipment base.
 - 2. Bottom steel plates for bolting or welding to sub-base as required.
 - 3. Unit type design molded in oil-resistant neoprene.
 - 4. Encased in ductile steel or iron casing and capable of withstanding external forces of up to 1.5 g. System to be field bolted or welded to deck with ability to resist forces of 1.5 g.
 - 5. Mason Type ND isolation BR, RBA or as approved.
- E. Type E: Elastomer hanger rod isolators shall incorporate the following:
 - 1. Molded unit type neoprene element with projecting bushing lining rod clearance hole.
 - 2. Neoprene element to be minimum 1 3/4" thick.
 - 3. Steel retainer box encasing neoprene mounting.
 - 4. Clearance between mounting hanger rod and neoprene bushing shall be minimum 1/8".
 - 5. Requires seismic restraint type III.
 - 6. Mason Type HD, or as approved.
- F. Type F: Combination spring/elastomer hanger rod isolators to incorporate the following:
 - 1. Spring and neoprene isolator elements in a steel box retainer.
 - 2. Other characteristics of steel box retainer and hanger rod swing as described for Type C isolators.
 - 3. Requires seismic restraint type III
 - 4. Mason Type TPC-30N, or as approved.
- G. Type G: Pad type elastomer mountings to incorporate the following:
 - 1. 0.750" minimum thickness.
 - 2. 50 psi maximum loading.
 - 3. Ribbed or waffled design.
 - 4. 0.10" deflection per pad thickness.
 - 5. 1/16" galvanized steel plate between multiple layers of pad thickness.
 - 6. Suitable bearing plate to distribute load.
 - 7. Requires seismic restraint type II or III as installation requires.
 - 8. Mason Type Super W, or as approved.
- H. Type H: Pad type elastomer mountings to incorporate the following:
 - 1. Laminated canvas duck and neoprene.
 - 2. Maximum loading 1000 psi.
 - 3. Suitable bearing plate to distribute load.
 - 4. Minimum thickness, 2".
 - 5. Requires seismic restraint type II or III as installation requires.
 - 6. Mason Type HL, or as approved.
- I. Type I: Air Mounts: Freestanding, single or multiple, compressed-air bellows.
 - 1. Assembly: Upper and lower steel sections connected by a replaceable, flexible, nylonreinforced neoprene bellows.
 - 2. Maximum Natural Frequency: 3 Hz.

- 3. Operating Pressure Range: 25 to 100 psig.
- 4. Burst Pressure: At least three times the manufacturer's published maximum operating pressure.
- 5. Leveling Valves: Minimum of 3 required to maintain leveling within plus or minus 1/8 inch.
- 6. Requires seismic restraint type II
- J. Restrained Air Mounts: Housed compressed-air bellows.
 - 1. Assembly: Upper and lower steel sections connected by a replaceable, flexible, nylonreinforced neoprene bellows and spring, with angle-iron frame having vertical-limit stops and channel-section top with leveling adjustment and attachment screws.
 - 2. Maximum Natural Frequency: 3 Hz.
 - 3. Operating Pressure Range: 25 to 100 psig.
 - 4. Burst Pressure: At least three times the manufacturer's published maximum operating pressure.
 - 5. Leveling Valves: Minimum of 3 required to maintain leveling within plus or minus 1/8 inch.
 - 6. Requires seismic restraint type II

2.5 EQUIPMENT BASES

- A. Integral Structural Steel Base, Type B-1
 - 1. Reinforced, as required, to prevent base flexure at start-up and misalignment of drive and driven units. Centrifugal fan bases complete with motor slide base with double adjustment bolts.. Drilled for drive and driven unit mounting template.
 - 2. Mason Type M, WF, or as approved.
- B. Concrete Inertia Base, Type B-2
 - 1. Concrete inertia bases shall be formed in a structural steel perimeter base, reinforced as required to prevent flexure, misalignment of drive and driven unit or stress transfer into equipment. The base shall be complete with motor slide base with double adjustment bolts, pump base elbow supports, and complete with height saving brackets, reinforcing, equipment bolting provisions and isolators.
 - 2. Minimum thickness of the inertia base shall be according to the following tabulation:

Motor Size		Minimum Thickness		
(hp)	(kw)	(in.)	(mm)	
5-15	(4-11)	6	(150)	
20-50	(15-37)	8	(200)	
60-75	(45-55)	10	(250)	
100-250	(75-190)	12	(300)	
300-500	(220-375)	18	(350)	

- 3. Mason Type K, BMK, or as approved.
- C. Curb Mounted Base, Type B-3
 - 1. Rooftop equipment, such as the air cooled chiller, shall be mounted on steel dunnage that is part of the structure and roof construction and are flashed and incorporated into roof's membrane waterproofing system.
 - 2. All spring isolators shall have Type G continuous Super W elastomer mounting pads between the equipment and the isolator plate and bolted through.
 - 3. Curb and equipment shall be capable of withstanding 110mph wind and 1.5 g seismic loads.
- D. Type B-4 (Flashable Roof Rail System)
 - 1. Rooftop fans, condensing units, air handlers, etc. shall be mounted on continuous support piers that combines equipment support and isolation into (1) assembly.
 - 2. Rails shall incorporate Type A isolators which are adjustable, removable and interchangeable after equipment has been installed.
 - 3. The system shall maintain the same installed and operating height with or without the equipment load.
 - 4. The system shall have full plywood nailers on all (4) sides, designed to accept membrane waterproofing and shall be dry galvanized or plastic coated.
 - 5. Unit to be supplied with flashing.
 - 6. Roof rail shall be similar to Mason Industries Type R-7000 having a minimum 3" rated static deflection.
- E. Type B-6 (Non-Isolated Roof Curb)
 - 1. Non-isolated, curb mounted rooftop equipment shall be mounted on structural curbs that meet the acceleration criteria hereinbefore defined.
 - 2. Curbs shall accept standard 2" roof insulation furnished and installed by the roofing contractor.
 - 3. Non-isolated curbs shall be similar to Mason Industries Type B-6000.

2.6 FLEXIBLE CONNECTORS

- A. Elastomer Type FC-1
 - 1. Manufactured of nylon tire cord and EPDM, both molded and cured with hydraulic presses.
 - 2. Straight connectors to have two spheres reinforced with a molded-in external ductile iron ring between spheres.
 - 3. Elbow shall be long radius reducing type.
 - 4. Rated 250 psi. at 170°F. Dropping in a straight line to 170 psi. at 250°F for sizes 1-1/2" to 12", elbows. Elbows shall be rated no less than 90% of straight connections.
 - 5. Sizes 10" and 12" to employ control cables with neoprene end fittings isolated from anchor plates by means of 2" bridge bearing neoprene bushings.
 - 6. Minimum safety factor of 4 to 1 at maximum pressure ratings.
 - 7. Submittals to include test reports, projected life, replacement interval, compression and elongation limits.
 - 8. Mason Types SuperFlex MFNEC, MFLRR, MFTFU, MFTNC, MFTCR, or as approved.
- B. Flexible Stainless Hose, Type FC-2

- 1. Braided flexible metal hose.
- 2. 2" pipe size and smaller with male nipple fittings.
- 3. 2-1/2" and larger pipe size with fixed steel flanges.
- 4. Suitable for operating pressure with 4 to 1 minimum safety factor.
- 5. Length as shown on drawings.
- 6. Mason Type BSS, or as approved.
- C. Unbraided Exhaust Hose, Type FC-3
 - 1. Low pressure stainless steel angularly corrugated.
 - 2. Fitted with flanged ends.
 - 3. Maximum temperature 1500°F.
 - 4. Mason Type SDL-RF, or as approved.

2.7 SEISMIC RESTRAINTS

- A. All seismic restraints for mechanical equipment shall be capable of safely accepting 1.0 g (1.5 g for designated life safety equipment) external forces without failure, and shall maintain equipment, piping, duct and pressure reducing boxes in a captive position. Seismic restraints shall not short circuit isolation systems or transmit objectionable vibration or noise, and shall be Provided on all equipment as scheduled on drawings.
- B. Submit calculations by a licensed Structural or Civil Engineer substantiating that all equipment mountings and foundations and their seismic restraints can safely accept external forces of 1.0 g load for all rigidly and resiliently supported equipment, piping, and ductwork (1.5 g load for all life safety equipment) without failure and permanent displacement. Restrain all resiliently mounted piping and ductwork with cable sway bracing by Mason Industries, or approved equal.
- C. Seismic Restraint Types
 - 1. Seismic Restraint, Type I
 - a. Shall comply with general characteristics of spring isolators.
 - b. Shall have vertical restraints and are capable of supporting equipment at fixed elevation during equipment erection.
 - c. Shall incorporate seismic snubbing restraint in all directions at specified acceleration loadings.
 - d. System to be field bolted to structure with minimum capability to withstand external forces of 1.5 g.
 - e. Mason Type SSLR, or as approved.
 - 2. Seismic Restraint, Type II
 - a. Each corner or side seismic restraint shall incorporate minimum 5/8" thick pad limit stops. Restraints shall be made of plate, structural members or square metal tubing in a welded assembly, incorporating resilient pads. Angle bumpers are not acceptable. System to be field bolted to deck with 1.5 g acceleration capacity.
 - b. Seismic spring mountings as described above are an acceptable alternative providing all seismic loading requirements are met.
 - c. Mason Industries Type Z-1011, Type Z-1225, or as approved.
 - 3. Seismic Restraint, Type III

a. Galvanized steel aircraft cables with end connections made of steel assemblies that swivel to final installation angle and utilize two clamping bolts for cable fastening to equipment and structure. System to be field bolted to deck or overhead structural members or deck with aircraft cable and clamps as per SMACNA guidelines.

PART 3 - EXECUTION

3.1 GENERAL VIBRATION ISOLATION REQUIREMENTS

- A. Install in accordance with manufacturer's written instructions. Vibration isolators must not cause any change of position of equipment or piping resulting in piping stresses or misalignment.
- B. Mechanical equipment shall be isolated from the building structure by means of noise and vibration isolators as scheduled on the drawings or within these specifications.
- C. No rigid connections between equipment and building structure shall be made that degrades the noise and vibration isolation systems herein specified.
- D. Electrical circuit connections to isolated equipment shall be looped to allow free motion of isolated equipment.
- E. The contractor shall not install any equipment, piping or conduit which makes rigid contact with the "building" unless permitted in this Specification. Building includes, but is not limited to, slabs, beams, columns, studs and walls.
- F. Isolation mounting deflection shall be (minimum) as specified or scheduled on drawings.
- G. Coordinate work with other trades to avoid rigid contact with the building. Inform other trades following work, such as plastering or electrical, to avoid any contact which would reduce the vibration isolation.
- H. Bring to the Architect's attention, prior to installation, any conflicts with other trades which will result in unavoidable rigid contact with equipment or piping as described herein, due to inadequate space or other unforeseen conditions. Corrective work necessitated by conflicts after installation shall be at the responsible contractor's expense.
- I. Bring to the Architect's attention any discrepancies between the specifications and field conditions or changes required due to specific equipment selection, prior to installation. Corrective work necessitated by discrepancies after installation shall be at the contractor's expense.
- J. Obtain inspection and approval of any installation to be covered or enclosed, prior to such closure.
- K. Correct, at no additional cost, all installations which are deemed defective in workmanship or materials.

3.2 EQUIPMENT ISOLATION

A. Mount floor mounted equipment on 4" high concrete housekeeping pads over complete floor area of equipment. Mount vibration isolating devices and related inertia blocks on concrete pad. Key

housekeeping pads with hair pins, as required, to be integral with structural slab. Provide approved seismic restraint anchor plates flush with top of housekeeping pad. Concrete work specified in Division 3.

3.3 EQUIPMENT BASES

- A. Fill concrete inertia bases, after installing base frame, with concrete; trowel to a smooth finish.
- B. Concrete Bases: Anchor equipment to concrete base according to supported equipment manufacturer's written instructions for seismic codes at Project site.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch(450-mm) centers around the full perimeter of the base.
 - 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 6. Cast-in-place concrete materials and placement requirements are specified in Division 3.
- C. Each fan and motor assembly shall be supported on a single structural steel frame. Flexible duct connections shall be provided at inlet and discharge of fan.
- D. The machine to be isolated shall be supported by a structural steel frame or concrete inertia base.
- E. Brackets shall be provided to accommodate the isolator. The vertical position and size of the bracket shall be specified by the isolator manufacturer.
- F. The minimum operating clearance between the equipment frame or rigid steel base frame and the housekeeping pad or floor shall be 1". Minimum operating clearance between concrete inertia and base and housekeeping pad or floor shall be 2".
- G. The equipment structural steel or concrete inertia base shall be placed in position and supported temporarily by blocks or shims, as appropriate, prior to the installation of the machine or isolators.
- H. The isolators shall be installed without raising the machine and frame assembly.
- I. After the entire installation is complete and under full operational load, the isolators shall be adjusted so that the load is transferred from the blocks to the isolators. When all isolators are properly adjusted, the blocks or shims shall be barely free and shall be removed.
- J. Prior to start-up, clean out all foreign matter between bases and equipment. Verify that there are no isolation short circuits in the base, isolators or seismic restraints.
- K. Verify that all installed isolator and mounting systems permit equipment motion in all directions. Adjust or provide additional resilient restraints to flexibly limit start-up equipment lateral motion to 1/4".
- L. Provide flexible connections between all fans and ductwork. Refer to duct accessories section.

- M. When operating weight differs from installed weight, provide built-in limit stops to prevent equipment from rising when weight is removed. Stops shall <u>not</u> be in contact during normal operation.
- N. Additional Requirements
 - Diagonal thrust restraint shall be as described for Type C hanger with the same deflection as specified for the spring mountings. The spring element shall be designed so it can be pre-set for thrust and adjusted to allow for a maximum of 1/4" movement at start and stop. Thrust restraints shall be attached at the centerline of thrust. Restraint shall be Mason Type WB, or as approved.
 - 2. All piping and ductwork to be isolated shall freely pass through walls and floors without rigid connections. Penetration points shall be sleeved or otherwise formed to allow passage of piping or ductwork, and maintain 3/4" to 1 1/4" clearance around the outside surfaces. This clearance space shall be tightly packed with fiberglass (except in cases of fire smoke dampers in ducts), and caulked airtight after installation of piping or ductwork.
 - 3. HVAC piping vertical risers larger than 2" in diameter shall be isolated from the building structure by means of noise and vibration isolation guides and supports.
 - 4. Isolators shall be installed with the isolator hanger box attached to, or hung as close as possible to, the structure. Hanger rods shall be aligned to clear the hanger box.
 - 5. Isolators shall be suspended from substantial structural members, not from slab diaphragm unless specifically permitted.
 - 6. Structural steel for cooling tower or other equipment must support the equipment without excessive deflection of the steel. The structural steel support shall not be resonant with the isolation system resonant frequencies or the driving frequencies of the supported equipment.

3.4 PIPING ISOLATORS

- A. All piping except fire standpipe systems, are included under this Section.
- B. Installation:
 - 1. All piping 2" and over located in mechanical equipment rooms, and for a minimum of fifty (50) feet or 100 pipe diameters, whichever is greater, from connection to vibrating mechanical or electrical equipment, shall be isolated from the building structure by means of noise and vibration isolation hangers, Type F.
 - 2. Horizontal suspended pipe 2" and smaller and all steam piping shall be suspended by Type E isolator with a minimum 3/8" deflection. Water pipe larger than 2" shall be supported by Type F isolator with a minimum 1", or same static deflection as isolated equipment to which pipe connects, whichever is greater.
 - 3. Horizontal pipe floor supported at slab shall be supported via Type B, with a minimum static deflection of 1" or same deflection as isolated equipment to which pipe connects, whichever is the greater.
 - 4. Vertical riser pipe supports shall utilize Type H.
 - 5. Vertical riser guides, if required, shall avoid direct contact of piping with building.
 - 6. Pipe anchors, where required, shall utilize resilient pipe anchors, Mason Industries Type ADA, or equivalent, to avoid direct contact of piping with building.
 - 7. Pipe sway braces, where required, shall utilize two (2) neoprene elements (Type G or H to accommodate tension and compression forces).

- 8. Pipe extension and alignment connectors: Provide connectors at riser takeoffs, cooling and heating coils, and elsewhere as required, to accommodate thermal expansion and misalignment.
- 9. Adjust, as required, all isolators to eliminate all contact of the isolated rod with the hanger rod box retainer or short circuiting of the spring.
- C. Domestic Water System Isolation :
 - 1. Support all domestic water piping in horizontal and vertical runs with a resilient wrapping or clamp system employing a resilient element of wool, felt, neoprene, or other suitable material; "Trisolators" by Semco or P.R. Isolators by Potter-Roemer, or as approved.
 - 2. All domestic water piping, size 2" and larger within the building shall be isolated as follows:
 - a. Provide Type F hanger rod isolators with a minimum static deflection of 1" (25 mm) or as scheduled.
 - b. Provide Type B isolators with 1" static deflection, or as scheduled.
 - c. Support water piping in shafts and floor supports` entering shaft with Type G isolators or Type H pad to prevent direct contact of piping with building structure.
 - d. Guide and anchor piping in shafts, as required, with approved mounting designs incorporating Type H pad to prevent direct contact of pipe with building structure.
- D. Isolator Position:
 - 1. Close to building structure.
 - 2. Between building structure and supplementary steel if required.
 - 3. Suspend isolators from rigid and massive support points.
 - 4. All supplementary steel to be sized for a maximum deflection of 0.08 inches (2 mm) at center span.

3.5 GENERAL SEISMIC RESTRAINT REQUIREMENT

- A. All equipment whether isolated or not shall be bolted to structure to allow for minimum 1.0 g of acceleration (1.5 g for life safety equipment). Bolt points and diameter of inserts shall be submitted and verified as part of the contractor's submission for each piece of equipment and stamped and sealed by a civil or structural engineer.
- B. Position all corner or side seismic restraints with equipment at operating weight for proper operation clearance and weld or bolt seismic restraint to seismic anchor plates in housekeeping pad. Install equipment with flexibility in wiring connection. Verify all installed isolators and mounting systems permit equipment motion in all directions. Adjust or provide additional resilient restraints to flexibly limit startup equipment lateral motion to 1/4 inch. Prior to startup, clean out all foreign matter between bases and equipment. Verify that there are no isolation short circuits in the base, isolators or seismic restraints.
- C. All suspended equipment, whether isolated or not, shall be seismically restrained at four points with Type III cable restraints.
- D. Install seismic restraining system Type III taut for overhead suspended unisolated equipment, piping or ductwork, and slack with 2" cable deflection for isolated systems.
- E. Seismically restrain all piping and ductwork with center bracing or Type III restraining system in accordance with SMACNA guidelines to comply as outlined below:

- 1. All schedule 10, 20, or 40 piping shall be welded or laterally braced at 40 foot intervals and at turns of more than 4 feet. Longitudinally bracing shall be supplied at 80 foot intervals. No-hub piping shall be braced at 10 foot intervals or at 40 foot intervals if 1.5 g rated couplings are used.
- 2. Ductwork to be braced every 30 feet and at every turn and duct run ends. Longitudinal bracing to be provided at 60 foot intervals.
- F. Seismic restraints are not required for the following:
 - 1. Gas piping less than 1" internal diameter.
 - 2. Piping in boiler and MER room that is less than 1 1/4" internal diameter. Less than 1 inch for fuel oil piping.
 - 3. All other piping and electrical conduit less than 2" internal diameter.
 - 4. All rectangular ducts less than 6 sq. ft. (0.56 m²) in cross sectional area.
 - 5. All round ducts less than 28" in diameter.
 - 6. All piping suspended by individual hangers 12" in length or less from the top of the pipe to the bottom of the support for the hanger.
 - 7. All ducts suspended by hangers 12" (305 mm) or less in length from the point of the attachment to the duct to the bottom of the support for the hanger.
- G. Where base anchoring is insufficient to resist seismic forces, supplementary restraining such as seismic restraint system Type III shall be used above system's center of gravity to suitably resist "g" force levels. Vertically mounted tanks may require this additional restraint.
- H. For overhead supported equipment, overstress of the building structure must not occur. Bracing may occur from:
 - 1. upper flanges of structural beams;
 - 2. upper truss chords in bar joist construction at the panel points;
 - 3. cast-in-place inserts or drilled and shielded inserts in concrete structures suitably located away from edges.
- I. Each seismic restraint and snubbing device shall be installed after equipment is installed and fully operational. Each isolation mounting incorporating seismic restraint shall be adjusted to provide the minimum operating clearance in all directions to permit the operation of the equipment without objectionable noise or vibration to any part of the building structure. The operating clearance for equipment seismic restraints shall not be greater than 1/4" (6 mm). Seismic restraints must not result in short-circuiting of isolated equipment.
- J. Pipe risers through cored holes in structure require no additional seismic bracing. (Cored hole diameter to be a maximum of 2 inches larger than pipe outer diameter).

3.6 INSPECTION

A. On completion of installation of all vibration isolation and seismic restraint devices herein specified, the local representative of the isolation materials manufacturer shall inspect the completed system and report in writing any installation errors, improperly selected isolation or restraint devices, or other faults that could affect the performance of the system. Contractor shall submit a report to the Architect, including the manufacturer's representatives final report, indicating all isolation reported as properly installed or requiring correction, and include a report by the Contractor on steps taken to properly complete the isolation work.

3.7 VIBRATION TESTING

- A. Owner reserves the right to require vibration testing for all new rotating pieces of equipment installed under this contract including pumps and fans. Vibration testing will be performed after the equipment is installed, aligned, dynamically balanced and commissioned. The mechanical contractor shall correct any deficiencies found with the new equipment as identified in the vibration analysis report. The vibration testing shall be as follows:
 - 1. Equipment Vibration testing shall be performed by a certified vibration consultant. A report shall be provided indicating all of the pieces of equipment tested, the results of the tests and any deficiencies found.
 - 2. Vibration allowances shall be as per the latest ASHRAE standard for rotating equipment (ASHRAE 2000 Systems and Equipment), as defined here:
 - 3. Vibration shall not exceed 0.20 inches per second (0.20 in/sec), peak value throughout the operating range of the piece of rotating equipment. (If connected to a VFD.)
 - 4. Measurements for all equipment, at each point shall be taken at each axis (3 axis) throughout the entire operating range of the equipment. (If connected to a VFD.)
 - 5. The test for equipment connected and driven by a Variable Frequency Drive shall include natural (critical) speed testing. Measurements shall be taken throughout the operating range of the equipment starting from a complete stop, ramping slowly up to maximum speed, and pausing briefly at the natural frequencies of the equipment/VFD (15, 30, 45 and 60 Hz) during the test.
 - 6. Tests for any piece of equipment not driven by a VFD shall be at their normal operating speed, under normal operating conditions.

3.8 CLEANING

A. After completing equipment installation, inspect vibration isolation and seismic-control devices. Remove paint splatters and other spots, dirt, and debris.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 23 Section HVAC General Provisions or to Division 1 Section "Closeout Procedures and Demonstration and Training."

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.10 VIBRATION ISOLATION SCHEDULE

Equipment Type	Horsepower and Other	RPM	Base Type	Isolator Type	Min. Defl., in.
Fans and Fan Sections					
Up to 22 in. diameter	All	All	-	A or C	.75
Condensing Units	All	All	-	В	2.0
Packaged AC unit					
All	Up to 10	All		A	1.0
Ducted Rotating Equipment					
Small fans, fan-powered boxes	Up to 600 cfm	All	_	A	0.50
	601 cfm & up	All		A	
Curb-Mounted Equipment	All	All	B-6	_	_

1. Pumps mounted at grade do not require inertia bases. Provide Type A isolators.

END OF SECTION

SECTION 230549

NOISE CONTROL AND ACOUSTICAL PERFORMANCE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions for Heating, Ventilating and Air Conditioning Work, including General and Supplementary Conditions and Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

A. It is the objective of this Specification to provide the necessary design requirements for the noise control measures and acoustical performance criteria for mechanical systems.

Work in this section includes the providing of labor, materials, equipment and services necessary for a complete installation of sound control for every mechanical system including piping and ductwork within and on the roof of the building, complete, as shown and specified per the contract documents and all applicable codes and authorities having jurisdiction for the following:

- 1. Sound attenuating units
- 2. Sound linings
- 3. Sound Packing
- 4. Special cleaning and packaging for all operating rooms and pharmacy attenuating units.
- B. Related section include the following:
 - 1. Mechanical Vibration Isolation and Seismic Control, Section 230548.

1.3 SUBMITTAL DATA REQUIREMENTS

- A. Submit data for each product indicated.
- B. Sound Traps and Silencers:
 - 1. Including certified test data of sound attenuation and self-generated flow noise.
- C. Sound Linings:
 - 1. Certification that sound lining meets erosion test method described in UL Publication No. 181.
 - 2. Certification that sound lining meets ASTM standards C1071, G21 and G22.
- D. Include product description, list of materials for each service, and locations.
- E. Submit manufacturer's installation instructions.

1.4 CODE AND REFERENCE STANDARDS

- A. Published Specifications' standards, tests or recommended methods of trade, industry or governmental organizations that apply to work in this Section.
- B. Comply with all applicable national, state and local codes. Refer to General Provisions Section for additional reference standards.
- C. ANSI/ASTM C553 Mineral Fiber Blanket And Felt Insulation.
- D. ANSI/ASTM C612 Mineral Fiber Block And Board Thermal Insulation.
- E. ASTM E84 Surface Burning Characteristics Of Building Materials.
- F. NFPA 255 Surface Burning Characteristics Of Building Materials.
- G. UL 723 Surface Burning Characteristics Of Building Materials.
- H. UL 181 Factory-Made Air Ducts And Air Connectors
- I. ASTM C1071-00 Standard Specification For Fibrous Glass Duct Lining Insulation
- J. ASTM C423-02 Standard Test Method For Sound Absorption And Sound Absorption Coefficients By The Reverberation Room Method
- K. ASTM E795-00 Standard Practices For Mounting Test Specimens During Sound Absorption Tests
- L. ASTM C919-02 Standard Practice For Use Of Sealants In Acoustical Applications
- M. NFPA 90A Standard For The Installation Of Air-Conditioning And Ventilating Systems
- N. NFPA 90B Standard For The Installation Of Warm Air Heating And Air-Conditioning Systems
- O. ARI 885-98 Procedure For Estimating Occupied Space Sound Levels In The Application Of Air Terminals And Air Outlets
- P. ASTM E1414-91 Standard Test Method For Airborne Sound Attenuation Between Rooms Sharing A Common Ceiling Plenum.

1.5 QUALITY ASSURANCE

- A. Applicator: Company specializing in sound trap construction with five years minimum experience.
- B. Acoustical Criteria:
 - 1. Noise levels due to equipment and ductwork shall permit attaining sound pressure levels in all 8 octave bands in occupied spaces conforming to noise Criteria (NC) curves as follows:

Offices	NC 35

Public Areas	NC 40
Operating Rooms	NC 40

- C. MECHANICAL EQUIPMENT ACOUSTICAL DESIGN PERFORMANCE
 - 1. Air Distribution System:
 - a. Pressure Reducing Device Noise: Maximum permissible sound-power levels in octave bands of airborne transmission through the combination of grille, registers, diffusers, and terminal units or related pressure reducing devices, when operated at the maximum inlet pressure and cfm in installed condition per plans and specifications shall be as follows:

AIR DISTRIBUTION SYSTEM EQUIPMENT/TERMINAL DEVICE NOISE

			vally		
Octave					
Band	NC-30	NC-35	NC-40	NC-45	NC-50+
1	58	62	66	68	70
2	50	56	60	63	66
3	45	49	54	58	62
4	41	46	51	56	61
5	38	43	48	53	58
6	37	42	47	52	57
7	36	41	46	51	56
8	37	42	47	52	57

MAX PWL (dB re 10-12 Watt)

- 2. Pressure reducing valve radiated noise, including VAV and CV Boxes.
 - a. Maximum permissible radiated sound-power levels in octave bands of pressure reducing valves when operated at the maximum inlet pressure and air quantity in an installed condition over occupied spaces shall be as follows:

Octave Band	NC-35	NC-40	NC-45	NC-50+		
1	72	76	79	82		
2	70	74	77	80		

RADIATED SOUND POWER (dB re 10⁻¹² WATT)

3	61	65	68	71
4	60	64	68	72
4	00	04	00	12
5	57	62	68	72
6	56	60	65	70
7	66	70	75	80
8	65	70	75	80

3. Acoustical Performance within Equipment Spaces: Equipment room noise levels and noise transmission to adjacent buildings shall comply with all Federal, State and City Noise Ordinances.

PART 2 - PRODUCTS

2.1 BASE BID MANUFACTURERS

- A. Sound Traps and Silencers:
 - 1. Industrial Acoustics Company
 - 2. Price
 - 3. VAW
 - 4. Vibro-Acoustics
- B. Sound-Linings:
 - 1. Johns-Manville Corp.
 - 2. Owens-Corning Fiberglas Corp.
- 2.2 DUCT SOUND TRAPS:
 - A. Available shape:
 - 1. Rectangular straight with splitters or baffles.
 - 2. Round straight with center bodies or pods.
 - 3. Rectangular elbow with splitters or baffles.
 - 4. Round elbow with center bodies or pods.
 - 5. Rectangular transitional with splitters or baffles.
 - B. Factory fabricated.
 - 1. Shell:
 - a. Galvanized steel: minimum 22 USSG (0.85 mm).
 - b. Leakproof at pressure differential of 8 inch wg (200 mm wg).
 - 2. Media:

- a. Flamespread: maximum 25.
- b. Fuel contributed and smoke developed: maximum 20.
- c. Minimum 1.5 lbs per cubic foot (24 kg/m) density glass or mineral fiber packed under 5 percent compression.
- d. Filler to be inert, vermin and moisture proof.
- 3. Provide all required duct transition pieces and connections. Connections to match ductwork being connected to.
- 4. Internal Construction: Galvanized perforated steel baffles: minimum 26 USSG (0.5 mm).
- 5. Protective Tedlar film shall be provided between air stream and fill to prevent any intermingling of the airstream with the fill material.
- 6. Silencers for any system and/or equipment serving operating rooms, and any fume hoods or other hazardous exhaust systems shall have no media (packless type attenuators). All fume hood or hazardous exhausts, packless sound attenuators shall be stainless steel when installed in stainless steel ductwork.
- 7. Net Insertion Ratings: Determined by duct-to-reverberant room test method at design airflow shall be as follows:

SOUND TRAP DYNAMIC INSERTION LOSS (FORWARD FLOW) SPECIFICATION TYPES

Octave Band	IAC Type as Std	2	3	4	5	6
A	3L	5	9	14	23	24
В	5L	7	13	21	29	39
С	7L	13	18	28	40	47
D	3MS	7	12	19	23	23
Е	5MS	10	18	30	42	34
F	7MS	14	24	36	48	44
G	3S	12	16	28	35	36
н	5S	18	24	40	45	46
I	7S	20	35	45	50	48
J	3HL	4	4	7	9	19
к	5HL	6	7	14	19	37
L	3HS	9	14	19	22	28

(INDUSTRIAL ACOUSTICS COMPANY TYPE AS STANDARD)

Octave Band	IAC Type as Std	2	3	4	5	6
м	5HS	13	19	26	35	44
N	12TXS	11	19	22	14	11
0	12TXL	8	16	16	7	7
Р	8TXLB	14	26	18	14	14

8. Maximum self-generated noise shall be as follows:

SOUND TRAP SELF-GENERATED NOISE AT 2000 FPM MAX PWL

Octave	Band	2	3	4	5	6
A,B,C, J,K	Type L,HL	51	51	49	47	50
D,E,F	Type MS	54	52	50	47	48
G,H,I,L,M	Type S, HS	69	63	64	61	63
N	Type TXS	34	35	35	35	28
0	Type TXL	22	28	28	25	<20
Р	Type TXLB	29	27	32	30	23

(dB re 10⁻¹² WATT) (10.2 m/sec)

- 9. Certified Tests:
 - a. Submit certified test data from approved laboratory for pressure drop and insertion loss ratings.
 - 1) For square or rectangular attenuators: 24 inch x 24 inch (610 mm x 610 mm).
 - 2) For round attenuators 24 inch (610 mm) diameter.
- 10. Certification data for pressure drop and net insertion loss based on tests of same attenuator.
- 11. Attenuators and tests: subject to inspection upon request of Architect or Engineer.
- 12. Similar to Industrial Acoustics Company (IAC).
- 13. All operating room packless sound attenuators shall have all surfaces factory cleaned and caulked with VOC free sealants and then shrink wrapped prior to shipment.

2.3 SOUND LINING

A. Fibrous glass.

- B. Facing for low pressure duct liners.
 - 1. Airstream Finish: neoprene or acrylic coated 100% coverage with acrylic coating with a United States Environmental Protection Agency registered anti-microbial agent proven resistant to microbial growth per ASTM Standards G21 and G22.
 - 2. Stenciled NFPA 90A and 90B.
- C. Facing for circular medium and high pressure duct liner: Finish: Perforated 28 percent minimum open area 24 USSG (0.7 mm) sheet metal.
- D. Where lining could be exposed to weather or other sources of moisture and in medium pressure system, protective Tedlar film shall be provided between air stream and fill to prevent contact of the liner material with moisture.
- E. Protective Tedlar film shall be protected by a perforated inner sheet metal liner.
- F. Minimum thickness:
 - 1. In ductwork less than 10 sq. ft cross section: 1 inch (25 mm).
 - 2. In ductwork greater than 10 sq. ft cross section: 2 inch (25 mm).
 - 3. In plenums: 2 inch (50 mm).
- G. Minimum density:
 - 1. In ductwork: 1-1/2 lb per cu ft (24 kg/cu m).
 - 2. In plenums: 3 lb per cu ft (48 kg/cu m).
- H. Flamespread: maximum 25.
- I. Fuel contributed and smoke developed: maximum 50.
- J. Suitable for duct velocity of 5000 fpm (20.5 m/sec).
- K. Dynamic loss coefficient: maximum 1.2.
- L. K Factor: maximum 0.25 BTU in/hr/deg F/sq ft (36 mW/m/K).
- M. Noise reduction coefficient:- for 1 inch (25 mm) thick lining: minimum NRC = 0.70 when tested in accordance with ASTM C423 in Type A mounting.
- N. Similar to Johns Manville Permacote Linacoustic meeting ASTM C1071.
- O. Adhesive and Sealer:
 - 1. In conformance with NFPA 90A.
 - 2. Maximum fire hazard ratings; as specified in insulation.
 - 3. Adhesive: similar to Benjamin Foster 81-99.
 - 4. Sealer: similar to Johns Manville Superseal or Benjamin Foster 82-07.
 - 5. In conformance with ASTM C919.
- 2.4 NON-HARDENING SOUND CAULKING:
 - A. Guaranteed to be permanently elastic.

B. Similar to Tremco Polybutene.

PART 3 - EXECUTION

- 3.1 SOUND TRAPS AND SILENCERS:
 - A. Install in accordance with manufacturer's recommendations to obtain published performance.
 - B. Maximum static pressure loss: refer to schedules.

3.2 SOUND LININGS

- A. Adhere duct liner to duct wall with full coverage of adhesive conforming to ASTM C919.
- B. Secure Insulation with mechanical fasteners per SMACNA, NAIMA or duct liner manufacturer's recommendations. Pin length shall be such as to limit compression of liner.
- C. All exposed edges of duct liner shall be factory or field coated. For systems with air flow in excess of 2,500 fpm (12.7 m/sec) a metal nosing must be installed in all liner leading edges, trailing edges, and at all seams.
- D. Repair all unprotected penetrations, tears and rips in the surface of the liner with liner adhesive meeting ASTM C919 or Johns Manville Superseal.
- E. Dimensions of lined ductwork are clear inside dimensions after lining has been installed.
- F. Provide 28% open perforated metal liner and plastic film, meeting the same fire and smoke characteristics as the duct liner, between air stream and duct liner to prevent any intermingling of the air stream with the liner material, for all medium and high pressure ductwork and for all lined ductwork 25'-0" upstream and downstream from fans and HVAC units.
- G. Extent of ductwork sound linings:
 - 1. Upstream of all exhaust fans for minimum distance of 25'-0".
 - 2. All toilet exhaust branch ducts. Lining can be deleted if duct configuration has at least two 90° elbows between the closest air inlets of the men's and women's toilet rooms.
 - 3. All air transfer and jumper ducts from rooms to return air plenums.
 - 4. Where indicated on drawings.

3.3 TESTS

- A. Sound Traps and Duct Silencers:
 - 1. After installation: measure total system pressure before and after attenuators.
 - 2. If pressure loss exceeds maximum static pressure loss schedules on drawings: at no charge, replace attenuators and/or modify entrance and/or discharge aerodynamic flow to obtain specified performance.

END OF SECTION

HYBRID OR & OR #6 Maine Medical Center Portland, ME

SECTION 230553

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Stencils.
 - 6. Valve tags.
 - 7. Warning tags.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.
- D. Coordinate all unit numbering, designation and label locations with the owner.

PART 2 - PRODUCTS

- 2.1 EQUIPMENT LABELS
 - A. Metal Labels for Equipment:
 - 1. Material and Thickness: Anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 - B. Label Content: Include building identification, equipment's Drawing designation or unique equipment number, manufacturer's product name, model number and serial number, capacity, operating and power characteristics, essential data, and labels of tested compliances.
 - C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.
- 2.2 WARNING SIGNS AND LABELS
 - A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 - B. Letter Color: Black.
 - C. Background Color: Yellow.
 - D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - E. Minimum Label Size: Length and width vary for required label content, but not less than 3 by 5 ¼".
 - F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - G. Fasteners: Stainless-steel rivets or self-tapping screws.
 - H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 - I. Label Content: Include caution and warning information, plus emergency notification instructions.

J. Systems that shall include these labels shall include any exhaust system serving exhaust hoods, kitchen exhaust, radioactive exhaust, etc.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels with permanent adhesive.
- B. Letter Color: Black.
- C. Background Color: Refer to Part 3.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.5 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
 - 1. Stencil Material: Fiberboard or metal
 - 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.

3. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.7 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
- 3.2 EQUIPMENT LABEL INSTALLATION
 - A. Install or permanently fasten labels on each major item of mechanical equipment.
 - B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.

- 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
- 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
- 4. At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Heating Water Piping:
 - a. Background Color: Red.
 - b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated, self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Hot Water: 1-1/2 inches.
 - 2. Valve-Tag Color:
 - a. Hot Water: Red.
 - 3. Letter Color:
 - a. Hot Water: White.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION

SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Hydronic Piping Systems:
 - a. Constant-flow systems.
 - b. Variable-flow systems.
 - c. Hot water
 - 3. HVAC equipment quantitative-performance settings.
 - 4. Space pressurization testing and adjusting.
 - 5. Vibration measuring.
 - 6. Sound level measuring.
 - 7. Indoor-air quality measuring
 - 8. Verifying that automatic control devices are functioning properly.
 - 9. Reporting results of activities and procedures specified in this Section.
 - 10. Commissioning.
- B. The TAB contractor shall submit all bids to the HVAC Contractor and to the Construction Manager and shall contract directly with the HVAC Contractor.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.
- C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.

- D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- E. NC: Noise criteria.
- F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- G. RC: Room criteria.
- H. Report Forms: Test data sheets for recording test data in logical order.
- I. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.
- J. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.
- K. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- L. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- M. TAB: Testing, adjusting, and balancing.
- N. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- O. Test: A procedure to determine quantitative performance of systems or equipment.
- P. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 15 days from Contractor's Notice to Proceed, submit 4 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 45 days from Contractor's Notice to Proceed, submit 4 copies of the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- E. Sample Report Forms: Submit two sets of sample TAB report forms.

- F. Warranties specified in this Section.
- 1.5 QUALITY ASSURANCE
 - A. TAB Firm Qualifications: Engage a TAB firm certified by AABC or NEBB.
 - B. TAB Conference: Meet with Owner's, Architect's and Commissioning Agent representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items: Include at least the following:
 - a. Submittal distribution requirements.
 - b. The Contract Documents examination report.
 - c. TAB plan.
 - d. Work schedule and Project-site access requirements.
 - e. Coordination and cooperation of trades and subcontractors.
 - f. Coordination of documentation and communication flow.
 - C. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
 - D. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems." NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems." SMACNA's TABB "HVAC Systems - Testing, Adjusting, and Balancing." or TAB firm's forms approved by Architect.
 - E. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems and NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."
 - F. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.
- 1.6 COORDINATION
 - A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

- B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS

(Not Applicable)

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - 1. Contract Documents are defined in the General and Supplementary Conditions of Contract.
 - 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flowcontrol devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
 - B. Examine approved submittal data of HVAC systems and equipment.
 - C. Examine Project Record Documents described in Division 01 Section "Project Record Documents."
 - D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
 - E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
 - F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
 - G. Examine system and equipment test reports.
 - H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and

fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- L. Examine strainers for clean screens and proper perforations.
- M. Examine valves (two-way and three-way) for proper installation for their intended function of diverting, varying or mixing fluid flows.
- N. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- O. Examine system pumps and piping to ensure absence of entrained air in the suction piping.
- P. Examine all equipment for installation and for properly operating safety interlocks and controls including all boilers, chillers, air handling equipment, pumps, boxes and exhaust system equipment.
- Q. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- R. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.
- C. Coordinate all such checks with the owner's commissioning agent.
- 3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING
 - A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems", ,NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems", ,SMACNA's TABB "HVAC Systems Testing, Adjusting, and Balancing" and this Section.
 - B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
 - C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.
 - D. Take and report testing and balancing measurements in inch-pound (IP) units.
- 3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS
 - A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
 - B. Prepare schematic diagrams of systems' "as-built" duct layouts.
 - C. For variable-air-volume systems, develop a plan to simulate diversity.
 - D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
 - E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
 - F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 - G. Verify that motor starters are equipped with properly sized thermal protection.

- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.
- L. Check for proper sealing of air duct system.
- M. When adjustable sheaves are provided with equipment for balancing, this contractor is to replace with fixed sheaves, after balancing is complete.

3.5 PROCEDURES FOR ALL AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each component that makes up an air-handling unit, and other air-handling and treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as exposed sound traps and other such equipment, under final balanced conditions. Measure duct riser pressure drops to assimilate the pressure drops of concealed (in shaft) sound attenuators.
 - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
 - 5. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
 - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fanmotor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
 - 7. When balancing is complete, replace any adjustable sheaves to fixed sheaves.

- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
- B. The TAB Contractor shall determine and provide the necessary information to the HVAC Contractor and Air Handling Unit manufacturer so as to determine the size of the motor/fan sheave change required for the TAB Contractor to set the Air Handling Unit performance as follows:
 - 1. The TAB Contractor shall provide all labor and materials to provide a sheave change to operate the air system/return systems at approximately 105%-110% above design air flow. The VAV boxes served by the particular air handing unit shall be indexed to approximately 70% of the maximum flow (system diversity) and the required static pressure with dirty filters used as the system set point. The Variable Frequency Drives (VFD) shall be set at 100% speed.
 - 2. The replacement sheaves shall be sized and installed by the TAB Contractor and provided by the AHU supplier to match the actual field conditions of both the supply and return fans.

- C. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - 8. Record the final fan performance data.

3.7 PROCEDURES FOR INDOOR-AIR QUALITY MEASUREMENTS

- A. After air balancing is complete and with HVAC systems operating at indicated conditions, perform indoor-air quality testing.
- B. Observe and record the following conditions for each HVAC system:
 - 1. The distance between the outside-air intake and the closest exhaust fan discharge, flue termination, or vent termination.
 - 2. Specified filters are installed. Check for leakage around filters.
 - 3. Cooling coil drain pans have a positive slope to drain.
 - 4. Cooling coil condensate drain trap maintains an air seal.
 - 5. Evidence of water damage.
 - 6. Insulation in contact with the supply, return, and outside air is dry and clean.
- C. Measure and record indoor conditions served by each Air Handling Unit system. Make measurements at multiple locations served by the system if required to satisfy the following:
 - 1. Most remote area.
 - 2. One location per floor.
 - 3. One location for every 5000 sq. ft. (500 sq. m).

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- D. Measure and record the following indoor conditions for each operating room two times at twohour intervals, and in accordance with ASHRAE 113:
 - 1. Temperature.
 - 2. Relative humidity.
 - 3. Air velocity.
 - 4. Concentration of carbon dioxide (ppm).
 - 5. Concentration of carbon monoxide (ppm).
 - 6. Nitrogen oxides (ppm).
 - 7. Room Pressurization (in H20).

3.8 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check expansion tank liquid level.
 - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.9 PROCEDURES FOR HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 5 percent of design.

- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- G. Measure the differential-pressure control valve settings existing at the conclusions of balancing.
- H. Adjust all flows through all chillers and boilers.
- I. Adjust all make-up systems for flow such as glycol make-up system.
- 3.10 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS
 - A. Balance systems with automatic two- and three-way mixing control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.
- 3.11 PROCEDURES FOR MOTORS
 - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
 - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.12 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Water Coils: Measure the following data for each coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.

3.13 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.14 PROCEDURES FOR VIBRATION MEASUREMENTS

- A. Use a vibration meter meeting the following criteria:
 - 1. Solid-state circuitry with a piezoelectric accelerometer.
 - 2. Velocity range of 0.1 to 10 inches per second.
 - 3. Displacement range of 1 to 100 mils.
 - 4. Frequency range of at least 0 to 1000 Hz.
 - 5. Capable of filtering unwanted frequencies.
- B. Calibrate the vibration meter before each day of testing.
 - 1. Use a calibrator provided with the vibration meter.
 - 2. Follow vibration meter and calibrator manufacturer's calibration procedures.
- C. Perform vibration measurements when other building and outdoor vibration sources are at a minimum level and will not influence measurements of equipment being tested.
 - 1. Turn off equipment in the building that might interfere with testing.
 - 2. Clear the space of people.
- D. Perform vibration measurements after air and water balancing and equipment testing is complete.
- E. Clean equipment surfaces in contact with the vibration transducer.
- F. Position the vibration transducer according to manufacturer's written instructions and to avoid interference with the operation of the equipment being tested.

- G. Measure and record vibration on rotating equipment over 3 hp.
- H. Measure and record equipment vibration, bearing vibration, equipment base vibration, and building structure vibration. Record velocity and displacement readings in the horizontal, vertical, and axial planes.
 - 1. Fans and HVAC Equipment with Fans:
 - a. Fan Bearing: Drive end and opposite end.
 - b. Motor Bearing: Drive end and opposite end.
 - c. Equipment Casing: Top and side.
 - d. Equipment Base: Top and side.
 - e. Building: Floor.
 - f. Ductwork: To and from equipment after flexible connections.
 - g. Piping: To and from equipment after flexible connections.
 - 2. HVAC Equipment with Compressors:
 - a. Compressor Bearing: Drive end and opposite end.
 - b. Motor Bearing: Drive end and opposite end.
 - c. Equipment Casing: Top and side.
 - d. Equipment Base: Top and side.
 - e. Building: Floor.
 - f. Piping: To and from equipment after flexible connections.
- I. For equipment with vibration isolation, take floor measurements with the vibration isolation blocked solid to the floor and with the vibration isolation floating. Calculate and report the differences.
- J. Inspect, measure, and record vibration isolation.
 - 1. Verify that vibration isolation is installed in the required locations.
 - 2. Verify that installation is level and plumb.
 - 3. Verify that isolators are properly anchored.
 - 4. For spring isolators, measure the compressed spring height, the spring OD, and the travel-to-solid distance.
 - 5. Measure the operating clearance between each inertia base and the floor or concrete base below. Verify that there is unobstructed clearance between the bottom of the inertia base and the floor.

3.15 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- C. Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

- E. Check free travel and proper operation of control devices such as damper and valve operators at all VAV, CV boxes, etc.
- F. Check the sequence of operation of control devices. Note device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- J. Note operation of electric actuators using spring return for proper fail-safe operations.

3.16 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 to plus 10 percent.
 - 2. Air Outlets and Inlets: 0 to minus 10 percent.
 - 3. Heating-Water Flow Rate: 0 to minus 10 percent.
 - 4. Cooling-Water Flow Rate: 0 to minus 5 percent.

3.17 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
- C. Commissioning: Attend all commissioning meetings and cooperate fully with the owners commissioning agent. Submit all test reports as requested.

3.18 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.

- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data (heat wheels, heat pipes, coils and air handlers).
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer, type size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports varies from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Air Flow sensors for variable-air-volume systems.
 - f. Settings for supply-air, static-pressure controller.
 - g. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.

- 6. Balancing stations.
- 7. Position of balancing devices.
- F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches (mm), and bore.
 - i. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - j. Number of belts, make, and size.
 - k. Number of filters, type, and size.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Heat Pipe or Heat Wheel static-pressure differential in inches wg.
 - g. Cooling coil static-pressure differential in inches wg.
 - h. Heating coil static-pressure differential in inches wg.
 - i. Outside airflow in cfm.
 - j. Return airflow in cfm.
 - k. Outside-air damper position.
 - I. Return-air damper position.
 - m. VFD settings.
- G. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.

- e. Fin spacing in fins per inch (mm) o.c.
- f. Make and model number.
- g. Face area in sq. ft. (sq. m).
- h. Tube size in NPS (DN).
- i. Tube and fin materials.
- j. Circuiting arrangement.
- 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Average face velocity in fpm (m/s).
 - c. Air pressure drop in inches wg (Pa).
 - d. Outside-air, wet- and dry-bulb temperatures in deg F (deg C).
 - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 - f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 - h. Water flow rate in gpm (L/s).
 - i. Water pressure differential in feet of head or psig (kPa).
 - j. Entering-water temperature in deg F (deg C).
 - k. Leaving-water temperature in deg F (deg C).
 - I. Refrigerant expansion valve and refrigerant types. (Air cooled chiller)
 - m. Refrigerant suction pressure in psig (kPa). (air cooled chiller)
 - n. Refrigerant suction temperature in deg F (deg C). (air cooled chiller)
- H. Fan Test Reports: For supply, return and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches (mm), and bore.
 - h. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - g. Number of belts, make, and size.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.

- d. Discharge static pressure in inches wg (Pa).
- e. Suction static pressure in inches wg (Pa).
- I. Round and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F (deg C).
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated airflow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual airflow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft. (sq. m).
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Air velocity in fpm (m/s).
 - c. Preliminary airflow rate as needed in cfm (L/s).
 - d. Preliminary velocity as needed in fpm (m/s).
 - e. Final airflow rate in cfm (L/s).
 - f. Final velocity in fpm (m/s).
 - g. Space temperature in deg F (deg C).
- K. System-Coil Reports: For zone coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.

- e. Flowmeter type.
- 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Entering-water temperature in deg F (deg C).
 - c. Leaving-water temperature in deg F (deg C).
 - d. Water pressure drop in feet of head or psig (kPa).
 - e. Entering-air temperature in deg F (deg C).
 - f. Leaving-air temperature in deg F (deg C).
- L. Vibration Measurement Reports:
 - 1. Date and time of test.
 - 2. Vibration meter manufacturer, model number, and serial number.
 - 3. Equipment designation, location, equipment, speed, motor speed, and motor horsepower.
 - 4. Diagram of equipment showing the vibration measurement locations.
 - 5. Measurement readings for each measurement location.
 - 6. Calculate isolator efficiency using measurements taken.
 - 7. Description of predominant vibration source.
- M. Instrument Calibration Reports:
 - 1. Report Data.
 - a. Instrument type and make.
 - b. Serial number.
 - c. Applcation.
 - d. Dates of use.
 - e. Dates of calibration.
- 3.19 INSPECTIONS
 - A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
 - 2. Randomly check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Measure sound levels at two locations.
 - e. Measure space pressure of at least 10 percent of locations.
 - f. Verify that balancing devices are marked with final balance position.
 - g. Note deviations to the Contract Documents in the Final Report.

