

STORMWATER MANAGEMENT REPORT

Prepared For:

York Street Redevelopment, LLC 161 York Redevelopment 161 York Street Portland, Maine 04101

Prepared By:

Acorn Engineering, Inc. 158 Danforth Street Portland, Maine 04102

November 2016

INTRODUCTION

Acorn Engineering, Inc. has been retained by York Street Redevelopment, LLC to provide civil engineering services for the proposed redevelopment of 161 York Street. The proposed project is to develop two, two-story dwellings into a five-story, eleven-unit condominium subdivision. The site has recently been demolished to facilitate the redevelopment and is currently a vacant lot.

A stormwater analysis will be prepared to demonstrate that the project will meet the following requirements of the City of Portland (the City):

- City of Portland Land Use Ordinance Chapter 14, Article V. Site Plan Section 14-523. Required Approvals and Applicability (F) Level III Site Plan Review.
- City of Portland Technical Manual Section 5 Portland Stormwater Management Standards and Maine DEP Chapter 500 Stormwater Management.

The proposed project will include the redevelopment of existing, impervious area including rooftops, and paved asphalt and concrete driveways prior to demolition. The project will result in a net increase of impervious area above 1,000 sf, and, as such, is required to include stormwater management features for stormwater quality & quantity control. The stormwater analysis is documented with supporting calculations and reports attached to this narrative.

The current course of action is to provide primary water quality treatment to the stormwater through filtration utilizing a Best Management Practice (BMP) through a subsurface chamber sand filter that will detain and treat the majority of the site's stormwater. The implemented BMP is to provide water quality treatment for no less than 95% of the new impervious area and 80% of the developed area.

EXISTING CONDITIONS

The proposed project site is located at 161 York Street near the corner of York Street and State Street. A boundary plan has been prepared by Spurwink Surveying, LLC of Scarborough, Maine dated September 29, 2015.

Abutting Uses:

\triangleright	North	R-6 Zone	Residential Condominiums
\triangleright	West	R-6 Zone	Vacant Land
\triangleright	South	R-6 Zone	Residential Condominiums
\triangleright	East	R-6 Zone	Multi-Family Residential

The property is also near the Casco Bay Bridge and Harbor View Memorial Park, both west of the property.

Before the demolition, approximately a quarter of the property was covered by impervious surfaces including a bituminous driveway and two, two-story dwellings. The remaining surface was mature tree growth, vegetation, and exposed soil. The site slopes at approximately 10% toward York Street. Based on existing conditions, the stormwater runoff is directed towards York Street where it then enters the municipal stormwater system.

The project team is not aware of the presence of any existing significant natural features located on the site. Given the urban setting, and existing free-draining soils, a field inventory of significant natural feature was not undertaken. The project is not located within a watershed classified as an Urban Impaired Stream.

PROPOSED DEVELOPMENT

The proposed project is an eleven-unit redevelopment of two previously existing dwellings. Site stormwater treatment will be provided by a Underdrained Subsurface Sand Filter (USSF) to be installed beneath the upper driveway entrance from Guilford Court. Stormwater runoff generated by the roof and driveway is to be redirected into the system and then outlet into the existing municipal system within York Street. The remainder of the runoff generated by the front driveway and sidewalks will flow into York Street. Areas not covered by the building and impervious surfaces will be landscaped per L-1 Landscape Plan attached to the plan set.

Tenant parking is to be provided on-site with access from both York Street and Guilford Court. The five-story building will feature a parking garage with fourteen spaces on the first level parking garage, four spaces on the second-floor garage, and two, uncovered parking spaces off York Street and Guilford Court for a total of twenty-two parking spaces on two levels. Pedestrian access to the site shall be provided off York Street with two internal walkways to a main and side entrance.

The development will be served by the Portland Water District, underground power/cable/communications, natural gas, and the municipal stormwater and sewer systems. The project anticipates incorporating Maine DEP approved stormwater Best Management Practices to meet the General and Flooding Standards.

GENERAL STANDARDS - WATER QUALITY

The underdrained subsurface sand filter was sized to meet or exceed the requirements set forth within the MDEP Volume III BMPs Technical Design Manual, Chapter 7.3. Filter BMP systems have shown to be effective at filtering out and removing a wide range of pollutants from stormwater runoff.

Impervious Treatment Area

The stormwater runoff shall first flow into a central catch basin and then into the StormTech Isolator Row which shall provide initial treatment. The stormwater shall be detained within the chambers and surrounding aggregate for a minimum of 24 hours and a maximum of 48 hours before flowing vertically through the sand filter layer. The treated stormwater shall then be collected within the perforated underdrain pipe and released slowly by the outlet control structure at an attenuated rate. When stormwater flows exceed the storage and treatment volume capacity of the isolator row, the stormwater will flow into the second Stormtech chamber row and outlet into the control structure. This structure will serve to

attenuate flows into the existing municipal stormwater system within York Street and prevent flooding.

Table 1 - Impervious Treatment Area Table									
	Existing Impervious Area (SF)	Proposed Total Impervious Area (SF)	Net change in Impervious Area (SF)	Proposed Impervious Area with Treatment (SF)	% Overall New Imp. Area Treated				
Subsurface Sand Filter	3,271	8,681	5,410	7,611	141%				

The treatment of the impervious surface by the BMPs are as follows:

As shown above, the project anticipates meeting the required treatment for new impervious surfaces with the filter BMP.

