STRUCTURAL ANALYSIS REPORT

For

ME 5045 (LTE 3C)
 PORTLAND USM

246 Deering Avenue
Portland, ME 03082

Antennas Mounted on Pipe Masts; Equipment on the Roof

Prepared for:
EMPiRE telecom
Dated: January 15, 2015

Prepared by:
Hudson
Design Groupuc

at\&t

1600 Osgood Street Building 20 North, Suite 3090
North Andover, MA 01845
Phone: (978) 557-5553

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT\&T to conduct a structural evaluation of the structure that will support the existing AT\&T equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations' pertaining to the support of AT\&T's proposed equipment.

An on-site visual survey of the above areas was performed by ProVertic on December 9, 2014. Attendees included Nick Bestor (ProVertic Field Technician).

CONCLUSION SUMMARY:

As-built plans prepared by Donald L. Dimick were available for our use. A limited visual survey of the structure was completed in or near the areas of the Proposed Work.

Based on our evaluation, we have determined that the existing structure IS CAPABLE of supporting the proposed equipment loading.

APPURTENACE/EQUIPMENT CONFIGURATION:

(6) CCI OPA-65R-LCUU-H8 Antennas (92.7 "x14.4"x7"-Wt. = 95 lbs . /each) (Two per sector)
(3) HPA-65R-BUU-H8 Antennas (92.4 "x14.8"x7.4" - Wt. $=68 \mathrm{lbs}$. each)(One per sector)
(3) A2 Module (16.4 " $\times 15.2$ " $\times 3.4$ " - Wt. $=22$ lbs. /each) (One per sector)
(3) RRH (RRUS-12) (20.4"x18.5"x7.5" - Wt. = 58 lbs. /each) (One per sector)
(3) RRH (RRUS-E2) (20" $\times 20.4$ " $\times 9.5$ " - Wt. $=58 \mathrm{lbs}$. /each) (One per sector)
(3) RRH (RRUS-32) (26.7" $\times 12.1$ " $\times 6.7^{\prime \prime}-\mathrm{Wt}$. $=60 \mathrm{lbs}$. /each) (One per sector)
(1) PURCELL FLX16WS CABINET (Wt. = 220 lbs.)
(1) Surge Suppressor (Wt. = 43.5 Ibs.)
(1) PBC-02 MU (Wt. = 120 lbs.)
(3) Katherin 742-264 Antennas (51.8"x10.3"x5.5" $-W t .=45 \mathrm{lbs} . /$ each) (One per sector)
(6) RRH (RRUS-11) (19.69"x16.97"x7.17" - Wt. = 50.7 Ibs. /each) (Two per sector)

DESIGN CRITERIA:

1. International Building Code (IBC) 2009, and ASCE 7-05 (Minimum Design Loads for Buildings and Other Structures).

Wind Analysis:

Reference Wind Speed: 100 mph
Category:

C
(FIG 6-1C; ASCE 7-05)
(Section 6.5.6.3; ASCE 7-05)

Roof:

Ground Snow, Pg: $\quad 60$ psf
Importance Factor, I: Exposure Factor, Ce: Thermal Factor, Ct:
Flat Roof Snow Load:
1.0
1.0
1.0

42 psf
(FIG 7-1; ASCE 7-05)
(Category II)
(Exp. B- Partially Exposed)
(Typical Structure)
($\mathrm{P}_{\mathrm{f}}=0.7^{*} \mathrm{Ce}^{*} \mathrm{Ct}^{*}{ }^{*}{ }^{*} \mathrm{P}_{\mathrm{g}}$)
2. EIA/TIA -222- G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town:	Portland
County:	Cumberland
Wind Load:	100 mph
Nominal Ice Thickness:	1 inch

3. Approximate height above grade to the center of the Antennas:
$92^{\prime}-5 "+/-($ Alpha)
$88^{\prime}-3^{\prime \prime}+/-($ Beta \& Gamma)

ANTENNA SUPPORT RECOMMENDATIONS:

- The new Alpha sector antennas are proposed to be mounted on new pipe masts secured to the existing building façade with epoxy anchors.
- The new Beta and Gamma sector antennas are proposed to be mounted on existing pipe masts secured to the antenna support angles.

