

DISPLAY THIS CARD ON PRINCIPAL FRONTAGE OF WORK CITY OF PORTLAND BUILDING PERMIT

This is to certify that <u>HIGH TECH FIRE PROTECTION CO, INC.</u> <u>PO BOX 156</u> <u>MINOT, ME 04258</u> For installation at <u>38 PREBLE ST</u> <u>TEEN SHELTER</u>

Job ID: 2012-08-4798-FAFS

CBL: 037- F-020-001

has permission to install sprinkler and standpipes

provided that the person or persons, firm or corporation accepting this permit shall comply with all of the provisions of the Statues of Maine and of the Ordinances of the City of Portland regulating the construction, maintenance and use of the buildings and structures, and of the application on file in the department.

Notification of inspection and written permission procured before this building or part thereof is lathed or otherwise closed-in. 48 HOUR NOTICE IS REQUIRED. A final inspection must be completed by owner before this building or part thereof is occupied. If a certificate of occupancy is required, it must be

Fire Prevention Officer

Code Enforcement Officer / Plan Reviewer

THIS CARD MUST BE POSTED ON THE STREET SIDE OF THE PROPERTY PENALTY FOR REMOVING THIS CARD BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 or 874-8693 (ONLY) or email: buildinginspections@portlandmaine.gov

With the issuance of this permit, the owner, builder or their designee is required to provide adequate notice to the city of Portland Inspections Services for the following inspections. Appointments must be requested 48 to 72 hours in advance of the required inspection. The inspection date will need to be confirmed by this office.

- Please read the conditions of approval that is attached to this permit!! Contact this office if you have any questions.
- Permits expire in 6 months. If the project is not started or ceases for 6 months.
- If the inspection requirements are not followed as stated below additional fees may be incurred due to the issuance of a "Stop Work Order" and subsequent release to continue.

Final Fire

The project cannot move to the next phase prior to the required inspection and approval to continue, REGARDLESS OF THE NOTICE OF CIRCUMSTANCES.

IF THE PERMIT REQUIRES A CERTIFICATE OF OCCUPANCY, IT MUST BE PAID FOR AND ISSUED TO THE OWNER OR DESIGNEE BEFORE THE SPACE MAY BE OCCUPIED.

Strengthening a Remarkable City, Building a Community for Life . www.portlandmaine.gov

Director of Planning and Urban Development Jeff Levine

Job ID: 2012-08-4798-FAFS install sprinkler and standpipes For installation at: <u>38 PREBLE ST</u> <u>TEEN SHELTER</u> CBL: 037- F-020-001

Conditions of Approval:

Fire

Gauges for Class I and III standpipe hose connections. The Fire Department requires the installer to provide two Kochek 2 ½" NH 45 Degree Line Gauge [LG25-45] to the Fire Department for each new Class I standpipe.

Fire department connection shall be three 2 1/2". The Fire department connection shall indicate auto sprinkler and standpipe and will require Knox locking caps.

Class I Standpipes shall be installed in accordance with the City of Portland Fire Department Regulations and NFPA 14. A signed compliance letter will be required.

The sprinkler system shall be installed in accordance with the City of Portland Fire Department Regulations and NFPA 13. A signed compliance letter will be required.

Sprinkler supervision shall be provided in accordance with NFPA 101, *Life Safety Code*, and NFPA 72, *National Fire Alarm and Signaling Code*.

Sprinkler protection shall be maintained. Where the system is to be shut down for maintenance or repair, the system shall be checked at the end of each day to insure the system has been placed back in service.

System acceptance and commissioning must be coordinated with alarm and suppression system contractors and the Fire Department. Call 874-8703 to schedule.

A separate sprinkler permit is required from the State Fire Marshal's Office.

A Knox Box is required.

