

DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK CITY OF PORTLAND BUILDING PERMIT

This is to certify that <u>FREEDOM FIRE PROTECTION</u> <u>209 QUAKER RIDGE RD</u> <u>CASCO, ME 04015</u> For installation at 606 CONGRESS ST

Job ID: 2011-11-2699-FAFS

CBL: 039- A-010-001

has permission to install an automatic sprinkler system

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise closed-in. 48 HOUR NOTICE IS REQUIRED. A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be

Fire Prevention Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY PENALTY FOR REMOVING THIS CARD

BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 or 874-8693 (ONLY) or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in 6 months. If the project is not started or ceases for 6 months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

Final Fire

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUPIED.

Strengthening a Remarkable City, Building a Community for Life . www.portlandmaine.gov

Director of Planning and Urban Development Penny St. Louis

Job ID: 2011-11-2699-FAFS install an automatic sprinkler system For installation at: 606 CONGRESS ST CBL: 039- A-010-001

Conditions of Approval:

Fire

The sprinkler system shall be installed in accordance with NFPA 13. A signed compliance letter will be required.

A separate sprinkler permit is required from the State Fire Marshal's Office.

Sprinkler protection shall be maintained. Where the system is to be shut down for maintenance or repair, the system shall be checked at the end of each day to insure the system has been placed back in service.

Fire department connection shall be single 2 $\frac{1}{2}$ inch. The Fire Department will require a Knox locking cap on the Fire Department Connection.

System acceptance and commissioning must be coordinated with alarm and suppression system contractors and the Fire Department. Call 874-8703 to schedule.

A 4100 series Knox Box is required.

City of Portland, Maine - Building or Use Permit Application

389 Congress Street, 04101 Tel: (207) 874-8703, FAX: (207) 8716

Job No: 2011-11-2699-FAFS	Date Applied: 10/28/2011		CBL: 039- A-010-001			
Location of Construction: 606 CONGRESS ST	Owner Name: GEOFFREY I RICE		Owner Address: 658 CONGRESS S' PORTLAND, ME (Phone:	
Business Name:	Contractor Name: William Wales @ Freedor Protection, Inc.	m Fire	Contractor Addr 209 Quaker Ridge	ess: , Casco, ME 04015		Phone: (207)671 -8639
Lessee/Buyer's Name:	Phone:		Permit Type: FIRE ALARM - Fi	re Alarm		Zone: B-3
Past Use: 1 st floor restaurant with 2	Proposed Use: Same: 1 st floor restar	woont with	Cost of Work: \$19,000.00			CEO District:
dwelling units above	2 dwelling units abov install fire suppression	ve – to	Fire Dept:	Approved w/ co Denied N/A	nditions	Inspection: Use Group: Type:
Proposed Project Description Mixed Commercial Use	:		Signature: 3 Pedestrian Activ	ities District (P.A.D.)	58)	Signature:
Permit Taken By: Lannie			I	Zoning Approva	l	
 This permit application d Applicant(s) from meetin Federal Rules. Building Permits do not i septic or electrial work. Building permits are void within six (6) months of t False informatin may inv permit and stop all work. 	ng applicable State and nclude plumbing, I if work is not started the date of issuance. alidate a building	Shorelan Wetlands Flood Zo Subdivis Site Plan	s one ion	Zoning Appeal Variance Miscellaneous Conditional Use Interpretation Approved Denied Date:	Not in I Does no Require Approve Approve	Dist or Landmark ot Require Review s Review

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

SIGNATURE OF APPLICANT	ADDRESS	DATE	PHONE
RESPONSIBLE PERSON IN CHARGE	OF WORK, TITLE	DATE	PHONE

ł

2011-11-2699

Water-Based Fire Suppression System Permit

If you or the property owner owes real estate or property taxes or user charges on any property within the city, payment arrangements must be made before permits of any kind are accepted.

Installation address: 606 Congress Street	CBL: 039 A OD
Exact location: (within structure) Basement, First, Second, a	and Third levels
Type of occupancy(s) (NFPA & ICC): Mixed - Mercantile & A	partment
Building owner: Geoffrey Rice (Rice Management)	
Managing Supervisor (RMS): Timothy Vess	License No: 348
Supervisor phone: 207/627-4109	E-mail: wwales@maine.rr.com
Installing contractor: Freedom Fire Protection, Inc.	License No: 295
Contractor phone: 207/671-8639	E-mail: wwales@maine .rr.com
The suppression work to be done will be: New: • Renova	ation: Addition to existing system:
This is an amendment to an existing permit: Yes: O NO	Permit no:
NFPA Standard this system is designed to: 13 & 13R	Edition: 2007
*Non-NFPA systems are not approved for use within the City of Portland.	COST OF WORK: \$18,669.00
Download a new copy of this document from	PERMIT FEE: \$210
www.portlandmaine.gov/fire for every submittal. Attach all working	(\$10 PER \$1,000 + \$30 FOR THE FIRST \$1,000)
documents and complete approved submittals as may be required by	RECEIVED
the State Fire Marshal's Office on electronic PDF's in addition to	
full sized plans.	- OCT 2 8 2011
Contractor shall verify location and type of all FDCs shall	Dept. of Building Inspections
be approved in writing by the Fire Prevention Bureau.	City of Portland Maine

11.17. 11

Submit all information to the Building Inspections Department, 389 Congress Street, Room 315, Portland, Maine 04101. Prior to acceptance of any fire protection system, a complete commissioning and acceptance test must be coordinated with all fire system contractors and the Fire Department, and proper documentation of such test(s) provided.

