··**T**··Mobile·

15 Commerce Way Suite B Norton, MA 02766

STRUCTURAL ANALYSIS 4PB1259A

Address:

638 Congress Street Portland, ME 04101

Date:

JULY 11, 2017

July 11, 2017

•T•••Mobile• 15 Commerce Way Suite B Norton, MA 02766

Structural Analysis of Antenna Loads

RE:

Site Number 4PB1259A

Site Name PB259 / Comfac - Lafayette

Site Address 638 Congress Street, Portland, ME 04101

To whom it may concern:

Chappell Engineering Associates, LLC has reviewed the existing antenna installation at the above referenced location. Based upon the site visit completed on 06-05-2017, the *alpha*, *beta* and *gamma* sector antennas are located on the face of the existing rooftop penthouse. The existing antenna mounts consist of cantilevered antenna pipe masts secured to the face of the penthouse.

The existing T-Mobile sectors currently consist of two (2) existing panel antennas per sector. T-Mobile currently proposes to reconfigure the existing antenna configuration by removing and replacing one existing antenna in its place and installing a proposed antenna on the existing antenna mount. Additionally, three (3) Remote Radio Units and three (3) style 3CX TMA's will be located on the exiting antenna mounts. Also, two (2) hybrid DC/Fiber cables will be run to service the proposed antennas

The current antenna configuration consists of:

<u>Sectors</u>	<u>Status</u>	Antenna/Appurtenance	Dimensions (in)	<u>Location</u>
Alpha, Beta , Gamma	Existing	(1) RFS APX16DWV-S-E-A20	56H x 13W x 3.2D	Face of Penthouse
	Existing	(1) Andrew LNX-6515DS-A1M	96.6H x 11.9W x 7.1D	Face of Penthouse
	Existing	(1) RFS Twin TMA's	12H x 10W x 4D	Face of Penthouse
	Existing	(2) TMA's	14H x 6W x 4D	Face of Penthouse

T-Mobile currently proposes to re-configure the existing antennas as shown (final total configuration):

<u>Sectors</u>	<u>Status</u>	Antenna/Appurtenance	Dimensions (in)	Location
Alpha, Beta , Gamma	Proposed	(1) Commscope FF-65C-R2 Panel	96H x 25.2Wx 9.3D	Face of Penthouse
	Proposed	(1) Ericsson 4478 B71 RRU	15H x 13.2Wx 7.4D	Face of Penthouse
	Existing	(1) RFS APX16DWV-S-E-A20 Panel	56H x 13W x 3.2D	Face of Penthouse
	Proposed	(1) RFS Style 3CX TMA	11.2H x 8.0Wx 4.9D	Face of Penthouse
	Proposed	(2) RFS ACU-A20-S	4H x 1.6Wx 3.5D	Face of Penthouse

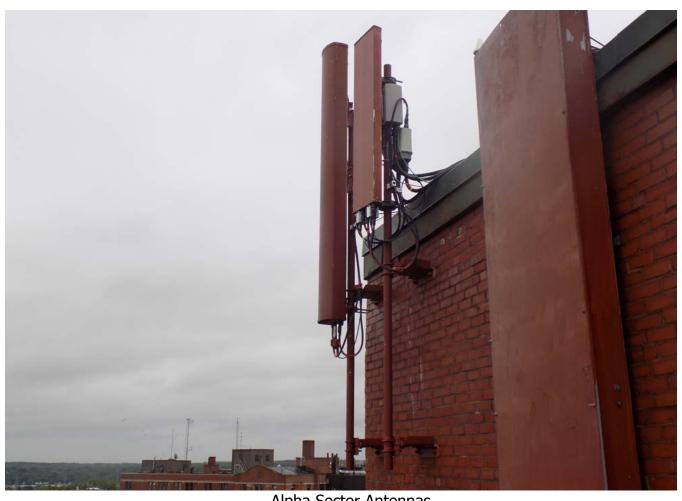
The proposed antennas will be installed on the existing pipe currently supporting the existing AIR antennas.

Based upon our review of the loads, our stability analysis of the existing antenna mounting pipes, Chappell Engineering Associates, LLC has determined that the existing antenna support structures **have adequate capacity** to support the proposed L600MHz modernization upgrade configuration as shown above. Photos of the existing antenna mounts are enclosed for your convenience. A copy of the proposed L600MHz antenna upgrade mounting plan being proposed by Chappell Engineering is also enclosed.

If you have any questions regarding this matter, please do not hesitate to call.

SALEK

SIONALE


Very truly yours,

CHAPPELL ENGINEERING AS

1

Clement J Salek, P.E.

