B6S 25/8" X 41/8" GLASS BALUSTRADE BASE SHOE

Heavy Duty Square Base Shoe

6063-T52 Aluminum extrusion

Fully tempered glass glazed in place, either wet

glazing cement or Taper-Loc®.

Shoe strength – Vertical legs:

Glass reaction by bearing on legs to form

couple. Allowable moment on legs:

 $M_a = S_1 F_v$

 $F_t = F_c = 12.5 \text{ ksi (ADM Table 2-23, Sec 3.4.4)}$

and 3.4.13)

 $S_1 = 12"*0.75"^2*/6 = 1.125 \text{ in}^3/\text{ft}$

 $M_a = 12.5 \text{ ksi} * 1.125 \text{ in}^3/\text{ft} = 14,062 \#''/\text{ft}$

Leg shear strength @ groove

 $t_{min} = 0.343$ "

 $F_v = 5.5$ ksi (ADM Table 2-23, Sec 3.4.20

 $V_{all} = 0.75$ "*12"/ft*5.5 ksi = 49.5 k/ft

Base shoe anchorage:

Typical rail section: 42" high 50 plf top rail load or 25 psf panel load

 $M_t = 50 \text{plf}*42" = 2,100" \#/\text{ft}$

 $M_w = 25 \text{ psf*}3.5^{\circ}21^{\circ} = 1,837.5^{\circ}\#$

Typical Anchor load -12" o.c. $-T_a = 2,100$ " #/1.31" = 1,603#

Maximum allowable moment for 1/2" cap screws ($T_a = 3.592$ # from B5S calculations) 12" on center spacing and direct bearing of base shoe on steel:

 $M_a = 3,592 \# [1.31" - 0.5*3,592/(30 ksi*12)] = 4,688" \# = 390.6" \# per anchor$

Maximum allowable wind loads (ASD):

36" height: $w = 390.6 \# (0.55 * 3^2) = 78.9 \text{ psf}$

42" height: $w = 390.6\#'/(0.55*3.5^2) = 58.0 \text{ psf}$

6" on center spacing and direct bearing of base shoe on steel:

 $M_a = 3,592 \# [1.31" - 0.5*3,592/(30 \text{ksi*6})] = 4,670" \# = 389.14" \# \text{ per anchor}$

Maximum allowable wind loads (ASD):

36" height: $w = 2*389.14\#'/(0.55*3^2) = 157.2 \text{ psf}$

42" height: $w = 2*389.14\#'/(0.55*3.5^2) = 115.5 \text{ psf}$

required spacing to develop full strength of \%" glass:

 $s = 4,688/6,797*12" = 8 \frac{1}{4}$ " on center average

EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Surface Mounting Base Shoes to Wood Decks: Aluminum Angle Bracket Welded to Base Shoe Alternative-

Weld strength calculated in accordance with ADM 7.3.2 Fillet Welds
Base shoe metal - 6063-T52
Angle metal- 6063-T5
Weld metal 4043

Weld size:

 $\frac{1}{4}$ " fillet, throat = $0.25/\sqrt{2} = 0.177$ "

Design strength: ADM 7.3.2.2

 $V_w = F_{sw} L_{we} / n_u$

For shear through weld throat:

 $F_{sw} = 11.5$ ksi from ADM Table 7.3-1

 $V_{ww}=11.5$ ksi*0.177"*12"/1.95 =12,526 plf

For base metal shear failure:

 $F_{suw} = 11.0 \text{ ksi from ADM Table } 3.3-2$

 $V_{wb} = 11.0 \text{ksi} * 0.25"* 12"/1.95 = 16,922 \text{ plf}$

Moment overturning of base shoe-

Shear strength of weld restrains base shoe rotation

about opposite corner:

 $M_a = 12,526$ plf* 2.5"*4/12 = 10,438"# per 4" bracket

From ADM Table 2-23 for allowable aluminum stresses

bending of flat element - weld-affected

 $F_{tw} = F_{cw} = 6.5 \text{ksi}$

 $S_f = 4*0.375^2/6 = 0.09376in^3$

 $M_{aw} = 6,500 psi * 0.09376 in^3 = 609"#$

Maximum allowable anchor force based on outward force (controls)

 $R_u = 609"\#/0.5" = 1,218\#$

Maximum allowable moment on base shoe per 4" bracket:

 $M_{a5"} = 1,218#*3" + 609"# = 4,263"#$

Allowable moment per foot for brackets at 16" on center

 $M_a = 4,263/1.3333' = 3,197'' \#/ft = 266.44' \#/ft$

Strength for continuous angle:

 $M_{cont} = 4,263*12/4 = 12,789"#/ft$

BASE SHOE
B5S SHOWN
2 1/2

1/4
1/4

1/4

LS5X5X3/8
6063-T5 ALUMINUM
ANGLE X 4" LONG
@ 16" O.C.

9

3

#14 X 3" COUNTERSUNK
WOOD SCREW FOUR
IN TWO ROWS

EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com