

DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK CITY OF PORTLAND BUILDING PERMI

This is to certify that HIGH TECH FIRE PROTECTION of PO Box 156, Minot, ME 04258 For installation at <u>454 COMMERCIAL ST</u> IMT Office Building

Job ID: 2011-12-2924-FAFS

CBL: 043- D-005-001

has permission to install supervised, automatic sprinkler system

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise closed-in. 48 HOUR NOTICE IS REQUIRED. A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be

Fire Prevention Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY PENALTY FOR REMOVING THIS CARD

Strengthening a Remarkable City, Building a Community for Life . www.portlandmaine.gov

Director of Planning and Urban Development Penny St. Louis

Job ID: <u>2011-12-2924-FAFS</u> <u>install supervised, automatic sprinkler</u> <u>system</u> For installation at: <u>454 COMMERCIAL ST</u> <u>IMT Office Building</u> CBL: 043- D-005-001

Conditions of Approval:

Fire

The sprinkler system shall be installed in accordance with NFPA 13.

A separate sprinkler permit is required from the State Fire Marshal's Office.

Sprinkler supervision shall be provided in accordance with NFPA 101, *Life Safety Code*, and NFPA 72, *National Fire Alarm and Signaling Code*.

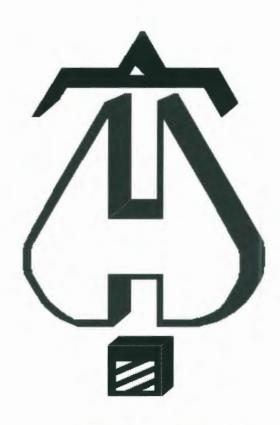
Sprinkler protection shall be maintained. Where the system is to be shut down for maintenance or repair, the system shall be checked at the end of each day to insure the system has been placed back in service.

Fire department connection shall be a single 2 $\frac{1}{2}$ per 13:6.8.1.3 with a Knox locking cap. System acceptance and commissioning must be coordinated with alarm and suppression system contractors and the Fire Department. Call 874-8703 to schedule.

Installation of a sprinkler or fire alarm system requires a Knox Box to be installed per city ordinance. Private fire mains and fire hydrants shall be maintained, tested and painted in accordance with NFPA 25 and City Code Chapter 10, Art IV.

City of Portland, Maine - Building or Use Permit Application

389 Congress Street, 04101 Tel: (207) 874-8703, FAX: (207) 8716


Job No: 2011-12-2924-FAFS	Date Applied: 12/14/2011		CBL: 043- D-005-001			
Location of Construction: 468 COMMERCIAL ST	Owner Name: CITY OF PORTLAND		Owner Address: 389 CONGRESS S PORTLAND, MAI	Phone:		
Business Name: International Marine Terminal	Contractor Name: High Tech Fire Prot	ection	Contractor Addr PO Box 156, M	Phone: 998-2551		
Lessee/Buyer's Name:	Phone:		Permit Type: Fire Suppression S	ystem		Zone: WPDZ
Past Use: New Office Bldg on site	Proposed Use: Same: Office use – to	ninstall	Cost of Work: \$12,000.00			CEO District:
new onne blug on she	fire suppression syst		Fire Dept:	Approved wy	conditions	Inspection: Use Group: Type:
				Signature: Standally . (30)		
Proposed Project Descriptio wterbased fire suppression system			Pedestrian Activ	vities District (P.A.	D.)	
Permit Taken By: Gayle			1			
		Special Z	one or Reviews	Zoning Appeal	Historic	Preservation
 This permit application Applicant(s) from meeting Federal Rules. 	ng applicable State and	Shorelan	s	Variance	Does n	Dist or Landmark ot Require Review
 Building Permits do not septic or electrial work. Building permits are voi 	Flood Zo		Conditional Use	e Requir		
within six (6) months of False informatin may in permit and stop all work	Site Plan	I	Approved Denied	Approv	ved w/Conditions	
Farmer and and have an end	Maj Date:OK	Min _ MA	Date:	Denied Date:	\geq	

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the appication is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