END OF SECTION

SECTION 230700

HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Calcium silicate.
 - b. Flexible elastomeric.
 - c. Mineral fiber (blanket and board).
 - 2. Fire-rated insulation systems.
 - 3. Insulating cements.
 - 4. Adhesives.
 - 5. Mastics.
 - 6. Lagging adhesives.
 - 7. Sealants.
 - 8. Factory-applied jackets.
 - 9. Field-applied fabric-reinforcing mesh.
 - 10. Field-applied cloths.
 - 11. Field-applied jackets.
 - 12. Tapes.
 - 13. Securements.
- B. Related Sections:
 - 1. Division 23 Section "Common Works Results for HVAC."
 - 2. Division 23 Section "Hydronic Pumps."
 - 3. Division 23 Section "Piping."
 - 4. Division 23 Section "Metal Ducts."
- 1.3 SUBMITTALS
 - A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
 - B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.

- 3. Detail insulation application at pipe expansion joints for each type of insulation.
- 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
- 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
- 6. Detail application of field-applied jackets.
- 7. Detail application at linkages of control devices.
- 8. Detail field application for each equipment type.
- C. Qualification Data: Provide a firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this project, whose work has resulted in construction with a record of successful in-service performance.
- D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- E. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-testresponse characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less and as tested and certified in accordance with ASTME-84.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with Piping Installer for piping insulation application, Duct Installer for duct insulation application, and Equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

1.8 DEFINITIONS

- A. Indoor Exposed: Indoor ducts, piping or equipment located in mechanical equipment rooms, penthouse, and in areas which will be visible without removing ceilings or opening access panels.
- B. Indoor Concealed: Indoor ducts, piping or equipment which are not exposed to the weather.
- C. Outdoor: All Ducts, piping or equipment which is exposed to the weather. All piping outdoors is considered to be exposed to the weather.

PART 2 - PRODUCTS

- 2.1 INSULATION MATERIALS
 - A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied. Refer to paragraph 3.14 for insulation schedules.
 - B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
 - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
 - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
 - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
 - F. Calcium Silicate:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Industrial Insulation Group (The); Thermo-12 Gold.
 - 2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
 - 3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

- 4. Prefabricated Fitting Covers: Comply with ASTM C450 and ASTM C585 for dimensions used in performing insulation to cover valves, elbows, tees and flanges.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Johns Manville; Microlite.
 - b. Knauf Insulation; Duct Wrap.
 - c. Owens Corning; All-Service Duct Wrap.
 - d. Certainteed Corp; Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Johns Manville; 800 Series Spin-Glas.
 - b. Knauf Insulation; Insulation Board.
 - c. Owens Corning; Fiberglas 700 Series.
 - d. Certanteed Corp; Commercial Board
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide the following available products that may be incorporated
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000 Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
- J. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJcomplying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Johns Manville; MicroFlex.
 - b. Knauf Insulation; Pipe and Tank Insulation.
 - c. Manson Insulation Inc.; AK Flex.
 - d. Owens Corning; Fiberglas Pipe and Tank Insulation.
 - e. Certainteed Corp; CrimpWrap.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Insulco, Division of MFS, Inc.; Triple I.
 - b. P. K. Insulation Mfg. Co., Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. P. K. Insulation Mfg. Co., Inc.; Thermal-V-Kote.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass, Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-96.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33.
- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.

HVAC INSULATION 23 07 00-5

- c. ITW TACC, Division of Illinois Tool Works; S-90/80.
- d. Marathon Industries, Inc.; 225.
- e. Mon-Eco Industries, Inc.; 22-25.
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services. All mastics shall have low VOC content in compliance with U.S. Green Building Council/LEED® guidelines.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.
 - d. Mon-Eco Industries, Inc.; 11-30.
 - e. Vimasco Corporation; 136.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fireresistant lagging cloths over duct, equipment, and pipe insulation.
 - 3. Service Temperature Range: Minus 50 to plus 180 deg F.
 - 4. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Childers Products, Division of ITW; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with vapor barrier aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil vapor barrier, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil vapor barrier, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric for Pipe Insulation: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. inch for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Vimasco Corporation; Elastafab 894.
- B. Woven Glass-Fiber Fabric for Duct and Equipment Insulation: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. inch for covering equipment.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Childers Products, Division of ITW; Chil-Glas No. 5.
- C. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. inch, in a Leno weave, for duct, equipment, and pipe.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Foster Products Corporation, H. B. Fuller Company; Mast-A-Fab.
 - b. Vimasco Corporation; Elastafab 894.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

- 1. Products: Subject to compliance with requirements, provide the following :
 - a. Alpha Associates, Inc.; Alpha-Maritex 84215 and 84217/9485RW, Luben 59.

2.10 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face vapor barrier, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C and ASTME-84 (25/50); thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
 - 5. Factory-fabricated tank heads and tank side panels.
- D. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 2.5-mil-thick Polysurlyn.
 - e. Factory-Fabricated Fitting Covers:

- 1) Same material, finish, and thickness as jacket.
- 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
- 3) Tee covers.
- 4) Flange and union covers.
- 5) End caps.
- 6) Beveled collars.
- 7) Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with whitealuminum-foil facing.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Polyguard; Alumaguard 60.

2.11 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.

HVAC INSULATION 23 07 00-10

- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide the following :
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
 - 3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.

- b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
- c. Spindle: Nylon, 0.106-inch-diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
- d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide the following :
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

- D. Wire: 0.062-inch soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.

2.13 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100 PSIG minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533 Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533 Type I calcium silicate or ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.

- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping"irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

- 3. Insulate tee fittings with sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement

applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
- E. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pip-Covering Protection Saddles (MSS Type 39)): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe. Include steel weight distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install mitered sections of pipe insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
- E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.

- e. Impale insulation over pins and attach speed washers.
- f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof

sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.
- 3.10 FIELD QUALITY CONTROL
 - A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 - B. Perform tests and inspections.
 - C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Engineer, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, three locations of threaded strainers, three locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
 - D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.11 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, return located in the penthouse and mechanical rooms.
 - 4. Indoor, concealed exhaust between automatic damper and penetration of building exterior.
 - 5. Indoor, exposed exhaust between automatic damper and penetration of building exterior.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.
 - 8. Return ducts in return air plenums and shafts.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation (in unconditioned space) shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (51 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches (51 mm) thick and 6-lb/cu. ft. (96-kg/cu. m) nominal density.
- D. Concealed, round and flat-oval, exhaust-air duct insulation between automatic damper and penetration of building exterior shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- E. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. nominal density.

- F. Concealed, rectangular, return-air duct insulation (in unconditioned space)shall be the following:
 - 1. Mineral-Fiber Blanket: 2 inches (51 mm) thick and 0.75-lb/cu. ft. nominal density.
- 3.13 PIPING INSULATION SCHEDULE, GENERAL
 - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
 - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
- 3.14 INDOOR PIPING INSULATION SCHEDULE
 - A. Cold water Makeup, condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral Fiber Preformed pipe type I: 1 inch thick
 - B. Heating-Hot-Water Supply and Return, 200 Deg F and below:
 - 1. NPS 12 inches and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I: 1 ½ inches thick.
 - C. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - D. Hot Service Drains:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
 - E. Hot Service Vents:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch thick.
 - F. Steam and Steam Condensate, 350 Deg F (177 Deg C) and below:
 - 1. NPS ³/₄ inches and Smaller: Insulation shall be the following:

- a. Mineral-Fiber, Preformed Pipe, Type I or II: 2 inches (50 mm) thick.
- 2. NPS 1 inch to 6 inch: Insulation shall be the following:
 - a. Mineral- Fiber, Performed Pipe, Type I or II: 3 inches (75 mm) thick.
- 3. NPS 8 inch and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 4 inches (100 mm) thick.
- G. Steam and Steam Condensate, above 350 Deg F (177 Deg C):
 - 1. NPS ³/₄ inches and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe, Type I or II: 2 inches (50 mm) thick.
 - 2. NPS 1 inch and Larger: Insulation shall be the following:
 - a. Mineral- Fiber, Preformed Pipe, Type I or II: 3 inches (75 mm) thick.
- 3.15 OUTDOOR, ABOVEGROUND AND UNHEATED ENCLOSURE PIPING INSULATION SCHEDULE
 - A. Piping that is exposed to outside elements or below building ambient temperatures shall be heat traced and insulated. Coordinate all requirements with electrical contractor for piping lengths. All piping insulation installed outdoors or exposed above ground shall be protected by a wrapped weather proof all aluminum heavy duty jacket (.050" thick) with z-shaped locking seams.
 - B. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 2 inches thick.
- 3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE
 - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
 - B. Ducts and Plenums, Concealed:
 - 1. None.
 - C. Ducts and Plenums, Exposed:
 - 1. None.
 - D. Equipment, Concealed:
 - 1. None.

- E. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. None.
- F. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. None.
- G. Piping, Concealed:
 - 1. None.
- H. Piping, exposed:
 - 1. PVC Jackets in Mechanical rooms up to 10 feet AFF and on all exposed piping in occupied spaces (excluding mechanical spaces).
- I. Piping, Fittings and Elbows:
 - 1. PVC fitting Jackets on all pipe fittings, elbows, valves, tees and mechanical couplings.
 - 2. Extended valve stems shall be fitted with PVC jackets and insulation.
 - 3. Provide continuous vapor barrier on all cold surfaces.
- 3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
 - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
 - B. If more than one material is listed, selection from materials listed is Contractor's option.
 - C. Piping, Exposed:
 - 1. Painted Aluminum, Smooth Corrugated with Z-Shaped Locking Seam: 0.020 inch (0.51 mm) 0.024 inch (0.61 mm) thick.

END OF SECTION

SECTION 230800

COMMISSIONING OF HVAC

PART 1 – GENERAL

1.1 PROVISIONS INCLUDED

- A. Include Division 00 and applicable parts of Division 01 for conditions and requirements which may affect the work of this Section.
- B. Examine all other Sections of the specifications for requirements which affect work under this Section whether or not such work is specifically mentioned in this Section.
- C. Coordinate work with that of all other Trades affecting, or affected by work of this Section. Cooperate with such Trades to ensure the steady progress of all work under the Contract.

1.2 COMMISSIONING EFFORT

- A. The Construction Manager shall be the prime contractor which is responsible for the overall commissioning program.
- B. The Construction Manager and all Contractors/Subcontractors shall completely assist the Commissioning Agent in establishing and maintaining the schedule of commissioning events, as developed for the complete check out of each individual mechanical and electrical subsystem and the integration of all building systems.
- C. The Contractor, BMS Contractor and TAB Contractor responsible for all work, installation, testing, balancing and controls under this Division shall be responsible to provide all set up, testing and services required in the commissioning of the systems under this Division.

1.3 COMMISSIONING TEAM

- A. A representative of each of the following parties shall be designated as a member of the Commissioning Team.
- B. Each member must attend weekly "schedule of events" meetings, in accordance with the Commissioning Agent's schedule.
- C. Each member must be closely associated with this design project to accommodate the actual scheduling of events upon mechanical and electrical systems which have been "completed" and thus in proper operation to be commissioned.
- D. Commissioning Team
 - 1. Commissioning Agent
 - 2. Construction Manager
 - 3. HVAC Contractor
 - 4. ATC/BMS Contractor

- 5. Testing and Balancing Contractor
- 6. Plumbing Contractor
- 7. Fire Protection Contractor
- 8. Electrical Contractor
- 9. Selective Equipment Manufacturers
- 10. Maine Medical Hospital Representative

1.4 SUBSTANTIAL COMPLETION

- A. The Construction Manager shall submit written notice that the project is substantially complete. Provide a detailed punch list of items not yet in conformance with the contract documents which require attention.
- B. Submit preliminary copies of the Operation and Maintenance Manuals.
- C. Submit the as-built drawings.
- D. Submit warranties, workmanship/maintenance bonds, maintenance agreements, final certifications, and similar documents.
- E. Obtain and submit releases enabling Owner's full and unrestricted use of the work and access to services and utilities, including occupancy permits, operating certifications, and similar releases.
- F. The Contractor shall have completed all commissioning requirements in Division 21,22,23 and 26 except Functional Performance Testing of systems.
- G. The Contractor shall have completed all training required for Owner's staff.
- H. Submit a letter to the Architect requesting inspection and the Certificate of Substantial Completion, which will be signed and submitted to the Owner.

1.5 FUNCTIONAL COMPLETION

A. The Construction Manager shall submit commissioning acceptance procedures test check-off sheets, signed by the Commissioning Agent, and the Commissioning Agent's letter recommending Functional Completion.

Formal records of all test procedures and results shall be included, as specified, in binders organized for convenient future reference by the Owner's operations staff.

- B. The Commissioning Agent will submit a final commissioning report recommending Function Completion when all requirements have been met and when the final report is accepted by the Client. The Commissioning Agent's report will be a comprehensive summary regarding the commissioning program, which shall also include formal records and data accumulated by the Commissioning Agent during the commissioning process.
- C. All Contractors shall participate in assisting the commissioning agent in indicating system compliance by performance ALL system tests to the satisfaction of the commissioning agent.

1.6 FINAL COMPLETION AND FINAL ACCEPTANCE

- A. Final Completion occurs when the work is fully and finally completed in accordance with the Contract Documents and all deficiencies have been corrected. Final Acceptance is the written acceptance issued to the Contractor by the Construction Manager and Owner after the Contractor has achieved Final Completion. The specific requirements are:
 - 1. Submit "Consent of Surety to Final Payment". This letter is to be completed by the surety and mailed to the Owner.
 - 2. Submit final payment request with final releases and supporting documentation not previously submitted or accepted.
 - 3. Submit a copy of the Architect's final punch list of itemized work to be completed or corrected, stating that each item is complete (or otherwise resolved) for acceptance, endorsed and dated by the Architect.
 - 4. Deliver tools, spare parts, extra stock of materials, and similar physical items to the Owner.
 - 5. Make the final change-over of locks and transmit the new keys to the Owner. Return any loaned construction access keys. Advise Owner's personnel regarding change-over in security provisions.
 - 6. Discontinue and remove from the project site temporary facilities and services, along with construction tools and facilities, mock-ups, and similar elements.
 - 7. Complete final cleaning requirements, including touch-up of marred surfaces, and repair, restore and touch-up exposed finishes.
 - 8. Submit a letter to the Architect requesting inspection and the Certificate of Final Acceptance, which will be signed and submitted to the Owner.

1.7 COMMISSIONING SCHEDULE

A. The Construction Managers schedule for construction, control implementation and completion, start, and point-by-point checkout must be complete for Owner occupancy, in accordance with the Construction Managers schedule.

1.8 RESPONSIBILITIES

- A. The Contractors shall cooperate with the Construction Manager and Commissioning Agent to accomplish the following tasks:
 - 1. Review and approve all functional performance tests, results, and documentation required by the contract documents, for all equipment and systems, as performed by subcontractors, vendors, etc.
 - 2. Develop schedules for all testing, integrate testing into the master construction activity schedule and coordinate all subcontractor testing as required.
 - 3. Assist and participate in all equipment tests, system functional tests, and cross system functional tests. Test procedures shall be in accordance with equipment manufacturer's recommendations, where applicable. Test procedures shall fully describe system configuration and steps required for each test, appropriately documented so that another party can repeat the tests with virtually identical results.
 - 4. Submit test procedure schedule, procedures, forms and other documentation to the Construction Manager and Owner for approval three months prior to starting any testing required and stipulated by the construction Manager.

COMMISSIONING OF HVAC 23 08 00 - 3

- 5. Coordinate directly with subcontractor on the project specific to their responsibilities and contractual obligations.
- 6. Provide qualified personnel for participation in commissioning tests, including seasonal testing required after the initial commissioning.
- 7. Provide engineering and technical expertise to oversee and direct the correction of deficiencies found during the commissioning process.
- 8. Provide all start-up and initial testing of all systems and equipment by the Contractor and subcontractors, and then all final tests of equipment and systems in accordance with the Commissioning Agent procedures.
- 9. Manage all cross system testing such as HVAC, building fire alarm, emergency power, life safety, elevators, etc.
- 10. Participate in and perform all smoke evacuation testing in cooperation with the TAB and BMS contractors.
- 11. Note any inconsistencies or deficiencies in system operations and enforce system compliance or recommend to the Architect modifications to system design which will enhance system performance.
- 12. Coordinate with the Commissioning Agent and Construction Manager the required A/E, and Owner testing participation and approval procedures, after verifying that pretests have been satisfactorily conducted and final testes are ready to be performed.
- 13. In the event that a functional test fails, the cause of failure shall be determined and rectified as soon as possible, and then retested. If more than three functional tests of the same system(s) are required, the Contractor shall reimburse all associated costs for the extraordinary participation of the A/E, Commissioning Agent, Construction Manager and Owner's staff, as required by the particular test being performed.
- 14. Review operation and maintenance information and as-built drawings provided by the various subcontractors and vendors for verification, organization and distribution.
- 15. Obtain all documentation from tests and assemble a final test report to be submitted to the Construction Manager, Commissioning Agent, Architect and the Owner for approval.
- 16. Oversee and/or provide training for the systems specified in the Division with coordination by the Division 23 Subcontractors.

1.9 RELATED WORK

- A. All start-up and testing procedures and documentation requirements specified within Divisions 21, 22, 23 and 26.
- B. The Test, Adjust and Balance (TAB) firm shall provided the following:
 - 1. Allow sufficient time before final commissioning dates so that testing, adjusting and balancing can be accomplished.
 - 2. Put all heating, ventilating and air conditioning equipment and systems into full operation and continue the operation during each working day of testing, adjusting and balancing and commissioning so they are fully functional. This includes the complete installation of all equipment, materials, pipe, duct, wire, insulation, controls, etc., per the contract documents and related directives, clarifications, change orders, etc.
- C. A commissioning plan will be developed by the Commissioning Agent. Divisions, 21, 22, 23 and 26 are obligated to assist the Commissioning Agent in preparing the commissioning plan by providing all necessary information pertaining to the actual equipment and installation. If system modifications/clarifications are in the contractual requirements of this and related

COMMISSIONING OF HVAC 23 08 00 - 4 sections of work, they will be made at no additional cost to the Owner. If Contractor initiated system changes have been made that alter the commissioning process, the Test Engineer will notify the Commissioning Agent and Owner's Representative for approval.

- D. Normal start-up services required to bring each system into a fully operational state. This includes cleaning, filling, purging, leak testing, motor rotation check, control sequences of operation, full and part load performance, etc. The TAB firm will not begin the TAB work until each system is complete, including normal contractor start-up. The Commissioning Agent will not begin the commissioning process until each system is complete, including normal contractor start-up and the TAB work has been completed.
- E. Provide labor and material to make corrections when required, without undue delay.
- F. The HVAC Contractor shall include the cost of exchanged sheaves and belts as may be required by the TAB firm.
- G. Provide test holes in ducts and plenums where directed or necessary for pitot tubes to take air measurements and to balance the air systems. Test holes shall be provided with an approved removable plug or seal. At each location where ducts or plenums are insulated, test holes shall be provided with an approved extension with plug fitting.
- H. Provide pressure and temperature taps as indicated on construction documents in locations as required by the TAB firm to adequately test and/or balance the hydronic systems.
- I. The Contractor shall include a two week "flush out" period, in which the air handling systems are sequenced into a 100% outside air mode, to assist in the removal of any construction material out-gassing.
- 1.10 TEST EQUIPMENT
 - A. Provide test equipment as necessary for start-up and commissioning of the mechanical equipment and systems. The TAB firm will provide the test equipment required to perform their service.
- 1.11 TEST EQUIPMENT PROPRIETARY
 - A. Proprietary test equipment required by the manufacturer, whether specified or not, shall be provided by the manufacturer of the equipment. Manufacturer shall provide the test equipment, demonstrate its use, and assist the Commissioning Test Engineer in the commissioning process. Proprietary test equipment shall become the property of the Owner upon completion of commissioning.
 - B. Identify the proprietary test equipment required in the test procedures submittals and in a separate list of equipment to be included in the operations and maintenance manuals.

1.12 WORK PRIOR TO COMMISSIONING

A. Complete all phases of work so the system can be started, tested, adjusted, balanced, controlled and otherwise commissioned. Divisions 21, 22, 23 and 26 have primary start-up responsibilities with obligations to complete systems, including all sub-systems completion will not relieve these Divisions from completing those systems as per the Construction and Commissioning schedule.

COMMISSIONING OF HVAC 23 08 00 - 5 HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.13 WORK TO RESOLVE DEFICIENCIES

- A. In some systems, mis-adjustments, misapplied equipment and/or deficient performance under varying loads will result in additional work being required by the Contractors to commission the systems. This work will be completed under the direction of the Construction Manager, Architect and Owner's Representative, with input from the Contractor, equipment supplier, and Commissioning Agent. Whereas all members will have input and the opportunity to discuss the work and resolve problems, the Architect will have final jurisdiction on the necessary work to be done to achieve performance.
- B. Corrective work shall be completed in a timely fashion to permit timely completion of the commissioning process. Experimentation to render system performance will be permitted. If the Commissioning Agent deems the experimentation work to be ineffective or untimely as it relates to the commissioning process, the Commissioning Agent will notify the Owner indicating the nature of the problem, expected steps to be taken, and the deadline for completion of activities. If deadlines pass without resolution of the problem, the Owner reserves the right to obtain supplementary services and/or equipment to resolve the problem. Costs incurred to solve the problems in an expeditious manner will be the Contractor's responsibility.

1.14 SEASONAL COMMISSIONING AND OCCUPANCY VARIATIONS

- A. Seasonal commissioning pertains to testing under full-load conditions during peak heating and peak cooling seasons, as well as part-load conditions in the spring and fall. Initial commissioning will be done as soon as contract work is completed regardless of season. Subsequent commissioning may be undertaken at any time thereafter to ascertain adequate performance during the different seasons.
- B. All equipment and systems will be tested and commissioned in a peak season to observe fullload performance. Heating equipment will be tested during winter design extremes. Cooling equipment will be tested during summer design extremes, with a fully occupied building. Each Contractor and supplier will be responsible to participate in the initial and the alternate peak season test of the systems required to demonstrate performance, as scheduled by the Commission Agent, with three day (minimum) advance notification.
- C. Subsequent commissioning may be required under conditions of minimum and/or maximum occupancy or use. All equipment and systems affected by occupancy variations will be tested and commissioned at the minimum and peak loads to observe system performance. The Contractor will be responsible to participate in the occupancy sensitive testing of systems to provide verification of adequate performance.

1.15 RECOMMISSIONING

A. Upon notification by the Commissioning Agent of successful system/equipment performance/checkout test, the Owner shall witness Test No. 1. If any system/equipment/component/device fails to perform correctly during Test No. 1, the Contractor and/or equipment supplier must correct any systems/wiring deficiencies, and must incur any travel/airfares/food/hotel expenses of the designated Agent, to be available for the Retest No. 1.

1.16 TRAINING

- A. Participate in the training of the Owner's engineering and maintenance staff, as required in Divisions 01, 21, 22, 23 and 26, on each system and related components. Training, in part, will be conducted in a classroom setting, with system and component documentation, and suitable classroom training aids.
- B. Training will be conducted jointly by the Commissioning Agent, the Contractor, and the equipment vendors. The Test Engineer will be responsible for highlighting system peculiarities specific to this project.

1.17 SYSTEMS DOCUMENTATION

- A. In addition to the requirements of Division 01, The Contractor shall update contract documents to incorporate field changes and revisions to system designs to account for actual constructed configurations. All drawings shall be red-lined on two sets. Divisions 21, 22, 23 and 26 as-built drawings shall include architectural floor plans, elevations, and details, and the individual mechanical or electrical systems in relation to actual building layout.
- B. Maintain as-built red-lines as required by Division 01. Given the size and complexity of this project, red-line drawings at completion of construction, based on memory of key personnel, is not satisfactory. Continuous and regular red-lining of drawings is considered essential and mandatory.

1.18 MISCELLANEOUS SUPPORT

- A. Divisions 21, 22, 23 and 26 shall remove and replace covers of mechanical equipment, open access panels, etc., to permit the Commissioning Agent, Architect and Owner's representative to observe equipment and controllers provided. Furnish ladders and flashlights as necessary.
- 1.19 SYSTEMS TO BE COMMISSIONED
 - A. HVAC
 - 1. Each water flow measuring station/flow meter.
 - 2. Each DDC terminal box.
 - 3. Each computer room type unit
 - 4. Verification of pressure setting and air flows at all operating room air distribution devices and terminal boxes.
 - 5. Verify the final accuracy of the air and water test and balancing report.
 - 6. BMS functional and operational control sequences.
 - 7. Each individual lighting control interface.
 - 8. Each kilowatt metering interface.
 - B. Electrical
 - 1. Circuit breaker trip setting verification.
 - 2. Lighting controls.
 - 3. Fire alarm interface to HVAC/ATC.

- 4. Security interface.
- 5. Emergency Power
- 1.20 POST OCCUPANCY COMMISSIONING
 - A. This Contractor shall fully cooperate in all regards with this phase of commissioning.
 - B. The Commissioning Agent will prepare a complete building operations review within ten (10) months after substantial completion with the owners operating personnel and note in the report any outstanding construction and/or operational deficiencies that are identified during this post occupancy review. This report shall be provided to the owner, Construction Manager and A/E. This Post-Occupancy deficiency list shall be corrected by the Construction Manager under the one year guarantee/warranty period and shall be submitted as being completed by the Contractor and Equipment Suppliers. The Commissioning Agent shall also procure all equipment manufacturer test data verifying post-occupancy equipment efficiencies and compare all such data to the information published by the manufacturer. This data shall be used to verify overall equipment efficiency against the contract specifications.
 - C. Divisions 21, 22, 23 and 26 shall correct any and all system deficiencies noted by the Commissioning Agent during the first one year after substantial completion and as noted by the Commissioning Agent during the 10th month building operating review.

END OF SECTION

SECTION 230900

HVAC INSTRUMENTATION AND CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this section.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls. Related Sections include the following:
 - 1. Division 26 Section "Fire Alarm" for fire and smoke detectors mounted in HVAC systems and equipment.
 - 2. 230993 -Sequence of Operation

1.3 DEFINITIONS

- A. ATC: Automatic Temperature Control.
- B. BMS: Building Management System.
- C. CFM: Cubic Feet per Minute.
- D. CMMS: Computerized Maintenance Management System.
- E. DDC: Direct-digital controls.
- F. FAS: Fire Alarm System.
- G. HVAC: Heating, Ventilating, and Air Conditioning.
- H. LAN: Local area network.
- I. LCD: liquid Crystal Display.
- J. MER: Mechanical Equipment Room.
- K. MS/TP: Master-slave/token-passing.
- L. PICS: Protocol Implementation Conformance Statement.

- M. PID: Proportional Integral Derivative.
- N. POT: Portable Operators Terminal.
- O. VAV: Variable air volume.
- P. VFD: Variable Frequency Drive.

1.4 SYSTEM DESCRIPTION

- A. Control system consists of sensors, indicators, acuators, final control elements, interface equipment, other apparatus and accessories to control mechanical systems. The entire system shall be BACnet, open protocol all web interfaced. The web server shall be provided by this contractor and include all protocols to assure a complete and functioning web based interfaced system.
- B. Control system consists of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories and software connected to distributed controllers operating in multi-user, multitasking environment on token-passing network and programmed to control mechanical systems. All systems and components shall have wireless access.
- C. Control system includes the following:
 - 1. Building lighting control system specified in Division 26 Section "Network Lighting Controls."
 - 2. Fire alarm system specified in Division 26 Section "Fire Alarm."

1.5 WORK INCLUDED

- A. The control system shall tie into the existing Honeywell system. Provide necessary panels for new controls. Provide new graphics at existing front-end for new scope of work.
- B. Furnish a complete distributed direct digital control system in accordance with this specification section. This includes all global controllers, logic controllers, and all input/output devices. Items of work included are as follows:
 - 1. Provide a submittal that meets the requirements below for approval.
 - 2. Coordinate installation schedule with the mechanical contractor and Construction Manager
 - 3. Provide installation of all panels and devices unless otherwise stated.
 - 4. Provide power for panels and control devices from a source designated by the electrical contractor.

- 5. Provide all low voltage control wiring for the DDC system using plenum rated cable or wire and conduit where exposed and/or as installed all mechanical or electrical spaces
- 6. Provide miscellaneous control wiring for HVAC and related systems regardless of voltage.
- 7. Provide engineering and technician labor to program and commission software for each system and operator interface. Submit commissioning reports for approval.
- 8. Provide testing, demonstration and training as specified below.
- 9. Provide VAV/CAV box DDC controller/actuators and ship to the VAV/CAV box manufacturer for factory installation.
- 10. Provide connections to lighting relay panels, room occupied/unoccupied sensors and coordinate control with Electrical Contractor.
- 11. Provide connections for all monitoring of all owner power metering and coordinate requirements with Electrical Contractor.

1.6 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated. All such documents shall be in PDF format with no exceptions.
 - 1. Each control device labeled with setting or adjustable range of control.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. All such documents, including drawings, shall be in PDF format with no exceptions. All drawings and control wiring diagrams will be in 11" x 17" format. Submittal shall include the following as a minimum:
 - 1. Schematic flow diagrams showing fans, pumps, chillers, boilers, cooling towers, air handling units, coils, dampers, valves, instrumentation and control devices.
 - 2. Of special note-

The shop drawing package and flow diagrams shall also contain complete schematics, wiring diagrams and control sequences for equipment such as boilers, chillers, variable frequency drives, lighting relay panels, etc. that have internal control sequences that might not be directly controlled by the BMS but are part of the overall BACnet system even though those particular control devices aren't supplied by the BMS Contractor.

- 3. Specification sheets of sensors, transmitters, controllers, actuators, relays, switches, and miscellaneous control devices.
- 4. Wiring Diagrams: Power, signal, and control wiring for all systems and components.
- 5. Symbol and abbreviation list for control diagrams.

- 6. Details of control panel faces, including controls, instruments, and labeling.
- 7. Schedule of dampers including size, leakage, and flow characteristics.
- 8. Schedule of valves including leakage and flow characteristics, GPM, pressure drop, and CV at a minimum.
- 9. All input/output (I/O) device submittals shall indicate the unique identifier listed in these Sections.
- 10. Complete system, device, equipment and operational sequence of operations for all building/infrastructure systems regardless of what contractor and/or supplier might have supplied such systems as long as connected to the BMS these sequences shall be part of and included in the submitted sequences.
- 11. Pads, foundations, anchorages, supports and attachments to the building structure where required for the installation of the work shall be shown in layout and in detail with sizes, dimensions, materials and methods of construction noted.
- 12. All shop drawings used by field personnel for the installation of equipment shall bear an Engineer's approval stamp.
- 13. Architectural floor plans indicating proposed locations of all wall-mounted devices (i.e. DDC units, control panels, sensors, thermostats, etc.) and mechanical drawings indicating proposed locations of all temperature, flow, and pressure transmitters.
- 14. Field quality-control test reports.
- 15. Operation and maintenance data.
- 16. Qualification Data and Project Manager Resume for firms and from persons specified in "Quality Assurance" Article.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who is an authorized representative of the automatic control system manufacturer for both installation and maintenance of units required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilation Systems."
- D. Materials and equipment shall be the catalogued products of manufacturers regularly engaged in production and installation of automatic temperature control systems and shall be manufacturer's latest standard design that complies with the specification requirements.

- E. All portions of the system must be of the same manufacturer and must be designed, furnished, installed, commissioned and serviced by manufacturer-approved, factory-trained employees.
- F. Single source responsibility of supplier shall be the complete installation and proper operation of the BMS and control system and shall include debugging and proper calibration of each component in the entire system.
- G. Supplier shall have an in-place support facility within 50 miles of the site with technical staff, spare parts inventory, and all necessary test and diagnostic equipment.
- H. All electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Section 15, Governing Radio Frequency Electromagnetic Interference and be so labeled.
- I. BMS shall comply with UL 916 PAZX and UL 864 UDTZ and be so listed at the time of bid.
- J. All system components shall be fault-tolerant. System shall include:
 - 1. Satisfactory operation without damage at 110% and 85% of rated voltage and at 3 Hertz variation in line frequency.
 - 2. Static, transient and short-circuit protection on all inputs and outputs.
 - 3. Protection for communication lines against incorrect wiring, static transients and induced magnetic interference.
 - 4. Network-connected devices to be AC coupled or equivalent so that any single device failure will not disrupt or halt network communication.
 - 5. All real time clocks and data file RAM to be battery-backed for a minimum 100 hours and include local and remote system low battery indication.
- K. The BMS Contractor shall employee a Project Manager dedicated to this project who shall be regularly engaged in the installation and maintenance of the BMS systems specified under this section and shall meet the following qualifications:
 - 1. A minimum of ten (10) years of demonstrated technical expertise and experience in the installation and maintenance of BMS systems similar in size and complexity to this project.
 - 2. A minimum of ten (10) years experience installing the control system of the manufacturer that they work for.
 - 3. Shall be a certified-to-install, direct representative/direct employee of the control system manufacturer.
 - 4. The system manufacturer/installer shall submit resumes to the Construction Manager of the proposed experienced project manager, meeting the above qualifications, for this work from beginning of control installation until final completion. The project manager is responsible for direct supervision of the design, installation, start-up and commissioning of the BMS as well as attending of project meetings whenever directed by the owner, construction manager, and/or mechanical contractor. It shall not be acceptable to change the project manager after the project has begun and before final completion. If the BMS manufacturer/contractor wishes to change the project manager, the construction manager and/or owner's representative must be notified immediately and both the new

project manager and the previous project manager shall spend 3 consecutive business days together on-site performing a project management switchover. No excerptions shall be allowed.

- L. Comply with all current governing codes, ordinances, and regulations including UL, NFPA, the local Building Code, NEC, etc.
- M. The system shall have a documented history of compatibility by design for a minimum of 15 years. Future compatibility shall be supported for no less than 10 years. Compatibility shall be defined as the ability for any existing control system component including but not limited to Primary Control Panels, Secondary Control Panels, personal operator workstations, and portable operator's terminals, to be connected and directly communicate with any new BMS system equipment without bridges, routers or protocol converters

1.8 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to unit manufacturer.

1.9 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment with Division 26 Section "Fire Alarm" to achieve compatibility with equipment that interfaces with that system.
- C. Coordinate equipment with Division 26 Section "Enclosed Controllers" and Sections 230514-"Enclosed Controllers" and 230515 "Variable-Frequency Motor Controllers" to achieve compatibility with motor starters and annunciation devices.
- D. Coordinate equipment with Division 26 Section "Network Lighting Controls" to achieve compatibility with relay panels and controls.

1.10 EXTRA MATERIALS

A. Maintenance Materials: One thermostat adjusting key.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following:

1. Honeywell

2.2 CONTROL PANELS

- A. Central Master Control Panels: Fully enclosed, steel-rack-type cabinet with locking doors or locking removable backs. Match finish of panels and provide multicolor graphic displays, schematically showing system being controlled.
- B. Local Control Panels: Unitized cabinet with suitable brackets for wall or floor mounting, located adjacent to each system under automatic control. Provide common keying for all panels.
 - 1. Fabricate panels of 0.06" thick, furniture-quality steel or extruded-aluminum alloy, totally enclosed, with hinged doors and keyed lock and with manufacturer's standard shoppainted finish.
 - 2. Panel-Mounted Equipment: Temperature and humidity controllers, relays, and automatic switches; except safety devices. Mount devices with adjustments accessible through front of panel.
 - 3. Door-Mounted Equipment: Flush-mount on hinged door manual switches, including damper-positioning switches, changeover switches, thermometers, and gages.
 - 4. Graphics: Color-coded graphic, laminated-plastic displays on doors, schematically showing system being controlled, with protective, clear plastic sheet bonded to entire door.
- C. Alarm Panels: Indicating light for each alarm point, single horn, acknowledge switch, and test switch, mounted in hinged-cover enclosure.
 - 1. Alarm Condition: Indicating light flashes and horn sounds.
 - 2. Acknowledge Switch: Horn is silent and indicating light is steady.
 - 3. Second Alarm: Horn sounds and indicating light is steady.
 - 4. Alarm Condition Cleared: System is reset and indicating light is extinguished.
 - 5. Contacts in alarm panel allow remote monitoring by independent alarm company.

2.3 PRIMARY CONTROL PANEL HARDWARE

- A. Spare Capacity
 - All Primary Control Panels shall be installed with 10% spare points (of each type) and 10% spare memory capacity for future connections. The type of spare point capacity shall be in the same proportion as the implemented I/O functions of the panel, but in no case shall there be less than two spares of each implemented I/O type. Provide all hardware modules, software modules, processors, power supplies, communication controllers, etc.

required to ensure adding a point to the spare point location only requires the addition of the appropriate sensor/actuator and field wiring/tubing.

- 2. Provide all processors, power supplies, and communication controllers so that the implementation of adding a point to the spare point location only requires the addition of the appropriate:
 - a. Expansion modules
 - b. Sensor/actuator
 - c. Field wiring/tubing
- B. Provide all necessary hardware for a complete operating system as required. All hardware shall reside in each Primary Control Panel. Primary Control Panels shall not be dependent upon any higher level computer or another controller for operation. All panels shall be BACnet open protocol web based/wireless.
- C. Each Primary Control Panel shall, at a minimum, be provided with:
 - 1. Appropriate NEMA rated metal enclosure.
 - 2. An integral real-time clock.
 - 3. A 32bit, stand-alone, multi-tasking, multi-user, real-time 48MHz digital control microprocessor module.
 - 4. Primary Network wireless communication module for primary network communications.
 - 5. Memory module (72MB, minimum) to accommodate all Primary Control Panel software requirements, including but not limited to, its own operating system and databases, including control processes, energy management applications, alarm management applications, historical/trend data for points specified, maintenance support applications, custom processes, operator I/O, dial-up communications.
 - 6. Data collection/ Data Trend module sized for 10,000 data samples.
 - 7. Power supplies as required for all associated modules, sensors, actuators, etc.
 - 8. Software modules as required for all sequences of operation, logic sequences and energy management routines. Relay logic is not acceptable.
 - 9. Monitoring of the status of all HOA switches and all variable frequency drives. The status of the HOAN switch shall be available as a BMS wireless data point and all variable frequency drives shall be trend logged (kWh) and totalized.
 - 10. Monitoring of all industry standard types of analog and digital inputs and outputs, without the addition of equipment to the primary control panel.
 - 11. Auxiliary enclosure for analog output transducers, isolation relays, etc. Auxiliary enclosure shall be part of primary enclosure or mounted adjacent primary enclosure.
 - 12. Local status indication for each digital input and output for constant, up-to-date verification of all point conditions without the need for an operator I/O device. Each

primary control panel shall perform diagnostics on all inputs and outputs and a failure of any input or output shall be indicated both locally and at the operator workstation.

- 13. Graduated intensity LEDs or analog indication of value for each analog output.
- D. The web operator shall have the ability to manually override automatic or centrally executed commands at the primary control panels via local, point discrete, on-board hand/off/auto operator override switches. If on board switches are not available, provide separate control panels with HOA switches. Mount panel adjacent to primary control panel. These override switches shall be operable whether the panel processor is operational or not. Provide HOA switch for each digital output, including spares. Provide hand/auto switch and gradual positioning potentiometer for each analog output, including spares.
- E. Each Primary Control Panel shall continuously perform self-diagnostics on all hardware modules and network wireless communications. The Primary Control Panel shall provide both local and remote annunciation of any detected component failures, low battery conditions or repeated failure to establish communication with any system.
- F. Each Primary Control Panel shall provide DIN RAIL UPS's to support the real-time clock and all memory and programs for a minimum of 100 hours. UPS's shall send a signal to BMS when on-battery, low batter, or replace battery is sensed.
- G. Each Primary Control Panel shall support firmware upgrades without the need to replace hardware.
- H. Each controller shall support a minimum of 3 directly connected associated secondary networks.
- I. Primary control panels shall provide at least two EIA-232C serial data communication ports for operation of operator I/O devices such as industry standard printers, operator terminals, modems and portable laptop operator's terminals. Primary control panels shall allow temporary use of portable devices without interrupting the normal operation of permanently connected modems, printers or terminals.
- J. Provide one primary control panel minimum to each AHU, AC unit, chilled water system and for each floor zone, area and/or as required to maintain the minimum spare points.
- K. Immunity to power and noise.
 - 1. Controller shall be able to operate at 90% 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage.
 - 2. Operation shall be protected against electrical noise of 5 -120Hz and from keyed radios up to 5W at 3ft.
 - 3. Isolation shall be provided at all primary network terminations, as well as all field point terminations to suppress induced voltage transients consistent with:
 - a. RF-Conducted Immunity (RFCI) per ENV 50141 (IEC 1000-4-6) at 3V

- b. Electro Static Discharge (ESD) Immunity per EN 61000-4-2 (IEC 1000-4-2) at 8kV air discharge, 4kV contact.
- c. Electrical Fast Transient (EFT) per EN 61000-4-4 (IEC 1000-4-4) at 500V signal, 1kV power
- d. Output Circuit Transients per UL 864 (2,400V, 10A, 1.2 Joule max)
- 4. Isolation shall be provided at all Primary Controller's AC input terminals to suppress induced voltage transients consistent with:
 - a. IEEE Standard 587 1980
 - b. UL 864 Supply Line Transients
 - c. Voltage Sags, Surge, and Dropout per EN 61000-4-11 (EN 1000-4-11)

2.4 PRIMARY CONTROL PANEL SOFTWARE

- A. Furnish the following applications software to form complete wireless operating system for building and energy management as described in this specification.
- B. Provide all necessary software for a complete operating system as required. All software shall reside in each Primary Control Panel. Primary Control Panels shall not be dependent upon any higher level computer or another controller for operation.
- C. All points, panels and programs shall be identified by a 30 character name and a 16 character point descriptor. The same names shall be displayed at both the Primary Control Panel(s) (via portable terminal, printer or modem) and via the web browser for complete system wide wireless access, display, control and monitoring.
- D. All digital points shall have a user-defined, two-state status indication with 8 characters minimum (e.g. Summer, Enabled, Disabled, Abnormal).
- E. System Security:
 - 1. User access shall be secured using individual security passwords and user names.
 - 2. Passwords shall restrict the user to the objects, applications, and system functions as assigned by the system manager.
 - 3. Primary Controllers shall be able to assign to assign a minimum of 50 passwords access and control priorities to each point individually. The logon password (at any Operator Interface or portable operator terminal) shall enable the operator to monitor, adjust and control only the points that the operator is authorized for. All other points shall not be displayed at the Operator Interface or portable terminal. Passwords and priorities for every point shall be fully programmable and adjustable.
 - 4. User Log On/Log Off attempts shall be recorded.

- 5. The system shall protect itself from unauthorized use by automatically logging off following the last keystroke. The delay time shall be user-definable.
- F. Each Primary Control Panel shall, at a minimum, be provided with software for:
 - 1. Two-position control, proportional control, proportional plus integral control, proportional, integral, plus derivative control algorithms, all with automatic control loop tuning.
 - 2. Limiting the number of times each piece of equipment may be cycled within any one-hour period.
 - 3. The system shall provide protection against excessive demand situations during start-up periods by automatically introducing time delays between successive start commands to heavy electrical loads. Upon the resumption of power, each DDC Controller shall analyze the status of all controlled equipment, compare it with normal occupancy scheduling and turn equipment on or off as necessary to resume normal operations.
 - 4. Priority load shedding (All zones).
 - 5. Energy management routines including time of day scheduling, room occupied/unoccupied, calendar-based scheduling, holiday scheduling, temporary schedule overrides, start-stop time optimization, automatic daylight savings time switch over, night setback control, enthalpy switch over, peak demand limiting, temperature-compensated duty cycling, heating / cooling interlock, supply temperature reset, priority load shedding, and power failure restart.
 - 6. Custom, job-specific processes defined by the user, to automatically perform calculations and special control routines and sequences of operations.
 - a. Controllers shall be able to execute custom, job-specific processes defined by the user, to automatically perform calculations and special control routines.
 - b. It shall be possible to use any system measured point data or status, any system calculated data, a result from any process or any user-defined constant in any controller in the system.
 - c. Any process shall be able to issue commands to points in any and all other controllers in the system via the BACnet, open protocol web based system.
 - d. Processes shall be able to generate operator messages and advisories to other operator I/O devices. A process shall be able to directly send a message to a specified device or cause the execution of a dial-up connection to a remote device such as a printer or pager.
 - e. The custom control programming feature shall be documented via English language descriptors.
 - f. Each controller shall support text comment lines in the operating program to allow for quick troubleshooting, documentation and historical summaries of program development.
 - g. Controller shall provide a HELP function key, providing enhanced context sensitive on-line help with task orientated information from the user manual.

- 7. Generate and receive automatic and manual operator messages and advisories.
- 8. Comment lines for all programs.
- 9. Distributed, independent alarm analysis and filtering. Reporting of selected alarms during system shutdown and start-up shall be automatically inhibited. A minimum of six priority levels shall be provided for each point.
- 10. Automatically accumulate and store run-time hours for all digital points.
- 11. Automatically sample, calculate and store consumption totals on a daily, weekly, or monthly basis for all analog and pulse input type points
- G. Trend data shall be stored at the Primary Control Panels and automatically uploaded to the PC workstation. Uploads shall occur based on user-defined intervals, manual commands, or automatically when the trend buffer is 80% full. All trend data shall be available for use in any 3rd party personal computer applications located in the BMS.
- H. Primary Control Panels shall be able to assign password access and control priorities to each system individually. The logon password (at any PC workstation(s) or POT) shall enable the operator to monitor, adjust and/or control only the systems, programs, primary control panel, and/or secondary control panels that the operator is authorized for. All other systems, programs, primary and secondary control panels shall not be displayed at the PC workstation, POT, or modem. Passwords and priority levels for each system, program, primary control panel and secondary control panel shall be fully programmable and adjustable.
- I. Primary Control Panels shall be able to access any data from, or send control commands and alarm reports directly to, any other Primary Control Panel or combination of controllers on the network without dependence upon a central or intermediate processing device. Primary Control Panels shall also be able to send alarm reports to multiple operator workstations without dependence upon a central or intermediate processing device. The system web browser shall allow complete communication/feedback/control capabilities.
- J. Alarm management shall be provided to monitor and direct alarm information to operator devices. Each DDC Controller shall perform distributed, independent alarm analysis and filtering to minimize operator interruptions due to non-critical alarms, minimize network traffic and prevent alarms from being lost. At no time shall the DDC Controllers ability to report alarms be affected by either operator or activity at a PC workstation, local I/O device or communications with other panels on the network.
 - 1. All alarm or point change reports shall include the point's English language description and the time and date of occurrence.
 - 2. The user shall be able to define the specific system reaction for each point. Alarms shall be prioritized to minimize nuisance reporting and to speed operator response to critical alarms. A minimum of six priority levels shall be provided for each point. Point priority levels shall be combined with user definable destination categories (PC, printer, DDC Controller, etc.) to provide full flexibility in defining the handling of system alarms. Each DDC Controller shall automatically inhibit the reporting of selected alarms during system

shutdown and start-up. Users shall have the ability to manually inhibit alarm reporting for each point.

- 3. Alarm reports and messages shall be routed to user-defined list of operator workstations, or other devices based on time and other conditions. An alarm shall be able to start programs, print, be logged in the event log, generate custom messages, and display graphics.
- 4. In addition to the point's descriptor and the time and date, the user shall be able to print, display or store a 200 character alarm message to more fully describe the alarm condition or direct operator response.
 - a. Each DDC Controller shall be capable of storing a library of at least 50 alarm messages. Each message may be assignable to any number of points in the Controller.
- 5. Operator-selected alarms shall be capable of initiating a call to a remote operator device.
- K. Scheduling:
 - 1. Provide a comprehensive menu driven program to automatically start and stop designated object or group of objects in the system according to a stored time.
 - 2. It shall be possible to define a group of objects as a custom event (Le. meeting, athletic activity, etc.). Events can then be scheduled to operate all necessary equipment automatically.
 - 3. For points assigned to one common load group, it shall be possible to assign variable time delays between each successive start and stop within that group.
 - 4. The operator shall be able to define the following information:
 - a. Time, day
 - b. Commands such as on, off, auto, and so forth.
 - c. Time delays between successive commands.
 - d. There shall be provisions for manual overriding of each schedule by an appropriate operator.
 - 5. It shall be possible to schedule calendar-based events up to one year in advance based on the following:
 - a. Weekly Schedule. Provide separate schedules for each day of the week. Each of these schedules should include the capability for start, stop, optimal start, optimal stop, pre-cool/pre-heating (warm-up) and night economizer. When a group of objects are scheduled together as an Event, provide the capability to adjust the start and stop times for each member.
 - b. Exception Schedules. Provide the ability for the operator to designate any day of the year as an exception schedule. Exception schedules may be defined up to a

year in advance. Once an exception schedule is executed, it will be discarded and replaced by the standard schedule for that day of the week.

- c. Holiday Schedules. Provide the capability for the operator to define up to 99 special or holiday schedules. These schedules may be placed on the scheduling calendar and will be repeated each year. The operator shall be able to define the length of each holiday period.
- L. Automatic Daylight Savings Time Switchover: The system shall provide automatic time adjustment for switching to/from Daylight Savings Time.
- M. Night setback control. The system shall provide the ability to automatically adjust setpoints for night control.
- N. Enthalpy switchover (economizer). The Primary Controller Software (BCS) shall control the position of the air handler relief, return, and outside air dampers. If the outside air enthalpy falls below changeover set point the BCS will modulate the dampers to provide 100 percent outside air. The user will be able to quickly changeover to an economizer system based on enthalpy and will be able to override the economizer cycle and return to minimum outside air operation at any time.
- O. PID Control. A PID (proportional-integral-derivative) algorithm with direct or reverse action and anti-windup shall be supplied. The algorithm shall calculate a time-varying analog value that is used to position an output or stage a series of outputs. The controlled variable, set point, and PID gains shall be user-selectable.
- P. Sequencing. Provide application software based upon the sequences of operation specified to properly sequence equipment.
- Q. Staggered Start:
 - 1. This application shall prevent all controlled equipment from simultaneously restarting after a power outage. The order, in which equipment (or groups of equipment) is started, along with the time delay between starts, shall be user definable.
 - 2. Upon the resumption of power, each Primary Controller shall analyze the status of all controlled equipment, compare it with normal occupancy scheduling and turn equipment on or off as necessary to resume normal operations.
- R. Totalization:
 - 1. Run-Time Totalization. Primary Controllers shall automatically accumulate and store runtime hours for all digital input and output points. A high runtime alarm shall be assigned, if required, by the operator.
 - 2. Consumption totalization. Primary Controllers shall automatically sample, calculate and store consumption totals on a daily, weekly or monthly basis for all analog and digital pulse input type points. This shall include all motors/devices controlled by Variable Frequency Drives.

