STRUCTURAL ANALYSIS REPORT

For

Antennas Mounted on Pipe Masts; Equipment on the Roof

Prepared for:

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the structure that will support the existing AT&T equipment located in the areas depicted in the latest HDG's construction drawings.

This report represents this office's findings, conclusions and recommendations' pertaining to the support of AT&T's proposed equipment.

An on-site visual survey of the above areas was performed by ProVertic on December 9, 2014. Attendees included Nick Bestor (ProVertic Field Technician).

CONCLUSION SUMMARY:

As-built plans prepared by Donald L. Dimick were available for our use. A limited visual survey of the structure was completed in or near the areas of the Proposed Work.

Based on our evaluation, we have determined that the existing structure <u>IS CAPABLE</u> of supporting the proposed equipment loading.

APPURTENACE/EQUIPMENT CONFIGURATION:

(6) CCI OPA-65R-LCUU-H8 Antennas (92.7"x14.4"x7"-Wt. = 95 lbs. /each) (Two per sector)

- (3) HPA-65R-BUU-H8 Antennas (92.4"x14.8"x7.4" Wt. = 68 lbs. each)(One per sector)
- (3) A2 Module (16.4"x15.2"x3.4" Wt. = 22 lbs. /each) (One per sector)
- (3) RRH (RRUS-12) (20.4"x18.5"x7.5" Wt. = 58 lbs. /each) (One per sector)
- (3) RRH (RRUS-E2) (20"x20.4"x9.5" Wt. = 58 lbs. /each) (One per sector)
- (3) RRH (RRUS-32) (26.7"x12.1"x6.7" Wt. = 60 lbs. /each) (One per sector)
- (1) PURCELL FLX16WS CABINET (Wt. = 220 lbs.)
- (1) Surge Suppressor (Wt. = 43.5 lbs.)
- (1) PBC-02 MU (Wt. = 120 lbs.)
- (3) Katherin 742-264 Antennas (51.8"x10.3"x5.5" Wt. = 45 lbs./each)(One per sector)
- (6) RRH (RRUS-11) (19.69"x16.97"x7.17" Wt. = 50.7 lbs. /each) (Two per sector)

Referenced documents are attached.

DESIGN CRITERIA:

1. International Building Code (IBC) 2009, and ASCE 7-05 (Minimum Design Loads for Buildings and Other Structures).

Wind Analysis:

Reference Wind Speed:	100 mph	(FIG 6-1C; ASCE 7-05)
Category:	С	(Section 6.5.6.3; ASCE 7-05)

Roof:

Ground Snow, Pg:	60 psf	(FIG 7-1; ASCE 7-05)
Importance Factor, l:	1.0	(Category II)
Exposure Factor, Ce	1.0	(Exp. B- Partially Exposed)
Thermal Factor, Ct:	1.0	(Typical Structure)
Flat Roof Snow Load:	42 psf	(P _f =0.7*Ce*Ct*I*P _g)

2. EIA/TIA -222- G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town:	Portland
County:	Cumberland
Wind Load:	100 mph
Nominal Ice Thickness:	1 inch

3. Approximate height above grade to the center of the Antennas:

92'-5"+/- (Alpha) 88'-3"+/- (Beta & Gamma)

ANTENNA SUPPORT RECOMMENDATIONS:

- The new Alpha sector antennas are proposed to be mounted on new pipe masts secured to the existing building façade with epoxy anchors.
- The new Beta and Gamma sector antennas are proposed to be mounted on existing pipe masts secured to the antenna support angles.

RRH SUPPORT RECOMMENDATIONS:

The new RRH's are proposed to be mounted on new unistruts and fastened to the existing building façade with epoxy anchors.

EQUIPMENT SUPPORT RECOMMENDATIONS:

The new Purcell cabinet, surge suppressor, and PBC-02 are proposed to installed on a new H-frame secured to a new curb platform anchored to the roof. The new curb platform is proposed to be installed near a building column as shown in the latest HDG construction drawings.

Limitations and assumptions:

- 1. Reference the latest HDG construction drawings for all the equipment locations details.
- 2. Mount all equipment per manufacturer's specifications.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
- 5. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 6. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing antenna support angles.

Photo 2: Sample photo illustrating the existing façade-mounted antennas.

Photo 3: Sample photo illustrating the existing RRHs.

