Please Read Application And Notes, If Any,

Attached

This is to certify that \qquad Ne Tel \& Tel Co State \&/No has permission to \qquad Add a 30' Extension to Existi

AT -45 Forest Ave
provided that the person or persons, of the provisions of the Statutes of N the construction, maintenance and u this department.

Apply to Public Works for street line and grade if nature of work requires such information.

OTHER REQUIRED APPROVALS
Fire Dept.
Health Dept. \qquad
Appeal Board \qquad
Other \qquad

Permit Numbergatiatar ION
 hes and 3 Panel Antennas

037 A001001 CHM Mryme m or epuration epting this permit shall comply with all ne and of th_nces of the City of Portland regulating of buildings and si. tures, and of the application on file in

A certificate of occupancy must be procured by owner before this building or part thereof is occupied.

City of Portland, Maine - Building or Use Permit Application 389 Congress Street, 04101 Tel: (207) 874-8703, Fax: (207) 874-8716

PRPRME $\therefore \therefore \mathrm{O}$		
Permit No: 03-0764	Issue Date: 1f:	$\begin{aligned} & \text { CBL: } \\ & 037 \text { A001001 } \end{aligned}$

CERTIFICATION

I hereby certify that I am the owner of record of the named property, or that the proposed work is authorized by the owner of record and that I have been authorized by the owner to make this application as his authorized agent and I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in the application is issued, I certify that the code official's authorized representative shall have the authority to enter all areas covered by such permit at any reasonable hour to enforce the provision of the code(s) applicable to such permit.

DATE

PHONE

City of Portland, Maine - Building or Use Permit 389 Congress Street, 04101 Tel: (207) 874-8703, Fax: (207) 874-8716			$\begin{array}{\|l} \hline \text { Permit No: } \\ 03-0764 \end{array}$	Date Applied For: 06/27/2003	CBL: 037 A001001
Location of Construction: 45 Forest Ave	Owner Na Ne Tel		Owner Address: Po Box 152206		Phone:
Business Name:	Contracto Nortech		Contractor Address: 35 Norton Road T	unton	Phone (503) 880-3663
Lessee/Buyer's Name	Phone:		Permit Type: Additions - Comm	ercial	
Proposed Use: Communication Tower/Commercial Proposed Project Description: Add a 30' Extension to Existing 63' Dishes and 3 Panel Antennas					
Dept: Zoning Status: Approved Note: ok under section 14-430		Reviewer:	Marge Schmucka	Approval D	te: 07/01/2003 Ok to Issue:
Dept: Building Status: Note:	Approved	Reviewer:	: Mike Nugent	Approval D	te: 07/09/2003 Ok to Issue:

Commercial Building Permit Application

$03-0744$

If you or the property owner owes real estate or personal property taxes or user charges on any property within the City, payment arrangements must be made before permits of any kind are accepted.

Please submit all of the information outlined in the Residential Application Checklist. Failure to do so will result in the automatic denial of your permit.

At the discretion of the Planning and Development Department, additional information may be required prior to permit approval. For further information stop by the Building Inspections office, room 315 City Hall or call 874-8703.

I hereby certify that I am the Owner of record of the named property, or that the owner of record authorizes the proposed work and that I have been authorized by the owner to make this application as his/her authorized agent. I agree to conform to all applicable laws of this jurisdiction. In addition, if a permit for work described in this application is issued, I certify that the Code Official's authorized representative shall have the authority to enter all areas covered by this permit at any reasonable hour to enforce the provisions of the codes applicable to this permit.

Date:
Permit Fee: $\$ 39.00$ for the first $\$ 1000.00$ Construction Cost, $\$ 7.00$ per additional $\$ 1000.00$ cost
This is not a Permit; you may not commence any work until the Permit is issued.

BUILDING PERMIT INSPECTION PROCEDURES Please call 874-8703 or 874-8693 to schedule your inspections as agreed upon

Permits expire in 6 months, if the project is not started or ceases for 6 months.
The Owner or their designee is required to notify the inspections office for the following inspections and provide adequate notice. Notice must be called in 48-72 hours in advance in order to schedule an inspection:

By initializing at each inspection time, you are agreeing that you understand the inspect/raprocedure and additional fees from a "Stop Work Order" and "Stop Work Order Release" will be incurred if the procedure is not followed as stated below.

Pre-construction Meeting: Must be scheduled with your inspection team upon receipt this permit. Jay Reynolds, Development Review Coordinator at 874-8632 must also be contacted at this time, before any site work begins on any project other than single family additions or alterations.

Framing/Rough Plumbing/Electrical:
Prior to pouring concrete Prior to pouring concrete Prior to placing ANY backfill Prior to any insulating or drywalling

Final/Gertiffeaternancy:
Prior to any occupancy of the structure or use. NOTE: There is a $\$ 75.00$ fee perinspection this point.

Certificate of Occupancy is not required for certain projects. Your inspector can advise you if your project requires a Certificate of Occupancy. All projects DO require a final inspection
\checkmark If any of the inspections do not occur, the project cannot go on to the next phase, REGARDLESS OF THE NOTICE OR CIRCUMSTANCES.
 REFORETHE SPACE MAY BE OCCUPIED

CBL: 037-A - OO 1 Building Permit\#: 03-0764

David S. Ho
Manager - Transactions

Varizon Commumications 125 High Street, Oliver 02339 Boston, MA 02110

June 26, 2003

City of Portland
City Hall
389 Congress Street
Portland, ME 04101
RE: Verizon Wireless Microwave Installation, 45-55 Forest Avenue, Portland. ME

Dear Sir/Madam:

Please be advised that Verizon Communications is the owner of the property located at 45-55 Forest Avenue, Porland, Maine. It is Verizon Wireless' intention to co-locate antennas at the property. Verizon Wireless is required to obtain all state, local and town approval prior to the installation of the additional equipment.

