- T. . - Mobile
 15 Commerce Way Suite B
 Norton, MA 02766

StRUCTURAL ANALYSIS 4PB1259A

Address:
638 Congress Street
Portland, ME 04101 Date:

J ULY 11, 2017

CHAPPELL
ENGINEERING
ASSOCIATES, LLC
Civil-Structural•Land Surveying

July 11, 2017
-T---Mobile
15 Commerce Way
Suite B
Norton, MA 02766

Structural Analysis of Antenna Loads

RE:

Site Number	4PB1259A
Site Name	PB259 / Comfac - Lafayette
Site Address	638 Congress Street, Portland, ME 04101

To whom it may concern:
Chappell Engineering Associates, LLC has reviewed the existing antenna installation at the above referenced location. Based upon the site visit completed on 06-05-2017, the alpha, beta and gamma sector antennas are located on the face of the existing rooftop penthouse. The existing antenna mounts consist of cantilevered antenna pipe masts secured to the face of the penthouse.

The existing T-Mobile sectors currently consist of two (2) existing panel antennas per sector. T-Mobile currently proposes to reconfigure the existing antenna configuration by removing and replacing one existing antenna in its place and installing a proposed antenna on the existing antenna mount. Additionally, three (3) Remote Radio Units and three (3) style 3CX TMA's will be located on the exiting antenna mounts. Also, two (2) hybrid DC/Fiber cables will be run to service the proposed antennas

The current antenna configuration consists of:

Sectors	Status	Antenna/ Appurtenance	Dimensions (in)	Location
Alpha, Beta , Gamma	Existing	(1) RFS APX16DWV-S-E-A20	$56 \mathrm{H} \times 13 \mathrm{~W} \times 3.2 \mathrm{D}$	Face of Penthouse
	Existing	(1) Andrew LNX-6515DS-A1M	$96.6 \mathrm{H} \times 11.9 \mathrm{~W} \times 7.1 \mathrm{D}$	Face of Penthouse
	Existing	(1) RFS Twin TMA's	$12 \mathrm{H} \times 10 \mathrm{~W} \times 4 \mathrm{D}$	Face of Penthouse
	Existing	(2) TMA's	$14 \mathrm{H} \times 6 \mathrm{~W} \times 4 \mathrm{D}$	Face of Penthouse

T-Mobile currently proposes to re-configure the existing antennas as shown (final total configuration):

Sectors	Status	Antenna/ Appurtenance	Dimensions (in)	Location
Alpha, Beta , Gamma	Proposed	(1) Commscope FF-65C-R2 Panel	$96 \mathrm{H} \times 25.2 \mathrm{~W} \times 9.3 \mathrm{D}$	Face of Penthouse
	Proposed	(1) Ericsson 4478 B71 RRU	$15 \mathrm{H} \times 13.2 \mathrm{~W} \times 7.4 \mathrm{D}$	Face of Penthouse
	Existing	(1) RFS APX16DWV-S-E-A20 Panel	$56 \mathrm{H} \times 13 \mathrm{~W} \times 3.2 \mathrm{D}$	Face of Penthouse
	Proposed	(1) RFS Style 3CX TMA	$11.2 \mathrm{H} \times 8.0 \mathrm{~W} \times 4.9 \mathrm{D}$	Face of Penthouse
	Proposed	(2) RFS ACU-A20-S	$4 \mathrm{H} \times 1.6 \mathrm{~W} \times 3.5 \mathrm{D}$	Face of Penthouse

The proposed antennas will be installed on the existing pipe currently supporting the existing AIR antennas.
Based upon our review of the loads, our stability analysis of the existing antenna mounting pipes, Chappell Engineering Associates, LLC has determined that the existing antenna support structures have adequate capacity to support the proposed L600MHz modernization upgrade configuration as shown above. Photos of the existing antenna mounts are enclosed for your convenience. A copy of the proposed L600MHz antenna upgrade mounting plan being proposed by Chappell Engineering is also enclosed.

If you have any questions regarding this matter, please do not hesitate to call.