SIGNATURE OF APPLICANT	ADDRESS	DATE	PHONE	
RESPONSIBLE PERSON IN CHARGE (DATE	PHONE		

	66						
	2011 12 2924						
Water-Based Fire Suppres	sion System Permit						
If you or the property owner owes real estate or prope within the city, payment arrangements must be made							
466 454 Commerza	WEDT						
Installation address: 468 Commercial St	_ CBL: 643 D 006						
Exact location: (within structure) Portland International Mar	ine Terminal						
Type of occupancy(s) (NFPA & ICC): Light Hazard Occupan							
Building owner:	Bagt OAZ-D=00						
Managing Supervisor (RMS): Ed Poulin	License No: 515						
Supervisor phone: 207-998-2551	E-mail: epoulin@fairpoint.net						
Installing contractor: High Tech Fire Protection License No:							
Contractor phone: High Tech Fire Protection E-mail: http@fairpoint.net							
The suppression work to be done will be: New: • Renov	vation: O Addition to existing system: O						
This is an amendment to an existing permit: Yes: O NO	Permit no: 9764						
NFPA Standard this system is designed to: NFPA 13	Edition: 2007						
*Non-NFPA systems are not approved for use within the City of Portland.	COST OF WORK: \$11,554.00						
Download a new copy of this document from	PERMIT FEE: \$140.00						
www.portlandmaine.gov/fire for every submittal. Attach all working	(\$10 PER \$1,000 + \$30 FOR THE FIRST \$1,000)						
documents and complete approved submittals as may be required by	DECENTED						
the State Fire Marshal's Office on electronic PDF's in addition to	RECEIVED						
full sized plans.	BY DEC 14 2011						
Contractor shall verify location and type of all FDCs shall	Mar - DEC 14 ton						
be approved in writing by the Fire Prevention Bureau.	Dept. of Building Inspections						
Submit all information to the Building Inspections Department, 389 Con	ngress Street, Room 315, Portland, Maine 04101.						
Prior to acceptance of any fire protection system, a complete commis	ssioning and acceptance test must be coordinated with						
all fire system contractors and the Fire Department, and proper docu	mentation of such test(s) provided.						
All installation(s) must comply with NFPA and the Fire Department	Technical Standard(s).						
Applicant signature:	Date: Date:						

т (ў

... Fire Protection by Computer Design

HIGH TECH FIRE PROTECTION PO. BOX 156 MINOT, ME 04258-0258 207-998-2551

Job Name : Portland Marine Terminal Calc Building : FP-01 Location : Congress St System : REMOTE AREA #1 Contract : 071211-1 Data File : Portland Marine Terminal Calc.WXF HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

HYDRAULIC CALCULATIONS for

Project name: Portland Marine Terminal Calc **Location:** Congress St **Drawing no:** FP-01 **Date:** 10-19-11

Design

Remote area number: REMOTE AREA #1 Remote area location: OFFICE AND CORRIDOR Occupancy classification: LIGHT HAZARD Density: .1 - Gpm/SqFt Area of application: 1125 - SqFt Coverage per sprinkler: 196 - SqFt Type of sprinklers calculated: GLOBE MODEL GL5606 No. of sprinklers calculated: 13 In-rack demand: N/A - GPM Hose streams: 100 - GPM Total water required (including hose streams): 421 - GPM @ 98 - Psi Type of system: WET SYSTEM Volume of dry or preaction system: N/A - Gal

Water supply information

Date: Location: PORTLAND WATER DEPT. Source: TWO HYDRANT CALC

Name of contractor: HIGH TECH FIRE PROTECTION Address: PO. BOX 156 / / MINOT, ME 04258-0258 Phone number: 207-998-2551 Name of designer: TIM FORTIN Authority having jurisdiction: STATE OF MAINE & CITY OF PORTLAND Notes: (Include peaking information or gridded systems here.)

Water Supply Curve (C)

HIGH TECH FIRE PROTECTION

Portland Marine Terminal Calc

Page 2 Date 10-19-11

150 140 130 120	
40 30	
30	
00 D2	
0 D3	
0	
o [//	
o 🗍	
o [/	
o 🚺	
o // / / / / / / / / / / / / / / / / /	
o //	
o	
200 400 600 800 1000 1200 12 FLOW (N ^ 1.85)	400 1600 1800

Fittings Used Summary

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

Page 3

Date 10-19-11

Fitting L Abbrev.		1/2	3/4	1	1¼	1½	2	21/2	3	3½	4	5	6	8	10	12	14	16	18	20	24
E Fsp	90' Standard Elbow Flow Switch Potter VSR	2	2	2	3 Fixed I	4 Loss Ba	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	Generic Gate Valve	0	0	0	0	035 Da	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
V	90' Ell Firelock #001	0	0	0	0	0	3.5	4.3	5	0	6.8	8.5	10	13	0	0	0	0	0	0	0
Х	90'Tee-BranchFirelock002	0	0	0	0	0	8.5	10.8	13	0	16	21	25	33	0	0	0	0	0	0	0
Zia	Wilkins 350	Fittir	Fitting generates a Fixed Loss Based on Flow																		