As owner of the property, permission is hereby granted to Verizon Wireless for the purpose of consummating any applications necessary to gain the required approvals or permits on the tower from the City of Portland

(A copy of this letter shall have the same effect as the original)

April 15, 2003

Mr. Robert Hogan
(Faxed Copy Sent to 508-330-3405)
Structures Consulting Group, Inc.
43 White Street, Suite 4
Belmont, MA 02478

Re: Verizon Wireless Building
 Structural Evaluation
 45-55 Congress Street
 Portland, Maine 04101
 Project No. 02180

Dear Mr. Hogan:

Harriman Associates has completed its review and evaluation of the existing building columns supporting the rooftop antenna tower at 45-55 Congress Street in Porland, Maint. Our evaluation was completed to confirm that additional base loads resulting Irom an antenna tower extension could be supported by the existing building columns. The evaluation concluded that the existing building columns are capable of withstanding the increased base loads caused by the addition of a 30 ft . extension to the existing antenna tower. The analysis a as based primarily on information provided by All-Points Technology Corporation's Structural Anathsis Report of the Antenna Tower as well as original construction drawings and calculations, o! the building Evaluation of the tower and the grillage has been completed by All-Points Technoiogy and is not a part of our scope.

The existing steel columns are built-up sections comprised of plates and angles niveted together. The size of the columns were determined from review of the original drawings as the columns are concrete encased and could not be inspected on site. Each existing cotumn was estended above the roof line approximately $1^{\prime}-6 "$ and capped. The tower grillage has been whached to these column extensiors for transfer of the tower loads into the building. The conisuration of the columns considered in this study, as well as their locations, are outlined in setachment 1 .

From the tower evaluation report, maximum gravity (downward) load, mixamm uplift load, and maximum shear load at the base of the tower was provided. The loads prowded were 7.7 .9 kip , 64.9 kip , and 10.4 kip , respecrively. Also, original calculations docume nted a thoor dead load of 116 pounds per square foot (psf), and design live loads between 150 pst ani 175 psi. A site investigation was conducted to venify the existing information. This invertigenon found that the $1^{\text {st }}$ to $5^{\text {th }}$ floors were mainly abandoned and the $6^{\text {th }}$ floor had electrical data sumpment on it. At this time, it did not appear that the actual floor loads are exceeding the dessen values

Mr. Robert Hogan
Page 2
April 15, 2003

A complete analysis was performed on the existing columns based on the atwe loads. As stated, the analysis determined that the building columns could withstand the incr-a-d lase loads of the tower plus extension. In order to restrain the anticipated shear loads, the adiuiondil 1" thick stiffener plates installed as part of the grillage framing were required to be used in the calculations. These plates "stiffen" the column section above the roof level and are neces, ary to keep the columns within design stresses. Since these plates are installed and moditi ations to the grillage are not planned, no additional work is required.

As a side note, we discovered a couple items during our research into the existing structure that we believe you would be interested in.

1. The building was originally designed for 9 stories with only, buil:
2. In 1953, the existing building was analyzed for the addition of a 100 it hii cower (the current tower is approximately 65 ft .) The building was found adequate to supper this tower with its particular configuration of antennas. (Note: Any differences or modific tuns wo the antenna configuration would change the resultant loads at the tower base ard $\%$ wid require re-evaluation of the tower, tower support framing, and building columns).

We thank you for the opportunity to assist with this project. If we can be fiurher assistance, please do not hesitate to contact us.

Sincerely,
Harriman Associates

James Fortin, P.E.
jcf
cc: Jim Seymour - Sebago Technics w/encs. (Faxed Copy Sent to 856200

VERIZON WIRELESS BUILDING
45-55 CONGRESS STREET, PORTLAND MAINE ATTACHMENT 1: COLUMN CONFIGURATION TABLE

	Column \#56 Column \#55	Column \#54 Column \#	
6th Fioor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $8 \times 4 \times 3 / 8^{\prime \prime}$ angles Type A	$\begin{gathered} 12^{\prime \prime} \times 3 / 8^{\prime \prime} \text { thick weo plate } \\ 4-6 \times 4 \times 3 / 8^{\prime \prime} \text { angles } \\ \text { Type } \mathrm{D} \end{gathered}$	
5th Floor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 3 / 3^{\prime \prime}$ angles Type A	$\begin{gathered} 12^{\prime \prime} \times 3 / 8^{\prime \prime} \text { thick web plate } \\ 4-6 \times 4 \times 3 / 8^{\prime \prime} \text { angles } \\ \text { Type } D \end{gathered}$	
4th Fioor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 1 / 2^{2}$ thick angles Type A	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 3 / 8^{\prime \prime}$ angles Type A	' 12 " $\times 3.8$ "rick weo plate $14^{\prime \prime} \times 3$ ह" \cdot wk tange plates $4-5 \times 4 \%$ ngle 1 ype $=$
3ra Floor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 1 / 2$ " thick angles Type A	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick weo plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 3 / 8$ " angles Type A	```12"x \e"max web plate 14"\times3.8":n.ck fagge plates 4-6\times4\times7/2 mogies yoe 4```
2nd Floor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 1 / 2^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 1 / 2^{\prime \prime}$ thick angles Type A	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 14- $6 \times 4 \times 1 / 2^{\prime \prime}$ angles Type A	$12^{\prime \prime} \times 5$ sis" trak web plate 14 " $\times 12$ 'mek flange plates c. $6 \times 4 \times 1$ "? angles - yoe A
1st Floor	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 1 / 2^{\prime \prime}$ thick flange plates $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ ihick flange plates 4- $6 \times 4 \times 1 / 2$ " thick angles Type B	$12^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick web plate 14 " $\times 3 / 8$ " thick tange plates $14^{\prime \prime} \times 3 / 8$ " thick flange plates 4. $6 \times 4 \times 1 / 2^{\prime \prime}$ angies Type 8	$12^{\prime \prime} \times 5 /{ }^{-1}$ " wk web plate $14^{\prime \prime} \times 39^{\prime \prime}$: farge piates 14-6x, ye E
Basement Leve!	$12^{\prime \prime} \times 5 / 8^{\prime \prime}$ thick web plate $14^{\prime \prime} \times 1 / 2^{\prime \prime}$ thick flange plates $14^{\prime \prime} \times 3 / 8$ " thick flange plates $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4- $6 \times 4 \times 1 / 2$ " thick angles Type C	$12^{\prime \prime} \times 5 / 8$ " thick web plate $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates $14^{\prime \prime} \times 3 / 8^{\prime \prime}$ thick flange plates 4. $6 \times 4 \times 1 / 2$ angles Type 8	