All installation(s) must comply with NFPA and the Fire Department Technical Standard(s).

-W. Wales_ Date: July 6, 2011 Applicant signature:

Freedom Fire Prot. 209 Quaker Ridge Rd Casco ME 04015

Freedom Fire Protection, Inc.

30 Years of Fire Protection Experience 209 Quaker Ridge Road Casco, Maine 04015 Phone (207) 627-4109 Fax (207) 627-7340

July 6, 2011

Portland City Hall Third Floor Room #315 Portland, Maine 04101

Attention: Captain Keith Gautreau

Ref: 606 Congress Street Portland, Maine 04101

Subject: Fire Sprinkler Plan Review

Enclosed please find for your review and comment the following sprinkler information.

- Fire Suppression System Permit
- Permit Fee check
- Freedom Fire Protections drawings FP1, FP2
- 1 set of 8-1/2 x 11 PDF sprinkler plans.
- Hydraulic Calculations Area #1 and Area #2.
- Copy of the State Fire Marshall's sprinkler permit (to follow).

Please get in touch with me to discuss any questions or if you need additional information.

Regards, Williolez

William Wales

(O) 207-627-4109 (F) 207-627-7340 (C) 207-671-8639 E-mail <u>wwales@maine.rr.com</u>

State of Maine Department of Public Safety Fire Sprinkler System Permit

9571

606 CONGRESS STREET

Located at:606 CONGRESS STREETIn the Town of:PortlandOccupancy/Use:TAVERNType of System:NFPA 13

Permission is hereby given to:

Freedom Fire Protection, Inc. 209 Quaker Ridge Road Casco, ME 04015 Contractor License # 295

to begin installation according to plans submittal approved by the Office of State Fire Marshal.

The submittal is filed under log # **2111229**, and no departure from the application submittal shall be made without prior approval in writing. This permit is issued under the provisions of Title 32, Chapter 20, Section 12004-I. Nothing herein shall excuse the holder of this permit from failure to comply with local ordinances, zoning laws, or other pertinent legal restrictions. This permit shall be displayed at the construction site or be made readily available.

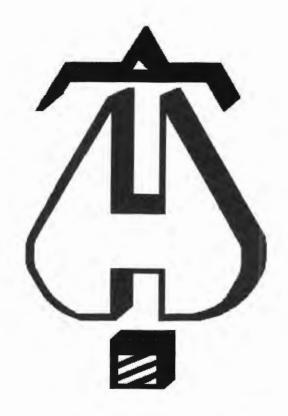
This permit was issued on 7/13/2011 for a fee paid of \$100.00

This permit will expire at midnight on Monday, January 09, 2012

The expiration date applies only if the installation has not begun by that date and no permission has been granted to extend the date. Once installation begins, then the permit is valid for however long it takes to complete the installation, assuming that the work is fairly continuous.

Im & Monio

John E. Morris Commissioner


The type of Fire Department Connection and its location is to be according to the Local Fire Department

Within 30 days of the completion of a new fire sprinkler system or an addition to an existing fire sprinkler system, a fire sprinkler system contractor shall provide to the Office of State Fire Marshal a copy of this permit signed and dated by the certified Responsible Managing Supervisor representing that the fire sprinkler system has been installed according to specifications of the approved plan to the best of the supervisor's knowledge, information, and belief. This requirement is part of the sprinkler law, and neglect of this duty is grounds to not renew the contractor's license to do work in the State of Maine. All renewed sprinkler licenses are good for two years and expire on a June 30th.

Job completed, tested and verified by date of _____

RMS for this job: Vess Timothy L.

RMS Signature:___

... Fire Protection by Computer Design

FREEDOM FIRE PROTECTION INC. 209 QUAKER RIDGE ROAD CASCO, MAINE 04015 207-627-4109

Job Name : 606 CONGRESS STREET HC1 Building : 606 CONGRESS STREET Location : PORTLAND, MAINE 04101 System : #1 AREA #1 Contract : Data File :

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Water Supply Curve (C)

FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC1

Page 2 Date 3/2/12

y Water Supply: C1 - Static Pressu C2 - Residual Pre C2 - Residual Flow	re : 71 ssure: 62 v : 992				Demand: D1 - D2 - D2 - Hose Hose D3 - Safe	Elevation System Flow System Pressure e (Adj City) e (Demand) System Demand ty Margin	: 17.61 111.6 62.30 100 211.6 8.17
50							
40							
30							
20							
10							
00							
0 C1							
0 02			+				
							6
0							
0							
0 D1			+				
100 200 300) 400	500	600 7	L <u></u>	800	900	
		FLOW	600 7 (N^1.85)				