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

Page 4 Date 10-19-11

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP1	-1.0	5.6	12.25	na	19.6	0.1	196	7.0
DP2	-1.0	5.6	12.25	na	19.6	0.1	196	7.0
DP3	-1.0	5.6	12.25	na	19.6	0.1	196	7.0
1	10.9	K = K @ EQ01	12.37	na	19.64			
2	10.9	K = K @ EQ01	12.32	na	19.6			
3	10.9	K = K @ EQ02	13.61	na	20.6			
4	10.9	K = K @ EQ01	16.5	na	22.68			
5	10.9	K = K @ EQ01	19.94	na	24.94			
6	10.9	K = K @ EQ01	22.98	na	26.77			
L1	10.9		12.7	na				
L2	10.9		13.03	na				
L3	10.9		14.39	na				
L4	10.9		17.43	na				
L5	10.9		19.3	na				
L6	10.9		20.61	na				
L7	10.9		21.03	na				
L8	10.9		24.23	na				
10	17.0	K = K @ EQ03	14.34	na	20.83			
11	17.0	K = K @ EQ03	14.32	na	20.82			
12	17.0	K = K @ EQ03	15.7	na	21.8			
13	17.0	K = K @ EQ03	19.94	na	24.57			
L10	17.0		14.7	na				
L11	17.0		15.1	na				
L12	17.0		16.55	na				
L13	17.0		18.62	na				
L14	10.9		23.3	na				
L15	10.9		23.65	na				
20	10.9	K = K @ EQ01	27.6	na	29.34			
21	10.9	K = K @ EQ01	34.63	na	32.86			
22	10.9	K = K @ EQ01	44.43	na	37.22			
M1	10.9		24.69	na				
M2	9.6		26.52	na				
M3	9.6		29.94	na				
M4	9.6		38.84	na				
M5	9.6		52.75	na				
M6	9.6		56.75	na				
M7	9.6		70.13	na				
TOR	9.6		76.25	na				
BOR	2.6		87.99	na				
BAK	0.0		98.06	na				
U1	-5.0		101.0	na				
TEST	0.0		98.93	na	100.0			

The maximum velocity is 30.75 and it occurs in the pipe between nodes M5 and M6

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

Page 5 Date 10-19-11

ortiand	viarine Terminal Calc					Date 10-19-11
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes *****
DP1	19.60 1.049	1E 2.0	2.000	12.250		K Factor = 5.60
to EQ01	120.0 19.6 0.1252	0.0 0.0	2.000 4.000	-0.433 0.501		Vel = 7.28
	0.0 19.60			12.318		K Factor = 5.58
DP2 to	19.60 1.049 120.0	1E 2.0 0.0	2.000 2.000	12.250 -0.433		K Factor = 5.60
EQ02	<u>19.6</u> 0.1252 0.0	0.0	4.000	0.501		Vel = 7.28
	19.60			12.318		K Factor = 5.58
DP3 to EQ03	19.60 1.049 120.0 19.6 0.1253	1T 5.0 0.0 0.0	2.000 5.000 7.000	12.250 -0.433 0.877		K Factor
	0.0	0.0	1.000	0.077		V01 - 7.20
	19.60			12.694		K Factor = 5.50
1 to L1	19.64 1.049 120.0 19.64 0.1257	1E 2.0 0.0 0.0	0.650 2.000 2.650	12.367 0.0 0.333		K Factor @ node EQ01 Vel = 7.29
	0.0 19.64	0.0	2.000	12.700		K Factor = 5.51
2 to	19.60 1.049 120.0	1T 5.0 0.0	0.700 5.000	12.318 0.0		K Factor @ node EQ01
L2	19.6 0.1254	0.0	5.700	0.715		Vel = 7,28
	0.0 19.60			13.033		K Factor = 5.43
3 to	20.60 1.049 120.0	1T 5.0 0.0	0.700 5.000	13.607 0.0		K Factor @ node EQ02
L3	20.6 0.1374	0.0	5.700	0.783		Vel = 7,65
	0.0 20.60			14.390		K Factor = 5.43
4 to	22.68 1.049 120.0	1T 5.0 0.0	0.700 5.000	16. 49 5 0.0		K Factor @ node EQ01
L4	22.68 0.1644	0.0	5.700	0.937		Vel = 8.42
	0.0 22.68			17.432		K Factor = 5.43
5	24.94 1.049	1T 5.0	0.600	19.938		K Factor @ node EQ01
to L7	120.0 24.94 0.1957	0.0 0.0	5.000 5.600	0.0 1.096		Vel = 9.26
	0.0 24.94			21.034		K Factor = 5.44
6	26.77 1.049	1T 5.0	0.600	22.976		K Factor @ node EQ01
to L8	120.0 26.77 0.2230	0.0 0.0	5.000 5.600	0.0 1.249		Vel = 9.94