Filter Area Size

Per the requirements for an underdrained subsurface sand filter as defined in Volume III BMPs Technical Design Manual, Chapter 7.3, the surface area of the filter shall be no less than the sum of 5% of the tributary impervious area and 2% of the tributary landscaped area. The filter area is calculated by the following formula:

Please refer to Table 2 below.

Table 2 – Total Filter Surface Area, displays the proposed Subsurface Sand Filter sizing requirements, actual size and the percentage of required area.

Table 2 – Total Filter Surface Area								
	Required Filter Area (SF)	Actual Filter Area (SF)	Percentage of Required Area (%)					
Subsurface Sand Filter	402	489	122%					

The outflow from the sand filter structure is then tributary to the outlet control structure before entering the municipal stormwater system. As shown, the size of the soil filter area will meet and exceed the surface area requirements. Values from the HydroCAD calculations are attached to this report.

Water Quality Volume

In accordance with the Volume III: BMPs Technical Design Manual, a water quality volume of 1.0 inch times the tributary impervious area plus 0.4 inch times the tributary landscaped developed area is required to be treated by the Subsurface Sand Filter. The water quality volume is calculated by the following formula:

$$(\frac{\text{Imp. [SF] x 1.0"}}{12"/1'}) + (\frac{\text{Dist. [SF] x 0.4"}}{12"/1'}) = \text{Treatment Volume [CF]}$$

The proposed water quality volume is as follows:

Table 4 - Water Quality Volume Table							
	Tributary	Tributary	Treatment	Treatment			
	Landscaped	Impervious	Volume Required	Volume Provided			
	Area (SF)	Area (SF)	(CF)	(CF)			
Subsurface Sand Filter	1072	7611	670	958			

As shown, the size of the combined water quality volume will meet and exceed the treatment volume requirements. Values from the HydroCAD calculations are attached to this report.

HydroCAD Adjustments

Provided that the water quality volumetric infiltration rates through the soil filter vary, a water quality outlet is modeled to provide the required minimum 24-hour release time. This is completed by adjusting the rainfall amount in HydroCAD until the inflow volume is equal to or greater than the calculated treatment volume. The storm events are modeled as type III, 24-hour storm events in HydroCAD.

A vertical orifice is modeled in HydroCAD at the outlet structures of the USSF BMP. The orifice diameter is sized to detain the stormwater for an approximate period of 24 hours. The orifice shall be placed at the end of the outfall pipe on the outlet control structure baffle to be inspected or replaced if necessary. The orifice is intended to be a PVC cap placed on the outfall pipe (no glue) with the orifice drilled into the cap eccentrically. The PVC cap can be easily inspected, removed or replaced if necessary. The orifice for the water quantity volume is then set above the peak elevation determined for the water quality volume.

FLOODING STANDARD – WATER QUANTITY

The proposed project was modeled using HydroCAD to verify that the post-development conditions do not exceed the pre-development conditions. A 24-hour SCS Type III storm distribution for the 2, 10, and 25-year storm events were used. The corresponding rainfall amounts for these storms are 3.10", 4.60", and 5.80" respectively. Rainfall amounts are from the Northeast Regional Climate Center website (<u>http://precip.eas.cornell.edu</u>), Extreme Precipitation Tables.

The existing stormwater runoff flows into the York Street municipal system. Therefore, both the pre- and post-development conditions model the runoff into York Street.

Due to the numerous variables and inherent inaccuracies with the modeling program used to calculate stormwater runoff, it is custom at Acorn Engineering, Inc. to round to the nearest whole number or to the nearest tenth for urban infill projects. Due to the small size of the project the stormwater runoff shall be rounded to the nearest tenth of a cubic foot per second (cfs).

Time of Concentration (T_c)

A time of concentration (T_c) of 5 minutes was applied to the subcatchment for both the preand post-development condition, given the urban setting.

Curve Number

Conservative curve number (CN) runoff values were used within the subcatchment for the remaining area surrounding the building footprint. The stormwater calculations used the following CN values in the post development condition for all such areas, as follows:

- > Paved Parking Lots, Driveways, Sidewalks
- ➢ Wood/Grass Combo − Good

It was assumed that the proposed retaining walls, concrete pad, and internal brick sidewalks have the same curve number as paved parking lots.

Pre-development Calculations

The pre-development condition was modeled as one subcatchment to determine the net impact of the development.

Subcatchment 1 – Rear property line to York Street.

A Pre-Development Watershed Map developed for this project can be viewed in Attachment A, and a copy of the HydroCAD calculations is included within Attachment C, or this report.

Peak flow rates for the storm events are as follows:

Table 4 – Pre-Development Peak Stormwater Flows							
	2 – Year Storm	10 – Year Storm	25 – Year Storm				
Drainage Area	Event (cfs)	Event (cfs)	Event (cfs)				
York Street	0.05	0.3	0.5				

Post-development Calculations:

The one predevelopment subcatchment was divided into three separate subcatchments for the post-development condition.