Pressure / Flow Summary - STANDARD

FREEDOM FIRE PROTECTION INC. 606

TEST

0.0

	OM FIRE PR	ROTECTION INC.					Page Date	4 3/2/12
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
100	40.66	4.2	12.53	na	14.87	0.1	0.001	11.1
102		4.2	13.34		15.34	0.1	0.001	11.1
101	40.66	4.2	19.61	na	10.04	0.1	0.001	11.1
30	40.66	4.2		na	19.43	0.1	0.001	11.1
103	40.66	4.2	21.4 18.82	na	18.22	0.1	0.001	11.1
104	40.66	4.2		na	15.49	0.1	0.001	11.1
105	40.66	4.2	13.61	na		0.1	0.001	
106	40.66	4.2	11.65	na	14.34		0.001	11.1
107	40.66	4.2	11.1	na	13.99	0.1	0.001	11.1
22	40.66		11.48	na				
21	40.66		12.25	na				
20	40.66		14.07	na				
19	40.66		19.43	na				
18	40.66		22.1	na				
17	40.66		24.31	na				
16	31.66		30.2	na				
15	31.66		32.35	na				
14	31.66		33.92	na				
13	22.66		38.66	na				
12	20.0		40.55	na				
11	20.0		41.67	na				
10	8.5		47.35	na				
9	8.5		50.44	na				
8	8.5		51.98	na				
7	0.0		56.21	na				
6	0.0		59.52	na				
5	8.5		56.39	na				
4	8.5		57.96	na				
3	2.5		61.11	na				
2	0.0		62.22	na				
	0.0		62.22					

na

na

100.0

The maximum velocity is 16.27 and it occurs in the pipe between nodes 20 and 19

62.22

62.31

Final Calculations - Hazen-Williams

FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC1

	Page
	Date

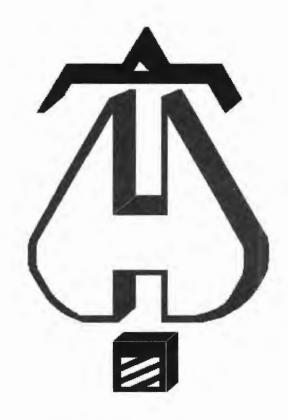
		PROTECTIC STREET HO						Page 5 Date 3/2/12				
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft		ting or v. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****				
102	14.87	1.049	1E	2.0	8.660	12.534		K Factor = 4.20				
to	44.07	120		0.0	2.000	0.0						
101	14.87	0.0752	45	0.0	10.660	0.802		Vel = 5.52				
101 to	15.34	1.049 120	1E 1T	2.0 5.0	15.481 7.000	13.336 0.0		K Factor = 4.20				
30	30.21	0.2790	11	0.0	22.481	6.273		Vel = 11.21				
30	0.0	1.049	1E	2.0	14.830	19.609						
to	0.0	120		0.0	2.000	0.0						
17	30.21	0.2791		0.0	16.830	4.697		Vel = 11.21				
	0.0											
	30.21					24.306		K Factor = 6.13				
103	19.43	1.049	1T	5.0	0.660	21.400		K Factor = 4.20				
to		120		0.0	5.000	0.0						
18		0.1233		0.0	5.660	0.698		Vel = 7.21				
						~~~~~						
	30.21 33 19.43 1.049 120 3 19.43 0.1233 0.0 19.43 0.0 19.43 0.4 18.22 1.049 120					22.098		$\frac{\text{K Factor} = 4.13}{\text{K Factor} = 4.20}$				
104	18.22		1T	5.0	0.660	18.815		K Factor = 4.20				
to 19	18 22			0.0 0.0	5.000 5.660	0.0 0.620		Vel = 6.76				
10		0.1000		0.0	0.000	0.020						
	18.22					19.435		K Factor = 4.13				
105	15.49	1.049	1T	5.0	0.660	13.610		K Factor = 4.20				
to		120		0.0	5.000	0.0						
20	15.49	0.0813		0.0	5.660	0.460		Vel = 5.75				
	0.0											
	15.49					14.070		K Factor = 4.13				
106	14.34	1.049	1T	5.0	3.583	11.650		K Factor = $4.20$				
to		120		0.0	5.000	0.0						
21	14.34	0.0703		0.0	8.583	0.603		Vel = 5.32				
	0.0 14.34					12.253		K Factor = 4.10				
107		1.040	1T	5.0	0.660	11.100	····	K Factor = 4.20				
107 to	13.99	1.049 120	1T	0.0	5.000	0.0		K Factor = 4.20				
22	13.99	0.0671		0.0	5.660	0.380		Vel = 5.19				
22	0.0	1.049	2E	4.0	7.500	11.480						
to		120		0.0	4.000	0.0						
21	13.99	0.0672		0.0	11.500	0.773		Vel = 5.19				
21	14.34	1.049		0.0	7.330	12.253						
to		120		0.0	0.0	0.0		14.1 40.70				
20	28.33	0.2479		0.0	7.330	1.817		Vel = 10.52				
20	15.49	1.049		0.0	9.660	14.070						
10	42.90	120		0.0	0.0	0.0		Vel = 16.27				
19	43.82	0.5554		0.0	9.660	5.365		ver - 10.27				