City of Portland, Maine - Building or Use Permit Application

389 Congress Street, 04101 Tel: (207) 874-8703, FAX: (207) 8716

Job No: 2012-08-4798-FAFS	Date Applied: 8/23/2012		CBL: 037- F-020-001					
Location of Construction: 38 PREBLE ST	Owner Name: PREBLE STREET		Owner Address: 38 PREBLE STRE PORTLAND ME 0	Phone:				
Business Name:	Contractor Name: High Tech Fire Protection	n	Contractor Addr PO Box 156, Minor		Phone: 207-998-2551			
Lessee/Buyer's Name:	Phone:		Permit Type: FIRE SUPPRESSO	DN - Fire Supression		Zone: B-3		
Past Use: Teen Shelter – Permit #2012-04-3738	Proposed Use: Same – Teen Shelter fire suppression syste	– install a m	Cost of Work: 36000.00 Fire Dept: 9/10/12 Signature: GAC	CEO District: Inspection: Use Group: Type: Signature:				
Proposed Project Description fire suppression system	:		Pedestrian Activities District (P.A.D.)					
Permit Taken By: Gayle		_	Zoning Approval					
 This permit application d Applicant(s) from meetin Federal Rules. Building Permits do not i septic or electrial work. Building permits are voic within six (6) months of t False informatin may inv permit and stop all work. 	Special Zo Shorelan Wetland Flood Zo Subdivis Site Plan Maj Date: OKoo 8 30	Min _ MM	Zoning Appeal Zoning Appeal Variance Miscellaneous Conditional Use Interpretation Approved Denied Date:	Historic Pr Not in Dis Does not F Requires F Approved Denied Date: 9	eservation t or Landmark Require Review Review w/Conditions			

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the appication is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

SIGNATURE OF APPLICANT

ADDRESS

PHONE

Entered 725

Fire Suppression System Permit

If you or the property owner owes real estate or property taxes or user charges on any property within the city, payment arrangements must be made before permits of any kind are accepted.

Installation address: <u>38 Preble</u> St	CBL: 037 F020
Exact location: (within structure) Teen Shelfer	Building
Type of occupancy(s) (NFPA & ICC): Office / Re	sidential
Building owner:	
Managing Supervisor: Ed Poula	_License No:515
Supervisor phone:	E-mail: EPoulin@fairpoint.net
Installing contractor: High Tech Fire Protection	
Contractor phone: $207 = 998 - 2551$	E-mail: HTFP@ fairpoint.not
The suppression work to be done will be: New: 🗗 Renov	ation: Addition to existing system:
This is an amendment to an existing permit: Yes: NO	Permit no:2121.37/
NFPA Standard will this system is designed to:3	Edition: 2010
*Non-NFPA systems are not approved for use within the City of Portland.	
Download a new copy of this document from Inspection Division on-line	COST OF WORK: 35, 735. 00
at <u>www.portlandmaine.gov</u> for every submittal. Attach all design	
information and complete approved submittals as may be	\$ 300 -00
electronic PDF's in addition to full sized plans	(\$10 PER \$1 000 + \$30 FOR THE FIRST \$1 000)
	(**************************************
be approved in writing by the Fire Prevention Bureau.	
Submit all information to the Building Inspections Department 380 Con	aress Street Room 315 Portland Maine 04101

Prior to acceptance of any fire protection system, a complete commissioning and acceptance test must be coordinated with all fire system contractors and the Fire Department, and proper documentation of such test(s) provided.

All installation(s) must comply with NFPA and the Fire Department Technical Standard(s).

Applicant signature: And tota Date: B-14-12	

RECEIVED

2012-08-4798

GG

AUG 2 3 2012

Dept. of Building inspections City of Portand Maine

HIGH TECH FIRE PROTECTION

PO Box 156 • MINOT, ME 04258-0156

PHONE: (207)998-2551 • FAX: (207)998-4187

Letter of Transmittal

To: Inspections Dept Portland, Maine 04141

	htfp:@fairpoint.net
Date: 8-13-12	Job No.
Attention: Inspection	Dept
Re: 38 Preble St (Teer	n Shelter)

FIRE SPRINKLER SYSTEMS 24-HOUR SERVICE

We are sending you:

□ Owners Manuals
Preliminary Plans □ Asbuilt Plans

Asbuilt Plans Hydraulic Calculations

□ Product Data Permit Check □

Copies	Date	No.	Description
1	8-13-12		Fire Protection Drawing (FP-01& FP-02)
1	8-13-12		Hydraulic Calculations (3 rd Fl & Stand Pipe)
1	8-13-12		Payment for Permit (Check)
1	8-13-12		CD with the PDF's of the above Drawings and Calc's
1	8-13-12		Permit Application

These are Transmitted as checked below:

For Approval

□ For your use

Return _____ corrected copy

□ As requested

□ For review and comment

Comments:

Signed : **Tim Fortin**

Specializing in Commercial and Residential Fire Sprinkler Systems Design • Installation • Inspection • Service

Strengthening a Remarkable City, Building a Community for Life . www.portlandmaine.gov

Receipts Details:

Tender Information: Check , BusinessName: High Tech Fire Protection, Check Number: 18252 **Tender Amount:** 380.00

Receipt Header:

Cashier Id: gguertin Receipt Date: 8/23/2012 Receipt Number: 47491

Receipt Details:

Referance ID:	7779	Fee Type:	BP-Constr
Receipt Number:	0	Payment Date:	
Transaction Amount:	380.00	Charge Amount:	380.00
Job ID: Job ID: 201 Additional Comm	2-08-4798-FAFS - fire suppression system ents: 38 Preble St., High Tech Fire Protection	1	

Thank You for your Payment!

... Fire Protection by Computer Design

HIGH TECH FIRE PROTECTION PO. BOX 156 MINOT, ME 04258-0258 207-998-2551

Job Name : Teen Sheter Building : TEEN SHELTER Location : 38 PREBLE ST System : WET Contract : 042712-1 Data File : Teen Shelter.WXF

-

HIGH TECH FIRE PROTECTION Teen Sheter

Page 1 Date 7/24/12

Hydraulic Design Information Sheet Date - 8-20-12 Name - TEEN SHELTER Location - 38 PREBLE ST Building - TEEN SHELTER System No. - WET Contract No. - 042712-1 Contractor - HIGH TECH FIRE PROTECTION Drawing No. - FP-01/FP-02 Calculated By -Construction: (X) Combustible () Non-Combustible Ceiling Height - VARIES Occupancy - LIGHT HAZARD Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. (X) NFPA 13 (X) Lt. Haz. S () NFPA 231 () NFPA 231C () Figure Curve Y S Other т Specific Ruling Made By Date Е System Type Sprinkler/Nozzle Area of Sprinkler Operation - 900 М - .1 (X) Wet Make GLOBE Density () Dry Model GL5606
() Deluge Size 1/2"
() Preaction K-Factor 5.6 - 225 Area Per Sprinkler D Elevation at Highest Outlet - 43 Е Hose Allowance - Inside -Rack Sprinkler Allowance -S () Other Temp.Rat.165 Rack Sprinkler Allowance Ι Hose Allowance - Outside - 100 G Ν Note Press Required - 75 Calculation Flow Required - 310 C-Factor Used: 120 Overhead 140 Underground Summary Tank or Reservoir: Pump Data: W Water Flow Test: Cap. -Date of Test - 10-10-97 Α Time of Test -Elev.-Rated Cap.-Т @ Press -Static Press - 102 Ε Residual Press - 88 Elev. Well R Proof Flow Flow - 1342 S Elevation U Location - PORTLAND STREET AND PREBLE STREET Ρ Ρ Source of Information - PORTLAND WATER DISTRICT \mathbf{L} Y Class Location С Commodity Aisle W. 0 Storage Ht. Area Palletized Rack 8 8 Solid Piled Storage Method: М М () Auto. Storage () Encap. () Single Row () Conven. Pallet () Slave Pallet () Solid Shelf () Double Row () Non S R () Mult. Row () Open Shelf т A 0 С Clearance:Storage to Ceiling Flue Spacing R Κ Transverse Longitudinal А G Horizontal Barriers Provided: E