- Subcatchment 1 Rooftop of the proposed building
- ➢ Subcatchment 2 − Rear driveway and landscaped areas
- Subcatchment 3 Front sidewalks and landscaped areas

The post development calculations include changes to the land use and compensation provided by the subsurface BMP system. The following table represents comparison of predevelopment and post-development condition peak runoff rates for the proposed development and tributary area.

Table 5 – Comparison of Peak Flows									
Drainage	2 – Year Storm		10 – Year	Storm	25 – Year Storm Event				
Area	Event (cfs)		Event	(cfs)	(cfs)				
V 1 Ct	Pre	Post	Pre	Post	Pre	Post			
fork Street	0.05	0.04	0.3	0.3	0.5	0.4			

As shown in Table 5, the net impact of the post development peak flows shall remain at or below the predevelopment levels for the two-, ten-, and twenty-five-year storms.

A Post-Development Watershed Map created for this project can be viewed in Attachment B, and a copy of the HydroCAD calculations is included within Attachment C of this report.

<u>SOILS</u>

Onsite soil information includes the following:

> Soil Conservation Service Medium Intensity Soil Survey for Cumberland County

The existing soils are exclusively Hinckley throughout the site. The Hinckley soil series consists of very deep, excessively drained soils formed in glaciofluvial materials. The permeability of the Hinckley soil is rapid in the surface layer and subsoil and very rapid in the substratum, typically with a low groundwater table. Given the soils information as listed above, no onsite wastewater is proposed and the applicant does not intend to perform a more intense hydric soil boundary delineation or permeability test due to the waiver requirements set forth in the City of Portland Technical Manual – Section 7 – Soil Survey, Rev. 6/17/11 have been met. Acorn has used the conservative exfiltration rate of 2.41 in/hr when modeling the USSF system in HydroCAD.

The area within and surrounding the project includes soils types listed in the table below. The susceptibility of soils to erosion is indicated on a relative "K" scale of values over a range of 0.02 to 0.69. Higher "K" values indicate more erodible soils.

Table 3 - "K" Value						
Soils Type	Subsurface	Substratum				
Hinckley	0.17	0.17				

The soil "K" values for the soils, listed above, show a low susceptibility to erosion. The site's susceptibility to erosion is from the Soil Conservation Service Medium Intensity Soil Survey for Cumberland County. Although soil "K" values for the soils show a low susceptibility to erosion, implementation of the proposed Erosion & Sedimentation Measures by the contractor will still be of considerable importance.

Conclusion

The proposed development was designed to meet the requirements implemented by the MDEP under the Stormwater Management Statute (38 M.R.S.A. § 420-D) as well as the City of Portland Technical Manual – Section 5 – Portland Stormwater Management Standards. As a result, the design of the proposed development and stormwater system does not anticipate to create erosion, drainage or runoff problems either in the development or with respect to adjoining properties.

Attachments

Attachment A: Pre-Development Watershed Map Attachment B: Post-Development Watershed Map Attachment C: HydroCAD Calculations Attachment D: Soils Map

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.047	98	Roofs (1S)
0.176	43	Woods/grass comb., Fair, HSG A (1S)
0.026	98	sidewalk/pavement (1S)
0.002	98	walls concrete pad (1S)
0.251	59	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.176	HSG A	1S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.075	Other	1S
0.251		TOTAL AREA

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment	
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers	
 0.000	0.000	0.000	0.000	0.047	0.047	Roofs	1S	
0.176	0.000	0.000	0.000	0.000	0.176	Woods/grass comb., Fair	1S	
0.000	0.000	0.000	0.000	0.026	0.026	sidewalk/pavement	1S	
0.000	0.000	0.000	0.000	0.002	0.002	walls concrete pad	1S	
0.176	0.000	0.000	0.000	0.075	0.251	TOTAL AREA		

Ground Covers (all nodes)

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat 1

Runoff Area=10,935 sf 29.78% Impervious Runoff Depth=0.34" Tc=5.0 min CN=59 Runoff=0.05 cfs 0.007 af

Reach 1R: POI#1

Inflow=0.05 cfs 0.007 af Outflow=0.05 cfs 0.007 af

Total Runoff Area = 0.251 ac Runoff Volume = 0.007 af Average Runoff Depth = 0.34" 70.22% Pervious = 0.176 ac 29.78% Impervious = 0.075 ac

Summary for Subcatchment 1S: Subcat 1

Runoff = 0.05 cfs @ 12.12 hrs, Volume= 0.007 af, Depth= 0.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description					
*	2,039	98	Roofs					
*	1,135	98	sidewalk/pa	sidewalk/pavement				
*	82	98	walls concre	ete pad				
	7,679	43	Woods/gras	/oods/grass comb., Fair, HSG A				
	10,935	10,935 59 Weighted Average						
	7,679	70.22% Pervious Area						
	3,256		29.78% Imp	ervious Are	rea			
	Tc Length	Slop	be Velocity	Capacity	Description			
(m	in) (feet)	(ft/1	ft) (ft/sec)	(cfs)				
5	5.0				Direct Entry,			