Photo 4: Sample photo illustrating the existing antennas.

Photo 5: Sample photo illustrating the existing equipment.

Alpha Sector Antenna Calculations

2.6.5.2 Velocity Pressure Coeff:

$K_{z} = 2.01 (z/z_{g})^{2/\alpha}$	z=	92.5 (ft)	Proposed Antennas
	z _g =	900 (ft)	
K _z = 1.245	α=	9.5	

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

K_{zt}= #DIV/0!

(If Category 1 then K _{zt} =1.0)

Category= 1

 $K_h = e^{(f^*z/H)}$

 $\begin{array}{lll} K_h = & \# DIV/0! \\ K_e = & 0 & (from Table 2-4) \\ K_t = & 0 & (from Table 2-5) \\ f = & 0 & (from Table 2-5) \\ z = & 92.5 \\ H = & 0 & (Ht. above surrounding terrain) \\ K_{zt} = & 1.00 \end{array}$

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures		
Gh = 1.0 Latticed Structures > 600 ft		
Gh = 0.85 Latticed Structures 450 ft or les	S	
Gh = 0.85 + 0.15 [h/150 - 3.0]	h= ht. of struc	ture
h= 92.5	Gh=	0.4925
2.6.7.2 Guyed Masts	Gh=	0.85
2.6.7.3 Pole Structures	Gh=	1.1

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= 1.35

2.6.8 Design Ice Thickness:

$t_{iz} = 2.0*t_i*$	'I*K _{iz} *(I	(_{zt}) ^{0.35}	t _i =	1
			I=	1
	t _{iz} =	2.22	K _{iz} =	1.11
			K _{zt} =	1
K _{iz} = [z/33]	^{0.10} ≤ 1.	4		

K_{iz}= 1.11

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

 $A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz}) \qquad Dc = 92.7 \text{ (in) Largest Dim of Member}$ $A_{iz} = 661.13$

2.6.9 Design Wind Load:

q_z=

F= qz*Gh*(EPA's) q_z= 0.00256*K_z*K_{zt}*K_d*V_{max}²

30.28

K _z =	1.245
K _{zt} =	1
K _d =	0.95
V _{max} =	100

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided	
mph.ft						
< 32	1.2	1.2	1.2	1.2	1.2	
(Subcritical)						
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2	
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2	
(Supercritical)					
DP = Outside C =	= 22.32		0.2 Cf=	1.2		
Appurtenand	ces	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u>	Force Per Appurtenanc
ltem No.1	(P) Ant	92.7	14.4	7	9.27	454.71 (lbs)
						Carlena de la

ICE WEIGHT CALCULA	TIONS-F	Proposed Antenna	
Thickness of ice:	1		
*Density of ice used=56 PCF			
Weight of ice based on total radial SF	area:	(P)Antenna	(OPA-65R-LCUU-H8)
Depth (in):	7		
height (in):	92.7		
Width (in):	14.4		
Total weight of ice on object:		129 pounds ice	2
Weight of object:	95	pounds	
Combined weight of ice and object:		224 pounds	
		Poundo	
Per foot weight of ice:			Pipe
Per foot weight of ice: pipe weight per foot:	3.65		Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft):	3.65 9		Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in):	3.65 9 2.375		Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice on object:	3.65 9 2.375	3 pounds ice	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice on object: Total weight of ice on object:	3.65 9 2.375	3 pounds ice 26 pounds	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice on object: Total weight of ice on object: Total weight of pipe:	3.65 9 2.375	3 pounds ice 26 pounds 32.85 pounds	Pipe
Per foot weight of ice: pipe weight per foot: pipe length (ft): diameter (in): Per foot weight of ice on object: Total weight of ice on object: Total weight of pipe: Combined weight of pipe and ice:	3.65 9 2.375	3 pounds ice 26 pounds 32.85 pounds 59 pounds	Pipe • /ft