Note: Type A to Type D are schematic representations of the column configuration and are no: to scale

Tyoe E

Picture $1:$ View of antonna and building from Forest Avenue.

Picture 2: 6th floor area.

Picture 3: Typical floor in area being evaluated.

ALL-POINTS TECHNOLOGY CORPORATION, P.C.

STRUCTURAL ANALYSIS REPORT 63' SELF-SUPPORTING TOWER PORTLAND, MAINE

Prepared for
Structure Consulting Group, Inc.

September 5, 2002

APT Project \#ME147110

STRUCTURAL ANALYSIS REPORT
 of
 63' SELF-SUPPORTING TOWER
 PORTLAND, MAINE
 prepared for
 Structure Consulting Group

EXECUTIVE SUMMARY:

All-Points Technology Corp., P.C. (APT) performed an inspection and structural analysis of this 63 -foot self-supporting roof-top tower. The analysis was performed with the addition of a 30 -foot extension, six microwave dishes, and three square panel antennas. Five existing inactive conical horn antennas were assumed to be removed from the tower. Feed lines, support members, and appurtenances associated with the horns were also assumed to be removed. Existing platforms were assumed to remain in place.

Our analysis indicates the tower is capable of supporting the proposed extension and antennas. Evaluation of the building structure to support tower reactions is pending receipt of building drawings.

INTRODUCTION:

An inspection and structural analysis was performed on the above-mentioned communications tower by All-Points Technology Corporation, P.C. (APT) for Structure Consulting Group. The tower is located on the roof of the building at 45-55 Forest Avenue in Portland, Maine.

Robert E. Adair, P.E. inspected the tower on August 13, 2002 to record information regarding physical and dimensional properties of the structure and its appurtenances. Mr. Adair climbed the structure in its entirety to compile data necessary to perform the structural analysis.

The structure is a 63 -foot painted galvanized steel, self-supporting tower of unknown manufacturer (possibly Andrew or LeBlanc). The analysis was performed with a 30 -foot tower extension and the following antenna inventory:

All-Points Technology Corporation, P.C.

Antenna	Elev.	Mount	Coax.
6' high performance dish	180'	Pipe	EW-52
1' square panel	180,	Pipe	1-5/8"
6' dish, no radome	175'	Pipe	EW-63
6' high performance dish	170,	Pipe	EW-90
7' omnidirectional whip	170 '	Wide flange extension	7/8"
2' square panel	165'	Pipe	1-5/8"
(2) omnidirectional antennas	162'	On platform face	(2) $1 / 2{ }^{\prime \prime}$
8' omnidirectional whip	161,	Pipe extension	7/8"
Super Stationmaster whip	160'	Pipe extension	7/8"
6' high performance dish	160'	Pipe	EW-52
2' square panel	160'	Pipe	1-5/8"
2' high performance dish	158'	5' x 6' frame on platform	(2) $3 / 8$ "
1' square panel	158'	On above frame	3/8"
12' high performance dish	157'	$6^{\prime} \times 3$ ' frame on platform	2-1/2" solid
7' omnidirectional whip	156,	Pipe extension	1/2"
Quad yagi	156'	Pipe on platform	7/8"
Dual yagi	152'	Platform	1/2"
6' dish with radome	150,	Pipe	1-5/8"
Dual yagi	149,	Platform	7/8"
Dual yagi	144,	Pipe on platform	7/8"
12' high performance dish	144,	Platform	2-1/2" solid
4' dish with radome	127,	Pipe	EW-90
12' high performance dish	111'	Platform	EW-52

Elevations listed are above ground level and assumes tower base is 87^{\prime} AGL. Proposed antennas are depicted in bold text.

FIELD INSPECTION:

- General Condition: The tower, a galvanized steel structure, appeared to be in very good condition. No signs of movement or overstress of the tower were observed.
- Bolted Connections of Lattice Bracing: Connections were visually inspected to the maximum extent practicable. All connections that were observed appeared to be sound, with no loose or missing bolts noted.

All-Points Technology Corporation, P.C.

- Antenna Connections: Antenna mounting hardware was in generally good condition, with corrosion-resistant hardware and galvanized members prevalent.
- Splice Connections: Observed splice connections were in good condition. One missing splice bolt was observed at the 100^{\prime} elevation (13' elev. on tower) on the climbing leg. The remaining splice bolts at this elevation are within allowable loads.

STRUCTURAL ANALYSIS:

Methodology:

The structural analysis was done in accordance with EIA/TIA-222-F, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures; and the American Institute of Steel Construction (AISC), Manual of Steel Construction, Allowable Stress Design, Ninth Edition.