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

Hyd.	Qa	Dia.	Fittin	g	Pipe	Pt	Pt		
Ref.		"C"	or		Ftng's	Pe	Pv	*******	Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn		
	0.0								
	26.77					24.225		K Factor	= 5.44
L1	19.64	1.38		0.0	10.050	12.700			
to		20.0		0.0	0.0	0.0			
L2	19.64	0.0331		0.0	10.050	0.333		Vel = 4	.21
L2 to	19.60	1.38 120.0		0.0 0.0	11.400 0.0	13.033 0.0			
L3	39.24	0.1190		0.0	11.400	1.357		Vel = 8	.42
L3	20.60	1.38		0.0	11.700	14.390			
to		120.0		0.0	0.0	0.0			
L4	59.84	0.2600		0.0	11.700	3.042		Vel = 12	2,84
L4	22.68	1.61	1E	4.0	4.400	17.432			and a second
to		120.0		0.0	4.000	0.0			00
L5 L5	82.52 0.0	0.2223	1E	0.0 4.0	8.400	1.867 19.299		Vel = 13	5.00
to		120.0	IE	0.0	4.000	0.0			
Ľ6	82.52	0.2224		0.0	5.900	1.312		Vel = 13	00.
L6	0.0	1.61		0.0	1.900	20.611			
to		20.0		0.0	0.0	0.0			
L7	82.52	0.2226		0.0	1.900	0.423		Vel = 13	3.00
L7	24.94	1.61	1T	8.0	2.100	21.034			
to M1	107.46	120.0 0.3624		0.0 0.0	8.000 10.100	0.0 3.660		Vel = 16	3.03
1411	0.0	0.0024		0.0	10.100	0.000		V01- 10	
	107.46					24.694		K Factor	= 21.62
L8	26.77	1.049		0.0	2.100	24.225			
to		120.0		0.0	0.0	0.0			
M1	26.77	0.2233		0.0	2.100	0.469		Vel = 9	.94
	0.0					04.004		K Fasta	5.00
10	26.77	1.040	15	0.0	0.600	24.694			= 5.39
10 to	20.83	1.049 120.0	1E	2.0 0.0	0.600 2.000	14.338 0.0		K Facior	@ node EQ03
L10	20.83	0.1400		0.0	2.600	0.364		Vel = 7	.73
	0.0								
	20.83					14.702		K Factor	= 5.43
11	20.82	1.049	1T	5.0	0.600	14.320		K Factor	@ node EQ03
to		120.0		0.0	5.000	0.0		Val	70
L11	20.82	0.1400		0.0	5.600	0.784		Vel = 7	.73
	0.0 20.82					15.104		K Factor	= 5.36
12	21.80	1.049	1T	5.0	0.600	15.699			@ node EQ03
to		120.0		0.0	5.000	0.0		it i dotoi	
L12	21.8	0.1527		0.0	5.600	0.855		Vel = 8	.09