- 3. Event totalization. Primary Controllers shall have the ability to count events such as the number of times a pump or fan system is cycled on and off. Event totalization shall be performed on a daily, weekly or monthly basis for all points. The event totalization feature shall be able to store the records associated with events before reset.
- S. A variety of historical data collection utilities shall be provided to manually or automatically sample, store and display system data for all points for a minimum of 5 years.
 - 1. DDC Controllers shall store point history data for selected analog and digital inputs and outputs:
 - a. Any point, physical or calculated may be designated for trending. Any point, regardless of physical location in the network, may be collected and stored in each DDC Controllers point group and communication to the network. Two methods of collection shall be allowed: either by a pre-defined time interval or upon a pre-defined change of value. Sample intervals of I minute to 7 days shall be provided. Each DDC Controller shall have a dedicated RAM-based buffer for trend data and shall be capable of storing a minimum of 10,000 data samples.
 - b. Trend data shall be stored at the DDC Controllers and automatically uploaded to the web browser wireless network. Uploads shall occur based upon user-defined interval, manual command or automatically when the trend buffers are 80% full. All trend data shall be available for use in any 3rd party personal computer applications located on the MLN.
 - c. DOC Controllers shall also provide high resolution sampling capability for verification of control loop performance. Operator-initiated automatic and manual loop tuning algorithms shall be provided for a minimum of 36 operator-selected PID control loops. Provide capability to view or print trend and tuning reports.
 - 1) The controller shall perform a step response test with a minimum onesecond resolution, evaluate the trend data, calculate the new PID gains and input these values into the selected LOOP statement.
 - 2) Loop tuning shall be capable of being initiated either locally at the DOC Controller, from a network workstation, or remotely using dial-in modems. For all loop tuning functions, access shall be limited to authorized personnel through password protection.
- T. DDC Controllers shall automatically accumulate and store run-time hours for all digital input and output points.
- U. DDC Controllers shall automatically sample, calculate and store consumption totals on a daily, weekly, or monthly basis for all analog and digital pulse input type points.
- V. DDC Controllers shall count events such as the number of times a pump or fan system is cycled on and off. Event totalization shall be performed on a daily, weekly, and monthly basis for all

points. The event totalization feature shall be able to store the records associated with a minimum of 9,999.9 events or five years before reset, whichever is greater.

W. Each Primary DDC Controller shall have enough memory to buffer and store all trend and alarm data for that primary controller during a network outage (16 MB minimum for each primary DDC Controller).

2.5 SECONDARY CONTROL PANEL HARDWARE

- A. Each Secondary Control Panel shall operate as a stand-alone controller capable of performing its user selectable control routines independently of any other controller in the system. Each secondary control panel shall be a microprocessor-based, multi-tasking, real-time digital control processor.
- B. Each Primary Controller shall be able to communicate with secondary controllers over the Secondary Network to control terminal equipment only.
- C. The use of Secondary Network controllers with custom program applications to control AHU's, water systems, etc. is not acceptable.
- D. Each secondary controller shall include all point inputs and outputs necessary to perform the specified control sequences. The secondary controller shall accept input and provide output signals that comply with industry standards. Controllers utilizing proprietary control signals shall not be acceptable. Outputs may be utilized either for two-state, modulating, floating, or proportional control, allowing for additional system flexibility.
- E. Provide a Secondary Control Panel for each of the following types of equipment (if applicable):
 - 1. Constant Air Volume (CAV) boxes.
 - 2. Duct-mounted coils.
 - 3. Space/room humidifiers.
 - 4. Variable Air Volume (VAV) Boxes (Supply).
 - 5. Room Pressurization.
 - 6. Other terminal equipment
- F. Each Web Interfaced Secondary Control Panel shall, at a minimum, be provided with:
 - 1. Appropriate NEMA rated enclosure.
 - 2. A stand-alone real-time digital control microprocessor module.
 - 3. Secondary network communications ability.
 - 4. Power supplies as required for all associated modules, sensors, actuators, etc.

- 5. Input/output points as required.
- 6. Software as required for all sequences of operation, logic sequences, and energy management routines. Relay logic is not acceptable.
- 7. A portable operator terminal connection port.
- 8. Auxiliary enclosure for analog output transducers, isolation relays, etc. Auxiliary enclosure shall be part of primary enclosure or mounted adjacent primary enclosure.
- 9. Local LED status indication for each digital input and output.
- 10. Each controller measuring air volume shall include provisions for manual and automatic calibration of the differential pressure transducer in order to maintain stable control and insuring against drift over time.
- 11. Each controller measuring air volume shall include a differential pressure transducer.
- 12. Lighting control.
- 13. Fan relay for cabinet unit heaters.
- G. Communication. Each controller shall perform its primary control function independent of other Secondary Network communication, or if Secondary Network communication is interrupted. Reversion to a fail-safe mode of operation during Secondary Network interruption is not acceptable.
- H. Control Algorithms. The controller shall receive its real-time data from the Primary Controller time clock to insure Secondary Network continuity. Each controller shall include algorithms incorporating proportional, integral and derivative (PID) gains for all applications. All PID gains and biases shall be field-adjustable by the user via room sensor LCD or the portable operator's terminal as specified herein. Controllers that incorporate proportional and integral (PI) control algorithms only shall not be acceptable.
- I. Control Applications. Operating programs shall be field-selectable for specific applications. In addition, specific applications may be modified to meet the user's exact control strategy requirements, allowing for additional system flexibility. Controllers that require factory changes of all applications are not acceptable.
- J. Calibration. Each VAV box controller shall include provisions for manual and automatic calibration of the differential pressure transducer in order to maintain stable control and insuring against drift over time.
 - 1. Manual calibration may be accomplished by either commanding the actuator to 0% via the POT or by depressing the room sensor override switch. Calibration of the transducer at the controller location shall not be necessary.
- K. Each Secondary Control Panel shall continuously perform self-diagnostics on all hardware and secondary network communications. The Secondary Control Panel shall provide both local and remote annunciation of any detected component failures, low battery conditions, or repeated failure to establish communication to the system.

HYBRID OR & OR #6 Maine Medical Center Portland, ME PERKINS + WILL P+W Project #152168.023 July 31, 2015

- L. Controllers shall include all point inputs and outputs necessary to perform the specified control sequences. As a minimum, 50% of the point outputs shall be of the Universal type; that is, the outputs may be utilized either as modulating or two-state, allowing for additional system flexibility. In lieu of Universal outputs, provide a minimum of 50% spare outputs of each type via additional point termination boards or controllers. Analog outputs shall be industry standard signals such as 24VAC floating control, allowing for interface to a variety of modulating actuators. Terminal equipment controllers utilizing proprietary control signals and actuators shall not be acceptable.
- M. Provide each secondary control panel with sufficient memory to accommodate point databases, operating programs, local alarming, and local trending. All databases and programs shall be stored in non-volatile EEPROM, EPROM, and PROM, or a minimum of 72hr battery backup shall be provided. The controllers shall be able to return to full normal operation without user intervention after a power failure of unlimited duration. Provide uninterruptible power supplies (UPS's) of sufficient capacities for all terminal controllers that do not meet this protection requirement. Operating programs shall be field-selectable for specific applications. In addition, specific applications may be modified to meet the user's exact control strategy requirements, allowing for additional system flexibility. Controllers that require factory changes of all applications are not acceptable.
- N. The secondary control panels shall be powered from a 24VAC source provided by this contractor and shall function normally under an operating range of 18 -28VAC (-25% -17%), allowing for power source fluctuations and voltage drops. Install plenum data line and sensor cable in accordance with local code and NEC. The BMS Contractor shall provide a dedicated power source and separate isolation transformer for each controller to function normally under the specified operating range. The controllers shall also function normally under ambient conditions of 32° -122°F (0° -50°C) and 10% -95%RH (non-condensing). Provide each controller with a suitable cover or enclosure to protect the intelligence board assembly. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type. The BMS Contractor shall provide 24VAC power to the terminal units by utilizing:
 - 1. The building line voltage power trunk and installing separate isolation transformers for each controller.
 - 2. Dedicated line voltage power source and isolation transformers at a central location and installing 24VAC power trunk to supply multiple ASC's in the area.
- O. Environment. The controllers shall function normally under ambient conditions of 320-122°F (00-500 C) and 10% -95%RH (non-condensing). Provide each controller with a suitable cover or enclosure to protect the circuit board assembly.
- P. Immunity to noise. Operation shall be protected against electrical noise of 5 -120Hz and from keyed adios up to 5W at 1m (3ft).
- Q. Provide VAV/CAV box DOC controller/actuators and ship to the VAV/CAV box manufacturer for factory installation.

2.6 SECONDARY CONTROL PANEL SOFTWARE

- A. Provide all necessary software for a complete operating system as required. All software shall reside in each Secondary Control Panel. Secondary Control Panels shall not be dependent upon any higher level computer or another controller for operation.
- B. Secondary control panel software configured for CAV or VAV control algorithms shall include provisions for manual and automatic calibration of attached differential pressure transducer in order to maintain stable control and insuring against drift over time. Calibration shall be accomplished by stroking the terminal unit damper actuator to a 0% position so that a 0 CFM air volume reading is sensed. The controller shall automatically accomplish this whenever the system mode switches from occupied to unoccupied or vice versa. Manual calibration may be accomplished by either commanding the actuator to 0% via the POT or by depressing the room sensor override switch. Calibration of the transducer at the controller location shall not be necessary.
- C. Each secondary controller shall perform its primary control function independent of primary controller LAN communication, or if LAN communication is interrupted. Reversion to a fail-safe mode of operation during LAN interruption is not acceptable. The controller shall receive its real-time data from the primary control panel time clock to insure LAN continuity. Each controller shall include algorithms incorporating proportional, integral, and derivative (PID) control for all applications. All PI parameters shall be field-adjustable by the user via a portable operator's terminal.
- D. Secondary control panels shall support pressure independent terminal boxes including VAV cooling only, VAV with hot water reheat, induction VAV with hot water reheat and CV with hot water reheat. All VAV box control applications shall be field-selectable such that a single controller may be used in conjunction with any of the above types of terminal units to perform the specified sequences of control. This requirement must be met in order to allow for future design and application changes and to facilitate system expansions. Controllers that require factory application changes are not acceptable.

2.7 PERSONAL COMPUTER OPERATOR WORKSTATION SOFTWARE

- A. General
 - 1. Provide software which includes the following:
 - a. Scheduling and override of building operations.
 - b. Collection and analysis of historical data.
 - c. Editing, programming, storage, and downloading of controller databases, programs, and parameters.
 - d. Microsoft Office 2012 as a minimum.
 - e. A 32-bit, multi-tasking Microsoft Windows NT 4.0/Windows XP environment that allows the user to run several applications simultaneously. Other Windows

applications shall run simultaneously with the BMS software including, but not limited to, Word, Excel, Access, etc.

- f. Provide a user interface that shall minimize the use of a typewriter style keyboard through the use of a mouse or similar pointing device and "point and click" approach to menu selection.
- g. The operator shall be able to drag and drop information between applications (e.g. click on a point in the alarm screen and drag it into the dynamic trend graph screen to initiate a dynamic trend).
- h. Operator specific password access protection shall allow the user to limit workstation control, display, and data base manipulation capabilities for each object in the system. An object shall be defined as any input or output point, setpoint, system program, etc. The operator privileges shall "follow" the operator to any workstation or Primary Control Panel that the operator logs on to. Provide a minimum of 1000 passwords.
- i. Operators will be able to perform only those commands on the objects available based on their respective passwords. Menu selections displayed shall be limited to only those items defined for the access level of the password used to log-on.
- j. An audit trail report to track system object changes that shall record operator initiated actions. These actions shall include, but not be limited to, changes made by a particular person, changes made to a specific piece of equipment, and/or changes made during a designated time frame. The changes shall be printed and archived for future reference either on command or automatically, at the operator's option. The operator activity tracking data shall be stored in a tamper proof buffer.
- k. Software shall allow the operator to perform commands including, but not limited to:
 - 1) Start up and shutdown of equipment.
 - 2) Setpoint adjustment.
 - 3) Add/modify/delete time programming.
 - 4) Enable/disable process execution.
 - 5) Lock/unlock alarm reporting.
 - 6) Enable/disable totalization and/or trending.
 - 7) Override PID loop setpoints.
 - 8) Enter temporary override schedules.
 - 9) Define holiday schedules.
 - 10) Change time/date.

- 11) Automatic daylight savings time adjustments.
- 12) Enter/modify analog warning and alarm limits.
- I. Reporting
 - 1) Reports shall be generated and directed to CRT displays, printers, or disk. As a minimum, the system shall allow the user to easily obtain the following types of reports:

A general listing of all points in the network.

List of all points currently in alarm.

List of all points currently in override status.

List of all disabled points.

List of all points currently locked out.

DDC Controller trend overflow warning.

List all weekly schedules.

- m. Scheduling
 - 1) Provide a graphical spreadsheet-type format for simplification of time-of-day scheduling and overrides of building operations. Provide schedules for 365 days in advance.
 - 2) Weekly schedules shall be provided for each building zone or piece of equipment with a specific occupancy schedule. Temporary overrides and associated times may be inserted into blocks for modified operating schedules. After overrides have been executed, the original schedule will automatically be restored.
 - 3) Zone schedules shall be provided for each building zone as previously described. Each schedule shall include all points that can be commanded residing within the zone. Each point may have a unique schedule of operation relative to the zone's occupancy schedule, allowing for sequential starting and control of equipment within the zone. Scheduling and rescheduling of points may be accomplished easily via the zone schedule graphic.
- n. Collection and Analysis of Historical Data
 - Provide trending capabilities that allow the user to easily monitor and preserve records of system activity over an extended period of time. Any system point may be trended automatically at time-based intervals or changes of value, both of which shall be user-definable. Trend data shall be stored on hard disk for future diagnostics and reporting.

HVAC INSTRUMENTATION AND CONTROLS 230900 - 21

- 2) Trend data report graphics shall be provided to allow the user to view all trended point data. Reports may be customized to include individual points or pre-defined groups of at least 6 points. Provide additional functionality to allow any trended data to be transferred directly to an off-the-shelf spreadsheet package such as Excel. This shall allow the user to perform custom calculations such as energy usage, equipment efficiency and energy costs and shall allow for generation of these reports on high-quality plots, graphs and charts.
- 3) Provide additional functionality that allows the user to view trended data on trend graph displays. Displays shall be actual plots of both historical and/or real-time dynamic point data. A minimum of 10 points shall be viewed simultaneously on a single graph. The user may pause the graph and take "snapshots" of screens to be stored on the hard disk for future recall and analysis. Displays shall include an 'X' axis indicating elapsed time and a 'V' axis indicating a range scale in engineering units for each point. The 'V' axis shall have the ability to be manually or automatically scaled at the user's option. Different ranges for each point may be used with minimum and maximum values listed at the bottom and top of the 'V' axis. All 'V' axis data shall be color-coded to match the line color for the corresponding point.
- 4) Static graphs shall represent actual point data that has been trended and stored on disk. Exact point values may be viewed on a data window by pointing or scrolling to the place of interest along the graph. Provide capability to print any graph on the system printer for use as a building management and diagnostics tool.
- 5) Dynamic graphs shall represent real-time point data. Any point or group of points may be graphed, regardless of whether they have been predefined for trending. The graphs shall continuously update point values. At any time the user may redefine sampling times or range scales for any point. In addition, the user may pause the graph and take "snapshots" of screens to be stored on the workstation disk for future recall and analysis. As with static graphs, exact point values may be viewed and the graphs may be printed.
- o. Dynamic Color Graphic Displays
 - 1) All workstation(s) shall be provided with color graphics. All workstation(s) software shall include a graphical viewing and control environment and definition and construction of dynamic color graphic displays.
 - 2) Provide system color graphics for each HVAC system and for each electrical, plumbing and/or piping system that is monitored and/or controlled by the BMS. Provide scaled floor plans indicating equipment location, service, and system data as required.
 - 3) Provide color graphic floor plan displays and system schematics for each piece of mechanical equipment, including but not limited to air handling units, chilled water systems, and hot water systems to optimize system performance analysis and speed alarm recognition.

- 4) MMC Compliance manager and MMC lead HVAC supervisor shall sign-off on all Honeywell EBI graphic changes.
- 5) The operator interface shall allow users to access the various system schematics and floor plans via a graphical penetration scheme, menu selection or text-based commands.
- 6) Dynamic temperature values, humidity values, flow values, and status indication shall be shown in their actual respective locations and shall automatically update to represent current conditions without operator intervention.
- 7) The windowing environment of the PC operator workstation(s) shall allow the user to simultaneously view several graphics at a time to analyze total building operation or to allow the display of a graphic associated with an alarm to be viewed without interrupting work in progress.
- 8) Graphic generation software shall be provided to allow the user to add, modify, or delete system graphic displays via an off the shelf graphics package similar to MicroGraphix Designer.
- 9) Provide libraries of pre-engineered screens and symbols depicting standard air handling unit components (e.g., fans, cooling coils, filters, dampers, etc.), complete mechanical systems (e.g., constant volume-terminal reheat, YAY, etc.) and electrical symbols.
- 10) Graphical displays can be created to represent any logical grouping of system points or calculated data based upon building function, mechanical system, building layout, or any other logical grouping of points that aids the operator in the analysis of the facility.
- 11) Provide an automatically updated, dynamic display of the site-specific BMS architecture indicating the status of primary and secondary controllers, PC workstation(s), and networks.
- 12) Provide a separate dynamic display page of each HVAC System (AHU, chiller, boiler, hot water pump and loop, etc.), electrical, and/or plumbing system connected to the BMS.
- 13) Provide a separate dynamic display page of each piece of terminal equipment (VAV box, fan coil unit, etc.) connected to the BMS.
- 14) Provide an additional (10) separate dynamic, graphic display pages at each workstation as required by the operating staff to further assist in daily system operations.
- 15) Graphics shall incorporate all system integration points communicated via hardware or software gateways and/or interfaces. Origin of information shall be transparent to the operator and shall be controlled, displayed, trended, etc. as if the points were hardwired to the BMS.

- 16) The graphic integration shall include the downloading, reformatting and creation of all other systems and graphics currently monitored by this existing American Energy Management System.
- 2. System Configuration and Definition
 - a. All temperature and equipment control strategies and energy management routines shall be definable by the operator. System definition and modification procedures shall not interfere with normal system operation and control.
 - b. The system shall be provided complete with all equipment and documentation necessary to allow an operator to independently add, delete, or modify any system object including Primary Control Panel(s), operator workstations(s), Secondary Control Panels, reporting definitions, control loops, energy management applications, time and calendar-based programming, totalization, historical data trending, custom control processes, graphic displays, operator passwords, alarm messages, etc.
 - c. Definition of operator device characteristics for individual points, applications, and control sequences shall be performed using instructive prompting software.
 - d. Programming shall be performed with the BMS system online and shall not interfere with BMS system operation.
 - e. Inputs and outputs for any process shall not be restricted to a single Primary Control Panel, but shall be able to include data from any and all other network panels to allow the development of network-wide control strategies. Processes shall also allow the operator to use the results of one process as the input to any number of other processes (cascading).
 - f. Provide the capability to backup and store all system databases on the workstation hard disk. In addition, all database changes shall be performed while the workstation(s) are on-line without disrupting other system operations. Changes shall be automatically recorded and downloaded to the appropriate Primary Control Panel. Similarly, changes made at the Primary Control Panels shall be automatically uploaded to the workstation, ensuring system continuity. The user shall also have the option to selectively download changes as desired.
 - g. Provide context-sensitive help menus to provide instructions appropriate with operations and applications currently being performed.

2.8 SYSTEM CONFIGURATION AND DEFINITION

- A. All temperature and equipment control strategies and energy management routines shall be definable by the operator. System definition and modification procedures shall not interfere with normal system operation and control.
- B. The system shall be provided complete with all equipment and documentation necessary to allow an operator to independently add, delete, or modify any system object including Primary Control Panel(s), operator workstations(s), Secondary Control Panels, reporting definitions, control loops, energy management applications, time and calendar-based programming,

totalization, historical data trending, custom control processes, graphic displays, operator passwords, alarm messages, etc.

- C. Definition of operator device characteristics for individual points, applications, and control sequences shall be performed using instructive prompting software.
- D. Programming shall be performed with the BMS system online and shall not interfere with BMS system operation.
- E. Inputs and outputs for any process shall not be restricted to a single Primary Control Panel, but shall be able to include data from any and all other network panels to allow the development of network-wide control strategies. Processes shall also allow the operator to use the results of one process as the input to any number of other processes (cascading).
- F. Provide the capability to backup and store all system databases on the workstation hard disk. In addition, all database changes shall be performed while the workstation(s) are on-line without disrupting other system operations. Changes shall be automatically recorded and downloaded to the appropriate Primary Control Panel. Similarly, changes made at the Primary Control Panels shall be automatically uploaded to the workstation, ensuring system continuity. The user shall also have the option to selectively download changes as desired.
- G. Provide context-sensitive help menus to provide instructions appropriate with operations and applications currently being performed.

2.9 SENSORS

- A. Electronic Sensors: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Temperature Sensors
 - 1. Resistance Temperature Detectors: Platinum. Temperature sensors shall be platinum resistance temperature detectors (RTD) with the following characteristics. Thermistor sensors are NOT an acceptable substitute, regardless of accuracy. Platinum RTDs may be installed with a transmitter if the controller cannot accept a direct platinum RTD input. It is not acceptable to claim that the controller cannot accept an RTD sensor. The project will be bid and installed with a controller that accepts RTD sensors or the voltage or current input of a platinum RTD used in conjunction with a transmitter. NO EXCEPTIONS. Thermistors used alone may be submitted as a deduct price for the owner's consideration.
 - 2. Accuracy: Plus or minus 0.2°F.
 - 3. Wire: Twisted, shielded-pair cable.
 - 4. Insertion Elements in Ducts: Single point, 18" long flexible; use where not affected by temperature stratification or where ducts are smaller than 9sq ft..
 - 5. Averaging Elements in Ducts: 12' to 25' long, rigid; use where prone to temperature stratification or where ducts are larger than 9sq ft; length as required.

- 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2" (64mm)
- 7. Space sensors: Provide recessed space temperature sensors in lieu of thermostats for all public areas, including all entry vestibules, lobbies, corridors, toilet rooms, etc.
 - a. Color: White, except on metal surfaces (tubes or mullions) shall be brushed aluminum.
 - b. Orientation: Vertical.
 - c. Space temperature sensors shall be recessed with flush mounted covers.
 - d. Insulating Bases: For thermostats located on exterior walls.
 - e. Adjusting Key: As required for calibration and cover screws.
 - f. Security Sensors: Stainless-steel cover plate with insulated back and security screws.
- 8. Aspirating Space Sensors:
 - a. Concerted with aspirating sensor for spaces with no surface for the sensor.
- C. Room Humidity Sensors: Bulk polymer sensor element.
 - 1. Accuracy: 1% full range with linear output.
 - 2. With locking cover matching room thermostats, span of 0 to 100%RH.
 - 3. Output: 4 -20mA.
 - 4. The sensor shall be a Kele model HW1K or pre-approved equal.
- D. Duct and Outside Humidity Air Sensors: Bulk polymer sensor element
 - 1. Accuracy: 1% full range with linear output.
 - 2. With element guard and mounting plate, span of 0 to 100% RH.
 - 3. Output: 4 -20mA.
 - 4. The sensor shall be a Kele model HD1 K, Kele model H01 K, or pre-approved equal.
- E. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - 1. Accuracy: 1% of full scale with repeatability of 0.1 %.
 - 2. Output: 4 -20mA.
 - 3. Building Static-Pressure Range: 0-0.25" wg (0-62 Pa).

- 4. Duct Static-Pressure Range: 0-5" wg (0-1243 Pa).
- 5. Provide a Setra M264 or pre-approved equal.
- F. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; proportional output 4-20mA.
 - 1. Two-wire capacitance.
 - 2. NEMA 4X enclosure.
 - 3. Rated for 0 to 100%RH and -400-185°F.
 - 4. Dual component housing with a moisture barrier completely isolating the electronic circuitry from the field wiring and calibration terminals.
 - 5. Operates with a 10 -55VDC power supply.
 - 6. Zero and span adjustments.
 - 7. Accuracy shall be $\pm 0.075\%$ of calibrated span.
 - 8. Setra 209 Series or pre-approved equal.
- G. Damper Endswitches
 - Provide a heavy-duty switch with plug-in, oil tight, watertight, and NEMA 3 construction (unless exposed to outside air type conditions). Shall be rated to operate from -40° -212°F (-40° -100°C). Shall have a side rotary switch for use with interchangeable levers. Shall have LED position and operation indicators. Shall be Omron, D4A series or preapproved equal.
- H. Equipment operation sensors as follows:
 - 1. Status Inputs for Fans: Differential-pressure switch with adjustable range of 0 -5" wg (0 1243 Pa) for fans not served with variable frequency drives.
 - 2. Status Inputs for Pumps: Differential-pressure switch piped across pump with adjustable pressure-differential range of 8 -60psig (55 -414 kPa) for pumps not served with variable frequency drives.
 - 3. Status Inputs for Electric Motors: Split-core current switch, adjustable and set to 175% of rated motor current.
- I. Electronic Valve/Damper Position Indication: Visual scale indicating percent of travel and 2-to 1O-V dc, feedback signal.
- J. Water-Flow Switches: Pressure-flow switches of bellows-actuated non-mercury type or snapacting type, with appropriate scale range and differential adjustment, with stainless-steel or bronze paddle. For chilled-water applications, provide vapor proof type.

- K. Water Differential Pressure Switches: Chilled water and hot water application. Hermetically sealed SPDT contacts; stainless steel bourdon tube (or bellows) sensing element; fixed deadband; setpoint shall be at about midpoint of operating range; electrical rating of 5A at 120VAC; manual adjustable setpoint; vibration resistant; weatherproof enclosure; snap-acting switch type.
- L. Air Differential Pressure Switches: Diaphragm type air differential pressure switches with diecast aluminum housing, adjustable setpoint, and minimum 5A switch rating at 120VAC, SPDT switches, and the switch pressure range shall be suited for the application. Provide Dwyer or equal. Switch shall be automatic reset type.
- M. OR and Isolation Room Differential Pressure Monitors
 - 1. Shall be TSI model RPM20 with audible and visual alarm. Monitor shall include optional door switches to prevent alarm if any door is left in the open position.
 - 2. Monitor to include optional analog output to DDC system for room pressure differential as well as low pressure alarm.

2.10 THERMOSTATS

- A. Remote-Bulb Thermostats: On-off or modulating type, liquid filled to compensate for changes in ambient temperature, with copper capillary and bulb, unless otherwise indicated.
 - 1. Bulbs in water lines with separate wells of same material as bulb.
 - 2. Bulbs in air ducts with flanges and shields.
 - 3. Averaging Elements: Copper tUbing with either single-or multiple-unit elements, extended to cover full width of duct or unit, adequately supported.
 - 4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
 - 5. On-Off Thermostat: With precision snap switches, with electrical ratings required by application.
 - 6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.
- B. Room Thermostat Cover Construction: Manufacturer's standard locking covers.
 - 1. Set-Point Adjustment: Exposed.
 - 2. Set-Point Indication: Exposed.
 - 3. Thermometer: Exposed.
 - 4. Color: Match space temperature sensors.

- 5. Orientation: Match space temperature sensors or brushed aluminum where installed on metal surfaces.
- C. Room thermostat accessories include the following:
 - 1. Insulating Bases: For thermostats located on exterior walls.
 - 2. Thermostat Guards: Locking; heavy-duty, transparent plastic; mounted on separate base Metal wire, tamperproof Locking, solid metal, ventilated, for mechanical/electrical equipment rooms.
 - 3. Adjusting Key: As required for calibration and cover screws.
- D. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.

2.11 HUMIDISTATS

A. Duct-Mounted Humidistats: Electric insertion, 2-position type with adjustable 2% throttling range, 20 to 80% operating range, single-or double-pole contacts.

2.12 RELAYS

- A. Current Sensing Relay
 - 1. Provide and install current sensors for all motor status points. Current sensor shall combine a status sensor for monitoring positive status, and a command relay for starting or stopping motors in a single package. Current sensor shall be split core, two-wire, loop powered, and sized for expected amperage. Unit shall be UL listed. Provide status LEDs for current sensed below setpoint, current sensed above setpoint, and loop power failure. The current sensor output shall be N.O., solid state, and rated for 0.1A at 30 VAC/DC. The relay output shall be N.O., and rated for 5A resistive, 3A inductive at 30VDC, 240VAC. Current sensor with command relay shall be a Hawkeye model H938 or pre-approved equal. Provide and install current sensing switches for all constant speed motors. Switches shall be split core design for clamp-on installation. Switches shall be matched to the voltage and current rating of the motors.

2.13 LEAK DETECTOR

A. Leak detector shall have mounting feet with legs adjustable up to 1-Y2", gold-plated water detection probes, adjustable height, a green LED to indicate power, a red LED to indicate water detected, SPDT alarm contacts. The enclosure shall be cast aluminum, weatherproof with adjustable legs. The leak detector shall operate between 11 and 27 VAC/DC.

2.14 AUTOMATIC CONTROL VALVES

A. All automatic control valves shall meet the following requirements:

- 1. Fully proportioning.
- 2. Capable of operating at varying rates of speed to correspond to the exact dictates of the controllers and variable load requirements.
- 3. Maximum pressure drop: 3 psi.
- 4. Close against the maximum differential pressure of the system.
- 5. Body pressure rating and connection type construction shall conform to piping and fittings in which the valve is to be installed and to the valve schedules.
- 6. Two-way modulating chilled water and hot water, three-way blending/mixing and bypass valves shall have equal percentage flow characteristics.
- 7. Control valves 2" and smaller shall be ball valves with stainless steel stem and ball. Valves shall be Belimo, Warren, or pre-approved equal.
- 8. All 2-position control valves must be line size.

2.15 DAMPERS

- A. Dampers: AMCA-rated design; 0.125" minimum, extruded aluminum thermal break frames with hat channel for duct mounting; damper blades shall not be less than 0.075" extruded aluminum with high density polyurethane CFC free foam insulation with maximum blade width of 6 inches.
- B. Blades shall be secured to 1/2" diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade. Blades shall be thermally insulated low leakage with thermal breaks.
- C. Operating Temperature Range: From -700-200°F.
- D. For standard applications, include Ruskiprene II edging.
- E. For low-leakage applications, use parallel-or opposed-blade design depending upon application (mixing: parallel/ shut-off: opposed blade) with inflatable seal blade edging, or replaceable rubber seals, rated for leakage at less than 10CFM/sq ft of damper area, at differential pressure of 4" wg when damper is being held by torque of 50 in x lbf; when tested according to AMCA 500D.
- F. Dampers used in a two-position application shall be parallel blade design. Dampers used in a modulating application shall be opposed blade design. Dampers shall be provided with end switches.
- G. All dampers used for smoke control/unit isolation type dampers with all electric actuators, shall be UL listed for smoke control service. Dampers for UL listed service shall be type SD50 as manufactured by Ruskin or approved equal.
- H. All Dampers shall be type CDTI-50BF as manufactured by Ruskin or Approved equal.

PERKINS + WILL P+W Project #152168.023 July 31, 2015

2.16 ACTUATION

- A. All actuation shall be electric. Pneumatic actuation is not acceptable. All actuators for smoke control/unit isolation service shall be UL listed for such services.
- B. Incremental Electronic Actuator for Terminal Equipment Valve and/or Damper Actuation
 - 1. Incremental actuators shall be allowed for terminal equipment only.
 - 2. Actuators shall be proportional, electronic, direct-coupled actuators used for modulating service. Actuators shall be equipped with metal housings and visual stroke indicators.
 - 3. Actuators shall be equipped with a permanent manual adjustment.
 - 4. Minimum Torque: 35" lb.
 - 5. Operating Voltage: 24VAC.
 - 6. Input Signal: 3 wire floating, 0 -10VDC, or 4 -20mA.
 - 7. Frequency: 50 -60Hz.
 - 8. Power Consumption: 1.5VA maximum.
 - 9. Spring Return Time: 20sec maximum.
 - 10. Spring return position should be field adjustable with a switch.
 - 11. Nominal Force: 90lb Minimum.
 - 12. Stroke: 7/3211 (5.5mm) maximum.
 - 13. For use when the maximum media temperature is 230°F.

C. Valve Actuation

- 1. Valve actuators shall:
 - a. Be quiet in operation
 - b. Provide smooth modulation at design flow and pressure conditions.
 - c. Be capable of operating in sequence with other valves and/or damper actuators when required by the sequence of operation.
 - d. Be sized to close against a differential pressure equal to the design pump head plus 15%. Where pressure and flow combinations exceed ratings for commercial valves and actuators, industrial class valves and actuators shall be provided.
 - e. Valve actuators shall fail-safe in either the normally open or normally closed position in the event of power failure or signal failure. Fail Safe positions are as follows:

- 1) Duct-mounted Heating Coil Valves Normally Closed
- 2. Electric Valve Actuation
 - a. Actuator shall have electronic, proportional control and shall be direct-coupled with spring return.
 - b. Actuators shall be equipped with a permanent manual override hand wheel and visual and electronic stroke indicators.
 - c. Operating Voltage: 24VAC.
 - d. Input Signal: 0-10VDC, 4-20mA.
 - e. Power Consumption: 18VA maximum (valves 2" and under), 28VA maximum (valves 2-1/2" -4")
 - f. Spring Return Time: 15 seconds maximum
 - g. Spring return position should be field adjustable with a switch.
 - h. Stroke: 3/4" (20mm) maximum (valves 2" and under), 1-1/2" (valves 2-1/2"-4")
 - i. For use when the maximum media temperature is 300°F.
- D. Damper Actuation
 - 1. Damper actuators shall have external adjustable stops to limit the stroke in either direction.
 - 2. All damper actuators shall have sufficient power to overcome friction of damper linkage and air pressure acting on louvers and to operate the damper smoothly throughout the entire damper range.
 - 3. Actuators shall be sized with a torque greater than 150% of the design damper torque.
 - 4. Actuators shall have mounting arrangement for location outside of the air stream. The damper actuators shall be mounted on the damper extension so that it is not buried in the wall construction. All damper actuators serving UL rated dampers shall be also UL listed as part of the assembly.
 - 5. Damper actuators shall fail-safe in either the normally open or normally closed position in the event of power failure or signal failure. Fail Safe Positions are as follows:
 - a. Return Air Dampers

Normally Open

6. Electric Damper Actuation for Modulating and Two Position Damper Actuation

- a. Provide proportional, electronic, direct-coupled spring return actuators for all automatic dampers used for modulating service. Each actuator shall be equipped with a brushless DC motor, self-centering shaft coupling, metal housing, permanent manual override, visual stroke indicators, and built in adjustable start and span controls with the following specifications:
 - 1) Operating Voltage: 24VAC
 - 2) Input Signal: 0-10VDC, 4 -20mA (modulating), on/off (two position)
 - 3) Frequency: 50-60Hz
 - 4) Power Consumption: 9VAMaximum 2.23 CONTROL CABLE
 - 5) Spring Return Time: 15secs Maximum
 - 6) Spring return position should be field adjustable with a switch.
 - 7) Minimum Torque: 144" Ib
 - 8) Angular Rotation
- 2.17 CONTROL CABLE
 - A. BACKBOARDS
 - Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches for panel and control mounting. Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry."
 - B. RS-232 CABLE
 - 1. Standard Cable: NFPA 70, Type CM.
 - a. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - b. Polypropylene insulation.
 - c. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - d. PVC jacket
 - e. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.
 - f. Flame Resistance: Comply with UL 1581.
 - 2. Plenum-Rated Cable: NFPA 70, Type CMP. Note: Partial Plenum Return Project
 - a. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.

- b. Plastic insulation.
- c. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
- d. Plastic jacket.
- e. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire
- f. Flame Resistance: Comply with NFPA 262

C. RS-485 CABLE

- 1. Standard Cable: NFPA 70, Type CM or Type CMG.
 - a. Paired, two pairs, twisted, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - b. PVC insulation.
 - c. Unshielded.
 - d. PVC jacket.
 - e. Flame Resistance: Comply with UL 1581.
- 2. Plenum-Rated Cable: NFPA 70, Type CMP. Note: Partial Plenum Return Project
 - a. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - b. Fluorinated ethylene propylene insulation.
 - c. Unshielded.
 - d. Fluorinated ethylene propylene jacket.
 - e. Flame Resistance: NFPA 262, Flame Test.

PART 3 - EXECUTION

3.1 CONTROL CABLE

- A. Control wiring and cabling Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.

- 3. Plenum rated cable above and in all ceiling return plenums
- B. All control wiring and cabling associated with and part of the smoke evacuation system shall be installed in rigid conduit without exception.
- C. All control wiring and cabling in the Central Utility Plant, Wet Mechanical Rooms, Penthouses, tunnels and any other spaces where exposed shall be installed in rigid conduit without exception.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. PATHWAY:

- 1. Support of Open Cabling: NRTL labeled for support of Control cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - a. Support brackets with cable tie slots for fastening cable ties to brackets.
 - b. Lacing bars, spools, J-hooks, and D-rings.
 - c. Straps and other devices.

F. CONTROL-CIRCUIT CONDUCTORS

- 1. Class 1 Control Circuits: Stranded copper, Type THHN-THWN in raceway, complying with UL 83 and UL 44.
- Class 2 Control Circuits: Stranded copper, (1) Type THHN-THWN, in raceway (2) [powerlimited cable, concealed in building finishes Le. above ceiling in walls] complying with UL 83 and UL 44.
- 3. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

G. IDENTIFICATION PRODUCTS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Kroy LLC.
 - d. Panduit Corp.
- 2. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- 3. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

H. INSTALLATION OF PATHWAYS

- 1. Comply with TINEIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.
- 2. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.
- 3. Install manufactured conduit sweeps and long-radius elbows if possible.
- 4. Pathway Installation in Equipment Rooms:
 - a. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed or in the corner of room if multiple sheets of plywood are installed around perimeter walls of room.
 - b. Secure conduits to backboard if entering room from overhead.
 - c. Extend conduits 3 inches above finished floor and seal/caulk to be air tight.
 - d. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
- 5. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

I. INSTALLATION OF CONDUCTORS AND CABLES

- 1. Comply with NECA 1.
- 2. General Requirements for Cabling:
 - a. Comply with TINEIA-568-B.1.
 - b. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - c. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - d. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - e. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSIITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - f. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

- g. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- h. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

J. CONTROL-CIRCUIT CONDUCTORS

- 1. Minimum Conductor Sizes:
 - a. Class 1 remote-control and signal circuits, No 14 AWG.
 - b. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 - c. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

K. FIRESTOPPING AND AIR SEALING

- 1. Comply with requirements in Division 07 Section "Penetration Firestopping."
- 2. Comply with TIAIEIA-569-A, Annex A, "Firestopping."
- 3. Comply with BICSI TDMM, "Firestopping Systems" Article.
- 4. All penetrations at any and all air handling equipment, casings, plenums or other such air distribution I air delivery devices shall have grommet seals and be 100% air sealed.

L. GROUNDING

- 1. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- 2. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

M. IDENTIFICATION

- 1. Identify system components, wiring, and cabling according to TIAIEIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems".
- 2. Refer to paragraph "G" hereinbefore.

3.2 INSTALLATION

- A. Install equipment level and plumb.
- B. Verify location of thermostats, sensors, humidistats and other exposed control sensors with plans and room details before installation. Locate all 60" above the floor or as otherwise required by ADA.

- 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- C. Install guards on thermostats in the following locations:
 - 1. Mechanical/Electrical Rooms
- D. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- E. Install automatic dampers according to Division 23 Section "Sheet Metal Work".
- F. Install labels and nameplates to identify control components according to Division 23 Section "Basic Mechanical Materials and Methods" and "Mechanical Identification".
- G. Install hydronic instrument wells, turbine flow meters, valves, and other accessories according to Division 23 Section "Piping." for the project.
- H. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install, connect and wire the items included under this Section. This work includes providing required conduit, wire, fittings and related wiring accessories.
- B. All exposed wiring and wiring in mechanical equipment rooms, tunnels, central utility plants, penthouses (concealed and exposed) shall be installed in conduit.
- C. Plenum rated cable shall be used and installed above all hung ceilings and within all walls and chases.
- D. All wiring located outside shall be installed in rigid aluminum conduit, seal tite.
- E. Conceal all cable, except in mechanical rooms, penthouses and areas where other conduit and piping are exposed.
- F. Install cable in raceway.
- G. Bundle and harness multi-conductor instrument cable in place of single cables where several cables follow a common path.
- H. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
- I. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
- J. Wires and cables shall be as follows:
 - 1. Single Conductor (120VAC): Type THWN 12AWG stranded copper with 600V insulation

- K. Primary and Secondary Communications Network Cabling
 - 1. Cable shall be of type recommend by the DDC System Manufacturer and 20AWG at a minimum.
 - 2. Cable shall be shielded.
- L. Room Sensor Cabling
 - 1. Cable shall consist of copper conductors not less than No. 24 AWG.
- M. Cables for 120VAC wiring and low level signal wiring (Le., 4 -20mA analog) shall always be run in separate raceways.

3.4 CONNECTIONS

- A. Install piping adjacent to equipment served to allow service and maintenance.
- B. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- C. Connect HOA selector switches to override automatic interlock controls when switch is in hand position.
- D. Ground equipment.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including piping and electrical connections. Report results in writing.
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove malfunctioning units, replace with new units, and retest.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment, and retest.
 - 3. Calibration test controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
- B. Engage a factory-authorized service representative to perform startup service. Refer to Section 230800-"Commissioning" for additional startup and testing services required under this contract.
- C. Replace damaged or malfunctioning controls and equipment.
 - 1. Start, test, and adjust control systems.
 - 2. Demonstrate compliance with requirements, including calibration and testing, and control sequences.

3. Adjust, calibrate, and fine tune circuits and equipment to achieve sequence of operation specified.

3.6 COMMISSIONING

A. Prior to full operation, the Contractor in the presence of the owner's representative, including the owner's Commissioning Agent shall perform a complete demonstration and testing of the system operating functions and alarms. This testing shall take place after having satisfactorily met the requirements of shop drawing acceptance. Upon successful completion of system operation, the contractor shall submit a statement in writing stating that the full operation of all systems, functions, and alarms has been demonstrated and are operational as well as a listing of all systems, alarms, and functions that have been commissioned. All items shall be submitted for review and acceptance to the owner, owner's representative, and engineer before final acceptance can take place.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 1 Section "Closeout Procedures" and "Demonstration and Training."

3.8 TRAINING

- A. The BMS contractor shall provide competent instructors to give full instruction to designated personnel in the adjustment, operation, and maintenance of the system installed rather than a general training course. Instructors shall be thoroughly familiar with all aspects of the subject matter they are to teach. All training shall be held during normal work hours of 8:00 a.m. to 4:30PM weekdays..
- B. Provide 16hrs of training for Owner's operating and maintenance personnel. All training shall be on-site training. Videotape all sessions and edit each session to 1-hour tapes. Turn over two copies each unedited and edited tape to the Owner. Training shall include:
 - 1. Explanation of drawings, operator's and maintenance manuals.
 - 2. Walk-through of the job to locate all control components.
 - 3. Operator workstation and peripherals.
 - 4. DDC Controller and ASC operation/function.
 - 5. Operator control functions including graphic generation, if design includes color graphics, and field panel programming.
 - 6. Explanation of adjustment, calibration and replacement procedures.
- C. Since the Owner may require personnel to have more comprehensive understanding of the hardware and software, additional training must be available from the Contractor. If the Owner requires such training, it will be contracted at a later date. Provide description of available local and factory customer training. Provide costs associated with performing training at an off-site

classroom facility and detail what is included in the manufacturer's standard pricing such as transportation, meals, etc

3.9 ON-SITE ASSISTANCE

- A. Occupancy Adjustments: Within one year of date of Substantial Completion, provide up to three Project-site visits, when requested by Owner, to adjust and calibrate components and to assist Owner's personnel in making program changes and in adjusting sensors and controls to suit actual conditions.
- B. The Commissioning Agent will provide a Post-Occupancy review prior to the lapse of the one year warranty/guarantee period. This Contractor shall provide all recalibration replacement and/or controls adjustments necessary to provide project close-out in accordance with the Commissioning Agents final project review.

3.10 PROJECT CLOSEOUT

- A. his contractor, in cooperation with the Construction Manager, shall download onto the web server in separate and distinct folders all mechanical, electrical, plumbing, fire protection and DDC/Control Shop Drawings. Each specific shop drawings file shall be cross-referenced and identified by specification number and product titles (pumps, switchgear, air handling units, chiller, boiler, etc.)
- B. Turnover to the owner all third party software and licenses to allow rebuilding the systems.

END OF SECTION

SECTION 230993

SEQUENCE OF OPERATIONS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the contract, including general and supplementary conditions and division 1 specification sections, apply to this section.

1.2 SUMMARY

- A. This Section includes control sequences for HVAC systems, subsystems, and equipment.
- B. Related Sections Include The Following:
 - 1. Division 23 Section "HVAC Instrumentation And Controls" For Control Equipment And Devices And Submittal Requirements.
- 1.3 Definitions
 - A. Retain acronym and abbreviation that remain after this section has been edited.
 - B. ATC: Automatic Temperature Control.
 - C. BMS: Building Management System.
 - D. CFM: Cubic Feet Per Minute.
 - E. DDC: Direct-digital controls.
 - F. FAS: Fire Alarm System.
 - G. HVAC: Heating, Ventilating, and Air Conditioning.
 - H. MER: Mechanical Equipment Room.
 - I. AHU: Air Handling Unit.
 - J. VAV: Variable air volume.
 - K. VFD: Variable Frequency Drive.
- 1.4 GENERAL
 - A. Any safety shutdown shall allow for an automatic local reset and a manual remote reset and restart from the BMS system. All safety devices shall be hardwired to the starter and shall have a second contact for monitoring via the BMS.

- B. All setpoints including setpoints internal to control algorithms shall be adjustable from all BMS operator interfaces.
- C. All alarm points shall be annunciated at the BMS audibly and visually.
- D. All controllers shall incorporate proportional-integral-derivative control loops.
- E. All points for a specific mechanical system shall be connected to and controlled by the same DDC controller unless otherwise specified. For example, it is not acceptable to control a supply fan with one DDC controller located at a motor control center and to control the rest of the air-handling unit points with a DDC controller located at the air-handling unit.
- F. When there is a building wide emergency condition, including but not limited to, fire alarm, loss of power, switchover from normal power to emergency power, switchover from emergency power to normal power, etc., all BMS alarms (i.e., fan failure, pump failure, etc.) due to these conditions shall be inhibited. All alarms indicating the type of emergency condition or reason for the emergency condition shall remain active.
- G. The BMS operating system and software shall be upgraded to the latest edition available on all operator workstations and operator interface devices.
- H. Submit on wiring diagrams and control diagrams for all equipment listed herein regardless of whether the controls are packaged, provided by others, etc. It is the intent of this specification that this Contractor shall provide the Owner with complete and final O & M manuals that include controls for ALL equipment regardless of who provided it.
- I. All points required by the sequence of operation including but not limited to the operator interface points listed in the sequences of operation below, as well as all of the points' associated values, shall be available to the BMS operators on all operator workstations and all operator interface devices as part of a graphical display that graphically depicts the mechanical system controlled.
- J. The installed BMS shall have dedicated, LAN based communication buses independent of the building IT network for both primary and secondary buses.
- K. All valves, dampers, controllers, control devices, etc. exposed to outside air conditions shall be specifically designed for outside air conditions including, but not limited to, NEMA 4 enclosures, weatherproof enclosures, and all other weather precautions recommended by the manufacturer.
- L. The BMS contractor shall furnish, install, and wire a UPS for every primary control panel and every operator workstation.
- 1.5 SEQUENCE OF OPERATION
 - A. O.R. Rooms
 - 1. OR Rooms shall have positive room differential pressure monitors (DPM's)
 - 2. The DPM display and alarm shall be located outside the OR Door. All alarms shall also alarm the DDC front end. The differential pressure monitors shall come with a door switch to prevent alarms if a door is open.

- 3. During programmed occupied modes, the VAV supply and return boxes will be at maximum scheduled CFM's. The space thermostat shall modulate the hot water reheat control valve as required to maintain space temperature.
- 4. During programmed unoccupied modes, the VAV supply boxes will go to 50% of maximum design flow. The corresponding return VAV damper will go to a reduced flow to maintain the space differential pressure setpoint of +.01 inches.
- 5. Space mounted humidistats' shall be used by the DDC system to control the AHU humidity setpoint.
- 6. The O.R.'s will have occupancy sensors provided by E.C. The controls contractor shall use a signal from the occupancy sensor and tie into the BAS. If in unoccupied mode an occupancy sensor is triggered, the VAV terminal shall go into occupied mode and the corresponding AHU shall go to providing 100% of minimum outdoor airflow. The VAV box and AHU will return to unoccupied mode due to no motion after a programmed time period.
- 7. When in unoccupied mode, the room shall also go to occupied mode. When pushbutton override is activated, room will go to occupied mode and will remain in occupied mode for the remainder of the scheduled unoccupied period.
- 8. Return VAV dampers shall modulate as required to maintain a positive room pressure of .01 inches of w.g, during both occupied and unoccupied modes. The return air flow readings shall be monitored at the operator's workstation.
- B. Equipment room Fan Coil Units (AC-1)
 - 1. Provide a manufacturers space temperature sensor where shown on the drawings to control the associated FCU, and associated air cooled condensing units.
 - 2. The fan coil units fan shall run continuously and the DX system shall be cycled on as required.
 - 3. Provide a DDC space temperature sensor in the equipment room to be used for monitoring and alarming at the DDC front end should the room go above 80° F.
 - 4. A leak detector in the auxiliary drain pan shall send a signal to the BMS when a leak is detected.
- C. VAV Box with Hot Water Reheat:
 - 1. As the space temperature rises above the space cooling setpoint, the VAV box damper shall modulate open from the minimum CFM value up to the maximum CFM value to provide space cooling.
 - 2. If the box is at it's maximum CFM position and the space temperature remains above the cooling setpoint, a cooling request shall be sent out to the AHU unit controller. The cooling request shall signal the AHU to provide additional cooling.
 - 3. On a drop in space temperature below the space heating setpoint, the VAV box damper shall modulate closed to allow the minimum CFM value. On a continued drop in space temperature, the reheat coil shall modulate open.

1.7 POINTS LIST

- A. Note: For point software association, see sequence of operation. All points shall be able to integrate to all trends, totalizers, etc., as applicable. Additional points not specifically called for herein, by required to perform the sequence as specified, shall be provided at no additional cost to the owner.
 - 1. The ATC contactor shall carry an allowance for installing, wiring and software programming for 3 additional monitoring and control points of each type (AI, AO, DI, DO)

HYBRID OR & OR #6 Maine Medical Center Portland, ME Addendum #1

for owners use (i.e. 12 points). These 12 points are over and above points required that are not specifically listed below or required per sequence of operations.