The analysis was conducted using a wind speed of 80 miles per hour and one-half inch of radial ice over the entire structure and all appurtenances. The EIA/TIA Standard requires a minimum wind speed of 80 miles per hour for Cumberland County, Maine. The tower was analyzed by calculating the resultant wind loading and associated maximum bending moments, shear forces, and axial loads. The moments and forces were used to calculate stresses in leg and bracing members, which were compared to allowable stresses according to AISC.

Two loading conditions were evaluated in accordance with EIA/TIA-222-F to determine the tower's capacity. The more demanding of the two cases is used to calculate the tower capacity:

- Case $1=$ Wind Load (without ice) + Tower Dead Load
- Case $2=0.75$ Wind Load (with ice) + Ice Load + Tower Dead Load

In addition, the TIA/EIA standard permits a one-third increase in allowable stresses for towers less than 700 -feet tall. Allowable stresses of tower members were increased by one-third when computing the load capacity values shown below.

All-Points Technology Corporation, P.C.

Analysis:

Analysis of the tower was conducted in accordance with the criteria outlined herein with proposed antennae as previously described.

Our analysis determined the existing tower is capable of supporting the extension and additional proposed antennas. The following table summarizes the results of the analysis based on compressive stresses of individual leg members:

Tower Capacity

Elevation	Capacity
$0-13^{\prime}$	$\mathbf{4 9 \%}$
$13^{\prime}-25^{\prime}$	$\mathbf{4 1 \%}$
$25^{\prime}-38^{\prime}$	$\mathbf{3 2 \%}$
$38^{\prime}-50^{\prime}$	$\mathbf{3 1 \%}$
$50^{\prime}-63^{\prime}$	$\mathbf{1 9 \%}$
$63^{\prime}-78^{\prime}{ }^{\prime}$	$\mathbf{1 8 \%}$
$78^{\prime}-93^{\prime}$	$\mathbf{6 \%}$

Bracing Members:

Bracing is generally installed in a X-brace configuration, with each compression member paired with a corresponding tension member. Diagonal bracing was evaluated by calculating bracing members' allowable compression and tension forces and assessing each tower section's ability to resist calculated shear forces.

Bracing members were determined to be adequate to support the proposed loads.

Base Support:

Evaluation of the existing base support frame, comprised of MC18 $\times 58$ channels and W16 x 31 steel beams, was also performed. Our calculations indicate the base frame easily supports reactions generated by the tower with the proposed extension and antennas.

Base reactions imposed with the additional antennas were calculated as follows:

[^0]| Tension: | 64.9 kips |
| :--- | ---: |
| Compression: | 77.9 kips |
| Total Shear: | 41.6 kips |

CONCLUSIONS AND RECOMMENDATIONS:

Our structural analysis indicates the 63 -foot self-supporting roof-top tower located at 4555 Forest Avenue in Portland, Maine is capable of supporting the 30 -foot tower extension and antenna loading proposed by Verizon Wireless.

LIMITATIONS:

This analysis is based on the tower being properly installed, members in new condition, required members in place, and required bolts in place. The tower inspection conducted on August 13, 2002 confirmed these conditions.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

1. Replacing or strengthening bracing members.
2. Reinforcing vertical members in any manner.
3. Adding or relocating stabilizers.
4. Installing antenna mounting gates or side arms.
5. Extending tower.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

All-Points Technology Corporation, P.C.

150 Old Westside Road North Conway, NH 03860
(603) 356-5214

711 North Mountain Road Newington, CT 06111
(860) 953-4444

Appendix A

Tower Drawings

All-Points Technology Corp., P.C.	EXISTING TOWER		veri Onvieless	VERIZON PROJECT\#
150 OLD WESTSIDE ROAD NORTH CONWAY, NH 03860 PHONE/FAX: (603) 356-5214 MOBILE: (603) 496-5853 www.allipointstech.com	SHEET: 1 OF 1			
	SCALE: $1^{\prime \prime}=10^{\prime}$	DRAWN BY: REA	g Group	45-55 FOREST AVENUE
	DATE: 21 AUG 02	APT JOB \#ME1471	43 White Street, Suite 4	PORTLAND, MAINE

Scale: $1^{1 "=10}$

All-Points Technology Corp., P.C. 150 OLD WESTSIDE ROAD NORTH CONWAY, NH 03860 PHONE/FAX: (603) 356-5214 MOBILE: (603) 496-5853 www.allpointstech.com	TOWER EXTENSION		veri onwreess Structure Consulting Group 43 White Street, Suite 4 Belmont, MA 02478	VERIZON PROJECT \#
	SHEET: 1 OF 1			93' SELF-SUPPORTING TOWER 45-55 FOREST AVENUE PORTLAND, MAINE
	SCALE: $1^{\prime \prime}=15^{\circ}$	DRAWN BY: REA		
	DATE: 21 AUG 02	APT JOB \#ME147110		

Appendix B

Photographs

63' SELF-Supporting TOWER
Portland, Maine

Photo showing overview of 63^{\prime} rooftop self-supporting tower.

63' SELF-SUPPORTING TOWER Portland, Maine

Photo of tower base and support frame.