RRH SUPPORT RECOMMENDATIONS:

The new RRH's are proposed to be mounted on new unistruts and fastened to the existing building façade with epoxy anchors.

EQUIPMENT SUPPORT RECOMMENDATIONS:

The new Purcell cabinet, surge suppressor, and PBC-02 are proposed to installed on a new H-frame secured to a new curb platform anchored to the roof. The new curb platform is proposed to be installed near a building column as shown in the latest HDG construction drawings.

Limitations and assumptions:

1. Reference the latest HDG construction drawings for all the equipment locations details.
2. Mount all equipment per manufacturer's specifications.
3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
5. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
6. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing antenna support angles.

Photo 2: Sample photo illustrating the existing façade-mounted antennas.

Photo 3: Sample photo illustrating the existing RRHs.

Photo 4: Sample photo illustrating the existing antennas.

Photo 5: Sample photo illustrating the existing equipment.

Alpha Sector Antenna Calculations

Project Name: Portland USM
Project Number: ME5045
Designed By: SAG Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$		$\mathrm{z}=$ $92.5(\mathrm{ft})$ z_{g} $=$ $\mathrm{K}_{\mathrm{z}}=$ 1.245	$900(\mathrm{ft})$	Proposed Antennas
	$\alpha=$	9.5		

$K z m i n \leq K z \leq 2.01$

Table 2-4

Exposure	$\mathbf{Z}_{\mathbf{g}}$	$\boldsymbol{\alpha}$	$\mathbf{K}_{\text {zmin }}$	$\mathbf{K}_{\mathbf{e}}$
B	1200 ft	7	0.70	0.90
C	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	$\mathbf{K}_{\mathbf{t}}$	\mathbf{f}
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$K_{\mathrm{zt}}=\left[1+\left(\mathrm{K}_{\mathrm{e}} \mathrm{K}_{\mathrm{t}} / \mathrm{K}_{\mathrm{h}}\right)\right]^{2}$

$$
K_{\mathrm{zt}}=\text { \#DIV/0I }
$$

(If Cateqory 1 then $K_{z t}=1.0$)

$K_{h}=e^{\left(f^{*} z / H\right)}$

$\mathrm{K}_{\mathrm{h}}=$	\#DIV/0!
$\mathrm{K}_{\mathrm{e}}=$	0 (from Table 2-4)
$\mathrm{K}_{\mathrm{t}}=$	0 (from Table 2-5)
$\mathrm{f}=$	0 (from Table 2-5)
$\mathrm{z}=$	92.5
$\mathrm{H}=$	0 (Ht. above surrounding terrain)
$\mathrm{K}_{\mathrm{zt}}=$	1.00

Project Name: Portland USM
Project Number: ME5045
Designed By: SAG Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

$\mathrm{Gh}=1.0$ Latticed Structures $>600 \mathrm{ft}$

Gh $=0.85$ Latticed Structures 450 ft or less
$\mathrm{Gh}=0.85+0.15[\mathrm{~h} / 150-3.0]$
$h=$ 92.5
2.6.7.2 Guyed Masts
2.6.7.3 Pole Structures
$h=h t$. of structure
$\mathrm{Gh}=0.4925$
$\mathrm{Gh}=\quad 0.85$

Gh= 1.1
2.6.7.4 Structures Supported on Other Structures
(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh=