Site Name:Portland USMSite No.ME5045Done by:SAGChecked by: MSCDate:1/13/2015

CHECK CONNECTION CAPACITY-Proposed Antenna (OPA-65R-LCUU-H8) Reference: Hilti Volume 2: Anchor Fastening Technical Guide Epoxy Type = HIT-HY200 Anchor Diameter = 3/8 in. Min. Embedment Depth = 2-3/8 in. Allowable Tensile Load = F_{Tall} = 2855 lbs. Allowable Shear Load = $F_{Vall} =$ 3075 lbs. F= 455 lbs WIND FORCES Reaction F = 455 lbs. **GRAVITY LOADS** Ice and Equipment 283 lbs. No. of Supports = 2 2 No. of Anchors / Support = Tension Design Load / Anchor = f_t= 113.75 lbs. < 2855 lbs. Therefore, OK! Shear Design Load / Anchor= f_v= 70.75 lbs. < Therefore, OK ! 3075 lbs. **CHECK COMBINED TENSION AND SHEAR** ≤ f_t / F_T f_v / F_v 1.0 + = 0.040 0.023 0.063 < 1.0 Therefore, OK! +

ICE WEIGHT CALCULA	TIONS-P	roposed Antenna
Thickness of ice:	1	
*Density of ice used=56 PCF		
Weight of ice based on total radial SI	area:	(P)Antenna (HPA-65R-BUU-H8)
Depth (in):	7.4	
height (in):	92.4	
Width (in):	14.8	
Total weight of ice on object:		133 pounds ice
Weight of object:	68	pounds
Combined weight of ice and object:		201 pounds
Per foot weight of ice:		Pipe
pipe weight per foot:	3.65	
pipe length (ft):	9	
diameter (in):	2.375	
Per foot weight of ice on object:		3 pounds ice /ft
Total weight of ice on object:		26 pounds
Total weight of pipe:		32.85 pounds
Combined weight of pipe and ice:		59 pounds

Site Name:Portland USMSite No.ME5045Done by:SAGChecked by: MSCDate:1/13/2015

CHECK CONNECTION CAPACITY-Proposed Antenna (HPA-65R-BUU-H8) Reference: Hilti Volume 2: Anchor Fastening Technical Guide Epoxy Type = HIT-HY200 Anchor Diameter = 3/8 in. Min. Embedment Depth = 2-3/8 in. Allowable Tensile Load = 2855 lbs. F_{Tall} = Allowable Shear Load = $F_{Vall} =$ 3075 lbs. F= 466 lbs WIND FORCES Reaction 466 lbs. F = **GRAVITY LOADS** Ice and Equipment 260 lbs. No. of Supports = 2 No. of Anchors / Support = 2 Tension Design Load / Anchor = f_t= < 116.50 lbs. Therefore, OK ! 2855 lbs. Shear Design Load / Anchor= < f_v= 65.00 lbs. Therefore, OK ! 3075 lbs. CHECK COMBINED TENSION AND SHEAR f_t / F_T f_v/F_v ≤ 1.0 + 0.041 0.021 = 0.062 < 1.0 Therefore, OK! +

Beta & Gamma Sector Antenna Calculations

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$	z=	88.25 (ft)	Proposed Beta & Gamma
	z _g =	900 (ft)	Sector Antenna & RRHs
K _z = 1.233	α=	9.5	

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Zg	α	K _{zmin}	K _e
В	1200 ft	7	0.70	0.90
С	900 ft	9.5	0.85	1
D	700 ft	11.5	1.03	1.10

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2
4	0.72	1.5

$$K_{zt} = [1 + (K_e K_t / K_h)]^2$$

K_{zt}= #DIV/0!

(If Category	1	then	K	$_{zt} = 1.0)$

Category= 1

 $K_h = e^{(f^*z/H)}$

	#DIV/0!	K _h =
0 (from Table 2-4)	0	K _e =
0 (from Table 2-5)	0	K _t =
0 (from Table 2-5)	0	f=
5	88.25	z=
0 (Ht. above surrounding terrain	0	H=
0	1.00	K _{zt} =

2.6.7 Gust Effect Factors

2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]	h= ht. of structure		
h= 88.25	Gh= 0.48825		
<u>2.6.7.2 Guyed Masts</u>	Gh= 0.85		
2.6.7.3 Pole Structures	Gh= 1.1		

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

Gh= 1.35

Gh= 1.35

2.6.8 Design Ice Thickness:

K_{iz}=

$t_{iz} = 2.0^{*}t_{i}^{*} ^{*}K_{iz}^{*}(K_{zt})^{0.35}$		t _i =	1	
			I=	1
61-546	t _{iz} =	2.21	K _{iz} =	1.10
			K _{zt} =	1
$K_{iz} = [z/3]$	3] ^{0.10} ≤ 1.	4		