ECH FIRE PRO	DTECTION					F	Page
neter						[Date
Vater Supply: C1 - Static Pres C2 - Residual P	sure : 102				De	D1 - Elevation D2 - System Flow	:,
2 - Residual F	low : 1342					D2 - System Pressu Hose (Adj City)	ire :
						Hose (Demand) D3 - System Deman	nd :
						Safety Margin	:
C1							
				C2			
D2				0			
03							
D1							
200 400	<u> </u>	1000	1200	1400	1600	1800	
		FL	OW (N ^ 1.85)			

Fittings Used Summary

HIGH Teen S	TECH FIRE PROTECT Sheter	ION																Pa Da	ige 3 ate 7) 7/24/12	2
Fitting L Abbrev.	egend Name	1/2	3/4	1	11⁄4	11/2	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
B Cv	Generic Butterfly Valve	0	0	0	5	6	7.5	7 6	10 10	0	12 13	9	10 20	12 23	19	21	0	0	0	0	0
E	90' Standard Elbow	2	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
Fsp	Flow Switch Potter VSR	Fitti	ng gene	erates a	Fixed L	oss Ba	sed on	Flow													
G	Generic Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Т	90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
V	90' Ell Firelock #001	0	0	0	0	0	3.5	4.3	5	0	6.8	8.5	10	13	0	0	0	0	0	0	0
Zib	Wilkins 350A	Fitti	ng gene	erates a	Fixed I	oss Ba	ased on	Flow													

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

HIGH TECH FIRE PROTECTION Teen Sheter

Page	4
Date	7/24/12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP1	41.0	5.6	16 14	na	22.5	0.1	225	7.0
10	43.0	K - K @ E001	35.36	na	22.5	0.1	225	7.0
11	43.0	K - K @ EQ01	35 54	na	22.56			
12	43.0		36.7	na	22.00			
13	43.0		38.98	na	23.63			
14	43.0		41.02	na	24.23			
20	43.0		39.21	na	23.7			
21	43.0		39.46	na	23.77			
22	43.0		40 31	na	24.02			
22	43.0		41.43	na	24.36			
23 M1	43.0	K = K @ EQUI	41.40	na	24.00			
MO	43.0		41.42	na				
M2	43.0		43.0	na				
Ma	43.0		46.98	na				
R3	43.0		53 13	na				
R2	28.0		59.76	na				
R1	18.0		64 22	na				
R	8.0		68.66	na				
B1	3.0		71.28	na				
B2	3.0		71.33	na				
	-4.0		77.83	na				
U1	-4.0		77.87	na				
112	-10.0		80.5	na				
U3	-16.0		83.11	na				
TEST	0.0		76.29	na	100.0			

The maximum velocity is 13.23 and it occurs in the pipe between nodes 13 and M1

Final Calculations - Hazen-Williams

HIGH TECH FIRE PROTECTION Teen Sheter

.

Page 5 Date 7/24/12

Teen Sh	eter					Date 7/24/12
Hyd. Ref. Point	Qa Dia. "C" Qt Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes ******
DP1	22.50 1.049	1E 2.0	2.000	16.143		K Factor = 5.60
to EQO1	120.0 22.5 0.1619	1T 5.0 0.0	7.000 9.000	17.757 1.457		Vel = 8.35
	0.0			35.357		K Factor = 3.78
10	22.50 1.682	0.0	11.000	35.357		K Factor @ node EQO1
to	120.0	0.0	0.0	0.0		Vel - 325
11	22.56 1.682	2E 9.9	9.900	35.535		K Factor @ node EQ01
to	120.0	0.0	9.900	0.0		1/-1 0.54
12	45.06 0.0587	25 0.0	19.800	36 697		Vel = 6.51 K Factor @ pode EQQ1
to	120.0	0.0	9.900	0.0		
13	67.98 0.1255	0.0	18.200	2.284		Vel = 9.82
13 to	23.62 1.682	1T 9.9	1.300	38.981		K Factor @ node EQ01
M1	91.6 0.2180	0.0	11.200	2.442		Vel = 13.23
	0.0			11 103		K Factor - 14 23
14	24.23 1.682	1T 9.9	11.900	41.423		K Factor @ node EQ01
to	120.0	0.0	9.900	0.0		14.1 0.50
M1	24.23 0.0186	0.0	21.800	0.406		Vel = 3.50
	24.23			41.423		K Factor = 3.76
20	23.70 1.682	0.0	14.000	39.213		K Factor @ node EQO1
to 21	120.0 23.7 0.0179	0.0	0.0	0.0		Vel = 3.42
21	23.77 1.682	0.0	13.100	39.463		K Factor @ node EQ01
to	120.0	0.0	0.0	0.0		Vel - 6.85
22	24.02 1.682	1T 9.9	1.200	40.309		K Factor @ node EQ01
to	120.0	0.0	9.900	0.0		
M2	71.49 0.1378	0.0	11.100	1.530		Vel = 10.32
	71.49			41.839		K Factor = 11.05
23	24.36 1.682	1T 9.9	11.900	41.429		K Factor @ node EQO1
to M2	120.0 24.36 0.0188	0.0 0.0	9.900 21.800	0.0 0.410		Vel = 3.52
	0.0			41 830		K Factor = 3 77
M1	115.84 2.635	0.0	11.000	41.423		
to	120.0	0.0	0.0	0.0		$V_{0} = 6.92$
M2	115.84 0.0378	0.0	11.000	0.410		ver = 0.02