1.35

Gh=
1.35

Project Number: ME5045

Designed By: SAG Checked By: MSC

2.6.8 Design Ice Thickness:

$\mathrm{t}_{\mathrm{iz}}=2.0 * \mathrm{t}_{\mathrm{i}}{ }^{*} \mathrm{I}^{*} \mathrm{~K}_{\mathrm{iz}}{ }^{*}\left(\mathrm{~K}_{\mathrm{zt}}\right)^{0.35}$	$\mathrm{t}_{\mathrm{i}}=$	1	
	$\mathrm{l}=$	1	
$\mathrm{t}_{\mathrm{iz}}=$	$\mathbf{2 . 2 2}$	$\mathrm{K}_{\mathrm{iz}}=$	1.11
	$\mathrm{~K}_{\mathrm{zt}}=$	1	

$\mathrm{K}_{\mathrm{iz}}=[\mathrm{z} / 33]^{0.10} \leq 1.4$

$$
\mathrm{K}_{\mathrm{lz}}=\quad 1.11
$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:
$A_{i 2}=\pi * t_{i 2} *\left(D_{c}+t_{i 2}\right)$
Dc=
92.7 (in) Largest Dim of Member

$$
A_{i z}=661.13
$$

2.6.9 Design Wind Load:

$$
\begin{array}{lrr}
\text { F= qz*Gh*(EPA's) } \\
\\
\mathrm{q}_{\mathrm{z}}=0.00256 * \mathrm{~K}_{\mathrm{z}}{ }^{*} \mathrm{~K}_{\mathrm{zt}}{ }^{*} \mathrm{~K}_{\mathrm{d}}{ }^{*} \mathrm{~V}_{\text {max }}{ }^{2} & \\
& \mathrm{~K}_{\mathrm{z}}= & 1.245 \\
\mathbf{q}_{\mathrm{z}}=\quad \mathrm{K}_{\mathrm{zt}}= & 1 \\
\mathbf{3 0 . 2 8} & \mathrm{~K}_{\mathrm{d}}= & 0.95 \\
& \mathrm{~V}_{\text {max }}= & 100
\end{array}
$$

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances.	0.95

Project Name: Portland USM
Project Number: ME5045
Designed By: SAG Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

C mph.ft	Round	18 Sided	16 Sided	12 Sided	$\mathbf{8}$ Sided
<32 (Subcritical)	1.2	1.2	1.2	1.2	1.2
32 to 64 (Transitional)	$38.4 / \mathrm{C}^{1.0}$	$25.8 / \mathrm{C}^{0.885}$	$12.6 / \mathrm{C}^{0.678}$	$2.99 / \mathrm{C}^{0.263}$	1.2
>64 (Supercritical)	0.6	0.65	0.75	1	1.2

$\mathrm{C}=\left(1{ }^{*} \mathrm{~K}_{\mathrm{zt}}{ }^{*} \mathrm{~K}_{\mathrm{z}}\right)^{0.5} * \mathrm{~V} * \mathrm{D}$

Dp = Outside Diameter or Out to Out:
$\mathrm{C}=$
22.32
$\mathrm{Cf}=1.2$

Appurtenances		Height	Width	Depth	Flat Area	Force Per Appurtenance
Item No. 1	(P) Ant	92.7	14.4	7	9.27	454.71 (lbs)
Item No. 2	(P) Ant	92.4	14.8	7.4	9.50	465.83 (lbs)

Date: 1/13/2015
Project Name:Portland USM
Project Number:ME5045
Designed By: SAG Checked By: MSC

ICE WEIGHT CALCULATIONS-Proposed Antenna

Site Name: Portland USM
Site No. ME5045
$\begin{array}{lll}\text { Done by: } & \text { SAG } & \text { Checked by: MSC } \\ \text { Date: } & 1 / 13 / 2015 & \end{array}$

Reference: Hilti Volume 2: Anchor Fastening Technical Guide

Epoxy Type =
Anchor Diameter =
Min. Embedment Depth =

HIT-HY200
3/8 in.
2-3/8 in.