Appendix C

Calculations

```
All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH }0386
(603) 356-5214
```

Client: Structure Consulting Group
Job: Portland, ME Job No.: ME147110
Calculated By: R. Adair
Date: 19-Aug-02

General Information

Tower Manufacturer	Andrew?
Tower Type	Self-supporting Tower
Total Height of Tower	180 ft .
Wind Speed EIA-TIA: Cumberland County	80 mph .
Radial Ice	0.5 in.
25\% Reduction for ice	yes (yes or no)
$1 / 3$ increase for allowable loads	yes (yes or no)
Number of faces	4 faces
Antenna Force Calculations based on EIATTIA-222-F, using the following formulas:	
Force on discrete appurtenance: $\mathrm{F}=\mathrm{Qz}^{*} \mathrm{Gh}^{*} \mathrm{Ca}^{*} \mathrm{~A}$	
Force on microwave antennae: $\mathrm{F}=\mathrm{Cr}^{*} \mathrm{~A}^{*} \mathrm{Gh}^{*} \mathrm{~K} z^{*} \mathrm{~V}^{\wedge} 2$, where $\mathrm{Cr}=\left((\mathrm{Ca} 2)+\left(\mathrm{Cs}^{\wedge} 2\right)\right)^{\wedge}(1 / 2)$	
$\mathrm{Gh}=.65+.60 /(\mathrm{h} / 33)^{\wedge}(1 / 7)=$	$\mathrm{Gh}=1.12$
V as specified EIA-222-F	
Fy	36 ksi
E (Modulus of Elasticity)	29000 ksi
Fb	0.6
K	1
Tower taper	$0.15 \mathrm{ft} / \mathrm{ft}$

Section No.	Section Length	Leg Spread @ Base of section	Leg Size (Description)	Width of Leg to Wind	Leg Properties		
					Area	r_{2}	Unbraced Lengths
Bldg	87.0	50.00					
1	12.5	22.00	$6 \times 6 \times 5 / 8$	6.00	7.11	1.180	78
2	12.5	20.15	$6 \times 6 \times 5 / 8$	6.00	7.11	1.180	78
3	12.5	18.30	$6 \times 6 \times 5 / 8$	6.00	7.11	1.180	78
4	12.5	16.45	$6 \times 6 \times 1 / 2$	6.00	5.75	1.180	81
5	12.5	14.60	$6 \times 6 \times 1 / 2$	6.00	5.75	1.180	65
6	15.0	12.75	$6 \times 6 \times 5 / 16$	6.00	3.65	1.200	90
7	15.0	12.75	$5 \times 5 \times 5 / 16$	5.00	3.03	0.994	90
Top		12.75					
	180						

All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:
Structure Consulting Group
Job:
Portland, ME
Job No.: ME147110
R. Adair

Date: 19-Aug-02
Tower Summary

Section	1	type						
$\mathrm{Ag}=$	270	sf		93.25	f	Wt (bs)		
	Quantity Per							
	Face	Length (ft.)	Width (in.)	Area (sf)	Area w/ ice	Wt. Per ft.	Tower	Wt. (lbs.) Ice
Round Members								
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				0.0	0.0		0.0	0.0
Flat Members								
Leg	2	12.5	6.0	12.5	14.6	24.2	1209.7	252.8
Diagonal	2	16.3	3.5	9.5	12.2	11.6	1514.9	812.6
Horizontal	1	19.7	3.0	4.9	6.6	9.0	707.4	427.9
Sub-Diagonal	2	6.9	2.5	2.9	4.0	4.1	227.0	258.3
Sub-Horizontal	2	4.5	2.0	1.5	2.3	2.4	88.0	140.3
Section	2							
$\mathrm{Ag}=$	247	sf		105.75				
							Wt. (lbs.)	
	3	Length (ft.)	Width (in.)	Area (sf)	Area w/ ice	Wt. Per ft.	Tower	Wt. (lbs.) Ice
Round Members								
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				0.0	0.0		0.0	0.0
Flat Members								
Leg	2	12.5	6.0	12.5	14.6	24.2	1209.7	252.8
Diagonal	2	22.4	3.0	11.2	15.0	9.0	1615.1	977.0
Horizontal	1	17.8	3.0	4.5	5.9	9.0	640.8	387.6
Horizontal	1	18.7	2.0	3.1	4.7	3.2	238.9	291.3
Vertical	1	6.5	2.5	1.4	1.9	4.1	106.6	121.3
Section	3				typ			
$\mathrm{Ag}=$	223	sf	z	118				
	Quantity Per						Wt. (lbs.)	
	Face	Length (ft.)	Width (in.)	Area (sf)	Area w/ ice	Wt. Per ft.	Tower	Wt. (lbs.) Ice
Round Members								
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				0.0	0.0		0.0	0.0
Flat Members								
Leg	2	12.5	6.0	12.5	14.6	24.2	1209.7	252.8
Diagonal	2	20.9	3.0	10.5	13.9	9.0	1505.1	910.5
Horizontal	1	17.8	3.0	4.5	5.9	9.0	640.8	387.6
Horizontal	1	16.9	2.0	2.8	4.2	3.2	215.3	262.5
Vertical	1	6.5	2.5	1.4	1.9	4.1	106.6	121.3

All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:
Structure Consulting Group
Job:
Portland, ME
Job No.: ME147110
Date: 19-Aug-02

All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:	Structure Consulting Group	
Job:	Portland, ME	Job No.: ME147110
Calculated By:	R. Adair	Date: 19-Aug-02
Antennas		

6' HP dish	180	0.00324	1.62	26.60	28.3	29.5	1068	1113	250	500	228	0.0032	0.0003
6' HP dish	160	0.00324	1.57	25.72	28.3	29.5	1033	1076	250	500	228	0.0032	0.0003
4 ' dish w/radome	127	0.00097	1.47	24.08	14.2	14.8	146	152	150	250	330	0.0003	0.0009
6. HP dish	170	0.00324	1.60	26.17	28.3	29.5	1052	1096	250	500	230	0.0032	0.0003
6 6' dish w/radome	150	0.00145	1.54	25.25	28.3	29.5	452	471	250	500	287	0.0008	0.0012
2' square panel	165	1.4	1.58	25.95	4.0	4.3	163	177	50	100			
2' square panel	160	1.4	1.57	25.72	4.0	4.3	161	175	50	100			
1' square panel	180	1.4	1.62	26.60	1.0	1.2	42	49	25	50			
6 ' dish	175	0.00228	1.61	26.39	28.3	29.5	745	776	250	500	13	0.0021	0.0009

Antenna Info.