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Final Calculations - Hazen-Williams

HIGH TECH FIRE PROTECTION **Teen Sheter**

Page 6 7/24/12 Date Hyd. Qa Dia. Fitting Pipe Pt Pt Notes ***** "C" ****** Ref. Ftng's Pe Pv or Point Qt Pf/Ft Eqv. Ln. Total Pf Pn M2 95.84 2.635 0.0 11.800 41.839 120.0 .to 0.0 0.0 0.0 **M3** 211.68 0.1153 0.0 11.800 1.361 Vel = 12.4526.900 **M3** 1V 5.903 43.200 0.0 2.635 0.0 5.903 to 120.0 0.0 M4 211.68 0.1153 0.0 32.803 3.783 Vel = 12.45M4 0.0 2.635 1V 5.903 3.500 46.983 to 120.0 **1B** 9.61 23.750 3.000 * Fixed loss = 3 **R3** 211.68 0.1153 1Fsp 0.0 27.250 3.143 Vel = 12.451Cv 8.237 0.0 211.68 K Factor = 29.04 53.126 **R3** 211.68 4.26 0.0 12.000 53.126 to 120.0 0.0 0.0 6.496 **R2** 0.0112 0.0 12.000 Vel = 4.76211.68 0.134 **R**2 0.0 12.000 0.0 4.26 59.756 120.0 0.0 0.0 4.331 to R1 0.0111 0.0 12.000 0.133 Vel = 4.76211.68 R1 0.0 10.000 64.220 0.0 4.26 120.0 0.0 0.0 4.331 to R 211.68 0.0112 0.0 10.000 0.112 Vel = 4.76R 4.26 0.0 40.500 68.663 0.0 0.0 2.166 120.0 0.0 to **B1** 0.0 40.500 0.449 Vel = 4.76211.68 0.0111 B1 4.26 0.0 5.000 71.278 0.0 0.0 120.0 0.0 0.0 to **B**2 211.68 0.0112 0.0 5.000 0.056 Vel = 4.761V 8.954 71.334 **B**2 0.0 4.26 3.000 1Zib 0.0 8.954 6.364 * Fixed loss = 3.333 120.0 to Vel = 4.76211.68 0.0 11.954 0.133 UND 0.0111 1V 10.786 10.000 77.831 UND 0.0 6.16 0.0 10.786 0.0 120.0 to U1 211.68 0.0018 0.0 20.786 0.038 Vel = 2.28U1 0.0 8.27 1E 28,468 20.000 77.869 6.326 140.0 1G 90.148 2.599to 0.036 Vel = 1.26U2 1T 55.354 110.148 211.68 0.0003 1T 166.859 80.504 U2 0.0 16.41 200.000 140.0 0.0 166.860 2.599 to Vel = 0.320.0 366.860 0.004 U3 211.68 0.0 U3 6.16 **1**T 43.037 35.000 83.107 0.0 140.0 0.0 43.037 -6.930 to 78.037 0.0 0.109 Vel = 2.28TEST 211.68 0.0014