Subcatchment 1S: Subcat 1

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 2	9.78% Imp	ervious,	Inflow De	pth = 0).34"	for 2-y	ear event	
Inflow	=	0.05 cfs @	12.12 hrs,	Volume	=	0.007 a	f			
Outflow	=	0.05 cfs @	12.12 hrs,	Volume	=	0.007 a	f, Atte	n= 0%,	Lag= 0.0 mi	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Reach 1R: POI#1

Type III 24-hr 10-year Rainfall=4.60" Printed 11/8/2016 ns LLC Page 18

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat 1

Runoff Area=10,935 sf 29.78% Impervious Runoff Depth=1.01" Tc=5.0 min CN=59 Runoff=0.26 cfs 0.021 af

Reach 1R: POI#1

Inflow=0.26 cfs 0.021 af Outflow=0.26 cfs 0.021 af

Total Runoff Area = 0.251 ac Runoff Volume = 0.021 af Average Runoff Depth = 1.01" 70.22% Pervious = 0.176 ac 29.78% Impervious = 0.075 ac

Summary for Subcatchment 1S: Subcat 1

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.021 af, Depth= 1.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)) CN	Description	Description					
*	2,039	98	Roofs						
*	1,135	5 98	sidewalk/pa	avement					
*	82	2 98	walls concr	walls concrete pad					
	7,679) 43	Woods/gra	ss comb., F	air, HSG A				
	10,935	5 59	Weighted A	Weighted Average					
	7,679)	70.22% Pe	rvious Area					
	3,256	6	29.78% lm	pervious Are	ea				
(n	Tc Lengt	h Sloj	be Velocity	Capacity	Description				
(1	nin) (iee	l) (ll/	it) (it/sec)	(CIS)					
	5.0				Direct Entry,				

Subcatchment 1S: Subcat 1

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 2	9.78% Imp	ervious,	Inflow De	pth = 1	1.01"	for 10-	year event
Inflow	=	0.26 cfs @	12.09 hrs,	Volume	=	0.021 a	f		
Outflow	=	0.26 cfs @	12.09 hrs,	Volume	=	0.021 a	f, Atter	ר= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Reach 1R: POI#1

Type III 24-hr 25-year Rainfall=5.80" Printed 11/8/2016 ns LLC Page 21

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Subcat 1

Runoff Area=10,935 sf 29.78% Impervious Runoff Depth=1.71" Tc=5.0 min CN=59 Runoff=0.49 cfs 0.036 af

Reach 1R: POI#1

Inflow=0.49 cfs 0.036 af Outflow=0.49 cfs 0.036 af

Total Runoff Area = 0.251 ac Runoff Volume = 0.036 af Average Runoff Depth = 1.71" 70.22% Pervious = 0.176 ac 29.78% Impervious = 0.075 ac

Summary for Subcatchment 1S: Subcat 1

Runoff = 0.49 cfs @ 12.08 hrs, Volume= 0.036 af, Depth= 1.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description						
*	2,039	98	Roofs						
*	1,135	98	sidewalk/pa	ivement					
*	82	98	walls concr	alls concrete pad					
	7,679	43	Woods/gras	ss comb., F	Fair, HSG A				
	10,935	59	Weighted A	Veighted Average					
	7,679		70.22% Pei	vious Area	a				
	3,256		29.78% lmp	pervious Are	rea				
-	Tc Lenath	Slor	e Velocity	Capacity	Description				
(mi	n) (feet)	(ft/1	ft) (ft/sec)	(cfs)					
5	5.0				Direct Entry,				

Subcatchment 1S: Subcat 1

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 2	9.78% Imp	ervious,	Inflow Dep	oth = 1.7	71" for 25.	-year event
Inflow	=	0.49 cfs @	12.08 hrs,	Volume	= 0).036 af		
Outflow	=	0.49 cfs @	12.08 hrs,	Volume	= 0).036 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Reach 1R: POI#1

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.001	98	Brick (2S)
0.030	98	Driveway (2S)
0.026	98	Driveway, Sidewalks, Walls, etc (3S)
0.144	98	Roofs, HSG A (1S)
0.001	98	Wall (2S)
0.051	32	Woods/grass comb., Good, HSG A (2S, 3S)
0.251	85	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.194	HSG A	1S, 2S, 3S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.057	Other	2S, 3S
0.251		TOTAL AREA

Post_11-7-16		
Prepared by Acorn Engineering, Inc.	Printed	11/8/2016
HydroCAD® 10.00-19 s/n M30747 © 2016 HydroCAD Software Solutions LLC		Page 27

	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
_	0.000	0.000	0.000	0.000	0.001	0.001	Brick	2S
	0.000	0.000	0.000	0.000	0.030	0.030	Driveway	2S
	0.000	0.000	0.000	0.000	0.026	0.026	Driveway, Sidewalks, Walls, etc	3S
	0.144	0.000	0.000	0.000	0.000	0.144	Roofs	1S
	0.000	0.000	0.000	0.000	0.001	0.001	Wall	2S
	0.051	0.000	0.000	0.000	0.000	0.051	Woods/grass comb., Good	2S
								,
								3S
	0.194	0.000	0.000	0.000	0.057	0.251	TOTAL AREA	

Ground Covers (all nodes)

2016
<u>e 28</u>

			Pipe	e Listing (all node	S)			
Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1P	50.60	40.00	125.0	0.0848	0.010	12.0	0.0	0.0