Alpha Sector Antennas

Beta Sector Antennas

Gamma Sector Antennas

SCALE $=1: 18$	DATE: $7 / 11 / 17$

Load no. 1: Selfweight (units - kips ft.)
I BEAM LOADS
SELF X3-1. B 1 TO 11
I END
F O R C E S U M M A TI O N
FX1 $=0$. kip
FX2=0. kip
FX3 $=-0.0996$ kip

Load no. 2: Antenna X2 (units - kips ft.)

```
/ BEAM LOADS
DIST GL FX2 O. B }3
/ BEAM LOADS
DIST GL FX2 0.075 B 3 2
/ END
FORCE SUMMATION
FX1=0. kip
FX2=0.6 kip
FX3=0. kip
```


Load no. 3: Antenna X1 (units - kips ft.)

```
/ BEAM LOADS
DIST GL FX1 0.03 B 3 2
/ END
FORCE SUMMATION
FX1=0.24 kip
FX2=0. kip
FX3=0. kip
```


Load no. 4: Antenna Dead Load (units - kips ft.)

Load no. 4: Antenna Dead Load (units - kips ft.)
F O R C E S U M M A T I O N
FX1 $=0$. kip
FX2=0. kip
FX3=-0.11 kip

638 Congress St Portland T-Mobile
Load 1: Selfweight
SCALE $=1: 20$

638 Congress St Portland T-Mobile
Load 2: Antenna $\times 2$
SCALE $=1: 20$

638 Congress St Portland T-Mobile

Load 3: Antenna X1

SCALE $=1: 20$	UNITS: kip ft	DATE: $7 / 11 / 17$

638 Congress St Portland T-Mobile

Load 4: Antenna Dead Load

SCALE $=1: 20$	UNITS: kip ft	DATE: $7 / 11 / 17$

Detailed Results Table
Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

	Section: PIPE 2-1/2
IX	$=1.53 \mathrm{Iy}=$
$\mathrm{D}=$	$1.53 \mathrm{in} 4 \mathrm{Sx}=1.06 \mathrm{Sy}=1.06 \mathrm{in} 3$ Area $=1.70$
$\mathrm{~J}=$	$3.87 \mathrm{t}=$
0.20 Cw	$=0.00 \mathrm{in} 6$

Max. AXIAL Force $=0.05$ (tens.), $\quad-0.09$ (compr.) Max. SHEAR Force $=0.47$

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F4-1)	$\begin{aligned} & \mathrm{V} /\left(\mathrm{Av} \mathrm{v}^{\mathrm{F} v}\right)<1.00 \\ & \mathrm{Fv}=0.4^{*} \mathrm{Fy} \end{aligned}$	$\mathrm{Av}=1.02$	$\begin{aligned} & V=0.47 \\ & \mathrm{Fv}=14.00 \end{aligned}$	0.03
M3 Moment (F3-1)	$\frac{\mathrm{M}}{\mathrm{~S}^{*} \mathrm{Fb}}<1.00$	$\begin{aligned} & S=1.06 \\ & \mathrm{Fb}=0.660 * \mathrm{Fy} \end{aligned}$	$\begin{gathered} \mathrm{M}=1.50 \\ \mathrm{~S}^{\star} \mathrm{Fb}=2.05 \end{gathered}$	0.73
Deflection	$\frac{\text { defl. }}{\text { L / } 240}<1.00$		$\begin{aligned} & \text { defl }= \\ & 0.51412 \end{aligned}$	0.89
Combined Stresses (Local) (H1-2) (H2-1)	$\begin{array}{r} \frac{f a}{\begin{array}{l} 0.6 \mathrm{Fy} \\ (\mathrm{Ft}) \end{array}}+\frac{\mathrm{fbx}}{\mathrm{Fbx}}+\frac{\mathrm{fby}}{\mathrm{Fby}} \\ <1.00 \end{array}$	fbx $=$ 0.00 $F b x=$ 0.00 fby $=$ 16.94 Fby $=$ 23.10	$\begin{aligned} \mathrm{P} & =0.09 \\ \mathrm{~A} & =1.70 \\ \mathrm{Fu} & =60.00 \\ \mathrm{fb} & =\mathrm{M} / \mathrm{S} \end{aligned}$	0.74
Axial Force (E2-1/2)	$\frac{\mathrm{fa}}{\mathrm{Fa}}<1.00$		$\begin{aligned} & \mathrm{P}=0.09 \\ & \mathrm{Ag}=1.70 \\ & \mathrm{Fa}=10.92 \end{aligned}$	0.00
Combined Stresses (tension) (H2-1)	$\frac{\mathrm{fa}}{\mathrm{Ft}}+\frac{\mathrm{fbx}}{\mathrm{Fbx}}+\frac{\mathrm{fby}}{\mathrm{Fby}}$	$\begin{aligned} & \text { Fbx }=23.10 \\ & F b y=23.10 \end{aligned}$	$\begin{aligned} & \mathrm{fbx}=0.00 \\ & \mathrm{fby}=16.94 \end{aligned}$	0.73