1.10

657.96

Calculating the weight of ice, the cross-sectional area of ice shall be determined by:

 $A_{iz} = \pi^* t_{iz}^* (D_c + t_{iz}) \qquad Dc = 92.7 \text{ (in) Largest Dim of Member}$

2.6.9 Design Wind Load:

A_{iz} =

F= qz*Gh*(EPA's)

q _z = 0.0	00256*K _z *K _{zt} *K _d *V ² max	K _z =	1.233
		K _{zt} =	1
q _z =	29.98	K _d =	0.95
		V _{max} =	100

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular,	
square or rectangular cross sections	0.85
Tubular pole structures, latticed	
structures with other cross sections,	0.95
appurtenances.	

Determine Cf:

If lattice Structure See Manual

If Tubular Pole Structure, Use Corrected Value from Table 2.7 Below

С	Round	18 Sided	16 Sided	12 Sided	8 Sided
mph.ft					
< 32	1.2	1.2	1.2	1.2	1.2
(Subcritical)					
32 to 64	38.4/C ^{1.0}	25.8/C ^{0.885}	12.6/C ^{0.678}	2.99/C ^{0.263}	1.2
(Transitional)					
> 64	0.6	0.65	0.75	1	1.2
(Supercritical)					

 $C = (I^*K_{zt}^*K_z)^{0.5}*V^*D$

Dp = Outside Diameter or Out to Out

0.2 feet

Cf=

1.2

C= 22.21

Appurtenar	nces	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Force Per Appurtenance
ltem No.1	(P) Ant	92.7	14.4	7	9.27	450.23 (lbs)
Item No.2	(P) Ant	92.4	14.8	7.4	9.50	461.24 (lbs)
ltem No.3	(E) ANT	72	11.8	7.14	5.90	286.55 (lbs)
Item No.3	(P) RRH(11)	19.7	17	7.17	2.33	112.96 (lbs)
Item No.4	(P) RRH(12)	20.4	18.5	7.5	2.62	127.29 (lbs)
Item No.5	(P)RRH(E2)	20	20.4	9.5	2.83	137.61 (lbs)
Item No.6	(P) RRH(32)	26.7	12.1	6.7	2.24	108.97 (lbs)
ltem No.7	(P) A2 Mod	16.4	15.2	3.4	1.73	84.08 (lbs)

ICE WEIGHT CALCULA	TIONS-Pro	oposed Antenna		•
Thickness of ice:	1			
*Density of ice used=56 PCF				
Weight of ice based on total radial SF	area:		(P)Ante	enna x2
Depth (in):	7			
height (in):	92.7			
Width (in):	14.4			
Total weight of ice on object:		129 pounds ice	9	
Weight of object:	95 p	ounds	-	
Combined weight of ice and object:		447 pounds		
			2	
Per foot weight of ice:			Pipe	x2
pipe weight per foot:	3.65			
pipe length (ft):	9			
diameter (in):	2.375			
Per foot weight of ice on object:		3 pounds ice	e /ft	
Total weight of ice on object:		26 pounds		
Total weight of pipe:		32.85 pounds	_	
Combined weight of pipe and ice:		118 pounds		
Weight of ice based on total radial SF	area:		4"x4"x1	/2" angle
Depth (in):	4			
height (in):	4			
Width (in):	84			
Total weight of ice on object:		23 pounds ice	9	
Weight of object:	90 p	ounds	-	
Combined weight of ice and object:		226 pounds		
			-24	
Weight of ice based on total radial SF	area:		(P)RRH	(32)
Depth (in):	6.7			
height (in):	26.7			
Width (in):	12.1			
Total weight of ice on object:		33 pounds ice	9	
Weight of object:	60 p	ounds	-	
Combined weight of ice and object:		93 pounds		
			-20	
Weight of ice based on total radial SF	area:		(P)RRH	(E2)
Depth (in):	9.5			
height (in):	20			
Width (in):	20.4			
Total weight of ice on object:		39 pounds ice	;	
Weight of object:	58 p	ounds		
Combined weight of ice and object:		97 pounds		

Site Name:Portland USMSite No.ME5045Done by:SAGChecked by: MSCDate:1/13/2015

CHECK CONNECTION CAPACITY-Proposed Antenna