System Point	Point				Alarm			Comments	
	AI	AO	DI	DO	Hi	Low	Off Normal		
Air Terminal Boxes									
Space Temperature	х				x	x			
Airflow Volume	х								
Modulate Air Terminal Valve		x							
Modulate Reheat Valve		x							
Return air volume (OR's)	x								
Modulate Return air damper (OR's)		x							
Operating room dif- ferential pressure	x					х			
OR Humidity level	x								

System Point	Point				Alarm			Comments	
	AI	AO	DI	DO	Hi	Low	Off Nor- mal		
Split DX AC Units									
Trouble Alarm			Х				х		
Space temp	х								

PART 2 - PRODUCTS

(NOT APPLICABLE)

PART 3 - EXECUTION

HYBRID OR & OR #6 Maine Medical Center Portland, ME Addendum #1

(NOT APPLICABLE)

PERKINS + WILL P+W Project #152168.023 July 31, 2015 **August 21, 2015**

END OF SECTION

SECTION 232113

HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Condensate-drain piping.
 - 3. Air-vent piping.
 - 4. Air control devices

1.3 DEFINITIONS

A. PTFE: Polytetrafluoroethylene.

1.4 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the minimum working pressure and temperature of the systems listed in the PIPING APPLICATIONS section in Part 3 and as follows:
 - 1. Hot-Water Heating Piping: 150 psig at 200 deg F.
 - 2. Condensate-Drain Piping: 150 deg F .
 - 3. Air-Vent Piping: 200 deg F.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Submit a schedule indicating the following:
 - a. System Service, Operating temperature, Operating pressure, Pipe material, Fittings, Methods of joining, Gaskets, Specialties, Test pressure, Flange gaskets, , Fittings., Unions, , Suction diffusers, Ring spacers and test blanks.
 - 2. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 3. Strainers

- 4. Air control devices.
- 5. Hydronic specialties.
- B. Shop Drawings: Detail, at 3/8 inch scale piping layout with fittings, valves and equipment, use single line for pipe sizes 3 inches and smaller, and double line for pipe sizes 4 inches and greater. fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops
 - 1. Minimum 3/8 inch scale double line layout and sections where required or coordination drawings
- C. Grooved joint couplings and fittings shall be shown on drawings and product submittals, and be specifically identified with the applicable Victaulic style or series number
- D. Welding certificates
- E. Qualification Data: For Installer
- F. Field quality-control test reports, Written reports of tests specified in Part 3 of this Section. Include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements
 - 3. Failed test results and corrective action taken to achieve requirements
- G. Operation and Maintenance Data: For air control devices, hydronic specialties, and specialduty valves to include in emergency, operation, and maintenance manuals

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
- B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
- C. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current
- D. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- E. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.
- F. Steel Pipe Welding:

- 1. Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- 2. Welders shall be qualified for all required pipe sizes, material, wall thickness, and position in accordance with the American Society of Mechanical Engineering (ASME) Section IX, boiler and pressure Vessel Code
- 3. Copies of the certified welder qualification reports shall be maintained by the responsible welding agency and the company performing the welding, and shall be submitted to the owner and/or Inspector upon request.
- 4. All defective welds shall be chipped out and repaired at no cost to the Owner, based on procedure to be specified at the time.
- 5. The contractor shall bear the cost of reinspection of the repaired welds and the inspection of two (2) additional welds, as selected by the owner, for each failed weld.
- 6. Field Procedures:
 - a. Clean pipe free from rust, scale and oxide.
 - b. Bevel pipe on each end per acceptable procedures.
 - c. Contractor is responsible for preparation of pipe in accordance with ASME B 31.1, Chapter V and for visual inspection during the welding operation and for all required welding examinations with certified welding inspector(s), in accordance with ANSI/AWS B.1.10-86 or latest issue section 3.1, 3.1.1, 3.1.2, and 3.1.3.
- G. Copper Tube Brazing
 - 1. Qualify process and operators in accordance with ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"
 - 2. Brazers shall be qualified for all required tube sizes, material, wall thickness, and position in accordance with the American Society of Mechanical Engineering (ASME), Section IX, boiler and Pressure Vessel Code.
 - 3. Brazing qualification testing shall be performed an agency/laboratory certified by ASME.
 - 4. Copies of the certified brazer qualification reports shall be maintained by the responsible brazing agency and the company performing the brazing, and shall be submitted to the owner and/or Inspector.
 - 5. All defective brazements shall be chipped out and repaired at no cost to the Owner, based on procedure to be specified at the time.
 - 6. The contractor shall bear the cost of re-inspection of the repaired brazements and the inspection of two (2) additional brazements, as selected by the owner, for each failed brazement.
 - 7. Field Procedures:
 - a. Clean tubing free from surface oxidation on the O.D.
 - b. Ream all tubes and remove burrs created by the cutting operation, on each end per acceptable procedures.
 - c. Contractor is responsible for preparation of tubes and for visual inspection during the brazing operation in accordance with all applicable ASME, ANSI and AWS standards.
- 1.7 COORDINATION

- A. Coordinate layout and installation of hydronic piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, structure and partition assemblies.
- B. Coordinate pipe sleeve installations for foundation wall penetrations.
- C. Coordinate piping installation with roof curbs, equipment supports, and roof penetrations. Roof specialties are specified in Division 7 Sections.
- D. Coordinate pipe fitting pressure classes with products specified in related Sections.
- E. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base. Concrete, reinforcement, and formwork requirements are specified in Division 3 Sections.
- F. Coordinate installation of pipe sleeves for penetrations through exterior walls and floor assemblies. Coordinate with requirements for firestopping for fire and smoke wall and floor assemblies.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B)
 - B. Annealed-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type A)
 - C. Wrought-Copper Fittings: ASME B16.22
 - D. Wrought-Copper Unions: ASME B16.22

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - c. For chilled water systems Klinger suitable for glycol use.
 - d. For hot water Klinger C4500
 - e. For joints of dissimilar metals, provide isolating gaskets, sleeves and washers between flanges, bolts and nuts. Gaskets shall be similar to Dupont Teflon
- B. Flange Bolts, Studs, Nuts and Washers:
 - 1. Bolts and studs shall be chrome-molybdenum bolt stud in accordance with ASTM A 193 grade B7 with full-length threads in accordance ANSI B 31.1. Length shall be sufficient to project beyond nuts three complete threads when joint is made.
 - 2. Nuts shall be carbon-steel in accordance with ASTM A 194 Grade 2H. Nuts shall be hexagon heavy series type. Threads shall the same as for bolts.
 - 3. Washers shall be flat, plain, stamped, in accordance with ANSI/ASME B18.22.1.
- C. Ring Spacers and Test Blanks:
 - Provide between flanges where shown on drawing or where necessary to isolate equipment from the piping system, in accordance with B3.1.1, Chapter VI, section 137.2.4. Ring spacers to be replaced by test blanks during hydrostatic testing and/or during chemical cleaning for equipment isolation.
 - 2. Size and rating to match companion flanges.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel
- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded

1. Comply with Section II, Part C of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded

2.4 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. In lieu of dielectric fittings, use brass unions to join piping of dissimilar materials.

2.5 VALVES

- A. Gate, Globe, Check, Ball, Butterfly, safety relief and balancing Valves,: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Instrumentation and Control for HVAC."

2.6 AIR CONTROL DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amtrol, Inc.
 - 2. Bell & Gossett Domestic Pump; a division of ITT Industries
- B. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Screwdriver or thumbscrew.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/8 (DN 6).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 225 deg F (107 deg C)
- C. Automatic Air Vents:
 - 1. Body: Bronze or cast iron.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Noncorrosive metal float.
 - 4. Inlet Connection: NPS 1/2 (DN 15).
 - 5. Discharge Connection: NPS 1/4 (DN 8).
 - 6. CWP Rating: 150 psig (1035 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C)

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.7 CHEMICAL TREATMENT

A. The HVAC Contractor shall hire the services of the building water treatment contractor and provide all required labor and materials. Provide temporary metering and mixing devices as required. The HVAC contractor shall obtain and provide all requirements from the Owner/ water treatment vendor.

2.8 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Hot Water Systems of Steel Construction:
 - a. Working pressure: To 250 psig, non-shock.
 - 1. Sizes 1/4 inch to 2 inch: ANSI 250 lb. Class.
 - a) Connections: Threaded.
 - b) Body: Cast iron, ASTM A126, Class B. With machined seat for screen retention. Galvanized as required to match connecting piping.
 - c) Cap: Bronze, gasketed.
 - d) Screen: 20 mesh. 304 stainless steel, ASTM 240. Free area not less than 2-1/2 times inlet area.
 - e) Blowoff outlet: With female NPT tapping.
 - f) Mueller model No. 11 MFCB.
 - 2. Hot Water Systems of Copper Construction:
 - a. Working pressure: To 250 psig, non-shock.
 - 1. Sizes 1/4 inch to 2 inch: Class 250
 - a) Connections: Threaded.
 - b) Body: Bronze, ASTM B62. With machined seat for screen retention.
 - c) Cap: Bronze, ASTM B62. With machined seat for screen retention.
 - d) Screen: 20 mesh. 304 stainless steel, ASTM 240. Free area not less than 2-1/2 time inlet area.
 - e) Blowoff outlet: With female NPT tapping.
 - f) Mueller model No. 352M.
 - b. Working pressure to 225 psig Class 150; to 400 psig Class 300:

- 1. Sizes 2-1/2 inch to 4 inch:
 - a) Connections: Flanged.
 - b) Body: Bronze, ASTM B62 (85-5-5) or bronze ASTM B61. Aluminum bronze ASTM A148-90 for sizes 8 inch and larger. With machined seat for screen retention.
 - c) Cover: Material to match body. With machined seat for screen retention.
 - d) Screen to 8 inch: 1/8 inch perforations. 304 stainless steel, ASTM 240. Free area not less than 2-1/2 times inlet area.
 - e) Screen 10 inch and larger: 5/32 inch perforations. 304 stainless steel, ASTM 240. Free area not less than 2-1/2 times inlet area.
 - f) Blowoff outlet: With female NPT tapping.
 - g) Mueller model No. 851 or 851M for Class 150.
 - h) Mueller model. No. 852 for Class 300.
- B. Vacuum Breakers
 - 1. For service to 300 psig wsp, similar to Sarco VB 12:
 - a. Size: 1/2 inch.
 - b. Features:
 - 1. All internals renewable without disturbing piping.
 - c. Construction:
 - 1. Cap: Stainless steel, Type 303.
 - 2. Valve: VB 12 stainless steel, Type 303.
 - 3. Valve seat: VB 12 stainless steel, Type 303.
 - 4. Body: VB 12 stainless steel, Type 303.
 - 5. Gasket: VB 12 stainless steel, Type 304.
 - 6. Connections:
 - a) System: 1/2 inch screwed NPT.
 - b) Air inlet: 1/8 inch screwed NPT.

C. Expansion fittings are specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Low Temperature Water System, IN EXCESS of 100 psig up to 300 PSIG, except as noted and 40 to 220 deg F supply temperature for hot water and chilled water systems:
 - 1. Material shall be steel in accordance with ASTM A 53, Grades A or B.
 - 2. Wall thickness shall be:
 - a. To 2 inch: Schedule 80 with threaded ends or Schedule 40 with socket weld ends.
 - b. 2-1/2 inch to 10 inch: Schedule 40, butt weld ends only.
 - 3. 4 inch and smaller up to 300 PSIG and 100 deg F or 150 PSIG and 250 deg F, Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints
 - 4. No threaded joints are allowed in glycol systems.
- B. Makeup-water piping installed aboveground shall be either of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
- C. Condensate-Drain Piping: Type , L drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- D. Air-Vent Piping:
 - 1. Inlet: Same as service where installed
 - 2. Outlet: Same as service where installed.
- E. Provide brass unions for connection of dissimilar metals. Use of bronze valves is not acceptable as a dielectric

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges or grooved joints on applicable systems, in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated. Slip-on flanges shall be back welded.

- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."
- U. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 6 feet ; minimum rod size, 3/8 inch .
 - 2. NPS 1 (DN 25): Maximum span, 6 feet ; minimum rod size, 3/8 inch .
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 10 feet ; minimum rod size, 1/2 inch .
 - 6. NPS 3 (DN 80): Maximum span, 10 feet ; minimum rod size, 1/2inch .
 - 7. NPS 4 (DN 100): Maximum span, 10 feet ; minimum rod size, 5/8 inch .
 - 8. NPS 6 (DN 150): Maximum span, 10 feet ; minimum rod size, 3/4 inch .
- E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 3/8 inch .
 - 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 3/8 inch .
 - 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 1/2 inch.

- 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch .
- F. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.
- G. Provide additional support at changes in direction, branch piping and runouts over 5 feet and concentrated loads due to valves, strainers and other similar items.
- H. Vertical piping:

2.

- 1. Base elbow support: Provide bearing plate on structural support, similar to F&S Manufacturing Co. Fig. 720 or 721.
 - Provide guides at every third floor but not exceed:
 - a. 25 ft for piping to 2 inch.
 - b. 36 ft for piping 2-1/2 inch to 12 inch.
 - c. 50 ft for piping 14 inch and larger.
- 3. Top support: Provide special hanger or saddle in horizontal connection and make provisions for expansion.
- 4. Intermediate supports: Steel pipe clamp at floor. Bolt and weld to pipe with extension ends bearing on structural steel or bearing plates.
- 5. For multiple pipes, coordinate guides, bearing plates and accessory steel.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel or groove (on applicable systems) plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any

vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping." Systems less than 100 psig, hydrostatically test to 150 psig.

- 5. After hydrostatic test pressure has been applied for at least 4 hours, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.

END OF SECTION

SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. The Scope of the Work of this Section of the Specifications shall include the furnishing of all labor, materials, tools, equipment and services required to complete the Refrigerant Handling, Pipe, Valves, Fittings & Specialties Work as hereinafter specified or as indicated on the drawings or as noted in the equipment manufacturers piping specifications and drawings. Without limiting the above "Scope" the work shall generally include, but is not necessarily limited to the following:

1. Providing of pipe, pipe fittings, valves, specialties, controls and accessories specifically manufactured for refrigeration service in accordance with the requirements hereinafter specified and the equipment manufacturer installation manual.

2. Proper refrigerant handling, installation and removal as required.

3. All work shall comply with equipment manufacturers written installation instructions

1.2 REFRIGERANT HANDLING

- A. Refrigerants used on this project specified herein and throughout this specification shall conform to ANSI/ASHRAE 34, Number Designation and Safety Classification of Refrigerants.
- B. All refrigeration work on this project shall conform to ANSI/ASHRAE 15, Safety Code for Mechanical Refrigeration.
- C. Addition or removal of refrigerant from equipment, if required, shall be done without releasing refrigerants to the atmosphere in accordance with the Clean Air Act and ANSI/ASHRAE 15. Persons handling refrigerants shall be EPA/RSES certified and shall submit three (3) copies of certification/certificate to be kept on file..
- D. Provide documentation to owner in accordance with EPA regulations to certify proper disposal of all refrigerants removed from equipment and job site.

1.3 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.4 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.5 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-407C:
 - 1. Suction Lines for Air-Conditioning Applications: 230 psig (1586 kPa).
 - 2. Suction Lines for Heat-Pump Applications: <u>380 psig (2620 kPa)</u>.
 - 3. Hot-Gas and Liquid Lines: 380 psig (2620 kPa).

1.6 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Shop Drawing Scale: 1/4 inch equals 1 foot
 - 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 - a. The contractor to confirm with the manufacturer and provide quantity, size and all required accessories as part of this project.
- C. Welding certificates.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Copper Tube: ASTM B 280, Type ACR.
 - B. Wrought-Copper Fittings: ASME B16.22.
 - C. Wrought-Copper Unions: ASME B16.22.
 - D. Solder Filler Metals: ASTM B 32. Use alloy HB solder to join copper socket fittings on copper pipe.
 - E. Brazing Filler Metals: AWS A5.8.
 - F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

- A. Diaphragm Packless Valves:
 - 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 - 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
 - 3. Operator: Rising stem and hand wheel.
 - 4. Seat: Nylon.
 - 5. End Connections: Socket, union, or flanged.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 275 deg F (135 deg C).

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- B. Packed-Angle Valves:
 - 1. Body and Bonnet: Forged brass or cast bronze.
 - 2. Packing: Molded stem, back seating, and replaceable under pressure.
 - 3. Operator: Rising stem.
 - 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
 - 5. Seal Cap: Forged-brass or valox hex cap.
 - 6. End Connections: Socket, union, threaded, or flanged.
 - 7. Working Pressure Rating: 500 psig (3450 kPa).
 - 8. Maximum Operating Temperature: 275 deg F (135 deg C).
- C. Check Valves:
 - 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 - 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 - 3. Piston: Removable polytetrafluoroethylene seat.
 - 4. Closing Spring: Stainless steel.
 - 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
 - 6. End Connections: Socket, union, threaded, or flanged.
 - 7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).
 - 8. Working Pressure Rating: 500 psig (3450 kPa).
 - 9. Maximum Operating Temperature: 275 deg F (135 deg C).
- D. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.For service valves installed outdoors, provide a locking type tamper resistant cap.
 - 2. Core: Removable ball-type check valve with stainless-steel spring.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Copper spring.
 - 5. Locking cap:Novent by Airtec or equal.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
- E. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24-V ac coil.
 - 6. Working Pressure Rating: 400 psig (2760 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
 - 8. Manual operator.
- F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.

- 5. Working Pressure Rating: 400 psig (2760 kPa).
- 6. Maximum Operating Temperature: 240 deg F (116 deg C).
- G. Thermostatic Expansion Valves: Comply with AHRI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Suction Temperature: 40 deg F (4.4 deg C)
 - 6. Superheat: Adjustable
 - 7. Reverse-flow option (for heat-pump applications).
 - 8. End Connections: Socket, flare, or threaded union.
 - 9. Working Pressure Rating: 700 psig (4820 kPa)
- H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 5. Seat: Polytetrafluoroethylene.
 - 6. Equalizer: Internal
 - 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24-V ac coil.
 - 8. End Connections: Socket.
 - 9. Throttling Range: Maximum 5 psig (34 kPa).
 - 10. Working Pressure Rating: 500 psig (3450 kPa).
 - 11. Maximum Operating Temperature: 240 deg F (116 deg C).
- I. Straight-Type Strainers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 275 deg F (135 deg C).
- J. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
 - 6. Maximum Operating Temperature: 275 deg F (135 deg C).
- K. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.

- 3. Indicator: Color coded to show moisture content in ppm.
- 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
- 5. End Connections: Socket or flare.
- 6. Working Pressure Rating: 500 psig (3450 kPa).
- 7. Maximum Operating Temperature: 240 deg F (116 deg C).
- L. Replaceable-Core Filter Dryers: Comply with AHRI 730.
 - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement. All access ports located outdoors shall have a locking type tamper resistant cap.
 - 7. Maximum Pressure Loss: 2 psig (14 kPa
 - 8. Working Pressure Rating: 500 psig (3450 kPa).
 - 9. Maximum Operating Temperature: 240 deg F (116 deg C).
- M. Permanent Filter Dryers: Comply with AHRI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated alumina
 - 4. Designed for reverse flow (for heat-pump applications).
 - 5. End Connections: Socket.
 - 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement. All access ports located outdoors shall have a locking type tamper resistant cap.
 - 7. Maximum Pressure Loss: 2 psig (14 kPa)
 - 8. Working Pressure Rating: 500 psig (3450 kPa).
 - 9. Maximum Operating Temperature: 240 deg F (116 deg C).
- N. Liquid Accumulators: Comply with AHRI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig (3450 kPa).
 - 4. Maximum Operating Temperature: 275 deg F (135 deg C).

2.3 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Atofina Chemicals, Inc.

- 2. DuPont Company; Fluorochemicals Div.
- 3. Honeywell, Inc.; Genetron Refrigerants.
- 4. INEOS Fluor Americas LLC.
- C. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.

PART 3 - EXECUTION

.

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-407C

- A. Suction Lines NPS 4 (DN 100) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR drawn-temper tubing and wrought-copper fittings with alloy HB soldered joints.
- B. Hot-Gas and Liquid Lines: Copper, Type ACR drawn-temper tubing and wrought-copper fittings with alloy HB soldered joints.
- C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR drawn-temper tubing and wroughtcopper fittings with alloy HB soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install diaphragm packless valves in suction and discharge lines of compressor.
- B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.
- D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.
- E. Install a full-sized, three-valve bypass around filter dryers.
- F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

- H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.
- K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.
- L. Install receivers sized to accommodate pump-down charge.
- M. Install flexible connectors at compressors.
- N. Install lockable type tamper resistant caps on all access ports or service valves installed outdoors. All access ports located outdoors shall have a locking type tamper resistant cap.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15-latest edition and all authorities having jurisdiction.
- C. Provide all refrigerant piping required for a complete refrigeration system, with all valves, fittings and specialties necessary for satisfactory operation in accordance with ASHRAE standard 15-latest edition and all authorities having jurisdiction.
- D. Refrigeration system shall include all required items for charging, draining and purging the system.
- E. Refrigerant piping shall be of the size recommended by the manufacturer and as approved by the engineer.
- F. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- I. Install piping adjacent to machines to allow service and maintenance.
- J. Install piping free of sags and bends.
- K. Install fittings for changes in direction and branch connections.
- L. Select system components with pressure rating equal to or greater than system operating pressure.
- M. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operation" for solenoid valve controllers, control wiring, and sequence of operation.
- N. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- O. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- P. Install refrigerant piping in protective conduit where installed belowground.
- Q. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- R. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- S. Horizontal piping of the compressor suction and discharge lines and the condenser discharge lines shall be pitched a minimum of 1/2" in 10', in the direction of refrigerant flow. Each suction gas vertical riser shall be trapped at its evaporator with a trap as recommended by the compressor manufacturer.
- T. Install refrigerant piping to prevent excessive oil from being trapped in the system. Any additional risers or equalizer lines required by the manufacturer of equipment for the proper system operation shall be installed as part of this contract. Provide a fully piped oil separator for each refrigerant system as per manufacturer's recommendations.
- U. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- V. Install pipe sleeves at penetrations in exterior walls and floor assemblies.

- W. Seal penetrations through fire and smoke barriers according to Division 07 Section "Penetration Firestopping."
- X. Refrigerant piping passing through rated floors or demising walls shall be enclosed in a rigid and gas-tight continuous fire-resisting pipe duct or shaft vented to the outside, in accordance with ASHRAE standard 15-latest edition. Pipe conduit shall be copper tube type L with soldered fittings.
- Y. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- Z. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- AA. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- BB. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 CONCEALED PIPING

A. Where so indicated or specified, conceal piping in building construction or underground. Install such piping in time so as not to cause delay to the work of other trades and to allow time for tests and approvals; do not enclose or cover before approval is obtained. Where furred spaces are indicated, keep pipes as close to structural members as possible so as to require minimum furring dimension. In the case of furred beams, obtain approval of resulting headroom clearance before installing pipe. This contractor is cautioned to check clearance on General Construction Drawings

3.5 PIPES OVER ELECTRICAL EQUIPMENT

A. Do not run piping in electric equipment rooms and elevator machine rooms or over electrical panels or motor control centers located in mechanical rooms. Comply with the applicable portion of NEC Article 384.

3.6 BRAZING AND SOLDERING

- A. General: Before soldering or brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. The appropriate flux shall be used. Surplus brazing material shall be removed at all joints. Tubing shall be protected against oxidation during brazing by continuous purging of the inside of the piping using nitrogen. All piping shall be supported prior to brazing and shall not be sprung or forced.
- B. Brazing: Brazing procedure qualification shall conform to ASME/ANSI B31.1, B31.5. Brazing procedure for joints shall be constructed in accordance with ANSI/AWS C3.4 and CDA 404/0.

C. Soldering: Soldering, soldering preparation and procedures for joints shall be in accordance with ANSI B31.1.

3.7 ELECTROLYSIS CONTROL

A. The installation of copper pipe and tubing shall be accomplished in such a way as to not touch or come in contact in any way with ferrous metals. Where copper tubing or fittings are anchored, supported or may come in contact with metal construction, an insulation nonconductor spacer, similar to rubber, fiber or an approved equal, shall be installed to assure prevention of electrolysis. Hangers supporting copper tubing shall be copper coated and large enough to accommodate the insulating pipe covering. Copper tubing lines shall not be supported or secured to ferrous metals (even temporarily). When copper piping or tubing is connected to ferrous piping or equipment, it shall be done with the use of a di-electric union or fitting suitable for the applicable working pressure and refrigerant. Do not allow copper tubing to make contact with concrete, cement, or mortar.

3.8 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- F. Make all joints gastight under pressure required for various services.

1. Threaded Joints: For threaded pipe joints, approved pipe joint compound or Teflon tape; apply only on male threads. Cut pipe nipples evenly; cut threads, clean, remove burrs, ream ends to full inside bore. Teflon tape shall be used in systems 150°F and lower.

2. Brazed and Soldered Joints: For soldering or sweating joints on copper tubing, clean and polish outer surface of tube needs and inner surface of fittings, apply flux and solder as specified. The use of self-cleaning flux is prohibited. A circular torch shall be used for soldering joints 2 inches and larger.

3.9 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing in accordance with MSS SP-69 or with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 3/8 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 3/8 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 3/8 inch (6.4 mm).
 - 4. NPS 1-1/4 (DN 32): Maximum span, 72 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
 - 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch .
 - 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 1/2 inch .
 - 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch.
 - 9. NPS 4 (DN 100): Maximum span, 10 feet (3.7 m); minimum rod size, 5/8 inch.
- D. Support multifloor vertical runs at least at each floor
- E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors
- F. Provide additional support at changes in direction, branch piping and runouts over 5 feet and concentrated loads due to valves, strainers and other similar items.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.

- 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
- 4. Declaration: A certificate of test shall be provided for all systems containing 55 pounds (25 kg) or more of refrigerant in accordance with ASHRAE 15 and IMC 1108.4. The certificate shall give the name of the refrigerant and the field test pressure applied to the high-side and the low side of the system. The certification of test shall be signed by the installer and an inspector, if present and shall be provided to the authority having jurisdiction. Provide a record copy for closeout.

3.11 REFRIGERANT PIPE TESTING

- A. Refrigerant Leakage Test: After all components of the refrigerant system have been installed and the piping connected, the system shall be subjected to a refrigerant leakage test. The refrigerant leakage test shall be done with dry nitrogen before any refrigerant pipe is insulated or covered. High and low side of the refrigerant system shall be tested for the minimum refrigerant leakage test pressure specified in ASHRAE 15, for the refrigerant employed in the system. System shall be provided tight and free of leaks by allowing the refrigerant leakage test pressure to remain on the system for 24 hours with no drop in pressure. The initial test pressure and surrounding air temperature will be recorded. After the 24 hour hold period, the final system pressure and surrounding air temperature will be recorded. A correction of 0.3 psi shall be allowed for each degree F change in the initial and final temperature of the surrounding air, plus for an increase and minus for a decrease. The system shall have passed the refrigerant leakage test if the corrected final system pressure is equal to the initial system test pressure. If the pressures are not equal, the leaks shall be located and repaired.
- B. Refrigerant Leaks: To repair leaks, the joint shall be taken apart, thoroughly cleaned, and remade as a new joint. Joints repaired by caulking or remelting and adding more brazing material will not be acceptable. After leak repairs have been made, the refrigerant leakage test shall be conducted again.
- C. Evacuation Test: After the foregoing tests have been satisfactorily completed and the pressure relieved, entire system shall be evacuated to an absolute pressure of 300 microns. During evacuation of the system, the ambient temperature shall be higher than 35 degrees F. Vacuum line shall be closed, and the system shall stand for 1 hour. After this period, the absolute pressure shall not exceed 500 microns. If the pressure rises over 500 microns, the system shall continue to be evacuated until the system reaches 300 microns and can stand for 1 hour with the vacuum line closed without the absolute pressure rising over 500 microns. During evacuation, pressures shall be recorded by a thermocouple type, electronic type, or a calibrated-micron type gauge.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.12 SYSTEM PERFORMANCE TESTS

A. After the foregoing tests have been completed and before each refrigeration system is accepted, tests to demonstrate the general operating characteristics of all equipment shall be conducted by an approved manufacturer's startup representative experienced in system startup and testing. Tests demonstrate that the entire system is functioning in accordance with the drawings and specifications. Corrections and adjustments shall be made as necessary and tests shall be re-conducted to demonstrate that the entire system is functioning as specified. Provide the manufacturer's report of tests as part of closeout.

3.13 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 - 4. Charge system with a new filter-dryer core in charging line.

3.14 REFRIGERANT CHARGING

- A. Initial Charge: Upon completion of all the refrigerant pipe tests, the vacuum on the system shall be broken by adding the required charge of dry refrigerant for which the system is designed, in accordance with the manufacturer's recommendations. Contractor shall provide the complete charge of refrigerant in accordance with manufacturer's recommendations. Upon satisfactory completion of the system performance tests, any refrigerant that has been lost from the system shall be replaced. After the system is fully operational, service valve seal caps and blanks over gauge points shall be installed and tightened.
- B. Refrigerant Leakage: If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant shall be pumped into the system receiver or other suitable container. The refrigerant shall not be discharged into the atmosphere.
- C. Contractor's Responsibility: The Contractor shall, at all times during the installation and testing of the refrigeration system, take steps to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 oz. of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the specified requirements including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation.

3.15 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

3.16 REFRIGERANT SAFETY AND HANDLING

- A. Provide a permanent bright red plastic sign with 0.5", white lettering, securely attached and easily accessible indicating:
 - 1. The name and address of the installer.
 - 2. The refrigerant number and amount of refrigerant.
 - 3. The lubricant identity and amount.
 - 4. The field test pressure applied.

END OF SECTION

SECTION 233113

SHEETMETAL WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round and flat-oval ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Duct liner.
 - 5. Sealants and gaskets.
 - 6. Hangers and supports.
 - 7. Seismic-restraint devices.
 - 8. Backdraft and pressure relief dampers.
 - 9. Barometric relief dampers.
 - 10. Manual volume dampers.
 - 11. Control dampers.
 - 12. Fire dampers.
 - 13. Smoke dampers.
 - 14. Combination fire and smoke dampers.
 - 15. Turning vanes.
 - 16. Remote damper operators.
 - 17. Duct mounted access doors.
 - 18. Flexible connectors.
 - 19. Flexible ductwork.
 - 20. Antimicrobial coatings
- B. Related Sections:
 - 1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Division 23 Section "Noise Control" for double wall ductwork.

1.3 PERFORMANCE REQUIREMENTS

A. Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct

Construction Standards - Metal and Flexible, latest edition" and performance requirements and design criteria indicated.

1. DESIGN STATIC PRESSURE PRESSURE CLASS 2 IN. W.G 6 IN. W.G. 10 IN. W.G.

OPERATING PRESSURE UP TO 2 IN. W.G. OVER 2 IN. UP TO 6 IN. W.G. OVER 6 IN. UP TO 10 IN. W.G. or as indicated on plans

- a. Based on the following:
 - 1) Single duct system: Static pressure at respective point in ductwork during normal operation.
 - 2) Variable volume duct systems: Static pressure at beginning of fan discharge duct.
- b. Description of ductwork pressure class and equipment:
 - 6" and greater Duct Class: All supply ductwork from discharge of fans, air handling units, or AC units to inlets of terminal boxes on floor, all outdoor ductwork and all ductwork running through unconditioned spaces. Seal Class "A", leakage class 4 (rectangular metal) or Class 3 (round)
 - 6" and greater Duct Class: All return and hood exhaust air ductwork from suction of fans, air handling units or AC units to inlets of terminal boxes or modulating dampers on floor. Seal Class "A", leakage class 4 (rectangular metal) or Class 3 (round)
 - 3) 2" Duct Class and less: All other low pressure ductworks. Seal Class "C", leakage Class 24 (rectangular) or Class 12 (round).
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and SEI/ASCE 7.
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings (CAD Generated and Drawn to 3/8 scale):
 - Sheetmetal shop standards shall be compiled directly from the "SMACNA DUCT CONSTRUCTION STANDARDS- Metal and Flexible" manual. Modifications for a specific project, if any, shall be indicated directly on the SMACNA templates. Modified shop standards not taken directly from the SMACNA templates will not be accepted. Any deviations from SMACNA shall be noted.

- 2. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 3. Factory- and shop-fabricated ducts and fittings.
- 4. Duct layout (double line) indicating sizes, transitions, configuration, liner material, and static-pressure classes.
- 5. Elevation of top of ducts.
- 6. Dimensions of main duct runs from building grid lines.
- 7. Sheet metal thicknesses
- 8. Fittings.
- 9. Reinforcement details and spacing.
- 10. Seam and joint construction and sealing
- 11. Materials, fabrication, assembly, and spacing of hangers and supports.
- 12. Penetrations through fire-rated and other partitions.
- 13. Equipment installation based on equipment being used on Project.
- 14. Access clearance for all equipment and accessories
- 15. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 16. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- 17. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation] for selecting hangers and supports and seismic restraints.
- C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- D. Welding certificates.
- E. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel," for hangers and supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.

- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. NFPA Compliance:
 - 1. NFPA 90A, "Installation of Air conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
 - 3. NFPA 96, "Ventilation Control and Fire Protection of Commercial Cooking Operations."
- D. Indicate compliance with USGBC LEED rating criteria for Indoor environmental quality (IEQ.

PART 2 - PRODUCTS

- 2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
 - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible", latest edition, based on indicated static-pressure class unless otherwise indicated.
 - B. The following fitting connections and duct construction gauges are NOT acceptable
 - 1. Drive slip T-1, T-2 fitting connections
 - 2. 26 gauge ductwork.
 - C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible,"Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." Fittings and/or joints of two different gauges, connected joint rating shall meet more stringent conditions
 - 1. Use the following SMACNA Transverse (Girth) Joints
 - a. Duct construction as follows for 2" w.g. class:
 - 1) Up to 12" wide use T-6 or T-7
 - 2) 13" to 28" wide use T-11 or T12
 - 3) 29" wide and up use TDC or TDF
 - b. Duct construction as follows for 3" w.g. class:
 - 1) Up to 20" wide use T-6 or T-7
 - 2) 21" to 24" wide use T-11 or T12
 - 3) 25" wide and up use TDC or TDF

- c. Duct construction as follows for 6" w.g. class:
 - 1) Up to 12" wide use T-6 or T-7
 - 2) 13" to 18" wide use T-11 or T12
 - 3) 19" wide and up use TDC or TDF
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- E. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Provide spiral seams for all ducts and fittings.
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible,"Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, 1995 edition, Figure 3-2, 2005 edition, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.

- 2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," 90 Degree Tees and Laterals," and "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible", latest edition for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Exposed Ductwork
 - 1. Where ductwork is indicated to be exposed to view in occupied spaces, provide materials which are free from visual imperfections, including pittings, seam marks, stains, discolorations, and other imperfections. Provide finishes which will allow painting. Provide flat type seams and joints for all exposed duct construction
- C. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60 (Z180).
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- G. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the interior surface of sheet metal that serve the OR area supply ductwork system an antimicrobial coating that shall form the interior surface of the duct.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: Black.

- H. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- I. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).
- J. Watertight construction where noted with edges bent 1/2 inch for watertight seal. Longitudinal seam sealant shall be similar to 3M Brand No. 800; Alcoa, aluminastic Type C, or solder. Stiffeners shall be plug or spot welded. Transverse joints shall be bolted companion angles with 1/4 inch cadmium plated bolts with 6 inch minimum on centers and gasket.
- K. Air tight construction where noted with longitudinal seams soldered. Stiffeners shall be plug or spot welded. Transverse joints shall be bolted companion angle with 1/4 inch cadmium plated bolts with 6 inch minimum on centers and gasket. Exposed, uninsulated ductwork shall be flush flat seam. Provide airtight concrete, masonry and other construction materials for plenums and shafts only where noted
- L. Flush flat seam ductwork: Provide for all exposed uninsulated ducts and transverse joint detail shall be as indicated. Provide sheet metal 2 gauge numbers heavier than required for pressure classification with normal (standing) seam construction. Provide all joints and seams, smooth and aligned with no projections. For internal reinforcing, at transverse joints and on 2 ft centers, provide on ducts 31 inch to 60 inch wide, single vertical stay at duct midpoint, on ducts 61 inch to 90 inch wide provide 2 vertical stays on duct third (1/3) points and for ducts over 90 inch wide provide 3 vertical stays at ducts quarter (1/4) points. For vertical stays: provide 10 USSG galvanized steel, free of burrs and rough edges with both ends bent and fastened to top and bottom of duct.

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Indicate compliance with USGBC LEED rating criteria for Indoor environmental quality (IEQ)
- C. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches (76 mm).
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- D. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible, "Rectangular Duct Hangers Minimum Size," and "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.6 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Hilti Corp.
 - 4. Kinetics Noise Control.
 - 5. Loos & Co.; Cableware Division.
 - 6. Mason Industries.
 - 7. TOLCO; a brand of NIBCO INC.
 - 8. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.7 MANUAL VOLUME DAMPERS

- A. Dampers to be the same as duct construction.
- B. Standard, Steel, Manual Volume Dampers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Pottorff; a division of PCI Industries, Inc.
 - b. Ruskin Company.
- 2. Standard leakage rating, with linkage outside airstream.
- 3. Suitable for horizontal or vertical applications.
- 4. Frames:
 - a. Hat-shaped, galvanized -steel channels, 0.064-inch (1.62-mm) minimum thickness.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Provide single blade dampers up to 6 inch width and opposed multtiblade dampers above 6 inches in width.
 - c. Parallel- or opposed-blade design.
 - d. Stiffen damper blades for stability.
 - e. Galvanized-steel, 0.064 inch (1.62 mm) thick (16 ga.).
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- C. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Pottorff; a division of PCI Industries, Inc.
 - b. Ruskin Company.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch- (1.2-mm-) thick extruded aluminum.
 - 6. Blade Axles: Nonferrous metal.

- 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Aluminum.
- D. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Pottorff; a division of PCI Industries, Inc.
 - b. Ruskin Company.
 - 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Hat shaped.
 - b. Galvanized-steel channels, 0.064 inch (1.62 mm) thick.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch (1.62 mm) thick. (16 ga.).
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Blade Seals: Neoprene.
 - 9. Jamb Seals: Cambered aluminum.
 - 10. Tie Bars and Brackets: Galvanized steel.
 - 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- E. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ruskin Company.

- b. Trox USA Inc.
- 2. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 3. Suitable for horizontal or vertical applications.
- 4. Frames: Hat-shaped, 0.10-inch- (2.5-mm-) thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch- (2.5-mm-) thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch- (1.2-mm-) thick extruded aluminum.
- 6. Blade Axles: Stainless steel.
- 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Blade Seals: Neoprene.
- 9. Jamb Seals: Cambered aluminum.
- 10. Tie Bars and Brackets: Aluminum.
- 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- F. Jackshaft:
 - 1. Size: 1-inch (25-mm) diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- G. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zincplated steel, and a 3/4-inch (19-mm) hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.11 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff; a division of PCI Industries, Inc.
 - 2. Ruskin Company.

- B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 4000-fpm (20-m/s) velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: Curtain type with blades outside airstream ("Type B"); fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.052 or 0.138 inch (1.3 or 3.5 mm) thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- K. Provide fire dampers as noted on the plans and in ducts and openings in the following:
 - a. Floors.
 - b. Fire walls.
 - c. Fire-resistance partitions.
 - d. Fire rated ceilings.
 - e. Exit corridor walls.
- L. Provide access door in duct adjacent to each fire damper.

2.8 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ruskin Company.
 - 2. Pottorff; a division of PCI Industries, Inc.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Frame: Multiple blade type; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.

- D. Blades: Airfoil type Roll-formed, horizontal, interlocking, 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.
- E. Leakage: Class I.
- F. Rated pressure and velocity to exceed design airflow conditions.
- G. Mounting Sleeve: Factory-installed, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- H. Provide motor mount bracket strengthener for dampers over 10" in height.
- I. Provide a 10 gauge welded vertical stiffener at each corner to prevent damper misalignment.
- J. Damper Motors: Two-position action, unless control sequence requires modulating. Coordinate with ATC contractor.
- K. Actuators mounted out of the air stream, with automatic reset.
- L. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC."
 - 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
 - Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
 - 6. Electrical Connection: 115 V, single phase, 60 Hz.
- M. Accessories:
 - 1. Auxiliary switches for position indication.
 - 2. Test and reset switches, remotemounted.
- N. The HVAC contractor shall provide all devices, relays, end switches, e/p switches, control components, air piping, power wiring, control wiring and interlock wiring as required to accomplish the sequence of operation for these dampers.
- O. Provide access door in duct adjacent to each combination fire / smoke damper.

2.9 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff; a division of PCI Industries, Inc., model FSD-151, FSD-341, 1-1/2 or 3 hours rated as applicable
 - 2. Ruskin Company.model FSD-60, 1-1/2 or 3 hour rated as applicable
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm (20-m/s) velocity.
- D. Fire Rating: 1-1/2 and 3 hours.
- E. Frame: multiblade type fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.
- F. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
- G. Blades: 14 gauge galvanized airfoil shaped double skin, single piece construction, maximum 6 inches wide..
- H. Leakage: Class I.
- I. Rated pressure and velocity to exceed design airflow conditions.
- J. Mounting Sleeve: Factory-installed, 0.052-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- K. Provide motor mount bracket strengthener for dampers over 10" in height.
- L. Provide a 10 gauge welded vertical stiffener at each corner to prevent damper misalignment
- M. Master control panel for use in dynamic smoke-management systems.
- N. Damper Motors: Two-position action unless control sequence requires modulating. Coordinate with ATC contractor.
- O. Actuators mounted out of the air stream,
- P. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 23 Section "Instrumentation and Control for HVAC."

- 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
- 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf (17 N x m) and breakaway torque rating of 150 in. x lbf (17 N x m).
- 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).
- 6. Electrical Connection: 115 V, single phase, 60 Hz.
- Q. Accessories:
 - 1. Auxiliary switches for position indication.
 - 2. Test and reset switches, remote mounted.
- R. The HVAC contractor shall provide all devices, relays, end switches, e/p switches, control components, air piping, power wiring, control wiring and interlock wiring as required to accomplish the sequence of operation for these dampers.
- S. Provide combination fire / smoke dampers as noted on the plans.
- T. Provide access door in duct adjacent to each combination fire / smoke damper.

2.10 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. METALAIRE, Inc.
 - 4. SEMCO Incorporated.
- B. Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; "Vanes and Vane Runners," and "Vane Support in Elbows."
- D. Vane Construction: Double wall.
- E. The maximum unsupported vane length shall not exceed 48 inches.
- F. Single vane and short radius vanes are not acceptable.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.11 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pottorff; a division of PCI Industries, Inc.
 - 2. Ventfabrics, Inc.
 - 3. Young Regulator Company.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Tubing: Brass.
- D. Cable: Stainless steel.
- E. Wall-Box Mounting: Recessed, 3/4 inches (19 mm) deep Surface.
- F. Wall-Box Cover-Plate Material: Steel.

2.12 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. McGill AirFlow LLC.
 - 4. Pottorff; a division of PCI Industries, Inc.
 - 5. Ventfabrics, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-10, "Duct Access Doors and Panels," and 2-11, "Access Panels - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.

- c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches with outside and inside handles.
- d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges and two compression latches with outside and inside handles.
- C. Furnish and install gasketed grease tight access doors on the grease hood exhaust duct as required under NFPA 96.

2.13 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Ventfabrics, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm) wide attached to 2 strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).
 - 2. Tensile Strength: 530 lbf/inch (93 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).
- G. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd. (542 g/sq. m).
 - 2. Tensile Strength: 285 lbf/inch (50 N/mm) in the warp and 185 lbf/inch (32 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).

- H. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd. (474 g/sq. m).
 - 2. Tensile Strength: 450 lbf/inch (79 N/mm) in the warp and 340 lbf/inch (60 N/mm) in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F (Minus 55 to plus 260 deg C).
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch (6-mm) movement at start and stop.

2.14 FLEXIBLE DUCTWORK

- A. Manfacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Buckley Associates
 - 2. Novaflex
- B. Construction
 - 1. Flex duct shall comply with UL 181, Class 1.
 - 2. Flex duct shall be Type 4, with a heavy coated fiberglass cloth fabric liner, mechanically locked without adhesives. Helix shall be corrosive resistant galvanized steel formed and mechanically locked to fabric.
 - 3. For duct systems requiring insulation, the flex duct shall have 1 inch thick fiberglass insulation blanket encapsulated in a fire retardant polyethylene outer jacket with a flame spread less than 25 and smoke developed rating less that 50.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations.

Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."
- M. Flexible duct runouts to diffusers/registers/grilles shall not exceed six feet in length, fully extended.
- N. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- O. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Provide manual balancing volume dampers as required properly balance the air distribution system. If the location of balancing dampers are not defined on the drawings, the following minimum standards shall govern:

- a. Low Pressure: All supply main air branches from trunk, each split, and all sub branches from main shall be provided with balancing dampers.
- b. Low Pressure: All exhaust main air branches from trunk, each split, and all sub branches from main shall be provided with balancing dampers.
- c. Medium Pressure: All branches and takeoffs downstream of terminal boxes (CV, VAV and FPB) shall be provided with low leakage balancing dampers.
- d. Ducts connecting to common plenums.
- e. Ducts serving single outlet.
- f. At open return duct in hung ceiling.
- g. As noted on plans.
- 2. For internally lined ductwork: Provide 2 internal saddles to protect lining.
- 3. Install levers to be accessible through the insulation
- P. Set dampers to fully open position before testing, adjusting, and balancing.
- Q. Install test holes at fan inlets and outlets and elsewhere as indicated.
- R. Install, combination fire & smoke fire and smoke dampers according to UL listing.
- S. Connect ducts to duct silencers rigidly.
- T. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Downstream from manual volume dampers, control dampers, turning vanes, and equipment.
 - 3. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 4. At each change in direction and at maximum 50-foot (15-m) spacing.
 - 5. Upstream of turning vanes.
 - 6. Elsewhere as indicated.
- U. Install access doors with swing against duct static pressure.
- V. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- W. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- X. Install flexible connectors to connect ducts to equipment.

- Y. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- Z. Connect terminal units to supply ducts directly. Do not use flexible ducts provide flexible connections for all fan powered terminal boxes.
- AA. Connect diffusers to flexible ducts with draw bands.
- BB. Install duct test holes where required for testing and balancing purposes.
- CC. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch (6-mm) movement during start and stop of fans.

3.2 SEAM AND JOINT SEALING

A. Seal duct seams and joints for duct static-pressure and leakage classes specified in "Performance Requirements" Article, according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Standard Duct Sealing Requirements," unless otherwise indicated..

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with the requirements of this section, the BUILDING CODE and SMACNA's "HVAC Duct Construction Standards Metal and Flexible,"Rectangular Duct Hangers Minimum Size," and "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing whichever is more stringent. Install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- G. Hangers, horizontal ducts:
 - 1. To 2 sq ft in area: Provide galvanized steel strap hangers, minimum 1 inch x 1/8 inch, maximum 8 ft 0 inch spacing.
 - 2. 2 to 4 sq ft in area: Galvanized steel strap hangers, minimum 1 inch x 1/8 inch, maximum 8 ft 0 inch spacing.
 - 3. Strap hangers shall be bent 2 inch under the bottom corner of rectangular ducts. One screw shall secure 2 inch portion of hanger to bottom of duct. Straps shall be secured to side of duct with a minimum of two screws and more, as necessary, to provide a maximum screw spacing of 12 inch. Side-of-duct screws shall be located not more than 2 inch from top and bottom of duct.
 - 4. 4 to 10 sq ft in area: Provide galvanized steel trapeze angles from steel threaded rods with a maximum 6 ft 0 inch spacing.
 - 5. Over 10 sq ft in area: Provide galvanized steel trapeze angles from steel threaded rods with a maximum 4 ft 0 inch spacing.
 - 6. Provide stronger support to match larger and heavier ducts; provide cross-bracing, angle iron hangers, as required for rigid and adequate supports.
 - 7. In mechanical rooms: Provide black steel painted or galvanized, vertical angles or rods and horizontal angles across ductwork.
 - 8. Kitchen exhaust in accordance with NFPA 96.
- H. Hangers Vertical ducts: At each floor, provide minimum 2 supports per duct fastened to duct and spanning shaft opening. Fasten supports to floor or structural construction. Maximum screw spacing shall be 12 inch on center and maximum shall be four screw per riser.
 - 1. Angles and channels: Provide painted black steel or galvanized. Where angles are specified, channels of equivalent strength, material and protective coating will be permitted. Where more than one duct is supported by a common set of angles, support size shall be determined by sum of width dimensions.
 - 2. Supports: Provide as follows, except increase supports as required for load and span where span of angles exceed 6 ft or floor-to-floor height exceeds 14 ft.
 - a. Duct width to 30 inch: Provide angle size: 1-1/4 inch x 1-1/4 inch x 1/8 inch.
 - b. Duct width, 31 inch to 54 inch: Angle size shall be 2 inch x 2 inch x 3/16 inch.
 - c. Duct width, 55 inch to 90 inch: Angle size shall be 2 inch x 2 inch x 1/4 inch.
 - 3. Vertical kitchen exhaust, fireproofed and plastered ducts: Provide minimum 3 inch, 4.1 lb/ft, steel channels fastened to slab, welded to building structural steel or as acceptable. Supports shall be bolted or welded to ducts and in accordance with NFPA 96.

3.4 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." SEI/ASCE 7.

- 1. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
- 2. Brace a change of direction longer than 12 feet (3.7 m).
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors.
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual."
 - 2. All testing shall be done in the presence of the engineer or owner's representative. The contractor is responsible for providing all collars, caps, electric power, etc. necessary to perform the tests. The contractor is also responsible for scheduling the test no less than three (3) business days prior to its intended occurrence. Low pressure ductwork (2" class) shall be tested on an as needed basis at the engineer's direction. Leakage test procedure shall follow the outlines and classifications in the SMACNA HVAC duct leakage test manual. If specimen fails to meet allotted leakage level, the contractor shall modify to bring it into compliance and shall retest it until acceptable leakage is demonstrated. Tests and necessary repair shall be completed prior to concealment of ducts.
 - 3. Test the following systems:
 - a. All ductwork greater than 2" class as defined within is to be tested. .
 - 4. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 5. Test for leaks before insulation application.
 - 6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.8 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

- 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, condensate drain pans, humidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as follows:

- B. Exposed ductwork:
 - 1. Where ductwork is indicated to be exposed to view in occupied spaces, provide materials which are free from visual imperfections, including pittings, seam marks, stains, discolorations, and other imperfections. Provide finishes which will allow painting. Provide flat type seams and joints for all exposed duct construction
- C. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Rectangular Elbows."
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Vanes and Vane Runners," and "Vane Support in Elbows."
 - 3) Provide splitter vanes on all short radius elbows.
 - 4) Provide double thickness turning vanes on all square elbows.
 - 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments, conform to SMACNA.
 - 1) Velocity 1000 fpm or Lower: 0.6 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.
- D. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," "Branch Connections."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: flanged spin in, conical.
 - c. Do not use "butt flange" straight taps.
 - d. Divided flow branches
 - 1) Provide long radius takeoff or square elbow as per SMACNA.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible,"90 Degree Tees and Laterals," and "Conical Tees."
 - a. Velocity 1000 fpm or Lower: 90-degree tee fitting.

- b. Velocity 1000 to 1500 fpm: Conical fitting.
- c. Velocity 1500 fpm or Higher: 45-degree lateral fitting.
- d. Saddle taps are NOT permitted.
- e. No bull head tees
- f. Divided flow branches, conical tees, y- branch or reducing Y-branch.or Tee's
- E. Obstructions
 - 1. Conform to SMACNA
- F. Offsets and transitions
 - 1. Conform to SMACNA

END OF SECTION

SECTION 233600

AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Single-duct, pressure independent air terminal units.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated, include rated capacities, furnished specialties, sound-power ratings, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Include a schedule showing unique model designation, room location, model number, size, and accessories furnished.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data" include the following:
 - 1. Instructions for resetting minimum and maximum air volumes.
 - 2. Instructions for adjusting software set points.

1.4 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of air terminal units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. NFPA Compliance: Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- 1.5 COORDINATION
 - A. Coordinate layout and installation of air terminal units and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In articles that follow where manufacturers are listed, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SINGLE-DUCT PRESSURE INDEPENDENT AIR TERMINAL UNITS

- A. Manufacturers:
 - 1. Price
 - 2. Titus.
 - 3. Trane.
 - 4. Metal Air.
 - 5. Nailor.
- B. Configuration: Volume-damper assembly inside unit casing with control components located inside a protective metal shroud.
- C. Casing: Solid double wall metal liner
 - 1. Casing Lining: 1-inch- thick fiberglass insulation with an R-value of 4.1.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections.
 - 4. Access: Removable panels for access to dampers and other parts requiring service, adjustment, or maintenance; with airtight gasket. Provide access panel upstream of heating coil for cleaning. Gasketed access panel shall have cam latches for access.
- D. Regulator Assembly: Extruded-aluminum or galvanized-steel components; key damper blades onto shaft with nylon-fitted pivot points located inside unit casing.
 - 1. Automatic Flow-Control Assembly: Combined spring rates shall be matched for each volume-regulator size with machined dashpot for stable operation.
 - 2. Factory-calibrated and field-adjustable assembly with shaft extension for connection to externally mounted control actuator.