CJS/cjs

Alpha Sector Antennas

Beta Sector Antennas

Gamma Sector Antennas

638 Congress St Portland T—M	obile	
		X3 X2 X1
SCALE = 1:18	DATE: 7/11/17	
ſ		
	6.3	
	5.2	
	TD)	

638 Congress St Portland T-Mobile

Prepared by: Date: 7/11/17

Load no. 1: Selfweight (units - kips ft.)

/ BEAM LOADS SELF X3 -1. B 1 TO 11 / END

FORCE SUMMATION

FX1=0. kip FX2=0. kip FX3=-0.0996 kip

Load no. 2: Antenna X2 (units - kips ft.)

/ BEAM LOADS DIST GL FX2 0. B 3 2 / BEAM LOADS DIST GL FX2 0.075 B 3 2 / END

FORCE SUMMATION

FX1=0. kip FX2=0.6 kip FX3=0. kip

Load no. 3: Antenna X1 (units - kips ft.)

/ BEAM LOADS DIST GL FX1 0.03 B 3 2 / END

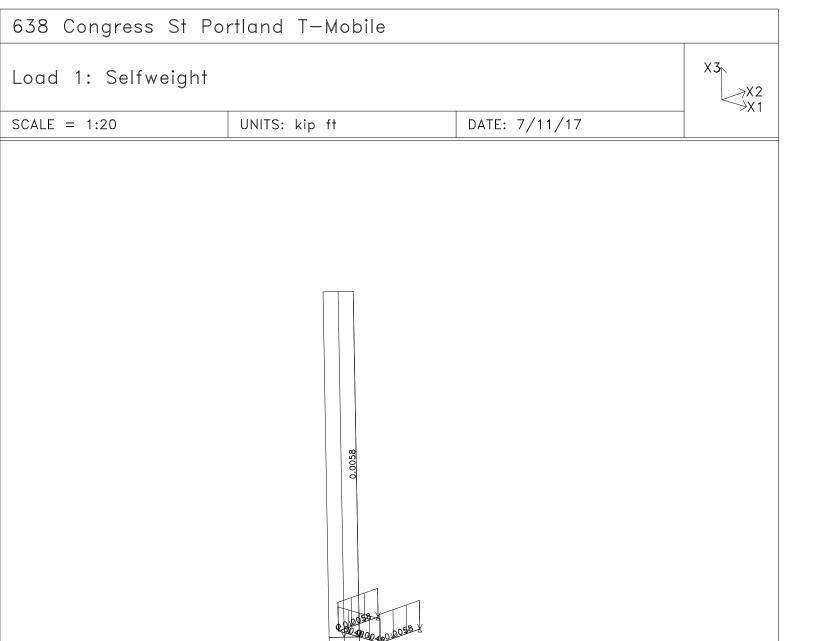
FORCE SUMMATION

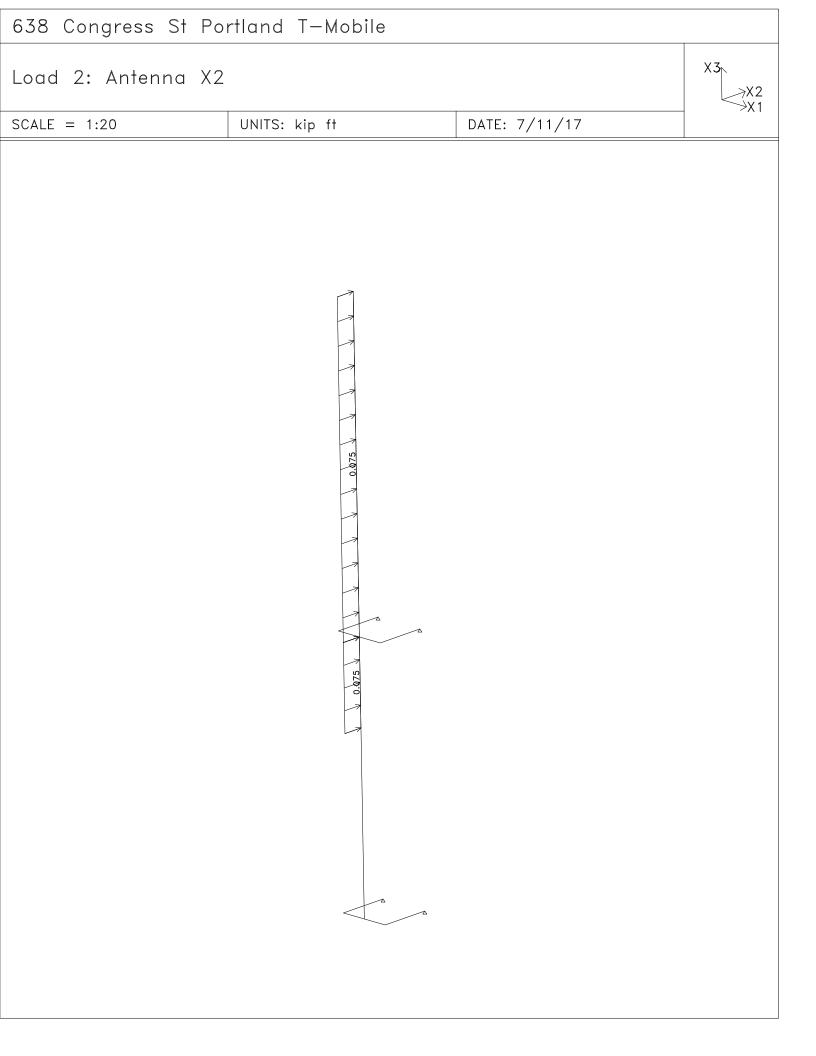
FX1=0.24 kip FX2=0. kip FX3=0. kip

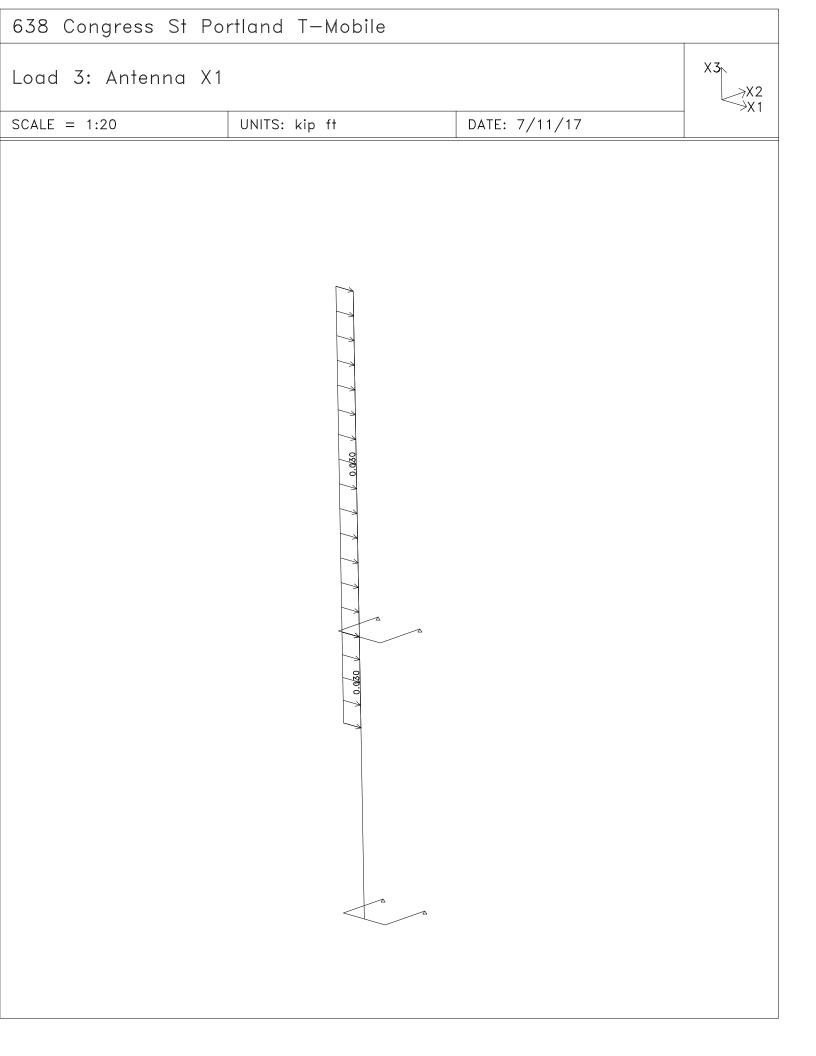
Load no. 4: Antenna Dead Load (units - kips ft.)