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC1

	Page
	Date

6


Noi.         Qt         P/Fr         Eqv. Ln.         Total         Pf         Pn         Noies           19         18.22         1.38         0.0         9.583         19.435         0.0         0.0         0.0           18         62.04         0.2779         0.0         9.583         2.663         Vel= 13.31           18         19.43         1.61         1T         8.0         2.068         Vel= 12.84           17         30.21         2.157         1T         12.307         9.000         24.306           0         120         0.0         12.307         9.000         24.306         0.0           16         111.68         0.0937         0.0         22.307         0.900         24.306           0         120         0.0         12.307         0.900         24.306         0.0         12.307           16         0.0         2.157         1T         12.307         0.0660         30.199         0.0         16.736         1.568         Vel= 9.81           15         0.0         2.157         0.0         9.000         33.918         0.0         120         0.0         0.43898         13         11.68 <td< th=""><th></th><th></th><th>STREET H</th><th></th><th></th><th></th><th></th><th></th><th>Dat</th><th>je 6 je 3/2/12</th></td<>			STREET H						Dat	je 6 je 3/2/12
0         120         0.0         0.0         9.583         2.663         Vel = 13.31           18         19.43         1.61         17         8.0         2.166         22.098           o         120         0.0         8.000         0.0         10.166         2.20.98           o         120         0.0         10.166         2.208         Vel = 12.84           17         30.21         2.157         17         12.307         9.000         24.306           o         120         0.0         12.307         3.898         16         111.68         0.0936         0.0         21.307         1.995         Vel = 9.81           16         0.0         2.157         1T         12.307         10.660         30.199         120         0.0         12.307         10.95         Vel = 9.81           15         0.0         2.157         1E         6.153         10.568         32.350         120         0.0         6.153         0.0         1411.68         0.0937         0.0         9.000         33.918         14         0.0         2.157         0.0         9.000         3.898         152         121         11.68         0.0620         0.0	Ref.		"C"	or		Ftng's	Pe	Pv	*****	Notes *****
0         120         0.0         0.0         9.583         2.663         Vel = 13.31           18         19.43         1.61         17         8.0         2.166         22.098           o         120         0.0         8.000         0.0         10.166         2.20.98           o         120         0.0         10.166         2.208         Vel = 12.84           17         30.21         2.157         17         12.307         9.000         24.306           o         120         0.0         12.307         3.898         16         111.68         0.0936         0.0         21.307         1.995         Vel = 9.81           16         0.0         2.157         1T         12.307         10.660         30.199         120         0.0         12.307         10.95         Vel = 9.81           15         0.0         2.157         1E         6.153         10.568         32.350         120         0.0         6.153         0.0         1411.68         0.0937         0.0         9.000         33.918         14         0.0         2.157         0.0         9.000         3.898         152         121         11.68         0.0620         0.0	10	19.22	1 20		0.0	0.592	10.425			
18         62.04         0.2779         0.0         9.583         2.663         Vel = 13.31           18         19.43         1.61         1T         8.00         2.166         22.098           o         120         0.0         8.000         0.0         10.166         2.208         Vel = 12.84           17         30.21         2.157         1T         12.307         9.000         24.306           o         120         0.0         21.307         1.995         Vel = 9.81           16         111.68         0.0936         0.0         21.307         1.995         Vel = 9.81           15         0.120         0.0         12.307         0.0         0.0         12.307           0.0         21.57         1T         6.153         10.583         32.350         0           15         0.120         0.0         6.153         0.0         1.588         Vel = 9.81           14         0.0         2.157         0.0         9.000         3.918         0           0         111.68         0.0937         0.0         9.000         0.843         Vel = 9.81           13         111.68         0.0920         0.0		10.22								
18       19.43       1.61       1T       8.0       2.166       22.098         o       120       0.0       8.000       0.0         17       31.47       0.2172       0.0       10.166       2.208       Vel = 12.84         17       30.21       2.157       1T       12.307       9.000       24.306         o       120       0.0       12.307       3.898       16         16       111.68       0.0936       0.0       21.307       1.995       Vel = 9.81         16       0.0       2.157       1T       12.307       0.0       12.307       0.0         15       111.68       0.0937       0.0       22.967       2.151       Vel = 9.81         15       0.0       2.157       1E       6.153       0.0       14       11.68       0.0937       0.0       16.736       1.568       Vel = 9.81         14       0.0       2.157       1E       9.298       2.660       38.659       150       0.0       9.298       1.152         12       0.0       2.157       1E       6.153       0.0       1.92       Vel = 9.81       1.52         12       11.68 <t< td=""><td></td><td>62.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Vel = 13</td><td>3.31</td></t<>		62.04							Vel = 13	3.31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.43	1.61	1T 8	8.0	2.166	22.098			· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	to									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Vei = 12	