8	Finał	Calculations	-	Hazen-Williams
---	-------	--------------	---	----------------

HIGH TECH FIRE PROTECTION	
Teen Sheter	

Teen She	ter	ROTECTIO	UN				Pa Da	ge 7 te 7/24/12	
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******	Notes **	****
	100.00 311.68				76.286		Qa = 1 K Factor	00.00 r = 35.69	

,

... Fire Protection by Computer Design

HIGH TECH FIRE PROTECTION PO. BOX 156 MINOT, ME 04258-0258 207-998-2551

Job Name : Teen Sheter Stand Pipe Calc Building : TEEN SHELTER Location : 38 PREBLE ST System : HOSE VALVES Contract : 042712-1 Data File : HOSE VALVE CALC.WXF

HIGH TECH FIRE PROTECTION Teen Sheter Stand Pipe Calc

Page 1 Date 7/24/12

HYDRAULIC DESIGN INFORMATION SHEET

Name - TEEN SHELTER Location - 38 PREBLE ST Building - TEEN SHELTER Contractor - HIGH TECH FIRE PROTECTION Calculated By - TIM FORITN Occupancy - LIGHT HAZARD Date - 8-9-12

System No. - HOSE VALVES Contract No. - 042712-1 Drawing No. - FP-01/FP-02

S (X)NFPA 14 Number of Standpipes ()1 (X)2 ()3 ()4 () Y ()Other S ()Specific Ruling Made by Date т - 250 Ε Flow at Top Most Outlet Gpm System Type Pres. at Top Most Outlet М - 21.7 Psi (X) Wet () Dry Flow For Ea. Additional Standpipe - 250 Gpm - 450 D Total Additional Flow Gpm - 37.5 Feet E Elevation at Highest Outlet Hose Valve Connection ()1 1/2" (X)2 1/2" S Class Service (X)I ()II ()III Т Note:CITY OF PORTLAND PUMPER TRUCK INFO: 1250 GPM AT 150 PSI G Ν Calculation Gpm Required 750 Psi Required 21.7 At Test Overhead 120 Underground Summary C-Factor Used:

W Water Flow Test: Pump Data: Tank or Reservoir: Date of Test Cap. A _ Time of Test Rated Cap. Elev. т -Static (Psi) - 200 @ Psi Е Well R Residual (Psi) - 150 Elev. Proof Flow Gpm Flow (Gpm) - 1250 S Elevation - 3.5 U Location: PUMPER TRUCK HOOKED UP TO FIRE DEPARTMENT CONNECTION Ρ Ρ L Source of Information: CITY OF PORTLAND Y

er Suppry	Curve (C))									
H TECH FI	RE PRO	TECTION Calc								Page Date	2 7/2
ity Water S C1 - Sta C2 - Re C2 - Re	Supply: atic Press isidual Press isidual Flo	oure : 2 essure: 1 ow : 1	00 50 250					De	mand: D1 - Elev D2 - Syst D2 - Syst Hose (A Hose (D D3 - Syst Safety M	vation tem Flow tem Pressure dj City) emand) tem Demand argin	: 16. 21. 750 750 : 158
10 [] C1	1 1				 					1	
96											
82											
68					00						
54					0						
40											
26											
12											
					 			_			
20					 						_
56					 						
12											
28 02	2	0			 						
14 01		D3									
Embourne COO	400 60		200	1000	 200	1400	4	600	<u></u> .	1900	1

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Fitting Legend																	Da	ite 7	7/24/1:	2
Fitting Legend	1/2	3/4	1	11⁄4	1½	2	2 ½	3	31/2	4	5	6	8	10	12	14	16	18	20	24

Units Summary

Inches
Feet
US Gallons per Minute
Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