Allowable Tensile Load $=$

$$
\mathrm{F}_{\text {Tall }}=\quad 2855 \mathrm{lbs} .
$$

Allowable Shear Load =

$$
F_{\text {vall }}=\quad 3075 \mathrm{lbs} . \quad F=455 \mathrm{lbs}
$$

WIND FORCES

Reaction

$$
F=\quad 455 \mathrm{lbs} .
$$

GRAVITY LOADS

Ice and Equipment
283 lbs.

No. of Supports =
2
No. of Anchors / Support = $\quad 2$
Tension Design Load / Anchor $=$

$$
\mathrm{f}_{\mathrm{t}}=\quad 113.75 \mathrm{lbs} . \quad<\quad 2855 \mathrm{lbs} \text {. Therefore, OK }!
$$

Shear Design Load / Anchor=

$$
\mathrm{f}_{\mathrm{v}}=\quad 70.75 \mathrm{lbs} . \quad<\quad 3075 \mathrm{lbs} . \quad \text { Therefore, } \mathrm{OK}!
$$

CHECK COMBINED TENSION AND SHEAR

f_{t} / F_{T}	+	f_{v} / F_{V}	\leq
0.040	+	0.023	$=0.063<1.0$ Therefore, OK!

ICE WEIGHT CALCULATIONS-Proposed Antenna

Thickness of ice: 1	
* Density of ice used=56 PCF	
Weight of ice based on total radial SF area:	(P)Antenna (HPA
Depth (in): 7.4	
height (in): 92.4	
Width (in): 14.8	
Total weight of ice on object:	133 pounds ice
Weight of object: 68	nds
Combined weight of ice and object:	201 pounds
Per foot weight of ice:	Pipe
pipe weight per foot: 3.65	
pipe length (ft): 9	
diameter (in): 2.375	
Per foot weight of ice on object:	3 pounds ice /ft
Total weight of ice on object:	26 pounds
Total weight of pipe:	32.85 pounds
Combined weight of pipe and ice:	59 pounds

Site Name: Portland USM
Site No. ME5045
Done by: SAG
Checked by: MSC
Date:
1/13/2015

CHECK CONNECTION CAPACITY-Proposed Antenna

Reference: Hilti Volume 2: Anchor Fastening Technical Guide

	HIT-HY200
Epoxy Type $=$	$3 / 8 \mathrm{in}$.
Anchor Diameter $=$	$2-3 / 8 \mathrm{in}$.
Min. Embedment Depth $=$	
Allowable Tensile Load $=$	
FTall $=$	2855 lbs.

Allowable Shear Load $=$
$F_{\text {Vall }}=\quad 3075 \mathrm{lbs} . \quad F=466 \mathrm{lbs}$

WIND FORCES

Reaction
$F=$
466 lbs.

GRAVITY LOADS

Ice and Equipment
260 lbs.

No. of Supports =
2
No. of Anchors / Support =
2

Tension Design Load / Anchor =

$$
f_{t}=\quad 116.50 \text { lbs. }<2855 \mathrm{lbs} \text {. Therefore, OK ! }
$$

Shear Design Load / Anchor=

$$
\mathrm{f}_{\mathrm{v}}=\quad 65.00 \mathrm{lbs} . \quad<\quad 3075 \mathrm{lbs} . \quad \text { Therefore, OK ! }
$$

CHECK COMBINED TENSION AND SHEAR

f_{t} / F_{T}	+	f_{v} / F_{v}	≤ 1.0
0.041	+	0.021	$=0.062<1.0$ Therefore, OK !