All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:	Structure Consulting Group		
Job:	Portland, ME	Job No.:	ME147110
Calculated By:	R. Adair	Date:	19-Aug-02

Existing Wind Load Without Ice

Section	Midpoint Height	Areas					Factors			Rr	Kz	Qz	Gh	e	Cf	Wind	Load	Section Length	Uniform	Load
		Gross	Flats	Rounds	Ae	Aa	Df	Dr	Ca											
1	93.25	269.7	31.3	0.0	31.3	17.68	1	1	1.2	0.58	1.35	22.05	1.12	0.12	2.90	2769	lbs.	12.5	222	lbs/ft.
2	105.75	246.6	32.6	0.0	32.6	17.59	1	1	1.2	0.58	1.39	22.85	1.12	0.13	2.84	2913	lbs.	12.5	233	$\mathrm{lbs} / \mathrm{ft}$.
3	118.25	223.4	31.6	0.0	31.6	16.51	1	1	1.2	0.58	1.44	23.59	1.12	0.14	2.80	2865	lbs.	12.5	229	lbs/ft.
4	130.75	200.3	31.7	0.0	31.7	16.51	1	1	1.2	0.58	1.48	24.28	1.12	0.16	2.74	2903	lbs.	12.5	232	$\mathrm{lbs} / \mathrm{ft}$.
5	143.25	177.2	47.5	0.0	47.5	15.38	1	1	1.2	0.61	1.52	24.92	1.12	0.27	2.38	3681	lbs.	12.5	294	lbs/ft.
6	157	198.8	34.5	0.0	34.5	11.82	1	1	1.2	0.59	1.56	25.58	1.12	0.17	2.69	3064	lbs.	15.0	204	lbs/ft.
7	172	197.5	32.0	0.0	32.0	5.51	1	1	1.2	0.58	1.60	26.26	1.12	0.16	2.73	2764	lbs.	15.0	184	lbs/ft.

Existing Wind Load With Ice

Section	Midpoint Height	Areas					Factors			Rr	Kz	Qz	Gh	e	Cf	Wind	Load	Section Length	Uniform	Load
		Gross	Flats	Rounds	Ae	Ai	Df	Dr	Ca											
1	93.25	269.7	39.7	0.0	39.7	30.70	1	1	1.2	0.58	1.35	22.05	1.12	0.15	2.78	3638		12.5	291	lbs/ft.
2	105.75	246.6	42.0	0.0	42.0	30.57	1	1	1.2	0.58	1.39	22.85	1.12	0.17	2.70	3845	lbs.	12.5	308	lbs/ft.
3	118.25	223.4	40.6	0.0	40.6	29.01	1	1	1.2	0.59	1.44	23.59	1.12	0.18	2.66	3773	lbs.	12.5	302	lbs/ft.
4	130.75	200.3	40.1	0.0	40.1	29.01	1	1	1.2	0.59	1.48	24.28	1.12	0.20	2.59	3781	lbs.	12.5	302	lbs/ft.
5	143.25	177.2	55.3	0.0	55.3	27.15	1	1	1.2	0.62	1.52	24.92	1.12	0.31	2.26	4407	lbs.	12.5	353	lbs/ft.
6	157	198.8	43.5	0.0	43.5	20.13	1	1	1.2	0.59	1.56	25.58	1.12	0.22	2.53	3854	lbs.	15.0	257	lbs/ft.
7	172	197.5	41.0	0.0	41.0	7.22	1	1	1.2	0.59	1.60	26.26	1.12	0.21	2.57	3357	lbs.	15.0	224	lbs/ft.

All-Points Technology Corp., P.C.

150 Old Westside Road
North Conway, NH 03860
(603) $356-5214$

Client:	Structure Consulting Group		
Job:	Portland, ME	Job No.:	ME147110
Calculated By:	R. Adair	Date:	19-Aug-02

Proposed Wind Load Without Ice

Section	$\begin{array}{r\|} \hline \begin{array}{c} \text { Midpoint } \\ \text { Height } \end{array} \\ \hline \end{array}$	Areas					Factors			Rr	Kz	Qz	Gh	e	Cf	Wind	Load	Section Length	Uniform	Load
		Gross	Flats	Rounds	Ae	Aa	Df	Dr	Ca											
1	93.25	269.7	31.3	0.0	31.3	26.57	1	1	1.2	0.58	1.35	22.05	1.12	0.12	2.90	3032		12.5	243	lbs/ft.
2	105.75	246.6	32.6	0.0	32.6	26.48	1	1	1.2	0.58	1.39	22.85	1.12	0.13	2.84	3186	lbs.	12.5	255	lbs/ft.
3	118.25	223.4	31.6	0.0	31.6	25.40	1	1	1.2	0.58	1.44	23.59	1.12	0.14	2.80	3147		12.5	252	$\mathrm{lbs} / \mathrm{ft}$.
4	130.75	200.3	31.7	0.0	31.7	24.85	1	1	1.2	0.58	1.48	24.28	1.12	0.16	2.74	3176	lbs.	12.5	254	$\mathrm{lbs} / \mathrm{ft}$.
5	143.25	177.2	47.5	0.0	47.5	23.59	1	1	1.2	0.61	1.52	24.92	1.12	0.27	2.38	3956		12.5	316	$\mathrm{lbs} / \mathrm{ft}$.
6	157	198.8	34.5	0.0	34.5	19.67	1	1	1.2	0.59	1.56	25.58	1.12	0.17	2.69	3335	lbs.	15.0	222	$\mathrm{lbs} / \mathrm{ft}$.
7	172	197.5	32.0	0.0	32.0	9.38	1	1	1.2	0.58	1.60	26.26	1.12	0.16	2.73	2900	lbs.	15.0	193	$\mathrm{lbs} / \mathrm{ft}$.