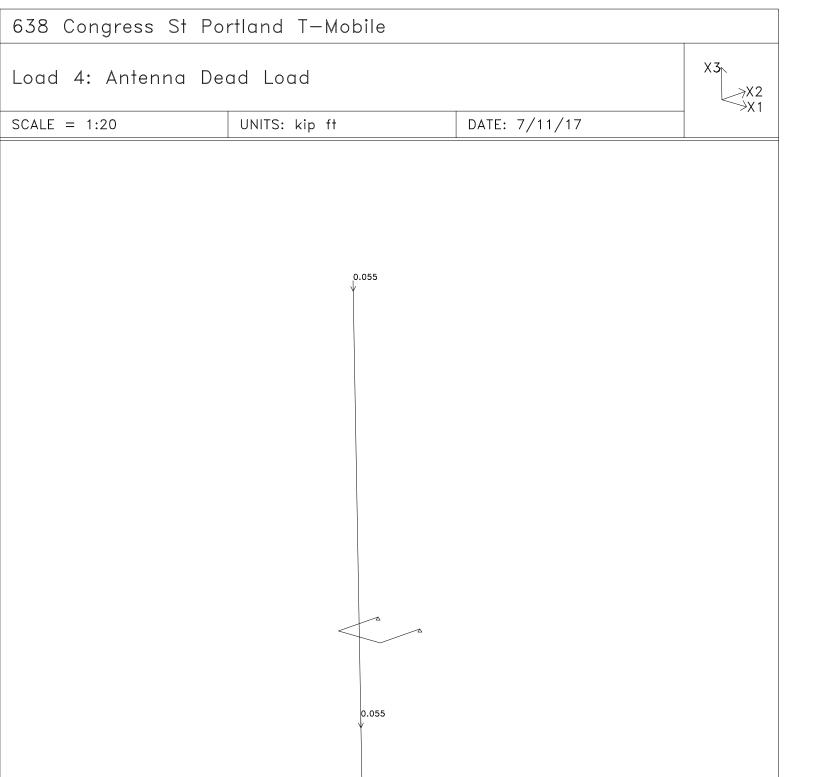
/ JOINT LOADS / JOINT LOADS FX3 -0.055 N 4 2 / END STATIC **Chappell Engineering Associates, LLC**

Strap 2015.00


638 Congress St Portland T-Mobile

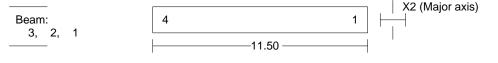

Prepared by: Date: 7/11/17


Load no. 4: Antenna Dead Load (units - kips ft.)


FORCE SUMMATION

FX1=0. kip FX2=0. kip FX3=-0.11 kip

SCALE = 1:18 UNITS: kip DATE: 7/11/17	638 Congress St Portland T—Mobile	
27 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		
8.924 → 0.027 6.924 → 0.027	SCALE = 1:18 UNITS: kip DATE: 7/11/17	7/1
REACTIONS LOADS ENVELOPE	-0.44 -0.44 -0.44 -0.44	
	REACTIONS LOADS ENVELOPE	


Code: AISC-ASD

638 Congress St Portland T-Mobile

Prepared by: Date: 7/11/17

Detailed Results Table

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

CONSTRAINTS

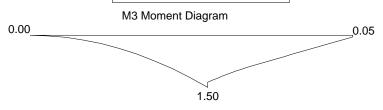
DESIGN DATA

- Sections : Check - Kx = 1.00- Ky = 1.00

- Steel Grade: A53

- Allow. Slend.: 200 (compr.) 300 (tens.)

- Allowable Deflection: 1/240


- Tension Area Reduction Factor: 1.00

- Building type : Unbraced

Section: PIPE 2-1/2

3.06 Cw = 0.00 in 6J =

DESIGN COMBINATION = 2

Max. AXIAL Force = 0.05 (tens.), -0.09 (compr.) Max. SHEAR Force = 0.47

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F4-1)	V/(Av*Fv) <1.00 Fv=0.4*Fy	Av = 1.02	V = 0.47 Fv = 14.00	0.03
M3 Moment (F3-1)	M S*Fb < 1.00	S = 1.06 Fb =0.660 *Fy	M = 1.50 S*Fb = 2.05	0.73
Deflection	defl. L / 240 < 1.00		defl = 0.51412	0.89
Combined Stresses (Local) (H1-2) (H2-1)	$ \frac{fa}{0.6Fy} + \frac{fbx}{Fbx} + \frac{fby}{Fby} $ (Ft) < 1.00	fbx = 0.00 Fbx= 0.00 fby = 16.94 Fby= 23.10	P = 0.09 A = 1.70 Fu = 60.00 fb = M/S	0.74
Axial Force (E2-1/2)	fa < 1.00	(kL/r)x =115 (kL/r)y =115 Cc = 128.10	P = 0.09 Ag = 1.70 Fa = 10.92	0.00
Combined Stresses (tension) (H2-1)	$\frac{\text{fa}}{\text{Ft}} + \frac{\text{fbx}}{\text{Fbx}} + \frac{\text{fby}}{\text{Fby}} < 1.00$	Fbx = 23.10 Fby = 23.10	fbx = 0.00 fby = 16.94	0.73