Beta \& Gamma Sector Antenna Calculations

Project Name: Portland USM
Project Number: ME5045

2.6.5.2 Velocity Pressure Coeff:

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$		$\mathrm{z}=$	88.25 (ft)	Proposed Beta \& Gamma
		$\mathrm{z}_{\mathrm{g}}=$	900 (ft)	Sector Antenna \& RRHs
$\mathrm{K}_{\mathbf{2}}=$	1.233	$\alpha=$	9.5	

$K z \min \leq K z \leq 2.01$

Table 2-4

Exposure	\mathbf{Z}_{g}	$\boldsymbol{\alpha}$	$\mathbf{K}_{\text {zmin }}$	$\mathbf{K}_{\mathbf{e}}$
B	1200 ft	7	0.70	0.90
C	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	$\mathbf{K}_{\mathbf{t}}$			\mathbf{f}
2	0.43	1.25		
3	0.53	2		
4	0.72	1.5		

$K_{z t}=\left[1+\left(K_{e} K_{t} / K_{h}\right)\right]^{2}$

$$
K_{\mathrm{zt}}=\quad \# D I V / 0!
$$

(If Category 1 then $K_{\text {tt }}=1.0$)
\square

$$
K_{h}=e^{\left(f^{*} z / H\right)}
$$

$\mathrm{K}_{\mathrm{h}}=$	\#DIV/0!
$\mathrm{K}_{\mathrm{e}}=$	0 (from Table 2-4)
$\mathrm{K}_{\mathrm{t}}=$	0 (from Table 2-5)
$\mathrm{f}=$	0 (from Table 2-5)
$\mathrm{z}=$	88.25
$\mathrm{H}=$	0 (Ht. above surrounding terrain)
$\mathrm{K}_{\mathrm{zt}}=$	1.00

Project Name: Portland USM
Project Number: ME5045
Designed By: SAG Checked By: MSC

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

$\mathrm{Gh}=1.0$ Latticed Structures $>600 \mathrm{ft}$

Gh $=0.85$ Latticed Structures 450 ft or less

| $G h=0.85+0.15[h / 150-3.0]$ | $h=h t$. of structure |
| ---: | :--- | ---: |
| $h=\quad 88.25$ | $G h=0.48825$ |

2.6.7.2 Guyed Masts
2.6.7.3 Pole Structures

Gh= 1.1
2.6.7.4 Structures Supported on Other Structures
(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh=

1.35
$\mathrm{Gh}=\quad 1.35$

Project Number: ME5045
Designed By: SAG Checked By: MSC

2.6.8 Design Ice Thickness:

| $\mathrm{t}_{\mathrm{iz}}=2.0 * \mathrm{t}_{\mathrm{i}}{ }^{*}{ }^{*} * \mathrm{~K}_{\mathrm{iz}}{ }^{*}\left(\mathrm{~K}_{\mathrm{zt}}\right)^{0.35}$ | $\mathrm{t}_{\mathrm{i}}=$ | 1 |
| ---: | ---: | ---: | ---: |
| $\mathrm{t}_{\mathrm{iz}}=$ | $\mathrm{I}=$ | 1 |
| | $\mathrm{~K}_{\mathrm{iz}}=$ | 1.10 |
| | $\mathrm{~K}_{\mathrm{zt}}=$ | 1 |

$K_{i z}=[z / 33]^{0.10} \leq 1.4$

$$
\mathrm{K}_{\mathrm{k} 2}=\quad 1.10
$$

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:
$\mathrm{A}_{\mathrm{i} 2}=\pi^{*} \mathrm{t}_{\mathrm{i} 2}{ }^{*}\left(\mathrm{D}_{\mathrm{c}}+\mathrm{t}_{\mathrm{i} 2}\right) \quad \mathrm{DC}=\quad 92.7$ (in) Largest Dim of Member

$$
A_{i z}=657.96
$$

2.6.9 Design Wind Load:

$\mathrm{F}=\mathbf{q z} \mathbf{z}^{\mathbf{*}} \mathbf{h}^{*}$ (EPA's)			
$\mathrm{q}_{\mathrm{z}}=0.00256 * \mathrm{~K}_{\mathrm{z}} * \mathrm{~K}_{\mathrm{zt}} * \mathrm{~K}_{\mathrm{d}} * \mathrm{~V}_{\text {max }}{ }^{2}$		$\mathrm{K}_{\mathrm{z}}=$	1.233
		$\mathrm{K}_{\mathrm{zt}}=$	1
$\mathrm{q}_{2}=\quad 29.98$		$\mathrm{K}_{\mathrm{d}}=$	0.95
		$\mathrm{V}_{\text {max }}=$	100