- E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg inlet static pressure.
- F. Attenuator Section: 0.034-inch steel sheet metal.
 - 1. Lining: 1-inch- (25-mm-) thick, non-porous, sealed liner which complies with UL 181 and NFPA 90A. Insulation shall be 4 pound density secured with adhesive. Liner shall be equal to Titus Steri-Loc.
 - 2. All sound attenuators serving boxes that are part of the operating room systems shall be special packless type and shall be as specified under Section 230549 including special cleaning and protection.
- G. Hot-Water Heating Coil: Copper tube, mechanically expanded into aluminum-plate fins; leak tested underwater to 200 psig (1380 kPa); and factory installed.
- H. DDC Controls: Single-package unitary controller and actuator specified in Division 23 Section "Instrumentation and Control for HVAC." Controller and actuator to be shipped by DDC contractor for factory installation.
- 2.3 RETURN AIRFLOW MEASUREMENT DEVICES WITH INTEGRAL CONTROL DAMPER (RAD)
 - A. Acceptable manufacturers and models shall be as follows:
 - 1. Ebtron, inc. Model gtc116-pc factory assembled with tamco series 1000 damper and extruded aluminum sleeve.
 - B. The following specific technologies are excluded:
 - 1. Vortex shedding devices are not acceptable.
 - 2. Pitot tubes, pitot arrays and other differential pressure based devices are not acceptable.
 - C. Airflow / temperature measurement devices
 - 1. Provide one thermal dispersion airflow/temperature measurement device (atmd) factory assembled within a prefabricated extruded aluminum sleeve together with a high performance control damper, at each location indicated on the plans, schedules and/or control schematics.
 - 2. One atmd shall be supplied for each damper section. Each atmd shall consist of one to four sensor probes and a single, remote transmitter. Each sensor probe shall consist of one to eight independent sensor nodes in a gold anodized, aluminum 6063 alloy tube with 304 stainless steel mounting brackets.
 - 3. The outputs of multiple section-averaged data from one location shall be totaled and averaged by the building automation system
 - 4. Each sensor node shall consist of two hermetically sealed bead-in-glass thermistors. Chip thermistors of any type or packaging are not acceptable.
 - 5. The temperature output of the atmd shall be used in place of the specified temperature measuring device (tmd) when the location of the atmd and tmd are effectively the same.

- 6. Sensor density (#/area) affects minimum installed distances required from disturbance types. Published sensor density data by the product manufacturer shall be submitted for approval.
- 7. Submittal documents shall include schedules indicating the number of sensors per location, the duct area and the equivalent density (#/area) for approval.
- 8. Thermistors shall be potted in an engineering thermoplastic assembly using water-proof, marine epoxy and shall not be damaged by moisture or direct contact with water.
- 9. Signal processing circuitry on or in the sensor probe is not acceptable.
- 10. Each sensing node shall be individually wind tunnel calibrated at 16 points to nist traceable airflow standards.
- 11. Each sensing node shall be individually calibrated in constant temperature oil baths at 3 points to nist traceable temperature standards.
- 12. All internal wiring between thermistors and probe connecting cables shall be kynar jacketed.
- 13. Manufacturer shall provide ul listed, fep jacketed, plenum rated cable(s) between sensor probes and the remote transmitter.
- D. Measurement performance
 - 1. Each sensing node shall have a temperature accuracy of ± 0.14°f (0.08°c) over the entire operating temperature range of -20°f to 160°f (-28.9°c to 71°c).
 - 2. Each sensing node shall have an airflow accuracy of $\pm 2\%$ of reading.
 - 3. The atmd shall be capable of measuring airflow rates over the full range of 0 to 5,000 fpm (25.4 m/s) between -20°f to 160°f (-28.9°c to 71°c).
- E. Integral transmitter and communications
 - 1. The transmitter shall be powered by 24 vac, be over-voltage and over-current protected, and have a watchdog circuit to provide continuous operation after power failures and/or brown-outs.
 - 2. The power requirement for the atmd shall not exceed 22 v-a.
 - 3. The transmitter shall determine the airflow rate and temperature of each sensing node prior to averaging.
 - 4. The transmitter shall have two isolated and fused analog output signals and one rs-485 network connection.
 - 5. Each analog output shall be field configurable as linear 0-5/1-5 vdc, 0-10/2-10 vdc or 4-20ma signals.
 - 6. One analog output signal shall provide the average airflow rate.
 - 7. One analog output signal shall be field configurable to output the average temperature, the velocity weighted temperature or a binary airflow alarm.
 - 8. The rs-485 network connection shall be field configurable as bacnet ms/tp or modbus rtu.
 - 9. The rs-485 connections shall be capable of transmitting the average airflow rate, average temperature, individual airflow rates of each sensor node, and individual temperatures of each sensor node and system status.
 - 10. All integrated circuits shall be industrial rated for operation down to -40°f (-40°c).
 - 11. All electrical plugs, receptacles and circuit board interconnects shall be gold plated.
- F. Listings and certifications
 - 1. The atmd shall be ul 973 listed.
 - 2. The atmd shall be btl listed.

G. Integral damper and sleeve

- 1. Provide one or more damper sections for each location indicated on the plans.
- 2. Provide a factory assembled, extruded aluminum (6063t5) sleeve with an integral damper frame not less than 0.080" in thickness for each damper section. Sleeve depth, including damper frame, shall be 15" for ducted applications and 18" for un-ducted applications. Unducted applications shall include a 3" radius aluminum entry flair. Provide an additional 7" (10" for ducted applications) between the downstream edge of an intake louver and the leading edge of the entry flair for outside air intake applications that are close coupled to intake louvers.
- 3. Provide extruded aluminum (6063t5) damper blade profiles. Blade seals shall be extruded epdm. Frame seals shall be extruded silicone. Seals shall be secured in an integral slot within the aluminum extrusions.
- 4. Bearings shall be composed of a celcon inner bearing fixed to a 7/16" aluminum hexagon blade pin, rotating within a polycarbonate outer bearing inserted in the frame, resulting in no metal-to-metal or metal-to-plastic contact.
- 5. Linkage hardware shall be installed in the frame side and constructed of aluminum and corrosion resistant, zinc plated steel, complete with cup-point trunnion screws for a slip-proof grip.
- 6. Leakage shall not exceed 3 cfm/sq.ft. Against 1" w.g. differential static pressure.
- 7. Dampers shall be available with either opposed blade action or parallel blade action and made to size without blanking off free area.

2.4 SOURCE QUALITY CONTROL

- A. Identification: Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and ARI certification seal.
- B. Verification of Performance: Rate air terminal units according to ARI 880.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to air terminal units to allow service and maintenance.
- C. Hot-Water Piping: In addition to requirements in Division 23 Section "Hydronic Piping," connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.
- D. Connect ducts to air terminal units according to Division 23 Section "Sheet Metal Work".

- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- F. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- 3.3 FIELD QUALITY CONTROL
 - A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - B. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION

SECTION 233713

DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Linear bar diffusers.
 - 3. Adjustable bar registers and grilles.
 - 4. Fixed face registers and grilles.
 - 5. Linear bar grilles.
 - 6. Operating Room Diffusors
 - 7. Operating Room Ceiling Grid
- B. Related Sections:
 - 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volumecontrol dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
- C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

- 1. Ceiling suspension assembly members.
- 2. Method of attaching hangers to building structure.
- 3. Size and location of initial access modules for acoustical tile.
- 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- 5. Duct access panels.
- E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Tuttle & Bailey-Agitair Type RC.
 - b. Titus Type TDX.
 - c. Anemostat Type D.
 - d. Price SMX.
 - 2. Devices shall be specifically designed for variable-air-volume flows with internal directional induction vanes.
 - 3. Material: Steel.
 - 4. Finish: Baked enamel, white.
 - 5. Face Size: 24 by 24 inches.
 - 6. Mounting: T-bar and plaster.
 - 7. Pattern: Refer to drawings.
 - 8. Accessories:
 - a. Minimum 3"high plenum (not including duct collar) square to round adapter installed at the factory. Adapter to fit on inside of diffuser neck to minimize leakage.

2.2 LINEAR SLOT OUTLETS

- A. Linear Diffuser:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Tuttle & Bailey
 - b. Anemostat Products; a Mestek company.
 - c. Titus.
 - d. Price.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Extruded aluminum.
 - 4. Finish: Baked enamel, white.

- 5. The diffuser shall be designed so that the air will be discharged at a uniform velocity across the entire length of the unit. The air streams shall be discharged at counter angles parallel to the diffuser mounting surface by extruded aluminum fixed louvers providing one or two way discharge patterns to create induction of room air within the primary air stream to achieve rapid mixing of primary and room air. The diffuser efficiency must be such that the initial temperature differential shall be reduced by 50% at a distance one foot from the point of discharge. Slotted outlets of the grille type lacking diffusion vanes and mixing characteristics shall not be accepted.
- 6. Diffusers shall be equipped with matching extruded aluminum plaster frames or to match ceiling types. Frames shall be equipped with slots to accept the coil mounting springs mounted on the diffuser for positive mounting within the frame. Visible fasteners shall not be accepted.
- 7. Mounting: Concealed, Spring clip.
- 8. Accessories: Plaster frame, Directional vanes, Alignment pins, Core clips and Blank-off strips where indicated.
- 9. Diffusers in curved walls shall be constructed of lengths that respect the curved surface (maximum 3'-0") so the diffuser does not need to be curved. Refer to drawings.
- B. Ceiling-Integral Continuous Diffuser:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anemostat Products; a Mestek company.
 - b. Titus.
 - c. Price.
 - d. Tuttle and Bailey
 - 2. Slot Width: shall be as schedule.
 - 3. Section Length: shall be as indicted on the drawing.
 - 4. Straight and curved sections as required to accommodate layout.
 - 5. Mitered tees and corners.
 - 6. Pattern Controllers: 24 inches o.c.
 - 7. Material: Aluminum, extruded, heavy wall.
 - 8. Finishes:
 - a. Exterior: Standard white baked enamel.
 - b. Interior: Standard black.
 - 9. Mounting: Ceiling and Sidewall.
 - 10. Plenum: all Insulated and vapor proof.
 - 11. Other Features:
 - a. Painted interior.
 - b. Blank-offs.

2.3 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Anemostat Products; a Mestek company.
- b. Titus.
- c. Tuttle & Bailey
- d. Price.
- e. Krueger.
- 2. Material: Steel.
- 3. Finish: Baked enamel, white.
- 4. Face Blade Arrangement: Horizontal.
- 5. Core Construction: Integral.
- 6. Rear-Blade Arrangement: Vertical.
- 7. Frame: 1 inch wide.
- 8. Mounting: Concealed.
- B. Adjustable Bar Grille:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anemostat Products; a Mestek company.
 - b. Titus.
 - c. Tuttle & Bailey.
 - d. Price.
 - e. Krueger.
 - 2. Material: Steel.
 - 3. Finish: Baked enamel, white.
 - 4. Face Blade Arrangement: Horizontal.
 - 5. Core Construction: Integral.
 - 6. Rear-Blade Arrangement: Vertical.
 - 7. Frame: 1 inch (25 mm) wide.
 - 8. Mounting: Concealed.
- 2.4 Operating Room Diffuser:
 - A. Operating Room Diffuser:
 - 1. Supply and install air systems in each operating room of the sizes and capacities as indicated on the drawings or diffuser schedule. Equivalent manufactures shall include:
 - a. Tuttle and Bailey
 - b. Titus
 - c. Krueger
 - d. Price
 - 2. Each operating room air system shall consist of modular slot diffusers which shall provide a protective air curtain around the operating area and laminar flow diffusers which shall provide a supply of sterile air over the operating table area
 - 3. The slot diffuser and laminar flow diffuser shall be of aluminum construction
 - 4. The slot diffusers shall consist of a .064" (2) aluminum plenum with continuous welded joints and radiused corners to facilitate cleaning, extruded aluminum frames, formed

aluminum diffuser face with two slots and fixed pattern deflectors. Plenums shall have formed aluminum inlet collars complete with dampers, removable from plenum face. The removable dampers shall be opposed blade type of stainless steel construction. Damper shall be adjusted without removing face of HORD. The diffuser face shall be attached by 90° quick-release fasteners and safety cable for easy removal and replacement. Entire plenum and diffusers shall have a B11 Sterile White - Thermal Setting finish which meets special requirements for hospital use and will be subjected to regular cleaning with high concentration cleaning solutions and agents for sterilization purposes

- 5. The laminar flow diffusers shall have components of aluminum and plated steel to inhibit corrosion. The perforated face plate, perforated damper deflector using interior baffles and diffuser back pan plenum assembly shall be of 0.040 (1) aluminum. The volume control damper shall be a steel construction full flow type damper. The perforated face plate shall open easily with ¼ turn fasteners and safety cable for damper adjustment and cleaning. Diffusers shall have a B11 Sterile White Thermal Setting finish which will withstand cleaning with high concentration cleaning solutions and agents
- B. Return Grille
 - 1. The hospital operating room return grilles shall be of stainless steel construction. The core of the return grille will consist of 45° louvres, 0.75" (19) on centre. The grille border shall have a #4 finish. The grille shall use 90° quick-release fasteners to mount to a separate stainless steel wall mounting frame, provided with the unit, thereby allowing easy removal for cleaning.
- 2.5 Operating Room Ceilings-(Add Alternate Number 3)
 - A. The operating room air diffuser manufacturer shall furnish extruded aluminum tee and angle frame ceiling suspension system to support air diffusers, fill-in panels and light fixtures. Tees should have a 1.5" face width and 1.563" overall height. Minimum wall thickness of tees shall be 0.125" with a minimum weight of 0.45 lbs. per linear ft (full tee). All tee and angle frame extrusions should include channels along the top of the stack to support hold-down clips for fill-in panels. Extrusions shall be fabricated using 100% pre-consumer recycled aluminum material. The manufacturer shall coordinate with the medical equipment supplier and other trades to insure fit and finish. The manufacturer shall provide detailed CAD drawings for approval prior to fabrication.
 - B. The ceiling suspension system shall be factory heliarc welded in sub-assemblies not larger than 5' x 10', where framing sub-assemblies butt together for field assembly. The butting angles shall be half tees mechanically-fastened together with heavy duty bolts.
 - C. All tees and angles shall be pre-punched on 4.85" centers for attachment to minimum 12 gauge pre-stressed suspending hanger wires on minimum 48" centers. Systems shall be designed to support 15 lbs/sq.ft when installed as per ASTM C636. Hangers are by others.
 - D. Manufacturer shall furnish 0.125" thick closed-cell polyethylene gasket tape to be (factory) installed on the frame assembly to provide an airtight seal between the tees and diffusers, fill-in panels and/or light fixtures. Gasket shall also be field applied between framing sub-assemblies prior to field assembly. Infill panels shall be (Equal to Price SC Series lay-in type, 0.040" unperforated aluminum, or equal to Price SPB Series perforated panel with border consisting of 0.040" perforated aluminum faceplate with 0.040" solid aluminum backing with B11 finish

- 1. Fill-in panels should be held down using factory supplied spring clips on all sides of the panel to seal against the closed-cell gasket. Manufacturer shall provide filler panels and access as required (provide a minimum of four access panels at corners of grid). Manufacturer shall coordinate tee and panel layout with medical equipment manufacturer
- E. The ceiling suspension system shall have a baked-on powder coat finish to match the laminar flow diffusers and fill-in panels. Paint finish must demonstrate no deterioration when tested in accordance with ASTM D1308 (covered spot & immersion) and ASTM D4752 (MEK double rub) paint durability tests.

2.6 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.
- D. Noise level at noted capacities shall not exceed criteria specified in Section NOISE CONTROL. Diffusers shall be suitable for operation at 5 percent excess and 25 percent less then noted capacity. Provide blanking for proper coverage and blow without producing objectionable noise or air motion at occupied level. Finish shall match color sample as approved:
- E. Linear diffusers: Frame types shall mate with ceilings. Provide means to neatly butt and align units to give continuous appearance without butting flanges. No screw holes or welded corners visible on diffusers or frames will be permitted. Air volume shall be adjustable through air supply face without requiring removal of face panel. Provide blanked sections for inactive lengths.

Provide plaster frames and opposed blade volume dampers with remote cable operators where noted. Refer to Architectural Drawings for mounting details and overall lengths. Finish shall match color sample as approved:

F. Install all fire rated diffusers in compliance with NFPA and UL listed installation instructions.

3.3 ADJUSTING

- A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.
- 3.4 Operating Room Ceiling Installation
 - A. Install all components in accordance with the manufactures' instructions in accordance to ASTM C 636.
 - B. Main grid members are to be suspsended on pre-stressed hanger wire at 4' (1200 mm) centers. Minimum gauge for the hanger wire shall be 12 gauge.
 - C. Maximum allowable deflection shall not exceed L/360.
 - Install ceilings to heights indicated ont eh plans and specifications to a tolerance of 1/8" in 12'-0" (3.2mm in 3660 mm).

END OF SECTION

SECTION 238123

EQUIPMENT-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Ceiling-mounted computer-room air conditioners.

1.3 DEFINITION

A. BAS: Building automation system.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For equipment room air conditioners. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Coordination Drawings: Plans, elevations, and other details, drawn to scale, using input from Installers of the items involved.
- D. Field quality-control reports.
- E. Operation and Maintenance Data: For equipment-room air conditioners to include in emergency, operation, and maintenance manuals.
- F. Warranty: Sample of special warranty.
- 1.5 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

- 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Ventilation Rate Procedures," and Section 7 - "Construction and Startup."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1
- D. ASME Compliance: Fabricate and label water-cooled condenser shell to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

1.6 COORDINATION

- A. Coordinate layout and installation of equipment-room air conditioners and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
- B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of equipment-room air conditioners that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 - 2. Warranty Period for Control Boards: Manufacturer's standard, but not less than threeyears from date of Substantial Completion.

1.8 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) of filters for each unit.

PART 2 - PRODUCTS

- 2.1 CEILING-MOUNTED UNITS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Liebert Corporation.
 - 2. Stulz-ATS.

- B. Cabinet: Galvanized steel with baked-enamel finish, insulated with 1/2-inch- (13-mm-) thick duct liner.
 - 1. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Supply-Air Fan: Forward curved, centrifugal, and directly driven.
- D. Refrigeration System:
 - 1. Compressor: Hermetic, with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
 - 2. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermalexpansion valve with external equalizer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.
 - 3. Refrigerant: R-407C
 - 4. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins.
 - a. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
 - 5. Remote Air-Cooled Refrigerant Condenser: Integral, copper-tube aluminum-fin coil with propeller fan, direct driven.
 - 6. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
- E. Filter: 1-inch- (25-mm-) thick, disposable, glass-fiber media.
 - 1. Merv (ASHRAE 52.2): 7
- F. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- G. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature control modules, time-delay relay. Provide solid-state, wall-mounted control panel with start-stop switch, and adjustable temperature set point.

2.2 FAN MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for hydronic piping systems to verify actual locations of piping connections before equipment installation.
- C. Examine walls, floors, and roofs for suitable conditions where computer-room air conditioners will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install equipment-room air conditioners level and plumb, maintaining manufacturer's recommended clearances.
- B. Suspended Equipment-Room Air Conditioners: Install using continuous-thread hanger rods and spring hangers of size required to support weight of equipment-room air conditioner.
 - Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Fabricate brackets or supports as required.
 - 2. Comply with requirements for hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- C. Air-Cooled Refrigerant Condenser Mounting: Install using restrained spring isolators. Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Drainage Connections: Provide adequate connections for condensate drain.
- D. Refrigerant Piping: Comply with applicable requirements in Division 23 Section "Refrigerant Piping." Provide shutoff valves and piping.
- 3.4 FIELD QUALITY CONTROL
 - A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Equipment-room air conditioners will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. After startup service and performance test, change filters.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain computer-room air conditioners.

END OF SECTION

SECTION 238126

SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes split-system air-conditioning units consisting of separate evaporator-fan and compressor-condenser components. Units are designed for exposed or concealed mounting, and may be connected to ducts.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
- E. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of split-system units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Energy-Efficiency Ratio: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."

- D. Coefficient of Performance: Equal to or greater than prescribed by ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings."
- E. Units shall be designed to operate with HCFC-free refrigerants.

1.5 COORDINATION

- A. Coordinate size and location of concrete bases for units. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."
- B. Coordinate size, location, and connection details with roof curbs, equipment supports, and roof penetrations specified in Division 07 Section "Roof Accessories."

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Daiken.
 - 2. Mitsubishi Electronics America, Inc.; HVAC Division.
 - 3. Sanyo Fisher (U.S.A.) Corp..
 - 4. Trane Company (The); Unitary Products Group.

2.2 WALL-MOUNTING, EVAPORATOR-FAN COMPONENTS

- A. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
- B. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with ARI 210/240, and with thermal-expansion valve.
- C. Fan: Direct drive, centrifugal fan.

- D. Fan Motors: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- E. Filters: Permanent, cleanable.
- 2.3 AIR-COOLED, COMPRESSOR-CONDENSER COMPONENTS
 - A. Outdoor unit shall have a sound rating no higher than 60 dB(A) individually.
 - B. Outdoor unit shall be able to connect to up to 50 indoor units depending upon model.
 - C. Both refrigerant lines from the outdoor unit to indoor units shall be insulated.
 - D. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.
 - E. The outdoor unit shall have a high pressure safety switch, over-current protection and DC bus protection.
 - F. The outdoor unit shall have the ability to operate with a maximum height difference of 164 feet (294 feet optional) and have a total refrigerant tubing length of 3280 feet. The greatest length is not to exceed 541 feet between the outdoor unit and the indoor units without the need for line size changes or traps.
 - G. The outdoor unit shall be capable of operating in cooling mode down to -10°F ambient temperature.
 - H. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.
 - I. Unit Cabinet: The casing(s) shall be fabricated of galvanized steel, bonderized and finished. Units cabinets shall be able to withstand 960 hours per ASTM B117 criteria for seacoast protected models.
 - J. Fan: Each outdoor unit module shall be furnished with one direct drive, variable speed propeller type fan.
 - K. The fan motor shall have inherent protection, have permanently lubricated bearings, and be completely variable speed. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0,24 in. WG external static pressure via dipswitch.
 - L. The fan motor shall be mounted for quiet operation.
 - M. The fan shall be provided with a raised guard to prevent contact with moving parts.
 - N. The outdoor unit shall have vertical discharge airflow.
 - O. Refrigerant:R410A refrigerant shall be required.

- P. Coil: The outdoor coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
- Q. The coil fins shall have a factory applied corrosion resistant blue-fin finish.
- R. The coil shall be protected with an integral metal guard.
- S. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.
- T. The outdoor coil shall include 4 circuits with two position valves for each circuit, except for the last stage.
- U. Compressor: Each outdoor unit module shall be equipped with one inverter driven scroll hermetic compressor. Non inverter-driven compressors shall not be allowed.
- V. A crankcase heater(s) shall be factory mounted on the compressor(s).
- W. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable with a turndown of 18%-4% of rated capacity, depending upon unit size
- X. The compressor shall be equipped with an internal thermal overload.
- Y. The compressor shall be mounted to avoid the transmission of vibration.
- Z. The outdoor unit shall be controlled by integral microprocessors.
- AA. The control circuit between the indoor units and the outdoor unit shall be 24VDC completed using a 2-conductor, non-polar twisted pair shielded cable to provide total integration of the system.

2.4 ACCESSORIES

- A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection, including auto setting.
- B. Automatic-reset timer to prevent rapid cycling of compressor.
- C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Install seismic restraints. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 1 inch .Refer to Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Electrical Connections: Comply with requirements in Division 26 Sections for power wiring, switches, and motor controls.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

TABLE OF CONTENTS

ELECTRICAL

SECTION	
NUMBER	SECTION TITLE
260000	General Provisions For Electrical Work
260001	Supplementary Conditions For Mechanical, Electrical, Plumbing And Fire Protection Work
260500	Common Work Results For Electrical
260519	Low-Voltage Electrical Power Conductors And Cables
260526	Grounding And Bonding For Electrical Systems
260529	Hangers And Supports For Electrical Systems
260533	Raceway And Boxes For Electrical Systems
260548	Vibration And Seismic Controls For Electrical Systems
260553	Identification For Electrical Systems
260573	Overcurrent Protective Device Coordination Study
260923	Lighting Control Devices
260943	Network Lighting Controls
262200	Low-Voltage Transformers
262416	Panelboards
262417	Isolated Power Systems
262726	Wiring Devices
262816	Enclosed Switches And Circuit Breakers
265100	Interior Lighting
283111	Fire Alarm
284112	Nurse Call System
284113	Public Address System
284114	Gps Wireless Clock Systems/Elapsed Timer

SECTION 260000

GENERAL PROVISIONS FOR ELECTRICAL WORK

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Work in this Section includes the providing of labor, materials, equipment and services necessary for a complete and safe installation in accordance with the contract documents and all applicable codes and authorities having jurisdiction for the following:
 - 1. Electrical work covered by all Sections within DIVISION 16 of the Specifications, including, but not limited to electrical systems and equipment.
 - 2. RACEWAY
 - 3. CABLE TRAY (CENTER SPINE TYPE)
 - 4. WIRE AND CABLE
 - 5. LOW VOLTAGE DISTRIBUTION EQUIPMENT
 - 6. MOTOR CONTROLLERS
 - 7. POWER, CONTROL AND ALARM WIRING SYSTEMS
 - 8. GROUNDING SYSTEM
 - 9. DEVICES
 - 10. LIGHTING FIXTURES
 - 11. TELEPHONE CONDUIT SYSTEM
 - 12. ISOLATED POWER AND EQUIPOTENTIAL GROUNDING SYSTEMS
 - 13. CENTRALIZED NURSES CALL AND INFORMATION SYSTEM
 - 14. ELECTRICAL PROVISIONS FOR SECURITY AND BUILDING AUTOMATION SYSTEMS
 - 15. ELECTRICAL PROVISIONS FOR FIRE AND LIFE SAFETY
 - 16. FIRE ALARM SYSTEM
 - 17. MULTIPLEXED FIRE AND LIFE SAFETY SYSTEM (FLSS)
 - 18. SYNCHRONOUS WIRED CLOCK SYSTEM
 - 19. ELECTRONIC CLOCK SYSTEM
 - 20. ELECTRONIC CLOCK AND PROGRAM SYSTEM
 - 21. TESTING
 - 22. UNIT PRICES
 - 23. ALTERNATE PRICES
 - 24. ALLOWANCES
- B. Provide cutting and patching, except as noted in "AIA document A201" and "Supplementary Condition for Mechanical and Electrical Work".
- C. Related Work and Requirements
 - 1. Requirements of GENERAL CONDITIONS and Division No. 1.
 - 2. Requirements noted under HVAC, Plumbing, Fire Protection, Transportation and Automated Monitoring & Control Division of Work.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

- 1.2 WORK NOT INCLUDED:
 - A. Providing temporary light and power.
 - B. Providing finished painting.
 - C. Providing access doors and filler.
 - D. Installing access doors and providing filler.
 - E. Cutting and patching, except as noted in "AIA Document A210" and "Supplementary Conditions for Mechanical and Electrical Work."
 - F. Supplying and setting motors.
 - G. Excavating and backfilling under building.
 - H. Excavating and backfilling.
- 1.3 DESCRIPTION OF BID DOCUMENTS
 - A. Specifications describe quality and character of materials and equipment.
 - B. Drawings are diagrammatic and indicate general arrangement of systems and work. Follow drawings in laying out work and check drawings of other trades to verify space conditions. Maintain headroom and space conditions.
 - C. Scaled and figured dimensions are approximate and are for estimate purposes only. Before proceeding with work, check and verify all dimensions.
 - D. Make adjustments that may be necessary or requested in order to resolve space problems, preserve headroom, and avoid architectural openings, structural members and work of other trades.
 - E. Typical details, where shown on the drawings, apply to each item of the project where such items are applicable. Typical details are not repeated on the plans.
 - F. If Specifications or Drawings appear unclear or contradictory, consult the Architect and/or Engineer for interpretation as early as possible during bidding period. Do not proceed with work without Architect's and/or Engineer's decision.
- 1.4 DEFINITIONS
 - A. "Provide": to supply, install, and make complete, safe, and operable, the particular work referred to unless specifically indicated otherwise.
 - B. "Install": to erect, mount, and make complete with all related accessories.
 - C. "Furnish" or "supply": to purchase, procure, acquire, and deliver complete with related accessories.

- D. "Work": labor, materials, equipment, services, and all related accessories necessary for the proper and complete installation of complete systems.
- E. "Piping": pipe, tube, fittings, flanges, valves, controls, strainers, hangers, supports, unions, traps, drains, insulation and all related accessories.
- F. "Wiring": raceway, fittings, wire, boxes and all related accessories.
- G. "Concealed": not in view, installed in masonry or other construction, within furred spaces, double partitions, hung ceilings, trenches, crawl spaces, or enclosures.
- H. "Exposed": in view, not installed underground or "concealed" as defined above.
- I. "Indicated," "shown," or "noted": as indicated, shown, or noted on drawings or specifications.
- J. "Similar" or "equal": of base bid manufacture, equal in quality materials, weight, size, performance, design, and efficiency of specified product, conforming with "Base Bid Manufacturers."
- K. "Reviewed" "satisfactory," "accepted," or "directed": as reviewed, satisfactory, accepted, or directed by Architect and/or Engineer.
- L. "Motor Controllers": manual or magnetic starters with or without switches, individual pushbuttons or hand-off-automatic (HOA) switches controlling the operation of motors.
- M. "Control or Actuating Devices": automatic sensing and switching devices such as thermostats, pressure, float, flow, operation of equipment.

1.5 QUALITY ASSURANCE

- A. All work shall combine with National Electrical Code and all applicable local codes.
- B. Furnish all materials and equipment new, free from defects and with listings or labels of Underwriter's Laboratories, Inc. or other nationally approved testing laboratory.
- C. All items of a given type shall be the product of the same manufacturer.
- D. All materials and equipment shall be the product of manufacturers regularly engaged in their manufacture.
- E. Current characteristics:
 - 1. Provide the following distribution:
 - a. 120/208 volt, 3 phase, 4 wire, 60 Hz with grounded 4W distribution.
 - b. 277/480 volt, 3 phase, 4 wire, 60 Hz with grounded 4W distribution.
- F. Equipment ampere ratings shall be for continuous operation in 104°F (40°C) ambient temperature unless otherwise indicated.
- G. Provide the following heights of outlets and verify with Architect and/or Engineer prior to installation:

- 1. From finished floor to centerline of outlets for:
 - a. Receptacles and telephones:
 - 1) Generally 1'-6"
 - 2) Over work benches3'-6"
 - b. Wall switches:
 - 1) Generally 4'-0"
 - c. Wall fixtures 7'-0"
 - d. Motor controllers 5'-0"
 - e. Speaker/Strobes 6'-8" or 6 in below ceiling (whichever is lower)
 - f. Fire alarm stations 3'-6"
 - g. Clocks 7'-6"
 - h. Strobe lights 6'-8" or 6 in below ceiling (whichever is lower)
- 2. Provide outlets to match existing.
- 3. The following are exceptions to specified height of outlets:
 - a. At junction of different wall finish materials.
 - b. On molding or break in wall surface.
 - c. In violation of Code.
 - d. As noted or directed.

1.6 JOB CONDITIONS

- A. Inspection of Site Conditions.
 - 1. Before starting work, visit the site and examine the conditions under which the work has to be performed. Report in writing any conditions which might adversely affect the work
- B. Connections to existing work:
 - 1. Install new work and connect to existing work with minimum interference to existing facilities.
 - 2. Provide temporary shutdowns of existing services at no additional charges and only with written consent of Owner. Schedule shutdowns not to interfere with normal operation of existing facilities.
 - 3. Alarm and emergency systems shall not be interrupted.
 - 4. Maintain continuous operation of existing facilities as required with necessary temporary connections between new and existing work.
 - 5. Connect new work to existing work in neat and acceptable manner. Restore existing disturbed work to original condition including maintenance of wiring continuity required.
 - 6. Perform the following work only after regular working hours:
 - a. with Construction Manager
- C. Removal and relocation of existing work:

- 1. Disconnect, remove, or relocate electrical material, equipment, and other work noted and required by alterations, modifications, or changes in existing construction.
- 2. Provide new material and equipment required for relocated equipment.
- 3. Disconnect load and line end of conductor feeding existing equipment.
- 4. Tape both ends of abandoned conductors and cap outlets and abandoned raceways.
- 5. Remove any raceway no longer required for removed or relocated equipment.
- 6. Cut and cap abandoned floor raceways flush with concrete floor or behind walls and ceilings.
- 7. Return removed electrical equipment to owner as directed, and dispose of other equipment.
- 8. Dispose of removed electrical equipment as directed.
- D. Hazardous locations:
 - 1. Provide required material, equipment and installation for hazardous locations.
 - 2. Provide material, equipment, and installation as required for Class, Division and Group noted.
 - 3. Provide material, equipment, and installation meeting requirements of National Electric Code Class, Division and Group, except Division 1 requirements apply to Division 2.

1.7 REFERENCE STANDARDS

- A. Published specifications, standards, tests, or recommended methods of trade, industry or governmental organizations apply to work in all sections as noted below:
 - 1. NEMA National Electrical Manufacturers' Association.
 - 2. ANSI American National Standard Institute.
 - 3. IEEE Institute of Electrical & Electronics Engineers.
 - 4. NFPA National Fire Protection Association
 - 5. UL Underwriter's Laboratories, Inc.
 - 6. OSHA Occupational Safety and Health Administration Regulations.

1.8 SUBMITTAL

- A. Submit shop drawings and samples in accordance with "AIA Document 201" and "Supplementary Conditions for Mechanical and Electrical Work."
- B. Operating instructions, equipment maintenance manuals and parts lists.
 - 1. Before requesting acceptance of work, submit one set for review by the Architect and/or Engineer.
 - 2. Provide sets of manufacturers' equipment brochures and service manuals consisting of the following:
 - a. Descriptive literature for equipment and components.
 - b. Model number and performance data.
 - c. Installation and operating instructions.
 - d. Maintenance and repair instructions.
 - e. Recommended spare parts lists.
 - 3. Assemble manufacturers' equipment manuals in chronological order following the specifications alpha-numerical system using heavy duty three ring binders.

- 4. Submit three detailed and simplified one line, color coded wiring diagrams.
- 5. Submit field test reports.

1.9 ELECTRONIC COPIES OF AKF DRAWINGS

- A. Upon award of contract, contractor shall submit list of drawings that they will require. AKF will provide drawings in (.PDF format only.
- B. If the contractor requires (.dwg) format, after preparation the drawings will be forwarded only upon receipt of signed acceptance of terms form. Permission from the architect must first be obtained for AKF to include the architectural background as reference. The contractor is to obtain the architects latest drawings directly from the architect.
- C. These files are being issued for the convenience of the contractor and the contractor remains responsible for all contract requirements related to the normal shop drawing preparation process.

1.10 SUBMISSIONS:

- A. Provide all coordination drawings and shop drawings in 'AutoCad" format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. If paper submissions are to be provided the following shall be adhered to.
 - 1. Submissions 11 in. X 17 in. or smaller: If the submission is a catalog cut, then the contractor shall submit one original and one copy. Otherwise, they shall submit two copies. The architect will forward the original and one copy (two copies when no original is received) to the engineer. All catalog cuts shall be complete.
 - 2. Submissions larger than 11 in. X 17 in.: submit two copies to the architect. The architect will forward to the engineer.
- C. Indicate on each submission: project name and location, architect and engineer, item identification and approval stamp of prime contractor, subcontractor names and phone numbers, reference to the applicable design drawing or specification article, date and scale.
- D. The work described in all shop drawing submission shall be carefully checked for all clearances (including those required for maintenance and servicing), field conditions, maintenance of architectural conditions and proper coordination with all trades on the job.
- E. Each submitted shop drawing is to include a certification that all related job conditions have been checked and verified and that there are no conflicts.
- F. All shop drawings are to be submitted to allow ample time for checking in advance of field requirements. All submittals to be complete and contain all required and detailed information. Shop drawings with multiple parts shall be submitted as a package.
- G. If submittals differ from the contract document requirements, make specific mention of such difference in a letter of transmittal, with request for substitution, together with reasons for same.

1.11 AS-BUILTS AND EQUIPMENT OPERATION INSTRUCTIONS

- A. Provide all coordination drawings and shop drawings in AutoCad format, version compatible with owner. All catalog cuts and submittals to be provided in electronic "PDF" format the architect will forward all submissions to the engineer.
- B. On completion and acceptance of work, this contractor shall furnish written instructions, equipment manuals and demonstrate to the owner the proper operation and maintenance of all equipment and apparatus furnished under this contract.
- C. The contractor shall give one copy of the instructions to the owner and one copy to the engineer.
- D. Final "as-built" drawings indicating as installed conditions shall be provided to the architect and engineer after completion of the installation.
- 1.12 PRODUCT DELIVERY, HANDLING, AND STORAGE
 - A. Ship materials and equipment in crated sections of sizes to permit passing through available space, where required.
 - B. Receive and accept materials and equipment at the site, properly handle, house, and protect them from damage and the weather until installation. Replace equipment damaged in the course of handling without additional charge.
 - C. Arrange for and provide storage space or area at the job site for all materials and equipment to be received and/or installed in this project.

1.13 ACCESSIBILITY

- A. Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Minor deviations from the drawings may be made to accomplish this, but changes of substantial magnitude shall not be made without written approval.
- B. Install equipment requiring access so as to be freely accessible through access doors.

1.14 CUTTING AND PATCHING:

- A. Provide all carpentry, cutting and patching required for proper installation of material and equipment specified. Do not cut or drill structural members without consent of architect and structural engineer.
- B. All cutting and patching will be performed under General Construction Work, except as noted in "AIA Document A201" and "Supplementary Conditions for Mechanical and Electrical Work."

1.15 PROTECTION OF MATERIALS

A. Protect from damage, water, dust, etc. all material, equipment and apparatus provided under this trade both in storage and installed.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.16 GUARANTEE

A. The Contractor shall furnish a written guarantee to replace or repair promptly and assume responsibility for all expenses incurred for any workmanship and equipment in which defects develop within one year from the date of final certificate for payment and/or from date or actual use of equipment or occupancy of spaces by Owner included under the various parts of the work, whichever date is earlier. This work shall be done as directed by the Owner. This guarantee shall also provide that where defects occur, the Contractor will assume responsibility for all expenses incurred in repairing and replacing work of other trades affected by defects, repairs or replacements in equipment supplied by the Contractor.

1.17 PERMITS AND FEES

- A. The Contractor shall give necessary notice, file drawings and specifications with the department having jurisdiction, obtain permits or licenses necessary to carry out this work and pay all fees therefor. The Contractor shall arrange for inspection and tests of any or all parts of the work if so required by authorities and pay all charges for same. The Contractor shall pay all costs for, and furnish to the Owner before final billing, all certificates necessary as evidence that the work installed conforms with all regulations where they apply to this work.
- B. This contractor shall prepare or hire the necessary consultants to prepare and file all plans, calculation, forms, etc.. required for filing with all agencies required for this work. including but not limited to Portland Fire Department.
- C. The electrical contractor shall prepare the as-built drawings to comply with the Portland Fire Department requirements and send electronic copy to AKF for use in preparing the as-built Portland Fire Department drawing as the engineer of record. The electrical contractor shall sign and seal the AKF drawing, for the functional statement part of the as-built requirements. AKF will sign and seal for the engineer of record.

1.18 INSPECTIONS / TESTING

A. Independent testing and inspections shall be provided by this contractor who shall hire the inspector or testing agency

PART 2 - PRODUCTS

2.1 BASE BID MANUFACTURERS

- A. Base bid on materials or equipment are specified by name of manufacturer, brand or trade name and catalog reference.
- B. The choice will be optional with bidder where two or more manufacturers are named.
- C. Manufacturers, other than specified, will only be considered if at the time of bid, manufacturers' names and proposed substitutions are named and stated and the difference in base bid is indicated including changes in the cost of all affected work.
- D. Submission of equipment of manufacturers other than specified shall detail equality and difference item by item. Delay in ordering of equipment will not be considered a valid cause for substitution.

- E. The following are base bid manufacturers for items under this Section:
 - 1. Access doors: Karp Associates, Inc., Higgins Mfg. Co., Milcor Steel Co. and Walsh-Spencer Co.
 - 2. Inserts: F and S Mfg. Co., Fee and Mason and Grinnell.

2.2 INSERTS AND SUPPORTS

- A. Inserts:
 - 1. Inserts will be provided under General Construction Work.
 - 2. Provide additional acceptable means of support attachments as required, after review.
 - 3. Provide cutting and patching required to install additional attachments.
- B. Support all electrical work from building construction by providing inserts, beam clamps, steel fishplates (in concrete fill only), and acceptable brackets. Submit all methods for review. Inserts shall be steel slotted type, factory painted.
 - 1. Single rod shall be similar to Grinnell Fig. 281.
 - 2. Multi-rod shall be similar to Fee Mason Series 9000 with end caps and closure strips.
 - 3. Clip form nails flush with inserts.
 - 4. Maximum loading including conduit, contents and covering shall not exceed 75% of rated insert capability.
- C. Provide smooth wall, non-self-drilling internal plug expansion type anchors constructed of AISC 12L14 steel and zinc plated in accordance with Fed. Spec. QQ-A-325 Type 1, Class 3.
- D. Provide trapeze hangers of bolted angles or channels for grouped lines and services.
- E. Provide additional framing where building construction is inadequate. Submit for review.
- F. Do not exceed 1/4 of average valves for a specific anchor size using 2000 psig (13,800 kpa) concrete only, for maximum working loads.
- G. Provide spacing and install anchors in accordance with the manufacturer's recommendations.
- H. Provide supports from building construction including inserts, beam clamps steel fishplates (in concrete fill only) cantilever brackets or other means. Submit for review.

2.3 SUPPLEMENTARY STEEL, CHANNELS AND SUPPORTS

- A. Furnish supplementary steel, channels, and supports required for proper installations, mounting, and support of electrical work.
- B. Connect supplementary steel and channels firmly to building construction in an accepted manner.
- C. Determine type and size of supporting channels and supplementary steel. Supplementary steel and channels shall be of sufficient strength and size to allow only a minimum deflection in conformance with manufacturers' requirements of loading.

- D. Install supplementary steel and channels in a neat and workmanlike manner parallel to walls, floors, and ceiling construction.
- E. All supplementary steel, channels and supports shall be submitted to the Structural Engineer for review.

2.4 ACCESS DOORS

- A. Access doors will be provided under General Construction Work.
- B. Supply access doors as required for complete access. Installation shall be under General Construction Work. Minimum size shall be 12 in. x 12 in. Locating and setting will be performed after review.
- C. Provide for access doors as required for complete access. Minimum size shall be 12 in. x 12 in. Locating and setting will be performed after review.
- D. Flush type access doors shall be similar to Karp Type DSC-211 for wall installation, with No. 13 USSG steel doors and trim and No. 15 USSG steel frame, metal wings for keying into construction, concealed hinges and screwdriver operated stainless steel cam lock. Lift off type access door shall be similar to Karp Type DSC-212 where door cannot swing open.
- E. Factory finished white access doors shall be similar to Karp Type DSC-210 in acoustic tile ceilings, with NO. 13 USSG steel frame, No. 16 USSG steel pan door suitable for receiving tile thickness and hinges that are not visible when door is closed. Access doors shall be screwdriver operated, stainless steel cam locks finishing flush with tile with a minimum of (2) per door.
- F. Access doors shall be similar to Karp DSC-210-PL in plaster ceilings, with recess to receive plaster.
- G. Fire rated access doors shall be similar to Karp KRP-150-FR, in accordance with applicable code requirements.
- H. Access doors shall be shop-painted zinc chromate primer.
- 2.5 ACCESS TILE IDENTIFICATION:
 - A. Provide buttons, tabs or markers in removable ceiling tiles to identify location of concealed work. Submit for review.
- 2.6 GUARDS AND RAILINGS
 - A. Guards and railings will be provided under General Construction Work.
 - B. Provide guards and railings as indicated and/or as required by OSHA and authorities having jurisdiction.
 - C. Provide removable type guards with clearances for motor adjustments, for belt driven and rotating equipment, with No. 18 USSG steel frames and NO. 20 USSG galvanized perforated steel fronts with covered test opening to permit rpm readings without removal. Provide galvanized steel angle or channel supports braced to maintain clearances of moving parts.

D. Provide removable type railings constructed of 1 1/4 in. pipe and rail fittings.

2.7 NAMEPLATES:

- A. Provide nameplates with inscriptions, subject to review, indicating equipment and fasten with epoxy cement and engrave black Lamicoid sheet with white lettering.
- B. Provide nameplates for the following:
 - 1. Disconnect switches.
 - 2. Individual circuit breakers.
 - 3. Panels.
 - 4. Cabinets
 - 5. Switchboards.
 - 6. Substations.
 - 7. Switchgear.
 - 8. Transformers.
 - 9. Busways.
 - 10. Motor Controllers.
 - 11. Motor Control Centers.
 - 12. Uninterruptible Power Supply Systems.
 - 13. Computer Power Centers.
 - 14. Generators.
 - 15. Automatic Transfer Switches.

PART 3 - EXECUTION

3.1 PAINTING

- A. Provide labor, materials and equipment necessary for field prime painting and apply in accordance with manufacturers' instructions.
- B. Apply zinc based primer with finish to match surroundings, to marred surfaces of steel equipment and raceways.
- C. Apply galvanized iron primer on panel and pull boxes, after fabrication.
- D. Apply hot dip galvanizing or dip in zinc based primer: outlet boxes, junction boxes, conduit hangers, rods, inserts, and supports.
- E. Field apply zinc based primer coat on non-galvanized steel and iron work.

3.2 FOUNDATIONS

- A. Foundations will be provided under General Construction Work.
- B. Provide foundations utilizing concrete as specified herein:
 - 1. Provide one ortland cement, two parts fine aggregate, and four parts course aggregate.
 - 2. Provide concrete of the same consistency as specified under General Construction Work.

- 3. Provided concrete, pouted in place on roughened concrete floor, cleaned and flushed with coat of cement grout. Do not pour grout until concrete has set. Foundation shall be puddled and finished smooth with reinforcing as noted.
- 4. Provide floor free foundation forms and special foundations as noted.
- C. Hold vibration isolation and anchor bolts in position during pour. Set anchor bolts in oversized sleeves with washers and nuts at bottom. Finish flush with nuts on top.
- D. Foundations shall extend 6 in. beyond equipment, except as noted, with a minimum height of 4 in.
- E. Forms:
 - 1. Forms will be provided under General Construction Work.
 - 2. Provide moisture-resistant commercial standard fir with non-staining mineral oil interior surface coating with rounded or chamfered edges.
 - 3. Provide galvanized NO. 18 USSG steel forms with welded seams & joints with bent top and bottom edges to form 2 in. integral internal angles (bend back exposed edges) and metal cross-strip bracing, welded to top and bottom angle edges, and intermediate bracing welded or riveted to sides as required.
 - a. Bottoms for floor free foundations.
- F. Provide foundations for the following:
 - 1. Switchboards.
 - 2. Substations.
 - 3. Switchgear.
 - 4. Standby power plants.
 - 5. Floor mounted transformers.
 - 6. Motor control centers.
 - 7. Outdoor lighting fixture standards.
 - 8. Uninterrupted power systems.
 - 9. As noted.

3.3 FIELD QUALITY CONTROL

- A. Perform tests as noted, and in the presence of the Architect and/or Engineer in accordance with authorities having jurisdiction.
- B. Provide required labor, materials, equipment, and connections necessary for tests and submit for review.
- C. Repair or replace defective work, as directed and pay for restoring or replacing damaged work of others, due to tests, as directed.
- D. Pay for the following required services:
 - 1. Coordinate with Construction Manager
- E. The following services will be available from owner as directed:
 - 1. Coordinate with Construction Manager

3.4 CLEANING

- A. Brush and clean work prior to concealing, painting and acceptance. Perform in stages if directed.
- B. Clean and repair painted exposed work, soiled or damaged, to match adjoining work before final acceptance.
- C. Remove debris from inside and outside of materials and equipment.

END OF SECTION

SECTION 260001

SUPPLEMENTARY CONDITIONS FOR MECHANICAL, ELECTRICAL, PLUMBING AND FIRE PROTECTION WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. The "GENERAL CONDITIONS OF THE CONTRACT FOR CONSTRUCTION", AIA Document A201-1997, is part of this Contract.

PART 2 - SUPPLEMENTARY CONDITIONS

These SUPPLEMENTARY CONDITIONS amend or supplement the GENERAL CONDITIONS and other provisions of the Contract Documents as indicated below. All provisions which are not so amended or supplemented remain in full force and effect. AIA document A201-1997 Edition is referenced.

2.1 GENERAL PROVISIONS SUMMARY

- A. Section Includes:
 - 1. Rubber expansion joints.
 - 2. Flexible-hose expansion joints.
 - 3. Pipe bends and loops.
 - 4. Alignment guides and anchors.

2.2 CORRELATION AND INTENT OF CONTRACT DOCUMENTS

A. No reassignment of division of responsibility for work as specified for the respective trades shall be made without prior written acceptance by Engineer.