Proposed Wind Load With Ice

Section	Mid point Height	Areas					Factors			Rr	Kz	Qz	Gh	e	Cf	Wind	Load	Section Length	Uniform	Load
		Gross	Flats	Rounds	Ae	Ai	Df	Dr	Ca											
1	93.25	269.7	39.7	0.0	39.7	44.28	1	1	1.2	0.58	1.35	22.05	1.12	0.15	2.78	4040	lbs.	12.5	323	lbs/ft.
2	105.75	246.6	42.0	0.0	42.0	44.15	1	1	1.2	0.58	1.39	22.85	1.12	0.17	2.70	4262	lbs.	12.5	341	lbs/ft.
3	118.25	223.4	40.6	0.0	40.6	42.59	1	1	1.2	0.59	1.44	23.59	1.12	0.18	2.66	4204	lbs.	12.5	336	lbs/ft.
4	130.75	200.3	40.1	0.0	40.1	41.62	1	1	1.2	0.59	1.48	24.28	1.12	0.20	2.59	4193		12.5	335	lbs/ft.
5	143.25	177.2	55.3	0.0	55.3	39.52	1	1	1.2	0.62	1.52	24.92	1.12	0.31	2.26	4822	lbs.	12.5	386	lbs/ft.
6	157	198.8	43.5	0.0	43.5	32.00	1	1	1.2	0.59	1.56	25.58	1.12	0.22	2.53	4262	lbs.	15.0	284	$\mathrm{lbs} / \mathrm{ft}$.
7	172	197.5	41.0	0.0	41.0	13.02	1	1	1.2	0.59	1.60	26.26	1.12	0.21	2.57	3562	lbs.	15.0	237	lbs/ft.

All-Points Technology Corp., P.C.

150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:
Job:
Calculated By:

Structure Consulting Group
Portland, ME
R. Adair

Job No.: ME147110
Date: 19-Aug-02

Uplift Due to Moment Minus 1/4 Dead \& Ice Loads

	Existing $W_{o}-D L$.75Wi-DL-1	W 1 -DL-I	Proposed W_{0}-DL	. $75 \mathrm{~W}_{1}$-DL-I	W1-DL-I
Elev.	Force	Force	Force	Force	Force	Force
87	49.9	38.5	55.8	64.9	51.0	72.6
100	40.2	30.3	44.4	53.7	41.5	59.4
112	30.5	22.7	33.4	42.3	32.4	46.4
125	21.4	15.1	22.9	31.3	23.3	33.7
137	12.4	8.2	12.9	20.2	14.5	21.3
150	4.9	2.8	4.9	10.2	7.0	10.5
165	0.6	0.1	0.4	2.4	1.5	2.3

Tension in Anchor Bolts - Shear in Splice Bolts

		Existing W_{0}-DL	.75W --DL-1	W,-DL-I	Proposed W_{0}-DL	.75W1-DL-I	W1-DL-I
Elev.	\# of Bolts	Force/Bolt	Force/Bolt	Force/Bolt	Force/Bolt	Force/Bolt	Force/Bolt
87	14	3.57	2.75	3.99	4.63	3.64	5.18
100	14	2.87	2.17	3.17	3.83	2.97	4.24
112	14	2.18	1.62	2.39	3.02	2.31	3.31
125	14	1.53	1.08	1.63	2.24	1.66	2.41
137	14	0.89	0.58	0.92	1.44	1.04	1.52
150	24	0.21	0.12	0.20	0.43	0.29	0.44
165	8	0.08	0.01	0.05	0.30	0.19	0.29

Shear in Anchor Bolts - Tension in Splice Bolts

		Existing			Proposed		
Elev.	Bolt Size (dia.)	W_{0}	$.75 W_{1}$	W_{1}	W_{0}	$.75 W_{1}$	W_{1}
87	$3 / 4$	0.68	0.61	0.82	0.74	0.67	0.90
100	$3 / 4$	0.63	0.56	0.75	0.69	0.62	0.83
112	$3 / 4$	0.49	0.45	0.59	0.55	0.50	0.66
125	$3 / 4$	0.44	0.39	0.53	0.49	0.44	0.59
137	$3 / 4$	0.36	0.31	0.41	0.45	0.39	0.52
150	$3 / 4$	0.12	0.11	0.15	0.18	0.15	0.20
165	$3 / 4$	0.09	0.08	0.11	0.19	0.16	0.22

All-Points Technology Corp., P.C.
150 Old Westside Road
North Conway, NH 03860
(603) 356-5214

Client:	Structure Consulting Group	
Job:	Portland, ME	Job No.: ME147110
Calculated By:	R. Adair	Date: 19-Aug-02

Evaluation of Bracing Members

Center Bolted?	Yes	
Yield Strength $\left(\mathrm{F}_{\mathrm{Y}}\right):$	36 ksi	$\mathrm{C}_{\mathrm{C}}=$

Section	Member	\mathbf{K} Value	Length (ft.)	Area (in. ${ }^{2}$)	$\mathbf{r}_{\mathbf{x}}$ (in.)	$\mathbf{r}_{\mathbf{z}}$ (in.)	$\mathbf{k L} / \mathbf{r}_{\mathbf{x}}$	$\mathbf{k L} / \mathbf{r}_{\mathbf{z}}$
1	$2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4$	1.0	16.32	3.380	1.090	0.694	134.8	141.1
2	$2 \mathrm{~L} 3 \times 2.5 \times 1 / 4$	1.0	22.43	2.620	0.945	0.528	213.6	254.9
3	$2 \mathrm{~L} 3 \times 2.5 \times 1 / 4$	1.0	20.90	2.620	0.945	0.528	199.1	237.5
4	L3.5 $\times 3 \times 1 / 4$	1.0	19.43	1.560	1.110	0.631	157.6	184.8
5	L3.5 $\times 3.5 \times 1 / 4$	1.0	18.03	1.690	1.090	0.694	148.8	155.9
6	L3 $\times 3 \times 1 / 4$	1.0	13.63	1.440	0.930	0.592	131.9	138.1
7	L3 $\times 3 \times 1 / 4$	1.0	13.63	1.440	0.930	0.592	131.9	138.1

