

. . Fire Protection by Computer Design

Hampshire Fire Protection 8 N Wentworth Ave Londonderry, NH 03053 603-432-8221

Job Name : Courtyard by Marriott Standpipe Calc

Building : 3 of 8
Location : Portland ME
System : Standpipe Calc
Contract : 4396CME

Data File : Standpipe Calc.WXF

HYDRAULIC CALCULATIONS for

Project name: Courtyard by Marriott

Location: Portland ME Drawing no: 3 of 8
Date: 6-5-13

Design

Remote area number: Standpipe Calc

Remote area location: Stair A

Occupancy classification: Class I Manual Wet Standpipe

Density: - Gpm/SqFt
Area of application: - SqFt
Coverage per sprinkler: - SqFt
Type of sprinklers calculated:
No. of sprinklers calculated:
In-rack demand: - GPM
Hose streams: - GPM

Total water required (including hose streams): 750 - GPM @ 142.05 - Psi

Type of system: Wet Manual Wet Standpipe Volume of dry or preaction system: N/A - Gal

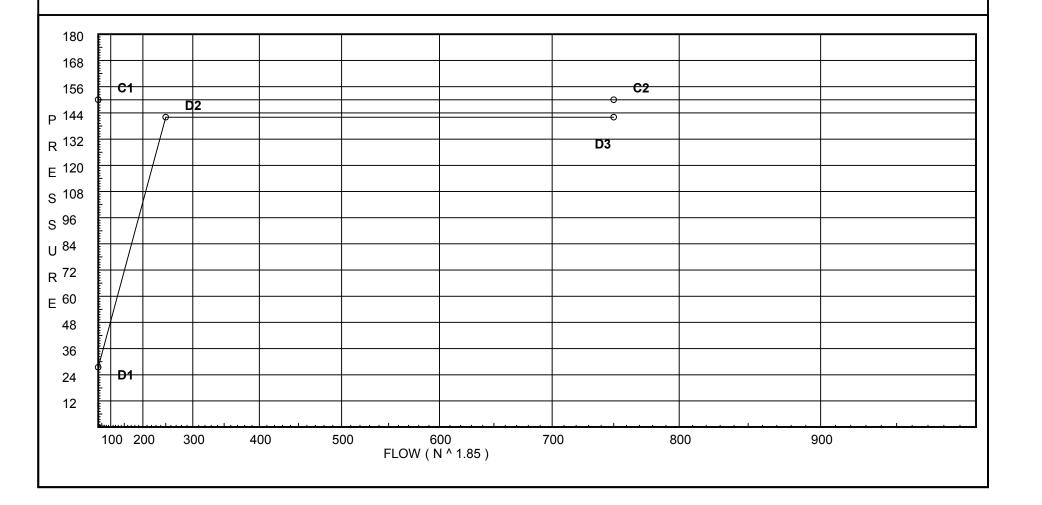
Water supply information

Date: N/A Location: FDC Source: NFPA

Name of contractor: Hampshire Fire

Address: N Wentworth Ave Londonderry NH 03053

Phone number: 603-432-8221 **Name of designer:** E Vance Wooten **Authority having jurisdiction:** Portland


Notes: (Include peaking information or gridded systems here.) Calculation provides 250 GPM @ 100 PSI at the top FD Valve at the Remote Statndpipe and 250 GPM at the next FD Valve down the remote standpipe and then 250 GPM is added at the connection to the next standpipe and run to the FDC where the Fire Department

Pumper Truck will provide 750 GPM @ 150 PSI

Page 2 Date 6-4-13

City Water Supply: C1 - Static Pressure : 150 C2 - Residual Pressure: 150 C2 - Residual Flow : 750

Demand: D1 - Elevation : 27.430 D2 - System Flow : 250
D2 - System Pressure : 142.054
Hose (Demand) : 500
D3 - System Demand : 750
Safety Margin : 7.946

Fittings Used Summary

Hampshire Fire Protection

	Courtyard by Marriott Standpipe Calc Date 6-4-13																				
Fitting L Abbrev.		1/2	3/4	1	11/4	1½	2	2½	3	3½	1	5	6	8	10	12	14	16	18	20	24
ADDIEV.	Name	/2	/4	'	1 /4	1/2		<u>Z</u> /2	<u> </u>	3/2	-		0	0	10	12	14	10	10	20	
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
V	90' Ell Firelock #001	0	0	0	0	0	3.5	4.3	5	0	6.8	8.5	10	13	0	0	0	0	0	0	0
Χ	90'Tee-BranchFirelock002	0	0	0	0	0	8.5	10.8	13	0	16	21	25	33	0	0	0	0	0	0	0

Page 3

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Hampshire Fire Protection Courtyard by Marriott Standpipe Calc Page 4 Date 6-4-13

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
FV1	68.333	25	100.0	na	250.0	1.0	250	100.0
FV2	58.0	20	105.22	na	250.0	1.0	200	100.0
ST01	11.67		129.54	na				
ST02	11.67		131.75	na	250.0			
1FL	11.67		132.16	na				
TOR	11.67		132.39	na				
BOR	2.0		137.25	na				
FDC	5.0		142.05	na				

The maximum velocity is 16.88 and it occurs in the pipe between nodes BOR and FDC

Hampshire Fire Protection Courtyard by Marriott Standpipe Calc Page 5 Date 6-4-13

•	•	• •						
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin oı Eqv.	•	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
FV1	250.00	4.26	2)./	17.007	4E 620	100.000		K Factor = 25.00
	250.00	4.26	2V	17.907	15.630	100.000		K Factor = 25.00
to FV2	250.0	120.0 0.0151	1B	15.8 0.0	33.707 49.337	4.475 0.746		Vel = 5.63
		4.26	4\/					
FV2 to	250.00	4.26 120.0	1V 1X	8.954 21.067	48.000 30.021	105.221 20.066		Qa = 250
เบ ST01	500.0	0.0545	1/	0.0	78.021	4.253		Vel = 11.25
ST01	0.0	6.357	3V	37.72	202.670	129.540		VOI - 11.20
to	0.0	120.0	1X	31.433	81.726	0.0		
ST02	500.0	0.0078	1B	12.573	284.396	2.207		Vel = 5.05
ST02	250.00	6.357		0.0	24.790	131.747		Qa = 250
to	200.00	120.0		0.0	0.0	0.0		Qu 200
1FL	750.0	0.0165		0.0	24.790	0.408		Vel = 7.58
1FL	0.0	6.357	1V	12.573	1.540	132.155		
to		120.0		0.0	12.573	0.0		
TOR	750.0	0.0164		0.0	14.113	0.232		Vel = 7.58
TOR	0.0	6.357	1X	31.433	9.670	132.387		
to		120.0		0.0	31.433	4.188		
BOR	750.0	0.0164		0.0	41.103	0.675		Vel = 7.58
BOR	0.0	4.26	1S	28.968	6.000	137.250		
to		120.0	2V	17.907	46.875	-1.299		
FDC	750.0	0.1154		0.0	52.875	6.103		Vel = 16.88
	0.0							
	750.00					142.054		K Factor = 62.93