HIGH TECH FIRE PROTECTION Teen Sheter Stand Pipe Calc

Page	4
Date	7/24/12

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1.15.74	07.5		2.0		250.0			
HV1	37.5		0.0	na	250.0			
HV2	25.5		5.38	na	250.0			
S	37.5		0.11	na				
S1	25.5		5.49	na				
S2	12.5		11.77	na				
S3	9.0		13.94	na				
S4	9.0		14.02	na				
S5	9.0		16.06	na				
HV3	37.5		4.55	na	250.0			
B3	37.5		4 63	na				
R2	25.5		9.88	na				
Di	20.0		15.60	na				
RI OO	12.5		10.71	na				
56	3.5		19.71	na				
TEST	0.0		21.74	na				

The maximum velocity is 16.88 and it occurs in the pipe between nodes S6 and TEST

Final Calculations - Hazen-Williams

HIGH TECH FIRE PROTECTION Teen Sheter Stand Pipe Calc

Page 5 Date 7/24/12

reen on	leter Staric	i i ipe Gaic					Date 1/24/12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******
HV1	250.00	2.469	0.0	0.500	0.0		Qa = 250
to		120.0	0.0	0.0	0.0		
S	250.0	0.2160	0.0	0.500	0.108		Vel = 16.75
	0.0 250.00				0.108		K Factor = 760.73
HV2	250.00	2.469	0.0	0.500	5.379		Qa = 250
to		120.0	0.0	0.0	0.0		
S1	250.0	0.2140	0.0	0.500	0.107		Vel = 16.75
	0.0 250.00				5.486	- 147	K Factor = 106.74
S	250.00	4.26	0.0	12.000	0.108		
to		120.0	0.0	0.0	5.197		
<u>S1</u>	250.0	0.0151	0.0	12.000	0.181		Vel = 5.63
S1	250.00	4.26	0.0	12.000	5.486		
10	500.0	120.0	0.0	12,000	5.630		$V_{0} = 11.25$
02	0.0	0.0540	0.0	12.000	11 771		Ver= 11.25
52 to	0.0	4.20	0.0	12.000	1.771		
S3	500.0	0.0545	0.0	12.000	0.654		Vel = 11.25
\$3	0.0	4 26	0.0	1.500	13,941		
to	0.0	120.0	0.0	0.0	0.0		
S4	500.0	0.0547	0.0	1.500	0.082		Vel = 11.25
S4	0.0	4.26	0.0	37.300	14.023		
to		120.0	0.0	0.0	0.0		
S5	500.0	0.0545	0.0	37.300	2.033		Vel = 11.25
S5	0.0	4.26	0.0	23.300	16.056		
to	500.0	120.0	0.0	0.0	2.382		V/al 11.05
56	500.0	0.0545	0.0	23.300	1.270		vei = 11.25
	0.0 500.00				19.708	MI	K Factor = 112.63
HV3	250.00	2.635	0.0	0.500	4.549		Qa = 250
to	050.0	120.0	0.0	0.0	0.0		
<u>R3</u>	250.0	0.1580	0.0	0.500	0.079		vei = 14.71
H3	0.0	4.26	0.0	3.500	4.628		
R2	250.0	0.0151	0.0	3.500	0.053		Vel = 5.63
R2	0.0	4 26	0.0	12,000	9.878		
to	0.0	120.0	0.0	0.0	5.630		
R1	250.0	0.0152	0.0	12.000	0.182		Vel = 5.63
R1	0.0	4.26	0.0	8.000	15.690		
to		120.0	0.0	0.0	3.898		
S6	250.0	0.0150	0.0	8.000	0.120		Vel = 5.63

· Final Calculations - Hazen-Williams

HIGH TE Teen Sho	ECH FIRE I eter Stand	PROTECTIC Pipe Calc	DN				Page 6 Date 7/24/12
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv. Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
	0.0						
	250.00				19.708		K Factor = 56.31
S6	750.00	4.26	0.0	4.500	19.708		
to		120.0	0.0	0.0	1.516		
TEST	750.0	0.1156	0.0	4.500	0.520		Vel = 16.88
	0.0						
	750.00				21.744		K Factor = 160.84