2.3 SUPERINTENDENT

A. Contractor shall arrange for Subcontractors for Heating, Ventilation and Air Conditioning work, Electrical Work, Fire Protection Work, Plumbing Work, or any other division of work, to each supply services of a competent project manager who shall act as assistants to the Superintendent and who shall be in attendance at the Project site during the progress of the Work. Such project managers shall be satisfactory to the Engineer, and shall not be changed except with the consent of the Architect

2.4 DOCUMENTS AND SAMPLES AT THE SITE

A. Dimension underground utilities from permanent identifiable benchmarks on Record Drawings.

2.5 RECORD DRAWINGS

- A. Before commencing work, procure complete reproducible set of Contract Drawings
- B. Conspicuously indicate major deviations in Mechanical Equipment Rooms by specific reference to shop drawings of these rooms and submit reproducibles of such shop drawings
- C. Submit up-to-date "in progress" prints, to Architect when requesting 25 percent, 50 percent, 75 percent and 95 percent payment of work installed
- D. Upon completion of work, submit signed certified reproducibles of Record and reference shop drawings, along with marked-up prints of in-progress drawing to Architect for acceptance. Also provide an electronic version of the as-built drawings

2.6 SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

- A. Any Shop Drawing, Product Data or Sample submitted without Contractor's approval will not be processed for approval by the Architect, but will be returned to the Contractor for his compliance with the above procedures, in which event it will be deemed that the Contractor has not complied with the provisions herein specified and the Contractor shall bear risk of all delays as if no Shop Drawing, Product Data or Sample had been submitted.
- B. Check the Shop Drawings, Product Data, and Samples for complete dimensional accuracy; that he has checked to insure that work contiguous with and having bearing on the work shown on the Shop Drawings is accurately and clearly shown, that he has checked the Shop Drawings against the Composite Drawings prepared by the Contractor, and that the work has been coordinated and that the equipment will fit into the assigned spaces.
- C. Prior to shop drawings and sample submissions, and within 30 days after award of contract, submit lists of proposed manufacturers names, shop drawings and samples with proposed schedule of submission dates referenced by Specification Section, Article Numbers and Contract Drawing Number. Contractor shall be responsible for any delays resulting from failure to submit such lists
- D. Submit shop drawings and samples for materials, equipment and systems as noted in each respective specification section for each trade
- E. Any construction and/or design changes as a result of any approved substitution shall be made at no additional cost to the Owner
- F. Composite Drawings:

- 1. In the interest of coordination and to expedite the work in critical areas, the Contractor shall prepare and submit, to the Architect for review, Composite Drawings incorporating the work of the various trades and/or subcontractor involved. After review, the Contractor shall distribute prints of reviewed Composite Drawings to affected trades and/or subcontractors. The Contractor shall require that the involved trades and/or subcontractors cooperate in preparation of the Composite Drawings to assure proper coordination between trades and/or subcontractors. The participating parties shall indicate their approval on these drawings, in addition to the Contractor
- G. Provide composite shop drawings 1:33 (3/8 inch per foot) scale or as approved of areas where contractors proposed installation is at variance with the Contract Drawings or Specifications. Ductwork, piping layout and distribution drawings are not required if they conform to the Contract Drawings, except as required below for specific areas
 - 1. Equipment Rooms.
 - 2. Plenums.
 - 3. Shafts.
 - 4. Roof Level
- H. Indicate dimensioned layouts, elevations and sections of the following, on composite shop drawings
 - 1. Piping and valves.
 - 2. Raceways.
 - 3. Pull boxes.
 - 4. Lighting.
 - 5. Equipment.
 - 6. Connections.
 - 7. Access for servicing.
 - 8. Building construction (floor, ceiling, beams and columns).
- I. Plan work to allow sufficient time for coordination and for compliance with construction schedule
- J. Catalog, model and serial numbers will be assumed to represent equipment complying with Contract Drawings and Specifications, unless otherwise noted
- K. Submit additional shop drawings (other than noted) when directed, during progress of project
- L. Shop drawing resubmissions are required within 30 days of receipt of review comments from Architect
- M. Replace all material and equipment which was installed prior to shop drawing review when directed by Architect
- N. Before submitting shop drawings and samples, check material and equipment against drawings for clearance, connections, accessibility, servicing and maintenance

- O. Submit shop drawings with:
 - 1. Marked notation of any deviations from the Contract Documents and reasons for same. Indicate such deviations in a conspicuous manner including component, material and system variations, additions and deletions revised equipment locations, hung ceiling heights and headroom conditions.
 - 2. Manufacturer's specifications including: materials, type, performance characteristics, voltage, phase and capacity. Specifications for project shall be tailored to reflect the requirements of the contract documents.
 - 3. Certified dimensional drawings, indicating sizes, component parts and installation details.
 - 4. Wiring diagrams when applicable
 - 5. Identify with:
 - a. Project name and number
 - b. Names of Architect and Engineer
 - c. Identification of applicable items on each submission
 - d. Applicable Contract Specification Section and Article Numbers
 - e. Applicable Contract Drawing Numbers
 - 6. Minimum copies of shop drawing submissions:
 - a. 8-1/2 inch by 14 inch and smaller: 2 copies
 - b. Larger than 8-1/2 inch by 14 inch: 1 reproducible plus 1 print
 - 7. All fire walls and smoke partitions must be highlighted on the sheet metal drawings for appropriate coordination
- 2.7 Cleaning Up
 - 1. Remove broken or scratched glass and replace with new glass, remove paint drippings, spots, stains, and dirt from finished surfaces and clean fixtures, hardware, floors and equipment. Contractor shall keep interior of the building free of stored or unattended combustible material

2.8 INDEMNIFICATION

1. Relieve Owner of all claims in connection with use of facilities, conveniences or services supplied by other parties

2.9 ADMINISTRATION OF THE CONTRACT

A. Whenever the word "Architect" occurs, the word "Engineer" shall be substituted, and shall mean the firm of Atkinson Koven Feinberg, LLP or its authorized representative.

2.10 PROTECTION OF PERSONS AND PROPERTY

- A. SAFETY OF PERSONS AND PROPERTY
 - 1. Close open ends of work with temporary covers or plugs during construction to prevent entry of obstructing materials
 - 2. Storage areas will be designated by Architect or Building Owner

B. USE OF PERMANENT INSTALLATION

1. No equipment intended for permanent installation shall be operated for temporary purposes without written permission of, and complete agreement with stipulation as set forth by, the Architect

2.11 INSURANCE AND BONDS

- A. The Contractor shall procure and maintain, at his own expense, until final acceptance of all the work covered by this Contractor, the following kinds of insurance:
 - 1. Workmen's Compensation Insurance: A policy complying with the requirements of the laws of the State of Maine
 - 2. The contractor shall obtain all specific insurance requirements FROM the owner
 - 3. Contractor's Comprehensive General Liability and Property Damage Insurance: A standard comprehensive general liability insurance policy, with contractual and completed operations coverage, issued to and covering the liability of the Contractor for all work and operations under this Contract. The coverage under such a policy shall be in accordance with the Owner's requirements
 - 4. Automobile Liability and Property Damage Insurance. A policy covering the use in connection with the work covered by Contract Documents of all owned, non-owned and hired vehicles bearing, or, under the circumstances under which they are being used, required by the Motor Vehicles Laws of the State of New York to bear license plates. The coverage under such policy shall be in accordance with Owner's requirements
 - 5. Before commencing the performance of any work covered by the Contract, the Contractor shall furnish to Owner a certificate of the insurance required under the foregoing provisions
 - 6. If at any time any of the above required insurance policies should be canceled, terminate or modified so that insurance is not in effect as above required, then, if the Owner shall so direct, the Contractor shall suspend performance of the work covered in the Contract. If the said work is so suspended, no extension of time shall be due on account thereof. If said work is not suspended the Owner may, at its option, obtain insurance affording coverage equal to that above required, the cost of such insurance to be payable by the Contractor to the Owner

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.12 DEVIATIONS

- A. When deviations to Contract Documents are requested by the Contractor and accepted by the Architect, Contractor shall be responsible for all affected work and costs, including that of other contracts.
- B. Interference With Owner's Operations
 - 1. Contractors shall take whatever action is necessary to avoid interference with owner's use of the building or damage to existing facilities equipment
 - 2. Except as otherwise specified herein, contractors may work during normal working hours. In the event that noisy work interferes with owner's operations, owner may direct contractor to stop that work. If the workers involved cannot be used on other work, Contractor shall be paid for the lost time in accordance with a schedule of hourly rates to be included in the contract. Owner's representative will determine the duration of the stoppage and whether compensation therefor is warranted
 - 3. Contractor shall include with his proposal a schedule of hourly rates and overtime premiums
 - 4. Maintain building services in operation

2.13 PROJECT CLOSEOUT PROCEDURES

- A. General
 - 1. The requirements of this section are in addition to and supplement the requirements outlined in Division 1.
 - 2. It shall be each contractor's responsibility to personally hand-deliver all of the required project closeout checklist items and to obtain Owner's authorized representative(s) signed receipt on all items requiring Owner sign-off
- 2.14 Project Closeout Checklist
 - 1. Review requirements of each section of the specifications and submit for approval to Architect the sign-off forms which shall become the project closeout checklist. These, at a minimum, shall include the following information shown in attached Project Closeout Checklist Example. The Architect and/or Owner may incorporate additional specific items to the following checklist which shall become part of the project requirements

2.15 Closeout Checklist Example:

PROJECT CLOSETOUT			
PROJECT:			
DIVISION NO.:			
CONTRACTOR:			
ITEM ¹	DATES		OWNER'S
	COMPLETED	RECEIVED BY	SIGN-OFF
		OWNER	
Permits			
City and County Inspection			
Manufacturer's warranties			
Contractor's Warranties			
State Fire Rating Data			
Copy of Final Shop Drawings			
List and Possession of Spare			
Parts			
Pressure Tests			
Equipment Tests Required by			
Specs			
O & M Manuals			
Record Documents			
Coordination Drawings			
Sanitization Reports			
Commissioning			
reports/Letters/Forms			
On-Site Training Complete			
Protective Device Settings			
Valve Tags and Charts			
Final ATC Installation Drawings			
Insurance Underwriters			
Approvals			
Final Punch List (Initialed by			
contractor that items are			
complete)			
Building Certificate of			
Occupancy (C.O.)			
24-Hour Phone No. for Service			
During Guarantee Period			

END OF SECTION

SECTION 260500

COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-inplace concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in "Access Doors and Frames."
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in "Penetration Firestopping."."

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, comparable product by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Link-Seal
 - 2. Sealing Elements: NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

- 3. Pressure Plates: Stainless steel. Include two for each sealing element.
- 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

- 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
 - A. Comply with NECA 1.
 - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
 - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
 - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
 - E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.

- F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in "Joint Sealants."
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in "Penetration Firestopping."
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in "Penetration Firestopping."

END OF SECTION

COMMON WORK RESULTS FOR ELECTRICAL 260500 - 4

SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
 - 3. Sleeves and sleeve seals for cables.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Qualification Data: For testing agency.
- C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Insulated Wire Corp.; a Leviton Company.
 - 2. General Cable Corporation.
 - 3. Senator Wire & Cable Company.
 - 4. Southwire Company.
 - 5. AFC Cable Systems, Inc.
- B. Copper and Aluminum Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THW, THHN-THWN and XHHW.
- D. Multiconductor Cable: Comply with NEMA WC 70 for armored cable, Type AC, metal-clad cable, Type MC and mineral-insulated, metal-sheathed cable, Type MI.
 - 1. Type MC cable shall be high strength, lightweight galvanized steel armor equal to AFC Cable Systems, Inc. "MC TUFF."
 - Conductors shall be copper with thermoplastic insulation, type THHN/THWN. Insulation shall be color coded for 120/208 volt systems and 480/277 volt systems as specified in Section 26 – "Identification for Electrical Systems."
 - 3. Hospital Grade type AC cable shall be high strength galvanized steel armor with green stripe equal to AFC Cable Systems, Inc. "HCF 90."
 - 4. Type AC conductors shall be copper with thermoplastic insulation, type THHN. Each conductor shall be paper wrapped. There shall be a bare # 16 AWG integral bond conductor and separated insulated # 12 AWG ground conductor. Insulation shall be color coded as specified in Section 26 "Identification for Electrical Systems."

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.

- 2. Hubbell Power Systems, Inc.
- 3. O-Z/Gedney; EGS Electrical Group LLC.
- 4. 3M; Electrical Products Division.
- 5. Tyco Electronics Corp.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- C. Coordinate sleeve selection and application with selection and application of firestopping specified in "Penetration Firestopping."

2.4 SLEEVE SEALS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Calpico, Inc.
 - 3. Metraflex Co.
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Link Seal
- B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders: Type XHHW-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway. Type MI Cable where indicated on schedules and drawings.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions Metal-clad cable, Type MC. Type AC (hospital grade) or type MC may be used for branch circuit wiring. All homerun wiring shall be in raceway. All emergency circuits shall be in non flexible conduit.
- G. Branch circuits in patient care areas and surgical areas: Armored cable type AC-Hospital grade "HCF-90".
- H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- I. Branch Circuits in Operating Rooms: Low Leakage type XLP, single conductors in raceway.
- J. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- K. Class 2 Control Circuits: Type THHN-THWN, in raceway.
- L. Type AC and/or type MC cable shall be installed in the best and shortest route for each cable run. Long runs of spider wed type routing is unacceptable. Support cables with approved supports within 12" of every termination and type AC cable every 4 1/2" and type MC cable every 6". When terminating or splicing, cut cable so that 6 inches of free conductor is left for connection or splices. Use an approved connector and insure a proper bond by firmly tightening the connector to both the box and the cable. When terminating cable, provide and insert an approved anti-short bushing.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls and ceilings for floor mounted devices run conduit and cable in ceiling below.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
- F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- F. Cut sleeves to length for mounting flush with both wall surfaces.
- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to "Joint Sealants."
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.
- M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground exterior-wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and all feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.

- a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
- b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION

SECTION 260526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following:
 - 1. Grounding arrangements and connections for separately derived systems.
 - 2. Grounding for sensitive electronic equipment.
- C. Qualification Data: For testing agency and testing agency's field supervisor.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:
 - 1. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NFPA 70B.
 - a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
 - b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing

Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

- 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Bare Grounding Conductor and Conductor Protector for Wood Poles:
 - 1. No. 4 AWG minimum, soft-drawn copper.
 - 2. Conductor Protector: Half-round PVC
- D. Grounding Bus: Rectangular bars of annealed copper, 4 inches by 1/4 inches x 24 or as indicated on plans.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions. Use for bonding to steel and as indicated.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger, unless otherwise indicated.
- B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- C. Grounding Bus: Install in electrical rooms, and elsewhere as indicated. Length 24" or as indicated in drawings.
 - 1. Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
 - 9. X-Ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

- 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
- 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
- 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- C. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
- B. Perform the following tests and inspections and prepare test reports:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal. Make tests at ground rods before any conductors are connected.
 - a. Perform tests by fall-of-potential method according to IEEE 81.
- C. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
- D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION

SECTION 260529

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.
- B. Related Sections include the following:
 - 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project,.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. Thomas & Betts Corporation.
 - e. Unistrut; Tyco International, Ltd.
 - f. Wesanco, Inc.
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

- Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 4. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps .
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.

- 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
- 4. To Existing Concrete: Expansion anchor fasteners.
- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Comply with requirements in painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

SECTION 260533

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. FMC: Flexible metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. LFNC: Liquidtight flexible nonmetallic conduit.
- F. NBR: Acrylonitrile-butadiene rubber.
- G. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - 2. For handholes and boxes for underground wiring, including the following:

- a. Duct entry provisions, including locations and duct sizes.
- b. Frame and cover design.
- c. Grounding details.
- d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
- e. Joint details.
- C. Samples for Initial Selection: For wireways and surface raceways with factory-applied texture and color finishes.
 - 1. Size: As requested by Owner or Architect minimum of 4 samples.
- D. Samples for Verification: For each type of exposed finish required for wireways and surface raceways, prepared on Samples of size indicated below.
 - 1. Size: As requested by Owner or Architect minimum of 4 samples.
- E. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- F. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- G. Qualification Data: For professional engineer and testing agency.
- H. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- B. Comply with NFPA 70.
- PART 2 PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 5. Electri-Flex Co.
 - 6. Maverick Tube Corporation.
 - 7. O-Z Gedney; a unit of General Signal.
 - 8. Wheatland Tube Company.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. Aluminum Rigid Conduit: ANSI C80.5.
- D. IMC: ANSI C80.6.
- E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- F. EMT: ANSI C80.3.
- G. FMC: Zinc-coated steel or aluminum.
- H. LFMC: Flexible steel conduit with PVC jacket.
- I. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886.
 - 2. Fittings for EMT: Steel or die-cast, set-screw or compression type.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- J. Joint Compound for Rigid Steel Conduit: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.2 NONMETALLIC CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 3. Arnco Corporation.
 - 4. CANTEX Inc.
 - 5. CertainTeed Corp.; Pipe & Plastics Group.
 - 6. Condux International, Inc.
 - 7. ElecSYS, Inc.
 - 8. Electri-Flex Co.
 - 9. Lamson & Sessions; Carlon Electrical Products.
 - 10. RACO; a Hubbell Company.
 - 11. Thomas & Betts Corporation.
- B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.
- C. LFNC: UL 1660.
- D. Fittings for and RNC: NEMA TC 3; match to conduit or tubing type and material.
- E. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type, Flanged-and-gasketed type where indicated or required by code or location of installation.
- E. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Hoffman.
- 2. Lamson & Sessions; Carlon Electrical Products.
- B. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.5 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Thomas & Betts Corporation.
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman.
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. O-Z/Gedney; a unit of General Signal.
 - 7. RACO; a Hubbell Company.
 - 8. Thomas & Betts Corporation.
 - 9. Walker Systems, Inc.; Wiremold Company (The).
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy or aluminum, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- E. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.
- F. Nonmetallic Floor Boxes: Nonadjustable, round.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

- H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum or galvanized, cast iron with gasketed cover.
- I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint.
- J. Cabinets:
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

2.7 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.8 SLEEVE SEALS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Calpico, Inc.
 - 3. Metraflex Co.
 - 4. Pipeline Seal and Insulator, Inc.
- B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.9 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

- A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 - 1. Tests of materials shall be performed by a independent testing agency.
 - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 - 1. Exposed Conduit: Rigid steel conduit.
 - 2. Concealed Conduit, Aboveground: Rigid steel conduit.
 - 3. Underground Conduit: RNC, Type EPC-80-PVC.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC or LFNC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 4.
 - 6. Application of Handholes and Boxes for Underground Wiring:
 - a. Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Fiberglass enclosures with polymer-concrete frame and cover, SCTE 77, Tier 15 structural load rating.
 - b. Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymerconcrete frame and cover, SCTE 77, Tier 8 structural load rating.
 - c. Pull Boxes Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.

- Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: Rigid steel conduit
- 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits in contact with concrete.

3.2 INSTALLATION

- A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- H. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Change from RNC, Type EPC-40-PVC, to rigid steel conduit, or before rising above the floor

- I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 - 1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m).
 - 2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m).
 - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m).
 - 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 - c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 - d. Attics: 135 deg F (75 deg C) temperature change.
 - Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.

- 3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.
- O. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures normal branch lighting only, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- Q. Set metal floor boxes level and flush with finished floor surface.
- R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- F. Cut sleeves to length for mounting flush with both surfaces of walls.
- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.
- M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.4 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground, exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.6 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION

SECTION 260548

VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Spring isolators.
 - 3. Restrained spring isolators.
 - 4. Channel support systems.
 - 5. Restraint cables.
 - 6. Hanger rod stiffeners.
 - 7. Anchorage bushings and washers.
- B. Related Sections include the following:
 - 1. Division 26 Section "Hangers And Supports For Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

- A. The IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: D
 - 2. Assigned Seismic Use Group or Building Design Category as Defined in the IBC: C
 - a. Component Importance Factor: 1.50
 - b. Component Response Modification Factor: 6.0
 - c. Component Amplification Factor: 2.5
 - 3. Design Spectral Response Acceleration at Short Periods (0.123 Second): 0.327

4. Design Spectral Response Acceleration at 1-Second Period: 0.077

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 - b. Annotate to indicate application of each product submitted and compliance with requirements.
 - 3. Restrained-Isolation Devices: Include ratings for horizontal, vertical, and combined loads.
- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 - a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 26 Sections for equipment mounted outdoors.
 - 2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.
 - 3. Field-fabricated supports.
 - 4. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
- C. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.
- D. Welding certificates.

- E. Qualification Data: For professional engineer and testing agency.
- F. Field quality-control test reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
- E. Comply with NFPA 70.

PART 2 - PRODUCTS

- 2.1 VIBRATION ISOLATORS
 - A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Ace Mountings Co., Inc.
 - 2. Amber/Booth Company, Inc.
 - 3. California Dynamics Corporation.
 - 4. Isolation Technology, Inc.
 - 5. Kinetics Noise Control.
 - 6. Mason Industries.
 - 7. Vibration Eliminator Co., Inc.
 - 8. Vibration Isolation.
 - 9. Vibration Mountings & Controls, Inc.
 - B. Pads: Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant hermetically sealed compressed fiberglass.

- C. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- D. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- (6-mm-) thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit-stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.2 SEISMIC-RESTRAINT DEVICES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti Inc.
 - 5. Loos & Co.; Seismic Earthquake Division.
 - 6. Mason Industries.
 - 7. TOLCO Incorporated; a brand of NIBCO INC.
 - 8. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Restraint Cables: ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod. Do not weld stiffeners to rods.
- F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.
- G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.
- H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment and Hanger Restraints:
 - 1. Install restrained isolators on electrical equipment.
 - 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 - 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- D. Drilled-in Anchors:
 - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
 - 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after isolated equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION

SECTION 260553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Identification for raceway and metal-clad cable.
 - 2. Identification for conductors and communication and control cable.
 - 3. Underground-line warning tape.
 - 4. Warning labels and signs.
 - 5. Instruction signs.
 - 6. Equipment identification labels.
 - 7. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.145.
- 1.5 COORDINATION
 - A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation

and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Color for Printed Legend:
 - 1. Power Circuits: Black letters on an orange field.
 - 2. Legend: Indicate system or service and voltage, if applicable.
- C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- E. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use.
- 2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS
 - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
 - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - C. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable.
 - 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.3 UNDERGROUND-LINE WARNING TAPE

- A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm).
- C. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, celluloseacetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm).
- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.5 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 EQUIPMENT IDENTIFICATION LABELS

- A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm). Name plate descriptions shall be as follows:
 - 1. Switchboard: Identify and switchboard main breaker as such and feeder breakers by panelboard, transformer and equipment FED

a. Example: SWBD 4A, PANEL DP2G 480/277 V, 3 PH, 4W

- 2. Panelboards: Identify with panel designation and characteristics.
 - a. Example: DP2G 480/277 V, 3 PH, 4W
- 3. Low Voltage Transformers: Identify with source of power.
 - a. Example: FED from SWBD N-1
- 4. Enclosed Breakers and Disconnect Switches: Identify with equipment served.
 - a. Example: CWP-1
- 5. Transfer Switches: Identify by designation and indicate generator location.
 - a. Example: ATS-EM

Generator located North side of Building.

- 6. Signs:
 - a. Provide a nameplate on the service entrance section that indicated location of onsite emergency power source.
 - 1) Example: Emergency Generator located southwest corner of building.
 - b. Provide a nameplate at the generator grounding location if the emergency source is a separately deriver system and is connected to a grounding electrode at a location that is remote from the emergency source.
 - 1) Example: Generator grounding location connection.
 - c. Provide a nameplate next to the generator ground fault sensor that states instructions on the course of action to be taken in event of indicated ground fault.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.6 kg), minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
 - 1. Exterior Ferrous Metal:
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.

- 1) Primer: Exterior ferrous-metal primer.
- 2) Finish Coats: Exterior semigloss alkyd enamel.
- 2. Exterior Zinc-Coated Metal (except Raceways):
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Exterior zinc-coated metal primer.
 - 2) Finish Coats: Exterior semigloss alkyd enamel.
- 3. Interior Ferrous Metal:
 - a. Semigloss Acrylic-Enamel Finish: One finish coat(s) over a primer.
 - 1) Primer: Interior ferrous-metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- 4. Interior Zinc-Coated Metal (except Raceways):
 - a. Semigloss Acrylic-Enamel Finish: One finish coat(s) over a primer.
 - 1) Primer: Interior zinc-coated metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A: Identify with orange snap-around label.
- B. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, snap-around, color-coding bands:
 - 1. Fire Alarm System: Red.
 - 2. Fire-Suppression Supervisory and Control System: Red and yellow.
 - 3. Security System: Blue and yellow.
 - 4. Mechanical and Electrical Supervisory System: Green and blue.
 - 5. Telecommunication System: Green and yellow.
 - 6. Control Wiring: Green and red.
- C. Power-Circuit Conductor Identification: For primary and secondary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use write-on tags. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.

- D. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use write-on tags. Identify each ungrounded conductor according to source and circuit number.
- E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source and circuit number.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual.
- G. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply baked-enamel warning signs. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
 - 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- I. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
 - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.
- J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

- 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
- 2. Equipment to Be Labeled: All equipment requires a label 94D shall include but not limited to:
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchboards.
 - d. Transformers.
 - e. Automatic transfer switches.
 - f. Emergency system boxes and enclosures.
 - g. Motor-control centers.
 - h. Disconnect switches.
 - i. Enclosed circuit breakers.
 - j. Motor starters.
 - k. Push-button stations.
 - I. Power transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery inverter units.
 - p. Battery racks.
 - q. Power-generating units.
 - r. Master clock and program equipment.
 - s. Intercommunication and call system master and staff stations.
 - t. Television/audio components, racks, and controls.
 - u. Fire-alarm control panel and annunciators.
 - v. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks.
 - w. Monitoring and control equipment.
 - x. Uninterruptible power supply equipment.
 - y. Terminals, racks, and patch panels for voice and data communication and for signal and control functions.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- G. Color-Coding for Phase and neutral Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - d. Neutral: Gray
 - 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- H. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

I. Painted Identification: Prepare surface and apply paint according to Division 09 painting Sections.

END OF SECTION

SECTION 260573

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Refer to riser diagrams included in drawing set.

1.2 SUMMARY

- A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.
 - 1. Series-rated devices are not permitted. All devices shall be fully rated to meet the available fault and equipment at the point of installation.
 - B. The contractor shall provide an engineering analysis and coordination study for the entire electrical distribution system. The analysis shall include a short-circuit analysis with protective device evaluation, ground fault coordination evaluation and a protective device coordination study.
 - C. The analysis shall begin at the point of primary service for the facility and continue down through the system, to all downstream distribution and branch panelboards, and significant motor locations.

1.3 SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.
- C. Qualification Data: For coordination-study specialist.
- D. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form (with one printed copy)
 - 1. Coordination-study input data, including completed computer program input data sheets.
 - 2. Study and Equipment Evaluation Reports.
 - 3. Coordination-Study Report.

E. Shop drawings for equipment will not be reviewed until the coordination study has been submitted and approved. Submit a preliminary study with estimated feeder lengths with first distribution submittal that verifies submitted overcurrent protective devices provide "clean" coordination. Submit a final study with feeder lengths as installed, that verifies all data in preliminary report. Adjust all overcurrent protective devices types and/or settings as required after final approval.

1.4 QUALITY ASSURANCE

- A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
- B. Coordination-Study Specialist Qualifications: A firm experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices. Firm must have a minimum of 5 years of experience of successful study completion.
 - Professional engineer, licensed in the State of Maine, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer. Study shall be signed and sealed by professional engineer. Engineer shall have a minimum of 8 years' experience in the analysis, evaluation and coordination of electrical distribution systems.
- C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.
- D. Comply with IEEE 399 for general study procedures.
- E. Level of system coordination shall reflect the intention of system planning per IEEE std-192.
- F. Contractor shall submit electrical distribution equipment based on the system design and listed acceptable manufacturers. The contractor shall provide with the submittal, a coordination study based on the equipment submitted. The contractor shall be required to submit equipment equal in characteristics to the basis of design. This is to say the selectivity of the overcurrent devices shall be as clean in coordination as the basis of design devices.
- G. Should the contractor submit a study, including related equipment submittal, that does not give clean coordination; the contractor shall be obligated to change components to allow clean coordination and selectivity, prior to getting approval for releasing equipment for manufacture at no additional cost to the project.
- H. The study shall be prepared in accordance with the latest edition of NETA Std. ATS, NFPA 70, the "National Electrical Code", ANSI C2 "National Electrical Safety Code", and ANSI/IEEE Guidelines, as well as manufacturer's recommendations.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. Available Computer Software Developers: Subject to compliance with requirements, companies offering computer software programs that may be used in the Work include, but are not limited to, the following:
 - 1. SKM Systems Analysis, Inc.

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

- A. Comply with IEEE 399.
- B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 - 1. Optional Features:
 - a. Arcing faults.
 - b. Simultaneous faults.
 - c. Explicit negative sequence.
 - d. Mutual coupling in zero sequence.
- D. Study preparer shall update the MMC Master Coordination and Arc Flash Study with the equipment installed as part of this project. Existing study to be updated shall be obtained from MMC Engineering and Facilities.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.
 - 1. Proceed with coordination study only after relevant equipment submittals have been assembled and approved. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

- A. Gather and tabulate the following input data to support coordination study:
 - 1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Impedance of utility service entrance. Obtain the available fault current from the serving utility company.
 - 3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 - a. Circuit-breaker and fuse-current ratings along with types.
 - b. Relays and associated power and current transformer ratings and ratios.
 - c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 - d. Generator kilovolt amperes, size, voltage, and source impedance.
 - e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 - f. Busway ampacity and impedance.
 - g. Motor horsepower and code letter designation according to NEMA MG 1.
 - 4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 - a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 - b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 - c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 - d. Generator thermal-damage curve.
 - e. Ratings, types, and settings of utility company's overcurrent protective devices.
 - f. Special overcurrent protective device settings or types stipulated by utility company.
 - g. Time-current-characteristic curves of devices indicated to be coordinated.
 - h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 - i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 - j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuitbreaker positions of the electrical power distribution system to determine the required settings/sizes of the protective devices to maximize selectivity. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

- 1. Distribution panelboards.
- 2. Branch circuit panelboards.
- B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for the Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.
- C. Calculate momentary and interrupting duties on the basis of maximum available fault current. Motor contribution shall be incorporated in determining fault levels. Assume 50 percent of motor loads being served by VFD's are in by- pass mode.
- D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141, IEEE 241 and IEEE 242.
 - 1. Transformers:
 - a. ANSI C57.12.10.
 - b. ANSI C57.12.22.
 - c. ANSI C57.12.40.
 - d. IEEE C57.12.00.
 - e. IEEE C57.96.
 - 2. Low-Voltage Circuit Breakers: IEEE 1015 and IEEE C37.20.1.
 - 3. Low-Voltage Fuses: IEEE C37.46.
- E. Study Report:
 - 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
 - 2. Show interrupting (5-cycle) and time-delayed currents (6 cycles and above) on mediumand high-voltage breakers as needed to set relays and assess the sensitivity of overcurrent relays.
- F. Equipment Evaluation Report:
 - 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 - 2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 - 3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

- A. Perform coordination study using approved computer software program. Prepare a written report using results of fault-current study. Comply with IEEE 399.
 - 1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
 - 2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) shortcircuit currents.
 - 3. Calculate the maximum and minimum ground-fault currents.
- B. Comply with IEEE 141 recommendations for fault currents and time intervals.
- C. Transformer Primary Overcurrent Protective Devices:
 - 1. Device shall not operate in response to the following:
 - a. Inrush current when first energized.
 - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 - c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 - 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.
- D. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- E. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:
 - 1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 - a. Device tag.
 - b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 - c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 - d. Fuse-current rating and type.
 - e. Ground-fault relay-pickup and time-delay settings.
 - 2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve maximum selective coordination. Level of selective coordination to be approved by engineer (AKF). Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's main device. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 - a. Device tag.

- b. Voltage and current ratio for curves.
- c. Three-phase and single-phase damage points for each transformer.
- d. No damage, melting, and clearing curves for fuses.
- e. Cable damage curves.
- f. Transformer inrush points.
- g. Maximum fault-current cutoff point.
- h. Single-line for the portion of the system illustrated in the TCC.
- F. Completed data sheets for setting of overcurrent protective devices.
- G. A narrative analysis shall accompany each coordination curve sheet and describe the coordination and protection in explicit detail. All curve sheets shall be multi-color for improved clarity. Areas lacking complete coordination shall be highlighted and reasons provided for allowing condition to remain or provide solution to resolve situation.

3.5 GROUND FAULT COORDINATION EVLAUATION

- A. The report shall include a ground fault coordination evaluation for operation of the service and feeder disconnecting means such that the feeder device, but not the service device, shall open on ground faults on the load side of the feeder device. A six-cycle minimum separation between the service and feeder tripping bands shall be provided. Operating time of the disconnecting devices shall be considered in selecting the time spread between these two bands to achieve 100 percent selectivity.
- B. Provide a schedule of all settings for ground fault protection devices to include relay pick-up and time delay settings.
- C. The ground fault protection system shall be performance tested when first installed on site. The test shall be conducted in accordance with the instructions that shall be provided with the equipment. A written record of this test shall be made and submitted to the Architect/Engineer. A copy shall be available to the Authority having Jurisdiction.

3.6 ARC-FLASH EVALUTION

- A. The final report shall include an arc-flash study for all new equipment. Arc flash study shall be performed per NFPA 70E "calculated method" requirements. Labels of calculated values shall be submitted to the electrical contractor.
- B. Electrical contractor shall label all new equipment with calculated arc-flash labels from study.

3.7 FIELD SETTINGS

A. The contractor shall engage the manufacturer's service group or alternately a qualified independent testing firm to perform field adjustments of the protective devices as required for placing the equipment in final operating condition. The settings shall be in accordance with the approved short circuit study and protective device evaluation/coordination study.

B. Necessary field settings of devices and adjustments and minor modifications to equipment to accomplish conformance with the approved short-circuit and protective device coordination study, shall be carried out by manufacturer's service group.

END OF SECTION

SECTION 260923

LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following lighting control devices:
 - 1. Time switches.
 - 2. Photoelectric switches.
 - 3. Indoor occupancy sensors.
 - 4. Outdoor motion sensors.
 - 5. Lighting contactors.
 - 6. Emergency shunt relays.
- B. Related Sections include the following:
 - 1. Division 26 Section "Network Lighting Controls" for low-voltage, manual and programmable lighting control systems.
 - 2. Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 DEFINITIONS

- A. LED: Light-emitting diode.
- B. PIR: Passive infrared.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Lighting.
 - 2. Leviton Mfg. Company Inc.
 - 3. Lithonia Lighting; Acuity Lighting Group, Inc.
 - 4. Sensor Switch, Inc.
 - 5. Watt Stopper (The).
- B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lx); keep lighting off when selected lighting level is present.

- C. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

2.2 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 16 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structureborne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION

A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 1/2 inch (13 mm).

- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

- A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 - 2. Operational Test: Verify operation of each lighting control device, and adjust time delays.
- B. Lighting control devices that fail tests and inspections are defective work.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit occupied conditions. During business hours provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control system specified in Division 26 Section "Network Lighting Controls."

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 260943

NETWORK LIGHTING CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes manually operated, PC-based, digital lighting controls with external signal source, relays, electrically operated circuit breakers, and control module.
- B. Related Sections include the following:
 - 1. Division 26 Section "Lighting Control Devices" for time switches, photoelectric switches, occupancy sensors, and multiple contactors.

1.3 DEFINITIONS

- A. BACnet: A networking communication protocol that complies with ASHRAE 135.
- B. BAS: Building automation system.
- C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
- D. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling and power-limited circuits.
- E. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- F. PC: Personal computer; sometimes plural as "PCs."
- G. Power Line Carrier: Use of radio-frequency energy to transmit information over transmission lines whose primary purpose is the transmission of power.
- H. RS-485: A serial network protocol, similar to RS-232, complying with TIA/EIA-485-A.

1.4 SUBMITTALS

- A. Product Data: For control modules, power distribution components, manual switches and plates, and conductors and cables.
- B. Shop Drawings: Detail assemblies of standard components, custom assembled for specific application on this Project.
 - 1. Outline Drawings: Indicate dimensions, weights, arrangement of components, and clearance and access requirements.
 - 2. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.
 - 3. Wiring Diagrams: Power, signal, and control wiring. Coordinate nomenclature and presentation with a block diagram.
- C. Coordination Drawings: Submit evidence that lighting controls are compatible with connected monitoring and control devices and systems specified in other Sections.
 - 1. Show interconnecting signal and control wiring and interfacing devices that prove compatibility of inputs and outputs.
 - 2. For networked controls, list network protocols and provide statements from manufacturers that input and output devices meet interoperability requirements of the network protocol.
- D. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.
- E. Field quality-control test reports.
- F. Software licenses and upgrades required by and installed for operation and programming of digital and analog devices.
- G. Operation and Maintenance Data: For lighting controls to include in emergency, operation, and maintenance manuals.
- H. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain lighting control module and power distribution components through one source from a single manufacturer.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with 47 CFR, Subparts A and B, for Class A digital devices.
- D. Comply with NFPA 70.

1.6 COORDINATION

- A. Coordinate lighting control components to form an integrated interconnection of compatible components.
 - 1. Match components and interconnections for optimum performance of lighting control functions.
 - 2. Coordinate lighting controls with BAS-HVAC controls. Design display graphics showing building areas controlled; include the status of lighting controls in each area.
 - 3. Coordinate lighting controls with that in Sections specifying distribution components that are monitored or controlled by power monitoring and control equipment.
- B. Coordinate lighting control components specified in this Section with components specified in Division 26 Section "Panelboards."

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of lighting controls that fail in materials or workmanship or from transient voltage surges within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure of software input/output to execute switching or dimming commands.
 - b. Failure of modular relays to operate under manual or software commands.
 - c. Damage of electronic components due to transient voltage surges.
 - 2. Warranty Period: Two years from date of Substantial Completion.
 - 3. Extended Warranty Period Failure Due to Transient Voltage Surges: Eight years.
 - 4. Extended Warranty Period for Electrically Held Relays: 10 years from date of Substantial Completion.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Electrically Held Relays: Equal to 5 percent of amount installed for each size indicated, but no fewer than ten relays.
 - 2. Electrically Operated, Molded-Case Circuit Breakers: Equal to 5 percent of amount installed for each size indicated, but no fewer than 10 circuit breakers.

NETWORK LIGHTING CONTROLS 260943 - 3

1.9 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revise licenses for use of the software.
 - 1. Provide 30-day notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment, if necessary.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Intelligent Lighting Controls, Inc.
 - 2. Leviton Mfg. Company Inc.
 - 3. Lighting Control & Design, Inc.
 - 4. Lithonia Lighting; Acuity Lighting Group, Inc.
 - 5. Lutron Electronics Company, Inc.
 - 6. Watt Stopper (The).

2.2 SYSTEM REQUIREMENTS

- A. Expandability: System shall be capable of increasing the number of control functions in the future by 25 percent of current capacity; to include equipment ratings, housing capacities, spare relays, terminals, number of conductors in control cables, and control software.
- B. Performance Requirements: Manual switches, an internal timing and control unit, and external sensors or other control signal sources send a signal to a PC-based programmable-system control module that processes the signal according to its programming and routes an open or close command to one or more relays and electrically operated circuit breakers in the power-supply circuits, or routes variable commands to one or more dimmers, for groups of lighting fixtures or other loads.

2.3 CONTROL MODULE

A. Control Module Description: Comply with UL 508 (CSA C22.2, No. 14); microprocessor-based, programmable, control unit; mounted in preassembled, modular relay panel. Low-voltage-controlled, latching-type, single-pole lighting circuit relays shall be prime output circuit devices. Where indicated, a limited number of digital or analog, low-voltage control-circuit outputs shall be supported by control unit and circuit boards associated with relays. Control units shall be

NETWORK LIGHTING CONTROLS 260943 - 4

capable of receiving inputs from sensors and other sources. Line-voltage components and wiring shall be separated from low-voltage components and wiring by barriers. Control module shall be locally programmable.

2.4 POWER DISTRIBUTION COMPONENTS

- A. Modular Relay Panel: Comply with UL 508 (CSA C22.2, No. 14) and UL 916 (CSA C22.2, No. 205); factory assembled with modular single-pole relays, power supplies, and accessory components required for specified performance.
 - 1. Panel shall consist of relays, system time clock, panel intelligence, power supply, DIN Rails, tub and cover.
 - 2. Cabinet: Steel with hinged, locking door.
 - a. Barriers separate low-voltage and line-voltage components.
 - b. Directory: Mounted on back of door. Identifies each relay as to load groups controlled and each programmed pilot device if any.
 - c. Control Power Supply: Transformer and full-wave rectifier with filtered dc output.
 - 3. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentarypulsed type.
 - a. Low-Voltage Leads: Plug connector to the connector strip in cabinet and pilot light power where indicated.
 - b. Rated Capacity (Mounted in Relay Panel): 20 A, 125-V ac for tungsten filaments; 20 A, 277-V ac for ballasts.
 - c. Endurance: 50,000 cycles at rated capacity.
 - d. Mounting: Provision for easy removal and installation in relay cabinet.
- B. Line-Voltage Surge Suppression: Factory installed as an integral part of 120- and 277-V ac, solid-state control panels or field-mounting surge suppressors that comply with Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" for Category A locations.

2.5 MANUAL SWITCHES AND PLATES

- A. Push-Button Switches: Modular, momentary-contact, low-voltage type.
 - 1. Match color specified in Division 26 Section "Wiring Devices."
 - 2. Integral green LED pilot light to indicate when circuit is on.
 - 3. Internal white LED locator light to illuminate when circuit is off.
- B. Manual, Maintained Contact, Full- or Low-Voltage Switch: Comply with Division 26 Section "Wiring Devices."
- C. Wall-Box Dimmers: Comply with Division 26 Section "Wiring Devices."
- D. Wall Plates: Single and multigang plates as specified in Division 26 Section "Wiring Devices."

E. Legend: Engraved or permanently silk-screened on wall plate where indicated. Use designations indicated on Drawings.

2.6 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Class 2 Power Source: Not smaller than No. 12 AWG, complying with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG, complying with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG, complying with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- D. Digital and Multiplexed Signal Cables: Unshielded, twisted-pair cable with copper conductors, complying with TIA/EIA-568-B.2, Category 5e for horizontal copper cable and with Division 27 Section "Communications Horizontal Cabling."

PART 3 - EXECUTION

- 3.1 WIRING INSTALLATION
 - A. Comply with NECA 1.
 - B. Wiring Method: Install wiring in raceways except where installed in accessible ceilings and gypsum board partitions. Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be ³/₄ inch.
 - C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Separate power-limited and non-power-limited conductors according to conductor manufacturer's written instructions.
 - D. Install field-mounting transient voltage suppressors for lighting control devices in Category A locations that do not have integral line-voltage surge protection.
 - E. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.
 - F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in terminal cabinets, equipment enclosures, and in junction, pull, and outlet boxes.
 - G. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."

HYBRID OR & OR #6 Maine Medical Center Portland, ME

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Test for circuit continuity.
 - 2. Verify that the control module features are operational.
 - 3. Check operation of local override controls.
 - 4. Test system diagnostics by simulating improper operation of several components selected by Architect.

3.3 SOFTWARE INSTALLATION

A. Install and program software with initial settings of adjustable values. Make backup copies of software and user-supplied values. Provide current licenses for software.

3.4 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors and to assist Owner's personnel in making program changes to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting controls and software training for PC-based control systems. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION

SECTION 262200

LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 - 1. Distribution transformers.

1.3 SUBMITTALS

- A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

- D. Qualification Data: For testing agency.
- E. Source quality-control test reports.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.
- C. Source Limitations: Obtain each transformer type through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Products.
 - 2. General Electric Company.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; Schneider Electric.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.

2.3 DISTRIBUTION TRANSFORMERS

- A. All bus and windings shall be copper.
- B. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- C. Provide transformers that are constructed to withstand seismic forces specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- D. Cores: One leg per phase.
- E. Enclosure: Ventilated, NEMA 250, Type 2.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air for 15 kVA units and smaller. Ventilated design for units over 15 kVA.
- F. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: ANSI 61 gray.
- G. Taps for Transformers Smaller Than 3 kVA: None.
- H. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
- I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

LOW-VOLTAGE TRANSFORMERS 262200 - 3

- J. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- K. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 - 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 - 2. Tested according to NEMA TP 2.
- L. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor. All bus and windings shall be copper.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- M. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.
- N. Wall Brackets: Manufacturer's standard brackets.
- O. Fungus Proofing: Permanent fungicidal treatment for coil and core.
- P. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.
- Q. Low-Sound-Level Requirements: Maximum sound levels, when factory tested according to IEEE C57.12.91, as follows:
 - 1. 9 kVA and Less: 40dBA
 - 2. 30 to 50 kVA: 45dBA
 - 3. 51 to 150 kVA: 50dBA
 - 4. 151 to 300 kVA: 55dBA
 - 5. 301 to 500 kVA: 60dBA
 - 6. 501 to 750 kVA: 62dBA
 - 7. 751 to 1000 kVA: 64dBA

HYBRID OR & OR #6 Maine Medical Center Portland, ME

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.91.
- B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Brace wall-mounting transformers as specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems.
- B. Construct concrete bases and anchor floor-mounting transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

3.3 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- B. Remove and replace units that do not pass tests or inspections and retest as specified above.
- C. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 - 2. Perform 2 follow-up infrared scans of transformers, one at 4 months and the other at 11 months after Substantial Completion.
 - 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- D. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION

SECTION 262416

PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. TVSS: Transient voltage surge suppressor.
- B. SPD: Surge Protective Device

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and as listed in seismic section of this specification.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Submittal shall include "Overcurrent Protective Coordination Study" as specified elsewhere in Division 26 Section which confirms all overcurrent protective devices submitted are in compliance with those requirements.
- C. Shop Drawings: For each panelboard and related equipment.

- 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
- 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
- 3. Detail bus configuration, current, and voltage ratings.
- 4. Short-circuit current rating of panelboards and overcurrent protective devices.
- 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 6. Include wiring diagrams for power, signal, and control wiring.
- D. Qualification Data: For qualified testing agency.
- E. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- F. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- G. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
- H. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or equivalent testing agency by manufacturer of distribution equipment being provided.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA or equivalent testing agency by manufacturer of distribution equipment being provided to supervise on-site testing

- B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 1.
- F. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.9 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels. B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: two years from date of Substantial Completion.

1.11 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Three spares of each size, type and poles.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- B. Enclosures: Flush- and surface-mounted cabinets. Coordinate with architectural drawings.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover or provide door-in-door type construction so that the trim may be opened to access wireways without removing the trim from the panel. All trims shall have concealed mounting hardware when the door is closed.
 - 3. Finishes:

- a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
- b. Back Boxes: Galvanized steel.
- 4. Directory Card: Inside panelboard door, mounted in transparent card holder
- C. Incoming Mains Location: Top and bottom. Coordinate with drawings, and site conditions.
- D. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 - 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
- E. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type, compression for aluminum feeders.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type, compression for aluminum feeders
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 6. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extracapacity neutral bus.
- F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- G. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current of 65,000 or rating indicated on schedules.

2.2 DISTRIBUTION PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following in paragraph B:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.

- B. Panelboards: NEMA PB 1, power and feeder distribution type.
- C. Doors: Furnish semi-flush cylinder lock-and-catch assembly to secure hinged door over circuit breaker handles.
- D. Mains: Circuit breaker and Lugs only.
- E. Branch Overcurrent Protective Devices for circuit-breaker frame sizes 125 A and smaller: bolton circuit breakers.
- F. Branch Overcurrent Protective Devices for circuit breakers frame sizes larger than 125A: bolt-on circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following in paragraph B:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Square D; a brand of Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Column-Type Panelboards: Not Permitted.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following in paragraph B:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents of 65,000 or rating indicated on schedules.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and smaller.

- 2. 250 AMP and larger electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
- 3. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials. Compression for Aluminum feeders.
 - c. Application Listing: Appropriate for application.
 - d. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in off position.

2.5 ACCESSORY COMPONENTS AND FEATURES

- A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NECA 407.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install panelboards and accessories according to NECA 407.
- B. Equipment Mounting: Install panelboards on concrete bases, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Division 03 Section " Miscellaneous Cast-in-Place Concrete."

- 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of base.
- 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to panelboards.
- 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- E. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- G. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- H. Install filler plates in unused spaces.
- I. Stub four 1-inch empty conduits from recessed panelboards into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- J. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- K. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study."
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

- 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
- 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION

SECTION 262417

ISOLATED POWER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION OF WORK

- A. Section Includes:
 - 1. Isolated power panels.
 - 2. Three phase laser isolated power panels
 - 3. Line isolation monitors.
 - 4. Associated power and grounding outlets.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 REFERENCES

- A. The surgical facility panels, isolated power panels, portable laser and X-Ray panels and all components shall be designed, manufactured and tested in accordance with the latest applicable edition of the following standards:
 - 1. NFPA 99 Health Care Facilities
 - 2. NFPA 70 National Electrical Code (NEC)
 - 3. UL Standard 1047 Isolated Power System Distribution Equipment
 - 4. UL Standard 1022 Line Isolation Monitors

1.5 SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 - 1. Isolated power panels.
 - 2. Three phase laser isolated power panels
 - 3. Line isolation monitors.
 - 4. Associated power and grounding outlets.

ISOLATED POWER SYSTEMS 262417-1

- B. Submittal shall include "Overcurrent Protective Coordination Study" as specified elsewhere in Division 26 Section which confirms all overcurrent protective devices submitted are in compliance with those requirements.
- C. Shop Drawings: For each isolated power panels, three phase laser isolated power panels, laser, line isolated monitors, associated power and ground outlets and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 6. Include wiring diagrams for power, signal, and control wiring.
 - 7. Impedance for transformers.
- D. Qualification Data: For qualified testing agency.
- E. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- F. Field Quality-Control Reports:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- G. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
- H. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise onsite testing.
- B. Source Limitations: Obtain isolated power panels, three phase laser isolated power panels, line isolation monitors, associated power and grounding outlets from single source from single manufacturer.
 - 1. Isolated power panels.
 - 2. Three phase laser isolated power panels
 - 3. Line isolation monitors.
 - 4. Associated power and grounding outlets.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. For the equipment specified herein, the manufacturer shall be ISO 9000, 9001 or 9002 certified.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
 - B. Handle and prepare panelboards for installation according to NECA 407 and NEMA PB 1.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

ISOLATED POWER SYSTEMS 262417-3

- 1. Ambient temperatures within limits specified.
- 2. Altitude not exceeding 6600 feet (2000 m).

1.9 COORDINATION

- A. Coordinate layout and installation of isolated power panels, three phase laser isolated power panels, line isolation monitors, associated power and grounding outlets with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR ISOLATED POWER SYSTEMS

- A. The back box housing the isolation transformer and related components shall be a minimum of 14 gauge steel which shall be degreased, phosphatized, primed and finish painted with a coat of baked enamel paint. 14 gauge galvanized steel is acceptable for flush mounted panels. The maximum depth of the panel shall be the minimum as manufactured by specified vendor.
- B. The front trim shall be 12 gauge type 304 stainless steel polished to a #4 satin/brushed finish and shall have a 1.5 inch return flange on all sides. Front trim shall have a hinged door with keyed lock to give access to the circuit breakers and LIM and allow for testing. The entire section behind the hinged door shall be a dead front design. All hinges shall be concealed.
- C. The front trim shall not contain any type of grille or louver for the purpose of ventilation. The panel and transformer shall be so designed that the heat generated by the transformer under full load conditions shall not affect the normal operation of the circuit breakers, LIM or ground detector. The maximum front panel temperature shall not exceed 30 degrees C under full load continuous operation. Certification of the temperature test shall be provided to the Engineer upon request.
- D. Back boxes for accessories shall be fabricated of mild steel. When accessories are surface mounted the back box shall have a finished appearance, all seams shall be

welded and ground smooth with the outer surface of the box. The front trim shall be 14 gauge type 304 stainless steel with a #4 satin/brushed finish..

2.2 ISOLATION POWER SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following listed in paragraph below:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide a comparable product by one of the following:
 - 1. Square D; a brand of Schneider Electric
 - 2. Isotrol Systems
- C. Isolated Power Panels
 - 1. Isolation transformers shall be single phase, 60 hertz, 10 kVA with 277 volt primary and 120 volt secondary.
- D. Laser Isolated Power Panels
 - 1. Isolation transformers shall be three phase, 60 hertz, 25 kVA with 480 volt three phase, primary and 208/120 volt, three phase secondary.
- E. Single Phase Transformers
 - 1. The transformer shall be wound with an electrostatic shield between the primary and secondary windings which shall be grounded to the enclosure. The electrostatic shield shall be designed such that it will prevent direct shorting of the primary winding to the secondary winding and reduce the coupling of harmonic distortions between the primary circuits and secondary circuits.
 - 2. Regulation shall not exceed 2.6% at 0.8 power factor at 20 degrees C above the full load continuous operating temperature in accordance with NEMA-ANSI Standards.
 - 3. The transformer shall have a Class H insulation system with a temperature rise of 55 degrees C above ambient under full load conditions when tested in accordance with NEMA-ANSI Standards. Transformer shall have a 220 degrees C UL recognized insulation system.
 - 4. The transformer shall be of the stacked core design and shall be securely clamped and bolted. The core and coils shall be internally isolated from the enclosure by means of a suitable vibration dampening system. The core and coils shall be varnish impregnated and shall have a final wrap of insulating material to prevent exposure of bare conductors.
 - 5. Transformers shall meet or exceed Class 1 efficiency levels per NEMA TP-1-2002, or the latest adopted edition.