16       111.68       0.0936       0.0       21.307       1.995       Vel = 9.81         16       0.0       2.157       1T       12.307       10.660       30.199         15       111.68       0.0937       0.0       22.967       2.151       Vel = 9.81         15       0.0       2.157       1E       6.153       0.0       2.157       Vel = 9.81         15       0.0       2.157       1E       6.153       0.0       32.350       0.0         14       116.8       0.0937       0.0       16.736       1.568       Vel = 9.81         14       0.0       2.157       0.0       9.000       33.918       0.0       120       0.0       0.3898         13       111.68       0.0937       0.0       9.000       0.843       Vel = 9.81       120         13       0.0       2.157       1E       9.298       2.660       38.659       0.0       111.168       0.0936       0.0       11.953       0.741       Vel = 9.81       120       0.0       6.153       0.0       111       11.68       0.0936       0.0       11.983       1.122       Vel = 9.81       111       11.68       0.0353       0.		30.21								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		111 68							Vei = 9	81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								······	<u>vei – 3</u>	.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	0.0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		111.68							Vel = 9	.81
14       111.68 $0.0937$ $0.0$ 16.736 $1.568$ $Vel = 9.81$ 14 $0.0$ $2.157$ $0.0$ $9.000$ $33.918$ $o$ $120$ $0.0$ $0.0$ $3.898$ $13$ $111.68$ $0.0937$ $0.0$ $9.000$ $0.843$ $Vel = 9.81$ $13$ $0.0$ $2.157$ $1E$ $9.298$ $2.660$ $38.659$ $o$ $o$ $150$ $0.0$ $9.298$ $1.152$ $Vel = 9.81$ $12$ $0.0620$ $0.0$ $11.958$ $0.741$ $Vel = 9.81$ $12$ $0.02$ $2.157$ $1E$ $6.153$ $5.830$ $40.552$ $o$ $120$ $0.0$ $6.153$ $0.0$ $11.674$ $0.0$ $8.237$ $4.981$ $10$ $11.68$ $0.0353$ $0.0$ $19.737$ $0.697$ $Vel = 6.57$ $10$ $0.0$ $2.635$ $2E$ $16.474$ $32.948$ $0.0$ $9$ $111.68$ $0.0353$ $0.0$ $87.278$ $3.084$ <td< td=""><td>15</td><td>0.0</td><td>2.157</td><td>1E (</td><td>6.153</td><td>10.583</td><td>32.350</td><td></td><td></td><td></td></td<>	15	0.0	2.157	1E (	6.153	10.583	32.350			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	to									
01200.00.03.89813111.680.09370.09.0000.843Vel = 9.81130.02.1571E9.2982.66038.65901500.09.2981.15212111.680.06200.011.9580.741Vel = 9.81120.02.1571E6.1535.83040.55201200.06.1530.00.011111.680.09360.011.9831.122Vel = 9.81110.02.6351E8.23711.50041.67401200.08.2374.981010111.680.03530.019.7370.697Vel = 6.57100.02.6352E16.47454.33047.35201201T16.47432.9480.09111.680.03530.087.2783.084Vel = 6.5790.02.6352E16.47410.66050.43601201T16.47432.9480.08111.680.03530.043.6081.541Vel = 6.5780.02.6351E8.2377.50051.97701200.08.2373.6811.54170.02.6351E8.2372.940* Fixed loss = 2.946111.680.03530.015.7370.556Vel = 6.57<									Vel = 9	.81
13         111.68         0.0937         0.0         9.000         0.843         Vel = 9.81           13         0.0         2.157         1E         9.298         2.660         38.659           0         150         0.0         9.298         1.152           12         111.68         0.0620         0.0         11.958         0.741         Vel = 9.81           12         0.0         2.157         1E         6.153         5.830         40.552           0         120         0.0         6.153         0.0         11         11.68         0.0936         0.0         11.983         1.122         Vel = 9.81           11         0.0         2.635         1E         8.237         1.500         41.674         0.0         11.168         0.0353         0.0         19.737         0.697         Vel = 6.57           10         0.116         0.0353         0.0         87.278         3.084         Vel = 6.57           9         0.0         2.635         2E         16.474         32.948         0.0           9         111.68         0.0353         0.0         43.608         1.541         Vel = 6.57           9         0.2.63		0.0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111 68							Vel= 9	81
o1500.09.2981.15212111.680.06200.011.9580.741Vel = 9.81120.02.1571E6.1535.83040.552o1200.06.1530.011111.680.09360.011.9831.122Vel = 9.81110.02.6351E8.23711.50041.674o1200.08.2374.981010111.680.03530.019.7370.697Vel = 6.57100.02.6352E16.47454.33047.352o1201T16.47432.9480.09111.680.03530.087.2783.084Vel = 6.5790.02.6352E16.47410.66050.436o1201T16.47432.9480.08111.680.03530.043.6081.541Vel = 6.5790.02.6351E8.2377.50051.977o1200.08.2373.6817711.680.03530.015.7370.556Vel = 6.5770.02.6351E8.2372.00056.214o1201Zac0.08.2372.940* Fixed loss = 2.946111.680.03541.010.2370.362Vel = 6.5760.02.6351E8.2377.50059.51							the second se		<u>vei – 3</u>	.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		111.68							Vei = 9.	.81
01200.0 $6.153$ $0.0$ 11111.68 $0.0936$ $0.0$ 11.983 $1.122$ $Vel = 9.81$ 11 $0.0$ $2.635$ 1E $8.237$ $11.500$ $41.674$ 0120 $0.0$ $8.237$ $4.981$ 10111.68 $0.0353$ $0.0$ $19.737$ $0.697$ $Vel = 6.57$ 10 $0.0$ $2.635$ 2E $16.474$ $54.330$ $47.352$ 01201T $16.474$ $32.948$ $0.0$ 9111.68 $0.0353$ $0.0$ $87.278$ $3.084$ $Vel = 6.57$ 9 $0.0$ $2.635$ 2E $16.474$ $10.660$ $50.436$ 01201T $16.474$ $32.948$ $0.0$ 9111.68 $0.0353$ $0.0$ $87.278$ $3.084$ $Vel = 6.57$ 9 $0.0$ $2.635$ 2E $16.474$ $10.660$ $50.436$ 01201T $16.474$ $32.948$ $0.0$ 8111.68 $0.0353$ $0.0$ $43.608$ $1.541$ $Vel = 6.57$ 8 $0.0$ $2.635$ 1E $8.237$ $7.500$ $51.977$ 0 $120$ $0.0$ $8.237$ $2.940$ $*$ Fixed loss = $2.94$ 0 $12ac$ $0.0$ $8.237$ $2.940$ $*$ Fixed loss = $2.94$ 0 $11.68$ $0.0354$ $0.0$ $10.237$ $0.362$ $Vel = 6.57$ 6 $0.0$ $2.635$ 1E $8.237$ $7.500$ $59.516$ 0 <t< td=""><td></td><td></td><td></td><td>1E (</td><td>6.153</td><td>5.830</td><td>40.552</td><td></td><td></td><td></td></t<>				1E (	6.153	5.830	40.552			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	to									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Vel = 9	.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to 10	111 68							Vel = 6	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	0.0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	111.68					3.084		Vel = 6.	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0.0								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Vel = 6.	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	111 68							Vel = 6	57
0         120         1Zac         0.0         8.237         2.940         * Fixed loss = 2.94           6         111.68         0.0354         0.0         10.237         0.362         Vel = 6.57           6         0.0         2.635         1E         8.237         7.500         59.516           0         120         0.0         8.237         -3.681         -3.681			the second se						VCI - 0.	
6         111.68         0.0354         0.0         10.237         0.362         Vel = 6.57           6         0.0         2.635         1E         8.237         7.500         59.516           o         120         0.0         8.237         -3.681	to	0.0							* Fixed lo	oss = 2.94
6 0.0 2.635 1E 8.237 7.500 59.516 o 120 0.0 8.237 -3.681	6	111.68								
	6	0.0								
5 111.68 0.0353 0.0 15.737 0.556 Vel = 6.57	to	444.00							1/-1- 0	F7
	5	111.68	0.0353	(	0.0	15.737	0.556		Ver = 6	5/