Pipe Listing (all podes)

Post_11-7-16 Prepared by Acorn Engineering, Inc. HydroCAD® 10.00-19 s/n M30747 © 2016 Hyd	Type III 24-hr 2-year Rainfall=3.10" Printed 11/8/2016 droCAD Software Solutions LLC Page 29
Time span=0.00-4 Runoff by SCS TR Reach routing by Stor-Ind+Tr	8.00 hrs, dt=0.001 hrs, 48001 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 1S: Building Roof	Runoff Area=6,264 sf 100.00% Impervious Runoff Depth=2.87" Tc=5.0 min CN=98 Runoff=0.45 cfs 0.034 af
Subcatchment 2S: Rear Access	Runoff Area=2,419 sf 55.68% Impervious Runoff Depth=0.72" Tc=5.0 min CN=69 Runoff=0.04 cfs 0.003 af
Subcatchment 3S: Front Access	Runoff Area=2,253 sf 49.80% Impervious Runoff Depth=0.55" Tc=5.0 min CN=65 Runoff=0.03 cfs 0.002 af
Reach 1R: POI#1	Inflow=0.04 cfs 0.039 af Outflow=0.04 cfs 0.039 af

Pond 1P: Medium StormTech 3500Peak Elev=55.50' Storage=0.022 af Inflow=0.49 cfs 0.038 af
Outflow=0.04 cfs 0.037 af

Total Runoff Area = 0.251 acRunoff Volume = 0.040 afAverage Runoff Depth = 1.92"20.14% Pervious = 0.051 ac79.86% Impervious = 0.200 ac

Summary for Subcatchment 1S: Building Roof

Runoff = 0.45 cfs @ 12.07 hrs, Volume= 0.034 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 2-year Rainfall=3.10"

Summary for Subcatchment 2S: Rear Access

Runoff = 0.04 cfs @ 12.08 hrs, Volume= 0.003 af, Depth= 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description						
*	1,295	98	Driveway						
*	28	98	Wall						
*	24	98	Brick	Brick					
	1,072	32	Woods/gras	Voods/grass comb., Good, HSG A					
	2,419	69	Weighted A	Neighted Average					
	1,072		44.32% Pe	rvious Area	а				
	1,347		55.68% Imp	pervious Are	rea				
_				o					
	Ic Length	Slop	e Velocity	Capacity	Description				
(mi	n) (feet)	(ft/f	t) (ft/sec)	(cfs)					
5	5.0				Direct Entry,				

Subcatchment 2S: Rear Access

Summary for Subcatchment 3S: Front Access

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 0.002 af, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 2-year Rainfall=3.10"

	Area (sf)	CN	Description						
*	1,122	98	Driveway, S	Sidewalks, \	Walls, etc				
	1,131	32	Woods/gras	ss comb., G	Good, HSG A				
	2,253	65	Weighted A	verage					
	1,131		50.20% Pervious Area						
	1,122		49.80% Impervious Area						
٦ miı)	c Length n) (feet)	Slop (ft/ft	e Velocity :) (ft/sec)	Capacity (cfs)	Description				
5	.0				Direct Entry,				

Subcatchment 3S: Front Access

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 7	79.86% Impe	ervious,	Inflow Dep	th > 1.8	39" for 2	2-year event
Inflow	=	0.04 cfs @	13.18 hrs,	Volume	= 0	.039 af		
Outflow	=	0.04 cfs @	13.18 hrs,	Volume	= 0	.039 af,	Atten= 0%	%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs

Reach 1R: POI#1

Summary for Pond 1P: Medium StormTech 3500

Inflow Area	=	0.199 ac, 8	37.65% Impe	ervious,	Inflow Depth :	= 2.27	7" for 2-ye	ar event
Inflow	=	0.49 cfs @	12.07 hrs,	Volume	= 0.03	8 af		
Outflow	=	0.04 cfs @	13.21 hrs,	Volume	= 0.03	7 af, A	Atten= 93%,	Lag= 68.0 min
Primary	=	0.04 cfs @	13.21 hrs,	Volume	= 0.03	7 af		

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Peak Elev= 55.50' @ 13.21 hrs Surf.Area= 0.034 ac Storage= 0.022 af

Plug-Flow detention time= 663.8 min calculated for 0.037 af (98% of inflow) Center-of-Mass det. time= 653.0 min (1,420.2 - 767.2)

