SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. UTP cabling.
- 2. Coaxial cable.
- 3. Multiuser telecommunications outlet assemblies.
- 4. Cable connecting hardware, patch panels, and cross-connects.
- 5. Telecommunications outlet/connectors.
- 6. Cabling system identification products.
- 7. Cable management system.

B. Related Requirements:

- 1. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.
- 2. Section 280513 "Conductors and Cables for Electronic Safety and Security" for voice and data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. EMI: Electromagnetic interference.
- D. IDC: Insulation displacement connector.
- E. LAN: Local area network.
- F. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.
- G. RCDD: Registered Communications Distribution Designer.
- H. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For coaxial cable, include the following installation data for each type used:
 - a. Nominal OD.
 - b. Minimum bending radius.
 - c. Maximum pulling tension.

B. Shop Drawings:

- 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
- 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
- 3. Cabling administration drawings and printouts.
- 4. Wiring diagrams to show typical wiring schematics, including the following:
 - a. Cross-connects.
 - b. Patch panels.
 - c. Patch cords.
- 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Patch-Panel Units: One of each type.
 - 2. Connecting Blocks: One of each type.
 - 3. Device Plates: One of each type.
 - 4. Multiuser Telecommunications Outlet Assemblies: One of each type.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- B. Testing Agency Qualifications: An NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLING DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the

communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.

- 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
- 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
- 3. Bridged taps and splices shall not be installed in the horizontal cabling.
- 4. Splitters shall not be installed as part of the optical fiber cabling.
- B. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the telecommunications outlet/connectors to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment or in the horizontal cross-connect.

2.2 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Grounding: Comply with J-STD-607-A.

2.3 BACKBOARDS

A. Backboards: Plywood, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements in Section 061000 "Rough Carpentry" for plywood backing panels.

2.4 UTP CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Belden Inc.
 - 2. Berk-Tek; a Nexans company.
 - 3. <u>CommScope</u>, <u>Inc</u>.
 - 4. SYSTIMAX Solutions; a CommScope, Inc. brand.
 - 5. 3M Communication Markets Division.

- B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.5 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Belden Inc.
 - 2. <u>Hubbell Premise Wiring</u>.
 - 3. Leviton Commercial Networks Division.
 - 4. Molex Premise Networks; a division of Molex, Inc.
 - 5. Panduit Corp.
 - 6. Siemon Co. (The).
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.
- D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.
- F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

- G. Patch Cords: Factory-made, four-pair cables in 48-inch (1200-mm) lengths; terminated with eight-position modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 - 2. Patch cords shall have color-coded boots for circuit identification.

2.6 COAXIAL CABLE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Alpha Wire Company.
 - 2. Belden Inc.
 - 3. Coleman Cable, Inc.
 - 4. <u>CommScope, Inc.</u>
- B. Cable Characteristics: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- C. RG-11/U: NFPA 70, Type CATV.
 - 1. No. 14 AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- D. RG59/U: NFPA 70, Type CATVR.
 - 1. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- E. RG-6/U: NFPA 70, Type CATV or CM.
 - 1. No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.
 - 3. Jacketed with black PVC or PE.
 - 4. Suitable for indoor installations.
- F. RG59/U: NFPA 70, Type CATV.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.

- 2. Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
- 3. PVC jacket.
- G. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - 3. Copolymer jacket.

2.7 COAXIAL CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Emerson Network Power Connectivity Solutions.
 - 2. <u>Leviton Commercial Networks Division.</u>
 - 3. <u>Siemon Co. (The)</u>.
- B. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.8 TELECOMMUNICATIONS OUTLET/CONNECTORS

A. Voice and Data Jacks: 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-B.1.

2.9 GROUNDING

- A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.
- B. Comply with J-STD-607-A.

2.10 IDENTIFICATION PRODUCTS

- A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

2.11 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.

- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory-sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Install cables in pathways utilizing boxes and conduits provided under Division 26, as well as "J" hook type cable support and cable trays except within consoles, cabinets, desks, and counters. Conceal pathways and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
- B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures:
 - 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 - 2. Install lacing bars and distribution spools.
 - 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.2 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

- 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 10. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
- 11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

- 1. Comply with TIA/EIA-568-B.2.
- 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

D. Open-Cable Installation:

- 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
- 2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:

- 1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
- 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).

- b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.3 FIRESTOPPING

- A. Comply with TIA-569-B, Annex A, "Firestopping."
- B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.4 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with J-STD-607-A.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.5 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Administration Class: 3.

- 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
- B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect asbuilt conditions.
- C. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- D. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 3 level of administration.
- E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.

G. Cable and Wire Identification:

- 1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
- 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
- 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
- 4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.
- 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- 6. Uniquely identify and label work area cables extending from the MUTOA to the work area. These cables may not exceed the length stated on the MUTOA label.

- H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 - 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Visually inspect UTP and optical fiber cable jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA/EIA-568-B.1.
 - 2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
 - 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 5. UTP Performance Tests:
 - a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 - 1) Wire map
 - 2) Length (physical vs. electrical, and length requirements).
 - 3) Insertion loss.
 - 4) Near-end crosstalk (NEXT) loss.
 - 5) Power sum near-end crosstalk (PSNEXT) loss.
 - 6) Equal-level far-end crosstalk (ELFEXT).
 - 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 - 8) Return loss.
 - 9) Propagation delay.
 - 10) Delay skew.
 - 6. Final Verification Tests: Perform verification tests for UTP systems after the complete communications cabling and workstation outlet/connectors are installed.
 - a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen

- and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.
- b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.
- B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- C. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION 271500