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

## Final Calculations - Standard

## **FREEDOM FIRE PROTECTION INC.**

		PROTECTION STREET HO						Page 7 Date 3/2/12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft		tting or ıv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
		0.005		04.744	10.000	50.004		
5	0.0	2.635	3E		19.660	56.391		
to 4	111.68	120 0.0353		0.0 0.0	24.711 44.371	0.0 1.567		Vel = 6.57
4	0.0	2.635	1B	9.61	6.000	57.958		Ver = 0.57
to	0.0	120	10	0.0	9.610	2.599		
3	111.68	0.0354		0.0	15.610	0.552		Vel = 6.57
to 3 3	0.0	6.16	1T	43.037	15.000	61.109		
to		140	1G	4.304	47.341	1.083		
2	111.68	0.0004		0.0	62.341	0.026		Ve! = 1.20
to 2 2	0.0	16.41	1T -	166.859	100.000	62.218		
to		140	2E	164.8	331.660	0.0		
1	111.68	0.0		0.0	431.660	0.001		Vel = 0.17
1	0.0	8.27	1T	55.354	750.000	62.219		
to		140	2E	56.936	112.290	0.0		
TEST	111.68	0.0001		0.0	862.290	0.088		Vei = 0.67
	100.00							Qa = 100.00
	211.68					62.307		K Factor = 26.82