Volume	Invert	Avail.Storage	Storage Description
#1	53.21'	0.016 af	8.42'W x 58.14'L x 5.00'H Stone
			0.056 af Overall - 0.017 af Embedded = 0.040 af x 40.0% Voids
#2	53.96'	0.017 af	ADS_StormTech MC-3500 d +Cap x 6 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			2 Rows of 3 Chambers
			Cap Storage= +14.9 cf x 2 x 2 rows = 59.6 cf
#3	51.71'	0.001 af	8.42'W x 58.14'L x 1.50'H Sand
			0.017 af Overall x 5.0% Voids
#4	50.71'	0.004 af	8.42'W x 58.14'L x 1.00'H Crushed Stone
	- 4 - 6 44		0.011 at Overall - 0.000 at Embedded = 0.011 at x 40.0% Voids
#5	51.04'	0.000 af	4.0" Round Underdrain Storage Inside #4
40	E0 401	0.000 -f	
#0	52.13	0.002 ai	
		0.040 af	Total Available Storage
Dovico	Pouting	Invort O	utlat Daviaga
	During		
#1	Primary	50.60 12	2.0° Kound Cuivert
		L-	- 125.0 CMP, projecting, no neadwall, Ke- 0.900
		111 n=	- 0.010 DV/C empeth interior Elevy Area - 0.70 ef
#2	Dovice 1	50 70' 0	5" Vort Vort Water Quality C= 0.600
#Z #3		55 40' 3	D Vort Vort Quantity $C = 0.000$
#3 #A	Device 1	58 00' 6	0 Vent. Vent Quantity 0 = 0.000
π -	Device I	50.00 0. Ha	$(f_{eet}) = 0.20 \pm 0.40 \pm 0.60 \pm 0.80 \pm 0.00 \pm 0.20 \pm 0.40 \pm 0.00 \pm 0.000$
		2	50
		2.5 C.0	oo nef (English) 2.76, 2.82, 2.93, 3.09, 3.18, 3.22, 3.27, 3.30, 3.32
		3	31 3 32
		0.	
Primarv	OutFlow Ma	x=0.04 cfs @ 1	3.21 hrs HW=55.50' (Free Discharge)
¹ −1=Cu	Ivert (Passes	s 0.04 cfs of 6.2	6 cfs potential flow)

2=Vert Water Quality (Orifice Controls 0.01 cfs @ 10.53 fps)

-3=Vert Quantity (Orifice Controls 0.02 cfs @ 1.10 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Medium StormTech 3500

Post_11-7-16 Prepared by Acorn Engineering, Inc. HydroCAD® 10.00-19 s/n M30747 © 2016 Hydro	7j roCAD Software Solutions	ype III 24-hr s LLC	10-year Rainfall=4.60" Printed 11/8/2016 Page 36
Time span=0.00-4	8.00 hrs, dt=0.001 hrs, 4	8001 points	d method
Runoff by SCS TR	20 method, UH=SCS, W	/eighted-CN	
Reach routing by Stor-Ind+Tra	ans method - Pond routi	ing by Stor-In	
Subcatchment 1S: Building Roof	Runoff Area=6,264 sf 10	00.00% Imperv	ious Runoff Depth=4.36"
	Tc=5.0	min CN=98	Runoff=0.67 cfs 0.052 af
Subcatchment 2S: Rear Access	Runoff Area=2,419 sf 5	55.68% Imperv	ious Runoff Depth=1.67"
	Tc=5.0	min CN=69	Runoff=0.11 cfs 0.008 af
Subcatchment 3S: Front Access	Runoff Area=2,253 sf 4	49.80% Imperv	ious Runoff Depth=1.39"
	Tc=5.0	min CN=65	Runoff=0.08 cfs 0.006 af
Reach 1R: POI#1			Inflow=0.25 cfs 0.065 af Outflow=0.25 cfs 0.065 af
Pond 1P: Medium StormTech 3500	Peak Elev=56.25' Stor	rage=0.028 af	Inflow=0.78 cfs 0.060 af Outflow=0.22 cfs 0.059 af

Total Runoff Area = 0.251 acRunoff Volume = 0.066 afAverage Runoff Depth = 3.16"20.14% Pervious = 0.051 ac79.86% Impervious = 0.200 ac

Summary for Subcatchment 1S: Building Roof

0.67 cfs @ 12.07 hrs, Volume= Runoff = 0.052 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 10-year Rainfall=4.60"

Summary for Subcatchment 2S: Rear Access

Runoff = 0.11 cfs @ 12.08 hrs, Volume= 0.008 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)	CN	Description			
*	1,295	98	Driveway			
*	28	98	Wall			
*	24	98	Brick			
	1,072	32	Woods/gras	ss comb., G	Good, HSG A	
	2,419	69	Weighted A	verage		
	1,072		44.32% Per	vious Area	а	
	1,347		55.68% Imp	pervious Are	rea	
-	To Longth	Clan	- Malaaitu	Conseitu	Description	
, .		Siop		Capacity	Description	
(mi	n) (feet)	(ft/f1	:) (tt/sec)	(cfs)		
5	5.0				Direct Entry,	

Subcatchment 2S: Rear Access

Summary for Subcatchment 3S: Front Access

Runoff = 0.08 cfs @ 12.08 hrs, Volume= 0.006 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 10-year Rainfall=4.60"

	Area (sf)	CN	Description		
*	1,122	98	Driveway, S	Sidewalks, N	Walls, etc
	1,131	32	Woods/gras	ss comb., G	Good, HSG A
	2,253	65	Weighted A	verage	
	1,131		50.20% Per	vious Area	а
	1,122		49.80% Imp	pervious Are	rea
Т	c Length	Slop	e Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft	t) (ft/sec)	(cfs)	
5.	0				Direct Entry,