C. Three Phase Transformers

- 1. The transformer shall be wound with an electrostatic shield between the primary and secondary windings. The shield shall be connected to the reference ground point within the isolation panel. The electrostatic shield shall be designed such that it will prevent direct shorting of the primary winding to the secondary winding and reduce the coupling of harmonic distortions between the primary circuits and secondary circuits.
- 2. Regulation shall not exceed 3.0% at unity power factor with the transformer current at full rated capacity in accordance with UL 1047. The manufacturer shall supply certified test data indicating compliance with this operating characteristic to ensure adequate voltage for critical equipment during high power demand conditions in the operating room.
- 3. The transformer shall have a Class H insulation system with a temperature rise of 80 degrees C above ambient under full load conditions when tested in accordance with NEMA-ANSI Standards. Transformer shall have a 180 degrees C UL recognized insulation system.
- 4. The transformer shall be of the stacked core design utilizing "E" or "I" shaped laminations. The laminations shall be securely clamped and bolted. Core laminations of the "wound" type, split "C" or "I" shaped will not be acceptable. The core and coils shall be internally isolated from the enclosure by means of a suitable vibration dampening system. The transformer assemblies shall be varnish impregnated and shall have a final layer of insulating material to protect the coils from damage during transport and installation.
- D. The total leakage current to ground from the transformer shall not exceed the values shown in UL 1047, Standard for Hospital Isolating Panels, Table 29.2
- E. Noise levels shall not exceed the values in the following table:

Transformer Rating	
(kVA)	Noise Level (db)
3	27
5	27
7.5	35
10	35
15	35
25	35

F. Transformers shall meet or exceed Class 1 efficiency levels per NEMA TP-1, the latest adopted edition.

2.3 CIRCUIT BREAKERS

A. Provide a primary and secondary main circuit breaker for each isolated power panel transformer. Refer to the drawings and schedule for voltage and ampere ratings and number of poles.

- B. Single Phase Isolated Power Panels
 - 1. All circuit breakers for single phase isolated power panels shall be 2 pole with a minimum interrupting rating of 10,000 amperes. Panel shall have a minimum capacity of 16 secondary circuit breakers.
- C. Three Phase Isolated Power Panels
 - 1. All circuit breakers for three phase isolated power panels shall be three pole with a minimum interrupting rating of 10,000 amperes. Panels shall have a minimum capacity of 8 secondary circuit breakers
- D. All circuit breakers shall be of the thermal-magnetic type.
- E. Refer to drawings for sizes and quantities of circuit breakers.
- 2.4 LINE ISOLATION MONITOR
 - A. Each isolated power panel, duplex isolated power panel, three phase laser isolated power panel shall be equipped with a line isolation monitor (LIM).
 - B. The LIM shall be microprocessor based, digital and shall use circuitry to continuously monitor the impedance from all secondary conductors of the isolated power system to ground. The LIM shall be capable of detecting all combinations of resistive and capacitive faults whether they are balanced, unbalanced or hybrid. LIM's that internally switch between either line to ground will not be acceptable. The LIM shall not contribute more than 25 microamperes to the total hazard current of the system.
 - C. The LIM shall have the following specifications:

1.	Operating voltage:	85 to 265 VAC
2.	Accuracy:	5% or better
3.	Alarm level:	2 or 5 mA (selectable)
4.	Alarm bandwidth:	Zero (0)
5.	Alarm hysteresis (on/off):	50 micro amperes
6.	Mode:	Single- or three-phase
7.	Monitor hazard current:	50 micro amperes
8.	Operating frequency:	50 or 60 Hz

- D. The LIM shall alarm when the total hazard current reaches a value of 5 milliamperes. When the total hazard current is less than 5 milliamperes, a green light shall be illuminated indicating normal conditions. Should the total hazard current reach 5 milliamperes, a red light shall illuminate and a buzzer shall sound indicating alarm. A silence switch shall be provided to quite the buzzer, which, when operated shall cause an amber warning light to illuminate, indicating that the audible signal has been silenced. The LIM shall automatically reset to normal status when the fault condition is corrected. The LIM shall also detect and signal an alarm if the ground connection to the LIM is broken. All lamps shall be long life LED type.
- E. A momentary test switch shall be provided for periodic testing of the LIM circuitry. When presses, the test switch shall check and recalibrate the unit. The test switch shall also perform a complete test of all indicating lamps and meters on the face of the LIM and at

any remote indicating stations. Test switches that require manual reset will not be acceptable.

- F. In addition to the test switch recalibration, the LIM shall be capable of automatically checking its calibration and recalibrating itself to original performance specifications every 90 minutes. If internal components are more than 30% out of original specifications because of aging or failure, the LIM shall notify the user by displaying an error message.
- G. The LIM shall contain both analog and digital indication of the isolated power system's hazard current. Digital indication shall be provided by a digital meter and the analog indication shall be graph type calibrated from 0 160% of the alarm setting of the LIM.
- H. Provide an external set of normally open and normally closed dry contacts, rated 3 amperes at 120 volt for use with external alarm systems. The LIM shall also provide an output signal of sufficient capacity to power remote indicator alarm units. This output signal shall not increase the hazard current of the system being monitored.
- I. The LIM shall incorporate a loss-of-ground feature which will activate the audible and visual alarms when connection is lost with the reference ground of the isolated power system being monitored. The unit shall also display an error code in the digital display.
- J. The LIM shall be flush mounted on the front of the panel and flush mounted in a remote location as indicated on the drawings so that the LIM signals are clearly visible at all times. The LIM signals must not be obscured when the circuit breaker door is open.

2.5 MASTER REMOTE ANNUNCIATOR PANEL

- A. The LIM in each isolated power panel, and three phase laser isolated power panel shall report to a Master Remote Annunciator panel.
- B. Provide a master remote annunciator panel to provide centralized monitoring of all isolated power systems. The master remote annunciator panel shall be located at the nurses station.
- C. The annunciator panel shall have one set of red, green and amber lights and a silence switch for each isolated power system. A buzzer shall provide audible annunciation of an alarm. The master remote annunciator shall be flush mounted. The lights shall mimic the lights on the associated line isolation monitor. The lights in the remote annunciator shall also mimic the lights on the LIM when the test switch on the LIM is depressed.

2.6 POWER AND GROUND OUTLETS

- A. Provide a Power Module with 8300-R, duplex straight blade and 23000HG, twist lock power receptacles and ground jacks. Devices shall be flush mounted and located as indicated on the drawings. All receptacles shall be firmly attached with concealed fasteners that do not appear on the surface of the trim.
- B. Provide Master Ground Module, located as indicated on the drawings. A copper ground bus with 24 terminals for wire sizes #14 AWG to #6 AWG and a #14 AWG to #1/0 AWG main lug shall be included.

2.7 LASER OUTLETS

- A. Provide Laser Outlets to match the laser plug in locations as shown on the drawings mounted in an angular recessed compartment. The laser outlet shall include a plug control interface switch. A door over the recessed compartment shall conceal the receptacle when not in use. The laser outlet shall be flush mounted. The remote line isolation monitor signals, consisting of red and green indication lights, warning buzzer and silence switch, shall be incorporated into the front trim.
- B. Provide a Plug in Control system for selective activation of each branch circuit so only those circuits with a laser machine plugged in will be energized. All other circuits will remain OFF. The system shall interface with the outlet module. A series of branch circuit contactors and relays shall be provided to control both the power and the line isolation monitor signals for each circuit.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NECA 407.
- B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WIRING

- A. All components within the isolation panel shall be prewired using low leakage type XLP wire. A barriered compartment shall be provided for the incoming primary feeder and separation shall be maintained between grounded and ungrounded conductors. Terminal blocks shall be provided for connection of branch circuits and remote signal conductors.
- B. All branch circuit conductors of the isolated power system shall be stranded copper having cross linked polyethylene insulation or equivalent with a dielectric constant of 3.5 or less. Type XLP is suitable for this purpose. Each branch circuit conductor shall be color coded in accordance with the National Electrical Code. Wire pulling compound produces an adverse effect upon the dielectric constant of conductor insulation and shall not be used when pulling the wire of the isolated power system.
- C. All wiring within isolation panels, remote accessories and field wiring installed by the Electrical Subcontractor shall be color-coded in compliance with the NEC and NFPA No. 99.

3.3 INSTALLATION

- A. Install panelboards and accessories according to NECA 407.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- F. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- G. Install filler plates in unused spaces.
- H. Stub four 1-inch empty conduits from recessed panelboards into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- I. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- J. Comply with NECA 1.
- K. The Electrical Subcontractor shall ensure that no piping, ductwork or other equipment foreign to the electrical trade passes through the area extending from the floor to the structural ceiling with the width and depth equal to that of the electrical distribution equipment plus 6" on either side of panel.
- L. All electrical equipment shall be installed such that the handle of the highest circuit breaker does not exceed 6'-6" above finished floor.
- M. Electrical distribution equipment that is part of the emergency distribution system shall be located in spaces fully protected by an approved automatic fire suppression system or in spaces with a one (1) hour fire resistance rating.
- N. The life safety branch, critical branch and equipment branch of the emergency electrical system shall be kept entirely independent of all other wiring, devices and equipment, and shall not enter the same raceways, boxes or cabinets with each other or other wiring, except where allowed by code.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

ISOLATED POWER SYSTEMS 262417-10

- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- 3.5 FIELD QUALITY CONTROL
 - A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 - B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - D. Panelboards will be considered defective if they do not pass tests and inspections.
 - E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
 - F. The factory technician shall check and record system leakage currents and shall simulate faults, on each system panel, of a magnitude high enough to bring the total system leakage, which the line isolation monitor detects, above the calibrated point, thus verifying correct operation of the LIM. The faults simulated shall be combinations of resistive and capacitive faults.
 - G. The factory technician shall check the resistance between the ground point of each receptacle and the reference point and ensure it is less than 0.1 ohms. The voltage potential difference between any exposed conductive surfaces in the patient vicinity shall be checked and shall be no more than 40 millivolts. Tests shall be per requirements in NFPA 99.

ISOLATED POWER SYSTEMS 262417-11 H. The technician shall also test the system impedance of the entire isolated power system to ensure compliance with the applicable sections of NFPA 99, chapter 4. The measured system impedance shall become part of the permanent logged records of each panel.

END OF SECTION

SECTION 262726

WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Twist-locking receptacles.
 - 3. Wall-box motion sensors.
 - 4. Isolated-ground receptacles.
 - 5. Hospital-grade receptacles.
 - 6. Snap switches and wall-box dimmers.
 - 7. Wall-switch and exterior occupancy sensors.
 - 8. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

- C. Samples: One for each type of device and wall plate specified, in each color specified.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

1.6 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described in subparagraphs below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.
 - 2. Receptacles and switches: One for every 10 of each type installed, but no fewer ten two of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 2. Leviton Mfg. Company Inc. (Leviton).
 - 3. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL5351 (single), CR5352 (duplex).
 - b. Leviton; 5891 (single), 5352 (duplex).
 - c. Pass & Seymour; 5381 (single), 5352 (duplex).
- B. Hospital-Grade, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498 Supplement SD.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL8310 (single), HBL8300H (duplex).
 - b. Leviton; 8310 (single), 8300 (duplex).
 - c. Pass & Seymour; 9301-HG (single), 9300-HG (duplex).
- C. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL8300SG.
 - b. Leviton; 8300-SGG.
 - c. Pass & Seymour; 63H.
 - 2. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

- A. General Description: Straight blade, non-feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.
- B. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with UL 498 Supplement SD.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HGF8300.
 - b. Leviton; 6898-HG.
 - c. Pass & Seymour; 2091-SHG.

2.4 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL2310.
 - b. Leviton; 2310.
 - c. Pass & Seymour; L520-R.
- 2.5 TOGGLE SWITCHES
 - A. Comply with NEMA WD 1 and UL 20.
 - B. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
 - b. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
 - c. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).
 - C. Pilot Light Switches, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HPL1221PL for 120 V and 277 V.
 - b. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 - c. Pass & Seymour; PS20AC1-PLR for 120 V.
 - 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."
 - D. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1221L.
 - b. Leviton; 1221-2L.
 - c. Pass & Seymour; PS20AC1-L.
 - 2. Description: Single pole, with factory-supplied key in lieu of switch handle.

- E. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1557.
 - b. Leviton; 1257.
 - c. Pass & Seymour; 1251.

2.6 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "OFF."
- D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 OCCUPANCY SENSORS

- A. Wall-Switch Sensors:
 - 1. Products: Subject to compliance with requirements, provide one of the manufacturers' as indicated on the legend.
 - Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft. (111 sq. m).

2.8 WALL PLATES

- A. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."

- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weatherresistant with rain tight while in use covers.
- C. Coordinate colors and material with Architect.

2.9 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular and round, die-cast aluminum with satin finish.
- D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.
- E. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 Category 6e jacks for UTP cable. Coordinate with Telcom drawings and specifications.
- F. Coordinate all finishes, materials and colors with architect.

2.10 POKE-THROUGH ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.
 - 2. Pass & Seymour/Legrand; Wiring Devices & Accessories.
 - 3. Wiremold Company (The).
- B. Description: Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service outlet assembly.
 - 1. Service Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks.
 - 2. Size: Selected to fit nominal 4-inch (100-mm) cored holes in floor and matched to floor thickness.
 - 3. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 - 4. Closure Plug: Arranged to close unused 4-inch (100-mm) cored openings and reestablish fire rating of floor.
 - 5. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, 4-pair, Category 6e voice and data communication cables.

2.11 MULTIOUTLET ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.

- 2. Wiremold Company (The).
- B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- C. Raceway Material: Aluminum.
- D. Wire: No. 12 AWG.

2.12 FINISHES

- A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect (White), unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.
 - 4. Isolated-Ground Receptacles: Orange.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.
 - B. Coordination with Other Trades:
 - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
 - C. Conductors:
 - 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.

- b. Straighten conductors that remain and remove corrosion and foreign matter.
- c. Pigtailing existing conductors is permitted provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
 - 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."

1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 - 2. Test Instruments: Use instruments that comply with UL 1436.
 - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Test straight blade hospital-grade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).

END OF SECTION

SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Molded-case circuit breakers (MCCBs).
 - 3. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to so that the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

SUBMITTALS

- B. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of NRTL listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

- 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.
- C. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- D. Qualification Data: For qualified testing agency.
- E. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- F. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- G. Manufacturer's field service report.
- H. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: two for each size and type.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.

- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 - 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 8. Service-Rated Switches: Labeled for use as service equipment.
 - 9. Accessory Control Power Voltage: Remote mounted and powered.

2.2 MOLDED-CASE CIRCUIT BREAKERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 - 1. Instantaneous trip.
 - 2. Long- and short-time pickup levels.
 - 3. Long- and short-time time adjustments.
 - 4. Ground-fault pickup level, time delay, and I²t response.
- F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

ENCLOSED SWITCHES AND CIRCUIT BREAKERS 262816 - 4

- G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- J. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 - Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system, specified in Division 26 Section "Electrical Power Monitoring and Control."
 - 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 - 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 - 8. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 - 9. Alarm Switch: One NC contact that operates only when circuit breaker has tripped.
 - 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 - 11. Electrical Operator: Provide remote control for on, off, and reset operations.
 - 12. Accessory Control Power Voltage: 1 integrally mounted, self powered 120-V ac

2.3 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Wash-Down Areas: NEMA 250, Type 4X.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 6. Hazardous Areas: NEMA 250, Type 9.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - 3. Perform over current trip test for circuit breakers over 200 amps based on NEMA standards. The use of secondary injection for solid state trip devices shall be for trip settings of 200 amps up to 400A. Provide primary injection testing for trip settings over 400 amps.

C. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study".

END OF SECTION

SECTION 265100

INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.
- B. Related Sections include the following:
 - 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multiple lighting relays and contactors.
 - 2. Division 26 Section "Network Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
 - 3. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CRI: Color-rendering index.
- C. CU: Coefficient of utilization.
- D. HID: High-intensity discharge.
- E. LER: Luminaire efficacy rating.
- F. Luminaire: Complete lighting fixture, including ballast housing if provided.
- G. RCR: Room cavity ratio.

HYBRID OR & OR #6 Maine Medical Center Portland, ME

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Emergency lighting units including battery and charger.
 - 3. Ballast.
 - 4. Energy-efficiency data.
 - 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
 - 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
 - 7. Life, output, and energy-efficiency data for lamps. Submittals without lamp data sheets will be rejected.
 - 8. Photometric data, in IESNA format, based on laboratory tests of each lighting fixture type, outfitted with lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 - a. For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by the manufacturer.
 - b. Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program (NVLAP) for Energy Efficient Lighting Products.
- B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.
 - 1. Wiring Diagrams: Power and control wiring.
- C. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Lighting fixtures.
 - 2. Suspended ceiling components.
 - 3. Structural members to which suspension systems for lighting fixtures will be attached.
 - 4. Other items in finished ceiling including the following:
 - a. Air outlets and inlets.
 - b. Speakers.
 - c. Sprinklers.
 - d. Smoke and fire detectors.
 - e. Occupancy sensors.
 - f. Access panels.
 - 5. Perimeter moldings.
- D. Samples for Verification: Interior lighting fixtures designated for sample submission in Interior Lighting Fixture Schedule. Each sample shall include the following:

- 1. Lamps: Specified units installed.
- 2. Accessories: Cords and plugs.
- E. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer.
- F. Qualification Data: For agencies providing photometric data for lighting fixtures.
- G. Field quality-control test reports.
- H. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
- I. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. FMG Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG.
- E. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of fixtures for mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 COORDINATION

- A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.
- B. Coordinate fixtures with ceiling types and provide all necessary trims, flanges, adapters, etc. for complete compatibility with ceiling. Refer to Architectural reflected ceiling plans.

1.7 WARRANTY

- A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
 - 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.
- B. Special Warranty for Ballasts: Manufacturer's standard form in which ballast manufacturer agrees to repair or replace ballasts that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Electronic Ballasts: Five years from date of Substantial Completion.
 - 2. Warranty Period for Electromagnetic Ballasts: Three years from date of Substantial Completion.
- C. Special Warranty for T5 and T8 Fluorescent Lamps: Manufacturer's standard form, made out to Owner and signed by lamp manufacturer agreeing to replace lamps that fail in materials or workmanship, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Plastic Diffusers and Lenses: 1 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Battery and Charger Data: One for each emergency lighting unit.
 - 4. Ballasts: 1 for every 100 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

- B. In Interior Lighting Fixture Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 - 3. Basis-of-Design Product: The design for each lighting fixture is based on the product named. Subject to compliance with requirements, provide either the named product or a comparable product by one of the other manufacturers specified.

2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.
- C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.
- E. Metal Parts: Free of burrs and sharp corners and edges.
- F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- H. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
 - 4. Laminated Silver Metallized Film: 90 percent.
- I. Plastic Diffusers, Covers, and Globes:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless different thickness is indicated.
 - b. UV stabilized.
 - 2. Glass: Annealed crystal glass, unless otherwise indicated.

- J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagneticinterference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.
- K. Air-Handling Fluorescent Fixtures: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Division 23 Section "Diffusers, Registers, and Grilles."
 - 1. Air Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 - 2. Heat Removal Units: Air path leads through lamp cavity.
 - 3. Combination Heat Removal and Air Supply Unit: Heat is removed through lamp cavity at both ends of the fixture door with air supply same as for air supply units.
 - 4. Dampers: Operable from outside fixture for control of return-air volume.
 - 5. Static Fixture: Air supply slots are blanked off, and fixture appearance matches active units.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

- A. Electronic Ballasts: Comply with ANSI C82.11; programmed-start type, unless otherwise indicated, and designed for type and quantity of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated.
 - 1. Sound Rating: A.
 - 2. Total Harmonic Distortion Rating: Less than 10 percent.
 - 3. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 4. Operating Frequency: 42 kHz or higher.
 - 5. Lamp Current Crest Factor: 1.7 or less.
 - 6. BF: 0.85 or higher.
 - 7. Power Factor: 0.98 or higher.
 - 8. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.
 - 9. Provide a factory installed disconnecting means on the line side of every ballast within the fixtures.
- B. Electronic Programmed-Start Ballasts for T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 - 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Provide a factory installed disconnecting means on the line side of every ballast within the fixture.
- C. Electromagnetic Ballasts: Comply with ANSI C82.1; energy saving, high-power factor, Class P, and having automatic-reset thermal protection.

- 1. Ballast Manufacturer Certification: Indicated by label.
- D. Single Ballasts for Multiple Lighting Fixtures: Factory-wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field.
- E. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types.
 - 2. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types.
- F. Ballasts for Low Electromagnetic-Interference Environments: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for consumer equipment.
- G. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 1percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
- H. Ballasts for Bi-Level Controlled Lighting Fixtures: Electronic type.
 - 1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.
 - b. Low-Level Operation: 50 percent of rated lamp lumens.
 - 2. Ballast shall provide equal current to each lamp in each operating mode.
 - 3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

- A. Description: Electronic programmed rapid-start type, complying with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.

- 10. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
- 11. Ballast Case Temperature: 75 deg C, maximum.
- B. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 1 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

2.5 EMERGENCY FLUORESCENT POWER UNIT

- A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924. Manufacturer shall be bodine.
 - 1. Emergency connection: Operate 1 fluorescent lamp continuously at output lumens listed below:
 - a. 32 watt/T8 lamp- 1350 Lumens
 - 1) Bodine B50 series.
 - b. 32/42 watt/T4 lamp- 1250 Lumens
 - 1) Bodine B84GC series.
 - T5 lamps- 1250 Lumens
 - 1) Bodine LP600 series.
 - 2. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 3. Night-Light Connection: Operate one fluorescent lamp continuously.
 - 4. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 5. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

2.6 GENERATOR TRANSFER DEVICE

A. Relay Control Device.

C.

- 1. The device shall be capable of bypassing normal power controls when generator powers the lighting.
- 2. The device shall consist of relay switching circuitry, a test switch, a normal power indicating light, and an alternate power indicating light.
- 3. The device shall be in an enclosure suitable for indoor and damp locations.
- 4. The device shall operate at 120 or 277 volt, 60 Hz at up to 20 amps of lighting load.

- 5. The device shall be UL 924 listed.
- 6. The device shall be Bodine GTD 20A or equal.
- 7. Wire and connect device per manufacturer's wiring diagram and as shown on plans.
- 8. The device shall have a 5 year warranty.

2.7 BALLASTS FOR HID LAMPS

- A. Electromagnetic Ballast for Metal-Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features, unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - 2. Minimum Starting Temperature: Minus 22 deg F (Minus 30 deg C) for single-lamp ballasts.
 - 3. Normal Ambient Operating Temperature: 104 deg F (40 deg C).
 - 4. Open-circuit operation that will not reduce average life.
 - 5. Low-Noise Ballasts: Manufacturers' standard epoxy-encapsulated models designed to minimize audible fixture noise.
- B. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Sound Rating: A.
 - 3. Total Harmonic Distortion Rating: Less than 15 percent.
 - 4. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 5. Lamp Current Crest Factor: 1.5 or less.
 - 6. Power Factor: .90 or higher.
 - 7. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 - 8. Protection: Class P thermal cutout.
 - 9. Bi-Level Dimming Ballast: Ballast circuit and leads provide for remote control of the light output of the associated fixture between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.
 - b. Low-Level Operation: 50 percent of rated lamp lumens.
 - c. Compatibility: Certified by ballast manufacturer for use with specific bi-level control system and lamp type indicated. Certified by lamp manufacturer that ballast operating modes are free from negative effect on lamp life and color-rendering capability.
 - 10. Continuous Dimming Ballast: Dimming range shall be from 100 to 35 percent of rated lamp lumens without flicker.
 - a. Ballast Input Watts: Reduced to a maximum of 50 percent of normal at lowest dimming setting.
 - b. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated. Certified by lamp manufacturer that ballast operating modes are free from negative effect on lamp life and color-rendering capability.

C. Auxiliary Instant-On Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when power outages occur. System automatically turns quartz lamp off when HID lamp reaches approximately 60 percent light output.

2.8 EXIT SIGNS

- A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.

2.9 EMERGENCY LIGHTING UNITS

- A. Description: Self-contained units complying with UL 924.
 - 1. Battery: Sealed, maintenance-free, lead-calcium type.
 - 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - 3. Operation: Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
 - 7. Integral Time-Delay Relay: Holds unit on for fixed interval of 15 minutes when power is restored after an outage.

2.10 FLUORESCENT LAMPS

- A. Low-Mercury Lamps: Comply with EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.
- B. T8 rapid-start low-mercury lamps, rated 32 W maximum, nominal length of 48 inches (1220 mm), 2950 initial lumens (minimum), CRI 86 (minimum), color temperature 3500 K, and average rated life 20,000 hours, unless otherwise indicated.
- C. T8 rapid-start low-mercury lamps, rated 17 W maximum, nominal length of 24 inches (610 mm), 1300 initial lumens (minimum), CRI 86 (minimum), color temperature 3500 K, and average rated life of 20,000 hours, unless otherwise indicated.
- D. T5 rapid-start low-mercury lamps, rated 28 W maximum, nominal length of 45.2 inches (1150 mm), 2900 initial lumens (minimum), CRI 85 (minimum), color temperature 3500 K, and average rated life of 30,000 hours, unless otherwise indicated.

- E. T5HO rapid-start, high-output low-mercury lamps, rated 54 W maximum, nominal length of 45.2 inches (1150 mm), 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 30,000 hours, unless otherwise indicated.
- F. Compact Fluorescent Lamps: 4-Pin, low mercury, CRI 80 (minimum), color temperature 3500 K, average rated life of 10,000 hours at 3 hours operation per start, and suitable for use with dimming ballasts, unless otherwise indicated.
 - 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).
 - 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
 - 3. 26 W: T4, double or triple tube, rated 1700 initial lumens (minimum).
 - 4. 32 W: T4, triple tube, rated 2200 initial lumens (minimum).
 - 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
 - 6. 55 W: T4, triple tube, rated 4000 initial lumens (minimum).
- G. Lamps in operating rooms and surgical areas 5000 K.

2.11 HID LAMPS

- A. Metal-Halide Lamps: ANSI C78.1372, with a minimum CRI 65, and color temperature 4000 K.
- B. Pulse-Start, Metal-Halide Lamps: Minimum CRI 65, and color temperature 4000 K.
- C. Ceramic, Pulse-Start, Metal-Halide Lamps: Minimum CRI 80, and color temperature 4000 K.

2.12 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channeland angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm).
- F. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
- B. Support for Lighting Fixtures in or on Grid-Type Suspended Ceilings: Use grid as a support element.
 - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
 - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
 - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- C. Suspended Lighting Fixture Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
 - 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- D. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment.
- E. Adjust aimable lighting fixtures to provide required light intensities.
- F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- G. Dimmed Lighting Fixtures: Season all lamps in dimmed lighting fixtures for 100 hours prior to dimming lamps. Replace any lamps that fail during 100 hour burn-in time.

3.2 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
- B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION

SECTION 283111

FIRE ALARM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This specification describes a modification to an existing Addressable Voice Fire Detection and Evacuation System. The system shall be in full compliance with all applicable codes and standards. This system shall be an extension of existing hospital Honeywell System.
- B. Install, program, test, and deliver to the Owner in fully operational condition including all required hardware, software, raceways and interconnecting wiring as required. The system shall consist of, but not be limited to, the following:
 - 1. Addressable Manual Dual Action Fire Alarm Pull Stations.
 - 2. Addressable Analog Duct Smoke Detectors
 - 3. Addressable Area Heat Detectors
 - 4. Addressable Interface and Control Modules.
 - 5. Audible and Visual Notification Devices.
 - 6. Hand On-Off-Auto Control Switches for HVAC and/or Purge Systems.
 - 7. Interface Monitoring and/or Control of Fixed Fire Suppression Systems.
 - 8. Magnetic Hold Open Door Release.
 - 9. Security Interface
- C. Non-addressable alarm initiating, supervisory and status monitored devices shall be integrated into the fire alarm system, as applicable, via the addressable interface module:
 - 1. Sprinkler water flow alarm (alarm initiating)
 - 2. Sprinkler standpipe water flow (alarm initiating)
 - 3. Sprinkler valve tamper switch (supervisory)
 - 4. HVAC systems "AUTO-OFF" status (status monitoring).
 - 5. HVAC systems "PURGE ON-AUTO-OFF" (status monitoring), and fire/smoke dampers closure (status monitoring).

FIRE ALARM 283111-1

- 6. Magnetic Hold Open Door Release.
- 7. Security interface.
- 8. Audible / visual signaling devices and communicating devices to be controlled by the Fire Alarm Control Panel (FACP) and/or Data Gathering Panels (FDGP, transponder panels):
 - a. Speakers
 - b. Strobe Lights
 - c. Combination Speaker-Strobe
 - d. Horns
 - e. Combination Horn-Strobe
- 9. Devices to be controlled by the Fire Alarm Control Panel (FACP) and/or Data Gathering Panels (FDGP), programmable relays, and/or addressable interface module relays:
 - a. Connections to the appropriate Receiving Agency for manual station alarm, sprinkler alarm, smoke alarm, interfaced suppression system alarm, supervisory and system trouble conditions.
 - b. Magnetic door holders release control.
 - c. Magnetic door lock release control.
 - d. Air handling fan systems alarm shutdown operations.
 - e. Fire/smoke dampers operations.
 - f. Material Lift shaft smoke hatch/vent release control.
- D. Prior to the commencement of work, obtain all permits necessary for installation of the work. All permit costs and inspections fees shall be included as part of the required work. After completion of work, notify all authorities having jurisdiction.
- E. Local requirements shall be adhered to with regard to submitting specifications, wiring diagrams, shop drawings and plans. Responsibility for furnishing the quantities of copies on mylar and/or paper, as directed by such requirements, shall be included as part of the work of this Section.
- F. Submit a letter of approval of the installation, from the local code authority, before requesting final acceptance of the system.
- G. Related Sections include the following:
 - 1. Division 8 Section "Hardware" for door closers/holders/smoke detectors, electric door locks, and release devices that interface with fire alarm systems.
 - 2. Wire and Cable.

- 3. Raceways.
- H. Coordinate with the mechanical contractor for installation of duct mounted smoke detectors and interface with motor controls.
- I. Coordinate with fire protection contractor for interface with fire protection devices and coordinate with elevator contractor for interface with terminal recall relay.
- J. Coordinate with the Architect for final locations and appearance of devices.
- K. Electronic component models must have been commercially available for at least one year prior to bid.

1.3 SUBMITTALS

- A. Prior to the start of work, provide a complete and comprehensive submittal for review. Describe the proposed system and its equipment. Failure to provide a complete submittal shall be grounds for rejection of submission. Submittal shall include, but not be limited to, all of the following material:
 - 1. Battery capacity: Minimum of 125% of the operating requirement.
 - 2. Power requirements for all equipment: Minimum 25% spare capacity.
- B. Shop Drawings: Show details of graphic annunciator.
 - 1. Drawing or catalog page showing actual dimensions of system components.
 - 2. Single line riser diagram showing all equipment, all connections and number and size of all conductors and conduits.
 - 3. Wiring Diagrams: Detail wiring, differentiate between manufacturer-installed and fieldinstalled wiring.
 - 4. Provide samples when so requested by the Architect/Engineer.
 - 5. Floor Plans: Indicate final outlet locations and raceway routing.
 - 6. Device Address List: Coordinate with final system programming.
 - 7. System Operation Description: Detailed description for this specific Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.
- C. Product Certificates: Signed by manufacturers of system components certifying that products furnished comply with requirements.
- D. Field Test Reports: Comply with NFPA 72.
- E. Maintenance Data: Comply with NFPA 72.

- F. Submissions to Authorities Having Jurisdiction: In addition to distribution requirements for Submittals specified in Division 1 Section "Submittals," make an identical submission to authorities having jurisdiction. Include copies of annotated Contract Drawings to depict component locations to facilitate review. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.
- G. Certificate of Completion: Comply with NFPA 72.
- H. Provide the address, telephone number, and contact person(s) of the manufacturer's local service facility for normal and off hour warranty issues.
- I. Provide a fire alarm system input output function matrix. Matrix shall illustrate alarm output events in association with initiating devices input events. Include any and all departures, exceptions, variances or substitutions from these specifications and/or project drawings at the time of bid.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing systems similar to those indicated for this Project and with a record of successful in-service performance.
- B. Installer Qualifications: An experienced installer who is an authorized representative of the manufacturer for both installation and maintenance of units required for this Project.
- C. Source Limitations: Obtain fire alarm system components through one source from a single manufacturer.
- D. Comply with applicable building code, local ordinances and regulations, and requirements of authorities having jurisdiction.
- E. Comply with NFPA 72 and NFPA 70 Article 760.
- F. Comply with NFPA 90A, Air Conditioning and Ventilation Systems.
- G. Fire alarm system shall be UL listed.
- H. Submit three copies of all required Licenses and Bonds.
- 1.5 SEQUENCING AND SCHEDULING
 - A. Existing Fire Alarm Equipment: Maintain fully operational until new equipment has been tested and accepted.

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but not less than one unit.
 - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but not less than one unit.

FIRE ALARM 283111-4

- 3. Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but not less than one unit of each type.
- 4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but not less than one unit of each type.
- 5. Printer Ribbons: Six spares.
- 6. Keys and Tools: One extra set for access to locked and tamperproof components.

1.7 COORDINATION

- A. Coordinate work in this Section with all related trades.
- B. Air handling system, smoke damper control circuits shall be monitored by and connected to the fire alarm system.
- C. Sprinkler water flow alarm and valve tamper switches shall be wired and connected to the fire alarm system.
- D. Elevator recall control equipment shall be wired and connected to the fire alarm system.
- E. Material Lift shaft smoke hatch/vent control equipment shall be wired and connected to the fire alarm system.
- F. Fire watch responsibilities: Fire watch responsibilities shall be coordinated with the owner.

1.8 EXISTING CONDITIONS

- A. The Contractor shall visit the site to determine and verify all existing conditions, devices, conduct, riser, etc., before bidding.
- B. Verification testing: Test and document the operation of existing fire protection system(s) prior to new installation. Maintain the condition and integrity of existing fire alarm system.

1.9 PERMITS AND FEES

- A. The Contractor shall give necessary notice, file drawings and specifications with the department having jurisdiction, obtain permits or licenses necessary to carry out this work and pay all fees therefor. The Contractor shall arrange for inspection and tests of any or all parts of the work if so required by authorities and pay all charges for same. The Contractor shall pay all costs for, and furnish to the Owner before final billing, all certificates necessary as evidence that the work installed conforms with all regulations where they apply to this work.
- B. This contractor shall prepare or hire the necessary consultants to prepare and file all plans, calculation, forms, etc. required for filing with all agencies required for this work. including but not limited to the Portland Fire Department, etc.

1.10 INSPECTIONS / TESTING

A. Independent testing and inspections shall be provided by this contractor who shall hire the inspector or testing agency

FIRE ALARM 283111-5

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work included, but are not limited to, the following:
- B. Subject to compliance with requirements, provide products by one of the following:
 - 1. Honeywell, Inc. (XLS 1000, match existing system components).

2.2 STANDARDS AND CODES

- A. All equipment shall be installed and complied with the current adopted provisions of the applicable electrical and building codes, and following codes and standards listed in 2.06.B (below).
- B. All equipment shall be UL listed for its intended use, as a minimum, the following standards shall apply:
 - 1. Underwriters Laboratories Standards
 - a. UL 228 Door Holders for Fire Protective Signaling Systems.
 - b. UL 268 and 268A-Smoke Detectors for Fire Protective Signaling Systems-Duct Application.
 - c. UL 346 Waterflow Indicators for Fire Protective Signaling Systems.
 - d. UL 464 Audible Signaling Appliances.
 - e. UL 864 Control Units for Fire Protective Signaling Systems.
 - f. UL 1480 Speakers for Fire Protective Signaling Systems.
 - g. UL 1481 Power Supplies for Fire Protective Signaling Systems.
 - h. UL 1971 Signaling Devices for the Hearing Impaired.
 - i. UUKL Smoke Control.
 - 2. National Fire Protection Association Standards.
 - a. NFPA No. 13 Maine Adopted Edition Sprinkler Alarm and Supervision.
 - b. NFPA No. 20 Maine Adopted Edition Fire Pump Supervision.
 - c. NFPA No. 70 Maine Adopted Edition National Electrical Code.
 - d. NFPA No. 72 Maine Adopted Edition National Fire Alarm Code.
 - e. NFPA No. 72, 4-5 Remote Supervising Station Fire Alarm Systems (If Required)

FIRE ALARM 283111-6

- f. NFPA No. 72, 4-7 Auxiliary Fire Alarm Systems.
- g. NFPA No. 72, 3-12 Emergency Voice/Alarm Communications.
- h. NFPA No. 90A Maine Adopted Edition Installation of Air Conditioning & Ventilating Systems.
- i. NFPA No. 101 Maine Adopted Edition Life Safety Code
- C. All devices being reused, where permitted, shall be UL cross listed with the fire alarm system; otherwise, new devices are required. Submit approval documents.
- D. The fire alarm system and its installation shall comply with all other local codes and authorities having jurisdiction, including but not limited to, owners engineering design guidelines.
- E. The fire alarm system and its installation shall comply with all applicable requirements of the Americans With Disabilities Act (ADA-latest edition), in areas of new work.
- 2.3 FUNCTIONAL DESCRIPTION OF SYSTEM
 - A. Basic System Equipment, Circuiting, Addressing and Operating Capabilities
 - 1. Connect no more than 80% of the maximum number of devices allowed on any addressable loop.
 - 2. System power supplies, including necessary transformers rectifiers, regulators, filters and surge protection required for system operation, with the capacity to power the system in a worst case condition with all devices in alarm and all local indicating appliances active without exceeding the listed ratings. All system devices shall display normal and alarm conditions consistently whether operating from normal power or reserve (standby) power.
 - 3. System primary power: Primary power for the FACP and the secondary power battery chargers shall be obtained from dedicated emergency power circuits. Fuse cut-outs shall protect each circuit. Each cut-out shall be two (2) pole with a solid neutral. Each circuit used for fire alarm purposes shall be permanently labeled for function.
 - 4. Secondary power supply: Provide sealed gelled electrolyte batteries as the secondary power supply for all fire alarm functions. The battery supply shall be calculated to operate loads in a supervisory mode for twenty four (24) hours for proprietary and central station systems, sixty (60) hours for municipal or remote supervisory systems, with no primary power applied, and after that time, operate in alarm mode for fifteen (15) minutes.
 - 5. Provide battery charging circuitry for each standby battery bank.
 - 6. Total system response time shall not exceed 2.5 seconds on a system configured to maximum capacity. All system processors shall be supervised by individual watchdog circuitry furnishing automatic restart after loss of activity. Systems with single watchdog circuits for all processors shall not be acceptable. Provide digital communication capabilities for the control panel to communicate with remote annunciators, input/output drivers and displays.

- 7. Where multiple visual signals are visible from any location, circuitry shall be incorporated for the synchronization of flash rate. Maintain a minimum of 40% spare capacity in each strobe circuit. Include one (1) additional circuit per floor.
- 8. System shall be configured to provide the following types of alarm sounding and communicating devices with NFPA 72, Style Y, two-wire (formally Class B), supervised, alarm indicating appliance (signal) and/or communicating circuits, as follows:
 - a. General floor audible notification appliance circuits shall consist of two (2) circuits. Circuits shall be installed in an alternate style, so that 50% of the audible devices installed would be operationally functional should one circuit fail.
 - b. In no case shall audible or visual circuits serve more than one floor area.
- 9. System shall provide status indicators and control switches for the following functions:
 - a. HVAC supply and return fans.
 - b. Status indicators for sprinkling system water flow and valve supervisory devices.
 - c. Any additional status or control functions as indicated on the drawings, including but not limited to, door unlocking and security with bypass capabilities.
 - d. Fire and/or smoke dampers.
- 10. HVAC supply-exhaust units, fire and smoke dampers shall be provided with a "HAND OFF-ON-AUTO" switch module with LED indicators. LED indication shall be red for "OFF", green for "ON" and amber for monitoring circuit integrity.
- 11. Smoke detectors shall alarm at their programmed sensitivity settings.
- 12. Software and Firmware Control:
 - a. All software and firmware provided with a fire alarm system shall be listed for use with the fire alarm control unit.
 - b. A record of installed software and firmware version numbers shall be maintained at the location of the fire alarm control unit.
 - c. All software and firmware shall be protected from unauthorized changes through the use of "access levels."
- B. System Alarm Operation
 - 1. Activation of any addressable activation or interface device shall cause the following functions and indications:
 - a. Activate "ALARM" notification to the FACP (CD, remote annunciators) computer terminal display indicating device address, type, location, time and date. Activate red flashing device symbol on the CRT terminals.
 - b. Activate "ALARM" notification to the appropriate receiving agency and/or on site location as shown on the drawings.

FIRE ALARM 283111-8

- c. Activate emergency evacuation audible and visual notification devices.
- d. Activate fire emergency HVAC operational shutdowns and/or purge requirements.
- e. Annunciate alarm notification on remote annunciators.
- f. Record all events at the system alarm printer.
- g. Release all magnetically held doors.
- h. Unlock all magnetically locked doors.
- i. Record event to the system historical log.
- j. Activate the associated device alarm LED alarm indicator.
- k. Actuation shall also cause an additional visual and audible annunciation in the elevator cab and required annunciators to alert all building occupants, fire fighters, and other emergency personnel that the elevators are no longer safe to use.
- 2. Elevator lobby smoke detectors shall sound an alarm on the floor of activation and the floor above the floor of activation. All elevator lobbies shall have one smoke detector utilizing alarm verification.
 - a. Upon first activation of the smoke detector, an alarm condition shall be noted on the fire alarm control panel and at any remote annunciation panels, no system audible indication.
 - b. Upon the re-activation of the smoke detector, an alarm shall be sounded on the floor of activation and the floor above activation and all elevators shall be recalled to a designated floor.
- 3. Alarm activation of an elevator lobby smoke detector, elevator machine room smoke detector or any single elevator shaft smoke detector shall automatically:
 - a. Provide those automatic alarm functions as described above.
 - b. Shall cause the recall of that bank of elevators to the terminal floor and the lockout of controls. In the event of recall initiation by detector(s) in the first floor lobby, the recall shall be to the alternate floor.
 - c. Elevator recall activation shall also cause activation of all required hoist-way vents to open and mechanical ventilation fans to operate in fire emergency smoke evacuation mode.
- C. System Supervisory Functions:
 - 1. Activation of any supervisory circuit shall cause the following actions and indications:
 - a. Activate "SUPERVISORY ALARM" notification to the FACP computer terminal display indicating device address, device type, device location, time and date. Activate yellow flashing device symbol on the graphic terminal.

- b. Activate "SUPERVISORY ALARM" notification to the appropriate receiving agency and/or on site location as shown on the drawings.
- c. Annunciate alarm notification on system remote annunciators.
- d. Audible signals shall be silence able from the control panel by an acknowledge switch.
- e. Record within system history, the occurrence of the event, the time of occurrence and the device initiating the event.
- f. Record all events at the system alarm printer.
- D. System Trouble Functions
 - 1. Receipt of a system trouble alarm, shall cause the following actions and indications similar to "System Supervisory Functions" above.
 - 2. The fire alarm system wiring (except control wiring to fans, dampers) shall be electrically supervised to automatically detect and report trouble conditions to the FACP.
 - a. Any opens or grounds shall initiate a system trouble condition.
 - b. System addressable devices shall be supervised for placement and normal operation. Removal of an addressable device or the failure of its internal electronic circuitry shall initiate a system trouble condition.
 - c. The following FACP and/or remote transponder control panels shall initiate a system trouble condition when the following occurs:
 - 1) Primary 120/220 VAC power loss.
 - 2) Battery disconnect.
 - 3) Battery low voltage.
 - 4) FACP remote transponder or graphic LCD annunciator panel power loss.
 - 5) FACP primary alarm printer power loss.
 - d. Operating a central station agency alarm disconnect switch, or any manual control commands that alter the system from its normal programmed standby configuration shall initiate a trouble condition.
 - e. Trouble conditions shall automatically activate an audible signal and flash the general system trouble LED indicator at the FACP. Pressing the trouble acknowledge key on the FACP shall silence the audible signal and continuously light the LED indicator, until the trouble condition is repaired. Subsequent trouble conditions shall resound the audible signal and again flash the LED. Each trouble condition must be individually acknowledged.
 - f. Removal of or failure of internal electronic circuitry of any addressable device shall initiate a system trouble condition.

FIRE ALARM 283111-10

- 3. One-Way Voice Communication
 - a. The fire alarm tone signal and alert tone signal shall be capable of being initiated automatically from the Fire Alarm Control Panel (FACP), and transmitted to any speaker circuit, selected speaker circuits or all speaker circuits.
 - b. The fire alarm tone signal, alert tone signal and live voice announcements shall be capable of being manually transmitted from the FACP to any speaker circuit (including elevators), selected speaker circuits or all speaker circuits by manual selection of the associated speaker circuit control switches.
 - c. Manual override, for live voice announcements, via the hand-held microphone and speaker circuit control switches shall take priority over any and all alarm tone signals or alert tone signals, including all stack area bells and horns.
 - d. Alarm speaker amplification equipment shall be sized to provide two (2) watts of input power to each speaker shown on the Drawings, with the allowance of fifty percent (50%) spare capacity in the system to permit the addition of future alarm speakers.
 - e. One (1) back-up alarm speaker amplifier shall be provided for the system or at each distributed amplifier location. If any primary alarm speaker amplifier fails, its function shall be taken over by the backup amplifier.
- 4. Air Handling Systems Control/Status
 - a. Air handling systems shall be automatically controlled from the fire alarm system control relays, as previously described.
 - b. Air handling systems shall not be permitted to restart to normal operation from the simple operation of the system reset switch. A separate air handling systems restart switch shall be provided on the FACP to permit air handling systems to be restarted after the fire alarm system has been reset to normal.
 - c. In order to limit electrical demand, FACP central processing unit (CPU) software generated time intervals (time delay relays shall not be acceptable) shall control the air handling systems reset sequence so that each air handling system shall be permitted to restart at sequential, fifteen (15) second (adjustable) intervals.
- 5. System Supervision For Trouble Conditions
 - a. The fire alarm system wiring (except control wiring to fans, door holders, etc.) shall be electrically supervised to automatically detect and report trouble conditions to the FACP.
 - b. Any opens or grounds on Monitor Addressable Module alarm initiating or supervisory circuit wiring and any opens, grounds or shorts across MAPNET addressable data communications, remote annunciator panel data communications, alarm signal, alarm speaker or alarm strobe light circuit wiring shall initiate a system trouble condition.

- 6. Fire Alarm Control Panel (FACP) relays, system transponder panel relays and Control Zone Addressable Module relays shall be provided to connect to and provide fire alarm system control of associated equipment such as central station transmitter connections and door holders. Assignment of individual relays for control operation shall be accomplished during the programming of the FACP central processing unit (CPU) software. Each of the following types of remote equipment shall be provided with a control relay typically as follows or indicated on plans:
 - a. Central station agency connections: Provide five (5) contacts (manual station alarm condition, sprinkler alarm condition, smoke alarm condition, system supervisory off-normal condition and system trouble condition) for connection to the central station agency transmitter.
 - b. Magnetic door holders: Provide one (1) release control contact for magnetic door holders.
 - c. Duct smoke sensor addressable relays and addressable relays shall be provided to connect to and provide fire alarm system control of remote equipment such as air handling systems, elevator controls, etc. Each relay shall be individually addressable and provide double-pole, double-throw (DPDT) contacts fused at two Amperes (2.0 A.) @ 120 VAC or 28 VDC (Non-inductive). Assignment of individual relays for control operation shall be accomplished during the programming of the FACP central processing unit (CPU) software.
- 7. The FACP shall provide each of the following types of equipment and circuits associated with the fire alarm system with a manual control switch, as required by the functional requirements of these Specifications, which shall be typically as follows:
 - a. Central station alarm disconnect: Provide one (1) switch with one (1) green, "ACTIVATED" status LED indicator to disable the central station alarm transmission function.
 - b. Central station alarm transmit: Provide one (1) switch with one (1) green, "ACTIVATED" status LED indicator to initiate the transmission of an alarm signal to the central station agency.
 - c. Alarm speaker circuits: Provide one (1) control switch for each floor and stack area.
- E. Conductors
 - 1. Each conductor shall be identified with wire markers at terminal points. Attach permanent VISIBLE wire markers within 2 inches of the wire termination.
 - 2. All wiring shall be code compliant (Fire Alarm MC Cable or individual conductors in conduit).
 - 3. Wiring for analog loop circuits, conventional detection circuits and telephone circuits shall be per fire alarm manufacturer's wiring requirements, but shall not be smaller then #14 AWG.

- 4. Conductor size shall be increased as required so as to limit voltage drop to a maximum of 2.5%.
- 5. Plenum rated cable, if approved by the AHJ and Owner, shall be rated for 150 ° degrees Celsius with insulation of Teflon or its equivalent.
- 6. Splices are not permitted except at termination devices and then shall be made with UL listed mechanical connectors.
- 7. Crimp-on type spade lugs shall be used for terminations of stranded conductors. Spade lugs shall have upset legs and insulation sleeves sized for the conductors.
- 8. Wire nuts or other solder-less splicing devices shall not be used.
- 9. Provide a consistent color code for fire alarm system conductors. Submit for approval prior to installation of wire, a proposed color code for system conductors.
- 10. Color coding of all system wiring shall be in accordance with state and local codes.
- 11. All nominal voltage branch circuit power feeds (120 VAC) shall be identified "labeled" at both ends of the circuit to indicate its source and purpose.
- 12. Wiring within system control panels shall be arranged and routed to allow accessibility to equipment for adjustment and maintenance and to isolate nominal voltage wiring from system low voltage wiring.
- Splices in electrical conductors in vertical risers are prohibited except when the length of conductors exceeds 150 feet in vertical risers, in which case terminal cabinet shall be used.

2.4 MANUAL PULL STATIONS

- A. Description: Fabricated of metal and finished in red with molded, raised-letter operating instructions of contrasting color.
 - 1. Single-action mechanism initiates an alarm.
 - 2. Double-action mechanism requires two actions, such as a push and a pull, to initiate an alarm.
 - 3. Station Reset: Key or wrench operated; double pole, double throw; switch rated for the voltage and current at which it operates.
 - 4. Indoor Protective Shield: Factory-fabricated clear plastic enclosure, hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false alarm operation.
 - 5. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure, hinged at the top to permit lifting for access to initiate an alarm.
 - 6. Integral Addressable Module: Arranged to communicate manual-station status (normal, alarm, or trouble) to the FACP.

2.5 SMOKE DETECTORS

- A. General: Include the following features:
 - 1. Operating Voltage: 24-V dc, nominal.
 - 2. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 3. Plug-in Arrangement: Detector and associated electronic components are mounted in a module that connects in a tamper-resistant manner to a fixed base with a twist-locking plug connection. Terminals in the fixed base accept building wiring.
 - 4. Integral Visual-Indicating Light: LED type. Indicates detector has operated.
 - 5. Sensitivity: Can be tested and adjusted in-place after installation.
 - 6. Remote Controllability: Unless otherwise indicated, detectors are analog-addressable type, individually monitored at the FACP for calibration, sensitivity, and alarm condition, and individually adjustable for sensitivity from the FACP.
- B. Photoelectric Smoke Detectors: Include the following features:
 - 1. Sensor: LED or infrared light source with matching silicon-cell receiver.
 - 2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
 - 3. Integral Thermal Detector: Fixed-temperature type with 135 deg F setting.
- C. Duct Smoke Detector: Photo-Electric.
 - 1. Sampling Tube: Design and dimensions as recommended by the manufacturer for the specific duct size, air velocity, and installation conditions where applied.
 - 2. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.