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances.	0.95

Date:
1/13/2015
Project Name: Portland USM
Project Number: ME5045
Designed By: SAG
Checked By: MSC

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

C mph.ft	Round	18 Sided	16 Sided	12 Sided	8 Sided
<32 (Subcritical)	1.2	1.2	1.2	1.2	1.2
32 to 64 (Transitional)	$38.4 / \mathrm{C}^{1.0}$	$25.8 / \mathrm{C}^{0.885}$	$12.6 / \mathrm{C}^{0.678}$	$2.99 / \mathrm{C}^{0.263}$	1.2
>64 (Supercritical)	0.6	0.65	0.75	1	1.2

$\mathrm{C}=\left(1 \mathrm{I}_{\mathrm{zt}}{ }^{*} \mathrm{~K}_{\mathrm{z}}\right)^{0.5} * \mathrm{~V}^{*} \mathrm{D}$

Dp = Outside Diameter or Out to Out:
$C=$
22.21
0.2 feet
$C f=\quad 1.2$

Appurtenances		Height	Width	Depth	Flat Area	Force Per Appurtenance
Item No. 1	(P) Ant	92.7	14.4	7	9.27	450.23 (lbs)
Item No. 2	(P) Ant	92.4	14.8	7.4	9.50	461.24 (lbs)
Item No. 3	(E) ANT	72	11.8	7.14	5.90	286.55 (lbs)
Item No. 3	(P) RRH(11)	19.7	17	7.17	2.33	112.96 (lbs)
Item No. 4	(P) RRH(12)	20.4	18.5	7.5	2.62	127.29 (lbs)
Item No. 5	(P)RRH(E2)	20	20.4	9.5	2.83	137.61 (lbs)
Item No. 6	(P) RRH(32)	26.7	12.1	6.7	2.24	108.97 (lbs)
Item No. 7	(P) A2 Mod	16.4	15.2	3.4	1.73	84.08 (lbs)

ICE WEIGHT CALCULATIONS-Proposed Antenna

Site Name: Portland USM
Site No. ME5045
Done by: SAG
Checked by: MSC
Date: 1/13/2015

CHECK CONNECTION CAPACITY-Proposed Antenna

Reference: Hilti Volume 2: Anchor Fastening Technical Guide

Epoxy Type $=$	HIT-HY20 assumed
Anchor Diameter $=$	$1 / 2$ in.
Min. Embedment Depth $=$	2 in. assumed

Allowable Tensile Load $=$

$$
F_{\text {Tall }}=\quad 525 \mathrm{lbs} .
$$

Allowable Shear Load =
$\mathrm{F}_{\text {Vall }}=\quad 1230 \mathrm{lbs} . \quad \mathrm{F}=1158 \mathrm{lbs} \longrightarrow$

WIND FORCES

Reaction
$F=\quad 1158 \mathrm{lbs}$.

GRAVITY LOADS

Ice and Equipment

No. of Supports =
No. of Anchors / Support =

Tension Design Load / Anchor =
$\mathbf{f}_{\mathrm{t}}=\quad 96.50 \mathrm{lbs} .<525 \mathrm{lbs} . \quad$ Therefore, OK !

Shear Design Load / Anchor=

$$
\mathrm{f}_{\mathrm{v}}=\quad 81.75 \mathrm{lbs} . \quad<\quad 1230 \mathrm{lbs} . \quad \text { Therefore, OK ! }
$$

CHECK COMBINED TENSION AND SHEAR

f_{t} / F_{T}	+	f_{v} / F_{V}	\leq
0.184	+	0.066	$=0.250<1.0$ Therefore, OK !