Subcatchment 3S: Front Access

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 1	79.86% Impe	ervious,	Inflow Dep	th > 3.′	11" for	10-year event
Inflow	=	0.25 cfs @	12.34 hrs,	Volume	= 0	.065 af		
Outflow	=	0.25 cfs @	12.34 hrs,	Volume	= 0	.065 af,	Atten= 0	%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs

Reach 1R: POI#1

Summary for Pond 1P: Medium StormTech 3500

Inflow Area	=	0.199 ac, 8	37.65% Impe	ervious,	Inflow Depth	= 3.61"	for 10-y	ear event
Inflow	=	0.78 cfs @	12.07 hrs,	Volume	= 0.06	60 af		
Outflow	=	0.22 cfs @	12.41 hrs,	Volume	= 0.05	59 af, At	ten= 72%,	Lag= 20.0 min
Primary	=	0.22 cfs @	12.41 hrs,	Volume	= 0.05	59 af		

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Peak Elev= 56.25' @ 12.41 hrs Surf.Area= 0.034 ac Storage= 0.028 af

Plug-Flow detention time= 471.5 min calculated for 0.059 af (98% of inflow) Center-of-Mass det. time= 460.2 min (1,222.3 - 762.1)

Volume	Invert	Avail.Storage	Storage Description
#1	53.21'	0.016 af	8.42'W x 58.14'L x 5.00'H Stone
			0.056 af Overall - 0.017 af Embedded = 0.040 af \times 40.0% Voids
#2	53.96'	0.017 af	ADS_StormTech MC-3500 d +Cap x 6 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			2 Rows of 3 Chambers
			Cap Storage= +14.9 cf x 2 x 2 rows = 59.6 cf
#3	51.71'	0.001 af	8.42'W x 58.14'L x 1.50'H Sand
			0.017 at Overall x 5.0% Voids
#4	50.71	0.004 af	8.42'W x 58.14'L x 1.00'H Crushed Stone
ще	E4 04	0.000 of	0.011 at Overall - 0.000 at Embedded = 0.011 at X 40.0% Volds
#5	51.04	0.000 ai	4.0" Round Underdrain Storage Inside #4
#6	52 13'	0 002 af	4 00'D x 8 12'H Catch Basin
	02.10	0.040 af	Total Available Storage
Device	Routing	Invert O	utlet Devices
#1	Primary	50.60' 12	2.0" Round Culvert
		L=	= 125.0' CMP, projecting, no headwall, Ke= 0.900
		In	let / Outlet Invert= 50.60' / 40.00' S= 0.0848 '/' Cc= 0.900
		n=	= 0.010 PVC, smooth interior, Flow Area= 0.79 sf
#2	Device 1	50.70' 0.	5" Vert. Vert Water Quality C= 0.600
#3	Device 1	55.40' 3.	0" Vert. Vert Quantity C= 0.600
#4	Device 1	58.00' 6.	0' long x 0.7' breadth Broad-Crested Rectangular Weir
		Н	ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.	
		C	oef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32
		3.	31 3.32
Primary	OutFlow Ma	x=0.22 cfs @ 1	2 41 hrs HW=56 25' (Free Discharge)
1=Cu	Ivert (Passes	s 0.22 cfs of 6.7	78 cfs potential flow)

—2=Vert Water Quality (Orifice Controls 0.02 cfs @ 11.33 fps) **—3=Vert Quantity** (Orifice Controls 0.20 cfs @ 4.11 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Medium StormTech 3500

Post_11-7-16 Prepared by Acorn Engineering, Inc. HydroCAD® 10.00-19 s/n M30747 © 2016 Hyd	<i>Type III 24-hr 25-year Rainfall=5.80"</i> Printed 11/8/2016 droCAD Software Solutions LLC Page 43
Time span=0.00-4 Runoff by SCS TR Reach routing by Stor-Ind+Tra	8.00 hrs, dt=0.001 hrs, 48001 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 1S: Building Roof	Runoff Area=6,264 sf 100.00% Impervious Runoff Depth=5.56" Tc=5.0 min CN=98 Runoff=0.85 cfs 0.067 af
Subcatchment 2S: Rear Access	Runoff Area=2,419 sf 55.68% Impervious Runoff Depth=2.56" Tc=5.0 min CN=69 Runoff=0.17 cfs 0.012 af
Subcatchment 3S: Front Access	Runoff Area=2,253 sf 49.80% Impervious Runoff Depth=2.21" Tc=5.0 min CN=65 Runoff=0.14 cfs 0.010 af
Reach 1R: POI#1	Inflow=0.39 cfs 0.087 af Outflow=0.39 cfs 0.087 af
Pond 1P: Medium StormTech 3500	Peak Elev=57.20' Storage=0.034 af Inflow=1.02 cfs 0.078 af Outflow=0.32 cfs 0.077 af

Total Runoff Area = 0.251 acRunoff Volume = 0.088 af
20.14% Pervious = 0.051 acAverage Runoff Depth = 4.21"
79.86% Impervious = 0.200 ac

Summary for Subcatchment 1S: Building Roof

0.85 cfs @ 12.07 hrs, Volume= Runoff = 0.067 af, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 25-year Rainfall=5.80"