Section	All. Tens. (k)	$\mathbf{F}_{\mathbf{a}} \mathbf{(k s i)}$	All. Comp. (k)	Brace Angle	All. Shear (k)	Act. Shear (k)	Stress Ratio
1	73.01	7.50	25.34	0.55	167.41	40.89	24%
2	56.59	2.30	6.02	0.33	118.63	40.89	34%
3	56.59	2.65	6.93	0.36	119.00	35.18	30%
4	33.70	4.37	6.82	0.41	74.32	35.18	47%
5	36.50	6.15	10.39	0.38	87.20	27.65	32%
6	31.10	7.83	11.28	0.53	33.83	24.79	73%
7	31.10	7.83	11.28	0.53	33.83	19.96	59%

All－Points Technology Corp．，P．C．

150 Old Westside Road
North Conway，NH 03860
（603）356－5214

Client：	Structure Consulting Group	
Job：	Portland，ME	Job No．：ME147110
Calculated By：	R．Adair	Date：19－Aug－02

Evaluation of Leg Members

						Existing		Proposed	
Section	Size	K／／r	Cc	Fa allow	133\％Allow	D＋W。	D＋．75WI＋1	D＋W。	D＋．75Wl＋1
1	6x6x5／8	66.10	126.04	16.83	22.43	8.78	8.26	10.95	10.18
2	$6 \times 6 \times 5 / 8$	66.10	126.04	16.83	22.43	7.24	6.84	9.20	8.56
3	$6 \times 6 \times 5 / 8$	66.10	126.04	16.83	22.43	5.52	5.21	7.25	6.72
4	$6 \times 6 \times 1 / 2$	68.64	126.04	16.57	22.09	5.04	4.80	6.84	6.37
5	$6 \times 6 \times 1 / 2$	55.08	126.04	17.89	23.85	3.09	2.96	4.51	4.21
6	$6 \times 6 \times 5 / 16$	75.00	126.04	15.90	21.20	2.26	2.25	3.81	3.62
7	$5 \times 5 \times 5 / 16$	90.54	126.04	14.13	18.85	0.45	0.46	1.11	1.07

Percent Capacity

	Existing			Proposed			Maximum		
Section	Base Elev．	D＋W。	D＋．75W1＋1	Secondary	D＋W。	D＋．／5W1＋1	Secondary	Existing	Proposed
1	87	39\％	37\％	0\％	49\％	45\％	0\％	39\％	49\％
2	100	32\％	30\％	0\％	41\％	38\％	0\％	32\％	41\％
3	112	25\％	23\％	0\％	32\％	30\％	0\％	25\％	32\％
4	125	23\％	22\％	0\％	31\％	29\％	0\％	23\％	31\％
5	137	13\％	12\％	0\％	19\％	18\％	0\％	13\％	19\％
6	150	11\％	11\％	0\％	18\％	17\％	0\％	11\％	18\％
7	165	2\％	2\％	0\％	6\％	6\％	0\％	2\％	6\％

Maximum Reactions：

Uplift：	64.9 kips
Compression：	77.9 kips
Shear：	41.6 kips

VERIZON WIRELESS (Tenant)

400 FRIBERG PARKWAY
WESTBOROUGH, MA 01581
(508) 330-3343

45-55 FOREST AVENUE TOWER SITE

FOR THE:
INSTALLATION OF 9 NEW MICROWAVE ANTENNA TO BE MOUNTED ON THE MODIFIED 93' SHELF SUPPORT VERIZON NEW ENGLAND MICRO-WAVE TOWER.

PROJECT SUMMARY

SITE ADDRESS: 45-55 FOREST AVENUE

OWNER/LESSOR VERIZON NEW ENGLAND, INC.
5 DAVIS FARM ROAD
PORTLAND, MAINE 04103
LESSEE:
VERIZON WIRELESS
400 FRIBERG PARKWAY
WESTBOROUGH, MA 01581
ASSESSORS MAP: TAX MAP 37, LOT 1
CURRENT ZONING: DOWN TOWN BUSINESS B3 \& B3C
LATITUDE: N 43º $39^{\circ}-21.0^{\prime \prime}$
LONGITUDE: W 70º $15^{\circ}-50.0^{\prime \prime}$
TOWER BASE ELEVATION:ASSUMED 87'

1 of 4 COVER SHEET
PROJECT TITLE: PORTLAND TOWER SITE PROJECT NO. 02342

CITY OF PORTLAND, MAINE

Department of Building Inspections

Received from
Location of Work

Cost of Construction
Permit Fee

Building (IL) Other \qquad

CBL: \qquad
Check \#: \square Total Collected \$ \qquad

THIS IS NOT A PERMIT

No work is to be started until PERMIT CARD is actually posted upon the premises. Acceptance of fee is no guarantee that permit will be granted. PRESERVE THIS RECEIPT. In case permit cannot be granted the amount of the fee will be refunded upon return of the receipt less $\$ 10.00$ or 10% whichever is greater.

WHITE - Applicant's Copy
YELLOW - Office Copy
PINK - Permit Copy

[^0]: All-Points Technology Corporation, P.C.
 150 Old Westside Road