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

21.1

Portland	Marine Te	erminal Calc						Date 10-19-11
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittir or Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******
	0.0							
10	21.80	1.0.10	47	5.0	0.000	16.554		K Factor = 5.36
13 to	24.57	1.049 120.0	1T	5.0 0.0	0.600 5.000	19.944 2.642		K Factor @ node EQ03
L15	24.57	0.1904		0.0	5.600	1.066		Vel = 9.12
	0.0 24.57					23.652		K Factor = 5.05
L10	20.83	1.38		0.0	10.900	14.702		
to	00.00	120.0		0.0	0.0	0.0		
L11	20.83	0.0369		0.0	10.900	0.402		Vel = 4.47
L11 to	20.82	1.38 120.0		0.0 0.0	10.900 0.0	15.104 0.0		
L12	41.65	0.1330		0.0	10.900	1.450		Vel = 8,93
L12	21.79	1.61	1T	8.0	7.100	16.554		
to		120.0		0.0	8.000	0.0		
L13	63.44	0.1367		0.0	15.100	2.064		Vel = 10.00
L13	0.0	1.61 120.0	1T	8.0 0.0	6.900 8.000	18.618		
to L14	63.44	0.1367		0.0	14.900	2.642 2.037		Vel = 10.00
L14	0.0	1.61		0.0	2.600	23.297		
to		120.0		0.0	0.0	0.0		
L15	63.44	0.1365		0.0	2.600	0.355		Vel = 10.00
L15	24.57	1.61	1T	8.0	1.200	23.652		
to M2	88.01	120.0 0.2505		0.0 0.0	8.000 9.200	0.563 2.305		Vel = 13.87
1112	0.0	0.2000		0.0	0.200	2.000		
	88.01					26.520		K Factor = 17.09
20	29.34	1.049	1T	5.0	1.700	27.602		K Factor @ node EQ01
to	00.0	120.0		0.0	5.000	0.563		1/-1 10.00
M3	29.34	0.2645		0.0	6.700	1.772		Vel = 10.89
	0.0 29.34					29.937		K Factor = 5.36
21	32.86	1.049	1T	5.0	6.200	34.628		K Factor @ node EQ01
to	02.00	120.0		0.0	5.000	0.563		
M4	32.86	0.3261		0.0	11.200	3.652		Vel = 12.20
	0.0 32.86					38.843		K Factor = 5.27
22	37.22	1.049	1E	2.0	11.900	44.426		K Factor @ node EQ01
o		120.0	1T	5.0	7.000	0.563		
M5	37.22	0.4106		0.0	18.900	7.761		Vel = 13.82

Page 7 Date 10-19-11

HIGH TECH FIRE PROTECTION Portland Marine Terminal Calc

.

Page 8 Date 10-19-11

Portland	Marine 16	rminal Calc Date 10-19					Date 10-19-11	
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.		Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes *****
	37.22					52.750		K Factor = 5.12
M1	134.22	2.067		0.0	7.800	24.694		
to	104.22	120.0		0.0	0.0	0.563		
M2	134.22	0.1619		0.0	7.800	1.263		Vel = 12.83
M2	88.01	2.067		0.0	8.300	26.520		
to	00.01	120.0		0.0	0.0	0.0		
M3	222.23	0.4117		0.0	8.300	3.417		Vel = 21.25
M3	29.34	2.067	1V	3.5	13.700	29.937		
to		120.0		0.0	3.500	0.0		
M4	251.57	0.5178		0.0	17.200	8.906		Vel = 24.05
M4	32.87	2.067		0.0	21.400	38.843		
to		120.0		0.0	0.0	0.0		
M5	284.44	0.6499		0.0	21.400	13.907		Vel = 27.20
M5	37.22	2.067		0.0	4.900	52.750		
0		120.0		0.0	0.0	0.0		
M6	321.66	0.8159		0.0	4.900	3.998		Vel = 30.75
M6	0.0	2.067	1X	8.5	4.400	56.748		
to		120.0	1V	3.5	12.000	0.0		
M7	321.66	0.8159		0.0	16.400	13.380		Vel = 30,75
M7	0.0	2.067	1V	3.5	4.000	70.128		
to		120.0		0.0	3.500	0.0		
TOR	321.66	0.8159		0.0	7.500	6.119		Vel = 30,75
TOR	0.0	2.067	1Fsp	0.0	7.000	76.247		
0		120.0		0.0	0.0	6.032		* Fixed loss = 3
BOR	321.66	0.8159		0.0	7.000	5.711		Vel = 30,75
BOR	0.0	2.635	1Zia	0.0	0.100	87.990		
0		120.0		0.0	0.0	10.050		* Fixed loss = 8.924
BAK	321.66	0.2400		0.0	0.100	0.024		Vel = 18,92
BAK	0.0	6.16		40.168	170.000	98.064		1
0		140.0	1G	4.304	87.509	2.166		
U1	321.66	0.0030	1T -	43.037	257.509	0.774		Vel = 3.46
U1	0.0	9.79		26.131	200.000	101.004		
0		140.0	1T -	59.389	85.520	-2.166		
TEST	321.66	0.0003		0.0	285.520	0.091		Vel = 1.87
	100.00							Qa = 100.00
	421.66					98.929		K Factor = 42.39

CITY OF PORTLAND, MAINE Department of Building Inspections
Original Receipt
20/1
Received from
Location of Work
Cost of Construction \$ Building Fee:
Permit Fee \$ Site Fee:
Certificate of Occupancy Fee:
Building (IL) Plumbing (I5) Electrical (I2) Site Plan (U2)
Other
CBL: 042 2006
Check #: Total Collected \$
No work is to be started until permit issued. Please keep original receipt for your records.
Taken by:
WHITE - Applicant's Copy YELLOW - Office Copy PINK - Permit Copy