2.6 OTHER DETECTORS

- A. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or rate of rise of temperature that exceeds 15 deg F per minute, unless otherwise indicated.
 - 1. Mounting: Adapter plate for outlet box mounting.
 - 2. Mounting: Plug-in base, interchangeable with smoke detector bases.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
- B. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 - 1. Mounting: Adapter plate for outlet box mounting.

FIRE ALARM 283111-14

- 2. Mounting: Plug-in base, interchangeable with smoke detector bases.
- 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

2.7 NOTIFICATION APPLIANCES

- A. Description: Equip for mounting as indicated and have screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly.
- B. Visible Alarm Devices: Xenon strobe lights listed under UL 1971 with clear or nominal white polycarbonate lens. Mount lens on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.
 - 1. Strobes shall produce a flash rate of one flash per second minimum per the listed input voltage (20 VDC 31 VDC) range.
 - 2. Rated Light Output: 75 candela.
 - 3. Rated Light Output: 110 candela.
 - 4. Strobe Leads: Factory connected to screw terminals.
- C. Voice/Tone Speakers:
 - 1. High-Range Units: Rated 2 to 15 W.
 - 2. Low-Range Units: Rated 1 to 2 W.
 - 3. Mounting: Flush; bidirectional as indicated.
 - 4. Matching Transformers: Tap range matched to the acoustical environment of the speaker location.

2.8 REMOTE DEVICE LOCATION-INDICATING LIGHTS AND IDENTIFICATION PLATES

A. Description: LED indicating light near each smoke detector that may not be readily visible, and each sprinkler water-flow switch and valve-tamper switch. Light is connected to flash when the associated device is in an alarm or trouble mode. Lamp is flush mounted in a single gang wall plate. A red, laminated, phenolic-resin identification plate at the indicating light identifies, in engraved white letters, device initiating the signal and room where the smoke detector or valve is located. For water-flow switches, the identification plate also designates protected spaces downstream from the water-flow switch.

2.9 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching door plate.
 - 1. Electromagnet: Requires no more than 3 W to develop 25-lbf holding force.

- 2. Wall-Mounted Units: Flush mounted, unless otherwise indicated.
- 3. Rating: 120-V ac.
- B. Material and Finish: Match door hardware.
- 2.10 CENTRAL FACP (EXISTING)
 - A. Alarm and Supervisory Systems: Separate and independent in the FACP. Alarm-initiating zone boards consist of plug-in cards. Construction requiring removal of field wiring for module replacement is unacceptable.
 - B. Control Modules: Include types and capacities required to perform all functions of fire alarm systems.
 - C. Voice Alarm: An emergency communication system, includes central voice alarm system components complete with preamplifiers, amplifiers, and tone generators. Features include the following:
 - 1. Two alarm channels permit simultaneous transmission of different announcements to different zones or floors automatically or by using the central control microphone. All announcements are made over dedicated, supervised communication lines.
 - 2. Status annunciator indicates the status of various voice alarm speaker zones.
 - D. Instructions: Printed or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.11 REMOTE ANNUNCIATOR

- A. Description: Duplicate annunciator functions of the FACP for alarm, supervisory, and trouble indications. Also duplicate manual switching functions of the FACP, including acknowledging, silencing, reset, and test.
 - 1. Mounting: Flush cabinet, NEMA 250, Class 1.
- B. Display Type and Functional Performance: Individual LED for each type of alarm and supervisory device, and LEDs to indicate "NORMAL POWER" and "TROUBLE."
 - 1. An alarm or supervisory signal causes the illumination of a zone light, floor light, and device light.
 - 2. System trouble causes the illumination of all lights above and also the trouble light.
 - 3. Additional LEDs indicate normal and emergency power modes for the system.
 - 4. A test switch tests LEDs mounted on the panel. Switch does not require key operation.
- C. Display Type and Functional Performance: Alphanumeric display same as the FACP. Controls with associated LEDs permit acknowledging, silencing, resetting, and testing functions for alarm, supervisory, and trouble signals identical to those in the FACP.

FIRE ALARM 283111-16

- D. Graphic Display Panel for Remote Annunciator: Wall-mounted engraved panel indicating the building floor plan with a "YOU ARE HERE" designation. Engrave zone, area, and floor designations on the face of the panel.
 - 1. Materials: Satin-finished stainless steel or brushed aluminum.
 - Floor Plan and Zone Boundary Lines: Engraved in the surface and filled with colored paint. Floor plan lines are black and 1/4 inch wide; zone boundaries are red and 1/8 inch wide.
 - 3. Engraved Legends: 1/4-inch- high minimum, in letters filled with red paint.
 - 4. Mounting: Adjacent to remote annunciator.

2.12 EMERGENCY POWER SUPPLY

- A. General: Components include valve-regulated, recombinant lead acid battery; charger; and an automatic transfer switch.
 - 1. Battery Nominal Life Expectancy: 10 years, minimum.
- B. Battery Capacity: Comply with NFPA 72.
 - 1. Magnetic door holders are not served by emergency power. Magnetic door holders are released when normal power fails.
- C. Battery Charger: Solid-state, fully automatic, variable-charging-rate type. Provide capacity for 150 percent of the connected system load while maintaining batteries at full charge. If batteries are fully discharged, the charger recharges them completely within four hours. Charger output is supervised as part of system power supply supervision.
- D. Integral Automatic Transfer Switch: Transfers the load to the battery without loss of signals or status indications when normal power fails.
- 2.13 ADDRESSABLE INTERFACE DEVICE
 - A. Description: Microelectronic monitor module listed for use in providing a multiplex system address for listed fire and sprinkler alarm-initiating devices with normally open contacts.
 - B. Integral Relay: Capable of providing a direct signal to the elevator controller to initiate elevator recall or to a circuit-breaker shunt trip for power shutdown.

2.14 GUARDS FOR PHYSICAL PROTECTION

- A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 - 1. Factory fabricated and furnished by the manufacturer of the device.
 - 2. Finish: Paint of color to match the protected device.
- 2.15 WIRE

- A. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 14 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
- B. Power-Limited Circuits: NFPA 70, Types FPL, FPLR, or FPLP, as recommended by manufacturer.

PART 3 - EXECUTION

- 3.1 EQUIPMENT INSTALLATION
 - A. Manual Pull Stations: Mount semiflush in recessed back boxes.
 - B. Water-Flow Detectors and Valve Supervisory Switches: Connect for each sprinkler valve station required to be supervised.
 - C. Ceiling-Mounted Smoke Detectors: Not less than 4 inches from a side wall to the near edge. On smooth ceilings, install not more than 30 feet apart in any direction.
 - D. Wall-Mounted Smoke Detectors: At least 4 inches, but not more than 12 inches, below the ceiling.
 - E. Smoke Detectors near Air Registers: Install no closer than 60 inches.
 - F. Duct Smoke Detectors: Comply with manufacturer's written instructions.
 - 1. Verify that each unit is listed for the complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 2. Install sampling tubes so they extend the full width of the duct in which they are installed.
 - G. Heat Detectors in Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location.
 - H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Combine audible and visible alarms at the same location into a single unit.
 - I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling.
 - J. Device Location-Indicating Lights: Locate in public space near the device they monitor.
 - K. Annunciator: Install with the top of the panel not more than 72 inches above the finished floor.
- 3.2 WIRING INSTALLATION
 - A. Wiring Method: Install wiring in metal raceway. Conceal raceway except in unfinished spaces and as indicated.

FIRE ALARM 283111-18

- B. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by the manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- C. Cable Taps: Use numbered terminal strips in junction, pull and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- D. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- E. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signal from other floors or zones.
- F. Wiring to Remote Alarm Transmitting Device (FDGP): 1-inch conduit between the FACP and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 IDENTIFICATION

- A. Identify all system components, wiring, cabling, and terminals.
- B. Identify all system components, wiring, cabling, and terminals.
- C. Install instructions frame in a location visible from the FACP.
- D. Paint power-supply disconnect switch red and label "FIRE ALARM."

3.4 GROUNDING

- A. Ground cable shields and equipment according to system manufacturer's written instructions to eliminate shock hazard and to minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding.
- C. Install grounding electrodes of type, size, location, and quantity as indicated.
- D. Ground equipment and conductor and cable shields. For audio circuits, minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Provide 5-ohm ground at main equipment location. Measure, record, and report ground resistance.
- E. Ground radio alarm transmitter system and equipment as recommended by the manufacturer.

FIRE ALARM 283111-19

3.5 FIELD QUALITY CONTROL

- A. Certificate of Compliance
 - 1. Complete and submit to the Project Engineer in accordance with NFPA 72, paragraph 1.7.2. and Maine Building Code.
 - 2. As required by the installation and phasing. The contractor shall include pre-testing and fire department testing in phases.
- B. Field Testing General
 - 1. All equipment shall be pre-tested by the contractor and witnessed by the Owner's representative prior to Portland Fire Department testing.
 - 2. As required by the installation and phasing. The contractor shall include pre-testing and fire department testing in phases.
 - 3. NFPA 72 Detectors shall not be installed until after the construction cleanup of all trades is complete and final. Exception: Where required by the authority having jurisdiction for protection during construction. Detectors that have been installed prior to final cleanup by all trades shall be cleaned or replaced in accordance with NFPA 72 latest Edition.
 - 4. Each addressable analog smoke detector shall be individually field tested prior to installing the device at it's designated location to ensure reliability after shipment and storage conditions. A dated log indicating correct address, type of device, sensitivity and initials of the technician performing test using test equipment specifically designed for that purpose shall be prepared and kept for final acceptance documentation. After testing, the detection devices and base shall be labeled with the system address, date and initials of installing technician. Labeling shall not be visible after installation is complete.
 - 5. Wiring runs shall be tested for continuity, short circuits and grounds before system is energized. Resistance, current and voltage readings shall be made as work progresses.
 - a. A systematic record shall be maintained of all readings using schedules or charts of tests and measurements. Areas shall be provided on the logging form for readings, dates and witnesses.
 - 6. The acceptance inspector shall be notified before the start of any required tests. All items found at variance with the drawings or this specification during testing or inspection by the acceptance inspector, shall be corrected.
 - 7. Test reports shall be delivered to the acceptance inspector as completed.
 - 8. All test equipment, instruments, tools, and labor required to conduct the system tests shall be made available by the installing contractor. The following equipment shall be a minimum for conducting the tests:
 - a. Ladders and scaffolds as required to access all installed equipment.
 - b. Multimeter for reading voltage, current, and resistance.

- c. Intelligent device programmer-tester.
- d. Laptop computer with programming software for any required program revisions.
- e. Two way radios, flashlights, smoke generation devices and supplies.
- f. Spare printer paper. (If required)
- g. An approved device for measuring air flow through air duct smoke detector sampling assemblies.
- h. Decibel meter.
- i. Testing documentation.
- 9. In addition to the testing specified to be performed by the installing contractor, the installation shall be subject to test by the acceptance fire and building department inspectors.
- C. Final Acceptance Testing
 - 1. An acceptance test of the fire alarm system shall be conducted by the contractor and the fire alarm equipment vendor as directed by the owner after the fire alarm equipment vendor has performed a 100% test of the system.
 - 2. A written "Acceptance Test Procedure" (ATP) for testing the fire alarm system components and installation will be prepared by the contractor, for approval by the engineer in accordance with NFPA 72 and this Specification. The contractor shall be responsible for the performance of the ATP, demonstrating the function of the system and verifying the correct operation of all system components, circuits and programming.
 - 3. A final "As-Built Function Matrix" shall be prepared by the installing contractor referencing each alarm input to every output function affected as a result of an alarm, trouble or supervisory condition on that input. In the case of outputs programmed using more complex logic functions involving "any", "or", "not", "count", "time", and "timer" statements; the complete output equation shall be referenced in the matrix.
 - 4. A complete listing of all device labels for alpha-numeric annunciator displays and logging printers shall be prepared by the installing contractor prior to the ATP.
 - 5. The acceptance inspector shall use the system record drawings in combination with the specified documents during the testing procedure to verify operation as programmed. In conducting the ATP, the acceptance inspector shall request demonstration of any or all input and output functions. The items tested shall include but not be limited to the following:
 - a. System wiring shall be tested to demonstrate correct system response and correct subsequent system operation in the event of:
 - 1) Open, shorted and grounded intelligent analog signaling circuit.
 - 2) Open, shorted and grounded network signaling circuit.

- 3) Open, shorted and grounded conventional zone circuits.
- 4) Open, shorted and grounded speaker, telephone circuits.
- 5) Intelligent device removal.
- 6) Primary power or battery disconnected.
- 7) Incorrect device at address.
- 8) Printer trouble, off line or out of paper.
- 9) Loss of data communications between system control panels.
- 10) Loss of data communications between system annunciators.
- 6. System evacuation alarm indicating appliances shall be demonstrated as follows:
 - a. All alarm notification appliances actuate as programmed.
 - b. Audibility and visibility at required levels.
 - c. System indications shall be demonstrated as follows:
 - 1) Correct message display for each alarm input at the control panel, each remote alpha-numeric LCD display and graphic display.
 - 2) Correct annunciator light for each alarm input, at each annunciator and color graphic terminal.
 - 3) Correct printer logging for all system activity.
 - d. System on-site and/or off-site reporting functions shall be demonstrated as follows:
 - 1) Correct alarm custom message display, address, device type, date and time transmitted for each alarm input.
 - 2) Correct trouble custom message display, address, device type, date and time transmitted for each alarm input.
 - 3) Trouble signals received for disconnect.
 - e. Secondary power capabilities shall be demonstrated as follows:
 - System primary power shall be disconnected for a period of time as specified herein. At the end of that period, an alarm condition shall be created and the system shall perform as specified for a period as specified.
 - 2) System primary power shall be restored for forty eight hours and system charging current shall be normal trickle charge for a fully charged battery bank.

- 3) System battery voltages and charging currents shall be checked at the fire alarm control panel using the test codes and displayed on the LCD display.
- 7. In the event of system failure to perform as specified and programmed during the ATP procedure, at the discretion of the acceptance inspector, the test shall be terminated.
 - a. The installing contractor shall retest the system, correcting all deficiencies and providing test documentation to the acceptance inspector.
 - b. In the event that software changes are required during the ATP, a utility program shall be furnished by the system manufacturer to compare the edited program with the original. This utility shall yield a printed list of the changes and all system functions, inputs and outputs effected by the changes. The items listed by this program shall be the minimum acceptable to be retested before calling for resumption of the ATP. The printed list and the printer log of the retesting shall be submitted before scheduling of the ATP. The acceptance inspector may elect to require the complete ATP to be performed again if, in his opinion, modifications to the system hardware or software warrant complete retesting.

D. Documentation

- 1. System documentation shall be furnished to the owner and shall include but not be limited to the following:
 - a. System record drawings and wiring details including one set of reproducible masters and drawings on a Compact Disk in a DXF format suitable for use in a CAD drafting program.
 - b. System operation, installation and maintenance manuals.
 - c. Written documentation for all logic modules as programmed for system operation with a matrix showing interaction of all input signals with output commands.
 - d. Documentation of system voltage, current and resistance readings taken during the installation, testing and ATP phases of the system installation.
 - e. System program "hard copy" showing system functions, controls and labeling of equipment and devices. Also provide a compact disk with system file.
 - f. All specified documentation as required under submittals of the sections of the specifications.
- E. Test Equipment
 - 1. The contractor shall furnish to the owner all test equipment as required to program the field analog devices, specifically an intelligent device programmer-tester or a calibrated smoke generator with power source.
- F. Warranty/Services
 - 1. The contractor shall submit three manufacturer's certified service companies that are in a 50 mile radius of the project. The Owner shall have the ability to utilize any of these firms

for service, maintenance, and warranty work if the present company fails to comply with the stated guarantee and warranty conditions.

- 2. The contractor shall warrant and maintain the entire system against system hardware and electrical defects including programming software defects, bi-yearly maintenance and complete system testing as per Portland Building code requirement, for the two year warranty period. This period shall begin upon satisfactory completion and certification of final acceptance testing by the "authority having jurisdiction" of the system and sign acceptance of Engineer. Contractor shall provide to owner a letter stating the owner accepted start-date and end-date of warranty period.
- 3. The fire alarm vendor shall provide pricing for the next three years after the two year warranty period, (third, fourth, and fifth year) after the expiration of the two year warranty period. The pricing shall be separated into two categories; parts and labor and bi-yearly maintenance and testing required.
- 4. Provide complete hardware and software unit pricing which shall be in effect for the two year warranty period for purchase by the Owner or Owner's representative.
- 5. The contractor responsible for the system, must also additionally provide an updated list of name(s) and phone number(s) for normal and off hours contacts necessary to respond to warranty issues. Response to warranty notification shall require a field reply within 24 hours of initial contact.
- 6. The manufacturer shall allow for three complete reprogrammings of the fire alarm system after successful completion of final acceptance test, at no expense to the Owner.
- 7. The Fire Alarm Vendor shall guarantee that a copy of the software programming of the fire alarm system is given to the client upon successful completion of acceptance testing. The Fire Alarm Vendor shall also guarantee a new copy of the software will be provided to the Owner upon incorporating any new changes into the system.
- 8. The Fire Alarm Vendor shall guarantee a copy of the most up-to-date software programming to any other maintenance company, anytime, at no charge to the Owner. This will insure that the Owner is not dependent upon the Fire Alarm Manufacturer, or limited to one maintenance company.

G. Training

- 1. The fire alarm contractor shall furnish an onsite video taped training session as follows for a minimum of four employees of the system user.
 - a. Training in the receipt, handling and acknowledgment of alarms.
 - b. Training on system operation including manual control of output functions from the FACP.
 - c. Training in the testing of the system including logging of detector sensitivity, field test of devices and response to common troubles.
 - d. The total training shall be a minimum of eight (8) hours, but shall be sufficient to cover all items specified.

3.6 CLEANING AND ADJUSTING

- A. Cleaning: Remove paint splatters and other spots, dirt, and debris. Touch up scratches and marred finish to match original finish. Clean unit internally using methods and materials recommended by manufacturer.
- 3.7 DEMONSTRATION
 - A. Engage a factory-authorized service representative to train Owner's maintenance personnel as specified below:
 - 1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, adjusting, and maintaining equipment and schedules. Provide a minimum of 8 hours' training.
 - 2. Training Aid: Use the approved final version of the operation and maintenance manual as a training aid.
 - 3. Schedule training with Owner, through Architect, with at least seven days' advance notice.

3.8 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within one year of date of Substantial Completion, provide on-site assistance in adjusting sound levels, controls, and sensitivities to suit actual occupied conditions. Provide up to three requested visits to Project site for this purpose.

END OF SECTION

SECTION 28 41 12

NURSE CALL SYSTEM

PART 1 - GENERAL

- 1.1 OVERVIEW
 - A. Furnish and install all equipment, accessories, and materials in accordance with these specifications and drawings to provide a complete and operating Nurse/Patient Communications System for: Maine Medical Center, Portland, ME.
 - B. All bids shall be based on the hospital's current standardized equipment manufacturer mentioned herein. The catalog numbers, model designations and descriptions are the standard of Maine Medical Center, as manufactured by the Rauland Borg Corporation and as distributed by Signet Electronics Systems, Inc. H.C.C. Group. Norwell, MA 1-800-444-9614, Fax (781) 871-4757
 - C. Acceptable/ specified nurse call system(s) are as follows:
 - 1. Rauland Responder System 4000

1.2 SCOPE OF WORK:

- A. Furnish and install a " networked" Nurse / Patient Communications System(s) comprised of nurse consoles, patient stations, dome lights, entertainment cords, call cords, pull cord stations, emergency push button/code 99 stations, etc., and wiring as shown on the drawings
- B. The Nurse/Patient Communications System shall be installed initially in the specified areas and then be expanded in the future to additional areas. Systems provided in the initial area shall have the capacity to expand to provide seem-less service to the entire facility.
- C. All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse/patient communications network. Individual nurse call cabinets/system controllers shall be networked via a single Cat.5e x-bus cable for enhanced flexibility/functionality.

1.3 REFERENCES

- A. Underwriter's Laboratories Standard 1069 (UL1069)
- B. Canadian Standards Association
- C. National Electrical Code

- D. U.S. Dept. of Labor / Occupational Safety and Health Administration
- E. State Hospital Code / Joint Commission of Hospitals Nurses Call Requirements

1.4 SYSTEM SUPPLIER QUALIFICATIONS

- A. The System Supplier shall be an established communications and electronics contractor that has had and currently maintains a locally run and operated business for at least five years. The System Supplier shall hold all applicable state and local licenses.
- B. The System Supplier shall be an Authorized Distributor for the product proposed with full manufacturer's warranty privileges.
- C. The System Supplier shall employ technicians who have attended and successfully completed the manufacturer's technical certification classes for the proposed system.
- D. The System Supplier shall show satisfactory evidence, upon request, that he maintains a fully equipped service organization capable of furnishing adequate inspection and service to the system on a 24-hour / 7-day basis. The System Supplier shall maintain at his facility the necessary spare parts in the proper proportion as recommended by the manufacturer to maintain and service the equipment being supplied.

1.5 SUBMITTALS / PRIOR APPROVAL

A. In the event the specifying authority deems it necessary to reject the submittals of a System Supplier, the specifying authority may ask the System Supplier to resubmit if the discrepancies are minor. Otherwise rejection of submittals means the specified product must be supplied.

1.6 PROJECT SITE VISIT

A. It is the responsibility of all prospective contractors to make an adequate inspection of the project site.

1.7 SYSTEM DEMONSTRATIONS

- A. It may be necessary to utilize demonstration equipment to test the functional operation of the System Supplier's submitted equipment. System Supplier will be notified of any demonstration dates and times. If such demonstrations are utilized, it will be the sole judgment of the owner and specifying authority to decide whether a contractor/manufacturer meets or exceeds the specification.
- B. All demonstrated equipment must be that of a standard single manufacturer and meet the same required testing and conditions that are applicable to the

manufactured equipment. Custom or modified equipment that is not of standard, current manufacture cannot be demonstrated.

C. If necessary, owner and/or specifying authority may visit manufacturer's facility to view functioning equipment or demonstrations and witness equipment manufacturing techniques and/or testing procedures.

1.8 SAMPLES

A. The owner/specifying authority reserves the right to request samples of terminal (station) equipment for the purpose of coordinating colors, aesthetics, trimplate sizing, etc. These samples would be supplied at no cost to the owner.

1.9 SCHEDULING

It is the responsibility of the System Supplier to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades

1.10 WARRANTY

- A. The System Supplier shall provide a warranty on the system which shall include all necessary labor and equipment to maintain the system(s) in full operation for a period of one year from the date of acceptance.
- B. In addition, the equipment (parts) warranty for all core system components including control / switching equipment, power supplies, patient stations, substations, and nurse consoles shall extend to a total of at least five (5) years. Warranty for ancillary devices such as pillow speakers and call cords shall extend to a total of at least two (2) years.
- C. Manufacturer shall provide, free of charge, product firmware/software upgrades throughout the warranty period for any product feature enhancements.

1.11 MAINTENANCE

A. The owner may choose to have the supplying contractor maintain the system(s). The level of service provided during the maintenance contract period would be the same as the warranty period for routine and emergency service. All labor and equipment costs would be covered under this contract. Supplying contractor must state exact billing amounts, billing periods and all costs associated with this maintenance agreement and list any items that would not be covered under the service/maintenance agreement.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. The hospital standard of equipment specified herein is that of the Rauland Borg Corporation and as distributed by Signet Electronics Systems, HCC Group, Norwell, MA 800-444-9614, Fax 781 871 4757
- B. The intent is to establish a standard of quality, function and features. It is the responsibility of the bidder to ensure that the proposed product meets or exceeds every standard set forth in these specifications.
- C. The functions and features specified are vital to the operation of this facility, therefore, inclusion in the list of acceptable manufacturers does not release the System Supplier from strict compliance with the requirements of this specification.

2.2 QUALITY ASSURANCE

A. The nurse / patient communications system shall be listed by Underwriter's Laboratories under UL Standard 1069 - 6th Edition (or latest edition). Underwriter's Laboratories shall be the only acceptable NRTL for system listing.

2.3 SYSTEM CONDUIT, BACK-BOXES AND WIRING

- A. System wiring and equipment installation shall be in accordance with good engineering practices as established by the EIA and the NEC. Wiring shall meet all state and local electrical codes.
 - 1. Contractor shall terminate all wiring with manufacturer approved connectors. The use of wire nuts is prohibited.
 - 2. System shall employ a structured cable system consisting of standard 4-pair Category 5e cable- to service all corridor lamps, and consoles.
 - 3. All wiring shall test free from all grounds and shorts.
 - 4. Wiring shall be UL listed, NEC and NFPA 70, Article 25 approved.
 - 5. Nurse / Patient Communications System wiring shall not be run in the same conduit with other systems (i.e. Class 1 AC power distribution, fire alarm, entertainment systems, lighting controls, etc.).

2.4 SYSTEM FIRMWARE / SOFTWARE MAINTENANCE

A. The System Manufacturer shall provide, free of charge, product firmware / software upgrades for a period of five years from date of installation for any product feature enhancements. Installation of system upgrade software shall be by the System Supplier and shall be per the labor warranty specified elsewhere.

- 1. System firmware / software upgrades shall be downloaded to the system by data connection. Upgrades shall be accomplished system-wide from a single point of connection.
- 2. Systems requiring local programming of individual network components / sub-systems at multiple physical locations or which do not allow for remote download of component firmware or which require the exchange of components, will not be accepted.

2.5 HEAD-END CONTROL EQUIPMENT

- A. Power Supplies Provide ample power for control equipment, consoles, patient stations, sub-stations, and corridor lamps. All system power supplies must be UL1069 listed as an integral part of the core system. Power supplies which carry only component listings or are otherwise not part of the core system UL listing are not acceptable.
- B. Battery Back-up Provide battery back-up with ample reserve power to operate the entire system for a minimum of 10 minutes without operational limitations or loss of system function.
- C. Furnish as needed in each area a nurse/patient communications network hub controller. The system as a whole shall be capable of supporting at least 25 hub controllers. Each hub controller shall provide the following:
 - 1. Support for at least 10 console clusters consisting of standard LCD consoles or annunciate panels.
 - 2. Support for at least 150 rooms.
- D. It shall be possible for network hub to act as stand alone controller should loss of network communication occur.
- E. System Audio The system shall be designed to provide audio meeting the minimum standards detailed by the National Electrical Manufacturers Association standard for nurse call system audio.
 - 1. The system shall utilize 25 Volt balanced signal distribution between head end equipment and room stations.
 - 2. Audio transmission between hub controllers shall be digital.

2.6 CALL ROUTING / PROCESSING

- A. Call Routing The system shall support the routing of patient calls to any console, pager, phone or other annunciating device anywhere in the facility or to any combination of the above regardless of the location of the calling station. Calls may be routed and processed based on location, priority or combination.
 - 1. The system shall support the ability to swing any individual room or any group of rooms by touching one labeled touch point. Room(s) and consoles may be located anywhere within hospital nurse/patient communications network.

- 2. The system shall allow a console to capture an individual nursing unit, selected units, or all units in hospital by touching single custom labeled touch point.
- B. Call Priorities The system shall support a minimum of 200 unique, userdefinable call priorities.
 - 1. Each call priority shall be reported via a user-defined mnemonic of up to 14 alphanumeric characters.
 - 2. Selectable call-in tone type, level, and corridor light behavior for each type of call priority.

2.7 SERVICE REQUIREMENTS

- A. The system shall support service requirement reminders. Staff members may, by pressing a button on the console, initiate a service requirement reminder.
 - 1. Service Requirements shall be indicated on the corridor lamp by a flashing lamp.
 - 2. Users may review the location of service requirements using an LCD Console and / or an Annunciate Panel.
 - 3. If a service requirement remains unanswered for a pre-determined period of time, an overtime call shall automatically be initiated.

2.8 STAFF FOLLOW

A. The system shall support manual or automatic Staff Follow functions. When Staff Follow is enabled, call-tones for a prescribed area will automatically be forwarded to the room station speaker where staff members are located. Staff location may be determined manually by entering the room number into the console or automatically using staff register stations. Pressing the call button on that station shall silence the tones. When a new call is placed, the tones shall automatically be restored.

2.9 ROOM MONITORING

- A. The system shall allow staff members to audibly monitor selected rooms.
 - 1. Manual Monitor Staff members may listen in to a selected room.
 - 2. Sequential Monitor Staff Members may enter a selected group of rooms for monitoring. The system will automatically switch from room to room allowing the staff member to sequentially monitor the rooms.
 - a. During monitoring, the staff member may press a button on the console to stop on the current room to listen longer and then press Resume to restart the sequencing.
 - b. The staff member may adjust the time that the system spends on each room.
 - 3. During Sequential Monitoring, the number of the room currently being monitored shall appear on the console.

2.10 ROOM PRIVACY

- A. The system shall allow staff members to place a room in Privacy Mode to prevent unauthorized or accidental audible monitoring of the room.
 - 1. Rooms may be entered into or removed from Privacy by staff members using the console.
 - 2. When a room that is in Privacy is dialed from a console or telephone, the staff member may speak into the room but they may not listen to the room.
 - a. Privacy in the room may be temporarily suspended to allow two-way communications by pressing the call-in button in the room. When the conversation is terminated, Privacy shall automatically be restored.
 - b. If a call-in is placed from the room, the call may be answered from the console as normal using two-way communications.
 - 3. The rooms in privacy may be reviewed from the LCD console.
 - a. During the review process, rooms may be removed from Privacy mode.

2.11 AUDIO PAGING

- A. The system shall support audio paging from selected consoles.
 - 1. All Page Paging announcements may be made from a console to all room stations in the system.
 - 2. Group Page Announcements may be made to all room stations within a console's coverage area.
 - 3. Staff Page Announcements may be made to rooms in which staff members are registered.
 - 4. Paging Announcements may be made to overhead speakers via a connection to the facility Public Address System.
 - 5. To facilitate a low noise patient environment, the system will support the ability to block paging from selected consoles.
 - a. Consoles equipped with dial pads may be configured to allow password protection of the paging function to only allow authorized access to audio paging.
- 2.12 CORRIDOR LAMPS / ROOM CONTROLLERS / ZONE LAMPS
 - A. Corridor Lamps (4-L.E.D. style) shall be provided as indicated on the plans and drawings. Provide Rauland CLA244.
 - 1. Corridor Lamps shall utilize LED's for high visibility, long life and low maintenance. Corridor Lamps utilizing incandescent lamps shall not be acceptable.

- a. The corridor lamp shall make use of multiple colors and programmable flash rates and patterns to indicate pending calls, service requirements and staff presence.
- 2. Corridor Lamps shall serve as the hub for all room wiring. All field wire connections shall be accomplished using modular connectors.
- 3. Any Corridor Lamp shall be able to function as a Zone Lamp that shall visually annunciate calls from assigned rooms / stations without the use of a Zone Lamp controller such as a duty station.
- 4. The Corridor Lamp shall be equipped with a heart-beat LED (visible to service personnel) to indicate that the unit is functioning properly.
- 5. The Corridor Lamp shall accommodate a paper label to indicate the room number. The manufacturer shall provide, at no cost, laser-printing template software to create custom room labels.

2.13 ROOM STATIONS

- A. Room Stations (single w/ staff assist) shall be provided as indicated on the plans and drawings. Provide Rauland Model R4K14SA.
 - 1. Room Stations shall be equipped with:
 - a. DIN style receptacle(s) for call cord or pillow speaker.
 - b. Stations in areas requiring two-way communication shall be equipped with a speaker microphone with level matching transformer.
 1) Minimum speaker size shall be 3.0" / 7.6 cm
 - c. Reset Button to cancel pending calls. Reset button shall be able to cancel calls from other stations in the room if desired.
 - d. Green LED to indicate that audio to the station is active.
 - e. Red LED(s) to indicate call placement from one or both of the call points.
 - f. Built In Red Staff Emergency Button
 - 2. Room Station functions shall include:
 - a. Calls from dual stations shall be annunciated independently.
 - b. Removing a call cord shall place a Cord Out call.
 - Cord Out calls may be cancelled locally using the Cancel Button. No Dummy Plugs shall be required.
 - c. Room Stations shall support an optional module for interface to feature beds (Stryker, Hill-Rom) side rail control including bed exit alarming and entertainment muting.
 - 3. Room Stations shall employ modular connectors. It shall be possible to service Room Stations without removing power from the system.
 - 4. Room Stations shall support inputs from local equipment alarm contacts (e.g. ventilator, IV drip, fire detector, etc.) to notify console of local alarm

condition in patient room. There shall be at least four auxiliary call in identifications available.

2.14 SYSTEM DIAGNOSTICS

- A. The system shall provide continuous self-diagnostics. The system shall also support advanced computer diagnostics by local or remote technical personnel.
 - 1. All components in the system shall be continuously supervised for both power and signal to ensure proper operation and in the case of system faults to aid in troubleshooting.
 - 2. The system shall the ability to diagnose all network active components, controllers, control stations, and sub-station operation from any designated network data interface location, on or off site. Network administrator shall be able to:
 - a. Review system faults reported (i.e. station failure)
 - 3. The system shall provide the ability to automatically notify maintenance personnel via pocket page in the event of a system trouble or failure.

PART 3 - EXECUTION

3.1 SUPERVISION

A. System shall be installed, maintained and serviced by or under the supervision of manufacturer certified technicians

3.2 IN-SERVICE TRAINING

A. The System Supplier shall provide thorough training of all nursing staff assigned to those nursing units receiving new nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.

3.3 ELECTRICAL POWER CONNECTIONS

A. It shall be the responsibility of the facility to provide a <u>dedicated</u> 120 VAC, 60 HZ conduit feed into the equipment cabinet. This power feed shall not have any other devices connected directly to it. A 20 AMP circuit breaker located in the electrical sub-panel labeled "nurse call" will control this circuit. This electrical

circuit will be connected to the facility's emergency power system for automatic power switch over during loss of utility power.

B. Connect all network system power supplies and equipment cabinets to a common earth ground utilizing a 14 AWG, or larger, solid conductor which is at minimum the same conductor size as the AC feed wires.

3.4 PROTECTION OF NETWORK DEVICES

A. Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved ESD wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.5 DRAWINGS

A. Provide as built drawings of all installed network components and associated wiring on building back-round plans on AUTOCAD cd rom or printed color media. Final payment for work will not be authorized unless these drawings are supplied.

END OF SECTION

SECTION 284113

PUBLIC ADDRESS SYSTEMS

PART 1 - GENERAL

1.1 GENERAL

- A. The electrical subcontractor shall furnish and install a complete local & main public address system(s) with all necessary apparatus and equipment required to insure on completion a system of broadcast quality in excellent working order as specified herein.
- B. It is the responsibility of the electrical subcontractor to supply a working over-all system. The system and equipment shall be as designed and distributed by: Signet Electronic Systems Inc, HCC Group, Norwell, Mass (781) 871-5888, Fax (781) 871-4757
- C. Any additional equipment needed in order to meet the requirements stated herein, even if not mentioned specifically herein or on the drawings, shall be supplied by the electrical subcontractor without claim for additional payment.
- D. The electrical subcontractor shall note that the requirement of the specified equipment manufacturer establishes intent for standardization on the part of the owner. Also this system involves in its scope balancing and interfacing with the hospital's existing public address loudspeakers.
- E. All materials and equipment shall be new and shall conform to applicable provisions of the American National Standards Institute.
- F. Certain items of equipment are specified by manufacturer's type numbers, to indicate the quality of and functional performance required of the system and its components.
- G. The successful bidder shall submit to the architect written proof that an authorized factory franchised dealer shall furnish the products specified and supervise their installation. This shall be in the form of a letter from the manufacturers concerned stating that the dealer is a fully accredited outlet for their products and is authorized to administer their warranty policies. Letter shall accompany submittals.
- H. Shop drawings shall contain block diagrams indicating the proposed connections of all equipment to be furnished, drawings of loudspeaker mounting arrangements, control facilities, equipment racks and cuts on all equipment to be furnished. These drawings must be approved by the architect before the installation.
- I. Supply all racks, furniture, conduit, and wire, required for the installation and needed to provide a completed usable sound system to the extent that such items are not specifically included elsewhere in the building specifications.
- J. Take such precautions as are necessary to prevent and guard against electro-magnetic and electro-static hum; to supply adequate ventilation; to install the equipment so as to provide reasonable safety for the operator.

- K. The system shall be capable of and include all components as required to provide paging from either microphone or telephone system interface.
- L. It shall be the responsibility of the electrical subcontractor to cooperate with other trades in order to achieve well coordinated progress and satisfactory final results. They shall watch for conflicts with work of other subcontractors on the job and execute, without claim for extra payment, moderate moves or changes as are necessary to accommodate other equipment or preserve symmetry and pleasing appearance.

PART 2 - EQUIPMENT

- 2.1 Description
 - A. Provide all electronic material and labor for a complete Local public address system with Rauland Responder 4000 Nurses Call integration, electronic access from the hospital telephone system. Local paging access shall be through nurses call master station, and hospital telephone system.
 - B. The local departmental power amplifier type shall be TOA A706; Provide (1) per floor which is fitted with loud-speakers, non medical common areas on floors shall be powered by a separate amplifier.
 - C. Ceiling speakers shall be Rauland ACC1403 w/integral volume control, white round grille.
 - D. Furnish with Rauland ACC1101 Back Box, and ACC1109 Tile Supports.

END OF SECTION

SECTION 28 41 14

GPS WIRELESS CLOCK SYSTEMS/ELAPSED TIMER

PART 1 - GENERAL

1.1 GENERAL

- A. Furnish and install a complete new GPS wireless clock system using Primex Wireless Inc. GPS wireless system. All bids shall be based on the hospital selected equipment as specified herein, and as distributed by Signet Electronic Systems, Inc. HCC Group, Norwell, MA (781) 871-5888, fax: (781) 871 4757
- 1.2 Section Includes
 - A. Transmission Systems GPS Receiver Primary Transmitter
 - B. Satellite Transmitter
 - C. Clocks
 - D. Analog
 - E. Digital Elapsed Timers-Rauland
 - F. Nurse Call Integration
- 1.3 Related Sections
 - A. Division 26 Electrical (120 volt grounded outlet required for transmitter).
- 1.4 References
 - A. This Technical Specification and Associated Drawings
 - B. Primex Wireless GPS Satellite Time System User Manual.
- 1.5 Definitions
 - A. GPS: Global Positioning System, a worldwide system that employs 24 satellites in an integrated network to determine geographic location anywhere in the world, and which employs and transmits Universal Coordinated Time, the world's most accurate and reliable time.
 - B. UTC: Universal Coordinated Time

1.6 System Description

- A. GPS wireless clock system shall continually synchronize clocks throughout the facility, and shall be capable of clock readouts in multiple time zones where desired.
- B. The system shall provide wireless time using GPS and be synchronized to UTC. The system shall not require hard wiring. Clocks shall automatically adjust for Daylight Saving Time
- C. Analog Clocks shall be synchronized to within 10 milliseconds 6 times per day, and the system shall have an internal oscillator that maintains plus or minus one second per day between synchronizations, so that clock accuracy shall not exceed plus or minus 0.2 seconds.
- D. The system shall include an internal clock reference so that failure of the GPS signal shall not cause the clocks to fail in indicating time.
- E. The system shall incorporate a "fail-safe" design so that failure of any component shall not cause failure of the system. Upon restoration of power or repair of failed component, the system shall resume normal
- F. Operation without the need to reset the system or any component thereof.
- G. Clock locations shall be as indicated, and clocks shall be fully portable, capable of being relocated at any time.
- H. The system must operate in accordance with a "Radio Station Authorization", Form
- I. FCC 601 LM, granted by the Federal Communications Commission (FCC). This license will be issued to and held by the end user.
- 1.7 Regulatory Requirements
 - A. Equipment and components furnished shall be of manufacturer's latest model.
 - B. The end user will hold a license, known as a "Radio Station Authorization" granted by the FCC.
 - C. This license grants the end user protected use for wireless transmission at the designated frequency.
 - D. This license will designate a unique "call sign" for each end user.
 - E. Transmitter and receiver shall comply with Part 90 of FCC rules as follows:
 - F. This device may not cause harmful interference, and
 - G. This device must accept interference received, including interference that may cause undesired operation.
 - H. Transmitter frequency shall be governed by FCC Part 90.35.
 - I. Transmitter output power shall be governed by FCC Part 90 257 (b)

J. System shall be installed in compliance with local and state authorities having jurisdiction.

1.8 Submittals

- A. Product Data: Submit complete catalog data for each component, describing physical characteristics and method of installation. Submit brochure showing available colors and finishes of clocks.
- B. Operating License: Submit evidence of application for FCC Radio Station Authorization prior to installing equipment. Furnish the license or a copy of the application for the license, to the Owner/End User prior to operating the equipment. The original license must be delivered to the Owner/End User.
- C. Samples: Submit one clock for approval. Approved sample shall be tagged and shall be installed in the work at location directed.
- D. Manufacturer's Instructions: Submit complete installation, set-up and maintenance instructions.
- E. Floor plans indicating the location of system transmitter(s), approved by manufacturer, will be submitted to owner prior to installation.

1.9 Substitutions

- A. Proposed substitutions, to be considered, shall be manufactured of equivalent materials that meet or exceed specified requirements of this Section.
- B. Proposed substitutions shall be identified not less than 10 days prior to bid date.
- C. Other systems requiring wiring and/or conduit between master and clocks will not be accepted.
- D. Other systems using wireless technology in an unlicensed frequency range will not be accepted.
- E. Other systems using wireless technology where the license is held by any party other than the end user will not be accepted.

1.10 Quality Assurance

- A. Permits: Obtain operating license for the transmitter from the FCC.
 - 1. Qualifications:
 - 2. Manufacturer: Company specializing in manufacturing commercial time system products with a minimum of 30 continuous years of documented experience including
 - 3. 4 years experience producing GPS wireless time systems.
 - 4. Installer: Company with documented experience in the installation of commercial time systems.
 - 5. Prior to installation, a site survey must be performed to determine proper transmitter placement.

- 1.11 Delivery Storage and Handling
 - A. Deliver all components to the site in the manufacturer's original packaging. Packaging shall contain manufacturer's name and address, product identification number, and other related information.
 - B. Store equipment in finished building, unopened containers until ready for installation.
- 1.12 Project Site Conditions
 - A. Clocks shall not be installed until painting and other finish work in each room is complete.
 - B. Coordinate installation of GPS receiver for access to the roof or exterior side wall so that the bracket and related fasteners are watertight.
- 1.13 System Startup
 - A. At completion of installation and prior to final acceptance, turn on the equipment; ensure that all equipment is operating properly, and that all clocks are functioning.
- 1.14 Warranty
 - A. Manufacturer will provide a 1 year warranty on GPS receiver, transmitter, and satellite transmitter. Manufacturer will offer an optional 4 year extended warranty Primex Wireless Part Number14998. All other components will have a 1 year warranty.

PART 2 - PRODUCTS

- 2.1 Manufacturer
 - A. GPS wireless clock system shall be manufactured by Primex Wireless, Inc., N3211 County Road H, Lake Geneva WI 53147 and as distributed by Signet Electronic Systems, Inc. Norwell, MA
- 2.2 Sequence of Operation
 - A. Transmitter Operation: When power is first applied to the transmitter, it checks for and displays the software version. It then checks the position of the switches and stores their position in memory. The transmitter looks for the GPS time signal. Once the transmitter has received the GPS time, it sets its internal clock to that time. The transmitter then starts to transmit its internal time once every second. The transmitter updates its internal clock every time it receives valid time data from the GPS.
 - B. Analog Clock Operation:
 - 1. Apply power or insert batteries. Follow set up procedures detailed in manufacturer's

instructions.

- 2. After initial setup, the clock will shut off the receiver. Six times each day, the microprocessor will activate the receiver and starting with the stored channel, it will again look for a valid time signal. If necessary, the clocks will resynchronize to the correct time.
- 3. If the clock has not decoded a valid time signal for a pre-determined number of days, it will go to a step mode. Non signal reception can be caused by low battery voltage. If this occurs, replace the batteries.
- 2.3 Equipment
 - A. General: The clock system shall include a transmitter, a roof or window mounted GPS receiver, indicating clocks, and all accessories for complete operation.
 - B. GPS Receiver: GPS roof mounted, with 10 foot cable (3m) attached (additional Primex Wireless extension cable available: 50ft (15.25m), 100 ft (30.5m), and 200 ft (61m).
 - C. The GPS Receiver shall be a complete GPS receiver including antenna in a waterproof case, designed for roof or outdoor mounting. Provide mounting bracket for attachment to roof structure.
 - D. The GPS Receiver cable must be plenum rated where required by local code.
 - E. Transmitter: Primex Wireless Model 14400, consisting of wireless transmitter with GPS receiver, a surge suppressor/battery backup, and a mounting shelf. Unit shall obtain current atomic time from satellite. The clock system shall transmit time continuously to all clocks in the system.
 - F. Transmission:
 - 1. Frequency Range: 72.100 to 72.400 MHz.
 - 2. Transmission Power: 1 watt (30dBm) maximum
 - 3. Radio technology: narrowband FM
 - 4. Number of channels: 16
 - 5. Channel bandwidth: 20 kHz maximum
 - 6. Transition mode: one-way communication
 - 7. Data rate: 2 KBps
 - 8. Operating range: 32 degree F to 158 degrees F (0 degrees C. to 70 degrees C).
 - G. Transmitter:
 - 1. Transmitter output power: +26 to +30 dBm
 - 2. Frequency deviation: +/- 4 kHz

- 3. Transmitter power requirements: 120 VAC 60 Hz
- 4. Internal power requirements: 5 VDC
- 5. Carrier frequency stability: +/- 20 ppm
- H. Transmitter shall have 16 selectable channels to assure interference-free reception.
- I. Transmitter shall have the following switches:
 - 1. Time zone adjustment switches for all time zones in the world. Includes: Eastern, Central, Mountain, Pacific, Alaska, and Hawaii.
- J. Daylight Saving Time bypass switch.
- K. 12-hour or 24-hour display.
- L. Transmitter housing shall be black metal case, 16-3/4 inches (424.4mm) by 12 inches (304.8mm) by 1-7/8 inches (46.4mm) in size.
- M. Antenna shall be 46 inches (1168mm) high, commercial type, mounted on top center of transmitter housing. Antenna gain shall be < 2.2 dB. Antenna polarization shall be vertical.
- N. Transmitter housing shall incorporate a display which shall include the following:
 - 1. Time readout
 - 2. AM and PM indicator if 12-hour time display is set
 - 3. Day and date readout
 - 4. Indicator for daylight savings or standard time
 - 5. LED which shall flash red in event of reception problem
 - 6. GPS reception indicator
- O. Transmitter shall contain an internal clock such that failure of reception from the GPS will not disable the operation of the clocks.
- P. Power supply (included)

Input: 120 volt AC 50/60 Hz, 0.4 amps. Output: 9 volt DC, 1.5 amps.

Q. Surge Protector/Battery Backup (included).

Input: 120 volt AC 60 Hz +/- 1 Hz. Output: 120 volt AC, 500VA, 300 watts Surge Energy Rating: 365 joules

- R. Satellite Transmitters Primex Wireless Model 14401: Satellite Transmitters shall receive the signal from the Wireless Receiver Switches and transmit the signal to the devices in its vicinity, which are out of the range from the Master Transmitter. The unit shall include the following:
 - 1. Antenna mounted on top of the housing, 46 inches (1168mm) long.
 - 2. Traditional analog clocks (7 year lithium battery): Analog clocks shall be wall mounted. Clocks shall have polycarbonate frame and polycarbonate lens. Face shall be white. Hour and minute hands shall be black-24 hr dial format.
 - 3. This project shall utilize Primex Platinum Series 13.75" round hospital grade,7 year lithium sealed battery analog clock model #14512, with 24hr markings.
 - 4. Additional colors, finishes, and dial faces are available from manufacturer.
 - 5. Analog clocks shall be battery-operated, fitted with a 7 year Sealed Package Primex Lithium Battery. Standard alkaline batteries are subject to leakage, and shall not be acceptable.
 - 6. Analog clocks shall be capable of automatically adjusting for Daylight Saving Time. An on-off switch located on the transmitter shall disable this function If desired.
 - 7. Time shall be automatically updated from the transmitter 6 times per day.
 - 8. Analog clocks shall remember the time during changing of batteries.
 - 9. 9 inch (228.6mm) and 12.5 inch (317.5mm) analog clocks shall have a tamper proof/theft resistant clock lock mounting slots.
- S. Analog clock receivers shall be as follows:

Receiver sensitivity: >-110 dBm

Receiver power: two batteries

Antenna type: internal

Antenna gain: -7 dBd

- T. If the transmitter stops transmitting valid time signals due to power failure, the clocks will continue to function as accurate quartz clocks until a valid time signal is decoded. If signal transmission is not restored after 96 hours, the second hand will "five step" as a visual indicator that the signal has been lost. Should the clocks lose power and signal, the clocks will not function.
- U. Elapsed Timers shall be Rauland Borg #2521 Digital, with matching #2423 Elapsed Timer Controller. It shall integrate with the adjacent Rauland #R4KCB12 code 99 nurses call device in a procedure room as shown on plans.
- V. Low Voltage Timer Power Supply shall be Rauland #2515.

PART 3 - EXECUTION

3.1 Examination

- A. Verify that construction is complete in spaces to receive equipment and that rooms are clean and dry.
- B. Verify that 120 volt electrical outlet is located within 6 feet (1.83m) of location of transmitter and the outlet is operational and properly grounded.

3.2 Installation

- A. Provide all equipment necessary for a complete and operable system.
- B. GPS Unit: Install on roof in location indicated, in clear view of the sky. Install unit in location free from standing water, and above accumulations of leaves or debris. Seal cable connection to GPS with cable connection sealant. Any added cable lengths must be protected from outside elements.
- C. Transmitter:
 - 1. Locate transmitter where indicated, a minimum of 2 to 3 feet (.6 to 1 meter) above the floor, away from large metal objects such as filing cabinets, lockers or metal framed walls. Transmitter(s) will be placed at locations indicated below:
 - a. Attach receiver to transmitter using cable.
 - b. Connect antenna to transmitter, using care not to strip threads.
 - c. Connect power supply to the transmitter.
 - d. Set the channel number on the display to correspond to the FCC license.
 - e. Plug power supply into electrical outlet.
 - f. Analog clocks perform the following operations with each clock:
 - g. Set clock to correct time in accordance with manufacturer's instructions.
 - h. Observe analog clock until valid signals are received and analog clock adjusts itself to correct time.
 - i. Install the analog clock on the wall in the indicated location, plumb, level and tight against the wall. If using 12-1/2 inch (317.5mm) clock, attach using clock-lock hanging method and suitable fasteners as approved by clock manufacturer.
 - j. Analog clocks (AC): Perform the following operations with each clock:

- k. Observe clock until valid time signals are received and analog clock adjusts itself to correct time.
- I. Install the analog clock on the wall in the indicated location, plumb, level, and tight against the wall. Attach using clock-lock hanging method and suitable fasteners as approved by clock manufacturer.
- 3.3 Adjusting
 - A. Prior to final acceptance, inspect each clock, adjust as required, and replace parts which are found defective.
- 3.4 Cleaning
 - A. Prior to final acceptance, clean exposed surfaces of clocks, using cleaning methods recommended by clock manufacturer. Remove temporary labels from clock faces. Do not remove labels from backs of clocks.
- 3.5 Demonstration
 - A. Provide training to Owner's representative on setting and adjusting clocks, replacing batteries and routine maintenance.
- 3.6 Protection
 - A. Protect finished installation until final acceptance of the project.
- 3.7 Testing
 - A. All devices must be tested at their operational location under normal operational conditions to assure reception of signal. The system shall be sold, tested, warranted and implemented by a factory authorized Primx/Rauland Borg outlet.

END OF SECTION