... Fire Protection by Computer Design

FREEDOM FIRE PROTECTION INC. 209 QUAKER RIDGE ROAD CASCO, MAINE 04015 207-627-4109

Job Name : 606 CONGRESS STREET HC2 Building : 606 CONGRESS STREET Location : PORTLAND, MAINE 04101 System : #1 AREA #2 Contract : Data File : 606 CONGRESS STREET HC2.WXF

## FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Page 1 Date 1/2/12

```
Hydraulic Design Information Sheet
Name - 606 CONGRESS STREET
                                                            Date - 1/2/12
Location - PORTLAND, MAINE 04101
Building - 606 CONGRESS STREET
                                                    System No. - #1 AREA #2
Contractor -
                                                    Contract No. -
Calculated By - MIKE NOBLIT
                                                    Drawing No. - FP-2
Construction: (X) Combustible ( ) Non-Combustible
                                                    Ceiling Height - 11'-5"
Occupancy - TAVERN
S
  (X) NFPA 13 () Lt. Haz. Ord.Haz.Gp. () 1 (X) 2 () 3 () Ex.Haz.
  ( ) NFPA 231 ( ) NFPA 231C ( ) Figure
                                                        Curve
Y
S
   Other
                                        Made By
Т
   Specific Ruling
                                                            Date
Ε
   Area of Sprinkler Operation - ROOM
                                           System Type
                                                          Sprinkler/Nozzle
М
                                                        Make TYCO
                                           (X) Wet
                               - 0.20
    Density
   Area Per Sprinkler
                               - 130
                                           () Dry
                                                         Model TY-FRB
D
   Elevation at Highest Outlet - 22'-8"
                                          () Deluge
                                                         Size 1/2"
E
   Hose Allowance - Inside -
Back Sprinkler Allowance -
                                           () Preaction K-Factor 5.6
S
   Rack Sprinkler Allowance
                                           () Other Temp.Rat.155
    Rack Sprinkler Allowance -
Hose Allowance - Outside - 250
Ι
G
Ν
    Note
Calculation Flow Required - 387.311 Press Required - 60.340 At Test
Summary C-Factor Used: 120 Overhead 140 Underground
                                 Pump Data:
                                                        Tank or Reservoir:
   Water Flow Test:
W
   Date of Test - 5/8/2010
                                                      Cap. -
Α
                              Rated Cap.-
                                                      Elev.-
   Time of Test -
Т
  Static Press - 71
                               @ Press -
Ε
                                                             Well
 Residual Press - 62
                               Elev.
                                         -
R
            - 992
                                                          Proof Flow
   Flow
                  - 0
S
   Elevation
U
   Location -
Ρ
Ρ
   Source of Information - PORTLAND WATER DISTRICT
T.
Υ
```

#### Water Supply Curve (C)

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Page 2 · Date 1/2/12

City Wa C1 C2 C2	ater S - Stat - Res - Res	upply: tic Press sidual Pr sidual Flo	sure : 7 essure: 6 ow : 9	1 2 92						Dei	mand: D1 - Elev D2 - Syst D2 - Syst Hose ( A Hose ( D D3 - Syst Safety M	ration lem Flow lem Pressure dj City ) emand ) lem Demand argin	9.814 137.31 60.34 250 387.31 9.080
150	1												
140	1												
130	1												
120	1						1						
110													
100													
90													
80	C1												
70	-	D2											0
60 50			D3					-					
40	1												
30	<b>A</b>												
20													
10	D1												
	100 2	00 30	00 4	00	500	6 FLOW (	00 N ^ 1.85 )	700	 8	800	9	00	<u></u>

#### Fittings Used Summary

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Page 3 Date 1/2/12

Fitting Legend Abbrev. Name	1/2	3/4	1	1¼	1½	2	2½	3	31⁄2	4	5	6	8	10	12	14	16	18	20	24
<ul> <li>B Generic Butterfly Valve</li> <li>E 90' Standard Elbow</li> <li>G Generic Gate Valve</li> <li>T 90' Flow Thru Tee</li> <li>Zac Ames 2000SS</li> </ul>	0 2 0 3	0 2 0 4	0 2 0 5	0 3 0 6 8 Fixed L	0 4 0 8	0 5 1 10	7 6 1 12	10 7 1 15	0 8 1 17	12 10 2 20	9 12 2 25	10 14 3 30	12 18 4 35	19 22 5 50	21 27 6 60	0 35 7 71	0 40 8 81	0 45 10 91	0 50 11 101	0 61 13 121

#### Pressure / Flow Summary - STANDARD

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
205	22.66	5.6	21.56	na	26.0	0.2	130	7.0
204	22.66	5.6	22.75	na	26.71	0.2	130	7.0
203	22.66	5.6	23.9	na	27.38	0.2	130	7.0
202	22.66	5.6	25.09	na	28.05	0.2	130	7.0
201	22.66	5.6	27.15	na	29.18	0.2	130	7.0
30	22.66		30.57	na				
13	22.66		31.74	na				
12	20.0		33.98	na				
11	20.0		35.63	na				
10	8.5		41.63	na				
9	8.5		46.15	na				
3	8.5		48.41	na				
7	0.0		52.9	na				
5	0.0		56.25	na				
5	8.5		53.38	na				
4	8.5		55.68	na				
3	2.5		59.09	na				
2	0.0		60.21	na				
	0.0		60.21	na				
TEST	0.0		60.34	na	250.0			