Summary for Subcatchment 2S: Rear Access

Runoff = 0.17 cfs @ 12.08 hrs, Volume= 0.012 af, Depth= 2.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description			
*	1,295	98	Driveway			
*	28	98	Wall			
*	24	98	Brick			
	1,072	32	Woods/gra	ss comb., G	Good, HSG A	
	2,419	69	Weighted A	verage		
	1,072		44.32% Pe	rvious Area	a	
	1,347		55.68% Im	pervious Are	rea	
_						
1	Tc Length	Slop	e Velocity	Capacity	Description	
(mi	n) (feet)	(ft/f	t) (ft/sec)	(cfs)		
5	.0				Direct Entry,	

Subcatchment 2S: Rear Access

Summary for Subcatchment 3S: Front Access

Runoff = 0.14 cfs @ 12.08 hrs, Volume= 0.010 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Type III 24-hr 25-year Rainfall=5.80"

	Area (sf)	CN	Description					
*	1,122	98 Driveway, Sidewalks, Walls, etc						
	1,131	32 Woods/grass comb., Good, HSG A						
	2,253	65	Weighted A	verage				
	1,131		50.20% Per	vious Area				
	1,122		49.80% Imp	pervious Are	ea			
	Tc Length	Slope	e Velocity	Capacity	Description			
(m	nin) (feet)	(ft/ft) (ft/sec)	(cfs)				
	5.0				Direct Entry	,		
			Su	bcatchm	ent 3S: Fror	nt Access		
				Hydro	graph			
	0.15		0.14 - 5					Runoff

Summary for Reach 1R: POI#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.251 ac, 1	79.86% Impe	ervious,	Inflow D	epth >	4.14	4" for 25-	year event
Inflow	=	0.39 cfs @	12.13 hrs,	Volume	=	0.087 a	af		
Outflow	=	0.39 cfs @	12.13 hrs,	Volume	=	0.087 a	af, <i>i</i>	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs

Reach 1R: POI#1

Summary for Pond 1P: Medium StormTech 3500

Inflow Area	=	0.199 ac, 8	7.65% Impe	ervious,	Inflow Depth =	4.72"	for 25-ye	ear event
Inflow	=	1.02 cfs @	12.07 hrs,	Volume	= 0.078	af		
Outflow	=	0.32 cfs @	12.36 hrs,	Volume	= 0.077	af, Atte	en= 68%,	Lag= 17.4 min
Primary	=	0.32 cfs @	12.36 hrs,	Volume	= 0.077	af		

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.001 hrs Peak Elev= 57.20' @ 12.36 hrs Surf.Area= 0.034 ac Storage= 0.034 af

Plug-Flow detention time= 387.7 min calculated for 0.077 af (98% of inflow) Center-of-Mass det. time= 376.8 min (1,136.1 - 759.3)

Volume	Invert	Avail.Storage	Storage Description				
#1	53.21'	0.016 af	8.42'W x 58.14'L x 5.00'H Stone				
			0.056 af Overall - 0.017 af Embedded = 0.040 af x 40.0% Voids				
#2	53.96'	0.017 af	ADS_StormTech MC-3500 d +Cap x 6 Inside #1				
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf				
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap				
			2 Rows of 3 Chambers				
			Cap Storage= +14.9 cf x 2 x 2 rows = 59.6 cf				
#3	51.71'	0.001 af	8.42'W x 58.14'L x 1.50'H Sand				
			0.017 af Overall x 5.0% Voids				
#4	50.71'	0.004 af	8.42'W x 58.14'L x 1.00'H Crushed Stone				
			$0.011 \text{ af Overall} - 0.000 \text{ af Embedded} = 0.011 \text{ af } \times 40.0\% \text{ Voids}$				
#5	51.04'	0.000 af	4.0" Round Underdrain Storage Inside #4				
40	50 401	0.000 -f					
#0	52.13	0.002 af	4.00 D X 8.12 H Catch Basin				
		0.040 af	Total Available Storage				
Dovice	Pouting	Invert O	utlat Daviaga				
Device	Routing						
#1	Primary	50.60 12	.0" Round Culvert				
		L=	at / Quittet Imurate 50,001 / 40,001 - Ce 0,0040 // - Ce 0,000				
		Ini	et / Outlet Invert= 50.60 / 40.00 S= 0.0848 / CC= 0.900				
#0	Dovine 1	[]=	5 U.UTU PVC, Smooth Interior, Flow Area= 0.79 Si				
#Z #2		50.70 U.	0.5 " Vert. Vert Water Quality $C = 0.600$				
#3 #1		59.40 3.0	3.0" vert. vert Quantity U= 0.600				
#4	Device 1	00.00 0. 0	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$				
			au (leel) 0.20 0.40 0.00 0.00 1.00 1.20 1.40 1.00 1.00 2.00				
		2.	oof (English) 276 282 203 300 318 322 327 330 332				
		3 '	21 2 22				
		0.0	51 0.0Z				
Primary OutFlow Max=0.32 cfs @ 12.36 hrs HW=57.20' (Free Discharge)							
1=Cu	Ivert (Passes	s 0.32 cfs of 7.3	7 cfs potential flow)				

2=Vert Water Quality (Orifice Controls 0.02 cfs @ 12.25 fps)

-3=Vert Quantity (Orifice Controls 0.31 cfs @ 6.23 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Medium StormTech 3500