The maximum velocity is 17.04 and it occurs in the pipe between nodes 202 and 201

Page 4 Date 1/2/12

#### Final Calculations - Hazen-Williams

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Page 5 Date 1/2/12

000 00	NGRESS .	SINCLING					Dale 1/2/12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
205 to	26.00	1.049 150	0.0 0.0	8.500 0.0	21.556 0.0		K Factor = 5.60
204	26.0	0.1400	0.0	8.500	1.190		Vel = 9.65
204 to 203	26.71 52.71	1.38 150 0.1360	0.0 0.0 0.0	8.500 0.0 8.500	22.746 0.0 1.156		K Factor = 5.60 Vel = 11.31
203 to	27.38	1.61 150	0.0	8.500 0.0	23.902 0.0		K Factor = 5.60
202	80.09	0.1392	0.0	8.500	1.183		Vel = 12.62
202 to	28.04	1.61 150	0.0	8.500 0.0	25.085 0.0		K Factor = $5.60$
201 201 to	108.13 29.18	0.2427 2.067 150	0.0 1T 15.111 0.0	8.500 15.538 15.111	2.063 27.148 0.0		Vel = 17.04 K Factor = 5.60
30	137.31	0.1118	0.0	30.649	3.426		Vel = 13.13
30 to	0.0	2.067 150	1E 7.555 0.0	7.555	30.574 0.0 1.170		Vel = 13.13
13 13 to	<u>137.31</u> 0.0	0.1117 2.157 150	0.0 1E 9.298 0.0	9.298	31.744 1.152		
12	137.31	0.0909	0.0	11.958	1.087		Vel = 12.06
12 to 11	0.0 137.31	2.157 120 0.1373	1E 6.153 0.0 0.0	3 5.830 6.153 11.983	33.983 0.0 1.645		Vel = 12.06
11 to	0.0	2.635 120	1E 8.237 0.0	7 11.500 8.237	35.628 4.981		
10	137.31	0.0517	0.0	19.737	1.021		Vel = 8.08
10 to 9	0.0 137.31	2.635 120 0.0518	2E 16.474 1T 16.474 0.0		41.630 0.0 4.520		Vel = 8.08
9 to	0.0	2.635 120	2E 16.474 1T 16.474	10.660	46.150 0.0		
8	137.31	0.0518	0.0	43.608	2.258		Vel = 8.08
8 to	0.0	2.635 120	1E 8.237 0.0	8.237	48.408 3.681 0.816		Vel = 8.08
7 7	137.31 0.0	0.0519 2.635	0.0 1E 8.23	15.737 7 2.000	52.905		ver = 0.00
to 6	137.31	120 0.0518	1Zac 0.0 0.0	8.237 10.237	2.815 0.530		* Fixed loss = 2.815 Vel = 8.08
6 to	0.0	2.635 120	1E 8.23 0.0	8.237	56.250 -3.681		$V_{0} = 8.09$
5	137.31	0.0517	0.0	15.737	0.814		Vel = 8.08

Final Calculations - Star
---------------------------

#### FREEDOM FIRE PROTECTION INC. 606 CONGRESS STREET HC2

Page 6 Date 1/2/12

606 COI	NGRESS	STREETHC	2				Date 1/2/12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. L	Pipe Ftng's n. Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******
5	0.0	2.635	3E 24.7	11 19.660	53.383		
to	0.0	120	0.0		0.0		
4	137.31	0.0518	0.0		2.298		Vel = 8.08
4	0.0	2.635	1B 9.6	1 6.000	55.681		
		120	0.0	9.610	2.599		
to 3	137.31	0.0518	0.0	15.610	0.808		Vel = 8.08
3	0.0	6.16	1T 43.0	37 15.000	59.088		
		140	1G 4.3	04 47.341	1.083		
to 2	137.31	0.0006	0.0	62.341	0.039		Vel = 1.48
2	0.0	16.41	1T 166.8	59 100.000	60.210		
to		140	2E 164.8	331.660	0.0		
1	137.31	0.0	0.0	431.660	0.002		Vel = 0.21
1	0.0	8.27	1T 55.3	54 750.000	60.212		
to		140	2E 56.9	36 112.290	0.0		
TEST	137.31	0.0001	0.0	862.290	0.128		Vel = 0.82
	250.00						Qa = 250.00
	387.31				60.340		K Factor = 49.86

2	Original Receipt
Received from	Q. t
ocation of Work	Of Cost
ost of Construction	\$ Building Fee:
	\$ Site Fee:
100	Certificate of Occupancy Fee:
E	Total:
uilding (IL) Plumb	Ding (I5) Electrical (I2) Site Plan (U2)
ther	
heck #:	6 ( Total Collected s
	to be started until permit issued. original receipt for your records.